On the Euler characteristics of certain moduli spaces of 1-dimensional subschemes
No Thumbnail Available
Authors
Meeting name
Sponsors
Date
Journal Title
Format
Thesis
Subject
Abstract
Generalizing the ideas in [LQ] and using virtual Hodge polynomials as well as torus actions, we compute the Euler characteristics of some moduli spaces of 1-dimensional closed subschemes when the ambient smooth projective variety admits a Zariskilocally trivial fibration to a codimension-1 base. As a consequence, we partially verify a conjecture of W.-P. Li and Qin [LQ]. We also calculate the generating function for the number of certain punctual 3-dimensional partitions, which is used to compute the above Euler characteristics.
Table of Contents
DOI
PubMed ID
Degree
Ph. D.
Thesis Department
Rights
OpenAccess.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
