

A COMPARATIVE STUDY OF SURROGATE MUSCULOSKELETAL MODELS

USING VARIOUS NEURAL NETWORK CONFIGURATIONS

A THESIS IN

Electrical Engineering

Presented to the Faculty of the University of

Missouri Kansas City in partial fulfillment

of the requirements for the degree

MASTERS OF SCIENCE

by

PALGUN REDDY PULASANI

Kansas City, Missouri

2013

ii

© 2013

PALGUN REDDY PULASANI

ALL RIGHTS RESERVED

iii

A COMPARATIVE STUDY OF SURROGATE MUSCULOSKELETAL MODELS

USING VARIOUS NEURAL NETWORK CONFIGURATIONS

Palgun Reddy Pulasani, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2013

ABSTRACT

The central idea in musculoskeletal modeling is to be able to predict body-level

(e.g. muscle forces) as well as tissue-level information (tissue-level stress, strain, etc.). To

develop computationally efficient techniques to analyze such models, surrogate models

have been introduced which concurrently predict both body-level and tissue-level

information using multi-body and finite-element analysis, respectively. However, this

kind of surrogate model is not an optimum solution as it involves the usage of finite

element models which are computation intensive and involve complex meshing methods

especially during real-time movement simulations. An alternative surrogate modeling

method is the use of artificial neural networks in place of finite-element models.

The ultimate objective of this research is to predict tissue-level stresses

experienced by the cartilage and ligaments during movement and achieve concurrent

simulation of muscle force and tissue stress using various surrogate neural network

models, where stresses obtained from finite-element models provide the frame of

reference. Over the last decade, neural networks have been successfully implemented in

several biomechanical modeling applications. Their adaptive ability to learn from

examples, simple implementation techniques, and fast simulation times make neural

iv

networks versatile and robust when compared to other techniques. The neural network

models are trained with reaction forces from multi-body models and stresses from finite

element models obtained at the interested elements. Several configurations of static and

dynamic neural networks are modeled, and accuracies close to 93% were achieved, where

the correlation coefficient is the chosen measure of goodness. Using neural networks, the

simulation time was reduced nearly 40,000 times when compared to the finite-element

models. This study also confirms theoretical concepts that special network

configurations--including average committee, stacked generalization, and negative

correlation learning--provide considerably better results when compared to individual

networks themselves.

v

APPROVAL

The faculty listed below, appointed by the Dean of the School of Computing and

engineering, have examined a thesis titled “A Comparative Study of Surrogate

Musculoskeletal Models Using Various Neural Network Configurations” by Palgun

Reddy Pulasani, candidate for the Master of Science degree, and certify that in their

opinion it is worthy of acceptance.

Supervisory Committee

Reza R. Derakhshani, Ph.D., (Committee Chair)

Department of Electrical and Computer Engineering

Trent M. Guess, Ph.D.

Department of Civil and Mechanical Engineering

Ghulam M. Chaudhry, Ph.D.

Department of Electrical and Computer Engineering

vi

TABLE OF CONTENTS

ABSTRACT ... iii

APPROVAL ... v

LIST OF ILLUSTRATIONS .. x

LIST OF TABLES .. xii

ACKNOWLEDGEMENTS ... xiii

THESIS OUTLINE ... xv

CHAPTER

1. INTRODUCTION ... 1

1.1 Problem Description ..1

1.2 Musculoskeletal System ..2

1.3 Biomechanics of Human Movement ...4

1.3.1 Muscle Activation Dynamics ...5

1.3.2 Muscle Contraction Dynamics ...5

1.3.3 Musculoskeletal Dynamics ..6

1.4 Surrogate Models ..8

1.4.1 Multi-Body Model ...8

1.4.2 Inverse and Forward Dynamics ...9

1.4.1.1. Inverse Dynamics ...9

vii

1.4.1.2. Forward Dynamics ...10

1.4.3 Finite Element Analysis ...12

1.5 Need for Surrogate Models ...13

1.6 Implementation of Surrogate Models ..13

1.7 System Identification...16

1.7.1 White-Box, Grey-Box and Black-Box Modeling ..16

1.7.2 Steps in System Identification ...17

1.7.3 Choosing Excitation Signals ..17

1.7.4 Model Selection ...19

1.7.4.1. Distance Metrics ...20

1.7.4.2. Mean Squared Error ..21

1.7.4.3. Residual Analysis ...22

1.7.4.4. Correlation Coefficient (R) ...22

1.7.4.5. Minimum Description Length (MDL) ..23

1.7.4.6. Information Criterion ..23

1.7.5 Dynamic Models ..24

1.7.5.1. Linear Analysis ...24

1.7.5.2. Non-Linear Analysis...35

1.7.6 Neural Networks ..38

1.7.6.1. Static Neural Networks ...40

viii

1.7.6.2. Dynamic Neural Networks ...43

1.7.6.3. Prioritizing the Models ...46

2. METHODS ...46

2.1 Multi-body and Finite Element Analysis ..46

2.2 Neural Network Modeling ..48

2.2.1 Choosing the Network Topology ...49

2.3 Training Methods ..53

2.3.1 Committee ..53

2.3.2 Stacked Generalization ..54

2.3.3 Negative Correlation Learning ..55

2.4 Error Analysis ...58

3. RESULTS ...61

3.1 Individual Neural Network Connections...61

3.2 Weighted average committee of Neural Networks ...64

3.3 Stacked Generalization ..66

3.4 Negative Correlation Learning for static networks ...69

3.5 Best Configurations ...71

4. CONCLUSION ...73

5. FUTURE WORK ..74

APPENDIX ..76

ix

A. Various linear and non-linear modeling techniques ..76

B. Error Analysis ...81

REFERENCES ..85

VITA ..89

x

LIST OF ILLUSTRATIONS

Figure Page

1-1: Musculoskeletal model of lower limb showing the main muscles and bones3

1-2: Anatomy of human knee ..3

1-3: Components of muscle ...4

1-4: Biomechanics of human movement ...5

 1-5: Force-length-velocity curves ...6

 1-6: Two-dimensional moment analysis. ..7

 1-7: Inverse dynamics approach ...10

 1-8: Forward dynamics approach ..11

 1-9: Finite element analysis steps ...12

 1-10: System identification Process ..17

 1-11: Excitation Signals ..19

 1-12: Block diagram representation of Transfer function models ..27

 1-13: Block diagram representation of polynomial models ..29

 1-14: Block diagram representation of AR models ..30

 1-15: Block diagram representation of ARX models ...30

 1-16: Block diagram representation of ARMAX models ...31

 1-17: Block diagram representation of OE models ...32

 1-18: Block diagram representation of BJ models ..33

1-19: State Space equations ...34

1-20: Block diagram representation of Hammerstein-Wiener models36

1-21: A Three Layer Network...40

xi

1-22: A Simple Neuron ... 39

1-23: Various Transfer Functions ... 40

1-24: Feed-Forward Network (Multi-Layered Perceptron) .. 41

1-25: Back-Propagation algorithm .. 42

1-26: Radial Basis Function Network ... 43

1-27: Time Delay Neural Network ... 44

1-28: NARX Network ... 45

1-29: Layer Recurrent Network .. 45

2-1: (a) Model Geometries (b) Top view of the motion paths used................................. 48

2-2: Static Neural Network with 80 Hidden Nodes ... 52

2-3: Dynamic Neural Network with 160 Hidden Nodes and Tap Delay Length 1 52

2-4: Stack Generalized Network with 196 Hidden Nodes .. 55

2-5: Comparison of various networks with different penalty factors 57

2-6: Steps in Error Analysis .. 60

3-1 : NN stress analysis results ... 63

3-2 : Committee of NNs stress analysis results .. 65

3-3 : Stacked generalization stress analysis results... 68

3-4 : NNs with NCL stress analysis results .. 69

3-5 : Negative Correlation Learning – Epoch by Epoch execution flow 70

3-6 : Comparison of Best networks .. 72

xii

LIST OF TABLES

Table Page

2-1: Comparison of Training Functions ...50

2-2: Comparison of Transfer Functions ...51

3-1: Static Neural Networks – Individual Results ...61

3-2: Dynamic Neural Networks – Individual Results ..62

3-3: Static Neural Networks – Committee Results ..64

3-4: Dynamic Neural Networks – Committee Results ..64

3-5: Stacked Generalization for Static NN Results ..66

3-6: Stacked Generalization for Dynamic NN Results ..67

3-7: Best Configurations ...71

A-1: Various Linear and Non-linear Modeling Techniques ..76

B-2: Error Analysis ..82

B-3: FTDNN Residual Correlation Coefficients ...83

B-4: NN Residual Correlation Coefficients ...84

xiii

ACKNOWLEDGEMENTS

I heartily thank my advisor, Dr. Reza Derakhshani, for his continued assistance

and immense trust in me throughout my Masters career, and for giving me a chance to

prove my expertise. Besides my advisor, I sincerely thank my committee members, Dr.

Trent Guess and Dr. Ghulam Chaudhry, for their encouragement and insightful

comments. If it were not for their timely support, this project wouldn’t have been

possible.

I wish to express my special gratitude towards Dr. Trent Guess and Dr. Yunkai Lu

for assisting me in the bio-mechanical portion of the project whenever required and for

providing the multi-body and finite element analysis datasets which were the frame of

reference to the neural networks.

I am deeply indebted to my parents Mr. Anjani Kumar Reddy and Mrs. Pranitha

Reddy for always standing by me with extreme love and affection. Thanks Mom for all

your everlasting efforts and commitment towards my studies; and thanks Dad for your

rightful advices and unconditional support at all times though out my life.

I also thank my lab mates for guiding me with rightful advice during my Masters

whenever needed. In particular, I am thankful to Mr. Sri Ram Pavan Tankasala for

advising me to enter into the world of neural networks in the first place.

Last but not the least, I would like to thank my friends Chetan, Abhinav, Teja,

Swaroop and Aadit for ensuring that my entire 2 years of stay here in Kansas City was

filled with joyful and memorable moments.

xiv

Dedicated to my Mom and Dad

xv

THESIS OUTLINE

This thesis describes the application of various configurations of neural networks

for analyzing the performance of musculoskeletal models. Chapter 1 gives an

introductory layout of the biomechanics of surrogate musculoskeletal modeling by

familiarizing multi-body and finite element modeling techniques. It also mentions several

linear and non-linear modeling techniques with special focus on neural networks.

Chapter 2 gives more specifics on the actual modeling techniques implemented. It

starts by giving details on how the multi-body and finite element analysis was

implemented before starting with neural network modeling and mentions reasons on why

finite element, multi-body or neural networks had to be used and discusses the cons of

using finite element analysis to predict stresses. It discusses special neural network

configurations like committee, stacked generalization and negative correlation learning. It

also introduces a new phenomenon of choosing the best committee out of all possible

permutations. Finally it presents a new kind of residual analysis.

Chapter 3 illustrates all the results obtained using the above techniques. It

portrays the final results and also shows a table which contain the all the best results

obtained using different configurations.

1

1. INTRODUCTION

1.1 Problem Description

In the process of musculoskeletal modeling, multi-body analysis is usually used to

predict body level information (e.g. reaction forces). But since the body parts are assume

to be rigid and due to usage of simplified representation of joints, multi-body analysis is

limited to only provide this information and not beyond. This inability of Multi-body

models to provide low-level information (stress, strain, etc.) recommends the need to use

finite element models which effectively perform any operation that multi-body analysis

can in addition to predicting low-level or tissue-level information which multi-body

cannot.

However using finite element analysis is not always the best choice due to highly

increased computational time and complexity. To overcome these problems and develop

models which can provide realistic details while being computationally efficient,

surrogate or multi-scale models are developed such that they effectively use the

functionalities of both multi-body and finite-element models. In this process, multi-body

models first provide the joint or body level information as input to the finite element

models. Finite element models, in turn, use meshes and boundary conditions to calculate

internal stresses. The ultimate objective is to formulate real-life movement in real-time.

 Nevertheless this kind of surrogate model is still not an optimum solution as it

involves the complexity of finite element models. An alternative to this is to use artificial

neural networks, built using the reaction forces from multi-body analysis, to predict the

2

stress information. Over the decade, neural networks have been proved to be universal

function approximators and have been successfully implemented in analysis and

prediction tasks especially in biomechanical modeling applications. Their adaptive

learning ability to learn from examples, simple implementation techniques and fast

simulation times make neural networks versatile, durable and robust.

 The prime motive of this project is to perform a comparative study of several

neural network surrogate models and present them as successful predictors of tissue-level

information.

1.2 Musculoskeletal System

The musculoskeletal system is an integrated system formed by bones, muscles, and

joints. Since movement is due to muscle forces acting on bones, it is important to

understand how muscles, bones, and joints interact. Joints are interconnection areas,

where bones join with each other and aid in movement. There are several kinds of joints

in a human body: fibrous, cartilaginous, and synovial joints, which aid in no, minimal,

and free movement, respectively. The best examples of fibrous joints are the joints in the

skull, which produce no movement at all; while the spine joints produce very little

movement. However, the hand and knee joints produce free movement and are the best

examples of the synovial joints. Synovial joints [33] (or diarthrosis joints) are the places

where free movement actually occurs. This is due to the presence of synovial cavities,

which aid in free movement, between the articulating bones. These cavities contain

synovial fluid secreted by the synovial membrane, which lubricates the joints and reduce

3

friction. Thus more presence of this fluid (produced in excess by good exercise) eases the

stress on the joints and, thus, makes movement free [Gerard J. Tortora et al 2010].

The main internal structures in the human joint that keep it intact are ligaments,

tendons, and articular cartilage. Figure 2 shows the anatomy of the human knee. Articular

cartilage connects bones together. Its primary purpose is to protect the bones, while

allowing the joint to move freely. Since articular cartilage doesn’t have any blood supply,

it lacks self-repair capability. Absence of cartilage would eventually result in bones

grinding against each other, ultimately resulting in wear. Ligaments connect bones to

bones at joints, and their ultimate aim is to keep the bones and joints intact and under

control.

Figure 1-1 Figure 1-2

Images taken from Gerard J. Tortora et al, 2010 [33]

Figure 1-1: Musculoskeletal model of lower limb showing the main muscles and bones

Figure 1-2: Anatomy of human knee

4

Muscles are connected to the bones via tendons. When muscle contracts to make a

movement, tendon acts on the bone accordingly. When muscles produce forces, two

kinds of elements – contractile or active and non-contractile or passive elements –

contribute. Passive elements include the tendon (which connects bone to muscle),

perimysium, endomysium, and epimysium (which are various levels of coverings of the

muscle.).

Figure 1-3: Components of muscle

Image taken from Gerard J. Tortora et al, 2010 [33]

1.3 Biomechanics of Human Movement

The process depicted in Figure 1-4 starts from the analysis of muscle excitations

which can be observed from electromyography (EMG) signals. These muscle excitations

are converted into muscle activations, muscle forces and finally into net joint torques.

Each of the steps is explained in following phases

5

.

Figure 1-4: Biomechanics of human movement

Reference from [16]

1.3.1 Muscle Activation Dynamics

Electromyography (EMG) signals are used to measure electric signals generated

during muscle contraction. However, these are obtained using various invasive and non-

invasive methods [28], which are not readily usable, due to the presence of unwanted

noise, and thus, pre-processing the signal is important. Pre-processing takes place in

several steps [3]. Firstly, all the DC offsets are removed. Then, the EMG signal is

normalized by dividing it with the peak value. Finally, these rectified signals are low-pass

filtered, so that the signal can be correlated with the muscle force. In frequency domain,

Fast Fourier Transformation (FFT) of EMG signals aid in determining the frequency

spectrum [9], which helps in detecting muscle fatigue [9] and recognition of bent angles

in fingers, using feature set [9].

1.3.2 Muscle Contraction Dynamics

A.V. Hill proposed an empirical model of analyzing the muscle contractions using the

force-length and force-velocity characteristics. The isometric force-length curve, shown

in Figure 1-5, depicts the range of forces generated by the muscle, when held at various

6

lengths. Active muscle force is a steady force developed on the complete activation of a

muscle. It is defined as the change in the amount of force developed when the muscle is

become active. In most scenarios, active muscle force is generated in the region

0.5 < < 0.5 , where is the optimal muscle fiber length, and is the

maximum possible isometric force developed. From the force-velocity curve (Hill type

model), it can be inferred that there is a hyperbolic dependency of the force on the

velocity.

The main parameters that describe the muscle’s force producing properties are

 , , , muscle activation, (which is derived from activation dynamics),and

pennation angle(which is defined as the angle between muscle fibers and tendons when

fibers are at optimal length).

Figure 1-5: Force-length-velocity curves

Image taken from Myer Kutz et al, 2009 [16]

1.3.3 Musculoskeletal Dynamics

7

Biomechanical movements in a human body occur due to a number of forces

acting on various bones, which cause them to rotate about the joints due to application of

torques. The joint torque is a collection of all the individual muscle forces. These forces

come mainly from muscle contractions, and thus, it is vital to understand the force-

producing properties of muscles, mainly length and velocity, to analyze motion.

The moment arm of a system is the perpendicular direction to the line of action of

force, and hence, it changes with the angle of application of force.

For a given musculotendon force and moment arm , the musculotendon

torque is given by:

In Figure7, r1, r2, r3, and r4 are various moments acting on force F while r2 (the

perpendicular distance to the force F) is the moment arm.

Figure 1-6: Two-dimensional moment analysis.

Image taken from Andrew R. Karduna, 2009 [14]

8

From the equations of motion, the relationship between movement and muscle

forces in a musculoskeletal model can be given by:

 (1.1)

[Taken from Ahmet Erdemir et. al 2006]

where is the mass matrix, C represents the centrifugal forces, and torques,

 is the gravitational loading, E represents the external forces. q and its derivatives

refer to the positions, velocities, and accelerations.

Using the definition of musculotendon torque, we have:

 (1.2)

[Taken from Ahmet Erdemir et. al 2006]

It is an indeterminate problem to calculate the individual muscle forces from joint

torques as the number of possible solutions is infinite. Hence, the primary objective is to

first figure the net joint torques and then use optimization methods to get the optimal

solution of muscle forces.

1.4 Surrogate Models

1.4.1 Multi-Body Model

Multi-Body models have been used extensively for many decades to understand

the behavior of human musculoskeletal models and, specifically, human joints [Thomas

Buchanan et. al 2004]. Various parts of human body (for instance the knee, elbow etc.)

are modeled according to the requirement, such that body level information can be

9

garnered. [Otten 2003] mentions several mathematical expressions using Newton-Euler,

Lagrange and Featherstone’s methods to represent multi-body systems. Inverse and

Forward dynamics discussed below are two ways of implementing the Multi-body model.

Some notable software includes MSC.ADAMS (MSC Software Corporation, Santa Ana,

CA) and AnyBody (AnyBody Technology) where ADAMS is a commercial rigid body

dynamic modeling software package and AnyBody is a musculoskeletal modeling

software package.

1.4.2 Inverse and Forward Dynamics

Theoretically speaking, analysis of movement can be done in two ways. One way

is to predict the movement, based on known internal muscle forces and joint moments

(forward dynamics approach), and the other is to calculate the joint moment torques,

based on movement data and external forces (inverse dynamics approach). It depends

purely on requirement which methodology to choose. If motion is to be estimated,

forward dynamics approach is the best bet. To estimate the joint torques from motion and

external forces, inverse dynamics would be the best choice [3, 7, 24].

1.4.1.1. Inverse Dynamics

In inverse dynamics, estimates of joint torques are given from movements and

known external forces. Implementation of inverse dynamics approach starts with

measuring the properties, like mass and inertia, of the body of interest and the external

forces acting on it. Using equations of motion, joint torques are computed. Individual

muscle forces are then estimated from net torques at the respective joints using static

optimization methods [24]. Though mass is easily computable, inertia and other

10

properties of the body are hard to calculate and hence estimation of joint torques is not

trivial. Next is the problem of deriving individual muscle forces from joint torques as this

problem is indeterminate. Static optimization methods are used to solve this problem.

Figure 1-7: Inverse dynamics approach

Image taken from Thomas S. Buchanan et al, 2004 [3]

1.4.1.2. Forward Dynamics

In forward dynamics approach, known internal muscle forces are used to create

motion. Neural commands, obtained using EMG signals or by optimization techniques,

produce the muscle activations (muscle activation dynamics), and muscle contraction

dynamics convert the activations into muscle forces. Forces in the individual muscles

contribute to the net joint torques and moments. Multi-joint dynamics then compute the

accelerations, velocities, and angles for each joint of interest. Finally the feedback loop

updates the neural command based on the musculotendon length and the pennation

angles. Figure 1-8 gives high-level information of all of the steps involved in forward

dynamics problem.

11

[Thomas S. Buchanan et. al, 2004] discuss various problems involved with

inverse and forward dynamics. Estimation of muscle activation from neural commands

and muscle forces from the activations are not easy. However, using optimization

methods can directly provide muscle forces [3]. Nevertheless, choosing cost functions for

the optimization methods is difficult. The other main limitation is that the difficulty in

estimation of joint moments, as a minor inaccuracy might lead to abnormal errors in the

movements.

Forward dynamics assisted data tracking [6] is an optimization solution to

estimate muscle forces. In this process, a solution is first obtained using default muscle

activations, and then, the process is iterated by updating activations, until the

performance function is minimized as per requirement

Figure 1-8: Forward dynamics approach

Image taken from Thomas S. Buchanan et al, 2004 [3]

12

1.4.3 Finite Element Analysis

Finite element analysis is one of the fastest emerging methodologies widely being

used in the biomechanical field for computing stresses and strains in cardiovascular,

dental, articular cartilage, etc. By definition, FEA is a numerical method for finding

solutions to complex problems. Once the problem set is defined, symmetry is applied to

reduce the complexity. Then, meshes are used to discretize the model into elements and

nodes. Choosing mesh sizes is a known challenge, and the most widely used shapes are

tetrahedral or hexahedral for 3D objects. Then, the shape vectors, stiffness matrices, and

force vectors are computed. Finally, boundary conditions are applied, using known

external applied forces, and rigid body dynamic conditions and stresses are computed.

Figure 1-9: Finite element analysis steps

Currently, we have a lot of software that perform finite element analysis for

complex problems, which are manually not possible. Some notable software includes

ABAQUS (SIMULIA, Dassault Systèmes SolidWorks Corp., S. A., Vélizy, France),

http://en.wikipedia.org/wiki/SIMULIA
http://en.wikipedia.org/wiki/Dassault_Systemes_SolidWorks_Corp.
http://en.wikipedia.org/wiki/Dassault_Syst%C3%A8mes,_S._A.
http://en.wikipedia.org/wiki/V%C3%A9lizy-Villacoublay
http://en.wikipedia.org/wiki/France

13

SOLIDWORKS (Dassault Systèmes SolidWorks Corp., S. A,Vélizy, France), LS-DYNA

(Livermore Software Technology Corporation), and many more.

1.5 Need for Surrogate Models

Multi-body models have always been a compromise, as they cannot genuinely

provide low-level information (tissue-level stress, strain etc.) of a human body. This is

due to the usage of simplified representation of joints. Such assumptions limit the usage

of MB models, as they do not provide tissue level information for studies like the

ligament injuries. On the other hand, Finite Element models can provide tissue-level,

organ-level details, but not body-level and are computation intensive. To overcome these

problems and develop models, which can provide realistic details while being

computationally efficient, multi-scale models are developed such that they effectively use

both MB and FE models. Using multi-scale models, detailed low level information and

even movement prediction can be obtained. MB models provide the joint or body level

information as input to the FE models. FE models, in turn, use meshes and boundary

conditions to calculate internal stresses. The ultimate objective is to predict stress on

tissue such as cartilage and ligaments during movement and achieve concurrent

simulation of muscle force and tissue stress [22].

1.6 Implementation of Surrogate Models

Coupling of MB and FE models can happen in two ways: sequential and

concurrent. In the sequential approach, simulated results from the MB model are used as

http://en.wikipedia.org/wiki/Dassault_Systemes_SolidWorks_Corp.
http://en.wikipedia.org/wiki/Dassault_Syst%C3%A8mes,_S._A.
http://en.wikipedia.org/wiki/V%C3%A9lizy-Villacoublay
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/LS-DYNA

14

input to the FE model and ultimately tissue-level stresses are obtained. In the concurrent

method, the reaction forces obtained by FE analysis are applied to the MB model

iteratively. An application of the non-sequential approach was demonstrated by

[Fernandez et al. 2006], where muscle forces derived using computational MB models

were used as inputs for FE models to calculate effective stresses [7].However these

models did not make use of the coupling and concurrent behavior of MB and FE models.

In their research, [Viceconti et al, 2008] presented a Living Human Multi-scale

model [34], which can predict the risk of fracture. They discussed various methods to

develop subject specific FEM of bones and estimation of internal forces and stresses of

musculoskeletal models using optimization methods [6]. [Tahwai et al, 2009] put forward

the applications of multi-scale models to musculoskeletal, respiratory and mechano-

transduction systems, where the FE models used a feature size field [32] during mesh

generation. Feature size fields are robust and computationally efficient and do not require

a background grid during startup.

A notable approach by [Halloran et al. 2009]successfully developed an adaptive

surrogate multi-scale model using concurrent coupling, which simulated jumping, used

the Lazy Learning Toolbox [10] (a locally weighted regression algorithm) written in

MATLAB® for surrogate modeling. This approach is different from traditional multi-

scale modeling approaches as it trains the surrogate model based on previous FEA runs.

These surrogate model outputs are compared with FE outputs, and if the error is in user

specified range, the surrogate model output is used for future iterations. This way, the

need for FE simulations is minimized, which in turn, increases computational efficiency.

15

However, this approach is not practically relevant as friction is completely ignored and

real-time movements are much more complex and local neighbor search methods (for

instance Lazy Learning interpolation) would not be sufficient for a good analysis. In an

upgrade to their above work, [Halloran et al. 2010] successfully presented an approach to

concurrently couple musculoskeletal and tissue deformation models using strain

optimization[11], which aided in lesser number of iterations to attain convergence, rather

than local neighbor search algorithms[10]. However, friction was considered globally for

musculoskeletal models and not for the FE model specifically, to reduce the complexity,

which doesn’t make it realistic, as practical systems experience friction globally as well

as internally.

Another approach for surrogate modeling is to replace the FE model with several

data-driven models [23, 25, 30], which may include various kinds of neural network

(NN) models. NN models have proven to be capable of modeling realistic biomechanical

interactions [23, 25, 30]. Once trained (usually with internal muscle forces from MB

systems), they take very little time to perform the analysis. Inputs to the models are

usually the forces and positions from the MB models and outputs are the stresses and

strains. The inputs and outputs may vary according to scenario.

16

1.7 System Identification

Mathematical models depict the behavior of systems using mathematical terms.

System Identification is a procedure to create mathematical models of dynamics systems

from observed user data. It also gives exemplary information [20] on various tools for

effective data fitting using the models. To perform the System Identification process two

methods are used – Non-Parametric and Parametric -where the former give high level

information about the system like time delays, time constants, gains etc., while the

parametric methods involve the process of estimating several parameters to obtain a good

model of the system.

1.7.1 White-Box, Grey-Box and Black-Box Modeling

In white-box modeling, models are created using basic laws of dynamics, and

therefore, they are very complex to build in practical scenarios, like the study of

biomechanics. This technique is mostly used during testing and is generally referred to as

theoretical modeling. A good example is electrical circuit analysis, where parameters are

known, and the output parameters (voltages et al.) are found.

To overcome the complex nature of white-box systems, two System Identification

approaches are used, namely grey-box and black-box, which build models from user

inputs and behavior of the system. In Grey-box models, a model is first created using few

known parameters, and the unknowns are estimated using various System Identification

tools with several assumptions.

Black-box models, unlike grey-box models, have little or no information about

the mathematics or the behavior of the system, and various tools in SI toolbox are used

17

for data fit and parameter estimation. However, they require estimations on the model

orders. All the tools discussed below follow the black-box approach.

1.7.2 Steps in System Identification

Figure 1-10: System identification Process

1.7.3 Choosing Excitation Signals

One of the foremost and most important steps in the system identification process

is the choice of good excitation signals (also referred to as exploration, pilot or stimulus

signals) and knowing how the model reacts to various inputs. It is truly mentioned [31]

that the kind of excitation depends on the model and analysis chosen. Correctly excited

18

models provide deeper and much better insight on the system properties and should be

able to excite all the relevant frequencies such that maximum information can be

garnered. Hence a good excitation signal should be able to portray all the operating points

of the system. As discussed in earlier sections, dynamic systems are first analyzed using

non-parametric methods (transient analysis, impulse response analysis, frequency

analysis) to gain a deeper insight on the system’s internal properties like the gain,

overshoot, time constant, damping factor and other important parameters.

Normally used excitation signals are the step, impulse, square [1] and triangular

waves. Apart from simple excitations like step and impulse used for non-parametric

analysis, others forms of excitations are used for parametric methods. Examples are the

PRBS, Chirp and Gaussian noise signal which serve as good excitations for parametric

models. [Pintelon et. al 2012] discuss about various input signals having different crest

factors and signal-to-noise ratios (SNR). Crest factor denotes compactness of the signal

[26] and is defined as the ratio of the peak value of the signal to its root mean square

(RMS) value. SNR ratio compares the strength of a signal with the disturbances acting on

it. High SNR values imply the dominance of the signal over the disturbances and lower

values depict relatively high noise content. Other signals include an autoregressive

moving average sequence [31], sum of sinusoids [31].

19

Figure 1-11: Excitation Signals

Image taken from [Isermann et. al 2011 pp. 22] and [Pintelon et. al 2011 pp. 161]

1.7.4 Model Selection

After creating a model using any of the algorithms discussed in the upcoming

sections, the next step is to find the simplest system that can ideally fit the system

dynamics. This can be done either by comparing the desired and obtained model output

(MATLAB® command compare), simulating and predicting the response (MATLAB®

commands sim, predict), or by comparison of transient, frequency and impulse response

20

analysis of various models. Impulse and Step responses aid in model validation by

providing characteristics [20] like the peak response, system gain and the settling time,

whereas frequency response provides the peak response frequency and stability margins

[20]. Analyzing the nonlinear plots gives a deeper insight of nonlinear models on the

particular inputs, depicting which range of inputs contribute the most or least in the

system response. Also, the flexibility to determine the conditions for validation stop is

helpful for good validation. Other important usable performance metrics are discussed

below.

1.7.4.1. Distance Metrics

Using various distance metrics, it is possible to know the distance between two

datasets (measured vs. actual outputs). Commonly used distance metrics are Manhattan,

Euclidean and Mahalanobis distance.

Manhattan distance is one of the simplest distance measures and is calculated as

the direct difference between two vectors.

 ∑

Euclidean distance is the traditional distance measuring tool having the following

formula.

 ∑√

It is notable from the formulae that all points in Euclidean and Manhattan

distances contribute equally to the distance measure but do not consider the deviation of

21

each point from the average. Mahalanobis distance is another commonly used distance

measure which takes into account the covariance of the vectors under consideration and

therefore is useful in measuring the dissimilarities between datasets.

 ∑√

where is the inverted covariance between y and y’. If y and y’ have unit

covariance, Mahalanobis distance becomes equal to the Euclidean distance.

1.7.4.2. Mean Squared Error

The simulated outputs (y) can be compared with the desired outputs (y’) and the

mean squared error calculates the mean of squares of differences between the predicted

and actual output.

∑

The traditional form of MSE can be extended by taking square root (RMSE) and

by normalizing it (NMSE). The combination of both is NRMSE discussed below.

Normalized Root Mean Squared Error (NRMSE)

Regular MSE calculates the total error as a whole, comprising of errors due to all

inaccuracies, but does not give information on how the measured output deviates from

the desired value. Normalized MSE is obtained by dividing the squared sum of errors

with the variance. Normalized Root MSE advances a step by taking square root of NMSE

and is given by

22

 √
∑

∑

The main advantage of using root is to get the performance in the same units as

the data.

1.7.4.3. Residual Analysis

Residual analysis is an important phase of model validation which deals with

analysis of residuals (errors), which are the differences between the measured and one-

step-ahead predicted model outputs. Analyzing residual plots gives information on which

specific inputs caused the perturbations.

1.7.4.4. Correlation Coefficient (R)

Correlation Coefficient (R) is a measure of how well or poorly two data sets are

correlated. It is given by the below formula. The denominator is the product of standard

deviations of the desired and actual outputs while the numerator is the covariance of the

outputs.

∑

√∑
 ∑

where y is the measured output, y’ is the desired output and , are the

averages of data points in y and y’ respectively. An R value can have value ranging from

-1 to 1, where -1 indicates a perfect decreasing linear relation such that all data points of

actual output lie on the negative slope as of the data points line of desired output, 0

indicates a null fit and 1 indicates a perfect linear relation.

23

1.7.4.5. Minimum Description Length (MDL)

Minimum Description Length is a measure of how compactly regularities can be

described in a dataset. According to MDL, a model is chosen if it minimizes the data in

the model and the parameters governing the data. One implementation of MDL is given

by the following expression. A model with lower MDL is considered optimum as it

minimizes both the parameter usage for system analysis and the total data points itself.

 (

)

where (

) is the probability of parameter usage to describe the system and

 is the number of bits to describe the model

1.7.4.6. Information Criterion

Information criteria are likelihood-based measures which take into account the

complexity of the model. Therefore a model which performs good analysis but is

computationally complex is not considered the optimum model. Information criteria

consider all the information, analyzing capability and complexity, while performing the

analysis. Different kinds of information criteria are Akaike Information Criteria (AIC)

and Bayesian or Schwarz Information Criteria (BIC). If is the maximum likelihood

of the model, log is the objective function of maximum likelihood, N is the total

number of data points, and k is the total number of parameters actually used in fitting the

data, the definitions of AIC and BIC are

24

When multiple models are compared, models with the lowest values of AIC

and/or BIC are the ones which provide an optimum analysis. From the above definitions,

the loss function L is an increasing function (logarithm) of the number of parameters

influencing the fit and a high value of AIC indicates over fitting. BIC has a larger penalty

order of log N for an extra number of parameters when compared to AIC.

1.7.5 Dynamic Models

Dynamical models represent systems with internal dynamics based on the

previous state and are time and frequency variant. Therefore, outputs of a dynamic

system depend on the inputs at past time instants. Relations can be created using

differential equations, discrete-time, or continuous-time data.

1.7.5.1. Linear Analysis

To estimate system dynamics, an analysis should always start linearly. However,

if linear models do not provide acceptable results, employing non-linear models is the

next step. Estimation using linear models is done using two approaches – non-parametric

,or direct estimation using impulse and frequency response models, and parametric,

which includes estimating a set of parameters to identify a model. Non-parametric

methods are first employed to determine whether a system is linear, time invariant, and if

any noise exists. These experiments are generally considered as pre-processors to the

parametric methods as they are evaluated at large number of points and give a good

analysis of the system. Various implementations of the latter approach are Transfer

25

function model, Process model, State-space model, Polynomial model and Grey-box

models. A linear system can be represented by the differential equation:

In parametric form, the above can be analyzed as

where is the final output, is the definition done below, is the noise

function, q is the delay operator such that , and A, B, H are the

parameters to be estimated during parametric analysis. This is done by minimizing the

error function using sum of least squares algorithm. This process is termed prediction

error method.

Impulse-Response Models

Impulse responses are the output signals obtained by applying an impulse input.

An impulse function or the Dirac Delta function has value of zero at real-time, except at

time zero where it is infinite. For finite impulse response models, the impulse function

will have a finite value at time zero. For an impulse input u (t), the response obtained is

the convolution of the impulse response:

 ∑

where is the impulse response, is the system output, and is the

shifted impulse input. The ultimate goal is to find the values using correlation

analysis (linear least squares method).

26

Frequency-Response Models and Spectral Analysis

Frequency response describes how a model responds to sinusoidal inputs.

Frequency response models are obtained by applying Laplace transforms [20] of the

impulse response discussed before or by evaluating the transfer function on a unit

circle [20]. One approach is by computing the Fast Fourier Transform (FFT) of the signal

or by analyzing the bode plot. Change in amplitude and phase shift are two vital variables

which govern the frequency response characteristics.

SI Toolbox has three functions to compute the frequency response – etfe, which

computes the empirical transfer function (ratio of the Fourier transform of the input and

output), and the rest are discussed below. As per spectral analysis [20], any function can

be analyzed using sine and cosine waves. Hence, above, can be written as .

Frequency resolution is the smallest allowable frequency at which frequency response

and spectral analysis can be performed. MATLAB® command spa estimates the transfer

function using Blackman-Tukey [20] spectral analysis for a fixed frequency resolution

and spafdr [20] allows specifying variable frequency resolution for estimating the

frequency response.

Transfer Function Models

Transfer functions models are mathematical models obtained by taking the ratio

of the output and the input polynomials, and the model order is the order of the input

signal. They are different from the polynomial models, as they provide deterministic

27

analysis, rather than stochastic analysis that is given by the latter. Transfer function

models can be effectively used to model single and multiple input systems.

Applying Laplace transforms to (1), (ignoring the error component)

The above can be represented as

where G(s) is the ratio of two polynomials and it comes in the form

Y(s) and U(s) are the Laplace transforms of the output, input, and the error

signals.

This can be solved by partial fractions by dividing the block into two parts as

shown in the below block diagram below (f and r represent polynomials in s).

Figure 1-12: Block diagram representation of Transfer function models

It is evident from the above representations that for complex systems, the

factorization of numerator and denominator polynomials (f and r) becomes complicated

and obtaining partial fractions is a difficult job.

MATLAB® command, etfe, estimates the empirical transfer function, G, from

above equation. Flexibility is also given to include spectral analysis with (spafdr) and

28

without (spa) varying frequency resolution. Once the transfer function is known, system

analysis becomes trivial, as the output response can be studied over a varied range of

inputs.

Process Models (Low Order Transfer Function Models)

Process models are simple systems used to estimate system dynamics in terms of

system gains or the transport delays [20]. Upgrading the model is feasible, as it only

involves modifying the poles, zeros, or the delays. A process model describes the system

dynamics in terms of system gains, delays, and other time constants (shown in below

equation). It can estimate up to third order transfer function models. Owing to their low

order, they are easy to develop, and parameters are easy to estimate. Another advantage

of these models is that they support transport delays [20].

Polynomial Models

In Polynomial models the relation between input and outputs depend on transfer

functions. If is the system output, is the system input, q-1 is the delay operator,

and e(t) is the error function polynomial models are generally of the following form:

 ∑

Image taken from [28], pp.2.23 (3)

29

Figure 1-13: Block diagram representation of polynomial models

These polynomial models are obtained by simplifying the original equation

(setting either of A, B, C, D, E, and F to 1).All the polynomial models discussed below

are basically the linear regression technique and can be analyzed using the least squares

mechanism.

Auto Regressive (AR) models

The AR model is used when outputs are only dependent on the previous outputs

and inputs are not known. An AR can be defined by the following equation (n is the

model order)

 ∑

The problem in AR model is to find the best possible values of the parameter “a”

which best describe the series. The most widely used technique to achieve this is to use

the least squares estimation.

30

Figure 1-14: Block diagram representation of AR models

Auto Regressive with Exogenous Inputs (ARX) models

An ARX model implements the least squares estimation and is used to obtain

model analysis without providing much flexibility to the noise, as they do not model

dynamic disturbances that might occur in the model. In addition, modeling is not very

flexible as poles () of the dynamic system and noise coincide [20], which is

upgraded in BJ and OE models.

 ∑

Figure 1-15: Block diagram representation of ARX models

31

Auto Regressive and Moving Average with Exogenous inputs (ARMAX) models

Unlike AR and ARX models, ARMAX uses a new modeling technique called

Moving Average which is another form of linear regression but the estimation of

parameters becomes a difficult task to be achieved using least squares estimation due to

the extra focus on the error dynamics. ARMAX extends the flexibility by modeling noise

separately using the C(q) term.

 ∑

ARMAX can be used when unavoidable disturbances [20] occur at the input. There are

two more models, ARIX and ARIMAX, which add additional integrators [20] to the

noise . Adding additional integrators help in cases where the perturbations are

dynamic.

Figure 1-16: Block diagram representation of ARMAX models

32

Output Error (OE) models

Output Error model, like ARX, doesn’t give much flexibility to the noise analysis,

but gives additional emphasis on parameterizing the dynamics evident from B(q) and

F(q) terms. Therefore these models would be preferable in cases where the noise

properties are not given much importance and the sole focus is on the system dynamics.

 ∑

Figure 1-17: Block diagram representation of OE models

In their research on Output error models, [Urban Forssel, Lennart Ljung 1997]

provided means to model alternative techniques [8] of Output error and Box Jenkins

models (discussed below) to analyze linear and unstable systems. They discuss reasons as

to when to choose an Output error model over Box Jenkins and vice versa.

Box Jenkins (BJ) model

Box Jenkins model is an improvement over ARX and ARMAX and separates the

system dynamics and disturbances. It extends the properties of both AR and MA models,

33

and also increases the parameterization. However it requires a lot of data in discrete-time

series, without any missing values [15].

 ∑

Figure 1-18: Block diagram representation of BJ models

All the above models (except ARX) can be developed using a single command

polyest in MATLAB, which can estimate any polynomial model using iterative least

square algorithm. These polynomial models provide more information stochastically but

require excessive computation time. The first step is to estimate the model orders and

delays. The command combination struc – arxstruc – selstruc gives the estimated model

order and delay in MATLAB. In this process, different combinations of model orders and

delays are used to estimate the models, and the best fit is finalized as the optimal model

order and delay.

34

State-Space Models

State-space models are commonly used to describe linear relationships between

inputs and the outputs, and are usually well-suitable for most of the systems, especially

the Multi Input Multi Output (MIMO) systems. They introduce variables called state

variables, which can be estimated using the input-output data. These are formed either

using differential equations or from the transfer function notation but not measured

directly. The advantage of using these models is that they require only the model order to

be estimated beforehand. In the dynamical equation below, and are the output

and inputs of the system, respectively. If the derivatives of y are replaced by state

variables , we get equations of the following form:

Figure 1-19: State Space equations

Image taken from [21]

35

Replacing the matrix terms with variables, we can represent the state space model

as

The state space models are useful, when compared to other parametric models, as

they can model more complex systems with high orders, where minimizing a

performance function using the least squares doesn’t provide acceptable results. Though

state space models are efficient for MIMO systems, if the model order is too high or the

data too large, the computation becomes slow and requires lot of memory. An ARX

model is preferable in such cases.

[Mohsin et. al] provide a good example to model a tall structure building using

ARX, ARMAX and OE models to find the best model and analyze them using auto and

cross correlation analysis, frequency analysis, and pole-zero analysis [13]. Even by using

all the above linear models, if the results are not acceptable due to bad fits between actual

and desired outputs, the next step would be to check for nonlinearities.

1.7.5.2. Non-Linear Analysis

Linear models discussed in the previous section give a good analysis of dynamic

systems. However, when a linear model is not good enough in predicting the system

dynamics, the need to switch over to non-linear models arises. If the data is found to be

weakly non-linear from preliminary analysis [20], its linear model can be coupled with

non-linear estimation, which will explain the non-linear parameters more clearly than a

linear model would. When the internal non-linear dynamics are known beforehand, they

36

can be modeled using Non-linear Grey Box modeling. Non-linear models usually require

more data for a good analysis when compared to linear models.

Hammerstein-Wiener Models

The Hammerstein-Wiener model is a block-oriented approach [22], which

represents a set of non-linear systems surrounded by a linear model. The Hammerstein

model consists of a cascade connection of static nonlinearity and linear dynamic systems,

while the Wiener model uses reverse coupling, such as the Hammerstein approach. Using

this Hammerstein-Wiener model, the system dynamics are first represented using a linear

model (transfer function for instance), and then, the nonlinearities are captured using

various non-linear functions.

Figure 1-20: Block diagram representation of Hammerstein-Wiener models

Linear models can be represented in the form

 ()

while Non-linear blocks take the form

 () ()

From the above equations, we get

37

 ()

The parameters g, G and f can be found using iterative training algorithms like

gradient-descent, generalized mean squared error, scaled conjugate gradient, Levenberg–

Marquardt, etc. The process [20] starts with estimating the function f(u) using any of the

above nonlinear estimators and sent to the linear block G. The output y(t) is obtained by

applying appropriate non-linearity to the w(t) signal, which is in turn, the output of a

linear dynamic system.

Nonlinear ARX Models

Nonlinear ARX models provide additional non-linear analysis to the linear ARX

models discussed previously. A dynamic model is given by the below equation, and the

current output is a function of the past outputs and inputs. Liner model estimates the

parameters a, b.

To extend this process, nonlinear models are introduced, which go a step further

by replacing the above dependency on past outputs and inputs, with a complex nonlinear

function as given below (f is any nonlinear function)

Non-linear models can also be created from linear models. First, a linear model is

created (using polynomial model for instance), and then, this model and the input data are

provided as inputs to create a non-linear model. This approach provides better fit and

analysis than the linear model.

38

Nonlinearity estimators

The Nonlinear models discussed above use the below estimators to find the best

possible relationship between the system outputs and inputs. It takes a matter of trial-and-

error as to know which estimator works the best as per scenario. The commonly used

estimators are piecewise linear approximation, wave-net approximation, neural net

approximation, sigmoid-net approximation, etc. These estimators are used to obtain the

model outputs and can be validated (discussed in a separate section later) to obtain an

appropriate model for the scenario.

1.7.6 Neural Networks

Neural Networks are computational models used for solving a variety of non-

linear, static, dynamic, and pattern recognition problems and have attained success in

many such areas due to their versatility in adaptive learning. The properties of a neural

network like universal approximation [Luenberger 1969, Cybenko 1989], ability to learn

from examples and generalize well on test data with very fast simulation times (usually in

seconds), non-linear behavior and simple implementation techniques make them versatile

and robust.

The main principle of working of a neural network is to learn from the inputs and

predict future states or outputs. It is evident that the quality of the correctness depends on

how well the network has been trained. A neuron [27] or simply referred to as a node is

the basic building block of a neural network and can be defined as a processing element

with a set of inputs and outputs implementing a weighted non-linear sum. A simple

neuron is represented in the below figure.

http://neuron.eng.wayne.edu/tarek/MITbook/ref/refs_l.html
http://neuron.eng.wayne.edu/tarek/MITbook/ref/refs_l.html
http://neuron.eng.wayne.edu/tarek/MITbook/ref/refs_c.html
http://neuron.eng.wayne.edu/tarek/MITbook/ref/refs_c.html

39

Figure 1-21: A Simple Neuron

where x, y, w and b are the input, output, weight and bias respectively. The above

processing element is evaluated as where f can be any transfer function

(linear or sigmoidal). Every layer of a neural network contains three important

components – combination, activation and error functions. A combination function

performs an inner product of the layer weights and the layer inputs. A linear activation is

usually used in the output layer to perform linear regression analysis (fitting the data

linearly). A sigmoidal function is usually used in hidden layers so that the layer output is

differentiable. The error function determines the error between desired and actual outputs

per layer and updates the weights such that during the next iteration the final error would

reduce.

40

Figure 1-22: Various Transfer Functions

Linear classifiers don’t always provide an acceptable solution. The best example

is the XOR problem where classification using a single line (regression) is not possible

and that is where non-linear classifiers enter the scenario.

Figure 1-23: A Three layer network

[Image taken from 27]

1.7.6.1. Static Neural Networks

Feed-Forward Architecture

Static neural networks are unidirectional (feed-forward) and contain a set of

neurons which process the data. It has three kinds of layers – input, output and hidden.

Input layers are directly connected to the inputs and contain a set of processing elements

which modify the inputs depending on the weights. Output layers do similar processing

and produce the final outputs. Usually an input and output layer is not enough to attain a

good analysis or classification. Hence a minimum of one hidden layer is included which

41

does further processing because of the additional processing elements in the layer. This

configuration is also referred to as a Multi-Layered Perceptron.

Figure 1-24: Feed-forward Network (Multi-Layered Perceptron)

If is the output, w denotes the weights of different nodes, n is the total

number of nodes per layer, i denotes the layers and is the current input, the output

expression can be given as

 {∑

}

Feedback Architecture

An iterative procedure named back-propagation is used to reduce the mean square

error by recursively updating the weights and bias, which is done in the feedback loop.

The feedback loop updates the weights and new outputs are obtained from every layer.

This process first trains the network using the input data multiplied by flexible weights

and calculates the error by comparing the computed output with the desired output. If the

42

error is larger than desired, a feedback is performed and the process is run again with

updated weights. This iterative process continues until the error lowers to a desired value.

Figure 1-25: Back-Propagation algorithm

The weight update is governed by the following formula, where refers to the

learning rate and

 is the change in error with respect to the weights. Choosing the

optimum learning rate that in turn produces optimum weights is the ultimate goal of the

algorithm. In momentum learning the weights also depend on their previous state. If the

search direction suddenly goes flat, a push down-hill is still given owing to the previous

state. µ refers to the momentum constant which is usually 0.5.

 Gradient Descent algorithm

 (n)) Momentum Learning

Radial Basis Functions (RBF)

RBFs measure the distance between the input vectors and the reference vectors in

contrast to the feed-forward networks, which calculate the summation of dot product of

the weights and inputs at each phase. By using RBFs the inputs are transformed using a

radial basis function using a distance measure. The distance measure can be Euclidean or

43

Mahalanobis depending on choice. There are two main configurations of RBF – exact

and alternate. In the exact version, the RBF produces a neural network which has zero

training error. On the other hand, the alternate configuration, the RBF iteratively creates a

neuron for every time instant and this process continues until the error is acceptable.

Figure 1-26: Radial Basis Function Network

 {∑

}

The activation function is usually Gaussian and is given by

 [(

) ∑

]

1.7.6.2. Dynamic Neural Networks

Dynamic neural networks stand as good classifiers and predictors owing to their

time variant feature [27], which enables them to use outputs at hidden/output layer(s) as

feedback(s) to the system in-turn aiding in better performance, a phenomenon not

inherent in static networks. They can be represented by the following model

44

 {∑∑

}

where k is the delay operator

Placement of the delays depends on the model types which can be focused

TDNNs, NARX or LRNs discussed below.

Time Delay Neural Networks (TDNN)

For regular TDNNs the dynamics (represented by the delay operator) occur only

at the inputs.

Figure 1-27: Time Delay Neural Network

NARX Networks

The next level to regular TDNNs are the NARX networks which are similar to the regular

TDNNs but they additionally cover dynamics in the feedback loop.

45

Figure 1-28: NARX Network

Layer Recurrent Networks (LRN)

LRNs are the most complex types of dynamic networks which analyze dynamics in every

layer of the network.

Figure 1-29: Layer Recurrent Network

46

1.7.6.3. Prioritizing the Models

Once all the models are at hand, the next step is to be able to guess which model

is suitable for the dataset. If the system dynamics are simple enough with a low model

order, transfer function models should suffice. However, if the model complexity

increases, transfer function models do not give acceptable solutions and the need to

switch over to more robust linear models (polynomial or state space) arises. If linear

models do not give good analysis, non-linear models and ultimately neural networks are

the next best bets. Table B-1 depicts all the models discussed above with their respective

pros and cons and model representations.

2. METHODS

2.1 Multi-body and Finite Element Analysis

Simplified models of the tibio-femoral joint were developed [22] and multi-body

(MB) and finite element (FE) analysis were performed on the model. For this process, a

 mesh [22] was generated with a cross-section, and each element

in the mesh is connected to the bone of the surrogate model [22]. Five different forces

were applied to the dynamic condyle in five different 2D motion paths (top-views of the

paths are shown in Figure: 2-1 (b)). A contact was introduced between the condyle and

the tibia cartilage and 3D reaction forces were then found in X, Y and Z directions for

these elements, and these served as the inputs to the neural network models. Finite

Element analysis was performed to generate the VON-MISES stresses at these mesh

47

elements which are used as outputs in the neural network model. The main reason for the

application of different levels of forces was to have enough training samples which are a

vital prerequisite for the neural networks. A detailed description of the surrogate models

developed is given in [Yunkai et. al 2013] [22].

The process of musculoskeletal modeling is started with a single "big" cell that has a

fixed joint attached to it and multi-body analysis (or rigid-body simulation) is performed

to extract the 3D reaction forces at each joint. For multi-body analysis, the cell doesn't

have to be split and can be used as a whole. However multi-body analysis does not

provide stress or strain information, and hence finite element analysis is used. Since finite

element analysis does not produce acceptable results when used on a single “element”,

meshes are designed which split the cell into finite elements. An optimum mesh needs to

be checked for convergence. The performance (maximum displacement) of two meshes,

one with 400 and the other with 1600 elements, was compared. A variance in

performance up to 10% is acceptable but if the variance is more than 10% the mesh needs

to be refined further. Finally, the mesh with 400 elements turned out to be acceptable and

was used for finite element analysis. Once the mesh was selected, the cell was split into

400 elements and rigid body simulations on these elements provided reaction forces at

the fixed joints attached to these elements. Finite element analysis on these elements gave

stress information. Finite element analysis can perform any operation that multi-body

analysis does (reaction force information) in addition to extra information (stress, strain,

etc.) which multi-body cannot, but at the cost of increased computational time and

48

complexity. Hence neural networks were used to predict the stress information, given the

reaction forces from multi-body analysis.

Figure 2-1: (a) Model Geometries (b) Top view of the motion paths used

Images taken from [Yunkai, Guess et. al 2013] [22]

2.2 Neural Network Modeling

Neural networks were trained with reaction forces from multi-body as inputs and VON-

MISES stress from finite-element as outputs where the input and output dimensionality

was 1200 and 400 respectively. 21 out of 25 MB-FE simulation datasets were used for

NN training and the remaining were left for testing to test the generalization capabilities

of the network. Out of the 21 simulations left aside for training, 30% was used for

validation to avoid over-training. Each NN simulation was run 20 times and the overall

simulation time was found by averaging the simulation times of 10th to 20th runs. The

49

first 9 runs were discarded to ignore the CPU startup times which are usually high during

the first few runs.

The main challenge in neural network modeling is to choose the correct network

parameters like hidden layer size and tap delay lengths which are found using trial-and-

error approach. Once the optimum topology is estimated, various, training, and

performance functions are studied and best suitable functions for the scenario are

obtained. . The networks are run with different parameters and the topology which gives

the best performance is chosen.

2.2.1 Choosing the Network Topology

The LEVENBERG-MARQUADT training method, which uses the Gauss-Newton

for Hessian approximation [27], is one of the widely used neural network training

algorithm primarily because of its ability of faster convergence when compared to other

algorithms. However since it requires more memory to run [2] as its gradient is

proportional to the square of number of weights and this makes the algorithm unsuitable

for huge datasets, it was not chosen as the training function for this dataset. To overcome

the memory issue, the scaled conjugate method can be used as its gradient is proportional

to number of weights and it also aids in fast convergence. Bayesian regularization

training uses even lesser memory than scaled conjugate training but takes more number

of iterations to converge [2]. From the results obtained in Table2-1, scaled conjugate

training emerged to be the best performer, and hence is used as the default training

method for all the networks in the forthcoming network configurations.

50

Table 2-1: Comparison of Training Functions

Training

Type HN

Train

R

Validation

R Test R All R

Best

Validation

MSE Epochs

Time

(min)

Scaled

Conjugate 60 0.9175 0.83331 0.8269 0.8921 0.074841 884 81

Cyclic 60 0.9328 0.82981 0.8263 0.8969 24.1232 4084 642

One-step

secant back-

propagation

60

0.1487

0.79278

0.7565

0.1416

0.081509

941

83

Resilient 60 0.9189 0.76887 0.6899 0.8615 0.1238 95 5

Of the transfer functions mentioned in Section 1.6.4, logarithmic sigmoidal

proved to be a better transfer function over the regular tangent sigmoidal. This check was

carried over a set of networks with different hidden nodes mentioned in Table 2-2.

51

Table 2-2: Comparison of Transfer Functions

Network Type

Transfer

Function

Hidden

nodes

Test Correlation

Coefficient

Best Validation

MSE Epochs

Function Fitting

Network tansig-purelin 30 0.59412 0.36352 981

Function Fitting

Network tansig-purelin 30 0.75482 0.1828 1387

Feed-forward

Network tansig-purelin 20 0.67617 0.033624 1673

Function Fitting

Network logsig-purelin 20 0.84907 0.12283 834

Feed-forward

Network logsig-purelin 20 0.86287 0.078679 520

Feed-forward

Network logsig-purelin 30 0.87911 0.064857 561

52

Figure 2-2: Static Neural Network with 80 Hidden Nodes

Figure 2-3: Dynamic Neural Network with 160 Hidden Nodes and Tap Delay Length 1

The below parameters were used for NN training -

 Train, Validation, Test ratio = {0.58, 0.26, 0.16}

 Training Function = Scaled Conjugate Gradient with Validation based early stopping

 Learning function = Gradient Descent with momentum learning

 Performance Function = Mean Squared Error with Regularization (regularization

ratio = 0.9)

53

2.3 Training Methods

Once the network configuration is chosen (hidden nodes, network type etc.) the

next step is to train the neural network. To do this a training style should be chosen.

There are two possible styles of trainings– Batch and Incremental. In batch training,

weights are updated once all the training data are presented and this process continues in

every epoch. Because of their quickness and the ability to use the whole dataset for every

epoch to determine changes, batch training is generally considered more efficient and is

used in most of the real-time scenarios. On the other hand, adaptive or incremental

training processes one training data per iteration and updates the weights after every

iteration. Incremental learning is used in cases when the data is not fixed and when

network needs to be trained time to time with the updated data.

In addition to the individual network connections (static or dynamic), there are a

few well-known configurations, which when used effectively, produce considerably

better results than individual networks,

2.3.1 Committee

Grouping networks by averaging their outputs produce better results than the

individual networks themselves. This happens due to possible cancellation of

uncorrelated errors. This phenomenon of averaging the networks is called the averaged

committee of networks. Since this process involves operations on correlated errors, the

prime motive here is to make the errors uncorrelated by minimizing the inter-

dependencies on the individual network errors.

The averaging can either be regular averaging or weighted averaging.

54

where n is the number of individual networks under consideration and is the

individual network output for network n.

While forming committees, the usual practice is to average the outputs of best

networks. However using this approach might not be favorable in practical scenarios

where a set of networks, which may have the best outputs themselves, might not perform

better as a committee. In such cases, a broader set of networks can be taken into

consideration. Out of a set of n best individual networks, this approach would select the

best committee out of possible combinations. This approach was applied for both

static and dynamic networks, and results are shown in the results section.

2.3.2 Stacked Generalization

Stacked Generalization is a special configuration of networks where outputs of

the best individual networks are fused together and are used as an input to a new neural

network. The target output of this network would be the same as the desired output of the

individual networks. This network is trained similar to the individual networks. The Stack

generalization networks were trained with outputs of the best static and dynamic

networks using scaled conjugate training.

55

Figure 2-4: Stack Generalized Network with 196 Hidden Nodes

2.3.3 Negative Correlation Learning

The concept of averaged committees, as discussed in the previous section, is to

find the individual networks with correlated errors and attempt to minimize the errors and

hence achieve better results by averaging the outputs.. However having the best networks

beforehand is a tedious process and requires looping through possible combinations (n

is the number of best networks under consideration) as discussed previously. Also after

going through this process, there is no guarantee that the errors would be uncorrelated.

Hence a new approach named Negative Correlation learning (NCL) was

introduced by [17 Yong Liu and Xin Yao] where individual networks are trained such

that they produce uncorrelated errors. These network outputs, when averaged, definitely

produce better results than the individual networks would as their errors were trained to

be uncorrelated. The error function to be minimized in this approach would be the

following

56

∑[

]

where n is the number of individual networks being trained; is the output of the

individual network; is the accuracy rate of the network; d is the desired output;

 is the averaged committee output of the individual networks and is the

penalty operator [17, 18, 19].

The first term in this performance function is the regular mean squared error

(MSE) and the second term is a penalty function [17, 18, 19]. When , the error

function becomes similar to the MSE. A test was performed to check for the optimum

value where . Four sets of networks with similar topologies except for the

varying value were trained for 1000 epochs and their behavior (committee train

correlation coefficient and maximum residual correlation coefficient) was observed.

According to the results obtained in the figure, 0.84 proved to be the optimum

penalty factor value for this dataset. For this value, the reduction rate of maximum

residual correlation coefficient from the list of four individual networks is better than that

of MSE performance function. Also the committee correlation coefficient is better. Hence

57

for all the NCL analysis, 0.84 is the chosen value. The committee is formed by

performing weighted average of the individual network output.

For negative correlation learning, since the performance function contains the

“committee average output” as one of its terms, incremental training is used. However

since incremental learning introduces only 1 input per epoch, the total number of

iterations was set to a high number. The actual number of epochs can be calculated by the

following formula

 .

Figure 2-5: Comparison of various networks with different penalty factors

58

2.4 Error Analysis

Error correlation can be done in two ways - Choosing networks with seemingly

uncorrelated errors and averaging their outputs, ultimately minimizing the error and

training the individual networks such that their errors turn out uncorrelated once they are

fully trained. Using these algorithms, different network outputs and hence different

residues (difference between desired vs. actual outputs) are obtained. Out of these a set of

networks with acceptably close validation or test errors are chosen and error analysis is

performed on these networks. The following steps are followed to obtain the networks

with the least correlation

a. Choose models with validation errors close enough (not more than 10% variance).

Assume n such models are chosen.

b. Calculate the residues of model n vs. the desired output or ground truth. This step

would result in having n different residues.

c. Create an n*n matrix where each entry is the correlation coefficient between

residues of two models at a time.

d. From the above matrix, choose the entry with the smallest Correlation

Coefficient. This signifies that these two models were trained and ultimately have

the least error correlation, and when their outputs are averaged, they produce

better results as their errors would have been reduced.

Example: Assume a neural network is trained to predict the sequence of squares. The

desired output would be the sequence “1 4 9 16 25 36 49 64 …..” Four such networks

were trained with produced the following outputs.

59

Output1 = 1.5000 6.0000 13.5000 24.0000 37.5000 54.0000 73.5000

96.0000

Output 2 = 0.6000 2.4000 5.4000 9.6000 15.0000 21.6000 29.4000

38.4000

Output 3 = 1.9000 7.6000 17.1000 30.4000 47.5000 68.4000 93.1000

121.6000

Output 4 = 0.3000 1.2000 2.7000 4.8000 7.5000 10.8000 14.7000 19.2000

From the first look its evident that network 2 produced the closest results to the

ground truth with the smallest mean squared error. Now if residual analysis is performed

on the above the following residuals are obtained

Residue1 = 0.5000 2.0000 4.5000 8.0000 12.5000 18.0000 24.5000

32.0000

Residue2 = -0.4000 -1.6000 -3.6000 -6.4000 -10.0000 -14.4000 -19.6000 -

25.6000

Residue3= 0.9000 3.6000 8.1000 14.4000 22.5000 32.4000 44.1000

57.6000

Residue4 = -0.7000 -2.8000 -6.3000 -11.2000 -17.5000 -25.2000 -34.3000 -

44.8000

From the figure residues {3, 4} and residues {1, 2} have the least correlations and

hence when the outputs of {3, 4} and {1, 2} are averaged, better outputs are obtained.

Step 3 in the figure shows the outputs of 1 and 2 averaged and 3 and 4 averaged.

60

Figure 2-6: Steps in Error Analysis

61

3. RESULTS

3.1 Individual Neural Network Connections

Table 3-1: Static Neural Networks – Individual Results

S. No Hidden nodes Train R Test R Train MSE Test MSE

1 80 0.9184 0.8898 0.1703 0.1919

2 100 0.9158 0.8877 0.173 0.1936

3 160 0.9098 0.8822 0.1789 0.1977

4 110 0.9029 0.8783 0.1851 0.2011

5 150 0.9106 0.8704 0.1781 0.2081

6 60 0.9135 0.8696 0.175 0.2093

7 50 0.8925 0.8687 0.1941 0.2081

8 40 0.9059 0.8663 0.1822 0.2118

9 170 0.8964 0.8647 0.191 0.2156

10 90 0.8838 0.86 0.2017 0.2147

11 180 0.8859 0.8538 0.2 0.2211

Network type = Function Fitting Neural Network

Train, Validation, Test ratio = {0.7, 0.3, 0}

62

Training Function = Scaled Conjugate Gradient training

Performance Function = Regularized Mean Squared Error

Transfer function – {Logarithmic Sigmoidal for Hidden Layer and Linear for Output

Layer}

Max Fail Iterations = 51, Epochs = 1500

Table 3-2: Dynamic Neural Networks – Individual Results

S. No

Hidden

nodes

Tap Delay

Length Train R Test R Train MSE Test MSE

1 160 1 0.9402 0.8772 0.1463 0.2035

2 300 1 0.9645 0.8814 0.1134 0.2085

3 240 5 0.9492 0.8717 0.1352 0.2086

4 200 1 0.9544 0.8758 0.1282 0.2092

5 280 1 0.9661 0.8827 0.111 0.2097

6 230 5 0.954 0.8701 0.1289 0.2111

7 250 5 0.948 0.8673 0.1368 0.2117

8 210 5 0.9449 0.8674 0.1406 0.2141

9 220 1 0.9567 0.872 0.1251 0.2157

10 240 1 0.9583 0.8722 0.1228 0.2166

11 282 1 0.9586 0.8914 0.1223 0.1980

63

Network type = Focused Time Delay Neural Network

Train, Validation, Test ratio = {0.7, 0.3, 0}

 Training Function = Scaled Conjugate Gradient training

Performance Function = Regularized Mean Squared Error

Transfer function = {Logarithmic Sigmoidal for hidden layer, Linear for output layer}

 Max Fail Iterations = 20,

Epochs = 1500

Figure 3-1 : NN stress analysis results

64

3.2 Weighted average committee of Neural Networks

Table 3-3: Static Neural Networks – Committee Results

S. No Hidden nodes Train R Committee Train R Test R Committee Test R

1 80 0.9184

0.9352

0.8898

0.9027 2 100 0.9158 0.8877

3 160 0.9098 0.8822

Table 3-4: Dynamic Neural Networks – Committee Results

S. No

Hidden

Nodes

Tap Delay

Length Train R

Committee Train

R

Test

R

Committee Test

R

1 300 1 0.9645

0.9673

0.8814

0.9139

2 280 1 0.9661 0.8827

3 160 1 0.9402 0.8772

4 230 5 0.954 0.8701

5 240 5 0.9492 0.8717

65

Figure 3-2 : Committee of NNs stress analysis results

66

3.3 Stacked Generalization

Table 3-5: Stacked Generalization for Static NN Results

S. No

Hidden

Nodes

Best Validation

MSE

Train MSE Test MSE

Train

R

Test R Epochs

1 16 0.0297 0.1535 0.1842 0.9341 0.8984 807

2 46 0.0276 0.1324 0.164 0.9517 0.9207 812

3 66 0.0245 0.1291 0.1603 0.9539 0.9239 783

4 86 0.025 0.1277 0.16 0.955 0.9242 616

5 106 0.0313 0.1388 0.1675 0.947 0.9168 481

6 136 0.0579 0.1603 0.1622 0.9306 0.9225 575

7 156 0.0259 0.1277 0.1607 0.9551 0.9237 460

8 176 0.0336 0.1415 0.1657 0.9449 0.9185 355

9 196 0.0389 0.1424 0.1569 0.9447 0.9272 455

10 206 0.021 0.1179 0.1627 0.9618 0.922 499

67

Table 3-6: Stacked Generalization for Dynamic NN Results

Stacked Generalization for Dynamic NN

S. No

Hidden

Nodes

Best Validation

MSE

Train

MSE

Test

MSE

Train

R

Test R Epochs

1 106 0.0296 0.159 0.1962 0.929 0.8945 944

2 126 0.0152 0.1053 0.1986 0.9696 0.892 910

3 166 0.0165 0.1012 0.2277 0.972 0.8693 995

4 186 0.0168 0.1041 0.217 0.9702 0.8747 850

5 206 0.0161 0.102 0.2207 0.9715 0.8745 875

Network used - Function Fitting network.

Data division - 70% for training and 30% for testing

Training function – Scaled Conjugate Gradient Training

Performance function - Mean Squared Error

Transfer function – {Logarithmic Sigmoidal for Hidden Layer and Linear for Output

Layer}

Early stopping validation checks – 26

68

Figure 3-3 : Stacked generalization stress analysis results

69

3.4 Negative Correlation Learning for static networks

Figure 3-4 : NNs with NCL stress analysis results

70

Figure 3-5 : Negative Correlation Learning – Epoch by Epoch execution flow

71

3.5 Best Configurations

Table 3-7: Best Configurations

Connection Type

Hidden

Nodes

Tap

Delay

length

Test MSE Test R

Minimum

Residual

Correlation

Epochs

Dynamic NN Individual 282 1 0.1980 0.8914 NA 1500

Dynamic NN

Committee - Weighted

Average

{300, 280,

160, 230,

240}

{1, 1,

1, 5,

5}

0.1708 0.9139

0.2853

NA

Stacked Generalization

– Dynamic NNs

106 NA 0.1962 0.8945 NA 1064

Static NN Individual 80 NA 0.1919 0.8898 NA 853

Static NN Committee -

Weighted Average

{80, 100,

160}

NA 0.1802 0.9027 0.6882 NA

Stacked Generalization

– Static NNs

196 NA 0.1569 0.9272 NA 408

Negative Correlation

Learning – Static NNs

{80, 100,

140, 180}

NA 0.1686 0.9152 0.1383 1161

72

Figure 3-6 : Comparison of Best networks

•• r ____ --.;-=,.,-=;,-"'·"','·=.,.,n,,,~,-"" .. ,., .. ,.,,-,"=-,<,.,.,.,-,-=,'_--_---,
.. --_ --.... ~ ,.,. ""cP __

--..... "'.,,_ .. ,, _-..... _0-....... ,_ .. --... _ _-
"

..

" "
so """""' ... E_ 2" (l:...." <101 _ '-.,

",----.----~~==~~ I --_fESt
--"'ale "," "". HCI. __
--_ .. ",. ,,-< .. ,td St" c __

--_ ~C_"NNP"'"" ...
--Boa o,.-,..p,...,.""

/
\ J

,

,·,!---,i\,--"I,._-_.""--,,~.;_--c---,,\,---,I,._--,~,;_-_.,,.;_-~,

73

4. CONCLUSION

Linear models were not used for this study considering their ineffectiveness in

approximation and prediction tasks when compared to non-linear models. Various

neural network configurations were used to analyze the musculoskeletal knee model.

The best individual static network was a function fitting network with 80 hidden

nodes (other specifications are mentioned in Table 3.1) and the best individual

dynamic network was a focused time delay neural network with 282 hidden nodes

and tap delay length of 1 (other specifications are mentioned in Table 3.2).

Committee configurations with weighed average were then studied and the best

results obtained for static committee (Table 3.3) was a test regression of 0.9027 and

for dynamic committee (Table 3.4) was a test regression of 0.9139 which clearly

shows an improvement and advantage of cancelling the correlated errors. Then

stacked generalization was performed where a static neural network was trained with

the outputs of the best individual networks. When used over static components (Table

3.5), this process gave a test regression of 0.9272 for a function fitting network with

196 hidden nodes which is the best result achieved. For dynamic networks (Table

3.6), stacked generalization didn’t improve well over the committees. Finally

negative correlation learning was implemented over a set of static committees which

produced a test regression of 0.9152 and these results (Table 3.9) make NCL stand in

the 2nd place right after the stacked generalized network which produced the best test

regression of 0.9272 (Table 3.9). This confirms the theory that designing networks

74

with uncorrelated errors produce better results than cancelling out the correlated

errors. This study also confirms theoretical concepts that special neural network

configurations like committee, stacked generalization and negative correlation

learning provide considerably better results when compared to individual networks

themselves. Using neural networks, the simulation time was reduced nearly 40,000

times when compared to the finite-element models.

5. FUTURE WORK

More on regularized mean squared error

The performance function used throughout this research (except for negative

correlation learning) is the regularized mean squared error which not only reduces the

error between the actual and desired outputs but also includes a penalty function which

reduces the network weights and ultimately results in faster convergence. The

performance ratio determines the amount of weights to be reduced per iteration.

 [

∑

]+ [

∑

]

The default value used throughout the research is . This value implies a 90%

weightage of the mean squared error and 10% weightage of the mean squared weights per

iteration. However the regularization term should be looked upon more closely by

varying the performance ratio which would result in a flexible weightage of the amount

of weights to be reduced per iteration considering the point that a very low value will

choose networks smaller than the optimum [Principe et.al 1999]. For instance

75

 can be implemented which imposes equal weightage on the error as well as the

weights.

Reconfirming the authenticity of a model

A neural network model (individual or an ensemble as discussed previously) needs to

be trained multiple number of times and its test correlation coefficient needs to be noted

after every training. With these results, an analysis has to be made on the variance of

these results. If the R values are in the same ball park (with acceptable variance) the

model is acceptable as the results it produced are trustworthy over several runs. However

if the variance is too much, this would mean that the particular network topology under

consideration is unstable and hence not reliable.

76

APPENDIX

A. Various linear and non-linear modeling techniques

Table A-1: Various linear and non-linear modeling techniques

Priority

(low to

high)

Model Model representation Pros Cons

1
Transfer

function

For simple

systems.

Not suitable

for highly

complex

systems owing

to the inability

to factorize

2

Auto

Regressive

(AR)

 ∑

Outputs depend

only on previous

outputs

Inputs are not

used in

modeling

77

Priority

(low to

high)

Model Model representation Pros Cons

4

ARX

 ∑

Provides a unique

solution using

linear regression

analysis.

Preferable when

model order is

high.

Disturbances

are modeled as

part of system

dynamics.

Dynamic

disturbances

are ignored

5 ARMAX

 ∑

More flexibility in

handling the

disturbances (The

"C" term). Useful

when disturbances

enter early in the

process (Ex:

inputs)

 Lesser

flexibility in

disturbance

modeling

compared to

Box Jenkins

model.

78

Priority

(low to

high)

Model Model representation Pros Cons

6

Box Jenkins

 ∑

Completely

distinct System

dynamics and

disturbance

models.

Useful when

disturbances enter

late in the process

(inputs)

Requires lot of

data.

7

State Space

Provides better

analysis of the

system than

polynomial

models. Only the

model order needs

to be user-defined.

For high order

complex

models, State

space

modeling is

expensive and

takes lot of

memory.

79

Priority

(low to

high)

Model Model representation Pros Cons

9

Hammerstein –

Wiener

 ()

Where g and f are non-linear

functions while G is a linear time

invariant system.

Better analysis

than NARX due to

increased

parameterization

and extra use due

to cascade

connection of non-

linearity and

linearities.

 Higher

computational

time and

memory

usage.

10

Multi Layered

Perceptron

 {∑

}

Where x is the input vector, w is

the weight vector and y is the

output vector

Better

approximators than

RBFs

Complex due

to extra usage

of weights and

more training

samples

compared to

RBFs. Doesn’t

cover

dynamics

80

Priority

(low to

high)

Model Model representation Pros Cons

12

Radial Basis

Functions

 {∑

}

Where is the radial base

function vector, w is the weight

vector and y is the output vector

Uses simple local

approximations

which require

fewer weights and

training samples

making the

algorithm fast.

Simulation of

RBFs is time

consuming

when

compared to

feed-forward

MLPs.

Doesn’t cover

dynamics

13
Time Delay

Neural

Networks

 {∑∑

 }

Where k is the delay operator

Covers dynamics

at the input or

feedback layer or

all layers

depending on the

model type (tdnn,

narx or lrn).

Computational

ly complex

and not

accurate

compared to

static NNs.

81

B. Error Analysis

A set of Dynamic and Static networks were considered for performing error

analysis and operating on 2 individual networks (of same type – static or dynamic) at a

time, the residual coefficients were computed and the network-duo which produced the

least residual coefficient was noted. These entries denote the two networks which have

the least correlated errors. Networks under consideration are given in Table B-1 and the

 matrices which show the duo residual regressions are in Table B-2. From this

table, it is evident that dynamic networks 3 and 10 have the least error correlation; while

for static networks do not have an error correlation less than 0.7. Hence negative

correlation learning for static networks was implemented and produced better error

correlation as discussed in the results section.

82

Table B-2: Error Analysis

FTDNN Models Under Consideration

Static NN Models Under Consideration

Model

Hidden

Nodes

TDL

Test

MSE

Test

R

Model

Hidden

Nodes

TDL

Test

MSE

Test

R

1 320 1 0.21667 0.88 1 80 NA 0.1919 0.89

2 312 1 0.21112 0.88 2 100 NA 0.1936 0.89

3 260 1 0.2311 0.87 3 60 NA 0.2093 0.87

4 180 1 0.23524 0.85 4 150 NA 0.2081 0.87

5 250 10 0.24615 0.83 5 170 NA 0.2156 0.87

6 240 10 0.2465 0.83 6 90 NA 0.2147 0.86

7 240 10 0.25073 0.82 7 180 NA 0.2211 0.85

8 260 10 0.25285 0.81 8 70 NA 0.2248 0.84

9 270 10 0.25524 0.81 9 120 NA 0.2293 0.84

10 250 10 0.25846 0.81 10 10 NA 0.2406 0.82

83

Table B-3: FTDNN Residual Correlation Coefficients

FTDNN Residual Correlation Coefficients

Model 1 2 3 4 5 6 7 8 9 10

1 1 0.822 0.7902 0.7515 0.346 0.3211 0.331 0.333 0.344 0.32

2 0.822 1 0.7876 0.7497 0.37 0.334 0.342 0.341 0.352 0.32

3 0.7902 0.788 1 0.7835 0.316 0.2925 0.306 0.293 0.317 0.29

4 0.7515 0.75 0.7835 1 0.358 0.3248 0.361 0.351 0.362 0.35

5 0.346 0.37 0.3156 0.3584 1 0.8222 0.829 0.839 0.83 0.83

6 0.3211 0.334 0.2925 0.3248 0.822 1 0.837 0.837 0.841 0.83

7 0.3305 0.342 0.3057 0.361 0.829 0.8367 1 0.86 0.848 0.86

8 0.3328 0.341 0.2929 0.3514 0.839 0.8366 0.86 1 0.85 0.86

9 0.3441 0.352 0.3172 0.3623 0.83 0.841 0.848 0.85 1 0.86

10 0.321 0.324 0.2853 0.348 0.829 0.8321 0.863 0.855 0.865 1

84

Table B-4: NN Residual Correlation Coefficients

NN Residual Correlation Coefficients

Model 1 2 3 4 5 6 7 8 9 10

1 1 0.79 0.7881 0.7814 0.721 0.7757 0.732 0.722 0.743 0.71

2 0.7901 1 0.7901 0.7955 0.757 0.7706 0.732 0.725 0.731 0.71

3 0.7881 0.79 1 0.7985 0.752 0.7656 0.726 0.733 0.719 0.71

4 0.7814 0.796 0.7985 1 0.762 0.777 0.743 0.74 0.74 0.72

5 0.7207 0.757 0.7515 0.7617 1 0.7261 0.695 0.703 0.7 0.69

6 0.7757 0.771 0.7656 0.777 0.726 1 0.768 0.821 0.805 0.82

7 0.7323 0.732 0.7257 0.7429 0.695 0.7684 1 0.752 0.751 0.75

8 0.7223 0.725 0.7327 0.7396 0.703 0.8208 0.752 1 0.825 0.88

9 0.7427 0.731 0.7186 0.7395 0.7 0.8051 0.751 0.825 1 0.83

10 0.7082 0.714 0.7101 0.7243 0.688 0.82 0.754 0.882 0.83 1

85

REFERENCES

1. Annuset, P. Simple Signals for System Identification, Fourier Transform – Signal

Processing, Chapter 11, Intech, 2012.

2. Bealem, M. H., Hagan, M. T., Demuth, H. W., MATLAB Neural Network Toolbox™

User’s Guide R2011b, The Mathworks Inc, 2011.

3. Buchanan, T., Lloyd, D., Manal, K., Besier, T., Neuro-musculoskeletal modeling:

Estimation of muscle forces and joint moments and movements from measurements

of neural command, J Appl Biomech 2004; 20(4): 367 – 395.

4. Crama, P. Hammerstein-Wiener system estimator initialization, Proceedings of ISMA

2002; 3: 1169 – 1176.

5. El-Shafie, A. Dynamic versus static neural network model for rainfall forecasting,

Hydrological Earth Syst. Sci. Discuss.; 8: 2011, 6489 – 6532.

6. Erdemir, A. Model-based estimation of muscle forces exerted during movements.

Elsevier's Clinical Biomechanics 2006; 22(2): 131 – 154.

7. Fernandez, J. Integrating modeling and experiments to assess dynamic

musculoskeletal function in humans, Experimental Physiology 2006; 91: 371 – 382.

8. Forssell, U., Ljung, L. Identification of unstable systems using Output Error and Box-

Jenkins model structures, Report No LiTH-ISY-R-1988, IEEE Transactions on

Automatic Control 1997: 137 – 141.

9. Guler, N. F., Kocer, S. Classification of EMG signals using PCA and FFT, Journal of

Medical Systems 2005, 241 – 250.

86

10. Halloran, J., Ackermann, M., Erdemir. A., van den Bogert, A. Concurrent

musculoskeletal dynamics and finite element analysis predicts altered gait patterns to

reduce foot tissue loading, Journal of Biomechanical Engineering 2010; 43: 2810 –

2815.

11. Halloran, J., Erdemir. A., van den Bogert, A. Adaptive surrogate modeling for

efficient coupling of musculoskeletal control and tissue deformation models, Journal

of Biomechanical Engineering 2009; 131(1): 11 - 14.

12. Isermann, R., Munchhof, M. Identification of Dynamic Systems: An Introduction with

Applications, Springer, 2011.

13. Jamil, M., Sharkh, S., Hussain, B. Identification of Dynamic Systems & Selection of

Suitable Model, Automation and Robotics, Chapter 7, Intech, 2008.

14. Karduna, A. R. Introduction to Biomechanical Analysis, Kinesiology: Mechanics and

Pathomechanics of Human Motion 2009, Lippincott Williams and Wilkins, 2nd

edition.

15. Knudsen, M. Experimental modeling of dynamic systems, Simulation and

Experimental Modeling v 0.2, Department of Control Engineering, Aalborg

University, 2004.

16. Kutz, M. Biomedical Engineering and Design Handbook, 2nd Edition, McGraw Hill,

2009.

17. Liu, Y. How to generate different neural networks, Studies in Computational

Intelligence 2009; 35: 225-240.

87

18. Liu, Y., Yao, X. Negatively correlated neural networks can produce best ensembles,

Australian Journal of Intelligent Information Processing System 1997: 176 – 185.

19. Liu, Y., Yao, X. Simultaneous training of negatively correlated neural networks in an

Ensemble. IEEE Trans. On Systems, Man, and Cybernetics, Part B: Cybernetics

1999: 716 – 725.

20. Ljung, L. System identification toolbox user’s guide, Version 8.1, The MathWorks

Inc, 2012.

21. Ljung, L. System identification toolbox for use with MATLAB® , Version 5, 3.1 –

3.35, The MathWorks, Inc, 2002.

22. Lu, Y., Pulasani, P., Derakhshani, R., Guess, T. Application of neural networks for

the prediction of cartilage stress in a musculoskeletal system, Elsevier’s Biomedical

Signal Processing and Control 2013; 8(6): 475 – 482.

23. Mishra, M., Derakhshani, R., Paiva, G., Guess, T. G., Nonlinear surrogate modeling

of tibio-femoral joint interactions, Biomedical Signal Processing and Control 2010;

6: 164 – 174.

24. Otten, J. Inverse and forward dynamics: Models of multi-body systems, The Royal

Society, Phil. Trans. R. Soc. Lond. B Biol Sci 2003; 358(1437): 1493 - 1500.

25. Paiva, G., Bhashyam, S., Thiagarajan, G., Derakhshani, R., Guess, T. A data-driven

surrogate model to connect scales between multi-domain biomechanics simulations,

Conference Proceedings IEEE 2012: 3077-3080.

26. Pintelon, R., Schoukens, J. System Identification - A Frequency Domain Approach,

Second Edition, John Wiley & Sons, 2012.

88

27. Principe, J., Euliano, N., Lefebvre, C. Neural and Adaptive Systems: Fundamentals

through Simulations. New York: Wiley, 1999.

28. Reaz, M. B. I., Hussain, S. Techniques of EMG signal analysis: Detection,

processing, classification and applications, Biol. Proced. Online 2006; 8(1): 11 - 35.

29. Sinha, N. K., Gupta, M. M., Rao, D. H. Dynamic neural networks: An overview,

Proceedings of IEEE International Conference 2000: 491 – 496.

30. Sherwood, J., Derakhshani, R., Guess, T. A comparative study of linear and nonlinear

data-driven surrogate models of human joints, IEEE Region 5 2008: 1 – 6.

31. Soderstrom, T., Stoica, P. System Identification, London: Prentice Hall, 1989.

32. Tawhai, M., Bischoff, J., Einstein, D., Erdemir, A., Guess, T., Reinbolt, J. Multiscale

modeling in computational biomechanics, Engineering in Medicine and Biology

Magazine 2009; 28: 41 – 49.

33. Tortora, G., Derrickson, B. Introduction to the Human Body, 8th edition, John Wiley

& Sons, 2010.

34. Viceconti, M., Taddei, F., Jan, S.V., Leardini, A. et al. Multiscale modeling of the

skeleton for the prediction of the risk of fracture, Clinical Biomechanics 2008; 23:

845 – 852.

35. Yaffee, R., McGee, M. Introduction to Time Series Analysis and Forecasting,

Chapter 3, 69 - 72, Academic Press, San Diego, 2000.

http://scialert.net/eboardlivedna.php?issn=1815-7432&id=880.2884

89

VITA

Palgun Reddy Pulasani was born on March 1, 1987, in Hyderabad, India. He

received his Bachelor of Technology degree in Electrical and Electronics engineering

from Gokaraju Rangaraju Institute of Engineering and Technology, affiliated to

Jawaharlal Nehru Technological University, Hyderabad, India. After working at Tata

Consultancy Services, the largest multinational IT firm in India, for over two years, Mr.

Pulasani moved to the United States to pursue his master’s program in Electrical

Engineering at University of Missouri Kansas City where he secured a full grade point

average (GPA) of 4.0. Whilst pursuing his master's, he worked as a Graduate Teaching

Assistant for one year teaching Embedded System and Microcomputer laboratories. In

2013, he was awarded with lifetime membership in Golden Key International Honor

Society which is the world’s largest college honor society and is only given to students in

the top 1% of the university. He also holds lifetime membership in other prestigious

honor societies including Omicron Delta Kappa Leadership, Phi Kappa Phi and Eta

Kappa Nu. His research interests include neural network modeling and machine learning.

