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On Cross-Domain Social Semantic Learning

Suman Deb Roy

The University of Missouri, 2013

Supervisor: Wenjun Zeng

Abstract

Approximately 2.4 billion people are now connected to the Internet, generating
massive amounts of data through laptops, mobile phones, sensors and other electronic
devices or gadgets. Not surprisingly then, ninety percent of the world's digital data was
created in the last two years. This massive explosion of data provides tremendous
opportunity to study, model and improve conceptual and physical systems from which
the data is produced. It also permits scientists to test pre-existing hypotheses in various
fields with large scale experimental evidence. Thus, developing computational algorithms
that automatically explores this data is the holy grail of the current generation of
computer scientists.

Making sense of this data algorithmically can be a complex process, specifically
due to two reasons. Firstly, the data is generated by different devices, capturing different
aspects of information and resides in different web resources/ platforms on the Internet.
Therefore, even if two pieces of data bear singular conceptual similarity, their generation,
format and domain of existence on the web can make them seem considerably dissimilar.
Secondly, since humans are social creatures, the data often possesses inherent but murky

correlations, primarily caused by the causal nature of direct or indirect social interactions.
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This drastically alters what algorithms must now achieve, necessitating intelligent
comprehension of the underlying social nature and semantic contexts within the disparate
domain data and a quantifiable way of transferring knowledge gained from one domain to
another. Finally, the data is often encountered as a stream and not as static pages on the
Internet. Therefore, we must learn, and re-learn as the stream propagates.

The main objective of this dissertation is to develop learning algorithms that
can identify specific patterns in one domain of data which can consequently augment
predictive performance in another domain. The research explores existence of specific
data domains which can function in synergy with another and more importantly, proposes
models to quantify the synergetic information transfer among such domains. We include
large-scale data from various domains in our study: social media data from Twitter,
multimedia video data from YouTube, video search query data from Bing Videos,
Natural Language search queries from the web, Internet resources in form of web logs
(blogs) and spatio-temporal social trends from Twitter.

Our work presents a series of solutions to address the key challenges in cross-
domain learning, particularly in the field of social and semantic data. We propose the
concept of bridging media from disparate sources by building a common latent topic
space, which represents one of the first attempts toward answering sociological problems
using cross-domain (social) media. This allows information transfer between social and
non-social domains, fostering real-time socially relevant applications. We also engineer a
concept network from the semantic web, called semNet, that can assist in identifying
concept relations and modeling information granularity for robust natural language
search. Further, by studying spatio-temporal patterns in this data, we can discover

categorical concepts that stimulate collective attention within user groups.
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Using these various disparate data from different domains, my dissertation aims
to assert that intelligent learning is a mixture of two parts: combinatorial knowledge
representation from diverse data, and transferring the gained knowledge appropriately to
tackle a new task which could not be solved elegantly without the synergy. In summary,
this work demonstrates that traditional learning models for classification, prediction and
recommendation (such as Support Vector Machines, Latent Dirichlet Allocation, Genetic
Algorithms, Conditional Random Fields, Decision Trees, Path Analysis, Probabilistic
Automata) can be boosted by algorithmically transferring related social and semantic data

from cross-domains.
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CHAPTER 1: INTRODUCTION

Over the last decade, two ideas have fundamentally disrupted how humans attain
information. The first involved engineering powerful search algorithms, which can
quickly parse through the plethora of online resources for contextual facts. Online search
allowed users to gain instant, accessible and often expert information regarding topics
that they or their real world social circle often lacked. Although automated search
technology might have first seemed to distance humanity from the direct need of
social/inter-personal advise, soon another technology was born that gave ordinary users
the power to not only to publish and share information online, but to become content
creators themselves. Online Social Networks and Social Media revolutionized
information diffusion in societies, compelling traditional media, advertising and
technology companies to honor the wisdom of the crowds.

The idea of online search and online social networks is erected on two separate
factors. Search technology is driven by an algorithm's understanding of a user's query
intent. The user intent is indicated by the meaning of the search query, also known as its
semantics. On the other hand, social media is built on users sharing information with each
other where millions of micro-level user interactions give rise to macro level social media
trends. The shared data inherently bears a social footprint by means of the network motif
where it was shared or edges through which it spread to new users. This chapter begins
with the proposition that intelligence includes processing data from different domains and

understanding cross-domain associations among data.



1.1 Data and Intelligence

The fundamental trait of what we perceive is that it somehow generates data. We
see objects because it reflects light, millions of photons as data. We hear music because
of audio signal data. As we perceive more data, our mind starts detecting patterns in the
data. Thus, humans gain experience, knowledge, wisdom, insights, ability at problem-
solving, drawing analogies and much more. All these abilities make us intelligent.
Current computational methods can replicate some of these abilities in isolation,
including audio/image/video data analysis, text mining etc etc.

Intelligent algorithms of the future must understand two attributes of data: its
semantics and its social nature. The task is challenging, since the audio/video/textual data
has associated graphs - social and semantic. Also, the data exists in various domains of
the Internet (e.g., social streams, video sharing platform etc.). The different domains give
rise to various non-related attributes to the data, e.g., making it real-time, noisy in
grammatical construction, too huge in size to process in one machine, or having variable
interpretation based on context. Therefore, a bunch of traditional algorithms fail to scale
to these new properties of the data, which has been popularly termed as, Big Data.

Human intelligence is a product of evolution. From Darwin's theory of evolution,
we know that survival is directly correlated with adaptation to change. Any intelligent
agent's adaptation to change is dependent on how quickly it can modify its action strategy
in a new environment. The choice of strategy in the new environment further depends on
how quickly it can learn about the new environment itself. Thus, the key to intelligent
adaptation is learning, and transferring the learned information into successful actions
required to accomplish a new task. In a similar fashion to most adaptable intelligent
organisms, machine learning algorithms of the future must adapt to the features of this

new social and semantic data existing in cross-domains over the Internet. In the next
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three sections, we explore three issues key to this dissertation, (a) the advent of big data,
(b) their feature disparity due to the existence of this data across domains, which
essentially complicates designing of a combined learning strategy, and (c) how new
algorithms that transfer information from one domain to another can be built beyond

existing single-domain machine learning.

1.1.1 Big Data

The advent of the Internet, faster processors, cheaper tablets and powerful mobile
technology has enabled humanity to interact with each other and the surrounding
environment with unprecedented elasticity. Our online activity, collected through
ubiquitous information-sensing digital devices, creates a digital world around us that is
getting progressively more local. Through these networked devices, we communicate
with human and artificial intelligence in various ways on a daily basis, ranging from our
social network activities to every web search we query. In this information ecosystem,
there is also the pervasive presence of systems that record each of our digital
correspondences. Such correspondence could include social network status updates,
surveillance camera recordings, uploaded videos in YouTube, searches on mobile
phones, the GPS tag in an uploaded photo etc. As of 2011, there 2.4 billion online users.
Each individual is generating data every time he/she interacts with the networked digital
world, resulting in massive amounts of data being generated. This has created an
explosion in the amount of digital data available, so much so that 90% of the world's
current digital data was created in the last two years!

Thus was born Big Data - a compilation of large complex data sets collected from
various sources and information-sensing domains. Examples of Big Data include, but are

not limited to, web logs, sensor network data, RFIDs, social network and social media



data, organic Internet data (web documents), atmospheric science data, genomic
databases, surveillance data, healthcare and medical records, video archives and e-
commerce data.

Big Data has unique characteristics which make search, analysis, interpretation
and visualization of such data considerably challenging using traditional database tools.
The first challenge is to store and analyze the large volume of data generated. Consider
the social micro-blog Twitter, where users generate almost 600 GB of tweets per day.
Secondly, the Big Data is often in motion, having velocity or stream inflow. For example,
Twitter generates around 300 tweets/second under normal operations. In peak
circumstances (e.g., the Euro 2012 soccer finals), Twitter has been known to generate
almost 15000 tweets/second. This means analysis and prediction models needs to be
latency-sensitive so that the data change rate can be balanced against the decision
window. Thirdly, the breadth of interpretation of such data varies largely with context.
This has profound implications on predictions involving product strategy, brand
sentiment etc. Finally, the data has significant variety depending of source of creation,
arriving in different formats including unstructured data. In other words, each data set
originates in some domain (e.g., social streams, video archives, semantic web)
contributing to domain-specific features. Fig. 1 illustrates these key properties of Big

Data.
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Figure 1: Properties of Big Data.

In spite of all the challenges involving intelligent analysis of Big Data, the
promise it holds is immense. Big Data could be leveraged to develop and improve
applications ranging from high frequency trading, real-time fraud detection, social media
based recommendation, network traffic shaping and popularity based content caching,
activity based advertisement, transportation and social gaming to name a few. Moreover,
there is a non-deterministic angle to Big Data: it has the potential to facilitate exploratory
search, model based analytics and support expert systems like Watson. Essentially, unlike
usual data, Big Data allows a researcher to explore what questions to ask.

Let us consider a few of such questions, e.g., is it beneficial to connect Big Data
existing in different domains? Can data from one domain explain the observed behavior
of data in another domain? If yes, then how can we go about in building frameworks that
allow connections between Big Data from different sources for seamless information

transfer!? Will a synergy between data from cross domains help us in better prediction

1 Seamless information transfer occurs when each of the four challenges (volume, velocity, variability and
context) in handling Big Data is tackled in every domain involved in cross-domain learning
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than existing models based on data from a single domain? How can we make such cross-
domain learning techniques scalable? Will cross-domain learning allow us to build
ingenious new applications that could not be supported by traditional single domain
approaches?

Questions such as the ones stated above are not being tackled currently in the Big
Data community, since researchers are predominantly occupied with improving
application performance in a single domain. However, as we will show in this work, the
key to improving prediction-based performance in one domain is by understanding why
the domain data is behaving the way. The crucial factor in understanding data behavior is
realizing that these domains are not independent, but strongly causal. We will call two
domains causal if the generated data in one domain directly or indirectly affects the
generated data in another domain. Understanding causality is one of the vital ingredients
in envisioning a cross-domain learning systems, since the main aim of learning from one
domain is so that we can make intelligent predictions in another domain. Causality
analysis of domains can help learning cross-domain models that depict true data
generating mechanisms and improve predictions that account for changes in the
conditional distribution of the target variable.

Therefore, the real objectives that need fulfillment to fabricate cross-domain
learning approaches are: (1) Detect causal domains, (2) Develop a framework that allows
for seamless information transfer between these domains, and (3) Discover novel
applications supported by the synergy between the two cross domains, which are

generally realizable exclusively by cross-domain learning approaches.

1.1.2 Cross-Domain Data



Media on the Internet is unevenly distributed depending on platforms, popularity
and bias. Its power is limited by the domain where it originates. For example, video
popularity is usually judged by view count [25], but not by how trending the video topic
is. We observed that viral videos, which spread by sharing, do not usually contain any
common topics with the trending topics in social media. Another example is that Twitter
users can only see related media shared in Twitter, but not from external sources. This
compels users to perform unguided search in external resources manually. Such video
sites are more often than not filled with an explosion of video/image information. Thus,
we feel the need for better cross domain media recommendation systems to be a key
constituent to social search and empower online media. Such media are collected from
cross domain resources, and are not constrained by the bias of the social site or the
analytics of the video publishing site. Thus, incorporating social knowledge into
traditional media applications requires cross-domain information transfer, which contains
the wisdom of the crowds. It is therefore important to develop a cross-domain knowledge
transfer mechanism from the crowd-sourced social domain to traditional media (video)
domain.

There are various kinds of media on the Internet - some publish interest specific
information, some share in real time and some provide crowd sourcing options. Although
multimedia has become a primal entity on the Internet beating text-only content (like
XML), it is essentially distributed disparately, e.g., tweets about Haiti Earthquake in
Twitter and videos about the same event in separate video publishing sites like YouTube
are potentially disconnected, unless users explicitly link them. The socialized power that
each kind of media can enhance others has not been fully realized. For example, do
trends detected in social streams have latent relations with user search patterns in video

publishing sites? If such similar associations can be drawn and analyzed, user experience



in one media domain (e.g. social stream) can be enriched by virtue of information in
another media domain (e.g. video publishing). This can help solve some problems that
purely multimedia techniques cannot accomplish elegantly [22], such as better modeling

of video popularity using socially trending topics/events.

Group events

Personalized Updates

-~

Twitter Streams

Web images

Figure 2: Existence of media resources in disparate domains on the Internet.

Social Media

Social Media gives ordinary people the power to be content creators and
information disseminators. This information is embedded in multimedia shared across
social networks, containing valuable indications about various facets of human life - what
captures our attention, our sharing biases and digital traces we abdicate.

Social media has become a disruptive platform for addressing many multimedia
problems elegantly[4]. It has penetrated every realm of business and academia

(marketing, advertising, journalism, broadcast, stock markets etc.) and its existence is
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ubiquitous. Moreover, remarkable insights can be extracted from social media. For
example, real-time social data is being utilized in a number of scenarios - from
visualizing political activity and flu outbreaks [80, 98], forecast and prediction to
sentiment detection [99] and emergency advisory systems [97].

Social media has also largely affected existing models of communication and
information retrieval. Akamai, a content-distribution company, recently reported that
traffic from social sites has multiplied by five times in 2012, capping at 1 million requests
per second. This has strong implications on traffic shaping for computer networks.
Audiences are turning to social sites to ingest traditional news, e.g., 78% of web traffic to
the New York Times website comes from just Facebook and Twitter combined. The rest
22% arrives from the organic web. Existing political and non-profit campaign prediction
models, search tools and media recommendation has also changed to incorporate the
massive amounts of social data generated every day.

One aspect of social micro-blogs like Twitter [80] is its short text format, which is
fast and real time. Thus, social media data hits the web faster than articles, images, or
videos on the same topic. In the chain of digitization of a real-world event (Fig. 3), social
stream data like tweets from Twitter are often the source of breaking news. In fact some
famous breaking news in the last year has been captured first as tweets, including the
death of Osama Bin Laden, the Hudson plane crash, announcement of the royal wedding
etc. This property can be leveraged to resolve interesting real time applications, e.g.
semantic video indexing [19] and topic evolution and topic tracking [83].

It remains challenging to extract relevant and valuable information from social
streams (e.g., Twitter) and correlate social media across different domains. One reason is
due to the noisy nature of social streams. For example, each tweet in Twitter is limited to

140 characters. This severely hinders techniques based on ‘bag-of-words’. The tweets are



often noisy and improperly structured in grammar/syntax, which makes them difficult to
process using standard Natural Language Processing tools. An additional concern is that
the incoming data of tweets typically arrives in high-volume streams (bursty traffic) and
thus, algorithms mining them must scale in learning (for decomposition methods based
on Normalized Cut are too slow to scale). Efforts such as Social multimedia signal
processing aims to transform the noise-like phenomena in social media into signals useful
for building novel socially-aware multimedia applications and targeted advertising
techniques, and exploring new marketing methods and a fresh way to look at the

existence of multimedia in online social networks.

Online Video
Social Streams, Publishing, e.g., News Publishing
e.g., Twitter _ YouTube sites, e.g., CNN

Real world
event = L v L v >
occurs A\
Time
MOIJI.|9 flicle Photo Publishing
Sharing, e.g., Flick
Instagram s €.8., TlICKT
Figure 3: Chain of Digitization of real-world event.

Semantic Web Data

The semantic web is the next stage of evolution of the world wide web (WWW),
where computers will not only be able to exchange data based on standard formats and
protocols (like HTML), but also interpret contextual information in the data in an
automated fashion, allowing machine readable assistance to users in making sense of the

huge amount of information on the web [40]. The idea has been popularized as Linked
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Data. Unlike the WWW where computers are connected, the Semantic Web is built on
top of WWW where data is connected, or linked - hence the name Linked Data.

The unit of the Semantic Web is a data model called the Resource Description
Framework (RDF), which is similar to the classic entity-relationship conceptual model of
organizing data. Each RDF entry is composed of three parts in the form of a triple
<resource><property><value>, where the <value> is the Universal Resource Identifier
(URI) of the resource, the describes an attribute of the resource and the represents the
specific object value of the attribute. An example RDF is
<http://dbpedia.org/resource/Abraham_Lincoln>
<http://dbpedia.org/ontology/birthPlace> <http.//dbpedia.org/resource/Kentucky>

where the resource is ‘Abraham_Lincoln’, the property is ‘birthPlace’ and the
value of that property is ‘Kentucky’. Thus, RDFs represent a subject-predicate-object
expression for some resource on the Web. The general query language for RDF datasets
is called SPARQL [40], which is a SQL like language to traverse through RDF resources.

Built on top of RDFs, is a family of formal languages called Simple Knowledge
Organization System or SKOS. It represents higher concepts than mere entity resources,
specifically thesauri, classification schemes, taxonomies etc. The system has one core,
called the SKOS core and many SKOS extension based on the field of classification. The
core represents common concepts found in most fields. Concepts are organized in

hierarchies.

Natural Language Data

Although understanding the rules of natural language is predominantly a branch
of linguistics, artificial intelligence plays a big role in this task by extracting similar
patterns in sentences, revealing the rules of the grammar itself. Irrespective of the content

of the sentence, a certain set of grammatical rules must be followed in constructing the
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sentence, without which, the semantic information in the sentence cannot be interpreted
by the reader [47]. Fundamentally, every language has three key parts: (a) a lexicon
which is similar to the vocabulary, (b) a parser than can show dependency of words and
(c) a grammar, which upholds the lexical relationship in the sentence and necessary to
understand the internal representation.

Natural language texts occur almost all over the Internet. In fact, apart from
tweets, videos, music or animation, most other written content on the web is in natural
language. Thus, the importance of extracting semantic meaning from natural language is
of immense importance. Unfortunately, humans often tend not to follow standard rules of
sentence constructions [57]. This will often confuse an automated algorithm trying to
extract semantics of the natural language sentence [52]. Therefore, it is key to find robust
algorithms which can understand that diverse constructions of natural language sentences

might still bear the same user intent, as is often encountered in web search queries [53].
Multimedia Video Data

A video is a sequence of images played at a particular frame rate, creating an
impression of continuous moving image. Video data has several attributes, including
aspect ratio that describes the dimensions of video screen and video picture elements,
compression scheme which balances the quality vs. increased data rate, quality which can
be measured with metrics like PSNR etc.

With the advent of video publishing sites like YouTube [25], users can upload
videos captured with the cameras onto the Internet. Such videos usually also come with
meta data, such as the title, tags, description etc. This metadata is critical for video search
engines to retrieve relevant videos based on user queries [26]. Extracting content
information from the video signal itself (also called visual words) is another way to

estimate the context of the video. However, slight variations in object recognition can
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mislead the visual word extractor, thus, many video sites utilize only tags as keywords for

video recommendation.

Spatio-Temporal Data

Finally, a new type of data is emerging in research nowadays called Spatio-
temporal social data. This data is essentially a time series of some signal generated by
some entity or groups of entity, which has a spatial component to it [83]. Thus, the signal
spreads out not only in space but also in time. The data could just be in the form of a

series of time stamped locations.
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Figure 4: Dispersion plot showing spread of the geographical Aurora trend.

A simple example of spatio-temporal trends is the geographical spread of a

Twitter trend. When people in particular geographical locations talk increasingly about
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some topic on Twitter, it is captured as a trend for that location [81]. This trend has an
origin in a particular location, and then spreads to other locations as more and more
people begin to talk about it in Twitter. Shown in Fig. 4, is the spread of the Twitter trend
#Aurora, which reflects the discussion about the tragic theatre shooting in Aurora,

Colorado.

1.1.3 Learning Algorithms

A learning algorithm discovers patterns from data, and uses it to make predictions
or classifications on new data. The data must be independent and identically distributed.
It must also maintain the same distribution throughout its period of generation, barring
which, the learning algorithm must adapt to the new distribution [7]. The learning
algorithm is embodied by the classifier - a program that classifies data based on
previously seen patterns. Two key tasks that any learning algorithm must accomplish are
representation of the data using features and generalization. The latter is the ability to
accurately predict class or label of unseen data.

Learning algorithms belong to the field of artificial intelligence called Machine
learning [7]. It deals with algorithms that learn from experience in discovering
conjectures and knowledge from specific data, rooted in statistical and computational
principles. Given the algorithm has seen an instance of some data, with certain features
and a known class, it can make intelligent prediction about the class of a new instance by
reading the features of the latter.

The taxonomy of learning algorithms include (a) supervised learning, where the
learning function maps inputs to desired outputs (also called labels), (b) Unsupervised

learning, where the learning algorithm clusters similar data into groups since labels are
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not known in advance, and (c¢) Semi-supervised learning, where both labeled and
unlabeled data is utilized to build a classifier.

Many learning algorithms are known to researchers, including Decision Trees
[44], Conditional Random Fields [62], Artificial Neural Networks, Support Vector
Machines, Clustering, Genetic Algorithms etc. [100]. Applications of such algorithms
have found wide adoption in academia and industry for tasks such as computer vision,
natural language processing, stock market analysis, computational advertising,
information retrieval, sentiment analysis and recommender systems.

Some major drawbacks of current learning algorithms include their requirement to
have identical distribution of features in both the training and test data, non-portability
across multiple domains, too much reliance on statistics only causing over-fitting etc.
(ANN) , inability to be implemented efficiently over a cluster (topic models). In this
thesis, we shall augment these algorithms to transfer information between cross-domain

media.

1.2 Motivation

There are several challenges in building learning algorithms that can scale big
data constraints, learn from disparate feature sets of cross-domain data and transfer
information among domains. Below are mentioned some key challenges addressed in this

research.

Challenges in Learning from Social Streams

1. Dealing with the noisy, incomplete, ambiguous, and short form nature of

social stream data. Each tweet is limited to 140 characters and often
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improperly structured in grammar/ syntax. Traditional language model
(e.g., Bag-of-Words) would fail to scale up with such kind of data..

Social streams are real-time, trends appear and disappear within minutes.
Twitter data is generated often at an average rate of 5000 tweets/ second,
requiring the learning algorithm to scale (learn topics from one chunk

before next chunk appears) with the incoming burst of data.

Challenges in Transferring information from Social to Video Domain

3.

Developing an unified framework to combine the social and multimedia
feature information which has different domain-specific properties.

We need to align combinatorial features across two (cross) domains of
data. For example, tweets from Twitter has a different feature set
compared to videos from YouTube. Thus, we need to detect common
feature that can describe both data.

Formulating a transfer learning algorithm that can seamlessly propagate
the knowledge (i.e. social topics) mined from the crowd sourced social
streams to the video domain in real-time.

The scaling up and adaptation of the transfer learning algorithm to the ever

bursty real-time nature of the social streams.

Challenges in Learning from the Semantic Web

7.

Building a graph database (Concept Graph) from Semantic RDF data that
can relate concepts, and not just resources.

Developing metrics that utilize the Semantic Web to quantify the semantic
coherency in a topic or collection of entities.

Using the network properties of the Concept Graph to explore various

aspects of information, such as granularity or communities.
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Challenges in Transferring Semantic Information from Concept Graph to Natural
Language Search Queries

10. Designing a canonical form for every natural language query, that can
directly interface with the graphical structure of the Concept Graph.
11. Performing query expansion (new words related to the query words) using

the links in the Concept Graph.

Challenges in Learning from spatio-temporal social trends

12. Designing a criterion that models attention in social network user
communities.
13. Developing metrics that characterizes various attributes and the spread of

spatio-temporal social trends.

1.3 Contributions

This dissertation makes contributions to areas of Computer Science that deal with
learning from cross-domain data, aiming to string together an several approaches of
simultaneously learning from data which are generated in disparate Internet domains. The
key idea is that data in various domains can be beneficial to other domains, and if we can
learn intelligently from that data, align combinatorial features across domains then
efficient information transfer can be realized (Fig. 5). We evaluate our theory on social
media data, multimedia data, natural language search data, spatio-temporal social trend
data and semantic web data.

The main contributions of this dissertation are as follows:
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(1) We propose the concept of bridging social media and traditional media from
disparate sources by building a common latent topic space, which represents one of the
first attempts toward answering sociological problems using cross-domain social media.

(2) We propose SocialTransfer, a novel transfer learning framework based on
efficient graph spectra analysis by seamlessly integrating the topic space learned from
social stream in real time.

(3) We develop several socially aware media applications based on
SocialTransfer, which could otherwise hardly be realized in conventional approaches,
and evaluate through large scale real-world social media data.

(4) We construct a graph database from the Semantic Web called the Concept
Graph, that can be used to categorize and extract concepts from texts from various data
domains on the Internet. It can further be used to model the semantic coherence within a
group of entities (text or media).

(5) We show how the semantic concept graph can enable us to accomplish cross
domain tasks such as natural language search, predict movie profitability and extract
cultural patterns from journalistic publishing.

(5) We propose a cognitive model to tackle the noise in natural language query
constructions. We computational develop this model and present results proving that the
computational cognitive model is closer to human intent in query constructions.

(6) We devise metrics that characterize the various aspects of spatio-temporal
social trends. Using these metrics, we build an automaton that can predict the attention of

various user communities on Twitter with respect to topics of interest.
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1.4 Organization of the Dissertation

Chapter 1 introduces readers to the three topics this dissertation will focus on time
and time again: big data, cross-domain data and learning algorithms. It also provides
motivation for the importance of this research and the considerable challenges we need to
overcome to build scalable solutions.

In Chapter 2, we discuss the technical background required to comprehend this
research, focusing specially on topic modeling algorithms, transfer learning, natural
language processing and search, semantic networks and various multimedia applications
that could be improved with a social flavor. In this chapter, we want to clearly point out
the existing and state of the art research in these fields, so that our contribution in the
future chapters is clear.

In chapter 3, we encounter our first real world dataset - Twitter tweets, and focus
on a scalable way to learn topics from this social stream data. In doing so, we portray the
novel idea of an intermediate topic space between various media domains. We also
mention our proposed Online Streaming LDA algorithm for real time topic learning from
social streams.

In Chapter 4, we present our novel transfer learning algorithm, called
SocialTransfer. We argue the social signal penetration theory on which our transfer
learning scheme is based. Lastly, we demonstrate three novel socially-aware multimedia
applications built on top of the SocialTransfer framework. Here, we deal with both social
and video data.

In Chapter 5, we dive into semantic data for the first time. Our goal in this chapter
is to build a semantic network from existing RDF data. We further show how this

semantic network is useful in various categorical classification tasks on real world data.
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Moreover, the semantic network can be leveraged to measure the semantic coherence of a
group of words.

In Chapter 6, we aim to find semantics in natural language search queries. In
order to do so, we leverage a cognitive model of semantic information understanding.
Using the concept network and a learning technique called Conditional Random Fields,
we recreate the cognitive model and use it to better understand natural language queries.

In Chapter 7, we utilize spatio-temporal social trends to model the attention of a
group of users in the social network. The learning model which predicts the attention of
an user group with respect to some trend is called the Attention Automaton.

Finally, in Chapter 8, we conclude the dissertation, discussing the how our work
tackles the cross domain and the information transfer issue in the current state of the

Internet. We also suggest applications of our work and future research in this field.
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Figure 5: Information Transfer across Cross-Domain Data using an intermediate topic
space.
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CHAPTER 2: BACKGROUND AND RELATED WORK

In this chapter, we focus on the technical background required prior to diving
deeper into this dissertation. We shall also mention key state-of-the-art research results so
that it is easy to distinguish our contributions from existing previous work. Since we deal
with different kinds of data, we shall focus on technologies that have been studied in
relation to some of this data. A major portion of these technologies belong to the field of
intelligent information understanding, machine learning and recommendation systems.

We begin with topic modeling, the art of extracting topics from a collection of
documents. Then we discuss a specialized branch of machine learning called transfer
learning, which is applicable when the task to be solved/automated belongs to a domain
where the labeled (training) data is not. However, some other domain has labeled data
and thus, we must transfer information between domains. Following this, we discuss the
growing area of natural language search which focuses on understanding user search
intent from natural language queries, specifically beyond keyword oriented techniques. A
significant portion of this dissertation deals with finding semantics in information.
Therefore, we discuss semantic networks, semantic web and linked data research. Finally,
we mention several multimedia applications that are gaining popularity and can be better
realized using social and semantic signals. Often, these signals do not originate in the
multimedia domain, but in some cross domain. Therefore, we must detect and estimate
these social and semantic signals, transfer them across domains, and improve

recommendations in the multimedia domain.
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2.1 Topic Modeling

Recently, topic modeling has gained a lot of popularity in analyzing semantic
context in textual data [95]. Topic modeling originates from the impression that the
construction of any sentence entails a mixture of topics [90]. Each word that the writer
chooses to be part of the sentence is drawn from a mixture of topics in his head.
Consequently each sentence, composed of these words, will also develop a membership
towards some topics and not so much towards others. Thus, we can consider the mixture
of topics to be the cause behind the generation of the entire document. Each document is
a distribution over topics [89]. Topic modeling aims to uncover this inherent distribution
of topics that guide the creation of the document.

A topic is an abstract concept. It is a collection of words, which when grouped
together make some semantic sense. Another word for 'showing semantic sense' is to
exhibit 'semantic coherence'. There are several popular methods to uncover the
underlying topic distribution given a set of documents, such as Latent Dirichlet
Allocation [101], Probabilistic Latent Semantic Analysis [89], Hierarchical topic
models[88], Latent Semantic Analysis [90] etc. As mentioned earlier, the goal of topic
modeling is to generate several clusters of words. Each cluster represents a particular
topic. The result of topic modeling is to generate two distributions, namely the topic word
distribution P(w|z) and the document-topic distribution p(z|d). Before we dive into LDA,
we will first briefly discuss its predecessors, PLSA and LSA and the general vector space
model.

The vector space model is a technique of representing documents as vectors of
terms, usually the words in the documents. Each dimension corresponds to a separate

term and when a term occurs in a document, its value in the vector is non-zero. Then, the
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cosine of the angle between two vectors indicates the similarity between documents
represented by the corresponding vectors.

LSA falls into the category of vectorial semantics, where the features in a natural
language sentence is represented by its words. Again, each document can be represented
by a vector of words. The goal of LSA is to detect words that are semantically close.
Given a collection of documents, each document can be represented as a column and the
each word can represent the row. This generates a term-document matrix containing
where each cell contains the number of times the word occurred in the document.
Following this, a mathematical technique called Singular Value Decomposition is used to
reduce the number of columns while preserving the similarity structure among rows
[102]. Then, the cosine similarity between two rows represents how similar the two
words are. Values close to 1 indicate very similar words while values close to 0 indicate
dissimilar words.

The disadvantage of LSA is its inability to detect polysemy. It also assumes that
words and document hold a joint Gaussian probability model, however research has
shown this distribution is often Poisson [91]. The alternative to this is using a
multinomial model, which is the basis of PLSA.

Probabilistic Latent Semantic Analysis is also statistical technique to understand
co-occurrence of words in textual data. Unlike LSA which reduces a term-document
matrix using linear algebra, PLSA uses a mixture decomposition from latent class
models. As with LSA, let us assume there is a co-occurrence (w, d) of words and
documents. PLSA models the probability that each co-occurrence was a mixture of

conditionally independent multinomial distributions, i.e.

P(w,d) = Z P(c)P(d|c)P(wlc) = P(d) 2 P(cld)P(wlc)
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where the latent class is ¢. More popularly, PLSA and LDA is often represented
by the plate notation, shown in Fig. 6, where M is a set of documents, d is the document
index, c is the word's topic drawn from the document's topic distribution P(c|d) and w is
the word drawn from the word -topic distribution P(c|z). The shaded circles (w and d) are
observable whereas the unshaded topic (c) is the latent variable. Of course, the number of
parameters to learn equals cd + wc. These parameters can be learned using the

Expectation Maximization algorithm [92].

M

Figure 6: The plate representation of Latent Dirichlet Allocation.

In essence, LDA is very close to PLSA in terms of how terms and documents are
treated. The major difference is that LDA is completely generative model overlapping a
Hierarchical Bayesian model. In other words, PLSA does not maintain a prior probability
on the parameters to be learned. But LDA assumes this parameters are itself variables and
thus can be treated as hyper parameters with prior probabilities. This prior is drawn from
a Dirichlet distribution, owing LDA its name.

LDA introduces two prior probabilities alpha and beta which affect how the per-
document topic distribution and the per-document word distribution respectively behaves.
As shown in Fig. 6, the outer plate represents a set of documents M while the inner plate

represents the inner represents the topics and words within one document N.
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The limitations of current topic modeling algorithms include the scalability with

streaming or bursty set of documents, interpretability of the topics themselves and ..

Social Stream Topic Mining

Social data from Twitter streams can be mined to build a relevant topic space
using topic modeling [17, 21]. Such topic space can act as a bridge between the social
and the traditional media domain, supporting multimedia applications like social video
recommendation and social video popularity. Topic modeling aims to extract topics from
large corpus of unlabeled document by using generative models like Latent Dirichlet
Allocation (LDA) [12]. There have been previous efforts to incorporate social data for
recommendation [18, 23], but they do not use social streams specifically [21]. Social
streams are more challenging to extract topics from; due to their dynamic, noisy, short
and real-time nature [17]. Thus, large scale matrix decomposition is infeasible for social
streams [18].

Previous research on mining social stream data assumes that the entire tweet
stream is available to the algorithm at the beginning of the run. This assumption is only
applicable in ideal case; it does not hold in real life situations. In our paper, we simulate
the tweet stream in pseudo real-time, where the SocialTransfer algorithm has not seen the
entire tweet stream in advance. Instead, the complete timeline is divided into time slots,
and a certain number of tweets occupy each time slot as they are generated in real life,
similar to the technique in [1]. Tweet chunks are fed to the SocialTransfer algorithm in
time-sequential batches based on the time slots in which they are generated (pseudo real-
time). We show later how Social- Transfer is a unique method to combine scalable social
stream topic modeling and transfer learning; providing a natural interface for topic
modeling to fit into the process of transfer learning and seamlessly integrate topic model

and transfer learning.
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2.2 Transfer Learning

Common machine learning techniques traditionally address isolated tasks. In
contrast, transfer learning aims to transfer knowledge learned in one source domain and
use it to improve learning in a related target domain. Fig. 7 shows the basic concept of
transfer learning. The source domain data Zsrc contains the auxiliary data, while target
domain Ztar contains the training and test data. A comprehensive survey of transfer
learning techniques is provided in [114]. A unified framework for transfer learning in
scenarios ranging from cross-domain, cross-category and self-taught learning is described
in [8]. Transfer learning has been previously used in various cases including
classification, image clustering, collaborative filtering, and sensor based location
prediction [8, 20, 27].

Domain-independent feature representation in transfer learning can also have
significant effects on performance (e.g., to avoid negative transfer) [8]. Spectral
techniques have been used to address the problem of combined feature representation
[11]. However, such spectral techniques (e.g., eigenvector extraction [18]) should scale to
dynamic social stream traffic, which is addressed in this paper. Although [22] attempts to
use transfer learning for social recommendation, their model is not real time and limited
to non-streaming data only. Instead, we show how to model transfer learning from
streaming social data in real time, which is a significantly challenging problem not yet

resolved.
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Figure 7: Transfer Learning compared to standard machine learning.

Our SocialTransfer framework is inspired by the work in [8]. However, we
distinguish ourselves from [8] in scaling transfer learning to specifically incorporate
social stream data as source domain and show how topic learning can be smoothly
combined with transfer learning in real-time. To the best of our knowledge, a framework
that can handle social stream topics distinctively as source domain for cross-domain
transfer learning has not been proposed before. This is challenging due to the unique

characteristics of social stream data [16].

2.3 Natural Language Search

The collaboration between researchers in information retrieval and linguists is
helping us to transcend into an era of natural language search, where search engines can
comprehend user intent or meaning from queries written in natural language (NL). This
essentially requires algorithms that can not only retrieve results based on keywords, but

more importantly, understand semantics, discourse and pragmatics in a NL sentence.
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Understanding semantics of the query involves finding meaningful relations among its
words, which can be represented as a network of words, called the semantic subnet of the
query [46]. It has been found that semantic subnets enable identification of event
structures within sentences [51] and assist higher-level NLP tasks, like Question
Answering (QA) [52].

Although huge progress has been made in the field of computational linguistics,
there still appears to be enough diversity in NL constructions that hinder sufficient
information extraction purely from the NL query for improved search results. An
alternative, suggested by numerous researchers, is to search the document space with
more words than those contained in the original query [50]. This technique, called Query
Expansion , relies on finding words that are semantically similar to query words but not
in the query (called expanded words). There are two popular ways to find such expanded
words. One way is to analyze the user search logs and discover which words occurred in
the same query [63]. For example, the chances of 'flu' and 'medicine' occurring in the
same query will be much larger than 'flu' and 'guitar', allowing the algorithm to realize
that 'flu’ and 'medicine' has stronger semantic similarity. However, this technique suffers
from the problem of the long tail [93]. The second way is to use an ontology or a
semantic network, where expanded words can be detected as multi-hop neighbors of the
query word represented as a vertex. In other words, query words can represent concept
nodes in the semantic network, and the expansion of the query can be realized using the
linkage of the network. Unfortunately, a breath first search from each vertex node of the
graph database that matches a query word is not computationally feasible.

A common way to extract word connectedness from NL sentences is using parse
trees, which depend on lexical structure of the NL sentence [51]. Further, functional

keywords in NL can be detected using methods like Named Entity Recognition (NER) or
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Semantic Role Labeling (SRL) [53]. Both these techniques provide a higher level of
abstraction than the basic syntax/parse tree.

Due to immense diversity in human query constructions, the lexical patterns too
have a great variety. This noise in sentence structure will often mislead algorithms.
Imprecision of NL usage is a major obstacle to computation with NL. Therefore, it is
necessary to develop a technique that partially relaxes the rigid grammar of the language.
While imprecise or varied grammatical constructions are difficult to capture using POS or
predicate logic, note that the human cognition can often eliminate such noise to interpret
meaning. At first this sounds like a baffling fact; but everyday experiences reveal that
human cognition is significantly more robust in extracting meaning from poorly
constructed sentences compared to state-of-the-art techniques for NL understanding [47].

Several problems like word-sense disambiguation, specificity of grammar and
keyword (not semantic) based approaches inhibit portability of several existing NLP
techniques across systems and domains [49, 63]. The closest work to our research is [46],
which uses a POS-based approach in extracting subnets from queries. The accuracy of
query subnet extraction compared to a human standard can be evaluated using metrics
such as Consistency Index [68]. The results stated in [46] are tested on a very limited
number of queries (approx. 12), which does not come close to capturing the diversity in
human query constructions or web scale. In contrast, we provide empirical results on

5000 queries from three query datasets with different noise levels.

2.4 Semantic Networks

A semantic network is a directed or undirected graph where nodes are concepts

and edges represent semantic relations between two concepts. Such graphs are the widely
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used for knowledge representation. Popular semantic networks (and semantic databases)
include WordNet [42], DBpedia [37], Freebase [94] etc. Freebase is one of the key
components of Google Knowledge Graph [43].

Building large semantic networks starts with the construction of a Simple
Knowledge Organization System (SKOS), which was recommended by the World Wide
Web Consortium to be part of the Semantic Web [37]. It is a family of formal
languages used to represent thesauri, classification schemes, taxonomies, subject-heading
systems, or any other type of structured controlled vocabulary. The SKOS represents the
core of the Semantic Web.

As explained later (Chapter 5), when we query an SKOS-based semantic network
with a concept or entity, it returns the possible categories to which the entity belongs to.
Around the SKOS, various sets of concepts can be added (usually using other datasets),
which can tackle more complicated tasks like semantic parsing, semantic role labeling
and word sense disambiguation. The core graph is often quite sparse, especially when

viewed with the force-atlas spread visualization as shown in Fig. 8.
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Figure 8: Part of core SKOS network of DBpedia.

It is important to note that the term Semantic Web is often confused with
'Semantic Networks'. The former is a standards movement, which involves designing web
pages in formats that can be easily machine-readable. It uses Resource Description
Formats (RDF) as units to describe data. Semantic networks on the other hand, are
generic graph that describe concept relations. The latter can be engineered by using data
from the semantic web.

Network science is the study of relational data in physical, biological and social
systems leading to predictive modeling of related phenomena. In general, there are
several metrics that can indicate the importance of a node in the network, its relation with
other nodes and the properties of the network as a whole. Popular network attributes

include its average degree, clustering coefficient and centrality-based measures [2]. When
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the network nodes can be naturally grouped into overlapping cluster of nodes such that
nodes within a cluster are densely connected, it is said to exhibit community structure [6].

The greater the number of communities in the network, the more is its modularity [2].

2.5 Multimedia Applications

Multimedia is media that consists of many content formats, such as text, images,
videos, micro-texts, interactive visualizations etc. Most multimedia applications are either
linear or non-linear. Linear multimedia does not allow user interaction, meaning it is
usually un-altered. Images, videos or audios are example of such multimedia. On the
other hand, video games, social micro-texts etc. allow for users changing the content as

they interact, meaning they fall into the non-linear category.

Socialtrend aware recommendation

i Traditional recommendation v

Japan Earthquake Magnitude 6.8 (2008)
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“Japan Earthquake 2008” “Rescue efforts—Japan Earthquake 2008” “Japan Volcano Eruption”
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TUpIoad:June 14, 2008 Tupload:.lan 16, 2008 Upload:Jan 26, 2011

Tweets Shinmoedake
earthquake
Yikes, Shinmoedake volcano's blast yesterday hurled giant lava bombs
right onto the spot | was filming from on 29th Jan

- Posted by Twitter user @typhoonfury

Figure 9: Transforming traditional multimedia application to social-aware.
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In today's digital world and online communities, the usage of multimedia
applications are ubiquitous. From image viewers on Facebook (social network) to filters
on Instagram (social photos), from screen-casting on Twitch (video games) to 3D
modeling in Maya (motion picture 3D), from music players like Spotify to video
publishing sites like YouTube and from e-book applications on Amazon's Kindle to gif
videos like Vine - multimedia applications govern human interaction with machines.

Several of these applications consists of challenging artificial intelligence
problems. For example, in video publishing, the site needs to recommend relevant video
to user based on what he/she is currently watching - a classic example of
recommendation systems [26]. In image search, the web site must parse a natural
language text, extract semantics and retrieve related images. Moreover, query suggestion
helps users to restructure their query based on available media content on the website and
what other users' have searched for [22]. Brands use social media to quantify audience
engagement, which requires intelligent analysis of user-generated media content to detect
user profiles. These are all scenarios we shall discuss in this thesis, and describe how

cross-domain data can help in improving individual multimedia applications.
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CHAPTER 3: LEARNING FROM SOCIAL DATA

As mentioned previously, two ideas within the last decade have fundamentally
disrupted how humans obtain information. The first involved engineering powerful
search techniques which could quickly retrieve relevant web documents. The second is to
allow sharing of user-generated content by means of social media and social networks.
Web search aims to retrieve relevant documents across many domains on the Internet.
Thus, there is media data in different domains that can be searched. If one of those
domains is social, it also enables you to access real-time data about users and connect it
to relevant media.

Realizing that there exists cross-correlation between media data in different
domains often generated in response to the same events in the physical world, we aim to
build a common topic space between two domains to enable cross-domain learning and
recommendation (Fig. 13). As a proof of concept, in this research we show it is possible
to sustain such a topic space between the domains of social stream and online video. In
particular, we take the social stream of Twitter and the videos collected from a
commercial video search engine as examples in this work. The principal reason behind
building a topic space is to construct a base context platform upon which multiple media
applications can be forged [4]. It acts like a bidirectional bridge between tweets and
videos.

We tweak the online LDA model [103] to learn topics in real time from social
stream and adapt it to scale with the bursty nature of social streams. The proposed topic
model, which we call Online Streaming LDA (OSLDA) is utilized to extract, learn,

populate, update and curate the topic space in real time, scaling with streaming tweets
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[4]. The learned topics can then be used as a supervised bias when transferring
information from the social domain to the video domain, which will be discussed in the

next chapter.

3.1 Social Stream Mining

It is challenging to extract and mine relevant and valuable information from social
streams (e.g., Twitter) and correlate social media across different domains. This is
because of the noisy nature of social streams. For example, each tweet in Twitter is
limited to 140 characters. This severely hinders techniques based on “bag-of-words.” [95]
Second, tweets are usually noisy and improperly structured in grammar/syntax, leading to
the difficulty to process via standard Natural Language Processing (NLP) tools. Third,
the input data typically arrives in high-volume streams (bursty traffic), and thus,
algorithms mining them must scale in learning.

We use Online Learning LDA (explained in the next page) to extract topics
(z € Z) from a stream of tweets (d € D) [101]. LDA generates two distributions: a
topical word—topic distribution P(w |z) and topics-tweets distribution P(z|d). The
vocabulary consists of words w € W. Parameters a and f are Dirichlet priors to the
topic-tweet and the word-topic distributions respectively. A tweet is a sequence of words,
where w,, is the n™ word in the sequence.

Consider a k-dimensional Dirichlet random variable 6 that can takes values in (k-
1) simplex. LDA assumes the following generative process for each tweet d in the corpus
D: (i) Choose N from a Poisson distribution. (ii) Choose 8~Dirichlet(a). (iii) For each
of the N words w,,: (a) Choose a topic z,~Multinomial(6) (b) Choose a word w,, from

p(Wy,|Zn, B), @ multinomial probability conditioned on the topic z,,. The dimensionality &
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of the Dirichlet distribution is assumed known and fixed. Please refer to [101, 103] for
further details.
Therefore, the joint distribution of the topic mixture 8, the set of N topics Z and a

set of N words in the vocabulary ¥ is given by:

p(6,Z,Wla,p) = p6la) [17=1p(2.|0)pWnlzp, B) (1)

LDA represents every tweet as a random mixture over latent topics whereas every
topic has a distribution over the words. A topic is comprised of a set of topical words. For
example, one topic generated by LDA is: {egypt, mubarak, tahrir, army, revolution, ...} ,

which clearly is related to the concept of the Egyptian revolution in Feb, 2011.

3.2  Online Streaming LDA

Our system learns in real time by updating the topic space with every incoming
stream of tweets in a time slot (Fig. 10). We call it Online Stream LDA (OSLDA), since
it leverages online LDA [103] and also scales across streams of incoming tweets,
updating tweet-topic and topic-video connections at the same time. Unlike [103], which
updates the word-topic prior distribution § with time, our method updates the topic space
with time, using an active time decay function. Thus, OSLDA assumes the word-topic
distribution can change significantly due to the dynamic nature of tweets [4]. This makes
our model robust to streaming nature.

With each time slot, OSLDA models incoming bursts of tweets (Fig. 10)) and
updates the topic space. Empirical studies showed that fixing number of topics to 30 was

enough for 60K tweets per time slot. Intuitively, processing more tweets should take
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more time, but the number of topics needed to be extracted from a sudden burst (say
120K tweets) is usually less, since the burst is typically caused by a single event (single

topic). So, the number of topics to be extracted does not double if the tweet burst doubles.
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Figure 10: OSLDA updating topics space with incoming stream over time.

A principal difference of OSLDA from previous topic modeling algorithms is that
OSLDA is capable of scaling with bursts of tweets. It is important to remember that the
stream size per chunk/time slot is not constant, and therefore any social stream topic
mining learner must deal with different document sizes at different times. In traditional
LDA, the number of topics (a prefixed parameter) to be extracted depends on the
diversity and the number of documents [115]. If the number of tweets in the stream
doubles, it would appear that the stream would certainly become more diverse. Thus
normally, more topics should be extracted, which would take more time computationally.

Interestingly however, the reverse phenomenon is observed for social stream data.

A burst of tweets usually indicates 1 or 2 big events, which causes the stream diversity to
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drastically reduce. Thus, the necessary adaptation to bursts of tweets is not to increase the
number of topics to be extracted, but reduce it. This single observation allows us to
extract reasonable topics even when the stream size doubles. It allows OSLDA to scale

with variable and bursty nature of social streams.
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Figure 11: Topics (trending) detected by OSLDA from Twitter stream over time.

An example of topics extracted by OSLDA on real-world data (half an hour of
Twitter stream) over time is shown in Fig. 11. Each chunk of tweets is shown by the
dotted vertical line, during which OSLDA runs once. Every block resembles a topic,

consisting of topical words. Newly detected words in a topic are colored red.

Are the extracted topics relevant ?

Fig. 12 shows the distribution of search queries with time in video query logs for
the topic ‘Egypt’ with real-time trend variation on Twitter as detected by OSLDA. We
clearly notice that there is few minutes time lag between a trend topic appearing on

Twitter, and the same topical words being searched on the commercial video search
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engine. This means as trends rise and fall in Twitter, the volume of queries on the same

topic rises and falls for video search. patterns for web and image search on Feb 11, 2011.
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Figure 12: Trending score of topical word 'Egypt' (detected by OSLDA) compared to real-world

video search trending keywords. It illustrates the periodic lag that video search sustains when compared to

OSLDA topic detection.

Topical Words Assigned Topic YouTube
Category

dance, adventure, Travel & Events

photography, visit events

anime, hero, online, films Films &

celebrity, diva Animation

iphone, games, showcase electronics Sci. & Tech

war, economy, army, politics News & Politics

revolution, blog, egypt

trailer, show, live, watch entertainment Entertainment

wow, rap, jam, gaga music Music

Table 1: Topical Words detected by OSLDA belonging to certain topics. Column 3 represents

relevant YouTube categories for these topics.

39



It was not surprising that ‘Egypt’ was the hottest search topic that day. In fact,
Google Web Insights (www.google.com/ insights/search/) provided us with the top 10
web search keywords related to ‘Egypt’; seven of which had already been detected by
OSLDA earlier. For Google Image search, 6 of the top 10 search keywords were detected
by OSLDA.

3.3 Topic Space

Remember our main focus is to transfer the information among domains. Thus, it
is necessary to store the learned topics somewhere and update it with time as new topics
come in. This abstract space is called the topic space. The topic space is a matrix, where
each row represents one topic and each column represents a feature word. The entry in a
cell represents the probability that the word belongs to the topic, as given by OSLDA
P(word|topic). We maintain a list of 75 top topics at a certain time in the system, which
means the number of rows in the matrix is 75. The feature word size varies depending on
the type of topics, but on average it can be as large as 38,000. An easy way to detect the
75 top topics is by adding each row and consequently sorting.

As shown in Fig. 13, this topic space servers as the bidirectional connection
between tweet and video domain. Once such a bidirectional connection is established,
information can flow in either direction, consequently supporting applications such as
social video recommendation or tweet enrichment by video. In the next sub-section, we

describe how this is achieved mathematically.
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Topic Space as the bridge

Using the topic space, we can connect a set of videos for any tweet. On the
vidSide, we have a set of videos (V) with related video identifiers. Our goal is to find the

membership strength each video possesses with the set of topics in the topic space.

Videos

Topic Space

T OO0 O v
T OSLDA J el
e o _, ] eeeeo -
Modeler | — [ g eYT YoTo Yo B2
2 = - ‘\-\\\
P(Zkld ) Uk,j 7 O — O"’ O e
Figure 13: The topic space, as a bridge between cross media domains.

Please note that a video tag is a video identifier. For the j’h video, the set of tags is
represented by G;. We also have a set of topical words (which were already extracted
from tweets). Let the topical words in the K" topic be represented by the set Tj. Then,

treating the set of topics and videos as a bipartite graph, we can define a link weighting
function U such that:

TkﬂGj

Uy, = 0<k<|Z,0<j<|V| 2)

Ty

Thus, the more the common tags a video has with the words of a topic, the higher

the weight Uy ;; and thus the higher the membership of the video towards this topic.
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Tweets are often noisy and difficult to understand for users. We can improve user
experience of tweets by recommending related and relevant media. From the user
perspective, this should enrich the information surrounding the tweet (in terms of the
topic of the tweet), since media (image/ video) is probably easier to comprehend for the
user. Once the LDA topic modeler is trained on a stream of tweets, we can use it to
connect any tweet to a topic, and eventually the selected topic to a set of videos as
described in the previous subsection. The idea is clarified using Fig. 13.

Given a tweet d’, we can find the probability distribution of topics for that tweet
using the LDA topic modeler. Subsequently, videos to be recommended are selected

based on the optimization:

V" = argmaxo<j<y| z P(zy|d"). Uy, (3)

0<k<|Z|

Thus, the tweet connects to those videos for which it has the strongest links
through the topic space. Think of P(z,|d’ ) signifying the tweet-topic link weight and

Uy ; representing the topic-video link weight.

Runtimes of OSLDA

Our Twitter dataset consists of 3.6 million tweets generated on February 11th,
2011. We fixed each time slot period to five min. We noticed that approximately 60K
tweets were generated every five min. The first 50K tweets were used as training data.
The rest of the 3.1 million tweets were used for test. Tests were run on a system having
AMD Opteron 2.09 GHz and 64 GB RAM. Performance of OSLDA is summarized in

Table 2.
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# Topics 5 topics 10 topics 30 topics 60 topics
Extracted /
# Tweets
30 K Tweets
0.66 0.72 1.09 1.67
60 K Tweets 1.41 1.83 211 3.31
90 K Tweets 1.75 1.93 3.18 5.19
120 K Tweets 2.53 3.1 4.42 6.81
Table 2: Time taken (in minutes) to extract a certain number of topics from a tweet stream of size

In summary, we empower tweets with related videos from cross domain. On a
related theme, we should note that Twitter social trends are also a distribution over topics
in the topic space. We know that such trends are a measure of real-time social popularity.

Thus, if we leverage this observation, we could augment video popularity based on

from 30,000 to 120,000 .

socially trending topics. This is the theme of the next chapter.
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CHAPTER 4: TRANSFERRING INFORMATION FROM SOCIAL
TO VIDEO DOMAIN

The task of information transfer asks two fundamental questions (1) what
information is transferable (2) how to transfer this information in real-time. In the
scenario of social stream data, both these questions are considerably complex to answer.
The first question is difficult to solve since streams are noisy, consisting of several non-
natural language user-generated textual data. Moreover, tweets are generated at a very

fast rate, thus the speed of information transfer or update is not trivial either.

4.1 Social Signal Penetration Hypothesis

The social signal penetration hypothesis states that a social trend (which is
associated to Twitter) behaves as a spatio-temporal signal which penetrates into other
domains (like YouTube), i.e. data in YouTube is affected by the trend in Twitter after
some time delay. We claim that the topic space allows for the signal to be carried over to
the other domain [105]. In this part, we explain the engine that lets this penetration
possible. Remember our constrains in designing the engine: (1) Real-time. (2)

Progressively updating the recommendations as the topic space changes.

Problem Definition

We have two datasets in the target domain; the target training data yirqin =
{xM}M_. with labels and the target test data y,.os = {x%}Y_, without labels. The training
data contains M instances whereas the test data contains N instances. Unlike traditional
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machine learning, we also have an auxiliary data set y g, = {xX,}7_,, consisting of D
tweets instances. We assume that the target data and the auxiliary data share the same
categories (e.g., both a tweet and a video can be regarding music), but exist in different
domains (e.g., tweet is social text-based micro-blogging while RVGs consist of videos).

Consider a set of B videos in the target domain. For a video v;,1 < i < B, we can
represent the set of tags of v; as {tags(v;)}. Each tag in the set {tags(v;)} is a word,
represented as wji, 1 <j < |tags(v;)|. Now consider a stream of D tweets picked from
the source domain to be used for modeling the social topic space. For a tweet t;, 1 < k <
D, let tpw(t,) represent the topical words in the topic of t; (we consider only the
principal topic, i.e. topic for which the conditional probability of topic given tweet is
maximum). Then each instance/label of the twitter stream data can be represented as
tx = tpw(ty). These instances can be combined into the auxiliary data set Yy =
{xbx}i=1-

All the instances X € Y¢rqin U Xtest U Xaux are represented by the features in the
feature space F = {fs(i)}le. Our goal is to learn an accurate classifier f'(.) from
Xerainad Yauy that can predict the testing data with minimum classification error. We
call this classifier f'(¥ies¢). Thus, the goal of transfer learning is to minimize the
prediction error on Y. by leveraging the auxiliary data from y .

In the next section, we present SocialTransfer — a scalable technique for real-time
transfer learning between the domains of social streams and traditional media (like
video). SocialTransfer utilizes topics extracted from social streams to build an
intermediate topic space in between the social and video domains. The topic space is an
abstract space containing several clusters of words belonging to various topics that reflect
world events in real time, including current and past trends. We use the Online Stream

LDA model (OSLDA) to learn topics from social streams [4]. SocialTransfer uses a
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graph based framework to model the transfer learning problem (what feature information
is transferable and how) between the social and the video domains. Spectral analysis of
this graph fetches the eigenvectors, using which we can represent both the social and the
video feature information as a combined feature representation [24]. Since the stream is
temporal nature, SocialTransfer also allows progressively updating the topic space and
seamlessly incorporating newer trends into the transfer learning framework for socially

aware media recommendations.

Socialtrend aware recommendation

| Traditional recommendation v

Japan Earthquake Magnitude 6.8 (2008) | Rescue efforts continue in Japan's quake-hit areas
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- Posted by Twitter user @typhoonfury

Figure 14: Example of using social topics in building social trend aware multimedia

applications. In this example, we show that related video (i.e. video-video) recommendation can be

enriched by using topics learned from the domain of social streams. This cross-domain transfer of
knowledge is accomplished through a mutual topic space (e.g., the space includes the topics like “Japan”

99 <

containing words like “volcano,” “earthquake,” and so on).
Fig. 14 shows an example of this kind, for social video recommendations. The

framework we develop can be reused for several multimedia applications where social
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influence is capable of improving performance. Our results show that SocialTransfer

considerably outperforms traditional learners without transfer learning.

4.2 SocialTransfer

Our goal is to combine the training, test and auxiliary data into a single transfer
framework for prediction. There are two problems we particularly need to solve in this
framework: (1) we must learn the interconnected pattern of shared features between the
source and the target data, and (2) since the topics modeled from social stream (auxiliary
data) changes with the real world trends, we need a transfer framework that can allow
progressive inclusion of topics in pseudo real-time.

Let us focus on the first problem and understand how to learn the interconnected
structure of shared features across the domains. The single transfer framework we use for
this purpose is represented as a graph called the transfer graph G (see Fig. 16), which
contains the videos, tweets, feature words and category information. To learn the
interconnected pattern of shared features between the source and the target data, we
perform spectral analysis [24] of the transfer graph. As shown in Fig. 15, spectral
learning uses a technique called Power Iteration [106] to extract the eigenvectors from
the Laplacian representation of the transfer graph. Spectral analysis of the transfer graph
gives us the combined feature representation of the auxiliary and the training data using
eigenvectors. This eigen feature representation reflects the intrinsic structure in terms of
the principal components of the combined source and training data. Traditional learners
(like Support Vector Machines/SVM [27]) can then use the combined features for

prediction rather than using only the training features.
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Now, let us focus on the second problem of how to progressively include social
topics. Since the tweet stream is incrementally witnessed by the algorithm, the transfer
graph needs to be updated in order to progressively include the twitter topics in pseudo-
real time. Said alternately, in order to include topics as they are generated in real time, we
must update the transfer graph and recalculate the graph spectra. This is achieved by
treating the topics as input supervision before spectral learning (as shown in Fig. 15). In
particular, to incorporate the new topical information to the existing transfer graph, we
utilize selected topics from the topic space created from the tweets. We can treat the
topical words of tweets and the corresponding topics as labeled instances, and then
incorporate the new tweet information as a semi-supervised rank update (a rank update
refers to cases where a matrix is updated using outer product (as opposed to dot product)
on the existing Laplacian matrix as shown in the flow diagram Fig. 15. In other words,
selected topics act as input supervision for the Laplacian matrix which allows for smooth
incorporation of social topics into the transfer learning framework.

We use the Online Streaming LDA (OSLDA) model for real-time topic learning
from Twitter stream [4], described in Chapter 3. Each topic is comprised of a group of
related words called topical words. Topic learning treats each tweet as a document and
builds a generative model to connect the tweet to one or more topics. Thus, the topic of a
tweet contains words (topical words) that are related to the tweet words but might not be
explicitly present in the tweet itself. More precisely, the topic modeling generates two
distributions, a tweet-topic distribution and a topic-word distribution.

As mentioned earlier, extracting topics from social streams is non-trivial, due to
the unique characteristics of social stream data [80]. Previous work has however shown
that significantly popular topics (e.g. trending topics) can be extracted from social

streams with reasonable accuracy [107]. Since every topical word in the topic space has
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an assigned topic label as shown in Table 1, the entire topic space can be treated as some
sort of social bias for any semi-supervised learning task that requires social influence.
Again, devising a natural way to incorporate this social bias into transfer learning is not
trivial, which is one of the important issues addressed in this dissertation. Note that each
assigned topic consists of a cluster of topical words. Similarly, each topic can be
considered a cluster in the topic space. We can limit ourselves to incorporating only
selected topics from the topic space as input supervision (an additional set of labeled

instances) for the transfer learning task.

G(V, E)
Linput
@
| Q i /@\\ :' O (use Eq. 3 to obtain transfer Laplacian matrix) Laplacian
8 | &o/ O/ Matrix
\Q/ ( 7)
)
Tweets Stream
A, Anc g
| N ) Input
N Topic Space Supervision
‘ Perform
Rank Update
(Eg. 5)
H Combined & .
Eigen feature wst g eigenvectors -
E].' El‘ ""EQ Representation of E, E,, ...,E,,i Power ,Ltopac_bxas
Training and H .
W auxiliary data . Iteration Updated LaplaCIan
2 Eigen Vectors |—— | Matri
.E_,’:_ L!op!c_bmsE= AUE atrix
Figure 15: The flow diagram addresses the overall approach in solving the two key

problems of SocialTransfer: (1) learning the shared feature representation across domains in terms of
eigenvectors using Spectral Learning (Power Iteration), and (2) reflecting the progressive inclusion of

topics by updating the transfer Laplacian matrix.
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This choice will depend on factors such as whether we want to model only fresh
(trending) topics or only video category specific topics. Thus for K topics in the global
topic space, we can choose a particular set of topical words Aﬁ" C A, fori=1,2,..., K to
act as the bias or input supervision to update the transfer graph before spectral learning.
This sort of input topic supervision is fed into the transfer graph progressively, as is
depicted in Fig. 15, where topics modeled in real-time from the social stream using
OSLDA is used to update the transfer graph by means of a ranked update (Eq. 7) on the
transfer Laplacian matrix representation of the transfer graph. This allows progressive
and seamless inclusion of topics into the transfer graph as shown in Fig. 4, facilitating the

social influence in transfer learning.

Transfer Graph

A general graph based framework for cross-domain transfer learning was
proposed in [23], which includes the target and the auxiliary data with some common
relations and attributes between them. We adapt that framework in our scenario.
However, the graph in [23] cannot update itself to incorporate streaming tweets topic
information in scalable fashion. Instead, the transfer graph in SocialTransfer is capable of
updating itself with new tweets stream topics in real-time. The transfer graph’s main
purpose is to capture the cross-domain attributes of social streams and videos for using in
the transfer learning task and model the relation between the auxiliary data from Twitter
and the target video data. This ‘transfer graph’ (Fig. 16) contains the instances, features
and class labels of the target data and the observed auxiliary data as vertices. The edges
are set up based on the relations between the auxiliary and the target data nodes. The
transfer graph presents a unified graph structure to represent the task of transfer learning

from social domain to video domain.
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Before diving into the details of the transfer graph, it is important we mention that

the novelty of our approach lies in how we incorporate the learned social topics into this

transfer graph. We incorporate the learned topic model into the transfer graph by means

of a ranked update on the Laplacian matrix representation of the transfer graph.

SocialTransfer is a unique method to combine topic modeling and transfer learning;

providing a natural interface for topic modeling to seamlessly fit into the process of

transfer learning.

Feature ideo
Words
Figure 16: Transfer graph for SocialTransfer with connections among auxiliary and target

Kelly (aka Recyclopath)
ccassion of the punk performer and fetish

Recyc
e R

Environment

I love recycling for the
environment but hate the
recyclopaths who smoke

data including features and class labels.
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Let us focus on the example in the transfer graph illustrated in Fig. 16. The
feature word ‘recyclopath’® occurs in the training video instance ‘Interview with Mel
Kelly (aka Recyclopath)’ shown in the top right. Since the video lacks any tags related to
‘Environment’, a traditional learner will find it difficult to extract the topic of this video
to be related to ‘Environment’. However, the auxiliary data has a tweet instance
belonging to the ‘Environment’ topic having the word ‘recyclopath’. Thus, the transfer
learner can label this video as ‘Environment’-related and associate this video to another
‘Environment’-related video. This is an example of discovery of video associations by
understanding video topics with the help of social topics.

As shown in Fig. 16, the transfer graph G(V,E) consists of vertices representing
instances, features or class labels, and edges E denoting co-occurrences between end
nodes in the target and the auxiliary data i.e.:

V= Xtrain Y Xtest Y Xaux U F U C (4)
The weight of each edge where one of the end nodes belongs to C indicates the

number of such co-occurrences. Let w, s represent the importance of the feature f € F

that appears in instance X € Y¢rgin YU Xtest YU Xaux- 1hen, the weight of an edge where one
of the end nodes belongs to F is indicated by w, ;. The importance of a feature word
wy s can be calculated using the topic-word probability distribution matrix obtained from
OSLDA. The total number of features and class label nodes remains fixed in the transfer
graph. Let T'(x) represent the true label of the instance. If e;; denotes the the weight of an

edge between two nodes ¥;and ¥; in the transfer graph, then edge weights can be

assigned as:

2 Recyclopath means a person who is almost paranoid about recycling and is an extreme environmentalist.
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(W99 Ui € Xtrain Y Xtest Y Xaux /\7-9]' eF

Wy,9; v €F /\19j € Xtrain Y Xtest Y Xaux
1 191' € Xtrain/\ﬁj eC /\T(ﬁi) = 19]-
1 9 € Xaux N € CAT() = 9 (5)
1 0; € ((:/\ﬁj € Xtrain /\T(ﬁj) =9

L 1 9, €CAY € xaux AT(9) = 9,

For all other cases except the ones mentioned in Eq. (5), we set e;; = 0. The edge
weights thus represent the occurrence/importance of a category or feature present in the
auxiliary/target data, which will be eventually utilized as a distance metric during spectral
clustering. Some nodes in the graph may be isolated with no edge connections. The
matrix updating process adds new edges to the isolated nodes. The transfer graph G is
usually sparse, symmetric, real and positive semi-definite, which allows the possibility of
calculating its spectra efficiently [21]. The graph spectrum in terms of eigenvectors is the
impression of the structure of relations among the source and target data. This structural
relation between the cross domain data is the essence of transfer learning [23]. Thus, it is
necessary to represent the source and target data as a transfer graph and then analyze their

structural relation by learning the graph spectrum.

Learning Transfer Graph Spectra

The highlight of SocialTransfer is how it learns transfer graph spectra and
incorporates new social topics into the transfer graph in real-time. This task is non-trivial,
since if not properly done, it may incur substantial costs in terms of scalability (e.g., in
eigen-feature extraction) and interoperability (in integration of topics) between topic
modeling and transfer learning. In this section, we demonstrate how we achieve both
these goals efficiently.

Once the transfer graph G=(V,E) is built, we can use graph spectra analysis to

form an eigen feature representation, which combines the principal component features
53



from the training and the auxiliary data. In order to extract the top-g eigenvectors of the
transfer graph G=(V,E), we first need to convert the graph into a Laplacian matrix. Let
deg(¥9;) denote the degree of the i-th vertex in G. Then the transfer graph Laplacian

Linpue = (Ui j)|vixv| » can be obtained as:

deg(¥;) ifi=j
0 otherwise

o~
~

If the Laplacian eigen values are represented as:

do=1222 =1,

then the eigen gap can be defined as: eigengap = %.
-

Since the Twitter stream is extremely dynamic, topics and trends change
overtime. This requires a feature extraction scheme that can reflect and scale with the
social stream. Previous approaches for spectral feature representation in transfer learning
have suggested the use of the normalized cut (Ncut) technique for eigenvector extraction
[23]. However, our experiments (Fig. 12 in Section 6.3) showed that the normalized cut
technique is incapable of scaling with the twitter stream.

Therefore, we use a Power Iteration technique for computing the ¢ largest
eigenvectors of Lip,ye [106]. The method begins with a random [V| X q eigenvector
matrix and iteratively performs matrix multiplication and ortho-normalization until
convergence [24]. The speed of convergence of this method depends on the eigen gap,
i.e. the difference between successive eigen values. In fact, Bach et.al. mention that the
number of steps required for the orthogonal convergence in the Power Iteration method
is 0 (o) [24]

Since topics are updated in the topic space with time, we need to devise a way to

progressively incorporate these new topics into the transfer graph. These topics could be
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incorporated by picturing them to be a time-dependent labeled bias (like a semi-
supervised bias) which is an additional set of labeled instances acting as input
supervision. One option for incorporating the semi-supervised topic bias as input
supervision into the Laplacian representation of the transfer graph (Lippye) is by
producing a ranked update on L,y (see Eq. 5). The update in effect recalculates the
weights of edge/path between the features and the corresponding labels within the
transfer graph, thus updating the characteristic of the Laplacian (Eq. 2, 3). Essentially, the
ranked update on the Laplacian using the topic bias adds positive weights between
feature words that share the same topic and adds negative weights between feature words
that belong to different topics. Thus, the target and the auxiliary data instances act as sort
of virtual nodes enabling this re-weighing of the feature edges.

An additional reason for using the ranked update technique is that previous work
[21] has also rigorously demonstrated that when Laplacians such as Ly, is positive
semi-definite, a ranked update can improve eigenvector extraction speed by spreading the
eigen gap. The next subsection elaborates on how we use ranked updates to incorporate

semi-supervised topic bias and update the transfer Laplacian.

Incorporating Social Topics

We know from topic modeling that the words in tweets can be clustered into
topics. Let us consider there are K such topic clusters. The semi-supervised topic bias is
implemented by assuming we know the correct topic labels for a subset of the feature
words. This input is learned by topic modeling using OSLDA, which was described in the
previous chapter.

The semi supervised bias consists of a set of topical words for each topic
Aﬁ" C A;, for i=1,2,...K that act as input supervision. Let us consider the simple case of

two topic clusters A7 and A, such that A = A™ U AF* denotes the set of labeled bias
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instances. Also, consider d; = Y je;; and vol(Ay) = Yiea, d;- We can then define a

regularization vector §; as:

d;
vol(AM™)

0 L ig A

where, £(i) = /ﬁgj; ifi € A" and (i) = “Eﬁ; ifi € A,

The effect of the above Eq. 7 is to introduce a quadratic penalty if there is a

f(i), i€A™

6:(0) = (7)

violation in the topic bias label constraints. Said otherwise, this will cause vertices of
features that belong to the same topic to cluster together while vertices of different topics
will be assigned to separate clusters (due to the penalty). A rank-1 update on the original
Laplacian can be made as:

Liopic bias = Linput + ¥- 6161 (8

Similarly, if there are K topics, we can modify the original matrix Lip,,; with a
rank-k update [21] instead of a rank-1 update. This supervised ranked update firstly
allows us to seamlessly incorporate streaming data progressively. Secondly, it aims at
tuning certain algebraic properties of the input Laplacian matrix which are related to the
convergence rate of the Power Iteration method, eventually speeding the eigen
decomposition.

In summary, the input supervision using topics learned from the social stream
allows us to implement rank-k updates on the transfer-Laplacian matrix as a similarity
learning mechanism, where vertex similarities are adjusted on the basis of the topic bias.
Note that the number of nodes in the graph is not changed during updating (dimension |V|

is fixed); instead the updates only introduce new edges or re-weights existing edges in the
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graph as it iteratively reuses the eigenvectors from previous update. Due to lack of space,
we refrain from describing in detail how the rank-k update improves the speed of
eigenvector extraction. In fact, the ranked update increases the eigen gap, which
accelerates the convergence of the Power Iteration method. For a detailed explanation of
how a supervised bias using rank-k update accelerates the eigenvector extraction process,

please refer to [21].

Algorithm for SocialTransfer

Once the first g eigenvectors Eq, E5, ..., E; have been found by iteratively using
the Power Iteration method with the topic-based input supervision, we can form a
combined feature representation that depends on both the training and the auxiliary data.
Traditional learners like SVMs can use the combined features that include the transfer
task to train a classifier /'(x;es¢). Described below, is the algorithm for SocialTransfer for

classification in the target domain based on auxiliary social stream data.

Algorithm 1: SocialTransfer — Transfer Learning from Social

Input: A target classification task which includes the target training data
set X¢rain, the source auxiliary data set y,,, and the target test data set y;eq:-
Output: Classification result on y e
1. Construct the initial transfer graph G(V,E) based on the social transfer clustering
task (c.f. Section IV.D).
2. Calculate transfer Laplacian matrix: Ly, from G using Eq. (3).
3. for each chunk of tweets entering the system do
4. Calculate the regularization vector §; using the input supervision of social topics
A™ as shown in Eq. (4).
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9.
10.

. Perform semi-supervised topic bias update on transfer  Laplacian: Leopic pias =

Linput + v-6161 as shown in Eq. (5).

Use Power Iteration to calculate the first g eigenvectors of Leopic pias: E1,E2, ) Eq
which satisfy the generalized eigenproblem: Liypic piasE = AUE. The resulting
eigenvectors will be used as initial eigenvectors for the next updated Laplacian
matrix.

end for

Construct matrix H with Eq, E5, ..., E 5 as columns.

for each xgn) N Y¢rqin do
(m)

Let ugn )be the corresponding row in H w.r.t Xpp -

11. end for

12. Use a traditional classification algorithm (we use SVM) to train the classifier

f'(Xtest) based on Uy = {ugn)}%=1 instead of the original training set X¢rqin =

(m)

{x;; }M_, and then classify Yiesr = {xt(?)}ﬁzl in the eigen feature space.

4.3 Applications

We present three applications based on the SocialTransfer algorithm and the

OSLDA topic modeling.

4.3.1 Socially Relevant Video Recommendation

Modern video publishing sites like YouTube use related video recommendation

techniques [8, 9] based on RVGs to recommend a video to the user. The recommended

video is related to the seed video which the user is currently watching by co-clicks or co-
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views, i.e. some signed-in user has clicked on both the seed and the related video in
sequence. In contrary, Socialized Video Recommendation recommends videos which
bear similar topics to a seed video the user is watching. Thus, proposed Social Video
Recommendation is independent of the click through nature among videos, and has
several advantages over traditional related video recommendation [25, 26], such as: (1) it
considers video content/context (as in topics) while recommending videos, (2) its
performance does not decrease as click data gets sparse, (3) it can recommend fresher
videos that do not have significant user activity but are extremely relevant to the seed
video and (4) it does not require signed-in user activity to learn and build RVGs.

For related video recommendation, the system must be able to predict which
videos are ‘related’ to a seed video and are good candidates for recommendation. The
first step in solving this is to detect the topic of the seed video. Thus, the job of the
classifier is to classify the topic of a test seed video. Once we detect the topic of the test
seed video, we can assume all the videos belonging to that topic are candidates for related
video recommendation of the seed. We then recommend only those videos from the
candidate pool whose tags match the seed. A socialized video recommender can be
developed by creating a learner that uses auxiliary tweet data by means of transfer
learning. Given a set of RVG videos in the target domain, a traditional Non-Transfer
learner like SVM [27] will aim to predict the related videos of a given seed video in the
test data set by building a classifier only from the training data. Instead, SocialTransfer
builds a classifier using both training video data and auxiliary tweet data.

Data Description: Our study is based on a 5.7 million videos crawled from
YouTube and 10.2 million tweets obtained from the NIST Twitter dataset [18]. The
source domain is Twitter and the target domain is YouTube. The varying bursty nature of

tweets can be observed from Table 3. We use a preliminary list of YouTube related video
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ids collected for experiments in [8]. Video meta-data includes values for entities such as
video id, title, tags, view count, age (in days since uploading), category, related video ids
(which comprises related videos at depth 1 of RVG) etc. As mentioned earlier, the videos
related to a given seed video is captured using a directed graph, which is known as
Related Video Graph (RVG) [26, 28]. Thus, if a video y is in the related video list of a
seed video x, then there is a directed edge/path x — y in the RVG [25]. Moreover, for an
edge x - y in the RVG, its tags can be represented as the instance: {tags(x)} —
{tags(y)} — {tags(x)}, where {tags(x)} represents the set of tags of video x and ‘—*
means set difference. All such instance/label combinations of the B videos have to be
randomly divided into two sets for training and testing, called Xerain and Yeest
respectively; where |Yirqin]l =M and |yiese| = N represented as Yirqin = (X0 3M_1,
Xeest = (xBEIN_; where M + N = B and %~1.5.

We have collected related video information up to five depths from an initial seed
video ranging across the 14 main YouTube categories: Comedy, Entertainment (‘Enter’),
Education (‘Edu’), Music, Film & Animation(‘F&A’), Non-Profits & Activism
(‘NonProf”), Science & Technology (‘S&T’), Travel & Events (‘T&E’), Pets & Animals
(P&A), HowTo & Style (‘H&S’), Autos & Vehicles (‘A&V’), News & Politics (‘N&P’),
Sports, and People & Blogs (‘P&B’). Some videos are categorized unavailable, and in
such cases we use the category of its parent video. Apart from these main categories, [29]
has suggested around 75 sub-categories to the main YouTube categories. We include all
of these as the pool of categories from which class labels can be drawn. Therefore, we
tune the OSLDA to detect tweets where the tweet words fall into the tag space belonging
to any of these category videos.

Since RVGs are essentially related recommendation networks, distribution of

categories over videos changes as we move one depth to the next. This introduces some
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degree of intended diversity in the next video recommended [25], since it might be of a
different category compared to the seed but somehow related. On average, we found that
the next recommended video has 25% chance of being in the same category as the seed
video. Fig. 17 shows the category distribution of related videos at depth 1 and 2 from the

seed video being watched.
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Figure 17: Distribution of video categories of recommended videos by RVG at depth 1 and
2 from the seed video showing the diverse nature of video recommendation in YouTube.

The Twitter dataset consists of 10.2 million tweets generated in the US and
collected between Jan 26™ 2011 and Feb 11™ 2011. We simulate the twitter data as a
stream, with each batch of tweets representing approximately 5 minutes. The resulting
rate at which tweets streams over the last week of Jan, 2011 is shown in Fig. 18, where

the 5 min batch time slots account for a total of 288 slots spanning 24 hours in the
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horizontal axis. We show the temporal stream volume (in no. of tweets generated)

distribution only across seven days in order to avoid cluttering in Fig. 18.

From Fig. 18 we can conclude that under normal circumstances, the tweet rate

distribution has a general pattern over 24 hours: there is a minima around 8:15 AM,

followed by a gradual rise until 3 PM in the afternoon, where a local maxima is achieved.

Interestingly, another spike is usually noticed in tweets around 2:30 AM in the morning.

The drops to almost zero on Jan 29™ can be accounted for by Twitter downtimes and the

Blackberry outage in USA. The high spike around 5:15 PM on Jan 29" is caused due to a

high volume of tweets during the onset of the Egyptian revolutions.
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Figure 18: Daily tweet stream from 26™— 31 Jan, 2011.

Experimental Results: For socialized video recommendation, we test

SocialTransfer against a traditional learner like SVM [27], where SocialTransfer uses

auxiliary social data in combination with training data, whereas a traditional learner uses

only the training data for prediction (called Non-Transfer) and serves as our benchmark.
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Here, the classification task is simple: given a seed test video, classify whether another
video is a related video of the seed or not. This in aggregation is same as the case: given a
seed test video, predict the list of related videos for the seed test video.

For the experiments, we set y=1.25, limit the power method to extracting top-25
eigenvectors and include 60% of the topic space for input supervision. The reasoning of
these choices is explained over the following sections. We have three datasets for transfer
learning - the target training data, the target test data and the source auxiliary data. The
target dataset consists of 5.7 million videos in total along with their RVGs (contains a list
of related videos for each seed video). However, some videos do not have categories or
are removed from YouTube, and therefore we experiment on a reduced set of 4.8 million
videos. Our training data consists of 60% videos randomly picked from the 4.8 million
YouTube videos. The rest 40% videos (~2 million) are used for testing. As auxiliary data,

we use the 10.2 million tweets from the Twitter stream.

# Topics 5 topics 10 topics 30 topics 60 topics
Extracted /
# Tweets
30 K Tweets

0.66 0.72 1.09 1.67
60 K Tweets 1.41 1.83 211 3.31
90 K Tweets 1.75 1.93 3.18 5.19
120 K Tweets 2.53 3.1 4.42 6.81

Table 3: Number of video instances in popular categories.

We ensure to extract topics from tweets based on approximately 90 categories (16
main + 75 other) so that the source and target domains share same categories.

Additionally, we also evaluate category-specific predictions based on six popular
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categories (Comedy, Film & Entertainment, Sports, People & Blogs, Music). Table 3
shows the number of video instances used for evaluation in some of the popular
categories.

In Table 4, we report the average error in prediction for the Non-Transfer cases
(SVM on training only) vs. SocialTransfer. Non-Transfer refers to application of the
traditional SVM learner to the original target dataset with no social influence (only
training features are used); SocialTransfer means to apply SVM on the combined feature

representation learned using transfer learning from social data (training + auxiliary).

Category — Overall | Comedy Film & Entertainmen | Sports People Music
Animatio t & Blogs
Approach | n
Non-Transfer | 0.357 0.429 0.334 0.386 0.394 0.247 0.356
+0.049| +£0.059 | +0.063 +0.023 +0.072 | £ 0.066 | +0.036
SocialTransfe | 0.232 0.397 0.242 0.219 0.282 0.112 0.230
r +0.043 | £0.065| +0.051 +0.015 +0.082 | +£0.032 | +0.029

Table 4: Number of video instances in popular categories

The performance in Table 4 is measured in error rate by averaging 10 random
repeats on each dataset by the two evaluation methods. For each repeat, we randomly
select 5000 instances per category as target training data. We report the prediction error
rate in each of the main categories, along with the overall error for the entire data set. We
also report the standard deviation of the repeats in Table 4. The two methods are well-
tuned using 10-fold cross validation. The overall gain using SocialTransfer is ~ 35.1%
compared to non-transfer cases. Please note that the overall error rate is averaged over all

the main categories and not just the six categories shown in Table 4. Performance
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improvement using transfer learning is most in category ‘People & Blogs’. In all the

major categories, SocialTransfer performs better than a traditional non-transfer learner.

4.3.2 Socially Video Popularity Prediction

In this section, we discuss how to utilize the SocialTransfer in calculating the
social prominence of a video and estimate its social popularity. The steps include: (A)
calculate the trending score for each topic (called Tscore) and use SocialTransfer
classification to find the principal topic of a video. The trending score of the principal
topic of a video is its social prominence; and (B) fusing social prominence of a video
with its traditional popularity (based on view count) to estimate the final trend aware
popularity score (7AP). (C) The final goal of this work, predicting which videos will
demonstrate bursty nature based on their TAP.

Social Prominence: Trends are temporal dynamic entities, meaning they grow for
a certain period of time, after which they suffer inevitable decay. In other words, trends
remain socially prominent for some time and their attractiveness fades away. It is
therefore necessary to include a time decay factor when modeling the trending score.

More formally, consider SocialTransfer receives a set of D tweets in one time
slot; t.,, being the current time slot and t,,,¢.; is the time slot when the trend was first

observed. We can then define the trending score of a topic z as:

D
L=|1 P(Zldk' tcur)

ID|. 6,

€)

Tscore, =

where &, = @(tour tonset) 1S the time dependent decay factor which is a function
of the current time slot and the time slot when the trend was first seen. The decay factor
must actively respond to trend reoccurrences (i.e. when the trend rises after an initial

fall). The decay can be formulated as:
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r = {1; P(z|D, teur) = P(z|D, teur — 1)
0: P(ZlD: tcur) < P(ZlD'tcur - 1)

1, teur = Conset
8, = {0z teur > tonser and tr =1 (10)
6, +1M, tow > tonsecand tr =0

where 0 <1 < 1 depends on the category of the topic z (meme, music etc.). In
addition to the usual trends, active decay can capture extremely dynamic trends like
memes or sports related topics, which have short life spans compared to music or
entertainment related trends.

For some video v, let z, be the topic to which the video has maximum
membership. This membership measure can be easily retrieved using SocialTransfer
classification, since the output of the classification is the topic of the video. Then the
social prominence of video v is Tscore,:.

Trend Aware Popularity: In a traditional video ranking system (like in YouTube)
videos with higher view counts are boosted in the rank list [30]. Thus, these videos get
clicked more often, resulting in subsequent higher view counts for them [9]. Therefore, it
1s necessary to engineer a reasonable fusion of the traditional approach and our proposed
social prominence approach. This fusion of the traditional popularity factors (like view
counts) and the social prominence of the video is called the Trend Aware Popularity
(TAP).

In formulating the final popularity score, we also need to take into account the
time when the video was uploaded (t,;;) since we need to discount the fact that older
videos already have higher view counts. Thus, the net temporal Trend Aware Popularity

score that we assign to a video v is:

TAP, = y.TScore,; + (1 —vy).

tonset -t

l
2 HWO),, .., (11)
Cour — tupl
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where #(vc), represents the view count at time ¢ and y is a weighting factor that
balances social vs. traditional popularity control. The above equation measures the social
trend aware popularity of a video. The traditional popularity is reflected by the adjusted
view count measure, which fractions the view count of a video based on when the video
was uploaded in video domain, when the video topic trend was onset in social domain
and when the prediction was performed.

The TAP score reflects the social popularity as well as the traditional (video
domain) popularity for a certain video. Our hypothesis is that social popularity signal
penetrates across media domains on the Internet. In other words, if a topic is substantially
popular (trending) in the social domain, then media belonging to the same topic will gain
popularity in other domains (in this case, video domain). Therefore, a ratio of TAP to a
scaled TScore,: value will provide us with the quantitative estimation of the impact of
the social signal in boosting the overall video popularity for some video v. The lower the
value of this ratio, the higher the impact of the social prominence of the video in
comparison to the adjusted view count score. Given the same social prominence, the ratio
seems to favor videos with lower adjusted view count measure. However, this is not an
issue, since the adjusted view count measure is lower when the trend has been seen for
longer time period (tcyr — tonset)» Which practically means that we are more sure of the
prediction if we are exposed to more of past trend data. Thus, for a certain video, if this
ratio is significantly lower than for others (lower 10th percentile), we predict the video
will gain bursty popularity.

Experiments: Once again, we test our social transfer learning model against
traditional learners like SVM [27] which do not use any auxiliary social data in
prediction. We used LibSVM with the Radial Basis Function kernel for SVM

implementation [108]. Here, the classification task is: given a test video, classify whether
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it is bursty or not (bursty=1/0). For the experiments, we set y=1.25, limit the power
method to extracting top-34 eigenvectors and include 60% of the topic space for input
supervision.

To measure the performance, we use error rate as a metric. Error rate is calculated

as (1 - accuracy) where,

accuracy
#truePositives + #trueNegatives

~ #truepositive + #trueNegatives + #falsePositives + #falsenegatives

Category — | Overal | Comed | Film & Entertainme | Sports | People | Music
1 y Animatio nt &
Approach | n Blogs
Non-Transfer | 0.524 | 0.623 0.412 0.386 0.451 | 0324 |0.576
+0.031| £0.039| £0.033 +0.028 +0.062| +£0.056| £ 0.028
SocialTransf | 0.311 | 0.328 0.389 0.289 0.225 | 0.197 | 0.236
er +0.026| £0.043 | £0.031 +0.022 +0.074| £0.029| £0.017

Table 5: Experimental Results of Error Rate in Predicting Bursty Videos for Social Video
Popularity. The results are the averages of 10 random repeats along with their standard deviations. Both
methods are tuned with 10-fold cross validation.

In Table 5, we report the average error in prediction for the Non-Transfer cases
(SVM on training only) vs. SocialTransfer. Non-Transfer refers to application of the
traditional SVM learner to the original target dataset with no social influence (only
training features are used); SocialTransfer means to apply SVM on the combined feature
representation learned using transfer learning from social data (training + auxiliary). The
performance in Table 5 is measured in error rate by averaging 10 random repeats on each
dataset by the two evaluation methods. For each repeat, we randomly select 5000
instances per category as target training data. We report the prediction error rate in each

of the main categories, along with the overall error for the entire data set. The results are
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provided category specific to show that the algorithm does better in certain video
categories, potentially due to the fact that more information about those categories can be
extracted from the social media in the first place. We also report the standard deviation of
the repeats in Table 5. The two methods are well-tuned using 10-fold cross validation.
The overall gain using SocialTransfer is ~ 39.9% compared to non-transfer cases. Please
note that the overall error rate is averaged over all the main categories and not just the six
categories shown in Table 5. Performance improvement using transfer learning is most
in category ‘Music’. In all the major categories, SocialTransfer performs better than a
traditional non-transfer learner. The F1-score of positive bursty videos for the proposed
SocialTransfer algorithm is 0.68 whereas for the non-transfer SVM it was 0.32.

Additionally, we ran a baseline Naive Bayes classifier, which produces an F1
score of 0.21 without any transfer of auxiliary data. If we replace the SVM in
SocialTransfer with the Naive Bayes, the F1 score achieved is 0.49. The drop in
performance of Naive Bayes in both transfer and non-transfer cases compared to SVM (-
0.19 and -0.11 respectively) is expected. Naive Bayes is easy to implement, but it suffers
from strong feature independence assumptions. Notice that this feature independence
assumption is more costly in the transfer scenario, where the drop in performance is
larger than in non-transfer scenario, potentially due to the heavy reliance of
SocialTransfer on cross-domain feature alignment.

We also provide results of using a majority-class baseline classifier (in place of
SVM in Algorithm 1). The F1 score of the final bursty video prediction in this case is
0.111. The distribution of bursty and non-bursty video in our dataset in 17% and 83%
respectively. Thus, a majority-class baseline classifier, when directly applied to bursty

video prediction, will classify every test video as non-bursty.
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4.3.3 Social Query Suggestion for Video Search

Let us first describe an application that utilizes the topic modeling using OSLDA
within the SocialTransfer framework. Our intuition is that lack of a collaborative cross-
domain recommendation environment compels users into unguided video search (pure
querying rather than smart recommendation). One effect of such activity is that users will
use the words of trending issues and topics (topical words) when performing video search
queries on the Internet. Learning topical words in real time from social streams could be
leveraged to suggest queries for video search. We believe this is an important application
of real time topical analysis from social streams. Our experimental results suggest: (1)
user search queries in video search engines do contain words which we recovered as
topical words from social streams using OSLDA. (2) There is a noticeable time lag
between (a) OSLDA topic trend detection from social stream and (b) the increasing
volume of search queries on that trend in an external (non-social stream) video search
portal. This correspondence can be leveraged to augment user experience by socialized
query suggestion for video search when the user is querying in the video portal.

Socialized query suggestion for video search using the OSLDA model in
SocialTransfer aims to recommend good query words in response to users’ query
keywords. This will help searchers to better seek the more topic-relevant videos they are
looking for, since the suggested topical words are connected to videos in the transfer
graph. Said alternately, socialized query suggestion aims to localize the topic of the video
the user is querying for by suggesting additional topical words. This is more effective in
relevant video retrieval than just matching query keywords to video tags. Therefore, the
prior knowledge of which query words the users’ will use for video search will not only
enable the system to suggest better topical words for the user, but also improve the
system’s capability in predicting which keywords the users will use for search and which

videos they will potentially watch in the future.
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Experiments: Experiments in this section are conducted using video query logs
from a commercial video search engine and 10.2 million tweet data. The goal is to find a
temporal pattern or common terms between tweet topic words and video search keywords
from video logs. Fig. 19 shows the distribution of search queries with time in video query
logs for the topic ‘Egypt’ with real-time trend variation on Twitter as detected by
OSLDA.

From Fig. 19, we clearly notice that there is few minutes time lag between a trend
topic appearing on Twitter, and the same topical words being searched on the commercial
video search engine. This means as trends rise and fall in Twitter, the volume of queries
on the same topic rises and falls for video search. To further support our claim that
people search for Twitter trends outside Twitter, Fig. 20 shows the query keywords used
in a commercial video search engine on Feb 11, 2011. If we eliminate daily searches such
as ‘cats’, ‘movies’, ‘funny commercials’ which are common (green dotted circles), then it
is hard to miss that topical words (red solid circles) take up a significant portion of the
remaining video search keywords. In the video search engine logs and for all queries on
Feb 11™ that are not daily search terms (like ‘cats’), 63% of query words were detected

by OSLDA.
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Figure 19: OSLDA trend detection on Twitter (top blue) vs. topical word search trend in

commercial video search (bottom brown).
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Figure 21: Data from Google Ihsights shows that words detected by OSLDA where among
the top searches on Google.

In fact, this technique of socialized query suggestion can be extended beyond
video search. We used Google Insights to understand search patterns for web and image
search on Feb 11, 2011. It was not surprising that ‘ Egypt’ was the hottest search topic that
day. Moreover, Google Web Insights provided us with the top ten web search keywords
related to ‘egypt’; seven of which had already been detected by OSLDA earlier. For

Google Image search results shown in Fig. 21, six of the top ten search keywords were
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detected by OSLDA. This is convincing evidence that the OSLDA detects relevant

socially active topics within the SocialTransfer framework.

4.4 Parameter Tuning

Accuracy Variation with Stream Inflow

We test the rate at which the prediction error decreases with incoming stream of
tweets every day across 12 days of the social data (Jan 26™ — Feb 7™). Fig. 22 shows that
there is a gradual decrease in error rate as more of the stream is seen by SocialTransfer.
Lack of any sharp drops hints at the fact the social popularity is significantly trend

category specific. On course of the 12 days, we see a 49.4% net reduction of error.
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Figure 22: Drop in prediction error rate with daily stream inflow from Twitter.

The classification is done continuously at various time points. This is why the

decrease in error can be tracked each day as shown in Fig. 22. However, the results
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shown in Table 5 are calculated at the end of the entire period of time for which the
dataset is available (26th Jan - 7th Feb).

EigenVectors:

Previously we mentioned that for the experiments, we fix the number of
eigenvectors to be extracted from the transfer Laplacian to 34. The reason for this choice
is due to results of Fig. 23, which shows the variation of the error rate with the number of
eigenvectors extracted. We see that when the number of eigenvectors extracted is greater

than 34, the error rate is almost constant.
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Figure 23: The influence of the number of eigenvectors extracted on the error rate.

However, there is a trade-off between the time duration required for extraction vs.
error rate of prediction for a certain number of eigenvectors that can be extracted. Thus,
since the variation of reduction in error rate is not significant beyond 33-35 eigenvectors,

we can safely assume that the extraction of more than 34 eigenvectors is not necessary.
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Scalability

The speed at which the incoming stream of tweets is explored for topics by OSLDA
together with the time required for eigen feature extraction from the transfer graph using
spectral learning is important for maintaining scalability with the real-time social stream.
In our system, the topic modeling is done in parallel with the eigenvector extraction to
save time. Thus, our main aim should be to limit the time required to complete either of

these tasks within the incoming tweet flow time.
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Figure 24: Runtime comparison for topic modeling and eigen decomposition with incoming tweet

stream in SocialTransfer.

Fig. 24 shows the comparison of runtimes for various settings of OSLDA, eigenvector
extraction using power iteration (PI) and eigenvector extraction using Normalized cut
(Ncut) with the time taken on average for an incoming chunk of tweets to stream in. For

OSLDA, 20k’ (in legend) refers to 20 topics extracted and 501’ refers to 50 iterations of

76



the generative process. Experiments were run on a IBM server with 2.67 GHz processor
and 8 GB RAM.

From Fig. 24, we can safely conclude that the model scales to incoming bursts of
tweets, since the matrix decomposition with Power Iteration and the topic modeling using
OSLDA require less time than the speed of incoming tweets. Note that the Normalized
cut method (Ncut) does not scale as it takes longer time to extract eigenvectors than the
speed of the incoming burst of tweets as shown in Fig. 10. Moreover, for more than

40,000 tweets, Ncut causes our system to run out of memory.
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CHAPTER 5: LEARNING FROM SEMANTIC DATA

Semantics, in its classical sense, refers to meaning in information that can be
easily interpreted. When data is organized in such a way that it can be interpreted
meaningfully without human intervention, we call it Semantic data. There are various
ways to structure data so that machine-to-machine communication is fruitful. Most
commonly though, semantic data is organized in terms of a Resource Description
Framework (RDF), where each entry contains a piece of data instance, its property and
the corresponding value that the data instance has for the given property. RDF data is
often found in the Linked Data resources online, especially in sites like DBpedia.

A parallel view of 'semantics' is that one instance of data can never be semantic.
Ideally, semantics is captured by the relationship between two data instances. Such
relationship are easily captured in graphs, were nodes represent data resources and edges
represent the relationship between them with respect to some property. Several
fundamental problems encountered in automated search, ranking, disambiguation etc. can
be handled effectively using results from graph theory. Therefore, the first step in using

semantic data is to create a concept graph. We call this concept graph, semNet.

5.1 Building the Concept Graph (semNet)

A semantic network is a graph that represents semantic relations between
concepts. WordNet is a popularly used semantic network. When concepts are represented

by resources in RDF data, we can call the graph a semantic RDF network. Concepts can
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be obtained from ontologies. For example, DBpedia is an RDF dataset containing
structured information extracted from Wikipedia [37]. It has been widely used in the
research community to discover unknown relations in data, develop interoperable Linked
Data applications and perform exploratory search and recommendation [38]. RDFs can
be visualized as a semantic network, where each node is a resource from an RDF entry.
RDFs are the building blocks of the semantic web, and Semantic RDF networks (also
called ontology graphs in some communities) can be traversed to detect concept relations
[39, 40]. Further, connecting the social web with the semantic web holds valuable
promise as it gives rise to collective knowledge systems [41].

To incorporate RDF entries into a graph, we use each RDF resource is treated as a
node, the RDF property as the edge label and RDF value as a node connected to resource
node. Then using Algorithm 2, we can build a graph G(V,E) representing the semantic

graph. In Algorithm 2, label(e) refers to the label of the edge e i.e. the edge attribute.

Algorithm 2: Semantic knowledge graph from DBpedia

Input: RDF dataset (R)
Output: Semantic knowledge graph (G).
1. Initialize concept graph G(V,E) where |V|=|E|=0.
2. while more unread RDF entries exist in R do
3. Pick an wunread RDF entry, mark it as read, represent it as:
<Resource><Property><Value>.
4. rNode =< Resource >.
5 vNode = < Value >
6. ifrNode notin V:
7. Add a new node named rNode to
8. ifvNode notin V:
9 Add a new node named vNode to V'
10. Add anew edge eto Es.t. e = (rNode,vNode), i.e. e connects the resource and
value nodes.
11. label(e) = < Property >
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To include newer RDF datasets into the semantic graph, we can modify
Algorithm 2 as: (a) add the previous semantic concept graph G, to the input and (b) in
Step 1, initialize G = Gpyey,. This enables us to build a huge concept graph consisting of
concepts and their relations as obtained from DBpedia RDF datasets, a part of which is
shown in Fig. 2. Once semNet is constructed, we use some additional subroutines to
extract required information, e.g. path(nodel,node2) retrieves the shortest path
between nodes nodel and node2. These simple utility-type algorithms (like shortest

path etc.) are not mentioned in this paper to maintain brevity.

Source RDF Dataset3 | Nodes (in millions) Density
= HENVI*(VI-D]
SKOS 0.5 0.0009
Homepages 0.41 0.0007
Titles/ Labels 7.44 0.0015
Short Abstracts 3.31 0.0028
Images 1.72 0.0023
Wikilinks 8.68 0.0017

Table 6: Parts of the Semantic Graph built from DBPedia RDF datasets
The concept similarity between two nodes in the network is identical to the
semantic similarity of the concepts represented by these nodes; and can be calculated by
using either the WordNet (WN) similarity metric [42] or the Normalized Google Distance

(NGD) [43]. The WN similarity metric is calculated using the distance of the path length

3 For dataset specific information, refer to: http://wiki/dbpedia.org/Downloads37
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between the two concepts in WN. We use the Resnik measure based for our purposes, i.e.
a lowest common subsume is to be detected in the WN taxonomy which is shortest
distance from the two concepts to be compared. The larger is the distance to this lowest
common subsumer, the smaller the similarity.

Sometimes, WN fails to retrieve the required similarity measure. In such cases,
we use the NGD to calculate the similarity. Unlike WN, which is handmade ontology of
words/concepts, NGD is derived from the number of hits returned by Google search for a
specific set of keywords. Thus, keywords which are semantically similar tend to have

small Google distance. NGD can be mathematically defined as:

_ maxflog f(x),log f (y)}-log f (x,¥)}
NGD(X%,Y) = =g min flog s (1) 1og f )] (12)

where T is the total number of web pages retrieved by Google, f{x) and f(y) are the
number of hits for search items x and y respectively and f(x,y) defines the number of
pages where x and y co-occur. Note that unlike WN similarity which is node based, NGD
is a statistical similarity measure.

Links between semantic nodes is weighted using a dissimilarity measure of
concepts represented by the nodes containing the link. This dissimilarity measure acts as
a cost. A common way to measure similarity of two concepts is by using WordNet
Similarity [10]. Thus, the similarity between two nodes v; and v, is given by:

sim (vy,v,) = Wordnet_similarity(cy,c,) (13)

where, ¢; = concept(v;) and ¢, = concept(v,) as seen on WordNet.

When similarity is unavailable in WordNet, we can used Normalized Google
Distance (NGD) as the metric, as described in Eq. 12. Calculating semantic similarities
for the entire graph generates a matrix Dy = [VxV] of similarity scores. We use

reciprocals to convert Dy, into a dissimilarity matrix Dy,
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Wy p, = disim(vy, v,) =
1
WordNetsimilarity (C1, Cz) >0

sim(vq,v,) (14)
NGD (7-71’ Uz), WordNetsimilarity (01, Cz) =0
This adds weights to the semantic graph (G), with edge weights representing the

dissimilarities between two concepts D ;.

5.2 Categorical Classification using Concept Graph

Finding the correct category of a word depends on the context in which the word
was used. As mentioned earlier, social media trend words have different lifetimes and
patterns of growth or decay based on their categories. Predicting growth and decay
patterns is essential to various applications, including targeting ads, popularity and buzz
estimation or user affinity towards certain brands. Since trends within the same category
have similar growth-decay patterns, it would be logical to first detect the category of a
trend before predicting its other attributes, such as persistence or recurrence.

A fundamental problem with real world data is that the noise associated with its
generation can cause classification and categorization challenges. In other words, a
particular piece of text cannot be easily contextualized in terms of pre-selected
categories. For example, the Twitter trend - Justin Bieber come to Spain’, is partly about
a location but also about music. Categorization is a primary challenge of either topic
modeling or intelligent content analysis techniques. The basic task is to separate each
data instances into a pre-selected categories. The task is non-trivial especially if the data
is generated in real-time and is full of noise.

The existing methods to categorize Twitter trends are ad hoc at the best. Some,

like whatthetrend.com is human-curated. However, this severely limits the applicability,
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since there is lack of enough labeled data. It can also be inconsistent at times, due to
disagreement among annotators.

The concept graph can be leveraged cleverly to detect potential categories for data
instances. It is implemented in 4 simple steps, namely: (1) Detect semantic concepts
related to trend words from a sample set, (2) Label categories based on semantic concepts
related to trend words of this sample set, (3) Build training instances where semantic
concepts have a category as class, (4) use an ensemble tree classifier [44] to find the

probable category of the trend.

Trendl \

Concept Listof related semantic
—
graph concepts for the trend

* Participants in American reality television series
* American child actors

* American voice actors
* Aetors from Arizona
* People from Scottsdale, Arizona
Concept —= | * American television actors
graph * People from Greenwich Village, New York
* Lrving people
* People from Phoenix, Arizona
* American film actors

= 1988 births

l

Figure 25: Detecting semantic concepts of a trend from concept graph.

Step 1 - Detect semantic concepts: When the concept graph is queried with a trend
like 'Emma Stone’, it returns with a list of semantic concepts which is related to the trend.
As shown in Fig. 25, the concept graph tells us that Emma Stone was born in the year
1988, has been an American reality television series and a child actor, voice actor and her

place of living is Arizona and New York.
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Step 2 - Label the category of semantic concepts: Our goal is to label semantic
concepts with a category that is most suited for them. For example, as shown in Fig. 26,
since Emma Stone is closely related to the category 'Entertainment’, words like 'actor’,
'television', 'film' will be labeled with 'Entertainment’. Of course, this part of the process
needs to be somewhat humanly curated or can be expanded from a seed set of labeled

semantic concepts.

Entertainment

True Label

! From concept graph

M
* Participants in American reality television series
* American child actors
* American voice actors
* Actors from drizona
* People from Scottsdale, Arizona
* American television actors S —S Entertainment
* People from Greenwich Village, New York
* Living people True Label
* People from Phoenix, Arizona
* American film actors
* 1988 births

Semanticconcepts
Figure 26: Labeling semantic concepts with true category.

Semanticconcepts
True Label

* Partiwctpants in American reality television series
* American child actors

* American voice actors

* Actors from Arizona

* People from Scottsdale, Arizona
* American television actors —_— Entertainment
* People from Greenwich Village, New York
* Living people

* People from Phoeniz, Arizona

* American film actors

* 1988 births

‘ Super Bowl MVPs, New York Giants players, ... lk———ﬁ Sports
‘ Unated States presidential candidates, ... l———ﬂ Politics
‘ Host citees of the Commonwealth Games, ... l————a Place/Location

Figure 27: Building training instances
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Step 3 - Building training instances: In Step (3), we extend the previous step to
take several semantic concepts and label them with categories, as shown in Fig. 27,
which serves as our ground truth. We have 18 categories and 2000 semantic concepts as
training instances. These concepts serve as training data for a decision tree, which helps
in making the decision of which category might be contained within a set of semantic
concepts.

Step 4 - Ensemble Tree Classifier: In step (4), we give these semantic concept
words and associated true labels to a ensemble decision tree. The purpose of the decision
tree is to learn which words have a high probability of belonging to certain category. This
ensemble decision tree serves as a classifier where each tree votes on a category and the

majority voted category is chosen as the classified category of the trend (Fig. 28).

> - . Multiple Decision Trees vote on the ) -
probable category

actors | | players PR -

__________________________

Entertainment Sports IVI\ i
\ usic /

Figure 28: Ensemble Decision Tree classification

Now, we discuss three applications that uses the semNet in order to incorporate

cross-domain semantic data into various learning algorithms applied to different domains.
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5.3 Applications

The applications we choose are driven by the following notions (1) A collection
of words can represent a topic, provided they cluster well in the semNet. (2) Network
analysis and time series analysis provide techniques to reveal the evolution of dynamics
systems, and (3) predictive tasks can be performed by gaining knowledge of topic and
semantics in advance.

The reason to use a network is to understand the relationships among cover issue
titles, between issues and topics and amid topics only. These three aspects reveal
distinguishing patterns such as what topics are focused on by one of the world's top
magazines and how publishing distributes the topics evenly over various issue cover
features. For example, time series analysis of topics from the Time magazine reveals

increasing, decreasing, seasonal and bursty (sudden rise) topic trends over time.

5.3.1 Evolution of Human Socio-Cultural Signals over time

There are many anthropological chronologies regarding the history of topics that
has captured attention of the world population over the last century. However, there is
limited computational study of relations among these chronological topics that affected
humanity and the causal chain of how attention to one topic caused another future topic.
In this paper, we explore relative importance and correlations among topics that captured
human attention across history using web pages that contain information about the cover
page of the TIME magazine. TIME is an American magazine that enjoys the world's
largest circulation for a weekly news magazine. For nearly a century, the cover of TIME
magazine epitomizes some of the most important topics facing humanity. We use two

techniques for our study. First, we employ network analysis to estimate the relations
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among these topics and their evolution over time. Secondly, we utilize time-series
analysis and illustrate the patterns of persistence, decay and correlations among topics
that captured world interest over the last hundred years and shaped our current socio-
cultural dynamics of existence.

Computational anthropology involves studying the dynamics of social, physical
and cultural adaptations in society through computational methods [32]. Although this
paper does not purely belong to the genre of anthropological studies, it strives to
understand how we can extract signals of socio-cultural adaptations in humanity from the
plethora of digital resources on the Internet [31]. We are swimming in a world of digital
data. Online archives provide us with new means of investigating patterns governing
human societies by intelligent data mining. Such patterns hold information regarding
diffusion of topics through the society.

One such online archive is the cover pages of the TIME magazine'. TIME
magazine enjoys the world's largest circulation for any weekly news magazine. Although
the magazine itself largely appeals to the American audience, the cover of the magazine
usually features topics that affect a significant portion of the world population, either
directly or indirectly. The cover page of the 7/ME magazine might feature an individual,
event or topic (we call these cover features). All of the cover features contain related
meta-data, i.e. categories to which they belong to. For example, when the cover feature
includes 'Obama’, it belongs to Politics. Similarly, 'Olympics' belong to Sports.

The semantic meta-data associated with each cover page is valuable information
(Fig. 29), as it reveals what topics were interesting to the society in a certain week of a
certain year. Our methods of analyzing this data are threefold. First, we explore what

topics have been most featured (popular) in TIME magazine covers over the last century.

4 The archive is available at http://www.time.com/time/coversearch
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Each topic is associated to a cover feature. Each cover feature contains a cover title in
words (Fig. 29). Thus, we can build a network of word co-occurrences and perform
community detection [33] for the entire dataset, revealing the clustering of similar topics
based on the cover feature.

Secondly, since the dataset is essentially a time series, we employ dynamic
network analysis [34] to reveal how the key properties of the network (e.g., clustering
coefficient, radius etc.) evolve over time. Our final technique does not use co-
occurrence. Instead, for a given topic, it produces a signal of the topic's popularity with
time based on the frequency of appearance on the cover. With simple signal processing
and time series analysis, we can reveal interesting patterns of persistence, decay and

correlations among topics.

Issue Date Cover Title Cover Topics Meta-data
April9, Finance,
1928 Henry Ford Sinclair Business
April9, American Express
1956 President Reed Business
April9, NuclearPower,
1979 NuclearNightmare Environment
April9, Global Warming Weather,
2001 Global Warming,
Environment
Figure 29: Example TIME magazine covers and corresponding topic meta-data from 4

different decades.
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Collecting TIME Magazine articles: The archive of all TIME magazine cover
features since 1923 is available online as archive. We wrote a simple crawler to collect all
the web pages containing cover page of issues published. With each associated cover,
there is topic meta-data regarding the main theme of the cover feature. For example, if
the cover title is 'Global Warming' then the related topic meta-data includes Weather,
Environment etc. For each cover page, we store a triple entry. The triple entry describes
three aspects of the cover, namely, its date of publishing, the cover title and the topics
meta-data list. Thus, for the issue published on April 9th, 1956 (see Fig. 29), the triple
stored is: {04/09/1956, American Express President Reed, [Business|}. After the entire
crawling process, we collected 4,676 such triples, starting from March 23rd, 1923 to May
14th, 2012.

Meta-data and pre-processing: As mentioned earlier, with each issue cover
feature, there is available a list of meta-data topics that signifies related topics with
respect to the issue title. It is not known to us how 7IME exactly performed this
categorization of cover titles or how they decided on the seed set of categories. However,
in most cases, we found the topic categories make sense and relate closely to the cover
title. The pre-processing involves handling the usual problems related to text processing,
e.g., tokenization of title words, stop word removal etc. In certain cases, we also employ

"

stemming for terms such as "America's" i.e. we use Politics instead of 'political'. We do
not use any significant natural language processing tasks like parts-of-speech tagging
since the meta-data is not in natural language form. The topic meta-data list for an issue
is essentially a collection of words that have semantic closeness.

The Network of Topics-Issues: We build a network where each node is either a

issue title or a topic. For a given issue title node, all the topics in its meta-data are set as
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its neighbors in the network. For two issue titles, if they have common words (co-
occurrence), then there exists an edge between them in the network. The edge weight
between issue title and topic in its meta-data is always set to 1. The edge weight between
two issue titles with co-occurring words is the number of common words with some
normalization, i.e. if titles 4 and B have |w|, and |w|g words respectively and the
number of words in common between 4 and B is represented as |w|,p , then the edge

weight between these two issue titles 4 and B can be written as:

eap = |W|ap/ max (|w|y, [w|p) (15)

Although our network is built using co-occurrence of words in different
issue titles, it is fundamentally different from the usual 'co-occurrence network' (Ozgur
2008) where two words found in the same title would have an edge between them in the
network. Instead, in our case, if two titles have at least one common word, then they are
sure to have an edge connecting them in the network. As mentioned earlier, we pre-
process the data to remove stop-words so that an edge reflects reasonable similarities
between the two titles. Nevertheless, the same word can reappear in many titles (e.g., the
word 'World', 'America' etc.), which would give rise to too many cliques in the network.
Therefore, when the same word connects more than 10 titles, we create a super-node (of
that common word) and connect all the title nodes to that super-node instead of having
edges between each pair of title nodes. A clique of » nodes has n*(n-1)/2 edges. The
super-node hierarchy reduces this to n edges with (n+1) nodes. There are 350 such super-
nodes in the network.

Properties of Topic-Issues Network: are 4475 nodes in the network and 22,768

edges. The average degree is 10.176 with a density of 0.002, signifying that the graph is
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pretty sparse. The average path length is 3.61, which is remarkably short. It is a desirable
characteristic since shorter average path length indicates better chances of information
diffusion and small-world nature [109]. The diameter of the network, defined as the
greatest distance between any pairs of vertices, is 7. On the other hand, the radius of the
network is 4, which can be thought of as how far a node (title/ topic) is from another node
most distant from it in the graph. The degree distribution of the entire network is shown
in Fig. 30, which closely resembles a scale-free degree distribution, implying few topics
are most often discussed.

The main purpose of building the network is to explore two aspects of the
topics, (1) which topics have been most discussed over time, and (2) how have topics and
cover features evolved in relation to one another. The first task is handled by centrality
measures and community detection in the network. For the second task, we will use

longitudinal network analysis.

&

.’__,'. ) " '9)
EI@\;p re'.uf:rn::g@@m @y @

@‘-‘ Ted bay - I
0© sbienye B
O . O
ne o
Figure 30: Node sizes represent the magnitude of Eigen Vector centrality of the node in the

network. Only 4.14% of the nodes are shown in this figure to effectively illustrate the important topics.
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Most popular topics: The centrality of a vertex within the network represents the
relative importance of the topic node in the network. We used Eigen vector centrality for
our analysis [33]. It measures the influence of a node in a network by assigning relative
scores to all nodes based on the concept that connections to high scoring nodes contribute
more to the score of the node in question than equal connections to low scoring nodes. By
this definition, we expected topic nodes have higher centrality than issue title nodes. The
observations (Fig. 30) justify our expectations, as the top 15 nodes with highest centrality
were: {Politics, Health, Medicine, War, Military, Business, U.S., Presidents, World,
Elections, Society, Science, Technology, Economy and Religion}. The higher the
centrality, the more important the node in the network. By the same analogy, the higher
the centrality, the more number of times the topic appeared in the issue cover. In other
words, issue covers in TIME strongly relate to the topics : Politics, Health, Medicine,

War, Military and Business etc.
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Figure 31: Degree distribution of the entire network
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Community formation among topics: In order to understand the relationship
among issue title and between issue titles and topics, we need to further detect
community structure in the network. A community structure implies the network divides
into natural groups of nodes that are densely connected with others in the
group/community and rarely with nodes outside the community. Sometimes communities
might overlap. Our results revealed that the network possesses 21 different communities.
5 of these communities have a significant more number of nodes than others (Fig. 32).
The 5 communities formed around issue titles belonging to the topics of Politics, War,
Health, Business and Middle East. The titles which are part of these communities is

visualized in Fig. 32.
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Figure 32: The five major communities in the topic-issues network
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Longitudinal Network Analysis: Longitudinal network analysis involves study of
changes in the network topology with time. Analyzing networks over time is important to
comprehend the decision cycle and causal chain of major events and topics [35]. For
example, terrorism as a topic was not discussed before 1970s, and as such that node
would not be present in the initial network. However, network structure and flow
dynamics would be strongly affected when a topic which gains future prominence enters
the network. The temporal variation in the network topology is visualized in appendix xx
along with the numerical values of changes in network size (Fig. 34) and rate of change

in number of nodes and edges for each passing decade (Fig. 33).
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Figure 33: Variation in the number of nodes and edges in the network with each passing
decade.

There are two main observations to be made from Fig. 33, 34. (1) The rate of
increase in both the number of edges and nodes in the network follows an exponential
decay. The decay rate for the first 20 years is approximately e ~(°15%) whereas after 1953,

the decay rate stabilizes at around e~(®%5%)_ This shows the saturating effect on the
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network growth, i.e. a substantial number of recent issue titles belong to topics that were
important even before 1953. (2) Secondly, for one particular decade, 1973-1983, the rate
of increase of nodes is more than that of edges. This means during that decade, a number
of new issues nodes were introduced in the network that had fewer relations to past
topics. In other words, some important topics were first addressed in that decade. Going
back to the data, we find that four topics that gained significant future prominence but
had almost no discussions before 1970s were introduced in this decade. They were:

Terrorism, Brain, Environment and Fraud.
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Figure 34: Variation in the rate of increase in the number of nodes and edges in the network

with each decade.

We record the variation of the average degree, average path length, average
clustering coefficient and number of detected communities over time [35]. In this case,
we plot the quantities against the network size for better understanding of the underlying
phenomenon. Fig. 35 shows that the average degree of the network remains almost
constant (low variance) with increase in network size, implying there is lack of

preferential attachment. This also establishes that the topics covered by TIME issues over
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a decade does not bear a normal distribution. Instead, cover features are quite evenly

distributed over topics.
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Figure 35: Variation of the Average degree and the no. of communities detected with
increase in network size.
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Figure 36: Variation of the average path length with network size.
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Although, the average path length remains around 3.5 for the entire 100 years of
network evolution (Fig. 36), it drops after 1993, indicating current issues have strong
connection to past topics and not too many new topics have been discovered. The average
clustering coefficient is quite low, signifying the network is more random than small
world. This is potentially due to the even distribution of topics covered in T/IME issues
over a year.

Topic-Issues Network Evolution: The evolution of the network is a synergy of the
evolution of the various topics represented by nodes in the network. In this section, we
track the evolution of the topic signals over time and estimate which signals have strong
temporal correlation. For each topic word, we measure how many times it appeared in
issues over one year as an estimate of the importance of that topic in that specific year.
Thus, the frequency of a topic word in the year's published issues represents its relative
importance in that year. Since, there are 48 issues per year, the maximum possible value
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of this frequency can be 48. Empirical results however showed that the maximum
frequency achieved was 26, by the topic 'war'.

In Appendix A2, we show 54 most-occurring topic signals over time. The
y-axis represents the frequency of the topic in a year whereas the x-axis represents the
years from 1923 to 2004 (values not shown for brevity). There are certain notable
observations that can be made from Appendix xx. There are 5 types of topic signals that
we observed. There are topic signals that approximately (a) increase gradually, (b)
decrease gradually, (c) tend to be seasonal and (d) increase suddenly over time and (e)
stay evergreen. Topic signals that seem to have a gradual positive trend over time (getting
popular) are Health, Disease, Research, Middle East, Terrorism, Technology, Computers
etc. Certain other topics have a negative trend over time, (i.e. their popularity is
decreasing as we get closer to present day) are France, Congress, Britain, Military,
Transportation, Books, Theatre etc. Some topics maintain a more or less constant trend
over time (evergreen topics), such as Employment, Industry, Television, Education,
Singers, Baseball and Politics. There are also topic signals that display a seasonal pattern
in rise in importance. Some topics that display strong seasonal behavior are Religion,
Republicans, Elections, Broadcasting etc. Finally, there is also a type of topic signal that
did not show a gradual rise in importance, but a very sudden rise. These topic signals
include Iraq, Computers, Vietnam, Environment, Scandals and Terrorism. We believe
this last type are motivated by major unforeseen global events.

Correlation among topics: The correlation among topics is demonstrated using a
corrgram [36] in Fig. 38. The topics signals used for this analysis are (shown in Fig. 38) -
from top to bottom, Vietnam, Russia, Latin, Diplomacy, Journalism, Military, Labor,
Germany, Singers, Industry, Congress, Cars, Britain, France, Transportation, Theater,

Baseball, Aviation, Sports, Movies, Books, Business, Finance, Education, Broadcasting,
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Women, Health,

Research, Technology, Scandals, Medicine, Computers, Science,

Children, Iraq, Employment, Social, Society, Crime, Middle East, Africa, Israel,

Environment, America, Presidents, Television, Elections, Economy, Weapons, Space,

NASA, Republicans, China, and Energy. In the corrgram, the larger bubble in a cell

indicates higher absolute magnitude of correlation. Blue indicates positive correlation

whereas red indicates negative.
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Figure 38:

There are some interesting insights revealed from the corrgram. Certain strong

positive topic signal correlations are obvious, for example, between Labor and
Employment, between Germany, France and Britain (world war) or between Cars and
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Industry. Other positive but intuitive correlations are between television and
broadcasting, books and theatre, health and medicine, science and technology,
republicans and elections, iraq and middle east, NASA and space etc. However, we
noticed other correlations that we less expect. For example, congress and business, france
and books, women and medicine, children and scandals, employment and latin, crime and
society, africa and scandal, israel and social, and weapons and china. Analyzing the
cultural basis of these unintuitive correlations are part of our future work, as is detecting
if they were essentially spurious caused by latent agents. Negative correlations were

found between congress and medicine, society and books etc.

5.3.2 Predicting spatio-temporal evolution of social media trends

Trends, observed in social network sites like Twitter or Facebook, are the
aggregate effects of posts by many users who are spread geographically. These posts
arrive in a sequences or batches, giving rise to a unique spatio-temporal trend signal
pattern generated by user activity. A trend is a word, a phrase or multi-word posted by a
substantial number of users over a small period of time. The top trends make it to the
Trending Topic List (TTL) shown in Fig. 72. Chapter 7 describes Twitter trends in more
detail. Twitter collects trends based on users from various locations, thus we can say each
trend is a 3-tuple (time, location, is it in TTL).

Since trends represent the most popular topics at a given time, it is highly
attractive to advertisers, marketers and even to network traffic and scalability researchers
to know how the grow and decay. This makes predicting spatio-temporal trends an
increasing lucrative field of research. A primary observation I made during my research
is that different categories of trends behave differently in space and time. In other words,

trends belonging to gaming behave significantly different to trends belonging to music or
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sports. For example, a meme might hold a very high trending score for a small amount of
time. On the other hand a trend concerning holiday will probably slowly increase in
trending score over a long period of time. The growth and decay of different categories of

trends are quite different, as shown in the following Fig. 39.
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Figure 39: The growth-decay patterns of categorical trends and (below) examples of some

trends in different categories.

Not only do trends have different growth patterns in time, they also extend to
different ranges of space geographically. This means some trends will extend to a few
cities, while others will engulf the entire globe. One of the main questions in connection
is being able to predict if a trend will persists for x number of hours, or a trend, that has

fallen off the TTL will re-appear in the TTL after y hours. These two characteristics are
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called persistence and recurrence respectively. Both these properties are in turn affect not
only by the category of the trend but also the time and location.

Since this is a panel data where the random variables geo span, persistence and
recurrence are affected by multiple dependent factors, like category, location and time of
the trend in addition to each, we have to be careful in designing a model that will not over
fit or bases on abrupt assumptions. Therefore, we must analyze the each variable

separately to begin with.
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Figure 40: The high volatile geographical locations
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Figure 41: The geo-span of the various trend categories
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Persistence: The persistence of a trend is the duration of continuous time units during
which a particular trend resides in the TTL. Shown below in Fig. 42. is the trending topic
'Didier Drogba' belonging to category sports illustrated as a dispersion chart. A
continuous blue line shows the persistence of a trend at some location. A break in the line

represents the trend dropping out of the TTL.

Trend Dispersion: Didier Drogba (Origin: 2012-05-04 22:10:03)
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Figure 42: The dispersion chart showing persistence of a trend in 'sports' category

Recurrence: The recurrence of a trend is the number of times it reappears in the TTL
after initially dropping out the TTL.

Path Analysis. The dependency among the set of variables (persistence, recurrence,
geospan and volatility) is explored through a statistical technique called Path Analysis
[96]. Fig. 45 explains the basic idea, where the variables are modeled to be correlated
using edges. Edge weights represent the correlation coefficient between the two variables
(nodes), also called path coefficients. The expected correlation between two variables

that do not share an edge is the product of the path coefficients in the chain connecting
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them. Equations 16, 17 and 18 represents the standardized regression equations that

embodies the path analysis process.

Trend Dispersion: Didier Drogba (Origin: 2012-05-04 22:10:03)
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Figure 43: The dispersion chart showing recurrence of a trend in the 'sports' category
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Figure 44: The variation of persistence and recurrence for some categories.

geospan = a,,.( persistence) + & (16)
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persistence = a,;. (volatility) + a,,. ( recurrence)+ &, (17)

recurrence = as,. ( volatility) + & (18)
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Figure 45: The path analysis model for predicting trend attributes.
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Figure 46: The persistence prediction error (in hours) for trends in certain categories
Fig. 46 illustrates the results of using path analysis for persistence prediction of trends
with varying periods of training data. We can observe that for some trend categories (e.g.,

lifestyle, memes), more training data (looking further into past) reduces the prediction
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error, whereas for other trends (e.g., sports, politics) looking too far into past data reduces
performance. The error here is calculated as (1-accuracy) as explained in Pg. 69. The
experiment shows that a path analysis model can predict trend persistence to significant

accuracy.

5.3.3 Forecasting movie profitability by using the fine-grained semantic data

The movie genome concept is similar to the Music Genome concept [3], aiming to
capture the fine-grained features of multimedia, beyond genre, title etc. A taxonomy
created by film professionals including attributes such as mood, tone, story, plot
development etc. is being used as movie genome by Jinni [5]. Movie genome has several
multimedia applications ranging from movie discovery and semantic search to powering
movie recommendation engines [4, 16].

A variety of factors determine whether a movie will grow into a timeless classic
or bomb at the box office. Some factors are extrinsic to the real content of the movie,
such as the studio creating it or the budget considerations in production. Other factors are
intrinsic to the movie content, including the story, plot development, genre, cast etc.

Every movie is composed of a set of intrinsic elements that contain semantic
meta-data about the movie. Examples of such elements could range from fine-grained
semantics such as mood, plot, audience type, praise, style and whether it is based on a
book or not to more traditional classes such as, genre, musical score, flags of violent
content, Oscar-winners etc. These set of semantic features for a movie is called its
genome [5]. Alternately, each semantic feature (e.g., mood) represents a gene.

There are three interesting questions to be explored from movie genome data - (1)
which set of genomes constitute good movies, (2) which set of genomes constitute
unpopular movies and (3) is there a way to predict the best set of genomes that will give
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rise to a successful movie. The questions are of vast importance in the media and
entertainment industry, due to the inherent risk involved in selecting scripts and pre-
production efforts that is involved prior to a movie begins shooting [11].

Previous attempts at predicting movie success has preferably used traditional box
office data such as gross revenue of the movie, advertising budget, number of opening
theatres etc. [12]. Other researchers have attempted to tackle the problem using social
media signals as indicators of popularity [13]. However, results indicate that prediction is
often inconsistent [14]. This paper attempts to answer the above mentioned questions
using network science [10] and genetic algorithms [7]. We take a different approach, in
the sense, we use a genetic algorithm based on fine-grained semantic meta-data
surrounding the movie, represented by its genomes.

Firstly, we attempt to understand which genomes produce positive impact in
audiences and which do not. Our approach to studying this problem is by constructing a
network, where each node represents a specific value for a gene and edges represents
genes elements that have been found in the same movie. This is analogous to word co-
occurrence networks used in text mining [15]. Consequently, we try to detect
communities of nodes in such networks, which represents the group of genes that had
positive impact, given the network was formed out of successful movies. To answer the
third question, we use genetic algorithms to find the strongest group of genes that
identifies with most success. Our fitness function is comprised of variables chosen from
the network topology metrics of the gene co-occurrence network. Thus, the structural
properties of the network is embedded in the genetic heuristic, allowing for better
convergence due to the natural dependence on network motifs.

We use Internet Movie Database (IMDB) Top 250 movies

(http://www.imdb.com/chart/top) as a dataset of 250 most successful movies. This list
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contain a good mixture of box office hits and Oscar winners. We also use IMDB lowest
100 ranked movies as a set of unsuccessful movies, which received very poor ratings
from critics and users. For purposes of evaluating the utility of our genetic algorithm, we
exploit an additional test dataset of 675 movies ranging from 2007 to 2011, released by
the Motion Picture Association of America (MPAA).

Genetic algorithms is a class of evolutionary algorithms that depend on a search
heuristic and mimics biological evolution. The four major steps in any genetic algorithm
include inheritance, mutation, selection and crossover [7]. Starting from a random
population of candidate solutions, an optimization problem is evolved towards better
solutions. The optimization is necessarily a fitness function, which needs to be scaled
linearly or exponentially [1]. Every candidate solution is fundamentally a genome,
consisting of several genes that can be crossed over, dropped or mutated. Genetic
algorithms find wide application in bioinformatics, search, economics and phylogenetics
[7].

Our results indicate that there are four key communities of genes that have
positive impact and five communities of genes that could have negative impact on
audience acceptance of a movie. Moreover, the genetic algorithm we develop improves
the accuracy rate of predicting successful movies by 26% over baselines and 31% over
traditional classifiers, including a 71% chance of accurately predicting high profitability
movies.

Data: We utilize three datasets in this research. Two datasets are crawled from
IMDB for building the Movie Gene Co-occurrence network (MGC). One other dataset is
obtained from MPAA and contains success ratings of 675 movies released between 2007
-2011. The latter is used to test the performance of our proposed genetic algorithm. The

first two datasets are augmented by us, by attaching genomes to each movie. The third
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dataset of movie success ratings contains profitability, box-office revenue and gross-
overall revenue for movies.

Movie Genome: Each movie is represented by its genome as shown’ in Fig 47. To
get the genome of a movie given its title, we use Jinni and Wikipedia. Meta-data from
Jinni are structured. When we need to use Wikipedia, words from the plot and other
sections of the related wiki page that are essentially web links is extracted as gene
elements. We also utilize DBpedia RDF data for the corresponding movie, using similar

techniques as mentioned in [16].

Genome of Movie: A Beautiful Mind
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Figure 47: Genome for the movie - 'A Beautiful Mind' (2001).
A movie genome is composed of several genes, each gene indicating a certain
feature of the movie. A gene is further composed of several gene elements that describe

the movie gene using fine-grained semantic information. There are 667 unique gene

5 Higher resolution images are available at: http:/bit.ly/18yZht0
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elements in our dataset. At this point, it is important to understand the difference between
genome, gene and gene element in our model. As shown in Fig. 47, various combinations
of gene elements can give rise to a gene. The set of genes for a movie is called its
genome.

Given the movie genome, our goal is to understand whether some genes are
stronger than others, in sense the appear more often in successful movies. An elegant way
to represent this data is by means of a network of gene elements, as described below and

shown in Fig. 48.
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Figure 48:

The MGC network of IMDB Top 250 Movies.
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MCG Network: Given the genomes for a set of movies, a simple algorithm is
implemented to create a MGC network. The elements of a gene is represented by a node
in the network. For example, in Fig. 47, 'gloomy', 'sincere', 'drama’' etc. are elements of
the gene, and thus appear as nodes in the network. The corresponding gene name, i.e.
'mood' or 'plot' is not a node in the network.

Edges indicate two elements that co-occur in the genome. Thus, 'gloomy' and
'serious' will have an edge in the network since they both occur in the movie genome
(Fig. 47). Every time the algorithm sees 'gloomy' and 'serious' in the same movie genome,
it increases their edge weight in the network by 1. If one gene element in the pair is
missing from the network, a node for that gene element is created an a corresponding
edge added.

Thus, in MGC network each node represents an element of some movie gene.
Edges between two nodes indicate that the two corresponding gene elements co-occurred
in some movie genome. Edge weights represent the number of times such a co-
occurrence was seen over the entire dataset of movies. This is a standard way of building
co-occurrence networks [15].

Genome Communities: For the purpose of detecting communities in the MGC
network, we use the adjacency matrix (4) representation of MGC network, where
Aj; = 1 represents an edge exists between nodes (elements) i and j. The modularity Q of

MGC of n nodes can then be calculated as described in [2]:
1
¢= Z [2 (2m)(2 )] o(cicy) (19)

. : 1 .
where k; is the degree of node i, m = . Y.i ki and c; represents the community of

node i. One way to detect the community is to use edge-between-ness repeatedly, as is
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described in the Girvan-Newman algorithm [6]. The method systematically removes
edges of highest betweenness and then recalculates the between-ness of the surviving
edges. At some point the network breaks into two or more isolated sub-networks,
representing the partitions (or communities).

Two MGC networks are built from the IMDB-top-250 movies and the IMDB
lowest 100 movies respectively. Separate community detection is employed on each
network. For the top-250 movies, four distinct communities were detected. On the other
hand, five communities were detected for the lowest 100 ranked movies. The most
influential elements in each community is identified by the node (gene element's) Eigen

Vector centrality, which is expressed as:

1
EVC, = - z ay; EVC, (20)
teEMCG

where EVC; represents the Eigen Vector centrality of vertex i, y is a constant and
a,: =1 if vertex v is linked to vertex # in MGC (0 otherwise). In Fig. 48 and 49,
node/label size indicates the magnitude of Eigen Vector centrality of the gene element
within the MGC network.

We take note of gene elements with highest Eigen Vector centralities in each
community for the IMDB top-250 and the lowest-100 movies. Our results hints at four
sets of combined features that captivates audiences. One type is violent, rough, stylized
movies similar to the cult favorite Pulp Fiction. Another type is movies that are
blockbusters. Inception and Iron Man fall into this category. Community 3 contains
movie gene elements that relate to 'Drama’ or 'realistic' movies, like The Prestige. Finally,
community 4 contains movie gene elements for critically acclaimed movies, like The
Dark Knight or We need to talk about Kevin.
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It is interesting to note that the same element may occur in two communities of
good and bad movies, but it is the co-occurring elements in that community which
provide semantic sense to any element. Thus, 'blockbuster' and 'adventure' may go very
well together, but 'horror' and 'family' potentially do not. Note how communities in the
low-100 dataset have high influence nodes which fail to make semantic sense together,

e.g., 'action' and 'family".

IMDB Top 250 Genes | IMDB Lowest 100 Genes

blockbuster

independent

friendship

Silly humor

Deadly creature
horror

Teenage life

Figure 49: A Venn diagram showing gene elements unique to top-250 movies and lowest-100
movies of the IMDB dataset.
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Award winner

realistic

captivating

touching

As a statistic, there are 667 unique gene elements present in the IMDB movies.
Among these, 333 gene elements are observed in the lowest-100-movies while 418 are
present in the top-250 movies. Some gene elements are found in both the top and lowest
ranked movies. Fig. 49 shows some gene elements present in each group using a Venn
diagram representation.

The reasons for detecting communities will now be made more clear. A
community, in sense, is a semantic cluster of gene elements that together contribute to
forging good or bad movies. Thus, the influence of a node within the network and its
community become key measures in the study of ideal ingredients (genes) for making a

movie successful.
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There are two key measures that we can calculate from the network in order to
use as part of the fitness function of the proposed genetic algorithm: (1) The influence of
the gene element within the MGC network, and (2) the tendency of the gene element to
cluster with other gene elements in the MGC network. The first characteristic is exhibited
by the Eigen vector centrality of the gene element within the network. The second
property can be measured using a local clustering co-efficient of the node within its
network community. Note that the first measure is with respect to the global network,
while the second property is confined to the community in which the gene element finds
itself. This balance is important, since a group of medium influential nodes might possess
strong local clustering.

Evolution of Movie Genomes: The problem we are trying to solve is searching for
strongest cluster of genes that will produce a successful movie. The solution to the
problem lies in the evolution of movie genomes using a genetic algorithm (GA). The
main idea is to select an initial population of genes, develop a fitness function and then
continuously update the gene combinations until the fitness function no longer improves
or the population remains constant. Due to lack of space, we avoid discussing the entire
detail of how GA's work in general; please take a look at [1]. The GA for movies that we
developed is described in Algorithm 3.

As shown in Fig. 50, each gene can be pictured as the strip of blue (indicating
element present) and red (element missing). A crossover occurs when two sections of two
genes are interchanged. A mutation refers to flipping one gene element (turns red to blue
and vice versa). New genes are produced as a result of crossover and mutation. The next
task then, is to measure which of these genes to select for the future population. This

depends on the quality of the gene.
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Movie Gene Parents  Crossover Mutated New
Population Offspring  Offspring Population
Figure 50: Genetic Evolution of movie genes.

The quality of a gene (x) is represented by its fitness. The fitness function depends
on the location of each gene element in the MGC network of IMDB-top-250 movies
(MGC®5%) and the MGC network for lowest-100 movies (MGC'°%), as well as the
communities within which they exist in the networks and their clustering coefficients.
The clustering co-efficient for a graph s, is a measure of the tendency of the vertices of s

to cluster together. As described in [2], it can be defined as:

3 * (no.of triangles in s)

(21

S (no.of connected triples in s)

where, a triangle refers to a sub graph of s with 3 vertices and 3 edges, whereas
triples refer to a sub graph of s with 2 edges and 3 vertices. Thus, a triangle is a closed
triple. The clustering co-efficient is the ratio of the number of closed triples (i.e.
3*triangles) over the total number of triples (both open and closed).

The fitness function we use for our evaluation is:
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Ck
1
fitness, = 2 z a; — Z a; +EZ 8¢, (22)
k=1

iEMCGt250 jeMcg!100

where I, j € x are gene elements of gene x, a; is the eigen vector centrality of the

Ct250 communities in

node element i (Eq. 20), k represents the number of different MG
which the elements of x lie, 1 < k < 4, C}, is the subset of x that lies in community & of
MGC'50 and &, is the clustering co-efficient of nodes in set s.

The right hand side of Eq. (22) is not difficult to interpret. The stronger the
influence of the node (element) in MGC®250, the greater is its chances of being chosen for
evolution. The stronger the influence of the node (element) in MGC'%0, the lesser is its
chances of being chosen for evolution. Thus, the first term represents the number of Aits
(influence) by good nodes from top-250 gene elements, the second term represents the
chances of deaths (influence of the element in the low-100 network). Finally, the last
term represents the average clustering co-efficient of the elements within their
communities in MCG 259 network indicating their survival rate (strong clustering means

higher chance of survival). The stronger the clustering, the more difficult is to find the

gene element isolated, without its triangle-d elements.

Algorithm 3: Genetic Algorithm for Movie Genomes

1. Produce an initial population of genes X randomly selected from the movie gene
database. Set ¢ = 10.
Evaluate the fitness of each gene (fitness,) vx € X using Eq. 22.
While ¢ > 0:
Filter/ select genes with a probability py.
Cross-over genes with cross-over probability p..
Mutate genes with mutation probability p,,.
Re-evaluate fitness and generate new population.
If new population is same as old population:

p=9¢-1

WX bW
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@, the cycles of evolution, is initially set to 10. It is decreased every time the
population becomes stable until it reaches 0, which serves as the termination condition
for Algorithm 3.

Three key parameters that need to be set are selection probability py, the
crossover probability p. and the mutation probability p,,. They are defined as follows.
The selection probability is decided using the popular roulette wheel method of

proportionate selection:

fitness,

=% 23
Yxex fitnessy (23)

Py

We set p. = 0.72 and p,,, = 0.03. The choice for these values for the parameters
will be made evident from results obtained(shown later). Of course, these parameters can
be made dynamic as well, depending on the topology of gene elements in MGC network.
However, the dynamic setting of genetic parameters is left for future work.

Evaluation: For testing, we use the third dataset containing movie profitability
scores released by MPAA after the 2011 Academy Awards. Since this was released by
MPAA, we consider it to be authentic. It has a total of 675 movies from year 2007 to
2011 and serves as our ground truth. The attributes in this MPAA dataset include success
measure for a movie, in terms of its average revenue earned on the opening weekend,
total domestic gross earned by the movie, total foreign gross and the overall worldwide
gross revenue. All these indicate towards the profitability of the movie. We divided the

movies into 3 major categories based on the Profitability, which ranges from 10% to
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766%. Movies were labeled 'Low' category when their profitability lied 65.7- 298.6%,
Medium for 298.7- 532.4% and High profitability for 532.3- 766%.

The population size is chosen at 220 genes. The initial set thus consists of 220
randomly selected genes. After each round of evolution, we select the top selection
probabilities according to py and retain the population size. The task of GA is to search
for the best possible set of genes that determine movie success. This set is produced over
several rounds of evolution (in the order of 1000s). Result is the set 'success genes'. Thus,
for each test movie, we calculate the fraction of genes of the movie that were 'success

genes', and define the potential success as:

|[Movie Genes| N |Success Genes|

Potential Success = (24)

|[Movie Genes|

Thus, given the 'success gene' sequence generated by the GA and the test movie
genome, we can calculate the potential success of the movie. After calculating the
potential success of the movies in the dataset, we classify a top 65% quantile score into
high class, the 30-65% quantile into medium and the lower 30% quantile is classified as
low class. Note that Eq. 6 is very similar to the 'precision' statistic of information
retrieval. In other words, we consider the successful movie prediction problem as a high-
precision search scenario.

As a benchmark to the proposed approach of network communities-based genetic
algorithm (NCGA), we employ a naive genetic algorithm (NGA) and a decision tree (DT)
classifier on the test dataset. NGA does not utilize any properties of the network structure

in its genetic algorithm, instead its fitness function is defined as:

fitness, = Z[t(i) — )] (25)
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where t(i) represents the frequency of occurrence of element i among movies of
IMDB-top-250 dataset and [(i) is the frequency of occurrence of element i in IMDB-
low-100 dataset. For example, when i='critically acclaimed' then t(i) = 192 whereas
[(i) = 0. Similarly, when i = 'comedy’ then t(i) = 32 whereas [(i) = 24. Eq. (7) serves
as the fitness function for the Naive GA method (NGA).

Table 7 shows the F-scores obtained for the MPAA test dataset. The results are
averaged over 10-fold cross validation. From the results in Table 7, we can observe that
NCGA outperforms the other benchmarks comprehensively. Note that DT performs well
for high class, but is outperformed overall by NGA. This is caused due to some skew-
ness in the data, where the number of movies in high classes are lesser than medium or
low class. The DT can easily determine the features that establish high successful movies
but not so easily for movies with medium or low success.

For all the methods, usually the F-score for high > medium > low, except for
NGA where F-score for medium class takes a dip. This is potentially due to the fact that
for the fitness function of NGA, the fitness score reflects well the case of very bad genes
and very good genes, but genes with a mixture of good and bad elements are given a
balanced score. This adversely affects the evolution, which creates uncertainty and
results in lowering the recall for 'medium' classes.

Different tests were conducted to check how the efficiency of NCGA varied as we
changed the parameter values in Algorithm 1. These parameters are called genetic
operators. There are two main criteria to determine the efficiency of a GA. One criteria is
the reliability, which is the fraction of correct classifications. The F-score in Table 7 is

obtained using the number of correct classifications. The second criteria is the number of
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fitness evaluations (or populations) required to evolve - until a stable population is

reached. According to [8], a simple equation can be used to judge efficiency of a GA:

# fitness evaluations
N

ef ficiency = reliability — w. (

We use w = 3 and N=100,000 for our tests. Let us now discuss parameter setting
for each of the following genetic operators.

Mutation: The mutation probability p,, measures the likeness that random
elements in the gene are flipped/changed in order to introduce some diversity into the
next generation. The flip occurs when a gene element was present in the original
population (indicated by 1), but the mutation causes the child to not possess that
particular gene element (set to 0). A p,, of .05 means 5 out of a 1000 gene elements
picked at random will be flipped. Empirical results shown in Fig. 51 indicate that

pm = 0.03 produces best efficiency.

0.6

efficiency
[ =]
4

0.2

0.01 0.03 0.05 0.07 0.09
mutation prol:;abilit_v P
Figure 51: Variation of efficiency with mutation.
CrossOver: Crossover probability refers to interchanging two sections of the
gene. Again, empirical results illustrate that the efficiency is maximized when p. nears

0.72.
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Figure 52: Variation of efficiency with crossover probability.

Population Size: Another parameter that requires setting in a GA scenario is the
choice of how many genes to use in a population. Shown in Fig. 53 is the variation of
efficiency with the population size. As the results indicate, the efficiency begins to drop
beyond a population size of 220 genes. Thus, we choose 220 genes as our population size
in Algorithm 3.

Selection Criteria: The previously mentioned Eq. 22 follows the famous Roulette
wheel fitness proportionate selection routine, where fitter genes are less likely to be
eliminated. An alternative option is to not use fitness in the selection process at all.
Instead, a selection scheme called tournament sele