The vanishing of the Chow cohomology ring for affine toric varieties and additional results
No Thumbnail Available
Authors
Meeting name
Sponsors
Date
Journal Title
Format
Thesis
Subject
Abstract
From the recent work of Edidin and Satriano, given a good moduli space morphism between a smooth Artin stack and its good moduli space X, they prove that the Chow cohomology ring of X embeds into the Chow ring of the stack. In the context of toric varieties, this implies that the Chow cohomology ring of any toric variety embeds into the Chow ring of its canonical toric stack. Furthermore, the authors give a conjectural description of the image of this embedding in terms of strong cycles. One consequence of their conjectural description, and an additional conjecture, is that the Chow cohomology ring of any affine toric variety ought to vanish. We prove this result without any assumption on smoothness. Afterwards, we present a series of results related to their conjectural description, and finally, we provide a conjectural toric description of the image of this embedding for complete toric varieties by utilizing Minkowski weights.
Table of Contents
DOI
PubMed ID
Degree
Ph. D.
Thesis Department
Rights
OpenAccess.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
