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ABSTRACT 

The central idea in musculoskeletal modeling is to be able to predict body-level 

(e.g. muscle forces) as well as tissue-level information (tissue-level stress, strain, etc.). To 

develop computationally efficient techniques to analyze such models, surrogate models 

have been introduced which concurrently predict both body-level and tissue-level 

information using multi-body and finite-element analysis, respectively. However, this 

kind of surrogate model is not an optimum solution as it involves the usage of finite 

element models which are computation intensive and involve complex meshing methods 

especially during real-time movement simulations. An alternative surrogate modeling 

method is the use of artificial neural networks in place of finite-element models.  

The ultimate objective of this research is to predict tissue-level stresses 

experienced by the cartilage and ligaments during movement and achieve concurrent 

simulation of muscle force and tissue stress using various surrogate neural network 

models, where stresses obtained from finite-element models provide the frame of 

reference. Over the last decade, neural networks have been successfully implemented in 

several biomechanical modeling applications. Their adaptive ability to learn from 

examples, simple implementation techniques, and fast simulation times make neural 
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networks versatile and robust when compared to other techniques. The neural network 

models are trained with reaction forces from multi-body models and stresses from finite 

element models obtained at the interested elements. Several configurations of static and 

dynamic neural networks are modeled, and accuracies close to 93% were achieved, where 

the correlation coefficient is the chosen measure of goodness. Using neural networks, the 

simulation time was reduced nearly 40,000 times when compared to the finite-element 

models. This study also confirms theoretical concepts that special network 

configurations--including average committee, stacked generalization, and negative 

correlation learning--provide considerably better results when compared to individual 

networks themselves.  
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THESIS OUTLINE 

 

This thesis describes the application of various configurations of neural networks 

for analyzing the performance of musculoskeletal models. Chapter 1 gives an 

introductory layout of the biomechanics of surrogate musculoskeletal modeling by 

familiarizing multi-body and finite element modeling techniques. It also mentions several 

linear and non-linear modeling techniques with special focus on neural networks.  

Chapter 2 gives more specifics on the actual modeling techniques implemented. It 

starts by giving details on how the multi-body and finite element analysis was 

implemented before starting with neural network modeling and mentions reasons on why 

finite element, multi-body or neural networks had to be used and discusses the cons of 

using finite element analysis to predict stresses. It discusses special neural network 

configurations like committee, stacked generalization and negative correlation learning. It 

also introduces a new phenomenon of choosing the best committee out of all possible 

permutations. Finally it presents a new kind of residual analysis.  

Chapter 3 illustrates all the results obtained using the above techniques. It 

portrays the final results and also shows a table which contain the all the best results 

obtained using different configurations.  
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1. INTRODUCTION 

1.1 Problem Description 

In the process of musculoskeletal modeling, multi-body analysis is usually used to 

predict body level information (e.g. reaction forces). But since the body parts are assume 

to be rigid and due to usage of simplified representation of joints, multi-body analysis is 

limited to only provide this information and not beyond. This inability of Multi-body 

models to provide low-level information (stress, strain, etc.) recommends the need to use 

finite element models which effectively perform any operation that multi-body analysis 

can in addition to predicting low-level or tissue-level information which multi-body 

cannot.  

However using finite element analysis is not always the best choice due to highly 

increased computational time and complexity. To overcome these problems and develop 

models which can provide realistic details while being computationally efficient, 

surrogate or multi-scale models are developed such that they effectively use the 

functionalities of both multi-body and finite-element models. In this process, multi-body 

models first provide the joint or body level information as input to the finite element 

models. Finite element models, in turn, use meshes and boundary conditions to calculate 

internal stresses. The ultimate objective is to formulate real-life movement in real-time. 

       Nevertheless this kind of surrogate model is still not an optimum solution as it 

involves the complexity of finite element models. An alternative to this is to use artificial 

neural networks, built using the reaction forces from multi-body analysis, to predict the 
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stress information. Over the decade, neural networks have been proved to be universal 

function approximators and have been successfully implemented in analysis and 

prediction tasks especially in biomechanical modeling applications. Their adaptive 

learning ability to learn from examples, simple implementation techniques and fast 

simulation times make neural networks versatile, durable and robust.  

 The prime motive of this project is to perform a comparative study of several 

neural network surrogate models and present them as successful predictors of tissue-level 

information. 

1.2 Musculoskeletal System 

The musculoskeletal system is an integrated system formed by bones, muscles, and 

joints. Since movement is due to muscle forces acting on bones, it is important to 

understand how muscles, bones, and joints interact. Joints are interconnection areas, 

where bones join with each other and aid in movement. There are several kinds of joints 

in a human body: fibrous, cartilaginous, and synovial joints, which aid in no, minimal, 

and free movement, respectively. The best examples of fibrous joints are the joints in the 

skull, which produce no movement at all; while the spine joints produce very little 

movement. However, the hand and knee joints produce free movement and are the best 

examples of the synovial joints. Synovial joints [33] (or diarthrosis joints) are the places 

where free movement actually occurs. This is due to the presence of synovial cavities, 

which aid in free movement, between the articulating bones. These cavities contain 

synovial fluid secreted by the synovial membrane, which lubricates the joints and reduce 
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friction. Thus more presence of this fluid (produced in excess by good exercise) eases the 

stress on the joints and, thus, makes movement free [Gerard J. Tortora et al 2010].  

The main internal structures in the human joint that keep it intact are ligaments, 

tendons, and articular cartilage. Figure 2 shows the anatomy of the human knee. Articular 

cartilage connects bones together. Its primary purpose is to protect the bones, while 

allowing the joint to move freely. Since articular cartilage doesn’t have any blood supply, 

it lacks self-repair capability. Absence of cartilage would eventually result in bones 

grinding against each other, ultimately resulting in wear. Ligaments connect bones to 

bones at joints, and their ultimate aim is to keep the bones and joints intact and under 

control. 

Figure 1-1      Figure 1-2 

Images taken from Gerard J. Tortora et al, 2010 [33] 

Figure 1-1: Musculoskeletal model of lower limb showing the main muscles and bones 

Figure 1-2: Anatomy of human knee 
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Muscles are connected to the bones via tendons. When muscle contracts to make a 

movement, tendon acts on the bone accordingly. When muscles produce forces, two 

kinds of elements – contractile or active and non-contractile or passive elements – 

contribute. Passive elements include the tendon (which connects bone to muscle), 

perimysium, endomysium, and epimysium (which are various levels of coverings of the 

muscle.). 

 

Figure 1-3: Components of muscle 

Image taken from Gerard J. Tortora et al, 2010 [33] 

 

1.3 Biomechanics of Human Movement 

The process depicted in Figure 1-4 starts from the analysis of muscle excitations 

which can be observed from electromyography (EMG) signals. These muscle excitations 

are converted into muscle activations, muscle forces and finally into net joint torques. 

Each of the steps is explained in following phases 
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.  

Figure 1-4: Biomechanics of human movement 

Reference from [16] 

1.3.1 Muscle Activation Dynamics 

Electromyography (EMG) signals are used to measure electric signals generated 

during muscle contraction. However, these are obtained using various invasive and non-

invasive methods [28], which are not readily usable, due to the presence of unwanted 

noise, and thus, pre-processing the signal is important. Pre-processing takes place in 

several steps [3]. Firstly, all the DC offsets are removed. Then, the EMG signal is 

normalized by dividing it with the peak value. Finally, these rectified signals are low-pass 

filtered, so that the signal can be correlated with the muscle force. In frequency domain, 

Fast Fourier Transformation (FFT) of EMG signals aid in determining the frequency 

spectrum [9], which helps in detecting muscle fatigue [9] and recognition of bent angles 

in fingers, using feature set [9]. 

1.3.2 Muscle Contraction Dynamics 

A.V. Hill proposed an empirical model of analyzing the muscle contractions using the 

force-length and force-velocity characteristics. The isometric force-length curve, shown 

in Figure 1-5, depicts the range of forces generated by the muscle, when held at various 



6 

 

 

 

lengths. Active muscle force is a steady force developed on the complete activation of a 

muscle. It is defined as the change in the amount of force developed when the muscle is 

become active. In most scenarios, active muscle force is generated in the region 

0.5     <    < 0.5     , where     is the optimal muscle fiber length, and       is the 

maximum possible isometric force developed. From the force-velocity curve (Hill type 

model), it can be inferred that there is a hyperbolic dependency of the force on the 

velocity.  

The main parameters that describe the muscle’s force producing properties are 

    ,     ,      , muscle activation,     (which is derived from activation dynamics),and 

pennation angle(which is defined as the angle between muscle fibers and tendons when 

fibers are at optimal length). 

 

Figure 1-5: Force-length-velocity curves 

Image taken from Myer Kutz et al, 2009 [16] 

 

1.3.3 Musculoskeletal Dynamics 
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Biomechanical movements in a human body occur due to a number of forces 

acting on various bones, which cause them to rotate about the joints due to application of 

torques. The joint torque is a collection of all the individual muscle forces. These forces 

come mainly from muscle contractions, and thus, it is vital to understand the force-

producing properties of muscles, mainly length and velocity, to analyze motion.   

The moment arm of a system is the perpendicular direction to the line of action of 

force, and hence, it changes with the angle of application of force. 

For a given musculotendon force     and moment arm    , the musculotendon 

torque     is given by: 

             

In Figure7, r1, r2, r3, and r4 are various moments acting on force F while r2 (the 

perpendicular distance to the force F) is the moment arm.  

 

Figure 1-6: Two-dimensional moment analysis. 

Image taken from Andrew R. Karduna, 2009 [14] 
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From the equations of motion, the relationship between movement and muscle 

forces in a musculoskeletal model can be given by: 

   (1.1) 

[Taken from Ahmet Erdemir et. al 2006] 

where       is the mass matrix, C represents the centrifugal forces, and torques, 

     is the gravitational loading, E represents the external forces. q and its derivatives 

refer to the positions, velocities, and accelerations. 

Using the definition of musculotendon torque, we have: 

     (1.2) 

[Taken from Ahmet Erdemir et. al 2006] 

It is an indeterminate problem to calculate the individual muscle forces from joint 

torques as the number of possible solutions is infinite. Hence, the primary objective is to 

first figure the net joint torques and then use optimization methods to get the optimal 

solution of muscle forces. 

1.4 Surrogate Models 

1.4.1 Multi-Body Model 

Multi-Body models have been used extensively for many decades to understand 

the behavior of human musculoskeletal models and, specifically, human joints [Thomas 

Buchanan et. al 2004]. Various parts of human body (for instance the knee, elbow etc.) 

are modeled according to the requirement, such that body level information can be 
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garnered. [Otten 2003] mentions several mathematical expressions using Newton-Euler, 

Lagrange and Featherstone’s methods to represent multi-body systems. Inverse and 

Forward dynamics discussed below are two ways of implementing the Multi-body model. 

Some notable software includes MSC.ADAMS (MSC Software Corporation, Santa Ana, 

CA) and AnyBody (AnyBody Technology) where ADAMS is a commercial rigid body 

dynamic modeling software package and AnyBody is a musculoskeletal modeling 

software package. 

1.4.2 Inverse and Forward Dynamics 

Theoretically speaking, analysis of movement can be done in two ways. One way 

is to predict the movement, based on known internal muscle forces and joint moments 

(forward dynamics approach), and the other is to calculate the joint moment torques, 

based on movement data and external forces (inverse dynamics approach). It depends 

purely on requirement which methodology to choose. If motion is to be estimated, 

forward dynamics approach is the best bet. To estimate the joint torques from motion and 

external forces, inverse dynamics would be the best choice [3, 7, 24].  

1.4.1.1. Inverse Dynamics 

In inverse dynamics, estimates of joint torques are given from movements and 

known external forces. Implementation of inverse dynamics approach starts with 

measuring the properties, like mass and inertia, of the body of interest and the external 

forces acting on it. Using equations of motion, joint torques are computed. Individual 

muscle forces are then estimated from net torques at the respective joints using static 

optimization methods [24]. Though mass is easily computable, inertia and other 
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properties of the body are hard to calculate and hence estimation of joint torques is not 

trivial. Next is the problem of deriving individual muscle forces from joint torques as this 

problem is indeterminate. Static optimization methods are used to solve this problem. 

 

Figure 1-7: Inverse dynamics approach 

Image taken from Thomas S. Buchanan et al, 2004 [3] 

 

1.4.1.2. Forward Dynamics 

In forward dynamics approach, known internal muscle forces are used to create 

motion. Neural commands, obtained using EMG signals or by optimization techniques, 

produce the muscle activations (muscle activation dynamics), and muscle contraction 

dynamics convert the activations into muscle forces. Forces in the individual muscles 

contribute to the net joint torques and moments. Multi-joint dynamics then compute the 

accelerations, velocities, and angles for each joint of interest. Finally the feedback loop 

updates the neural command based on the musculotendon length and the pennation 

angles. Figure 1-8 gives high-level information of all of the steps involved in forward 

dynamics problem.  
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[Thomas S. Buchanan et. al, 2004] discuss various problems involved with 

inverse and forward dynamics. Estimation of muscle activation from neural commands 

and muscle forces from the activations are not easy. However, using optimization 

methods can directly provide muscle forces [3]. Nevertheless, choosing cost functions for 

the optimization methods is difficult. The other main limitation is that the difficulty in 

estimation of joint moments, as a minor inaccuracy might lead to abnormal errors in the 

movements. 

Forward dynamics assisted data tracking [6] is an optimization solution to 

estimate muscle forces. In this process, a solution is first obtained using default muscle 

activations, and then, the process is iterated by updating activations, until the 

performance function is minimized as per requirement  

 

Figure 1-8: Forward dynamics approach 

Image taken from Thomas S. Buchanan et al, 2004 [3] 
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1.4.3 Finite Element Analysis 

Finite element analysis is one of the fastest emerging methodologies widely being 

used in the biomechanical field for computing stresses and strains in cardiovascular, 

dental, articular cartilage, etc. By definition, FEA is a numerical method for finding 

solutions to complex problems. Once the problem set is defined, symmetry is applied to 

reduce the complexity. Then, meshes are used to discretize the model into elements and 

nodes. Choosing mesh sizes is a known challenge, and the most widely used shapes are 

tetrahedral or hexahedral for 3D objects. Then, the shape vectors, stiffness matrices, and 

force vectors are computed. Finally, boundary conditions are applied, using known 

external applied forces, and rigid body dynamic conditions and stresses are computed. 

 

Figure 1-9: Finite element analysis steps 

 

Currently, we have a lot of software that perform finite element analysis for 

complex problems, which are manually not possible. Some notable software includes 

ABAQUS (SIMULIA, Dassault Systèmes SolidWorks Corp., S. A., Vélizy, France), 

http://en.wikipedia.org/wiki/SIMULIA
http://en.wikipedia.org/wiki/Dassault_Systemes_SolidWorks_Corp.
http://en.wikipedia.org/wiki/Dassault_Syst%C3%A8mes,_S._A.
http://en.wikipedia.org/wiki/V%C3%A9lizy-Villacoublay
http://en.wikipedia.org/wiki/France
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SOLIDWORKS (Dassault Systèmes SolidWorks Corp., S. A,Vélizy, France), LS-DYNA 

(Livermore Software Technology Corporation), and many more. 

 

1.5 Need for Surrogate Models  

Multi-body models have always been a compromise, as they cannot genuinely 

provide low-level information (tissue-level stress, strain etc.) of a human body. This is 

due to the usage of simplified representation of joints. Such assumptions limit the usage 

of MB models, as they do not provide tissue level information for studies like the 

ligament injuries. On the other hand, Finite Element models can provide tissue-level, 

organ-level details, but not body-level and are computation intensive. To overcome these 

problems and develop models, which can provide realistic details while being 

computationally efficient, multi-scale models are developed such that they effectively use 

both MB and FE models. Using multi-scale models, detailed low level information and 

even movement prediction can be obtained. MB models provide the joint or body level 

information as input to the FE models. FE models, in turn, use meshes and boundary 

conditions to calculate internal stresses. The ultimate objective is to predict stress on 

tissue such as cartilage and ligaments during movement and achieve concurrent 

simulation of muscle force and tissue stress [22]. 

 

1.6 Implementation of Surrogate Models  

Coupling of MB and FE models can happen in two ways: sequential and 

concurrent. In the sequential approach, simulated results from the MB model are used as 

http://en.wikipedia.org/wiki/Dassault_Systemes_SolidWorks_Corp.
http://en.wikipedia.org/wiki/Dassault_Syst%C3%A8mes,_S._A.
http://en.wikipedia.org/wiki/V%C3%A9lizy-Villacoublay
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/LS-DYNA
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input to the FE model and ultimately tissue-level stresses are obtained. In the concurrent 

method, the reaction forces obtained by FE analysis are applied to the MB model 

iteratively. An application of the non-sequential approach was demonstrated by 

[Fernandez et al. 2006], where muscle forces derived using computational MB models 

were used as inputs for FE models to calculate effective stresses [7].However these 

models did not make use of the coupling and concurrent behavior of MB and FE models. 

In their research, [Viceconti et al, 2008] presented a Living Human Multi-scale 

model [34], which can predict the risk of fracture. They discussed various methods to 

develop subject specific FEM of bones and estimation of internal forces and stresses of 

musculoskeletal models using optimization methods [6]. [Tahwai et al, 2009] put forward 

the applications of multi-scale models to musculoskeletal, respiratory and mechano-

transduction systems, where the FE models used a feature size field [32] during mesh 

generation. Feature size fields are robust and computationally efficient and do not require 

a background grid during startup. 

A notable approach by [Halloran et al. 2009]successfully developed an adaptive 

surrogate multi-scale model using concurrent coupling, which simulated jumping, used 

the Lazy Learning Toolbox [10] (a locally weighted regression algorithm) written in 

MATLAB® for surrogate modeling. This approach is different from traditional multi-

scale modeling approaches as it trains the surrogate model based on previous FEA runs. 

These surrogate model outputs are compared with FE outputs, and if the error is in user 

specified range, the surrogate model output is used for future iterations. This way, the 

need for FE simulations is minimized, which in turn, increases computational efficiency. 
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However, this approach is not practically relevant as friction is completely ignored and 

real-time movements are much more complex and local neighbor search methods (for 

instance Lazy Learning interpolation) would not be sufficient for a good analysis. In an 

upgrade to their above work, [Halloran et al. 2010] successfully presented an approach to 

concurrently couple musculoskeletal and tissue deformation models using strain 

optimization[11], which aided in lesser number of iterations to attain convergence, rather 

than local neighbor search algorithms[10]. However, friction was considered globally for 

musculoskeletal models and not for the FE model specifically, to reduce the complexity, 

which doesn’t make it realistic, as practical systems experience friction globally as well 

as internally. 

Another approach for surrogate modeling is to replace the FE model with several 

data-driven models [23, 25, 30], which may include various kinds of neural network 

(NN) models. NN models have proven to be capable of modeling realistic biomechanical 

interactions [23, 25, 30]. Once trained (usually with internal muscle forces from MB 

systems), they take very little time to perform the analysis. Inputs to the models are 

usually the forces and positions from the MB models and outputs are the stresses and 

strains. The inputs and outputs may vary according to scenario. 
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1.7 System Identification 

Mathematical models depict the behavior of systems using mathematical terms. 

System Identification is a procedure to create mathematical models of dynamics systems 

from observed user data. It also gives exemplary information [20] on various tools for 

effective data fitting using the models. To perform the System Identification process two 

methods are used – Non-Parametric and Parametric -where the former give high level 

information about the system like time delays, time constants, gains etc., while the 

parametric methods involve the process of estimating several parameters to obtain a good 

model of the system. 

1.7.1 White-Box, Grey-Box and Black-Box Modeling  

In white-box modeling, models are created using basic laws of dynamics, and 

therefore, they are very complex to build in practical scenarios, like the study of 

biomechanics. This technique is mostly used during testing and is generally referred to as 

theoretical modeling. A good example is electrical circuit analysis, where parameters are 

known, and the output parameters (voltages et al.) are found. 

To overcome the complex nature of white-box systems, two System Identification 

approaches are used, namely grey-box and black-box, which build models from user 

inputs and behavior of the system. In Grey-box models, a model is first created using few 

known parameters, and the unknowns are estimated using various System Identification 

tools with several assumptions. 

Black-box models, unlike grey-box models, have little or no information about 

the mathematics or the behavior of the system, and various tools in SI toolbox are used 
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for data fit and parameter estimation. However, they require estimations on the model 

orders. All the tools discussed below follow the black-box approach. 

 

1.7.2 Steps in System Identification 

 

Figure 1-10: System identification Process 

 

1.7.3 Choosing Excitation Signals  

One of the foremost and most important steps in the system identification process 

is the choice of good excitation signals (also referred to as exploration, pilot or stimulus 

signals) and knowing how the model reacts to various inputs. It is truly mentioned [31] 

that the kind of excitation depends on the model and analysis chosen. Correctly excited 
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models provide deeper and much better insight on the system properties and should be 

able to excite all the relevant frequencies such that maximum information can be 

garnered. Hence a good excitation signal should be able to portray all the operating points 

of the system. As discussed in earlier sections, dynamic systems are first analyzed using 

non-parametric methods (transient analysis, impulse response analysis, frequency 

analysis) to gain a deeper insight on the system’s internal properties like the gain, 

overshoot, time constant, damping factor and other important parameters.  

Normally used excitation signals are the step, impulse, square [1] and triangular 

waves. Apart from simple excitations like step and impulse used for non-parametric 

analysis, others forms of excitations are used for parametric methods. Examples are the 

PRBS, Chirp and Gaussian noise signal which serve as good excitations for parametric 

models. [Pintelon et. al 2012] discuss about various input signals having different crest 

factors and signal-to-noise ratios (SNR). Crest factor denotes compactness of the signal 

[26] and is defined as the ratio of the peak value of the signal to its root mean square 

(RMS) value. SNR ratio compares the strength of a signal with the disturbances acting on 

it. High SNR values imply the dominance of the signal over the disturbances and lower 

values depict relatively high noise content. Other signals include an autoregressive 

moving average sequence [31], sum of sinusoids [31].  
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Figure 1-11: Excitation Signals 

Image taken from [Isermann et. al 2011 pp. 22] and [Pintelon et. al 2011 pp. 161] 

 

1.7.4 Model Selection  

After creating a model using any of the algorithms discussed in the upcoming 

sections, the next step is to find the simplest system that can ideally fit the system 

dynamics.  This can be done either by comparing the desired and obtained model output 

(MATLAB® command compare), simulating and predicting the response (MATLAB® 

commands sim, predict), or by comparison of transient, frequency and impulse response 
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analysis of various models. Impulse and Step responses aid in model validation by 

providing characteristics [20] like the peak response, system gain and the settling time, 

whereas frequency response provides the peak response frequency and stability margins 

[20]. Analyzing the nonlinear plots gives a deeper insight of nonlinear models on the 

particular inputs, depicting which range of inputs contribute the most or least in the 

system response. Also, the flexibility to determine the conditions for validation stop is 

helpful for good validation. Other important usable performance metrics are discussed 

below. 

1.7.4.1. Distance Metrics 

Using various distance metrics, it is possible to know the distance between two 

datasets (measured vs. actual outputs). Commonly used distance metrics are Manhattan, 

Euclidean and Mahalanobis distance.  

Manhattan distance is one of the simplest distance measures and is calculated as 

the direct difference between two vectors. 

                    ∑         

 

   

 

Euclidean distance is the traditional distance measuring tool having the following 

formula.  

                    ∑√                   

 

   

 

It is notable from the formulae that all points in Euclidean and Manhattan 

distances contribute equally to the distance measure but do not consider the deviation of 
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each point from the average. Mahalanobis distance is another commonly used distance 

measure which takes into account the covariance of the vectors under consideration and 

therefore is useful in measuring the dissimilarities between datasets. 

                      ∑√                     

 

   

 

where   is the inverted covariance between y and y’. If y and y’ have unit 

covariance, Mahalanobis distance becomes equal to the Euclidean distance. 

1.7.4.2. Mean Squared Error  

The simulated outputs (y) can be compared with the desired outputs (y’) and the 

mean squared error calculates the mean of squares of differences between the predicted 

and actual output.  

            
 

 
∑          
 

   

 

The traditional form of MSE can be extended by taking square root (RMSE) and 

by normalizing it (NMSE). The combination of both is NRMSE discussed below. 

Normalized Root Mean Squared Error (NRMSE) 

Regular MSE calculates the total error as a whole, comprising of errors due to all 

inaccuracies, but does not give information on how the measured output deviates from 

the desired value. Normalized MSE is obtained by dividing the squared sum of errors 

with the variance. Normalized Root MSE advances a step by taking square root of NMSE 

and is given by 
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       √
∑            

   

∑             
   

 

The main advantage of using root is to get the performance in the same units as 

the data. 

1.7.4.3. Residual Analysis  

Residual analysis is an important phase of model validation which deals with 

analysis of residuals (errors), which are the differences between the measured and one-

step-ahead predicted model outputs. Analyzing residual plots gives information on which 

specific inputs caused the perturbations. 

            

1.7.4.4. Correlation Coefficient (R)  

Correlation Coefficient (R) is a measure of how well or poorly two data sets are 

correlated. It is given by the below formula. The denominator is the product of standard 

deviations of the desired and actual outputs while the numerator is the covariance of the 

outputs.  

   
∑                        

   

√∑             
   ∑               

   

 

where y is the measured output, y’ is the desired output and     ,       are the 

averages of data points in y and y’ respectively. An R value can have value ranging from 

-1 to 1, where -1 indicates a perfect decreasing linear relation such that all data points of 

actual output lie on the negative slope as of the data points line of desired output, 0 

indicates a null fit and 1 indicates a perfect linear relation. 
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1.7.4.5. Minimum Description Length (MDL)  

Minimum Description Length is a measure of how compactly regularities can be 

described in a dataset. According to MDL, a model is chosen if it minimizes the data in 

the model and the parameters governing the data. One implementation of MDL is given 

by the following expression. A model with lower MDL is considered optimum as it 

minimizes both the parameter usage for system analysis and the total data points itself. 

          (
 

     
)               

where   (
 

     
) is the probability of parameter usage to describe the system and 

         is the number of bits to describe the model 

1.7.4.6. Information Criterion  

Information criteria are likelihood-based measures which take into account the 

complexity of the model. Therefore a model which performs good analysis but is 

computationally complex is not considered the optimum model. Information criteria 

consider all the information, analyzing capability and complexity, while performing the 

analysis. Different kinds of information criteria are Akaike Information Criteria (AIC) 

and Bayesian or Schwarz Information Criteria (BIC). If      is the maximum likelihood 

of the model, log      is the objective function of maximum likelihood, N is the total 

number of data points, and k is the total number of parameters actually used in fitting the 

data, the definitions of AIC and BIC are 
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When multiple models are compared, models with the lowest values of AIC 

and/or BIC are the ones which provide an optimum analysis. From the above definitions, 

the loss function L is an increasing function (logarithm) of the number of parameters 

influencing the fit and a high value of AIC indicates over fitting. BIC has a larger penalty 

order of log N for an extra number of parameters when compared to AIC.  

 

1.7.5 Dynamic Models  

Dynamical models represent systems with internal dynamics based on the 

previous state and are time and frequency variant. Therefore, outputs of a dynamic 

system depend on the inputs at past time instants. Relations can be created using 

differential equations, discrete-time, or continuous-time data. 

1.7.5.1. Linear Analysis  

To estimate system dynamics, an analysis should always start linearly. However, 

if linear models do not provide acceptable results, employing non-linear models is the 

next step. Estimation using linear models is done using two approaches – non-parametric 

,or direct estimation using impulse and frequency response models, and parametric, 

which includes estimating a set of parameters to identify a model. Non-parametric 

methods are first employed to determine whether a system is linear, time invariant, and if 

any noise exists. These experiments are generally considered as pre-processors to the 

parametric methods as they are evaluated at large number of points and give a good 

analysis of the system. Various implementations of the latter approach are Transfer 
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function model, Process model, State-space model, Polynomial model and Grey-box 

models. A linear system can be represented by the differential equation: 

   

   
   

     

     
      

   

   
   

     

     
   

In parametric form, the above can be analyzed as 

                           

where      is the final output,       is the definition done below,       is the noise 

function, q is the delay operator such that               , and A, B, H are the 

parameters to be estimated during parametric analysis. This is done by minimizing the 

error function using sum of least squares algorithm. This process is termed prediction 

error method. 

Impulse-Response Models 

Impulse responses are the output signals obtained by applying an impulse input. 

An impulse function or the Dirac Delta function has value of zero at real-time, except at 

time zero where it is infinite. For finite impulse response models, the impulse function 

will have a finite value at time zero. For an impulse input u (t), the response obtained is 

the convolution of the impulse response: 

         ∑           
    

where     is the impulse response,      is the system output, and        is the 

shifted impulse input. The ultimate goal is to find the     values using correlation 

analysis (linear least squares method).  
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Frequency-Response Models and Spectral Analysis 

Frequency response describes how a model responds to sinusoidal inputs. 

Frequency response models are obtained by applying Laplace transforms [20] of the 

impulse response discussed before or by evaluating the transfer function      on a unit 

circle [20]. One approach is by computing the Fast Fourier Transform (FFT) of the signal 

or by analyzing the bode plot. Change in amplitude and phase shift are two vital variables 

which govern the frequency response characteristics.  

              

SI Toolbox has three functions to compute the frequency response – etfe, which 

computes the empirical transfer function (ratio of the Fourier transform of the input and 

output), and the rest are discussed below. As per spectral analysis [20], any function can 

be analyzed using sine and cosine waves. Hence,     above, can be written as       . 

Frequency resolution is the smallest allowable frequency at which frequency response 

and spectral analysis can be performed. MATLAB® command spa estimates the transfer 

function using Blackman-Tukey [20] spectral analysis for a fixed frequency resolution 

and spafdr [20] allows specifying variable frequency resolution for estimating the 

frequency response. 

Transfer Function Models 

Transfer functions models are mathematical models obtained by taking the ratio 

of the output and the input polynomials, and the model order is the order of the input 

signal. They are different from the polynomial models, as they provide deterministic 
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analysis, rather than stochastic analysis that is given by the latter. Transfer function 

models can be effectively used to model single and multiple input systems.  

Applying Laplace transforms to (1), (ignoring the error component) 

                                                              

The above can be represented as 

              

where G(s) is the ratio of two polynomials and it comes in the form 

     
    

    
  

                  

                  
 

Y(s) and U(s) are the Laplace transforms of the output, input, and the error 

signals.  

This can be solved by partial fractions by dividing the block into two parts as 

shown in the below block diagram below (f and r represent polynomials in s). 

  

Figure 1-12: Block diagram representation of Transfer function models 

     
    

    
  

    

    

    

    
 

It is evident from the above representations that for complex systems, the 

factorization of numerator and denominator polynomials (f and r) becomes complicated 

and obtaining partial fractions is a difficult job. 

MATLAB® command, etfe, estimates the empirical transfer function, G, from 

above equation. Flexibility is also given to include spectral analysis with (spafdr) and 
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without (spa) varying frequency resolution. Once the transfer function is known, system 

analysis becomes trivial, as the output response can be studied over a varied range of 

inputs. 

Process Models (Low Order Transfer Function Models) 

Process models are simple systems used to estimate system dynamics in terms of 

system gains or the transport delays [20]. Upgrading the model is feasible, as it only 

involves modifying the poles, zeros, or the delays. A process model describes the system 

dynamics in terms of system gains, delays, and other time constants (shown in below 

equation). It can estimate up to third order transfer function models. Owing to their low 

order, they are easy to develop, and parameters are easy to estimate. Another advantage 

of these models is that they support transport delays [20]. 

Polynomial Models 

In Polynomial models the relation between input and outputs depend on transfer 

functions. If      is the system output,     is the system input, q-1 is the delay operator, 

and e(t) is the error function polynomial models are generally of the following form: 

         ∑      
     

     
     

     

     

 

   

 

 

Image taken from [28], pp.2.23 (3) 
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Figure 1-13: Block diagram representation of polynomial models 

These polynomial models are obtained by simplifying the original equation 

(setting either of A, B, C, D, E, and F to 1).All the polynomial models discussed below 

are basically the linear regression technique and can be analyzed using the least squares 

mechanism. 

Auto Regressive (AR) models 

The AR model is used when outputs are only dependent on the previous outputs 

and inputs are not known. An AR can be defined by the following equation (n is the 

model order) 

     ∑               

 

   

 

The problem in AR model is to find the best possible values of the parameter “a” 

which best describe the series. The most widely used technique to achieve this is to use 

the least squares estimation. 
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Figure 1-14: Block diagram representation of AR models 

Auto Regressive with Exogenous Inputs (ARX) models 

An ARX model implements the least squares estimation and is used to obtain 

model analysis without providing much flexibility to the noise, as they do not model 

dynamic disturbances that might occur in the model. In addition, modeling is not very 

flexible as poles (    ) of the dynamic system and noise coincide [20], which is 

upgraded in BJ and OE models. 

         ∑               

 

   

 

 

Figure 1-15: Block diagram representation of ARX models 
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Auto Regressive and Moving Average with Exogenous inputs (ARMAX) models 

Unlike AR and ARX models, ARMAX uses a new modeling technique called 

Moving Average which is another form of linear regression but the estimation of 

parameters becomes a difficult task  to be achieved using least squares estimation due to 

the extra focus on the error dynamics. ARMAX extends the flexibility by modeling noise 

separately using the C(q) term.  

         ∑                   

 

   

 

ARMAX can be used when unavoidable disturbances [20] occur at the input. There are 

two more models, ARIX and ARIMAX, which add additional integrators [20] to the 

noise     . Adding additional integrators help in cases where the perturbations are 

dynamic. 

 

Figure 1-16: Block diagram representation of ARMAX models 
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Output Error (OE) models 

Output Error model, like ARX, doesn’t give much flexibility to the noise analysis, 

but gives additional emphasis on parameterizing the dynamics evident from B(q) and 

F(q) terms. Therefore these models would be preferable in cases where the noise 

properties are not given much importance and the sole focus is on the system dynamics. 

     ∑      
     

     
     

 

   

 

 

Figure 1-17: Block diagram representation of OE models 

In their research on Output error models, [Urban Forssel, Lennart Ljung 1997] 

provided means to model alternative techniques [8] of Output error and Box Jenkins 

models (discussed below) to analyze linear and unstable systems. They discuss reasons as 

to when to choose an Output error model over Box Jenkins and vice versa. 

Box Jenkins (BJ) model 

Box Jenkins model is an improvement over ARX and ARMAX and separates the 

system dynamics and disturbances. It extends the properties of both AR and MA models, 



33 

 

 

 

and also increases the parameterization. However it requires a lot of data in discrete-time 

series, without any missing values [15]. 

     ∑      
     

     
     

     

     

 

   

 

 

Figure 1-18: Block diagram representation of BJ models 

All the above models (except ARX) can be developed using a single command 

polyest in MATLAB, which can estimate any polynomial model using iterative least 

square algorithm. These polynomial models provide more information stochastically but 

require excessive computation time. The first step is to estimate the model orders and 

delays. The command combination struc – arxstruc – selstruc gives the estimated model 

order and delay in MATLAB. In this process, different combinations of model orders and 

delays are used to estimate the models, and the best fit is finalized as the optimal model 

order and delay.  
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State-Space Models 

State-space models are commonly used to describe linear relationships between 

inputs and the outputs, and are usually well-suitable for most of the systems, especially 

the Multi Input Multi Output (MIMO) systems. They introduce variables called state 

variables, which can be estimated using the input-output data. These are formed either 

using differential equations or from the transfer function notation but not measured 

directly. The advantage of using these models is that they require only the model order to 

be estimated beforehand. In the dynamical equation below,      and      are the output 

and inputs of the system, respectively. If the derivatives of y are replaced by state 

variables     , we get equations of the following form: 

 

 

Figure 1-19: State Space equations 

Image taken from [21] 
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Replacing the matrix terms with variables, we can represent the state space model 

as 

                   

                 

The state space models are useful, when compared to other parametric models, as 

they can model more complex systems with high orders, where minimizing a 

performance function using the least squares doesn’t provide acceptable results. Though 

state space models are efficient for MIMO systems, if the model order is too high or the 

data too large, the computation becomes slow and requires lot of memory. An ARX 

model is preferable in such cases. 

[Mohsin et. al] provide a good example to model a tall structure building using 

ARX, ARMAX and OE models to find the best model and analyze them  using auto and 

cross correlation analysis, frequency analysis,  and pole-zero analysis [13]. Even by using 

all the above linear models, if the results are not acceptable due to bad fits between actual 

and desired outputs, the next step would be to check for nonlinearities. 

1.7.5.2. Non-Linear Analysis  

Linear models discussed in the previous section give a good analysis of dynamic 

systems. However, when a linear model is not good enough in predicting the system 

dynamics, the need to switch over to non-linear models arises. If the data is found to be 

weakly non-linear from preliminary analysis [20], its linear model can be coupled with 

non-linear estimation, which will explain the non-linear parameters more clearly than a 

linear model would. When the internal non-linear dynamics are known beforehand, they 
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can be modeled using Non-linear Grey Box modeling. Non-linear models usually require 

more data for a good analysis when compared to linear models. 

 

Hammerstein-Wiener Models 

The Hammerstein-Wiener model is a block-oriented approach [22], which 

represents a set of non-linear systems surrounded by a linear model. The Hammerstein 

model consists of a cascade connection of static nonlinearity and linear dynamic systems, 

while the Wiener model uses reverse coupling, such as the Hammerstein approach. Using 

this Hammerstein-Wiener model, the system dynamics are first represented using a linear 

model (transfer function for instance), and then, the nonlinearities are captured using 

various non-linear functions. 

 

Figure 1-20: Block diagram representation of Hammerstein-Wiener models 

Linear models can be represented in the form 

         (    )       

while Non-linear blocks take the form 

      (    )           (    ) 

From the above equations, we get  
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          (    )        

The parameters g, G and f can be found using iterative training algorithms like 

gradient-descent, generalized mean squared error, scaled conjugate gradient, Levenberg–

Marquardt, etc. The process [20] starts with estimating the function f(u) using any of the 

above nonlinear  estimators and sent to the linear block G. The output y(t) is obtained by 

applying appropriate non-linearity to the w(t) signal, which is in turn, the output of a 

linear dynamic system.   

Nonlinear ARX Models 

Nonlinear ARX models provide additional non-linear analysis to the linear ARX 

models discussed previously. A dynamic model is given by the below equation, and the 

current output      is a function of the past outputs and inputs. Liner model estimates the 

parameters a, b. 

                          

                                   

To extend this process, nonlinear models are introduced, which go a step further 

by replacing the above dependency on past outputs and inputs, with a complex nonlinear 

function as given below (f is any nonlinear function) 

                                                

Non-linear models can also be created from linear models. First, a linear model is 

created (using polynomial model for instance), and then, this model and the input data are 

provided as inputs to create a non-linear model. This approach provides better fit and 

analysis than the linear model. 
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Nonlinearity estimators 

The Nonlinear models discussed above use the below estimators to find the best 

possible relationship between the system outputs and inputs. It takes a matter of trial-and-

error as to know which estimator works the best as per scenario. The commonly used 

estimators are piecewise linear approximation, wave-net approximation, neural net 

approximation, sigmoid-net approximation, etc. These estimators are used to obtain the 

model outputs and can be validated (discussed in a separate section later) to obtain an 

appropriate model for the scenario. 

1.7.6 Neural Networks  

Neural Networks are computational models used for solving a variety of non-

linear, static, dynamic, and pattern recognition problems and have attained success in 

many such areas due to their versatility in adaptive learning. The properties of a neural 

network like universal approximation [Luenberger 1969, Cybenko 1989], ability to learn 

from examples and generalize well on test data with very fast simulation times (usually in 

seconds), non-linear behavior and simple implementation techniques make them versatile 

and robust. 

The main principle of working of a neural network is to learn from the inputs and 

predict future states or outputs. It is evident that the quality of the correctness depends on 

how well the network has been trained. A neuron [27] or simply referred to as a node is 

the basic building block of a neural network and can be defined as a processing element 

with a set of inputs and outputs implementing a weighted non-linear sum. A simple 

neuron is represented in the below figure. 

http://neuron.eng.wayne.edu/tarek/MITbook/ref/refs_l.html
http://neuron.eng.wayne.edu/tarek/MITbook/ref/refs_l.html
http://neuron.eng.wayne.edu/tarek/MITbook/ref/refs_c.html
http://neuron.eng.wayne.edu/tarek/MITbook/ref/refs_c.html
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Figure 1-21: A Simple Neuron 

where x, y, w and b are the input, output, weight and bias respectively. The above 

processing element is evaluated as             where f can be any transfer function 

(linear or sigmoidal). Every layer of a neural network contains three important 

components – combination, activation and error functions. A combination function 

performs an inner product of the layer weights and the layer inputs. A linear activation is 

usually used in the output layer to perform linear regression analysis (fitting the data 

linearly). A sigmoidal function is usually used in hidden layers so that the layer output is 

differentiable. The error function determines the error between desired and actual outputs 

per  layer and updates the weights such that during the next iteration the final error would 

reduce. 
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Figure 1-22: Various Transfer Functions 

Linear classifiers don’t always provide an acceptable solution. The best example 

is the XOR problem where classification using a single line (regression) is not possible 

and that is where non-linear classifiers enter the scenario.  

 

Figure 1-23:  A Three layer network  

[Image taken from 27] 

1.7.6.1. Static Neural Networks 

Feed-Forward Architecture 

Static neural networks are unidirectional (feed-forward) and contain a set of 

neurons which process the data. It has three kinds of layers – input, output and hidden. 

Input layers are directly connected to the inputs and contain a set of processing elements 

which modify the inputs depending on the weights. Output layers do similar processing 

and produce the final outputs. Usually an input and output layer is not enough to attain a 

good analysis or classification. Hence a minimum of one hidden layer is included which 
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does further processing because of the additional processing elements in the layer. This 

configuration is also referred to as a Multi-Layered Perceptron. 

 

Figure 1-24: Feed-forward Network (Multi-Layered Perceptron) 

If       is the output, w denotes the weights of different nodes, n is the total 

number of nodes per layer, i denotes the layers and       is the current input, the output 

expression can be given as 

        {∑           

 

   

} 

Feedback Architecture 

An iterative procedure named back-propagation is used to reduce the mean square 

error by recursively updating the weights and bias, which is done in the feedback loop. 

The feedback loop updates the weights and new outputs are obtained from every layer. 

This process first trains the network using the input data multiplied by flexible weights 

and calculates the error by comparing the computed output with the desired output. If the 
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error is larger than desired, a feedback is performed and the process is run again with 

updated weights. This iterative process continues until the error lowers to a desired value. 

 

Figure 1-25: Back-Propagation algorithm 

The weight update is governed by the following formula, where refers to the 

learning rate and
  

    
 is the change in error with respect to the weights. Choosing the 

optimum learning rate that in turn produces optimum weights is the ultimate goal of the 

algorithm. In momentum learning the weights also depend on their previous state. If the 

search direction suddenly goes flat, a push down-hill is still given owing to the previous 

state. µ refers to the momentum constant which is usually 0.5. 

                         
     Gradient Descent algorithm 

                         
       (n)           ) Momentum Learning 

Radial Basis Functions (RBF) 

RBFs measure the distance between the input vectors and the reference vectors in 

contrast to the feed-forward networks, which calculate the summation of dot product of 

the weights and inputs at each phase. By using RBFs the inputs are transformed using a 

radial basis function using a distance measure. The distance measure can be Euclidean or 
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Mahalanobis depending on choice. There are two main configurations of RBF – exact 

and alternate. In the exact version, the RBF produces a neural network which has zero 

training error. On the other hand, the alternate configuration, the RBF iteratively creates a 

neuron for every time instant and this process continues until the error is acceptable. 

 

Figure 1-26: Radial Basis Function Network 

        {∑           

 

   

} 

The activation function     is usually Gaussian and is given by  

        [(
  

 
)         ∑       

  

] 

1.7.6.2. Dynamic Neural Networks 

Dynamic neural networks stand as good classifiers and predictors owing to their 

time variant feature [27], which enables them to use outputs at hidden/output layer(s) as 

feedback(s) to the system in-turn aiding in better performance, a phenomenon not 

inherent in static networks. They can be represented by the following model 
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        {∑∑             

 

   

 

   

} 

where k is the delay operator 

Placement of the delays depends on the model types which can be focused 

TDNNs, NARX or LRNs discussed below. 

Time Delay Neural Networks (TDNN) 

For regular TDNNs the dynamics (represented by the delay operator) occur only 

at the inputs. 

 

Figure 1-27: Time Delay Neural Network 

NARX Networks 

The next level to regular TDNNs are the NARX networks which are similar to the regular 

TDNNs but they additionally cover dynamics in the feedback loop. 
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Figure 1-28: NARX Network 

Layer Recurrent Networks (LRN) 

LRNs are the most complex types of dynamic networks which analyze dynamics in every 

layer of the network. 

 

Figure 1-29: Layer Recurrent Network 
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1.7.6.3. Prioritizing the Models 

Once all the models are at hand, the next step is to be able to guess which model 

is suitable for the dataset. If the system dynamics are simple enough with a low model 

order, transfer function models should suffice. However, if the model complexity 

increases, transfer function models do not give acceptable solutions and the need to 

switch over to more robust linear models (polynomial or state space) arises. If linear 

models do not give good analysis, non-linear models and ultimately neural networks are 

the next best bets. Table B-1 depicts all the models discussed above with their respective 

pros and cons and model representations. 

 

2. METHODS 

 

2.1 Multi-body and Finite Element Analysis 

Simplified models of the tibio-femoral joint were developed [22] and multi-body 

(MB) and finite element (FE) analysis were performed on the model. For this process, a 

      mesh [22] was generated with a           cross-section, and each element 

in the mesh is connected to the bone of the surrogate model [22]. Five different forces 

were applied to the dynamic condyle in five different 2D motion paths (top-views of the 

paths are shown in Figure: 2-1 (b)). A contact was introduced between the condyle and 

the tibia cartilage and 3D reaction forces were then found in X, Y and Z directions for 

these elements, and these served as the inputs to the neural network models. Finite 

Element analysis was performed to generate the VON-MISES stresses at these mesh 
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elements which are used as outputs in the neural network model. The main reason for the 

application of different levels of forces was to have enough training samples which are a 

vital prerequisite for the neural networks. A detailed description of the surrogate models 

developed is given in [Yunkai et. al 2013] [22].  

The process of musculoskeletal modeling is started with a single "big" cell that has a 

fixed joint attached to it and multi-body analysis (or rigid-body simulation) is performed 

to extract the 3D reaction forces at each joint. For multi-body analysis, the cell doesn't 

have to be split and can be used as a whole. However multi-body analysis does not 

provide stress or strain information, and hence finite element analysis is used. Since finite 

element analysis does not produce acceptable results when used on a single “element”, 

meshes are designed which split the cell into finite elements. An optimum mesh needs to 

be checked for convergence. The performance (maximum displacement) of two meshes, 

one with 400 and the other with 1600 elements, was compared. A variance in 

performance up to 10% is acceptable but if the variance is more than 10% the mesh needs 

to be refined further. Finally, the mesh with 400 elements turned out to be acceptable and 

was used for finite element analysis. Once the mesh was selected, the cell was split into 

400 elements and rigid body simulations on these elements provided reaction forces at 

the fixed joints attached to these elements. Finite element analysis on these elements gave 

stress information. Finite element analysis can perform any operation that multi-body 

analysis does (reaction force information) in addition to extra information (stress, strain, 

etc.) which multi-body cannot, but at the cost of increased computational time and 
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complexity. Hence neural networks were used to predict the stress information, given the 

reaction forces from multi-body analysis. 

 

Figure 2-1:  (a) Model Geometries (b) Top view of the motion paths used 

Images taken from [Yunkai, Guess et. al 2013] [22] 

2.2 Neural Network Modeling 

Neural networks were trained with reaction forces from multi-body as inputs and VON-

MISES stress from finite-element as outputs where the input and output dimensionality 

was 1200 and 400 respectively. 21 out of 25 MB-FE simulation datasets were used for 

NN training and the remaining were left for testing to test the generalization capabilities 

of the network. Out of the 21 simulations left aside for training, 30% was used for 

validation to avoid over-training. Each NN simulation was run 20 times and the overall 

simulation time was found by averaging the simulation times of 10th to 20th runs. The 
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first 9 runs were discarded to ignore the CPU startup times which are usually high during 

the first few runs. 

The main challenge in neural network modeling is to choose the correct network 

parameters like hidden layer size and tap delay lengths which are found using trial-and-

error approach. Once the optimum topology is estimated, various, training, and 

performance functions are studied and best suitable functions for the scenario are 

obtained. . The networks are run with different parameters and the topology which gives 

the best performance is chosen.  

2.2.1 Choosing the Network Topology 

The LEVENBERG-MARQUADT training method, which uses the Gauss-Newton 

for Hessian approximation [27], is one of the widely used neural network training 

algorithm primarily because of its ability of faster convergence when compared to other 

algorithms. However since it requires more memory to run [2] as its gradient is 

proportional to the square of number of weights and this makes the algorithm unsuitable 

for huge datasets, it was not chosen as the training function for this dataset. To overcome 

the memory issue, the scaled conjugate method can be used as its gradient is proportional 

to number of weights and it also aids in fast convergence. Bayesian regularization 

training uses even lesser memory than scaled conjugate training but takes more number 

of iterations to converge [2]. From the results obtained in Table2-1, scaled conjugate 

training emerged to be the best performer, and hence is used as the default training 

method for all the networks in the forthcoming network configurations.  
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Table 2-1: Comparison of Training Functions 

Training 

Type HN 

Train 

R 

Validation 

R Test R All R 

Best 

Validation 

MSE Epochs 

Time 

(min) 

Scaled 

Conjugate  60 0.9175 0.83331 0.8269 0.8921 0.074841 884 81 

Cyclic  60 0.9328 0.82981 0.8263 0.8969 24.1232 4084 642 

One-step 

secant back- 

propagation 

60 

 

0.1487 

 

0.79278 

 

0.7565 

 

0.1416 

 

0.081509 

 

941 

 

83 

 

Resilient 60 0.9189 0.76887 0.6899 0.8615 0.1238 95 5 

 

Of the transfer functions mentioned in Section 1.6.4, logarithmic sigmoidal 

proved to be a better transfer function over the regular tangent sigmoidal. This check was 

carried over a set of networks with different hidden nodes mentioned in Table 2-2. 
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Table 2-2: Comparison of Transfer Functions 

 

Network Type 

Transfer 

Function 

Hidden 

nodes 

Test Correlation 

Coefficient 

Best Validation 

MSE Epochs 

Function Fitting 

Network tansig-purelin 30 0.59412 0.36352 981 

Function Fitting 

Network tansig-purelin 30 0.75482 0.1828 1387 

Feed-forward 

Network tansig-purelin 20 0.67617 0.033624 1673 

Function Fitting 

Network logsig-purelin 20 0.84907 0.12283 834 

Feed-forward 

Network logsig-purelin 20 0.86287 0.078679 520 

Feed-forward 

Network logsig-purelin 30 0.87911 0.064857 561 
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Figure 2-2:  Static Neural Network with 80 Hidden Nodes 

 

 

Figure 2-3: Dynamic Neural Network with 160 Hidden Nodes and Tap Delay Length 1 

The below parameters were used for NN training - 

 Train, Validation, Test ratio = {0.58, 0.26, 0.16} 

 Training Function = Scaled Conjugate Gradient with Validation based early stopping 

 Learning function = Gradient Descent with momentum learning 

 Performance Function = Mean Squared Error with Regularization ( regularization 

ratio = 0.9) 
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2.3 Training Methods 

Once the network configuration is chosen (hidden nodes, network type etc.) the 

next step is to train the neural network. To do this a training style should be chosen. 

There are two possible styles of trainings– Batch and Incremental. In batch training, 

weights are updated once all the training data are presented and this process continues in 

every epoch. Because of their quickness and the ability to use the whole dataset for every 

epoch to determine changes, batch training is generally considered more efficient and is 

used in most of the real-time scenarios. On the other hand, adaptive or incremental 

training processes one training data per iteration and updates the weights after every 

iteration. Incremental learning is used in cases when the data is not fixed and when 

network needs to be trained time to time with the updated data. 

In addition to the individual network connections (static or dynamic), there are a 

few well-known configurations, which when used effectively, produce considerably 

better results than individual networks, 

2.3.1 Committee 

Grouping networks by averaging their outputs produce better results than the 

individual networks themselves. This happens due to possible cancellation of 

uncorrelated errors. This phenomenon of averaging the networks is called the averaged 

committee of networks. Since this process involves operations on correlated errors, the 

prime motive here is to make the errors uncorrelated by minimizing the inter-

dependencies on the individual network errors.  

The averaging can either be regular averaging or weighted averaging. 
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where n is the number of individual networks under consideration and     is the 

individual network output for network n. 

While forming committees, the usual practice is to average the outputs of best 

networks. However using this approach might not be favorable in practical scenarios 

where a set of networks, which may have the best outputs themselves, might not perform 

better as a committee. In such cases, a broader set of networks can be taken into 

consideration. Out of a set of n best individual networks, this approach would select the 

best committee out of    possible combinations. This approach was applied for both 

static and dynamic networks, and results are shown in the results section. 

2.3.2 Stacked Generalization 

Stacked Generalization is a special configuration of networks where outputs of 

the best individual networks are fused together and are used as an input to a new neural 

network. The target output of this network would be the same as the desired output of the 

individual networks. This network is trained similar to the individual networks. The Stack 

generalization networks were trained with outputs of the best static and dynamic 

networks using scaled conjugate training. 
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Figure 2-4: Stack Generalized Network with 196 Hidden Nodes 

 

2.3.3 Negative Correlation Learning 

The concept of averaged committees, as discussed in the previous section, is to 

find the individual networks with correlated errors and attempt to minimize the errors and 

hence achieve better results by averaging the outputs.. However having the best networks 

beforehand is a tedious process and requires looping through    possible combinations (n 

is the number of best networks under consideration) as discussed previously. Also after 

going through this process, there is no guarantee that the errors would be uncorrelated. 

Hence a new approach named Negative Correlation learning (NCL) was 

introduced by [17 Yong Liu and Xin Yao] where individual networks are trained such 

that they produce uncorrelated errors. These network outputs, when averaged, definitely 

produce better results than the individual networks would as their errors were trained to 

be uncorrelated. The error function to be minimized in this approach would be the 

following 
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where n is the number of individual networks being trained;    is the output of the 

individual network;     is the accuracy rate of the network; d is the desired output; 

           is the averaged committee output of the individual networks and   is the 

penalty operator [17, 18, 19]. 

The first term in this performance function is the regular mean squared error 

(MSE) and the second term is a penalty function [17, 18, 19]. When    , the error 

function becomes similar to the MSE. A test was performed to check for the optimum   

value where      . Four sets of networks with similar topologies except for the 

varying   value were trained for 1000 epochs and their behavior (committee train 

correlation coefficient and maximum residual correlation coefficient) was observed. 

According to the results obtained in the figure,    0.84 proved to be the optimum 

penalty factor value for this dataset. For this value, the reduction rate of maximum 

residual correlation coefficient from the list of four individual networks is better than that 

of MSE performance function. Also the committee correlation coefficient is better. Hence 
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for all the NCL analysis,    0.84 is the chosen value. The committee is formed by 

performing weighted average of the individual network output.          

For negative correlation learning, since the performance function contains the 

“committee average output” as one of its terms, incremental training is used. However 

since incremental learning introduces only 1 input per epoch, the total number of 

iterations was set to a high number. The actual number of epochs can be calculated by the 

following formula 

                        
                          

                
         . 

 

Figure 2-5: Comparison of various networks with different penalty factors 
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2.4 Error Analysis 

Error correlation can be done in two ways - Choosing networks with seemingly 

uncorrelated errors and averaging their outputs, ultimately minimizing the error and 

training the individual networks such that their errors turn out uncorrelated once they are 

fully trained. Using these algorithms, different network outputs and hence different 

residues (difference between desired vs. actual outputs) are obtained. Out of these a set of 

networks with acceptably close validation or test errors are chosen and error analysis is 

performed on these networks. The following steps are followed to obtain the networks 

with the least correlation 

a. Choose models with validation errors close enough (not more than 10% variance). 

Assume n such models are chosen. 

b. Calculate the residues of model n vs. the desired output or ground truth. This step 

would result in having n different residues. 

c. Create an n*n matrix where each entry is the correlation coefficient between 

residues of two models at a time. 

d. From the above matrix, choose the entry with the smallest Correlation 

Coefficient. This signifies that these two models were trained and ultimately have 

the least error correlation, and when their outputs are averaged, they produce 

better results as their errors would have been reduced. 

Example: Assume a neural network is trained to predict the sequence of squares. The 

desired output would be the sequence “1 4 9 16 25 36 49 64 …..” Four such networks 

were trained with produced the following outputs. 
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Output1 = 1.5000    6.0000   13.5000   24.0000   37.5000   54.0000   73.5000   

96.0000  

Output 2 = 0.6000    2.4000    5.4000    9.6000   15.0000   21.6000   29.4000   

38.4000    

Output 3 = 1.9000    7.6000   17.1000   30.4000   47.5000   68.4000   93.1000 

121.6000  

Output 4 = 0.3000    1.2000    2.7000    4.8000    7.5000   10.8000   14.7000   19.2000    

From the first look its evident that network 2 produced the closest results to the 

ground truth with the smallest mean squared error. Now if residual analysis is performed 

on the above the following residuals are obtained 

Residue1 = 0.5000    2.0000    4.5000    8.0000   12.5000   18.0000   24.5000   

32.0000    

Residue2 = -0.4000   -1.6000   -3.6000   -6.4000 -10.0000 -14.4000 -19.6000 -

25.6000  

Residue3= 0.9000    3.6000    8.1000   14.4000   22.5000   32.4000   44.1000   

57.6000    

Residue4 = -0.7000   -2.8000   -6.3000 -11.2000 -17.5000 -25.2000 -34.3000 -

44.8000  

From the figure residues {3, 4} and residues {1, 2} have the least correlations and 

hence when the outputs of {3, 4} and {1, 2} are averaged, better outputs are obtained. 

Step 3 in the figure shows the outputs of 1 and 2 averaged and 3 and 4 averaged.  
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Figure 2-6: Steps in Error Analysis  
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3. RESULTS 

 

3.1 Individual Neural Network Connections 

Table 3-1: Static Neural Networks – Individual Results 

S. No Hidden nodes Train R Test R Train MSE Test MSE 

1 80 0.9184 0.8898 0.1703 0.1919 

2 100 0.9158 0.8877 0.173 0.1936 

3 160 0.9098 0.8822 0.1789 0.1977 

4 110 0.9029 0.8783 0.1851 0.2011 

5 150 0.9106 0.8704 0.1781 0.2081 

6 60 0.9135 0.8696 0.175 0.2093 

7 50 0.8925 0.8687 0.1941 0.2081 

8 40 0.9059 0.8663 0.1822 0.2118 

9 170 0.8964 0.8647 0.191 0.2156 

10 90 0.8838 0.86 0.2017 0.2147 

11 180 0.8859 0.8538 0.2 0.2211 

 

Network type = Function Fitting Neural Network 

Train, Validation, Test ratio = {0.7, 0.3, 0} 
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Training Function = Scaled Conjugate Gradient training 

Performance Function = Regularized Mean Squared Error 

Transfer function – {Logarithmic Sigmoidal for Hidden Layer and Linear for Output 

Layer} 

Max Fail Iterations = 51, Epochs = 1500 

Table 3-2: Dynamic Neural Networks – Individual Results 

S. No 

Hidden 

nodes 

Tap Delay 

Length Train R Test R Train MSE Test MSE 

 
1 160 1 0.9402 0.8772 0.1463 0.2035 

 
2 300 1 0.9645 0.8814 0.1134 0.2085 

 
3 240 5 0.9492 0.8717 0.1352 0.2086 

 
4 200 1 0.9544 0.8758 0.1282 0.2092 

 
5 280 1 0.9661 0.8827 0.111 0.2097 

 
6 230 5 0.954 0.8701 0.1289 0.2111 

 
7 250 5 0.948 0.8673 0.1368 0.2117 

 
8 210 5 0.9449 0.8674 0.1406 0.2141 

 
9 220 1 0.9567 0.872 0.1251 0.2157 

 
10 240 1 0.9583 0.8722 0.1228 0.2166 

 
11 282 1 0.9586 0.8914 0.1223 0.1980 
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Network type = Focused Time Delay Neural Network 

Train, Validation, Test ratio = {0.7, 0.3, 0}  

 Training Function = Scaled Conjugate Gradient training 

Performance Function = Regularized Mean Squared Error 

Transfer function = {Logarithmic Sigmoidal for hidden layer, Linear for output layer} 

 Max Fail Iterations = 20,  

Epochs = 1500 

 

Figure 3-1 : NN stress analysis results 
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3.2 Weighted average committee of Neural Networks  

Table 3-3: Static Neural Networks – Committee Results 

S. No Hidden nodes Train R Committee Train R Test R Committee Test R 

1 80 0.9184 

0.9352 

0.8898 

0.9027 2 100 0.9158 0.8877 

3 160 0.9098 0.8822 

 

Table 3-4: Dynamic Neural Networks – Committee Results 

S. No 

Hidden 

Nodes 

Tap Delay 

Length Train R 

Committee Train 

R 

Test 

R 

Committee Test 

R 

1 300 1 0.9645 

0.9673 

0.8814 

0.9139 

2 280 1 0.9661 0.8827 

3 160 1 0.9402 0.8772 

4 230 5 0.954 0.8701 

5 240 5 0.9492 0.8717 
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Figure 3-2 : Committee of NNs stress analysis results 
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3.3 Stacked Generalization  

Table 3-5: Stacked Generalization for Static NN Results 

S. No 

Hidden 

Nodes 

Best Validation 

MSE       

Train MSE       Test MSE 

Train 

R     

Test R       Epochs      

1 16 0.0297 0.1535 0.1842 0.9341 0.8984 807 

2 46 0.0276 0.1324 0.164 0.9517 0.9207 812 

3 66 0.0245 0.1291 0.1603 0.9539 0.9239 783 

4 86 0.025 0.1277 0.16 0.955 0.9242 616 

5 106 0.0313 0.1388 0.1675 0.947 0.9168 481 

6 136 0.0579 0.1603 0.1622 0.9306 0.9225 575 

7 156 0.0259 0.1277 0.1607 0.9551 0.9237 460 

8 176 0.0336 0.1415 0.1657 0.9449 0.9185 355 

9 196 0.0389 0.1424 0.1569 0.9447 0.9272 455 

10 206 0.021 0.1179 0.1627 0.9618 0.922 499 
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Table 3-6: Stacked Generalization for Dynamic NN Results 

 

Stacked Generalization for Dynamic NN 

S. No 

Hidden 

Nodes 

Best Validation 

MSE       

Train 

MSE       

Test 

MSE 

Train 

R     

Test R       Epochs      

1 106 0.0296 0.159 0.1962 0.929 0.8945 944 

2 126 0.0152 0.1053 0.1986 0.9696 0.892 910 

3 166 0.0165 0.1012 0.2277 0.972 0.8693 995 

4 186 0.0168 0.1041 0.217 0.9702 0.8747 850 

5 206 0.0161 0.102 0.2207 0.9715 0.8745 875 

 

Network used - Function Fitting network.  

Data division - 70% for training and 30% for testing 

Training function – Scaled Conjugate Gradient Training 

Performance function - Mean Squared Error 

Transfer function – {Logarithmic Sigmoidal for Hidden Layer and Linear for Output 

Layer} 

Early stopping validation checks – 26 
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Figure 3-3 : Stacked generalization stress analysis results 
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3.4 Negative Correlation Learning for static networks 

 

Figure 3-4 : NNs with NCL stress analysis results  
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Figure 3-5 : Negative Correlation Learning – Epoch by Epoch execution flow 
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3.5 Best Configurations 

Table 3-7:  Best Configurations 

Connection Type 

 

Hidden 

Nodes 

Tap 

Delay 

length 

Test MSE Test R 

Minimum 

Residual 

Correlation 

 

Epochs 

Dynamic NN Individual 282 1 0.1980 0.8914 NA 1500 

Dynamic NN 

Committee - Weighted 

Average 

{300, 280, 

160, 230, 

240} 

{1, 1, 

1, 5, 

5} 

0.1708 0.9139 

 

0.2853 

 

NA 

Stacked Generalization 

– Dynamic NNs 

106 NA 0.1962 0.8945 NA 1064 

Static NN Individual 80 NA 0.1919 0.8898 NA 853 

Static NN Committee - 

Weighted Average 

{80, 100, 

160} 

NA 0.1802 0.9027 0.6882 NA 

Stacked Generalization  

– Static NNs 

196 NA 0.1569 0.9272 NA 408 

Negative Correlation 

Learning – Static NNs 

{80, 100, 

140, 180} 

NA 0.1686 0.9152 0.1383 1161 
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Figure 3-6 : Comparison of Best networks 
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4. CONCLUSION 

 

Linear models were not used for this study considering their ineffectiveness in 

approximation and prediction tasks when compared to non-linear models. Various 

neural network configurations were used to analyze the musculoskeletal knee model. 

The best individual static network was a function fitting network with 80 hidden 

nodes (other specifications are mentioned in Table 3.1) and the best individual 

dynamic network was a focused time delay neural network with 282 hidden nodes 

and tap delay length of 1 (other specifications are mentioned in Table 3.2). 

Committee configurations with weighed average were then studied and the best 

results obtained for static committee (Table 3.3) was a test regression of 0.9027 and 

for dynamic committee (Table 3.4) was a test regression of 0.9139 which clearly 

shows an improvement and advantage of cancelling the correlated errors. Then 

stacked generalization was performed where a static neural network was trained with 

the outputs of the best individual networks. When used over static components (Table 

3.5), this process gave a test regression of 0.9272 for a function fitting network with 

196 hidden nodes which is the best result achieved. For dynamic networks (Table 

3.6), stacked generalization didn’t improve well over the committees. Finally 

negative correlation learning was implemented over a set of static committees which 

produced a test regression of 0.9152 and these results (Table 3.9) make NCL stand in 

the 2nd place right after the stacked generalized network which produced the best test 

regression of 0.9272 (Table 3.9). This confirms the theory that designing networks 
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with uncorrelated errors produce better results than cancelling out the correlated 

errors. This study also confirms theoretical concepts that special neural network 

configurations like committee, stacked generalization and negative correlation 

learning provide considerably better results when compared to individual networks 

themselves. Using neural networks, the simulation time was reduced nearly 40,000 

times when compared to the finite-element models.  

5. FUTURE WORK 

More on regularized mean squared error 

The performance function used throughout this research (except for negative 

correlation learning) is the regularized mean squared error which not only reduces the 

error between the actual and desired outputs but also includes a penalty function which 

reduces the network weights and ultimately results in faster convergence. The 

performance ratio   determines the amount of weights to be reduced per iteration.  

                    [ 
 

 
∑       

    
    ]+       [

 

 
∑     

 ] 
    

The default value used throughout the research is      . This value implies a 90% 

weightage of the mean squared error and 10% weightage of the mean squared weights per 

iteration. However the regularization term should be looked upon more closely by 

varying the performance ratio which would result in a flexible weightage of the amount 

of weights to be reduced per iteration considering the point that a very low   value will 

choose networks smaller than the optimum [Principe et.al 1999]. For instance   
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    can be implemented which imposes equal weightage on the error as well as the 

weights.  

Reconfirming the authenticity of a model 

A neural network model (individual or an ensemble as discussed previously) needs to 

be trained multiple number of times and its test correlation coefficient needs to be noted 

after every training. With these results, an analysis has to be made on the variance of 

these results. If the R values are in the same ball park (with acceptable variance) the 

model is acceptable as the results it produced are trustworthy over several runs. However 

if the variance is too much, this would mean that the particular network topology under 

consideration is unstable and hence not reliable.  
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APPENDIX 

 

A. Various linear and non-linear modeling techniques 

Table A-1: Various linear and non-linear modeling techniques 

Priority 

(low to 

high) 

Model Model representation Pros Cons 

 

 

1 
Transfer 

function 

     
    

    

  
                  

                  
 

For simple 

systems.  

Not suitable 

for highly 

complex 

systems owing 

to the inability 

to factorize 

 

2 

Auto 

Regressive 

(AR) 

     ∑               

 

   

 

Outputs depend 

only on previous 

outputs  

Inputs are not 

used in 

modeling 
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Priority 

(low to 

high) 

Model Model representation Pros Cons 

 

 

4 

ARX 

         ∑          

 

   

      

Provides a unique 

solution using 

linear regression 

analysis. 

Preferable when 

model order is 

high. 

Disturbances 

are modeled as 

part of system  

dynamics. 

Dynamic 

disturbances 

are ignored 

 

 

 

5 ARMAX 

         ∑          

 

   

          

More flexibility in 

handling the 

disturbances (The 

"C" term). Useful 

when disturbances 

enter early in the 

process (Ex: 

inputs) 

 Lesser 

flexibility in 

disturbance 

modeling 

compared to 

Box Jenkins 

model. 
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Priority 

(low to 

high) 

Model Model representation Pros Cons 

 

 

6 

Box Jenkins 

     ∑      
     

     

 

   

     
     

     
 

Completely 

distinct System 

dynamics and 

disturbance 

models. 

Useful when 

disturbances enter 

late in the process 

(inputs) 

Requires lot of 

data. 

 

 

7 

State Space 

                   

                 

 

Provides better 

analysis of the 

system than 

polynomial 

models. Only the 

model order needs 

to be user-defined. 

For high order 

complex 

models, State 

space 

modeling is 

expensive and 

takes lot of 

memory.  
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Priority 

(low to 

high) 

Model Model representation Pros Cons 

 

 

9 

Hammerstein –

Wiener 

                      (    )  

      

 

 

Where g and f are non-linear 

functions while G is a linear time 

invariant system. 

Better analysis 

than NARX due to 

increased 

parameterization 

and extra use due 

to cascade 

connection of non-

linearity and 

linearities. 

 Higher 

computational 

time and 

memory 

usage. 

 

10 

Multi Layered 

Perceptron 

        {∑           

 

   

} 

Where x is the input vector, w is 

the weight vector and y is the 

output vector 

Better 

approximators than 

RBFs 

Complex due 

to extra usage 

of weights and 

more training 

samples 

compared to 

RBFs. Doesn’t 

cover 

dynamics 
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Priority 

(low to 

high) 

Model Model representation Pros Cons 

 

12 

Radial Basis 

Functions 

                 

   {∑           

 

   

} 

Where   is the radial base 

function vector, w is the weight 

vector and y is the output vector 

Uses simple local 

approximations 

which require 

fewer weights and 

training samples 

making the 

algorithm fast. 

Simulation of 

RBFs is time 

consuming 

when 

compared to 

feed-forward 

MLPs.  

Doesn’t cover 

dynamics 

 

 

13 
Time Delay 

Neural 

Networks 

        {∑∑          

 

   

 

   

   } 

Where k is the delay operator  

Covers dynamics 

at the input or 

feedback layer or 

all layers 

depending on the 

model type (tdnn, 

narx or lrn).  

Computational

ly complex 

and not 

accurate 

compared to 

static NNs. 
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B. Error Analysis 

A set of Dynamic and Static networks were considered for performing error 

analysis and operating on 2 individual networks (of same type – static or dynamic) at a 

time, the residual coefficients were computed and the network-duo which produced the 

least residual coefficient was noted. These entries denote the two networks which have 

the least correlated errors. Networks under consideration are given in Table B-1 and the 

      matrices which show the duo residual regressions are in Table B-2.  From this 

table, it is evident that dynamic networks 3 and 10 have the least error correlation; while 

for static networks do not have an error correlation less than 0.7. Hence negative 

correlation learning for static networks was implemented and produced better error 

correlation as discussed in the results section.  
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Table B-2: Error Analysis 

 

FTDNN Models Under Consideration 

 

Static NN Models Under Consideration 

Model 

Hidden 

Nodes 

TDL 

Test 

MSE 

Test 

R 

Model 

Hidden 

Nodes 

TDL 

Test 

MSE 

Test 

R 

1 320 1 0.21667 0.88 1 80 NA 0.1919 0.89 

2 312 1 0.21112 0.88 2 100 NA 0.1936 0.89 

3 260 1 0.2311 0.87 3 60 NA 0.2093 0.87 

4 180 1 0.23524 0.85 4 150 NA 0.2081 0.87 

5 250 10 0.24615 0.83 5 170 NA 0.2156 0.87 

6 240 10 0.2465 0.83 6 90 NA 0.2147 0.86 

7 240 10 0.25073 0.82 7 180 NA 0.2211 0.85 

8 260 10 0.25285 0.81 8 70 NA 0.2248 0.84 

9 270 10 0.25524 0.81 9 120 NA 0.2293 0.84 

10 250 10 0.25846 0.81 10 10 NA 0.2406 0.82 
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Table B-3: FTDNN Residual Correlation Coefficients 

FTDNN Residual Correlation Coefficients 

Model 1 2 3 4 5 6 7 8 9 10 

1 1 0.822 0.7902 0.7515 0.346 0.3211 0.331 0.333 0.344 0.32 

2 0.822 1 0.7876 0.7497 0.37 0.334 0.342 0.341 0.352 0.32 

3 0.7902 0.788 1 0.7835 0.316 0.2925 0.306 0.293 0.317 0.29 

4 0.7515 0.75 0.7835 1 0.358 0.3248 0.361 0.351 0.362 0.35 

5 0.346 0.37 0.3156 0.3584 1 0.8222 0.829 0.839 0.83 0.83 

6 0.3211 0.334 0.2925 0.3248 0.822 1 0.837 0.837 0.841 0.83 

7 0.3305 0.342 0.3057 0.361 0.829 0.8367 1 0.86 0.848 0.86 

8 0.3328 0.341 0.2929 0.3514 0.839 0.8366 0.86 1 0.85 0.86 

9 0.3441 0.352 0.3172 0.3623 0.83 0.841 0.848 0.85 1 0.86 

10 0.321 0.324 0.2853 0.348 0.829 0.8321 0.863 0.855 0.865 1 
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Table B-4: NN Residual Correlation Coefficients 

NN Residual Correlation Coefficients 

 

Model 1 2 3 4 5 6 7 8 9 10 

1 1 0.79 0.7881 0.7814 0.721 0.7757 0.732 0.722 0.743 0.71 

2 0.7901 1 0.7901 0.7955 0.757 0.7706 0.732 0.725 0.731 0.71 

3 0.7881 0.79 1 0.7985 0.752 0.7656 0.726 0.733 0.719 0.71 

4 0.7814 0.796 0.7985 1 0.762 0.777 0.743 0.74 0.74 0.72 

5 0.7207 0.757 0.7515 0.7617 1 0.7261 0.695 0.703 0.7 0.69 

6 0.7757 0.771 0.7656 0.777 0.726 1 0.768 0.821 0.805 0.82 

7 0.7323 0.732 0.7257 0.7429 0.695 0.7684 1 0.752 0.751 0.75 

8 0.7223 0.725 0.7327 0.7396 0.703 0.8208 0.752 1 0.825 0.88 

9 0.7427 0.731 0.7186 0.7395 0.7 0.8051 0.751 0.825 1 0.83 

10 0.7082 0.714 0.7101 0.7243 0.688 0.82 0.754 0.882 0.83 1 
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