Within-site variability and reliability of foundation designs based on load tests
No Thumbnail Available
Authors
Meeting name
Sponsors
Date
Journal Title
Format
Thesis
Subject
Abstract
Probabilistic evaluations of the reliability of foundation designs based on site-specific load test information are somewhat limited in number. Published evaluations have generally relied on Bayesian techniques. A primary input for Bayesian analysis is within-site variability, which describes the variability of foundation resistance across a site. Within-site variability is attributed to geologic variation across a site and to differences in construction outcomes among foundation elements. Published evaluations have generally used a deterministic value of within-site variability wherein within-site variability is treated as a known parameter and is not subject to updating based on load test results. In contrast, probabilistic within-site variability treats within-site variability as an uncertain parameter with its own probability distribution that is updated based on load test results. Probabilistic within-site variability has not been applied commonly. This research examines differences in reliability outcomes between deterministic and probabilistic within-site variability. Analysis of micropile load test results from five different sites was used to develop a distribution of within-site variability. The resulting distribution is relatively variable (i.e. the value of within-site variability is, itself, variable), which demonstrates that there is, in fact, considerable variability and uncertainty in the value of within-site variability.
Table of Contents
DOI
PubMed ID
Degree
Ph. D.
Thesis Department
Rights
OpenAccess.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
