Optical stimulation of quantal exocytosis on transparent microchips

No Thumbnail Available

Meeting name

Sponsors

Date

Journal Title

Format

Thesis

Subject

Research Projects

Organizational Units

Journal Issue

Abstract

Photorelease of caged Ca²⁺ is a uniquely powerful tool to study the dynamics of Ca²⁺-triggered exocytosis from individual cells. Using photolithography and other microfabrication techniques, we have developed transparent microchip devices to enable photorelease of caged Ca²⁺ together with electrochemical detection of quantal catecholamine secretion from individual cells or cell arrays as a step towards developing high-throughput experimental devices. A 110 nm - thick transparent Indium-Tin-Oxide (ITO) film was sputter-deposited onto glass coverslips, which were then patterned into 24 cell-sized working electrodes (2̃0 [mu]m by 20 [mu]m). We loaded bovine chromaffin cells with acetoxymethyl (AM) ester derivatives of the Ca²⁺ cage NP-EGTA and Ca²⁺ indicator dye Fura-4F, then transferred these cells onto the working ITO electrodes for amperometric recordings. Upon flash photorelease of caged Ca²+С uniform rise of [Ca²⁺]i within the target cell leads to quantal release of oxidizable catecholamines measured amperometrically by the underlying ITO electrode. We observed a burst of amperometric spikes upon rapid elevation of [Ca²⁺]i and a "priming" effect of sub-stimulatory [Ca²⁺]i on the response of cells to subsequent [Ca²⁺]i elevation, similar to previous reports using different techniques. We conclude that UV photolysis of caged Ca²⁺ is a suitable stimulation technique for higher-throughput studies of Ca²⁺-dependent exocytosis on transparent electrochemical microelectrode arrays.

Table of Contents

DOI

PubMed ID

Degree

Ph. D.

Rights

License