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ABSTRACT

Recent years have seen an increase in research and development efforts towards

wearable and implantable health monitoring systems. Such systems are needed to provide

real-time information about patients to physicians, care-givers, emergency personnel and

relatives. The challenge lies in their designing as they need to satisfy a variety of criteria

and constraints. These include small weight and size, low power consumption, easy to

use, and should be aesthetically pleasing. Advances in semiconductor fabrication have

made commercially available highly integrated systems-on-chip (SOC) which are being

exploited to develop such systems. Use of these SOCs reduces cost and development

time.

This dissertation presents system prototypes that can capture human body motion,

measure strain on bones and perform electromyography (EMG). Design of these systems

is centered on ultra-low power microcontrollers and other required circuit components.

We present in detail their design, functionality and compare our results with present solu-

tions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Researchers today are are working towards making available wearable computing

platforms for a variety of applications. These include fitness, healthcare, and entertain-

ment. The vision is to have systems that are permanently present and active, virtually

invisible, and act as intelligent personal assistants. These systems should enhance the

users intelligence, expand his ability to communicate and interact with the environment

and provide assistance in a variety of everyday situations. The envisioned system is called

a Body Area Sensor Network, as the sensor nodes are carefully placed around the body to

perform various tasks. These nodes can be employed to collect physiological data such as

electrocardiogram (ECG), electromyogram (EMG) electroencephalogram (EEG), blood

pressure, strain felt by the skeleton, heart rate, skin temperature, respiration frequency,

sweat production, motion etc.

To achieve social acceptance, body area sensor network nodes must have many

properties that make them significantly different from a conventional wireless sensor net-

work. In terms of functionality, these sensor nodes should be able to collect near perfect

data, stay connected to the central node at all times and have a sophisticated user interface

that allows the system to be used while mobile.

Along with the functionality requirements, designing the hardware has its share
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of challenges too. A body area sensor network needs to be unobtrusive to the degree

that it does not interfere with the user’s activity and does not change his appearance in

any unacceptable way. For this the nodes must be extremely noninvasive, and should be

smaller in size relative to a conventional wireless sensor network. Since the size should

be as small as possible the nodes cannot operate from large batteries however be able

to last as long as possible without the need to replace or recharge them. Most of the

battery is used up by the sensors, frontend electronics, digital processing of data, and

radio communication. Therefore, choosing the best electronics is very critical but the

state of the art presents limitations.

System integration has provided commercially available off the shelf system-on-

chips, however to choose the best among the many for a particular application is chal-

lenging. For example, decisions need to be undertaken to have better battery life over

size or vice versa. The applications also dictate the employment of power management

schemes. Therefore, designing a wearable or implantable body area sensor network can

be categorized as an optimization problem.

Adding to the task of optimization, the design and implementation of such a sys-

tem requires knowledge of a multitude of disciplines, such as: human physiology, sen-

sor types, electronic control and processing units, wireless communication protocols and

links, graphical interface for the user, software, and advanced algorithms for data extract-

ing and decision making. Therefore, a collaborative effort between engineers, doctors,

and computer scientists is inevitable.
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1.2 Overview

The aim of this dissertation is to provide solutions for the mentioned body area

sensor network for capturing human body motion, measure strain on bones and record

muscle potentials. We do this by providing in detail the design and validation of wire-

less nodes for these applications. Each solution is housed in its own chapter, where we

make available a survey of previously done work, theoretical background and the results

achieved.

Sensor designed to capture human body motion and classify them is presented

in chapter 2. In this chapter, we also propose an approach to increase battery life of a

accelerometer based gesture collecting wireless sensor by using state of the art classifiers.

Successive versions of bone strain monitoring sensor are discussed in chapter 3.

Our final version is a multichannel strain measuring sensor, that can also capture motion

using acclerometers as well can be charged wireless. Wireless charging makes it suitable

for implantable applications.

And finally, a wireless surface Electromyography (EMG) sensor is presented in

chapter 4. We present the hardware design for the EMG node and propose a robust wire-

less network solution to employ four such sensors at once.

Conclusions are drawn out in chapter 5.

1.3 Contributions

This dissertation contributions includes the use of state of the art available to cre-

ate engineering solutions for measuring physiological signals. The designed nodes are
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centered around a highly-integrated microcontrollers. The design of PCB is carefully

done to minimize noise. Other required circuit is chosen meticulously from the pool of

available parts to reduce the overall power consumed by the final product.

A multi channel strain measuring sensor node is designed for measuring strain on

bones wirelesly and can be used in implanted applications. A robust network is created

to collect EMG information from four locations on the body and over comes the data

rate limitations put forth by the hardware. The network uses TDMA technology and

assign data transmission slots to nodes. Neural networks are employed to device a battery

conserving technique for gesture capturing wireless nodes.
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CHAPTER 2

A WEARABLE MOTION TRACKER

This chapter presents the development and testing of a wearable, multi-modality,

motion capture platform. This platform can be used in a range of applications including

virtual and augmented reality, biomechanics, sign language translation, gait analysis and

graphics in movies and video games. Our platform includes inertial and ultrasonic motion

sensing modalities. The combination of these modalities is expected to improve the over-

all accuracy of the captured motion data. An electronic board for this has been designed,

fabricated and programmed. The board measures 3.2 cm x 4.8 cm and includes a low-

power microcontroller, a radio unit, a three-axis accelerometer, a two axis gyroscope, an

ultrasonic transmitter and an ultrasonic receiver. Results using the inertial and ultrasonic

sensors to estimate position are presented.

Gestures captured using accelerometer data is classified using state of the art clas-

sification techniques, such as linear discriminant analysis, static neural network and time

delay neural networks. A comparison of their accuracies in user-dependent and user-

independent scenarios is also discussed. Radio communication is the most power hungry

operation done by wireless sensor nodes. We show that by sending less bits of accelerom-

eter data (more samples can be packed into one data packet) at lower than nyquist rates

(reduced power by transmitting less often) still can achieve high classification accuracies.

This can prove handy in applications where signal integrity is less important compared to
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accurately classifying gestures being performed.

2.1 Body Motion Capture Literature Survey

Body motion capture is an essential task in many areas such as computational

biomechanics, virtual and augmented reality, assisted living, sign language translation,

camera tracking, and exercise and fitness among others. In computational biomechanics,

limb motion and ground reaction forces are combined in an inverse dynamic method to

calculate the net reaction forces and torques acting on body joints [76]. In virtual and

augmented reality, body motion tracking is necessary for spatial consistency between the

real and virtual objects [6]. Tracking the motion of elderly people at home may help them

live safely and more independently as they can interact with their environment by means

of arm or hand gestures [86]. Motion tracking is also required in automated sign language

translation [68]. A sign language translation device would improve the quality of life

of deaf people allowing them to communicate with people who do not understand sign

language. Motion capture also allows training and exercise movements to be recorded for

latter analysis to provide feedback to an athlete.

Nearly every physical principle has been explored to measure motion. Motion

capture systems based on mechanical, inertial, acoustic, optical, magnetic, and electro-

magnetic sensing have been proposed [45, 74]. Optical-based motion tracking systems

employ 1D or 2D photo-sensors conveniently fixed around a room. The subject wears

markers whose locations are calculated from the acquired images by algorithms running

on a dedicated computer. The markers could be passive or active. Passive markers are

6



retro-reflectors that have to be illuminated by infrared light synchronized to high-speed

cameras. Active markers are usually composed of light-emitting diodes (LEDs) which

are sequentially energized making the task of multiple-marker tracking easier. The Carte-

sian Optoelectronic Dynamic Anthropometer (CODA) system employs user-worn LEDs

and multiple 1D CCD cameras [43]. The cameras do not use lenses but instead rely on

a pseudo-random optical grating that combined with digital signal processing techniques

allows the estimation of the angle to the LED. Multiple such measurements enable the

calculation of the position of an LED.

Another approach used by Motion Analysis Corp. [52] and Vicon [71] employs

high-speed, high-resolution digital cameras to simultaneously image several targets. The

images proceeding from the different cameras are combined and interpreted on a com-

puter. A powerful computer is required to process the large amount of digital imaging

data in real time. Optical systems provide accurate position estimates but they suffer from

occlusions. While these systems have good accuracies, the subject is constrained to move

inside a controlled lab environment. In some applications, it is highly desirable to capture

body motion outside the lab as the subject conducts his or her daily activities. Another

drawback of the multi-camera approach is its high cost.

Ultrasound or acoustic sensors have been proposed for motion tracking. In these

systems, ultrasound transmitters or markers are placed along the limbs. The distance

between the markers and three ultrasound microphones placed on a treadmill at known

positions is measured [34]. The absolute coordinates are calculated by triangulation. The

system is commercially available from Noraxon Inc [57]. The system is not wearable and
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the subject has to walk on a treadmill equipped with ultrasound sensors on each side. An

effort to make such system wearable and mobile is reported in [15] where an e-textile gar-

ment equipped with ultrasound markers is proposed. Employing ultrasound to calculate

the positions of body parts faces the problems of shadowing or blocking of the ultrasound

signal by the body and clothing, directivity and size of the transmitters, multipath, and

the dependence of the speed of sound on temperature and wind. Ultrasound has also been

proposed to measure the gait velocigram or instantaneous horizontal velocity as well as

medial lateral and vertical displacements using acoustic Doppler techniques [84]. From

these measurements, velocities and accelerations can be computed [73]. Although simple,

this technique does not directly compute the position of the limbs and requires the subject

to move in front of an ultrasound sensor.

Inertial sensing, which involves the use of accelerometers and gyroscopes [5, 23,

59, 70, 85] has been widely applied to body motion capture. Due to the advancements

in micro-electrical mechanical systems (MEMS), wearable inertial motion capture sys-

tems are possible. An accelerometer-based motion capture system called Motion Capture

with Accelerometers (MOCA) is reported in [17]. The MOCA system is composed of ac-

celerometers, an acquisition board, and a wearable computer for sensor data processing.

Its main aim is to provide a low-cost motion capturing system. Another human motion

capture system based on accelerometers and gyroscopes is reported in [3]. The system

is used to detect activity in clinical settings. The system can correctly identify sitting,

standing, walking, and lying positions. The advantages of inertial systems are small size

sensors and their immunity to electromagnetic interference. However, their weakness is

8



drift. To estimate position, the output of an accelerometer has to be integrated twice. If

an accelerometer has a bias error of just 1 mili-g, after only 30 seconds of integration,

the position estimates would have diverged by 4.5 meters [74]. Techniques like periodic

resetting have been proposed to alleviate this problem. Some inertial-based commercial

motion tracking systems are available [79], but they require the user to wear a special suit

with bulky sensors attached to it.

Magnetic-based systems have been also proposed. They detect position and orien-

tation using a magnetic field that could be the Earth’s magnetic field or a field generated

by a coil. This approach usually requires three orthogonally oriented magnetic sensors

and is affected by ferromagnetic and conductive materials in the environment.

To address the shortcomings of the different sensing methods described above,

we propose to employ a multi-modality sensing approach. In particular, we combine

inertial and acoustic sensing to obtain a wearable motion-sensing platform with increased

accuracy and reliability. The combination of inertial and acoustic sensing has been used

before but in the context of indoor tracking [21]. In indoor tracking, ultrasound emitters

are placed on the ceiling constraining the user to move inside a covered area.

2.2 System Overview

Figure 1 shows a picture of the envisioned wearable motion capture system. It is

composed of small sensor nodes that contain inertial and ultrasonic sensors, a low-power

microcontroller and a radio unit. The sensor nodes can be placed on joints, limbs or any

other part of the body whose motion needs to be tracked. A set of these sensor nodes
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are worn on a belt around the waist. These are the reference nodes and form a reference

frame upon which the position of the other nodes can be estimated using time-of-flight

measurements of ultrasound pulses and multilateration algorithms. The ultrasonic sensors

could also be employed to track the position of the user as he or she moves across a room,

office space or nursing home [21, 27]. Also worn on the belt is a processing unit that

communicates with the sensor nodes and processes the motion data.

Figure 1: Wearable motion capture network.

Other wearable multi-modal motion sensing platforms have been reported in the

literature but require placing reference sensors on the chest or on the head [72]. This

placement, although convenient in research settings, reduces the long-term wearability of

the system. Therefore, we limit the placement of the sensors to locations where the user
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would normally wear an accessory, i.e. wrist, waist, ring finger, necklace, etc. The overall

goal for this system is to not only acquire motion data but also to classify and interpret the

motion trajectories in a way the user can interact with the environment through motion.

2.3 Hardware Design

A circuit board for the motion capture sensor nodes has been designed, built and

tested. The board includes a three-axis accelerometer (Analog Devices ADXL335), a

two-axis gyroscope (ST Microelectronics LPR530), a lowpower micro-controller (Texas

Instruments MSP4302274), a 2.4 GHz radio transceiver (Chipcon CC2500), a chip an-

tenna, an ultrasonic emitter, an ultrasonic microphone, an amplifier, and a LDO voltage

regulator. It also contains a programming and expansion header. The board dimensions

are 3.3 cm x 4.8 cm. Figure 2 shows the picture of the motion sensor node and its

schematic diagram.

The microcontroller generates a 40 kHz square waveform that is applied to the

ultrasonic emitter through a current driver. The current driver is made up of logic invert-

ers connected in parallel. Short ultrasound bursts at intervals of 1 Hz to 20 Hz can be

generated by the micro-controller using its internal timers. The output of the ultrasound

microphone is amplified, filtered and fed to one of the channels of the micro-controller’s

internal ADC. The internal ADC is also employed to sample and digitize the three analog

outputs of the accelerometer (X, Y, Z axes) and the two analog outputs of the gyroscope

(pitch and roll). These samples are transmitted wirelessly to the reference nodes through

the radio transceiver.

11



(a)

(b)

Figure 2: Motion seonsor node. (a) PCB . (b) Schematic.
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The microcontroller communicates with the CC2500 radio transceiver through

its SPI interface. Shortly after power up the micro-controller writes the registers of the

CC2500 to select the channel, modulation, data rate, packet length and power transmis-

sion levels. Then the micro-controller programs its timers to generate interrupts at 80

kHz (to generate the ultrasound pulses) and 300 Hz (to sample the analog outputs of the

accelerometer and gyroscope). The sampling rate can be easily varied by changing the

period of the timer. Once the micro-controller has collected 10 sample points of the X,

Y, Z and the pitch and roll values it creates a packet that is transferred to the CC2500 for

its transmission. The packet has an address and a header to help synchronization with

the receiver. The receiver is another motion sensing board that is programmed to receive

radio packets and send them to a PC through the micro-controller’s UART port.

Figure 3: Matlab c© graphical user interface for motion data collection.
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On the PC side a Matlab c© -based graphical user interface (GUI) was created to

receive, plot and save the incoming motion data. Figure 3 shows a screen shot of the

GUI. Start, Stop and Save controls were included to make the data collection simple and

user friendly. The GUI plots in real time the X, Y and Z axis of the accelerometer to

provide visual feedback. The pitch and roll are not displayed but are collected in memory

and saved to disk when indicated by the user.

2.4 Position Estimation

This section describes the position estimation algorithms employed based on i)

inertial sensors and ii) ultrasound ranging.

2.4.1 Inertial Based Positioning

In this technique, position is estimated by a double integration of acceleration.

Consider first the case in which the board is perfectly horizontal. In this case, only the

Z-axis of the accelerometer is affected by gravity and it will be manifested as a DC offset.

Before integration, the DC offsets in the three axes need to be removed. This can be done

by subtracting their corresponding mean values. Double integration of the acceleration

data can be performed in the time domain or the frequency domains. In the time domain,

the trapezoidal rule can be used or a simple sum of the last 50 samples is also an option.

The double integration in the frequency domain is performed by calculating the FFT of

the acceleration samples, multiplying the resulting FFT coefficients by (jω)2 = −ω2 and

then applying the inverse FFT.
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When the board is not perfectly horizontal, the X, Y, and Z-axes of the accelerom-

eter will be affected by gravity. Thus, a gravity compensation scheme is needed to remove

the effects of gravity before integration. Figure 4 shows the gravity components for a pitch

angle θ and a roll angle φ.

Figure 4: Gravity components along the accelerometer’s X, Y, and Z axes for a pitch angle
θ and a roll angle φ.

From the figure, the acceleration correction factors for the accelerometer’s X, Y,

and Z axes are: gsinθ, gsinφ, and gcosθcosφ. The outputs of the gyroscope are integrated

once to obtain the pitch and roll angles.

2.4.2 Acoustic Based Positioning

The acoustic positioning is based on a time difference of arrival (TDOA) multilat-

eration algorithm. The ultrasonic emitters periodically transmit pulses that are received

by the reference sensors. Upon reception, the reference sensors record the time of arrival

of each pulse and use this time information to compute the position of the moving sensors.

Figure 5 shows a representation of the geometry of the problem.
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Figure 5: Geometry of the ultrasound-based positioning problem.

In the figure, ri is the position of the ith reference node. To simplify the equations,

we place node 0 at the origin and aligned node 1 with the x-axis. Nodes 2 and 3 lie

somewhere on the xy-plane. Let ρi be the distance between the moving node and the ith

reference node. Thus, we can write:

ρi =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 = v(ti − t)

where, v is the speed of sound, ti is the arrival time of the pulse at the ith reference node, t

is the time at which the pulse was transmitted and i = 0,1,2,3 is the reference node index.

We can write the following set of pseudo-range equations:

ρ1 − ρ0 = v(t1 − t0)

ρ2 − ρ0 = v(t2 − t0)
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ρ3 − ρ0 = v(t3 − t0)

Thus, we have three equations and three unknowns (x, y, z). These equations are non-

linear and their exact solution requires complex computations [28, 29].

Foy in [22] have proposed the use of Taylor series to linearize these equations and

then use an iterative method to solve them. The iterative method begins with an initial

guess and improve the estimate at each iteration by determining the local linear least-

square solution. Although it can provide an accurate result, is robust and can make use

of redundant measurements, it requires a good initial guess and can be computationally

intensive. Chan [9] and Fang [16] provide non-iterative methods to reach a closed form

exact solution. However, they both need prior information to solve an ambiguity in their

calculations. We implemented Fangs method as its computational load is comparatively

lower than Chan’s. We start by rewriting the pseudo-range equations as follows:

ρ01 =
√
x2 + y2 + z2 −

√
(x1 − x)2 + y2 + z2 (2.1)

ρ02 =
√
x2 + y2 + z2 −

√
(x2 − x)2 + (y2 − y)2 + z2 (2.2)

ρ03 =
√
x2 + y2 + z2 −

√
(x3 − x)2 + (y3 − y)2 + z2 (2.3)

where ρ01 = ρ1 − ρ0, ρ02 = ρ2 − ρ0 and ρ03 = ρ3 − ρ0.

Consider equations 2.1 and 2.2. After transposing the second terms to the left

hand side, squaring, simplifying and equating them, we can solve for y in terms of x:

y = gx+ h (2.4)
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and z in terms of x:

z = ±
√
dx2 + ex+ f (2.5)

where

g =
ρ02

(
x1
ρ01

)
− x2

y2

h =

(x22 + y22)− ρ202 + ρ02ρ01

(
1−

(
x1
ρ01

)2)
2y2

d = −1 +

(
x1
ρ01

)2

− g2

e = x1

(
1−

(
x1
ρ01

)2
)
− 2gh

f =
ρ201
4

(
1−

(
x1
ρ01

)2
)2

− h2

Applying the same procedure to equations 2.1 and 2.3, we obtain:

y1 = g1x+ h1 (2.6)

and z in terms of x:

z = ±
√
d1x2 + e1x+ f1 (2.7)

where

g1 =
ρ03

(
x1
ρ01

)
− x3

y3

h1 =

(x23 + y23)− ρ203 + ρ03ρ01

(
1−

(
x1
ρ01

)2)
2y3
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d1 = −1 +

(
x1
ρ01

)2

− g21

e1 = x1

(
1−

(
x1
ρ01

)2
)
− 2g1h1

f1 =
ρ201
4

(
1−

(
x1
ρ01

)2
)2

− h21

The solution presented above gives two position vectors (same x, different y and z) for

the moving node. Equating them, squaring and simplifying yields the following quadratic

equation:

px2 + qx+ r = 0

where

p = d− (g1 − g)2

q = e− 2(g1 − g)(h1 − h)

r = f − (h1 − h)2

Solve for x using the quadratic formula: x =
−q±
√
q2−4pr

2p
, substitute it in 2.7 or 2.5 to

solve for z and in 2.6 or 2.4 to solve for y.

2.5 Inertial based Position Estimation Results

The results of the two integration techniques, described in section 2.4.1, for the

X-axis of the accelerometer are shown in figure 6 while figure 7(a) shows the 3D trajec-

tories reconstructed from integrating the X, Y, and Z-axes. This data was captured while

moving the board in a circle. Figure 7(b) shows captured circular motion after gravity

compensation.
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Figure 6: Integration of acceleration data.

2.6 Acoustic based Positioning Results

To acquire the time delay of arrival, our first setup used four designed board as

the reference nodes and one designed board as the moving marker. The second setup

consisted of CPLDs with ultrasound-microphones and other needed electronics as the

reference nodes. Details of both setups and their results are discussed below.
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(a)

(b)

Figure 7: (a) Estimated trajectory for a circle motion. (b) 3D Trajectory after gravity
compensation for a circular motion.
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2.6.1 Designed board based reference nodes

As described in section 2.3, The micro-controller of the moving marker gener-

ates a 40 kHz square waveform that is applied to the ultrasonic emitter through a current

driver. The current driver is made up of logic inverters connected in parallel. Short ultra-

sound bursts at intervals of 20 Hz is generated by the micro-controller using its internal

timers. At the reference nodes, these ultrasound bursts are received by their ultrasound

microphone. The output of the microphone is amplified, filtered and fed to one of the

channels of the micro-controller’s internal ADC. Figure 8 shows the waveforms received

at the four reference nodes. It was observed that between two ultrasound bursts received,

a total of 578 ADC samples are produced. That is, we have 578 samples in 50 ms(20 Hz).

Therefore, it takes 50/578 = 86.5 µs to generate one sample. Knowing this and looking at

the figure we can calculate time difference of arrivals, t3− t0, t2− t0, and t1− t0, between

the reference nodes.

After calculating the time differences, we implemented Fang’s algorithm (section

2.4.2) and found it to be very robust. The estimated position was within 1 inch of the

actual position. This error could be attributed to the limited sampling rate (200 kS/s) of

the microcontroller employed which precluded obtaining a better resolution in the mea-

surement of the time differences.

2.6.2 CPLD based reference nodes

To over come the errors in positions calculations, the designed boards were re-

placed with CPLD based setup as the reference nodes. Figure 9 shows the schematic and
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Figure 8: Waveforms at the output of the ultrasonic sensor amplifier of each reference
node.

figure 10 shows the setup.

Each CPLD was programmed as a 16-bit counter to provide higher resolution

compared to the micro-controller. The counting stopped when an ultrasound burst was

received and the count value was stored. Each CPLD flagged the central micro-controller

that it has received a burst and is ready to transfer its count value. When the controller

received flags from all four CPLDs, it provides clocks to serially receive the four count

values. The CPLDs are arranged in a daisy chain setup, therefore a total of 64 clock pulses

are needed to receive all four count values. After receiving the count values the micro-

controller sends out a reset to the counters, so that they can start listening to the next burst.
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Figure 9: Schematic of the CPLD based reference node.

Figure 10: Setup of the CPLD based reference nodes.

In the mean time the micro-controller transfers the count values to Matlab c©, running on

a PC, to calculate the position of the moving unit. Using this automated setup we were

able to move the marker unit over the setup and continously calculate its position. Table

1 shows the results from one such readings.

Position calculated by CPLD based reference nodes faired better than the micro-

controller based setup as it had higher resolution and did not suffer from internal delays

caused by sequential processing architecture.

The main error source are the spatially and temporally changing room temperature
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Table 1: Ultrasound positioning using CPLD based reference nodes.
Counter 1 Counter 2 Counter 3 Counter 4 X (in) Y (in) Z (in)

4C59 583D 55E1 5958 4.87 3.88 18.58
8868 9378 9055 92C0 3.41 4.18 16.66
C743 D4C0 CE7E D202 3.22 5.62 20.96
F43C FD38 F80F FA7E 2.15 4.01 12.12
8109 8D1F 8C29 9021 6.27 3.15 19.21
F2BC FD74 FC91 002F 5.42 3.03 16.56

and air movement because they determine the local speed of sound. Unfortunately, these

error sources which are caused by air turbulences and convection currents in the room

cannot easily be eliminated.

Medical imaging and blood flow measurements use ultrasound to produce accurate

assessment of the direction of blood flow and the velocity of blood and cardiac tissue at

any arbitrary point using the Doppler effect, but with limitations. However, doppler effect

depends on the speed of the wave in a medium, given by the equation:

f = (c+ vr)/(c+ vs)f0

where c is the velocity of the waves in the medium. Experimenting with hot air at different

wind speed we saw varying results for position of the marker node when stationary.

2.7 Gesture Recognition Literature Survey

Gesture recognition (GR) is an increasingly important tool in various applications,

from hand held devices and video game controllers to biomedical equipment [51]. Ges-

tures can generally be categorized as culture agnostic or culture specific, depending on the

application. Gesture recognition uses computational techniques to accurately identify and
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interpret human bodily movements allowing for interaction between man and machine at

a qualitatively different level compared to conventional methods such as keyboard and

mouse. Gestures are commonly thought as originating from the movement of limbs, es-

pecially the hands, leading to the performance of specific discernable actions [54]. Facial

gestures are also significant sources of nonverbal information.

Hand gestures have been grouped to fall under several categories [78], namely

controlling gestures, conversational gestures, communicative gestures, and manipulative

gestures. The interpretation of digitized data from captured motions and the accuracy

of the interpretation remains a challenge [58]. Hand gestures are used in many modern

applications such as video game controllers, automated sign language systems, urban

traffic systems, navigational systems, and medical rehabilitation [39,48,78], among other

human-computer interaction applications.

Another application for accelerometer-based human motion capture and classifi-

cation is in the monitoring of elderly at home for detection of falls or other abnormal

ambulation patterns, and without a need for more complicated video-based systems [86].

Motion capture also finds applications in training and exercise science as it will allow

athletes and trainers to study motion in detail and observe motion features that would

otherwise be undetectable to the naked eye [8].

Machine learning algorithms and models have been widely used for the human

motion and gesture recognition. Classification algorithms for gesture recognition in-

clude Hidden Markov Model (HMM), Naı̈ve Bayes classifier, Artificial Neural Networks

(ANN) and decision tree [48]. Many efforts in this field have been made mainly for
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motion/gesture detection in a continuous video stream. Recent research focuses on ges-

ture recognition employing accelerometer data obtained from devices, such as Wiimote,

which has built-in accelerometer. [66] presented the WiiGee library which enables ges-

ture training and recognition through Wiimote. They achieved an accuracy of 90% using

HMM model and Bayes classifier for gesture models, such as square, circle, roll, etc. [38]

used Dynamic Time Warping(DTW) equipped with HMM model for the similar task and

improved the accuracy up to 94% for user dependent and about 75% for user indepen-

dent models. [42] achieved 97.2% recognition rate with the service of HMM for VCR

control gestures including play, stop, next, previous, increase, decrease, fast forward, and

fast rewind. [63] employed the WiiGLE library and Weka, which are reflecting on vari-

ous cultural specific interactions, and reported a classification results near 100% for the

similar tasks using HMM, Nearest Neighbor, Naı̈ve Bayes for both user independent and

dependent models.

Several researches have demonstrated the strength of ANN in recognizing ac-

celerometer based gestures as well. [81] compare recognition rate of neural networks al-

gorithm to k-nearest neighbour algorithm and show user-dependent classification of upto

95.24% by neural networks as apposed to 87.18% by kNN. [56] achieve 92% recognition

rate in controlling a robot arm by performing gestures while wearing a 3 axis acclerome-

ter. In our previous work [49], we have shown near perfect classification using time delay

neural networks in recognizing simple and easy to use gestures like circle, triangle etc.

There are also examples of hardware implementation of HMMs and ANNs. [46]

present a HMM-based system that can be implemented on an 8-bit micro-controller.
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FPGA based speech recognition using HMM is demonstrated by [44]. [47] provide a

comprehensive survey of ANNs being implemented in hardware (analog, digital, mixed

and FPGA). Both, HMM and ANN have shown great accuracies in classification, how-

ever, the regular computing [33] and parallel processing [47] architecture of ANN prove

advantageous for hardware implementation. Therefore, in this work, we choose to ana-

lyze the performance of ANNs to provide a technique in reducing power consumption of

resource-limited wireless sensors.

2.8 Accelerometer based Gesture Recognition

Although much has been achieved in the area of gesture recognition research, a

comparative evaluation of static, dynamic, linear and nonlinear techniques has the poten-

tial of providing better understandings of the efficacy of one technique over another. Such

studies can also provide insights into the drawbacks and advantages of specific gesture

recognition techniques, without associating the technique to a particular class of applica-

tion. Prior to using our designed board we used Texas Instruments Chronos sports watch

and its accelerometer data to capture and classify gestures. After achieving near perfect

classifications, we extend the study using acceleration data from our board, to provide

a solution for reducing power consumption of wireless sensors. Here we present the

classifiers used, gestures performed and the static features extracted from the collected

acceleration data .
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2.8.1 Fisher Linear Discriminant Classifier

Linear Discriminant Analysis or LDA [14] is a linear supervised classification

and dimensionality reduction method. LDA casts multidimensional features into a single

dimension using a linear mixture so that a classification criterion of interest, Fisher’s in

this study [7], is optimized. More specifically, assume that the desired linear projection is

given by ~W , casting input ~Xn from classes C1 and C2 onto yn = ~W · ~Xn. Fisher criterion

for class separability, J , is then defined as the interclass variance to intraclass variance

ratio [7]:

J =
(m2 −m1)

2

s21 + s22

where m1 and m2 are projections of the means, ~M1 and ~M2, of C1 and C2. They are given

by m1 = ~W · ~M1 and m2 = ~W · ~M2. It can be shown that the direction of desired ~W that

maximizes J is given by

S−1
~w · ( ~M1 − ~M2)

where S~w is the total intraclass covariance matrix given by

S~w =
∑
i=C1

( ~Xi − ~M1)( ~Xi − ~M1) +
∑
j=C2

( ~Xj − ~M2)( ~Xj − ~M2)

2.8.2 Neural Networks

We used static and dynamic neural networks for nonlinear signal classification.

The static artificial neural networks (NN) were in the form of feed-forward one-hidden

29



layer perceptrons with hyperbolic-tangent nonlinearities, and have been shown to be uni-

versal function approximators. However, similar to LDA, NN need static features char-

acterizing incoming signals to be derived during the pre-processing stage (Section 2.8.5).

Dynamic or time delay neural networks (TDNN) are feed forward focused neural net-

works with input tapped delay lines and can be used as dynamic function approximators

and signal classifiers. In contrast to NNs, TDNNs can directly operate on the signals of

interest and thus forego the feature extraction, albeit at the expense of added complexity.

TDNNs use tapped delay lines (TDL) at its input as simple memory structures to

keep the last nd samples of the input signal and present them to their feed-forward multi-

layer perceptron section to generate the desired class label [25]. In that sense, TDNNs

are generative classifiers [14] and thus their performance can be measured with receiver

operating curves (ROC) as explained later on (Section 2.8.3). Our choice of TDNN for

nonlinear classification is based on that fact that given adequate TDL depth, it can ap-

proximate any nonlinear dynamic shift-invariant myopic mapping between its input and

output domains [65], and thus can provide better performance when target classes are not

linearly separable. Moreover, we are interested in classifiers that can perform well with

low resolution and noisy data.

It has been shown that neural networks are especially robust under the aforemen-

tioned detrimental circumstances, where the network can learn in-variance to input noise

and distortions while training with low quality data [61]. As any other learning machine,

the learning capacity and performance of NNs and TDNNs is not only dependent on their

training data set and learning algorithm, but also their architecture and size [7, 11, 61].
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The defining structural parameter of NN is the number of nodes in the hidden layer. The

defining structural parameter of TDNN is the number of nodes in the hidden layer, and

the length of input tapped delay lines.

To keep the model as simple as possible, we used one hidden layer with hyperbolic

tangent nonlinear nodes. Four hyperbolic tangent functions were used at the output layer

as indicator functions to deliver the four binary decisions on detected class. NNs and

TDNNs were then trained using Bayesian Regularization [7] in conjunction with MSE

cost function. Given the effective reduction of extra degrees of freedom under Bayesian

Regularization, the generalization capability of the trained network is usually preserved

without a need for early-stopping validation. This in turn increases the quality of training,

as one does not have to set aside a portion of the training data for validation. Reported

results are from an average of 5 training runs, as randomly initialized neural networks

converge to a different local solution during each gradient descent [61]. Thus, the ex-

pected merit of each configuration was estimated by taking the results of multiple runs

into account during each ROC analysis.

2.8.3 Receiver Operating Curves as Classifier Quality Measurer

Receiver Operating Characteristic (ROC) curves are powerful tools in character-

izing the overall quality of classifiers with continuous outputs, such as neural networks

and LDAs [18]. Thus, along with their area under the curve and equal error rates, we

chose them as classification metrics for this study. ROC curves are essentially the plot of

Genuine Accept Ratio or GAR, also known as sensitivity; versus False Accept Ratio or
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FAR (1-specificity); across different output decision thresholds. The area under the curve

of ROC plots, or ROC AUC (the higher the better), along with the operating point where

sensitivity equals specificity (equal error rate or EER, the lower the better), are two other

important scalar metrics describing a system’s overall classification performance. ROC

analysis is especially important when dealing with unbalanced or multiclass datasets with

hypothesized unknown distributions, such as the problem at hand.

Though ROCs are traditionally defined for two-class problems, they may also be

utilized for multi-class scenarios such as our four-class GR. Since M-class confusion

matrices include M2 cells [18, 26], they result in complicated multi-dimensional ROCs

(polytypes) for M > 2. However, it can be shown that if the classes are equiprobable,

an M-class ROC AUC from a single M x M contingency table will provide the same

results as a more-involved pair-wise comparisons of M contingency tables [18]. Such

multi-class ROC can be garnered from dichotomizing M-dimensional decision profile

(DP) matrix [1, 35–37] across different thresholds. DP(x) is calculated from a bank of M

classifiers, 4 here, with shared input x. Each elements dpij(x) represents the (continuous-

valued) output of classifier i when x belongs to class j, also known as the support of

classifier i to case j. The counts of diagonal vs. off-diagonal elements of DP(x) across

different thresholds provides the GARs and FARs needed for plotting a multi-class ROC

curve similar to the two-class case, which is the method used for generating ROCs for this

study.
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2.8.4 Gesture Set

We employed a subset of a gesture vocabulary that was identified by a Nokia

research study, as it is simple to use and preferred by users when interacting with home

appliances such as TV, VCR and lights [31]. The gestures that were used in our study are

shown in figure 11. The dot denotes the starting point and the arrow the direction of the

hand movement in the plane of motion.

Figure 11: Set of gestures employed in this work.

2.8.5 Feature Extraction

In this study, using three axes of acceleration signals, we derived the following

static features for LDA and NN:

• mean of X-axis signals

• mean of Z-axis signals

• correlation between X and Z-axis signals

• standard deviation of X-axis signals

• standard deviation of Z-axis signals
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These features were chosen given their reported success in the literature [32, 62].

With the Y-axis being normal to the plane containing the hand motion paths, we did not

include its signals because the gestures were mainly in the X-Z plane. As stated earlier,

these features are not needed for TDNNs as they operate directly on the accelerometer

signals

2.9 Gesture Recognition Results

EZ430-Chronos Sports Watch from Texas Instruments was employed to capture

hand motion data. The EZ430-Chronos is based on the CC430F6137 chip, which inte-

grates a MSP430 microcontroller core with CC1101 868/915 MHz wireless transceiver.

The watch also includes a three-axis accelerometer, CMA3000-D01 from VTI Technolo-

gies. The watch comes pre-programmed to collect acceleration measurements in all three

axes and transmits these measurements as time signals to a USB dongle or Access Point

(AP). The main component of the AP is the C1111, which is a chip that integrates the

RF transceiver CC1101 with an industry-standard enhanced 8051 microcontroller core.

Figure 12 shows the setup for collecting accelerometer data using the sports watch.

A MATLAB c© script was written to communicate with the AP. Figure 13 shows

the flowchart of the script’s algorithm. First the script opens the AP’s COM port and

sets the required parameters (Baud Rate=115200, Data Bits=8 and Stop Bits=1). After

opening the COM port, the program sends the start AP command and pauses for the user

to switch the watch to accelerometer data sending mode. Once the user is ready, he/she

hits any key on the keyboard for the data acquisition to begin. The script now requests the
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Figure 12: Setup for collecting accelerometer data using the sports watch.

acceleration measurements received by the AP and stores it. Once the desired number of

data samples is stored, AP is stopped and the COM port is closed.

We collected three runs of each of these gestures for each of six users. For Run1,

the first gesture was performed by all the six users. Then they performed the second

gesture and so on, until everyone had executed all four gestures. Second and third runs

were carried out in the same manner. While performing a gesture, the user was instructed

to repeat that gesture for 10 seconds at a speed of about one gesture per second. During

the mentioned 10 seconds, we collected a total of 300 samples of acceleration data at a

sampling rate of 30 Hz. While performing the gesture, the users wore the sports watch on

the wrist of their dominant hand. The data was captured in a quiet room while the users

were comfortably standing upright.

The k-fold cross-validation technique was used and the results from all folds were

utilized to produce the training and validation ROC curves. We assessed how the classi-

fiers performed for user-dependent and user-independent cases.
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Figure 13: Flowchart for collecting accelerometer data using sports watch.

For the user-dependent case, given the three rounds of collected data for each user,

we performed a 3-fold cross-validation using data from one user at a time for training (2/3

of data) and validation partitions (the remaining 1/3). Next, all the training and validation

results were used to produce their corresponding ROCs.

For user-independent case, a 6-fold cross validation was performed, where during

each fold all the three datasets from one user was withheld for validation and the rest of

the datasets from the remaining 5 users was used for training. Since the previously unseen

validation data during each fold is from a user not included in the training partition, the

results are deemed as user-independent.
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A total of four LDAs were trained in parallel. Each one was trained to classify

one gesture from the rest, i.e., circular from non-circular, triangular from non-triangular,

and so forth. Table 2 summarizes results for the user-dependent case, where LDAs were

trained and tested using data from one individual at a time. Table 3 shows result for user-

independent case, where LDAs were trained using data from five users and tested on the

sixth. All results reflect the k-fold cross validation in addition to Monte Carlo averages.

Table 2: User-Dependent Fisher LDA classifier results.

User
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
User 1 8.3333 97.917 38.8890 62.269
User 2 0 100 19.444 92.245
User 3 0 100 25 84.954
User 4 0.69444 99.71 9.7222 95.949
User 5 6.25 99.132 22.222 89.352
User 6 0 100 15.278 92.245

Table 3: User-Independent Fisher LDA classifier results.
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
13.38 93.72 18.056 89.905

To keep the NN model as simple as possible, we used one hidden layer with hyper-

bolic tangent nonlinear neurons. Four hyperbolic tangent functions were used at the out-

put layer as indicator functions to deliver the four binary decisions on detected class. To

avoid over-parameterization, training was performed using Bayesian regularization [40].

Given the effective reduction of extra degrees of freedom under this regularization, the

generalization capability of the trained network is usually preserved without a need for

early-stopping validation. This in turn increases the quality of training, as one does not
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have to set aside a portion of the training data for validation. For static NNs, we first

decided on number of neurons in the hidden layer that would provide the best result. This

was determined by exploring NN performance using validation ROC AUC from a subset

of user data. Table 4 shows the results for three different counts of hidden layer neurons.

Consequently, we used 5 neurons for the hidden layer. Training was stopped when either

minimum gradient (10−10) or 1000 epochs was reached. For each case the network was

initialized 15 times as randomly initialized neural networks converge to a different local

solution during each gradient descent [61].

Table 4: Validation ROC AUCs from a pilot subset to decide the best NN architecture.
ROC AUC (%)

Number of Hidden Layer Neurons
10 95.343
5 96.875
3 94.88

Next, user-dependent 3-fold cross validation and user-independent 6-fold cross

validations were carried out. Using Bayesian regularization and maximum of 1000 epochs

of training or adaptive step size of 1010 as training exit condition, each NN was initialized

5 times and retrained for each fold. Tables 5 and 6 show the result for user-dependent

and independent cases, respectively.

Similar to the static NNs, we utilized TDNNs with one hidden layer and hyper-

bolic tangent nonlinear neurons. Four hyperbolic tangent functions were used at the out-

put layer as indicator functions to deliver the four binary decisions on detected class. The

area under each output signal was taken as the scalar classifier output for each gesture.

Bayesian regularization was used for training.
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Table 5: User-Dependent NN classifier results.

User
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
User 1 0 100 18.61 84.694
User 2 0 100 6.6667 99.176
User 3 0 100 5 99.144
User 4 0 100 0 100
User 5 0 100 3.0556 99.694
User 6 0 100 8.3333 97.958

Table 6: User-Independent NN classifier results.
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
0.055556 99.976 18.194 84.067

As the users performed each gesture at the speed of one gesture per second at

a sampling frequency of 30 Hz, the size of the input tapped delay line was set to 30.

We trained and tested the network for three different hidden layer sizes; 10, 15 and 20,

to find a suitable size for the hidden layer. User-dependent 3-fold cross validation and

user-independent 6-fold cross validations were performed. Networks for each fold were

initialized 5 times. Tables 7 to 9 show the user-dependent result across different hidden

layer sizes. Tables 10 to 12 repeat the same results but for user-independent case.

Table 7: User-Dependent TDNN classifier results. 10 Hidden Layer Neurons

User
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
User 1 0 100 5 99.338
User 2 0 100 0.2777 99.954
User 3 0 100 3.6111 99.546
User 4 0 100 0 100
User 5 0 100 1.9444 99.958
User 6 0 100 3.3333 97.116
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Table 8: User-Dependent TDNN classifier results. 15 Hidden Layer Neurons

User
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
User 1 0 100 3.0556 99.685
User 2 0 100 1.6667 99.944
User 3 0 100 1.9444 99.894
User 4 0 100 0 100
User 5 0 100 0 100
User 6 0 100 3.0556 99.889

Table 9: User-Dependent TDNN classifier results. 20 Hidden Layer Neurons

User
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
User 1 0 100 3.0556 99.829
User 2 0 100 0.2777 99.981
User 3 0 100 3.3333 99.852
User 4 0 100 0 100
User 5 0 100 0 100
User 6 0 100 3.0556 99.769

Table 10: User-Independent TDNN classifier results. 10 Hidden Layer Neurons
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
0.4722 99.988 4.8611 98.102

Table 11: User-Independent TDNN classifier results. 15 Hidden Layer Neurons
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
0.1667 100 3.889 99.054

Table 12: User-Independent TDNN classifier results. 20 Hidden Layer Neurons
Training Validation

EER (%) ROC AUC (%) EER (%) ROC AUC (%)
0 100 3.3333 99.182
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It is concluded from the tabulated results that, using statistical (static) features of

the acceleration signals, Fisher LDA and NN provided about the same user-independent

classification rates for validation, though neural networks provided a better

user-dependent performance on the average. However, the advantage of using neural

networks was more striking with TDNNs, where gesture classification rates for valida-

tion were almost perfect (ROC AUC ≈ 1) for both user-dependent and user-independent

modes. More specifically, from the tabulated results we can see that the average user-

dependent validation ROC AUC and EER (Section III.C) for Fisher LDA are 86.17% and

21.76%, respectively. For NN these figures stand at 96.78% and 6.94%, while for TDNN

they jump to 99.81% and 1.96% (average over the three different architectures).

For the user-independent case, LDA validation ROC AUC is 89.9% and EER is

18.05%. These figures for NN are 84.06% and 18.194% respectively. Finally for TDNN

the validation ROC AUC is 98.78% and EER is 4.03% (averaged over the three different

architectures).

Results were generally improved when moving from static linear classifiers to

nonlinear dynamic architectures. Improved results were obtained by using NNs as they

have the ability to learn invariance to input noise and distortions through training, a hall-

mark of non-ideal accelerometer data collected from highly variable human user behav-

ior. TDNNs, though computationally more complex, provided almost perfect results. The

fact that they do not require any feature extraction makes them an attractive technique

for gesture recognition. It was also observed that better accuracies were achieved in NN

and TDNN when the number of hidden layer nodes were half or more of the sampling
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frequency, 30 Hz in this case.

2.10 Increasing battery life of a gesture recognition wireless network using Neural

Networks

Radio transmissions are probably the most energy-demanding operation that a

sensor node undertakes. For instance, a typical low-power integrated radio transceiver

module would consume between 15 mA to 20 mA in reception mode and 11 mA to

21 mA during transmission mode at VDD = 3.0 V (actual levels depend on the speed

and output power levels selected). Meanwhile a low-power micro-controller such as the

MSP430 consumes around 6 mA at VDD = 3.0 V (while running at 16 MHz). The power

consumption of commercially available MEMS inertial sensors is typically low (350 µA

for a three-axis accelerometer such as the ADXL335 and 6.8 mA for the LPR530AL

gyroscope). Thus, reducing the energy spent during radio transmissions will have the

most impact on the power consumption on the sensor node.

Our approach to reduce the radio transmission power consumption relies on scal-

ing down the transmission rate (number of bits per second). We accomplish this by vary-

ing the sampling rate and the bits per sample of the motion sensor. This reduction in-

evitably leads to a loss of information. However, by using state-of-the-art classification

algorithms like linear discriminant analysis and neural networks at the receiver side, a

number of motion gestures can still be correctly classified but at a fraction of the origi-

nal transmission rate. The main advantage of this method is its low complexity requiring

simple bit shift and down-sampling operations. Data compression techniques could also
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be employed but they require transforming the sensor signal to another signal space and

encoding the resulting coefficients. These operations might be too costly or too difficult to

implement in a low-cost sensor node with limited computational and memory resources.

Another feature of the proposed technique is that it shifts the computational burden to the

receiver/decoder side which usually has access to more computational and memory re-

sources.In this work we study the impact of reducing the bit transmission rate on gesture

classification. The sampling rate was varied from 100 Hz down to 5 Hz while the quanti-

zation bits were varied from 8 bits down to 4 bits. Classifiers employed are Fisher’s linear

discriminant classifier, static neural networks and time delay neural networks (TDNN).

Gesture vocabulary employed were the same used for the sports watch study, how-

ever, the number of users were now four instead of six. Static features for LDA and NN

were the same as used by the sports watch study. We collected three sets of each of these

gestures for each of four users. Users were instructed to repeat each gesture at a speed

of about one gesture per second. Motion data was collected for 10 seconds and then the

user switched to the next gesture. Four fold cross validation and only subject-independent

classification was explored.

Initially we collected inertial data at a sampling rate of 300 Hz and estimated the

power spectral density using the Burg method. We then measured the -10 dB frequency of

each data set. We found that the maximum -10 dB frequency across gestures and subjects

was 50 Hz. Therefore, we started our study with a maximum sampling of fs = 100 Hz and

progressively decreased it to 5 Hz. This was accomplished using decimation. To avoid

aliasing, the data was low-pass filtered using an 8th order Chebyshev digital filter. In
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practice, a lower-order filter could be implemented on the micro-controller or externally

in the analog domain.

A total of four LDAs were trained in parallel. Each one was trained to classify one

gesture from the rest, i.e., circle and non-circle, triangle and non-triangle, etc. Table 13

summarizes these results. The average accuracy obtained for each combination was in the

range of 80% to 89%. As the quantization bit rate was decreased to 4 bits, the correlation

between the X and Z axes was not reliable due to low amplitude, thus, it was discarded.

Table 13: Results for Fisher’s LDA classification
Quantization Performance Sampling frequency fs (Hz)

bits measure 100 50 25 10 5

8
EER 0.256 0.250 0.267 0.267 0.270
AUC 0.829 0.830 0.827 0.819 0.807

6
EER 0.256 0.270 0.270 0.270 0.267
AUC 0.831 0.827 0.818 0.806 0.808

4
EER 0.274 0.277 0.274 0.315 0.291
AUC 0.802 0.803 0.795 0.783 0.794

For the static neural network we used the same features used for the LDA. A net-

work with one hidden layer was employed. The size of the hidden layer was determined

from the sports watch study to be half the sampling rate plus two. The output layer has

four neurons. Each of these neurons signals the classification result of the network. The

networks were trained using Bayesian regularization and the number of epochs was set to

100. We initialized the network five times for each fold (4-fold cross validation, leaving

out one subject at a time). Table 14 summarizes the accuracies achieved when unseen

data was fed to the trained network. For sampling rates of 100 Hz to 10 Hz and number of

bits 8, 6 and 4, the accuracy was in the range of 78% to 84%. For lower sampling rates the
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accuracy was about chance level. As the sampling rate was reduced to 5 Hz, the number

of samples were down to 34, therefore we used the raw data instead of extracted features

as it resulted in more accurate classification rates.

Table 14: Results for static neural network classification
Quantization Performance Sampling frequency fs (Hz)

bits measure 100 50 25 10 5

8
EER 0.241 0.228 0.218 0.211 0.534
AUC 0.804 0.816 0.801 0.815 0.478

6
EER 0.227 0.256 0.243 0.247 0.518
AUC 0.811 0.787 0.800 0.783 0.494

4
EER 0.228 0.207 0.243 0.211 0.455
AUC 0.822 0.845 0.816 0.812 0.548

Finally, we used Time Delay Neural Networks (TDNN). The size of input tap de-

lay line was set equal to sampling rate over two and the number of nodes in the hidden

layer was half the sampling rate plus two. Both hidden layer and the four-output layer

neurons used the hyperbolic tangent function as their output function. Just as in static

neural network case, we initialized the network five times for each fold. Table 15 sum-

marizes the results. The accuracy achieved were 90% and over, for each combination of

sampling rate and number of bits. For a change in the quantization bits from 8 to 4 bits,

the AUC decreases by about 3%. Thus, TDNN turned out to be the best among the three

methods used in this study, based on EER and AUC of the ROC curves. This suggests

that the motion data is nonlinear in the given feature space. Besides accuracy another

advantage of TDNNs is that they do not need feature extraction. Our results indicate that,

in the extreme case of fs = 5 Hz, a total 10 samples/s (X and Z axes) need to be transmit-

ted. Considering the quantization rate of 4 bits/sample we obtain a transmission rate of
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40 bits/s. Compared with the initial rate of 1600 bits/s (fs=100 Hz and 8 bits/samples),

transmission savings of 40 times could be achieved.

Table 15: Results for time delay neural network classification
Quantization Performance Sampling frequency fs (Hz)

bits measure 100 50 25 10 5

8
EER 0.122 0.118 0.125 0.152 0.202
AUC 0.906 0.944 0.967 0.926 0.904

6
EER 0.089 0.097 0.123 0.168 0.181
AUC 0.857 0.960 0.961 0.923 0.900

4
EER 0.225 0.212 0.187 0.229 0.231
AUC 0.869 0.889 0.903 0.888 0.900

Plotting AUCs for all combinations shows that each have the same level of merit.

Therefore, it is imperative for low power consumption that we choose 4 bits of data, 5 Hz

of sampling frequency and TDNN as the classifier for its highest accuracy rates.

Preliminary current consumption analysis was performed. The radio transceiver

of the designed motion tracker is programmed to transmit 50 byte data as part of the trans-

mitted packet. Each packet consists of a 32-bit preamble, 32-bit sync word, 1-byte address

indicator, 1-byte length of packet indicator and a 16-bit CRC. All this along with the 50

byte data adds upto 496-bits as the packet size. The transmission rate is programmed to

be 250 kbps. Therefore, time taken to transmit a single packet, T1, is equal to 2 ms. The

transmission power is set to be 0 dBm and according to the datasheet of the transceiver

current, ITX , consumed in transmitting a single packet is 21.2 mA. Time between two

consecutive packets, T2, is given by the equation:

T2 = (packet size)/(transmission rate)
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Figure 14: Area under the curve (AUC). (a) LDA AUC. (b) Static neural networks AUC.
(c) Time delay neural networks AUC.
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Finally, the average current consumed by the motion tracker is calculated by:

Iavg = (ITX × T1)/(T1 + T2)

Figure 15 shows the timing diagram for packet transmission.

Figure 15: Packet transmission timing diagram

Transmission of packet is controlled by the sampling frequency because a trans-

mission happens only when desired number of samples are available. Thereby reducing

the total current consumed. Additionally, decreasing the number of bits allows transmis-

sion of more samples, which requires more time. Table 16 below shows the amount of

current consumed for the combination of sampling frequency and quantization bits em-

ployed above for gesture classification. From the table it can be seen that the current

consumed decreases for 0.0841 mA for sampling frequency of 100 Hz and 8-bit samples

to 0.0021 mA for 5 Hz and 4-bit samples. This is because of the reduced transmission

time between two packets. Table 17 shows how the time changes for the different sam-

pling frequency and bits per sample.

In conclusion, with the designed board, we explored reducing the sampling rate

and the bits per sample in order to reduce the energy spent on radio transmissions with

the aim of extending battery life. Therefore, to compensate for the loss of information

due to reduced sampling rate and number of bits, we used time delay neural networks, an
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Table 16: Current consumption (mA) for the combination of sampling frequency and
quantization bits

Bits
Sampling frequency fs (Hz)

100 50 25 10 5
8 0.0838 0.0420 0.0210 0.0084 0.0042
6 0.0629 0.0315 0.0158 0.0063 0.0032
4 0.0420 0.0210 0.0105 0.0042 0.0021

Table 17: Time (s) between two packets

Bits
Sampling frequency fs (Hz)

100 50 25 10 5
8 0.5000 1.0000 2.0000 5.0000 10.0000
6 0.6667 1.3333 2.6667 6.6667 13.3333
4 1.0000 2.0000 4.0000 10.0000 20.0000

advanced signal classifiers and achieved user-independent classification rates of 90% and

above even when the transmission rate is as low as 40 bits/s. These classification rates

were maintained even without drift and gravity compensation and at sampling rates that

are below the Nyquist rate. The proprietary platform designed for this study consists of

wearable sensors nodes that include inertial and acoustic motion sensors as well as a low-

power micro-controller, a low-cost 2.4 GHz radio transceiver and supporting circuitry.

One way to increase battery life of a context-aware wireless sensor is by using the

programmability of the micro-controller and regulate the activity of the sensor. In addition

to that, results of this study highlights the fact that in applications where regeneration of

the signal is not needed, such as gesture classification, transmitting less information at

reduced rates can deem advantageous too.
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CHAPTER 3

BONE STRAIN MEASURING TELEMETRY UNITS

This chapter presents the design and validation of telemetry units used to measure

strain on bones. These prototypes are created using commercially available off-the-shelf

components and vary in design and sizes. Several researchers have proposed designing

custom integrated circuits to measure strain on bone. Their approach does reduce size of

the device, however, the development time is considerably larger than using off-the-shelf

components. Also, recent advances in semiconductor fabrication have made commer-

cially available highly integrated systems on-chip which we exploit to develop a small

strain-monitoring telemetry units.

3.1 Bone Strain Measurement

The skeleton is an organ that is constantly adapting its mass and architecture in

order to meet the demands resulting from its three primary functions of protecting the

internal soft tissue organs, provide structural support and be a reservoir of calcium. It

is known that the mass and structural properties of the skeleton adjust in proportion to

changes in mechanical load, but the molecular basis of how this is accomplished is only

partially understood. In order to unravel the mechanisms of bone formation, scientists

need to determine the mechanical load levels that trigger bone mass increase. To accom-

plish this task, localized bone strain levels need to be measured as a load is applied to the
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bone. This kind of bone biology studies might lead to advances in musculoskeletal di-

agnostics and in the development of pharmaceutical targets enabling new paradigms and

treatments for bone diseases such as osteoporosis.

Besides its importance to bone biology studies, bone strain measurement is also

of interest in orthopedic implant development and monitoring. The design of orthopedic

implants requires information about the range of acting loads and resulting implant and

bone deformations. Knowledge of bone strain also facilitates rehabilitation monitoring

and feedback as well as improved data collection in clinical studies [77]. In comparison

to diagnosis using X-ray images which only show bone callus geometry, strain monitor-

ing is more effective in guiding the rehabilitation exercises as well as to predict implant

malfunction and to continuously monitor the healing process [10] .

Strain gauges are normally employed to monitor bone strain due to their small

size, robustness and good sensitivity [80]. Strain gauges are transducers that convert

strain into electrical resistance. Hence, an electronic circuit that measures resistance is

needed in strain monitoring. Moreover, the measuring device should have a wireless

means of transferring the strain information as the usage of wire leads will preclude full

implantation and constrain motion range.

Many researchers have reported telemetry units for strain measurements on pros-

thetic implants. These studies gather information regarding forces that need to be sus-

tained by the prosthetic implant and offer confirmation of recovery. In [24] an ASIC for

strain monitoring in prosthetic implants is presented. This unit is inductively powered

using an AC-DC circuit and strain data is wirelessly transmitted using an on-chip radio
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transmitter. The power-receiving coil dimensions depend on the type of prosthetic. Due

to space constraints this antenna cannot be easily tuned limiting the range of the whole

setup to 50 cm. Although the designed ASIC is very small, the entire unit including the

power coil and the antenna measures a few centimeters long.

In [82] the authors successfully placed a small cylindrical transducer (3.2 mm

diameter and 4.6 mm height) into an incision made between the tibia and the femoral.

This transducer is connected to a transmitter (4.5 cm x 2.2 cm) and transmitter powering

unit (3.04 cm x 1.6 cm) placed outside the incision. This approach is not only large in

size but it is bone-invasive and compromises the architecture of the bone.

Another solution presented in [12] uses a commercially available telemetry unit

from MicroStrain R©. It has a large size (9.0 cm x 9.0 cm), weighs 100 g and is powered by

two 3.7 V batteries. The large size of this unit precludes its implantation in small animals.

Furthermore, when it runs out of battery or the gage fails, the subject has to be sacrificed.

3.2 Target Application

The target application for the telemetry unit presented here is bone biology studies

where localized bone strain needs to be monitored under different load conditions. Bone

biology scientists use this information to understand the mechanisms that regulate bone

formation. Currently our collaborators use the setup shown in figure 16 to carry out bone

strain measurements. The setup consists of a specialized bench-top data acquisition unit

for strain gauge measurement (Vishay Micro-Measurement System 7000). In this setup

the mouse or subject is fully immobilized while a known force is applied to its ulna
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bone and strain readings are collected. The force is applied with the Bose ElectroForce

3200 load instrument. This procedure is repeated for a period of several days after which

the mouse is sacrificed and the ulna bone is studied for changes in the bone matrix and

expression of certain genes.

computer

Bose ElectroForce 

3200

data acquisition 

system

Figure 16: Current measurement setup consisting of a Bose ElectroForce 3200 load test
instrument and a Vishay Micro-Measurement 7000 data acquisition system. Both systems
are controlled by a dedicated computer.

A related question that bone researchers would like to answer is to what degree

exercise impacts bone formation. To this end, researchers will like to monitor bone strain

as the mouse performs a set of cage exercises. The current strain acquisition system

is bulky and requires wires to be connected from the data acquisition unit to the bone.

Hence, it is not suitable for this type of experiments. To provide a solution to this need we

have developed a multichannel telemetry unit for bone strain monitoring. Figure 17 shows
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a conceptual diagram of the bone monitoring setup with a telemetry unit. The telemetry

unit is small enough to be mounted on the back of a mouse. It can also be implanted in

larger animals for bone biology studies or to monitor orthopedic implants.

base 

station

computer

telemetry 

unit

strain 

gauge

Figure 17: Conceptual diagram of a wireless system for real-time bone strain monitoring.
The subject is free to move and perform bone-growth stimulating exercises.

3.3 Measuring Strain

Strain gauges are piezoresistive sensors, i.e., its resistance changes when it is de-

formed due to applied strain. The most common type of strain gauge is the metallic strain

gauge which consists of a very fine wire arranged in a grid pattern. This wire is bonded

to a thin and flexible substrate which is attached directly to the test specimen. As the test

specimen is deformed, the thin wire in the gauge is stretched or compressed changing

its electrical resistance [55]. Other types of strain gauges are based on semiconductor
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materials, like silicon. Silicon based strain gauges are usually more sensitive than metal-

lic gauges. However, metallic gauges tend to have better linearity [30]. The change in

resistance ∆R and the strain are related by the following equation:

G =
∆R

R× ε
(3.1)

where, G is the gauge factor, R is the nominal gauge resistance and ε is the strain experi-

enced by the gauge in units of micro-strain (µε). Figure 18 shows a typical strain gauge

pattern which has a zigzagged conductor path. This pattern is commonly used to effec-

tively increase the length of the resistor and the amount of total resistance under a given

area.

Figure 18: Strain gauge.

The current measurement setup uses uni-axial metallic strain gauges of nominal

resistance of 120 ohms and a gauge factor of G = 2.07 (Vishay EA-06-015DJ-120).

These strain gauges were chosen due to their small size. The maximum bone strain that

is expected in the experiments is 3000 µε. Therefore, the maximum expected change
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in resistance is 0.75 ohms or 0.625%. The traditional approach to measure such small

resistance changes is to use a Wheatstone bridge in combination with an amplifier as

shown in Figure 19(a).

VOVEX VOUT

RS

RPR1

R2
RG

(a)

coreADC

DAC

microcontroller

VEX

RP

RG

l/O pins
VREF

VS

VDAC

VOUT

RS

(b)

Figure 19: Resistance measurement and calibration circuit. (a) Wheatstone bridge. (b)
DAC-based approach.

In the figure, RS is the strain gauge resistance. An instrumentation amplifier is

needed to amplify the small bridge voltage VO. The variable resistorR2 is used to calibrate

the bridge such that VO = 0 when no strain is applied. In the targeted application a me-

chanical potentiometer to implementR2 was ruled out to avoid vibration-induced changes
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in its resistance. A digital potentiometer is not affected by vibrations but commercially-

available digital potentiometers do not have enough resolution to match the expected re-

sistance change in RS .

To address this problem we employed a calibration approach that is based on

a high-resolution digital-to-analog converter (DAC) instead of a variable resistor. The

branch of the Wheatstone bridge composed by R1 and R2 was replaced with a DAC con-

trolled by a microcontroller as shown in figure 19(b). The resistance RG sets the gain,

A, of the amplifier. The calibration procedure is depicted in figure 20. The basic idea

of the calibration procedure is to generate a voltage ramp and monitor the output of the

instrumentation amplifier when no load is applied to the strain gauge. Calibration is com-

plete when the output of the amplifier, VOUT , equals the reference voltage VREF . The

DAC value at the end of calibration is stored and applied in subsequent readings of the

amplifier. From figure 19(b) the output of the instrumentation amplifier is given by:

VOUT = VREF + A(VDAC − VS) (3.2)

Ideally, we would like to set VDAC = VS so that VOUT = VREF . To that end, the

microcontroller is employed to generate a ramp at the output of the DAC. As the ramp

is generated the microcontroller monitors the amplifier’s output voltage by means of its

internal analog-to-digital converter (ADC). Calibration is achieved when the amplifier’s

output equals VREF . At that point the ramp is stopped and the DAC input value is stored.

In practice, the calibration procedure described above is limited by the resolution

of the DAC. At the end of calibration the maximum value of the difference VDAC − VS is
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Figure 20: Employed calibration procedure based on a DAC and a microcontroller. The
microcontroller generates a ramp using the DAC output until the amplifier’s output equals
the reference voltage VREF .

VLSB/2, where VLSB = VDD/2
n and n is the DAC resolution. This difference produces

a maximum difference of A · VDDA/2n+1 at the amplifier’s output from the ideal value

of VREF . Considering a target gain of A = 330, a supply voltage of VDDA = 3.0 V

and a 12-bit DAC resolution, the maximum output offset is 120 mV. This offset is much

smaller than the supply voltage and does not have a major impact on the dynamic range

of the amplifier’s output. Thus, a DAC resolution of 12 bits is sufficient for the intended

application. Since the offset due to finite DAC resolution remains constant throughout the

measurement process, it can be canceled out digitally.

3.4 Telemetry Unit 1.0

This unit has been designed around an ultra low-power microcontroller (MSP430).

The microcontroller makes the design highly flexible and programmable. The teleme-

try unit also includes a high-performance instrumentation amplifier to amplify the strain
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gauge output. The gain and offset of the amplifier are digitally set by the microcontroller

eliminating the use of manual potentiometers. The board has an expansion connector that

allows up to 16 additional strain gauges to be connected to the unit and incorporates a low

power radio transceiver operating in the 2.4 GHz ISM band. Figure 21 shows the block

diagram of the unit and figure 22 shows the designed two layer PCB with components.

Figure 21: Telemetry unit block diagram.

Figure 22: Telemetry unit PCB with components.

The telemetry unit has been tested in a lab setting and is able to transmit the strain
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data at distances greater than 20 m while consuming less than 30 mW of power. This

low power consumption allows the unit to be powered by a micro-battery weighting less

than 3 grams. The telemetry unit can be used in other biomedical applications such as in

the monitoring of orthopedic implants and can be easily configured to use other type of

sensors. Figures 23 show the testing of the unit and real time strain plot.

(a) (b)

Figure 23: (a) Telemetry unit under lab test. (b) Real time strain data received from the
telemetry unit.

3.5 Telemetry Unit 2.0

This telemetry unit has been designed around an ultra-low-power microcontroller

CC430F5137 from Texas Instruments. The CC430F5137 integrates a sub1-GHz RF

transceiver with a 16-bit RISC CPU, a 12-bit analog-to-digital converter (ADC) and other

peripherals. The microcontroller measures 8 mm x 8 mm and along with rest of the sur-

face mount components satisfy the design challenges of the telemetry unit: small size
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and low power consumption. The unit has a small size of 2.5 cm x 1.5 cm and operates

from a 3.7 V Li-Pol battery that weighs less than 3 grams. A low dropout (LDO) voltage

regulator TLV70033 was employed to provide a steady 3.3 V voltage supply.

The RF transceiver requires an antenna impedance matching network. To re-

duce the number of components and the size of the matching network, we employed an

impedance matching balun from Johanson Technology (0896BM15A0001). A 915 MHz

chip antenna from Johanson Technology (0915AT43A0026) and a small 26 MHz crystal

oscillator from Nihon Dempa Kogyo Co., LTD. (NX2016AB) are also needed by the RF

transceiver and were included on the board.

Zeroing is performed by the microcontroller by generating a voltage ramp at the

output of the DAC (AD5320). The ramp is stopped when the output of the amplifier

reaches the desired zero-level voltage. The telemetry unit employs the precision instru-

mentation amplifier INA326 from Texas Instruments. The INA326 is a low-power ampli-

fier that features rail-to-rail input common-mode voltages, has low offset voltage and very

low 1/f noise. Figure 24 shows the top and bottom of the unit with soldered components

and figure 25 depicts its block diagram.

The telemetry unit was tested on an ex-vivo setting. In-vivo tests could not be per-

formed at this time because the placement of the gauges requires survivable surgery and

IACUC approval of the protocol. For the ex-vivo testing, a 120 ω strain gauge (Vishay,

EA-06-015DJ-120) was first cut into a size of 2.54 mm length and 0.51 mm width and

then was glued to a dissected ulna of a mouse. The adhesive used was M-bond 2000 from

Vishay-Micro-Measurements. The ulna with the attached strain gauge was then placed on
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(a) (b)

Figure 24: Telemetry Unit. (a) Top side. (b) Bottom side.

the bench top setup.

Readings were first collected using data acquisition system. The bone was loaded

with a sinusoidal force of 2 Hz and 3 N peak-to-peak for few cycles. The StrainSmart R©

software recorded the strain data and saved it to a text file. Figure 26(a) shows 5 cycles of

such reading. Strain was measured to be around -3000 to 0 µstrain.

Next the bone-attached strain gauge was connected to the telemetry unit. The pro-

cess of applying force was repeated in the same manner as in the case of data acquisition

system. Figure 26(b) shows the strain acquired by the telemetry unit. It also shows a

digitally filtered version that removes most of the noise. It can be seen that the telemetry

unit has accuracy comparable to the benchtop system. Figure 27(a) shows this telemetry

unit connected to the strain gauge attached to the bone that on the load force system.

The sampling frequency of the telemetry unit can be modified by changing the

timer settings of the microcontroller. We measured the current consumed by the unit by

varying the sampling frequency. It can be seen from the plot of figure 27(b) that the unit
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Figure 25: Telemetry unit block diagram.

consumes 1 mA at 15 Hz to 7 mA at 300 Hz. The plot also shows that when the unit is

asleep, current consume is on.y 0.5 mA.

3.6 Telemetry Unit 2.1

In addition to the features of the previous version, this telemetry unit incorporates

a 3-axis digital accelerometer and an expansion connector to connect more than one strain

gauge at once. This unit was also tested in an ex-vivo setting and a user interface of the

previous version was modified to capture strain data along with accelerometer data. The

user interface is designed in Matlab and is connected to the base station via a virtual COM

port. Figures 28 and 29 show the units PCB and its block diagram respectively.

Like version 2.0, this user interface can be used to wirelessly change the sampling

frequency, put the unit to sleep, change transmission power level and run the calibration

routine. The user can also save the data on the screen, start and stop the data collection.
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(a)

(b)

Figure 26: Strain readings. (a) StrainSmart R© strain reading. (b) Filtered and raw strain
readings from the telemetry unit.

3.7 Telemetry Unit 3.0

A smaller unit measuring only 2.4 cm × 1.3 cm was designed and tested. This

unit considerably adds to the previous versions. Figure 30 shows a simplified schematic

diagram of the telemetry unit. The telemetry unit is designed around the CC430 microcon-

troller from Texas Instruments. This microcontroller was chosen because it integrates a

range of peripherals such as a 12-bit ADC, a 16-bit timer and a 915 MHz radio transceiver.
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(a) (b)

Figure 27: Strain readings. (a) Telemetry unit connected to the strain gauge attached to
the bone. (b) Telemetry Unit current consumption at different sampling frequencies.

Figure 28: Telemetry Unit PCB.

The integration of these peripherals along with a low-power 16-bit CPU on a single chip

that measures 8 mm× 8 mm enables the development of a compact wireless strain sensor.

An 8-channel multiplexer (MUX) is employed to allow up to 8 different strain

gauges to be connected to the instrumentation amplifier. A precision instrumentation

amplifier A1 (INA333) is employed to amplify the voltage difference VDAC − VS . The

gain of A1 is set by a single resistor RG as follows:
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Figure 29: Telemetry unit block diagram.

A1 = 1 +
100 kΩ

RG

(3.3)

and was set to 334 by choosing RG = 300 ohms.

The voltage VS is a function of the strain gauge resistance through the following

voltage resistive divider relationship:

VS = VDDA
RS

RS +RP

(3.4)

The resistance RP is a precision resistor with a value matching the nominal resis-

tance of the strain gauges. Using (3.3) and (3.4) yields the following expression for the

output of the instrumentation amplifier:

VOUT = VREF + A(VDAC − VS)
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Figure 30: Schematic diagram of the telemetry unit.

= VREF +
(

1 +
100 kΩ

RG

)(
VDAC − VDDA

RS

RS +RP

)
(3.5)

Thus, the amplifier’s output is a function of the strain gauge resistance RS which

in turn is a function of the strain applied to the gauge through (3.1). Hence, the strain

experienced by the gauge can be calculated from the voltage output of the amplifier. The

current that flows through RS and RP is given by:

IR =
VDDA

RS +RP

(3.6)

Considering RS = RP = 120 ohms and VDDA = 3 V results in a current of

12.5 mA flowing through the strain gauge. This current is quite large for a low-power

sensor that is expected to run for long periods of time from a small battery. To reduce
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this current, RP could be increased. However, an increase in RP will result in a reduced

voltage across the strain gauge ultimately affecting the signal-to-noise ratio (SNR). To

reduce current consumption without sacrificing SNR, the MOSFET M1 (PMV16) was

added in series with RP and RS . The MOSFET works as a switch allowing current to

flow through the resistors only when a reading is being taken. Otherwise, the MOSFET

is turned off to save current consumption.

A second DAC was added to provide a programmable voltage reference VREF

to the instrumentation amplifier. A programmable reference level gives the flexibility

of moving the amplifier’s output baseline up or down to match the range of certain test

signals such as haversines which are unidirectional. A 12-bit DAC (DAC7311) with low-

power consumption and small footprint was used to implement both DAC1 and DAC2.

A 3-axis accelerometer was included in the telemetry unit to capture motion infor-

mation. The motion information will be used to estimate the degree of exercise performed

by the subject. The MMA8453Q accelerometer was employed due to its small size (3 mm

× 3 mm × 1 mm) and very low power consumption.

A wireless inductive battery charger was also included on the design to enable

full implantation of the unit. The charger is composed by a coil and a capacitor CT , a

full-wave rectifier and the LTC4054 battery charger. A small and rechargeable lithium-

polymer battery with a capacity of 45 mAh is used to power up the telemetry unit. The

voltage level of the battery is monitored by the microcontroller by means of the Ra − Rb

resistive voltage divider. The battery voltage level is sent to the base station in every

transmitted radio packet. Thus, the end user can be alerted when the battery is running
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low and can recharge it.

The inductive charger works at a frequency of 13.5 MHz. This frequency was

chosen for two reasons: i) it is low enough to penetrate tissue [4] and ii) it is used in

the ISO-15693 RFID standard and commercially available RFID readers can be used to

charge the unit [19]. The frequency of the charger is tuned by setting the value of capacitor

CT .

A dual output low-dropout voltage regulator (LDO) was employed to provide a

stable supply voltage to the analog and digital components of the telemetry unit. The

dual output LDO allows to power down portions of the telemetry unit hardware to reduce

power consumption when the unit is forced to enter into a deep-sleep power down mode

or when the battery voltage has dropped below 2.9 V.

In the deep-sleep mode the analog front-end (amplifier, DACs and MUX) of the

sensor as well as the accelerometer are turned off, the microcontroller is put into a low-

power mode and the radio is turned off. Every three minutes the microcontroller wakes

up, turns its radio on, transmits a status packet and listens for possible response from the

base station. If no response is received it goes back to deep-sleep mode. On the other

hand, if a response from the base station is received the unit exits the deep-sleep mode

and proceeds to read and transmit data from its input channels. The deep-sleep mode is

designed to minimize power consumption when the unit is not being used to collect strain

or motion information.

A 4-layer printed circuit board (PCB) to host all the electronic components was

designed and fabricated. The PCB with mounted components is shown in Figure 31.
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Special effort was made in the PCB design to minimize noise coupling into the analog

signal chain. Likewise, special efforts were made to minimize the size of the board. The

PCB measures 2.4 cm × 1.3 cm. To reduce the number of discrete components needed

by the radio, a balun from Johanson Technology (0896BM15A0001) was employed in

the impedance matching network. A 915 MHz chip antenna from Johanson Technology

(0915AT43A0026) and a small 26 MHz crystal oscillator were also employed to reduce

board space.

(a) (b)

Figure 31: Telemetry Unit. (a) Top side. (b) Bottom side.

3.7.1 Radio Communications

The program running on the microcontroller was written in C and has an interrupt-

driven architecture. The ADC conversion rate is set by an internal timer and it can be

changed according to the application requirements by reprogramming the timer. The

conversion rate of the ADC is given by:

fconv =
fclk
TA

(3.7)
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where, fclk is the microcontroller’s clock frequency and is set to 500 kHz and TA is the

time period. Once enough samples have been collected a radio packet is transmitted.

The packets have a payload fixed length of 60 bytes. The payload format of packets

transmitted by the telemetry unit is shown in figure 32.

DAC1 TA DAC2 D[1] D[2] D[3] D[4] D[36]

C
h
a
n
n
e
l 
&

 

B
a
tt
e
ry

1 byte

Figure 32: Format of the radio packets’ payload.

Since the integrated ADC’s resolution is 12-bits, the packet payload is divided into

12-bit-long units of information. Each packet contains the values of the two DACs, the

timer period TA, the channel number being sampled, the battery voltage level and 36 data

points. Each data point is equal to the digital conversion of the voltage VOUT . Hence, the

packet transmission period is equal to:

Tp =
36

fconv
=

36× TA
fclk

(3.8)

Besides the payload a radio packet includes other fields such as preamble, syn-

chronization, address, length and CRC yielding a total packet length of 576 bits. Consid-

ering that the radio transmission rate is set ot 75 kbps,transmitting a radio packet takes

7.7 ms. After the transmission of every packet the radio transceiver is programmed to

switch to reception mode and listens for a arriving packet from the base station for 31.2
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ms. Therefore, the minimum packet transmission period, Tpmin
is 7.7 ms + 31.2 ms =

38.9 ms. Considering the minimum packet transmission period and using (3.8) yields a

maximum ADC sampling rate of 925 Hz which is divided among the 8 channels giving a

maximum sampling rate of 115 Hz/channel. This sampling rate is more than enough for

the target application. If higher sampling rates are needed less number of channels would

have to be read. The minimum sampling rate is set by Nyquist rate. We conducted ex vivo

tests with a 3 Hz haversine force applied to a mouse bone. Thus, the sampling rate in the

ex vivo tests can be as low as 6 Hz.

Radio transmissions are the most power-expensive operation performed by the

telemetry unit. During transmission the radio transceiver consumes 18 mA for a power

output of 0 dBm. In reception mode the transceiver consumes 16 mA of current [69]. To

reduce power consumption due to radio communications, the radio transceiver is turned

off when it is not being used as illustrated in figure 33.

t
Ttx Trx Toff

Tx Rx Tx Rx

Figure 33: Transmission (TX) and reception (RX) timing diagram.

Thus, the average current consumption due to radio communications is given by:

Iavg =
TtxItx + TrxIrx
Ttx + Trx + Toff

(3.9)
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where, Toff is the time the radio transceiver remains off, Ttx = 7.7 ms, Trx = 31.2 ms, Itx

is the current consumption during transmission and Irx is the current consumption during

reception. Notice that Ttx + Trx + Toff = Tp. Combining this result with (3.8) yields the

following relationship:

Iavg = fconv

(
TtxItx + TrxIrx

36

)
= (Nfs)

(
TtxItx + TrxIrx

36

)
(3.10)

where,N is the number of channels being scanned and fs is the sampling rate per channel.

Thus, the average power consumption due to radio communications is directly

proportional to the conversion rate. Figure 34 shows the average power consumption

predicted by the model in (3.10) in which an additional 1.4 mA has been added to account

for the current consumption due to the micro-controller, voltage regulation and the analog

signal chain. The figure shows the average current consumption as a function of the

sampling rate per channel (fs) for different number of active channels (N ) when the radio

transmission rate is set to 75 kbps and the transmission output power is 0 dBm.

According to the battery’s manufacturer if 4.0 mA of current are continuously

drawn from the battery, its voltage will drop to 3.0 V after approximately 12 hours. Thus,

from figure 34 we conclude that, when transmitting at 75 kbps and 0 dBm, to collect 12

hours of continuous data using all 8 channels, the sampling rate needs to be about 18

Hz each. Alternatively, if only one channel is in use, sampling at a rate of 33 Hz allows

the battery to last a whole day without recharging. A typical sampling rate per channel is
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Figure 34: Average current consumption of the telemetry unit for different number of
channels being read (N ) and the sampling rate per channel (fs). Radio transmission rate
is set to 75 kbps and the transmission output power is 0 dBm.

between 3 to 5 Hz. Hence, the telemetry unit can run for 24 hours of continuous operation.

Reducing the transmission rate to 38 kbps further decreased packet loss. At this

rate it was observed from figure 35 that for the battery to lasts 12 hours with all 8 channels

in use, sampling rate needs to be at 15 Hz each, and for 24 hours, one channel needs to be

sampled at 28 Hz.

3.7.2 Acquired Micro-Strain Data

We tested the unit the same way as the previous versions. This setup was tested

by gluing the strain gauge to a surgically removed bone of a mouse and placing it on the

Bose ElectroForce 3200 load test instrument. A Vishay EA-06-015DJ-120 strain gauge of

nominal resistance of 120Ω and gauge factor(GF) of 2.07±2% is used. The adhesive used

was M-bond 2000 from Vishay-Micro-Measurements. The strain sensed by the strain
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Figure 35: Average current consumption of the telemetry unit for different number of
channels being read (N ) and the sampling rate per channel (fs). Radio transmission rate
is set to 38 kbps and the transmission output power is 0 dBm.

gauge is acquired by the Vishay Micro-Measurement 7000 data acquisition system. Data

is collected by applying a sinusoidal force to the bone. The magnitude of the force is

varied from 1 N to 3 N and its frequency is varied from 0.5 Hz to 3 Hz.

The strain gauge was then disconnected from the data acquisition system and con-

nected to the telemetry unit. The same sinusoidal force was reapplied to the bone of the

mouse. The strain data was transmitted by the telemetry unit to the base station. The

development board for CC430F5137 is employed as the base station which is connected

to the PC via FTDI serial-to-USB cable. A graphical user interface(GUI) was designed

to allow easy data collection and system configuration. The GUI can be used to remotely

change telemetry unit settings such as sampling rate, transmission power, the baseline of

the amplifier output, and select sensor channel. The calibration routine can also be trig-

gered from the GUI. The GUI connects to the base station via a COM port and has the
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options to start and stop readings and to save data into a file. The GUI is equipped with a

digital filter to filter the incoming raw data and plots them together in real-time.

Figure 36 shows readings from both the acquisition system and the telemetry unit.

The figure shows the strain reading when a 3 N peak-to-peak force at 2 Hz was applied.

For both, the recorded strain ranged from -3000 to 0 µε making the telemetry unit a

efficacious replacement of the bulky bench top setup.
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Figure 36: StrainSmart R© readings vs Telemetry unit filtered readings.

3.7.3 Current Consumption

The on-chip timer of the micro-controller triggers the analog-to-digital conversion

of the strain data. Varying the period of the timer sets the sampling frequency of the

strain data. With the master clock of the microcontroller operating at 500 kHz, the radio

transmission baud rate 75 kbps, and radio transmission power of 0 dBm, we sampled one

channel at frequency ranging from 10 Hz to 160 Hz. Figure 37 shows that at 10 Hz,

current consumed by the telemetry unit is only 1.75 mA which increases to 4 mA for
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sampling frequency of 160 Hz. The figure also shows that during sleep the unit consumes

only 0.4 mA of current. During sleep the micro-controller puts the radio core into power

down mode, turns off the MOSFET switch, and disables the LDO output shutting down

the amplifier, the two DACs, the two MUXs and the accelerometer.
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Figure 37: Telemetry unit current consumption.

3.7.4 Performance Through Tissue Phantom

Inductive coupling theory is the underlying principle for wireless power charging

which is an important feature for any implantable telemetry device. Every moving charges

(electrons in wires or in a vacuum), i.e. flow of current, is associated with a magnetic field

(figure 38) in accordance to the shape of the conductor. The generic equation:

∑
I =

∮
−→
H
−→
ds

for the magnetic field strength H is independent of material properties of space and hence

could be used for different types of conductor.
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Figure 38: Lines of magnetic flux around a current-carrying conductor and a current-
carrying cylindrical coil.

The magnetic field strength H for a short cylindrical coil antenna shown in figure

39 similar to the type used in the antennas of inductively coupled RFID systems is given

as equation:

H =
INr2

2
√
r2 + x2

Where N is the number of winding, R is the circle radius r and x is the distance from the

center of the coil in the x direction. It could be inferred from above equation that as the

distance x increases the magnetic field strength H decreases.

The changing magnetic field created by one circuit (the primary) can induce a

changing voltage and/or current in a second circuit (the secondary). The mutual induc-

tance of two circuits describes the size of the voltage in the secondary induced by changes

in the current of the primary and is the basic principle behind most inductively coupled

passive RFID systems.

Telemetry unit, with the coil was place on top of the small battery and the whole
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Figure 39: The path of the lines of magnetic flux around a short cylindrical coil.

setup was wrapped with polymide film tape as they are proven to be biocompatible [64].

The diameter of the coil is 2 cm and it has 20 turns. The length of the coil from the

edge of the PCB is 3 cm. With the battery, the dimensions of the setup is 2.4 cm × 4.3

cm × 0.5 cm. The setup was then placed in a tissue phantom created by using gelatin

and NaCl. Gelatin gels were normally used as a model for the soft tissue because of the

presence of gel in the human tissue and ease of implementation [53], [83]. The artificial

skin model using the gelatin gel is easy to deal with and care. Moreover, it is an alternative

measurement method of an human test. In 500 ml of water, 15 grams of gelatin was added

and mixed with 1.2 grams of NaCl and brought to a boil. After pouring the mixture into a

container, the telemetry unit was placed 1 cm below the surface of the phantom. Then the

setup was refrigerated over night to solidify. The setup is depicted in figure 40.

We compared the current being delivered to the 3.7 V, 45 mAh battery while charg-

ing it through air and 1 cm between the coils and when the unit was 1 cm deep into the

tissue phantom. This was done by measuring the voltage drop across a 1 Ω current sense
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Figure 40: Telemetry unit in tissue phantom.

resistor (shunt resistor [20]) connected between the charger and the battery. Figure 41

shows the schematic diagram of the circuit designed to measure the current to the battery.

During charging the unit was put into deep-sleep mode. Voltage, V1 and V2, at each node

of the resistor was fed into an amplifier (AD620) with gain equal to 100 and a reference

voltage of 1 V. Therefore, the current being delivered to the battery is calculated by:

Ibat = ((V1 − V2)× 100− Vref )/1Ω

Figure 42 shows that when implanted, the battery receives 1.3 mA of current com-

pared to 3.4 mA when the medium is air between the coils.

The voltage level of the battery is monitored by the microcontroller by means

of the Ra − Rb resistive voltage divider. The battery voltage level is sent to the base

station in every transmitted radio packet. Thus, the end user can be alerted when the

battery is running low (2.9 V) and can recharge it. When the battery is at 2.9 V, it is 20%
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Figure 41: Circuit to measure current delivered to battery while charging.
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Figure 42: Current delivered to telemetry unit during wireless charging.
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discharged, which means its capacity is lowered to about 33 mAh. In order to charge it to

full capacity, about 12 mAh needs to be put back in to the battery. Considering this and

the amount of current received, it takes 3.5 hrs to charge through air and 10 hrs to charge

when implanted. This can easily be done over night when the unit is not being used and

is in deep-sleep.

Packet loss at transmission rates of 75 kbps and 38 kbps and transmission power

0 dBm, -12 dBm and -30 dBm were examined when the setup was placed at a distance

of 50 cm, 1 m and 2 m away from the base station. The experiment was repeated after

removing the unit from the phantom, with air as the medium. Table 18 shows the results

through phantom and Table 19 shows the results through air. It can be seen that the tissue

phantom increases packet loss when we go from 38 kbps, 0 dBm and 50 cm to 75 kbps,

-30 dBm and 2 m.

Table 18: Tissue phantom readings. Percentage of packets received for different trans-
mission power and distance.

Tx power
38 kbps 75 kbps

50 cm 1 m 2 m 50 cm 1 m 2 m
0 dBm 100 100 100 92.60 90.94 85.44

-12 dBm 100 100 98.6 63.96 60.90 48.34
-30 dBm 98.96 96.04 84.50 54.04 24.66 10.90

Table 19: Air readings. Percentage of packets received for different transmission power
and distance.

Tx power
38 kbps 75 kbps

50 cm 1 m 2 m 50 cm 1 m 2 m
0 dBm 100 100 100 94.54 92.92 92.28

-12 dBm 100 100 98.6 92.18 90.68 90.20
-30 dBm 99.24 99.66 98.86 69.16 68.64 57.22
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Future work involves using the telemetry unit in real live subjects in labs.
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CHAPTER 4

WIRELESS SURFACE ELECTROMYOGRAPHY (EMG) SENSOR

This chapter presents the design and validation of EMG sensor node. The pro-

totype is created using commercially available off-the-shelf components. Extra care was

taken to make the node seamlessly wearable. We also propose a robust propriety wireless

network protocol that allows the use four such nodes at once. Details of the algorithm

running on the nodes and the base station are presented. Performance comparison with

available industry EMG sensor is also drawn.

4.1 Literature Survey

Electromyography is a method of detecting muscle activity. In particular, EMG is

applied to the study of skeletal muscle. The skeletal muscle tissue is attached to the bone

and its contraction is responsible for supporting and moving the skeleton. The contraction

of skeletal muscle is initiated by impulses in the neurons to the muscle and is usually under

voluntary control. The methods relies on the change of membrane potential of the muscle

cells with muscle activity. This can occur both in spikes when the muscle is stimulated or

constantly when the muscle contraction is spasmodic.

There are many applications for the use of EMG. EMG is used clinically for the

diagnosis of neurological and neuromuscular problems. It is used diagnostically by gait
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laboratories and by clinicians. EMG is also used in many types of research laborato-

ries, including those involved in biomechanics, motor control, neuromuscular physiol-

ogy, movement disorders, postural control, and physical therapy [2]. EMG can also be

used to sense muscular activity that does not translate into movement. This feature al-

lows capturing motionless gestures without being noticed and sees its use in hands free

applications [67]. [60] have shown that in interactive computer gaming, EMG along with

other sensors can be used to replace hand held joypad and joystick. In this EMG can

provide more intuitive human movement as compared to traditional controllers. At the

NASA Arms Research Center at Moffett Field, California, the extension of the Human

Senses Group uses bio-control systems interfaces. These NASA researchers have used

EMG signal to substitute for mechanical joysticks and keyboards. As an example, they

developed a method for flying a high-fidelity flight simulator of a transport aircraft using

EMG based joystick [75]. EMG has also been demonstrated to be useful in non-voice

communication [41]. This serves well for people without or damaged vocal chords. [50]

employed EMG signals of shoulders to control electric-power wheelchair to assist people

with spinal chord injury.

In order to measure and record potentials and, hence, currents in the body, it is

necessary to provide some interface between the body and the electronic measuring ap-

paratus. Biopotential electrodes carry out this interface function. In any practical mea-

surement of potentials, current flows in the measuring circuit for at least a fraction of

the period of time over which the measurement is made. Ideally this current should be

very small. However, in practical situations, it is never zero. Biopotential electrodes must
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therefore have the capability of conducting a current across the interface between the

body and the electronic measuring circuit. The silver/silver chloride (Ag/AgCl) electrode

is a practical electrode that approaches the characteristics of a perfectly nonpolarizable

electrode and can be easily fabricated in the laboratory.

EMG can be measured both non-invasively on the skin surface above the muscle

or invasively by needles. Table 20 below lists the advantages and disadvantages of using

needle or surface electrodes.

Table 20: EMG electrode types
Inserted Surface

Advantages

- Extremely sensitive - Quick, easy to apply
- Record single muscle activity - No medical supervision
- Access to deep musculature or required certification
- Little cross-talk concern - Minimal discomfort

Disadvantages

- Extremely sensitive - Generally used only for superficial
- Requires medical personnel and muscles

certification - Cross-talk concerns
- Repositioning nearly impossible - No standard electrode placement
- Detection area may not be - May affect movement patterns of

representative of entire muscle subject
- Limitations with recording dynamic

muscle activity

During muscle activity the membrane potential change to approximately 10 mV.

Since EMG signal suffers from electrical noise, a differential amplifier with high input

impedance is typically employed. One source of noise is the other surrounding electronics
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and unfortunately can not be removed. It can only be reduced by carefully selecting high

quality components. Other sources of noise include electromagnetic radiation from radio

stations, electrical wires etc and is also not easy to remove. Motion artifacts also effect

EMG signals. They are generated from using wires and cable and not preparing the skin

properly before placing them on to the skin. The bandwidth of EMG signal is 0 to 500

Hz, however, noise from mentioned sources range between 0 - 20 Hz, and dominant line

frequency of 60 Hz [13]. A high pass filter after amplification along with an anti-aliasing

low pass filter is recommended as part of the analog front end for EMG devices. A notch

filter can be employed to remove the 60 Hz line noise but is not advised as it falls in the

dominant EMG bandwidth.

4.2 System Design

The EMG node is designed around the CC430 microcontroller from Texas Instru-

ments. This microcontroller was chosen because it integrates a range of peripherals such

as a 12-bit ADC, a 16-bit timer and a 915 MHz radio transceiver. The integration of these

peripherals along with a low-power 16-bit CPU on a single chip that measures 8 mm × 8

mm enables the development of a compact wireless sensors. Figure 43 shows the block

diagram of the EMG node.

Separate LDOs are employed to isolate the analog front-end amplifier from the

rest of the circuit. LDO1 can be turned on or off from the microcontroller. The unit

also features a battery charger, therefore it can be cased in with a rechargeable battery.
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Figure 43: Block diagram of the EMG node.

A 3-axis accelerometer is included to capture motion information. The MMA8453Q ac-

celerometer was employed due to its small size (3 mm × 3 mm × 1 mm) and very low

power consumption. Place for another sensor, for example atmospheric pressure, that can

be programmed by I2C is also provided. A two layer PCB is designed to house all the

components and measures 4 cm × 2 cm. All the electronic components are place on the

top side of the PCB leaving room for just the electrodes at the bottom. Each electrode

measures 2 mm × 12 mm and are 10 mm apart. Figure 44 shows PCB with the soldered

components.

The front end amplifier circuit comprises of a precision differential amplifier

(INA321) chosen for its high input impedance and very low power consumption. The

output of the differential amplifier is fed into a unity gain anti-aliasing low pass filter

with cutoff frequency of 500 Hz. It is a Sallen-Key filter with a Butterworth response
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Figure 44: EMG node. (a) Top side. (b) Bottom side.

89

~xpon~ool 

PrOjlrom minz.i 

Fmnto nd 

~" 
o"v it 

Opt ionol 

ref~re n<e 
010<1,00.. 

W ire> t o t 
olo<trodo. 

M iwxontro ller 



characteristics. Figure 45 depicts the schematic diagram of the front end amplifier. In the

figure resistors R1 and R2 sets the gain of the differential amplifier to 1000 according to

equation:

Gain = 5 + 5(R2/R1)

and R3 and R4 sets the gain of the filter.

Figure 45: Schematic diagram of the EMG front end amplifier.

The development board for CC430F5137 is employed as the base station which is

connected to the PC via FTDI serial-to-USB cable. A graphical user interface(GUI) was

designed to allow easy data collection. The GUI connects to the base station via a COM

port and has the options to start and stop readings and to save data into a file.

4.3 Base station and EMG node program algorithms

A network is designed to collected EMG data from four nodes at once. The base

station acts as the central unit and allocates time slots to the nodes when they join the
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network. During this time slot is only when that specific node is allowed to transmit its

data after a SYNC command is received from the base station. Each command sent or

received in the network has its first byte a ”C” and is checked to make sure a command is

received. Figure 46 shows the format of the commands sent from the base station and the

replies from the nodes.

Figure 46: Packet format of the base station commands and node replies.

The program running on the base station is written in C language and has an

interrupt driven architecture. The internal timer controls the transmission of commands

to invite, respond to join requests and synchronize the timers of each connected node.

Only after when four nodes have joined the network, the base station stop inviting more

nodes and transmits SYNC commands. In the radio interrupt the base station checks for

join requests, however after all four nodes have joined the radio interrupt processes the
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data received from the nodes. The flow charts in figures 47 and 48 describe what the base

station processes during its timer and radio interrupts respectively.

Figure 47: Base station radio interrupt.

The architecture of the program running on each EMG node is also interrupt

driven. Just like the base station, the timer and the radio are the main interrupts. The

flow charts in figures 49 and 50 describe what the node processes during each interrupts.

In the radio interrupt the node looks for the three commands sent from the base station

and acts accordingly. The timer interrupt triggers the sampling of the ADC at 1 KHz and

also facilitates the delays needed when SYNC is received, so that the node transmits data

only in its own time slot and prevent collision.
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Figure 48: Base station timer interrupt.

Figure 49: Node radio interrupt.
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Figure 50: Node timer interrupt.

4.4 EMG Network

Figure 51 shows the activity of the base station when a node tries to join its net-

work. In the figure tTX , time to transmit a packet is 9 ms (discussed below), time between

invitation and acknowledgment, tACK is 18 ms and time between two invites, tINV is 36

ms. During this process, the base station keeps a count of how many nodes have joined

its network. Once that number reaches four, only SYNC command is transmitted.

The throughput of the network needs to to 1 KHz as the bandwidth of EMG signal

is 0 - 500 Hz. To match this, each node samples data at 1 KHz as well. The internal timer

interrupt is programmed to trigger the ADC sampling. Two buffers of 60 bytes are used

to store the sampled data to be transmitted alternatively. Each transmitted packet contains

these 60 byte sized samples of EMG data, plus preamble, sync word, CRC bits and RSSI,
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Figure 51: Base station replying to join request of a node.

for a total of 576 bits. Considering radio transmission baud rate of 64.8 kbps, it takes

about 9 ms to transmit a single packet.

Figure 52 depicts the working of the network. In the figure t6 is 9 ms, and the

time it takes the base station to process a received packet, t7 is 77 ms. t1 is the time

Node1 waits after receiving SYNC from base station and is 3 ms, t2 is the wait time for

NODE2 and is 15 ms, t3 is the wait time for NODE3 and is 27 ms, and t4 is the wait

time for NODE4 and is 39 ms. t5 is the time between two SYNCs 60 ms as well as the

time between data transmitted from one node. 60 samples are transmitted every 60 ms

making the throughput of the network to be 1 KHz, which is ideal for EMG signal whose

bandwidth is 0 - 500 Hz.
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Figure 52: EMG network showing SYNC from base station and data from the nodes.

4.5 EMG data collection

We tested the performance of the EMG sensor against Delsys Inc. EMG sensors.

Tab electrodes connect to our nodes were pasted on to the forearm of the user. Nodes of

Delsys system was attached close to the tab electrodes on the same muscle. This setup

was prepared to simultaneously collect data using both systems. Figure 53 shows the two

connected to the forearm of the user.

The user was asked to move their wrist up and down, there by flexing the forearm

muscles. This movement was repeated for few cycles at a slow pace to be able to capture

EMG data. It can be seen from figure 54 that EMG collected by the designed board while

operating in the network is comparable to the EMG collected by the Delsys system.
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Figure 53: Tab electrodes connected to designed EMG node and Delsys Inc. Node at-
tached to the forearm of the user.
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CHAPTER 5

CONCLUSIONS

Body area sensor networks are being researched extensively. These comprise of

intelligent nodes that can be seamlessly worn or implanted while taking physiological data

of the user. These nodes communicate with base stations connected to PCs for further pro-

cessing of the collected data. This research field is challenging but the results envisioned

are not impossible. Choosing from available state of art hardware and signal processing

algorithms are the areas that are being explored. This dissertation delivers solutions that

are comparable to industry standards and does this by providing detailed design and val-

idation techniques of such wearable and implantable sensors. These sensors can operate

by themselves or can be integrated into a network of several such sensors.

We first presented a prototype to capture body motion and then classify the ges-

tures performed. Two techniques were used to do so. Namely inertial position and acous-

tic positioning. For inertial based position we used 3-axis accelerometers and 2-axis gy-

roscopes. For acoustic based positions, ultrasound speakers and microphones were em-

ployed. It was seen that results gathered by ultrasound positioning are erroneous as they

are effected by spatial and temporal changes in room temperature and air movements. Un-

fortunately, these errors can not be rectified as they are caused by air turbulence. There-

fore, we chose to use inertial based gesture recognition.

Several algorithms have been proposed to classify gestures. In this dissertation
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we compared linear and non-linear classifiers. Fisher Linear Discriminant Analysis was

employed as the linear classifier and artificial neural networks were the non-linear clas-

sifiers. It was found that neural networks perform the best. In them too, the Time Delay

neural networks (TDNN) faired to the be the most successful, classifying gesture at near

perfection. We also proposed using them to reduce transmission power in a wireless sen-

sors, by reducing the number of bits of the acceleration data being sent and transmitting

less often. In the most detrimental scenario of transmitting 4 bits at 5 Hz, we achieved

90% classifying rates with TDNNs.

Second prototype presented in this dissertation are telemetry units for measuring

strain on bones. We went through several versions to reduce size and power consumption

of the telemetry units. Each version was shown to be able to replace the existing bulky

bench top load force system, which requires the test subject to be sedated and to be im-

mobile. Our systems were tested in ex-vivo setup but have been shown to be suitable for

in-vivo use too. For in-vivo testing, the unit was placed in a tissue phantom. We showed

that using inductive coupling we can charge the battery of the unit through the phantom

in 10 hrs. This can easily be done over night when the unit is not being used and is in

deep-sleep.

Finally, we present a network of four EMG collecting sensors. This network is

robust to body motion and the EMG data collected is comparable to industry standards.

The base station used for the network orchestrates the collection of data from the four

nodes. Upon turning on, the base station invites nodes to join its network. When a total of

four nodes have joined, the base switches to sending synchronization commands to all of it
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connected nodes. Individual nodes are assigned time slots when they join the network and

are made to transmit their collected data only in that time slot to avoid collisions. Upon

receiving the sync commands, the nodes use their internal timer to wait for their turn.

Since the EMG bandwidth is 0 - 500 Hz, the throughput of the network was programmed

to have a sampling frequency of 1 KHz.
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