Thermal transport of nanoenergetics in composite materials

No Thumbnail Available

Meeting name

Sponsors

Date

Journal Title

Format

Thesis

Subject

Research Projects

Organizational Units

Journal Issue

Abstract

Nanoenergetic materials such as nanothermites are made up of a mixture of nanoscale fuel and oxidizer particles separated by small distances to promote rapid reaction. When reacted, they can reach an adiabatic flame temperature approximately 3000 to 4000K and generate a shock wave of approximately 2500 m/s. In this work we studied the effects of plasmonic photothermal heating and its interaction with aluminum nanoparticles. Plasmonic gratings are known to enhance electric fields based on the structure and surface plasmon resonance as a result of light coupling. By understanding the effects of enhanced electric fields caused by plasmonic gratings, we can study the effects it has on nanoparticles and its applications in in - situ temperature mapping. From the results of this investigation via numerical methods, it was found that six nanoparticles in contact were enough to reach beyond ignition temperature of 470 degrees C, and validated the plasmonic grating does enhance the photothermal heating of nanoparticles. Another facet to this thesis is the investigation of thermal conductivity of graphene with decorated aluminum nanoparticles. Graphene acts as a great platform for spreading thermal energy due to its excellent thermal properties. We investigate the potentially beneficial thermal properties for sustaining combustion during nanoparticle heating. However, the phonon scattering caused by nanoparticles on the surface of graphene is still not completely understood. This work gives preliminary simulation results and experimental designs to the investigation of the thermal conductivity of graphene with decorated nanoparticles.

Table of Contents

DOI

PubMed ID

Degree

M.S.

Rights

OpenAccess.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.