On the Euler characteristics of certain moduli spaces of 1-dimensional subschemes

No Thumbnail Available

Meeting name

Sponsors

Date

Journal Title

Format

Thesis

Subject

Research Projects

Organizational Units

Journal Issue

Abstract

Generalizing the ideas in [LQ] and using virtual Hodge polynomials as well as torus actions, we compute the Euler characteristics of some moduli spaces of 1-dimensional closed subschemes when the ambient smooth projective variety admits a Zariskilocally trivial fibration to a codimension-1 base. As a consequence, we partially verify a conjecture of W.-P. Li and Qin [LQ]. We also calculate the generating function for the number of certain punctual 3-dimensional partitions, which is used to compute the above Euler characteristics.

Table of Contents

DOI

PubMed ID

Degree

Ph. D.

Thesis Department

Rights

OpenAccess.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.