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Abstract 

 

Approximately 2.4 billion people are now connected to the Internet, generating 

massive amounts of data through laptops, mobile phones, sensors and other electronic 

devices or gadgets. Not surprisingly then, ninety percent of the world's digital data was 

created in the last two years.  This massive explosion of data provides tremendous 

opportunity to study, model and improve conceptual and physical systems from which 

the data is produced. It also permits scientists to test pre-existing hypotheses in various 

fields with large scale experimental evidence. Thus, developing computational algorithms 

that automatically explores this data is the holy grail of the current generation of 

computer scientists.  

Making sense of this data algorithmically can be a complex process, specifically 

due to two reasons. Firstly, the data is generated by different devices, capturing different 

aspects of information and resides in different web resources/ platforms on the Internet. 

Therefore, even if two pieces of data bear singular conceptual similarity, their generation, 

format and domain of existence on the web can make them seem considerably dissimilar. 

Secondly, since humans are social creatures, the data often possesses inherent but murky 

correlations, primarily caused by the causal nature of direct or indirect social interactions. 
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This drastically alters what algorithms must now achieve, necessitating intelligent 

comprehension of the underlying social nature and semantic contexts within the disparate 

domain data and a quantifiable way of transferring knowledge gained from one domain to 

another. Finally, the data is often encountered as a stream and not as static pages on the 

Internet. Therefore, we must learn, and re-learn as the stream propagates.  

      The main objective of this dissertation is to develop learning algorithms that 

can identify specific patterns in one domain of data which can consequently augment 

predictive performance in another domain. The research explores existence of specific 

data domains which can function in synergy with another and more importantly, proposes 

models to quantify the synergetic information transfer among such domains. We include 

large-scale data from various domains in our study: social media data from Twitter, 

multimedia video data from YouTube, video search query data from Bing Videos, 

Natural Language search queries from the web, Internet resources in form of web logs 

(blogs) and spatio-temporal social trends from Twitter.  

Our work presents a series of solutions to address the key challenges in cross-

domain learning, particularly in the field of social and semantic data. We propose the 

concept of bridging media from disparate sources by building a common latent topic 

space, which represents one of the first attempts toward answering sociological problems 

using cross-domain (social) media. This allows information transfer between social and 

non-social domains, fostering real-time socially relevant applications. We also engineer a 

concept network from the semantic web, called semNet, that can assist in identifying 

concept relations and modeling information granularity for robust natural language 

search. Further, by studying spatio-temporal patterns in this data, we can discover 

categorical concepts that stimulate collective attention within user groups.  
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 Using these various disparate data from different domains, my dissertation aims 

to assert that intelligent learning is a mixture of two parts: combinatorial knowledge 

representation from diverse data, and transferring the gained knowledge appropriately to 

tackle a new task which could not be solved elegantly without the synergy. In summary, 

this work demonstrates that traditional learning models for classification, prediction and 

recommendation (such as Support Vector Machines, Latent Dirichlet Allocation, Genetic 

Algorithms, Conditional Random Fields,  Decision Trees, Path Analysis, Probabilistic 

Automata) can be boosted by algorithmically transferring related social and semantic data 

from cross-domains.  
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CHAPTER 1:  INTRODUCTION 

 

 

Over the last decade, two ideas have fundamentally disrupted how humans attain 

information. The first involved engineering powerful search algorithms, which can 

quickly parse through the plethora of online resources for contextual facts. Online search 

allowed users to gain instant, accessible and often expert information regarding topics 

that they or their real world social circle often lacked. Although automated search 

technology might have first seemed to distance humanity from the direct need of 

social/inter-personal advise, soon another technology was born that gave ordinary users 

the power to not only to publish and share information online, but to become content 

creators themselves. Online Social Networks and Social Media revolutionized 

information diffusion in societies, compelling traditional media, advertising and 

technology companies to honor the wisdom of the crowds.  

The idea of online search and online social networks is erected on two separate 

factors. Search technology is driven by an algorithm's understanding of a user's query 

intent. The user intent is indicated by the meaning of the search query, also known as its 

semantics. On the other hand, social media is built on users sharing information with each 

other where millions of micro-level user interactions give rise to macro level social media 

trends. The shared data inherently bears a social footprint by means of the network motif 

where it was shared or edges through which it spread to new users. This chapter begins 

with the proposition that intelligence includes processing data from different domains and 

understanding cross-domain associations among data.  
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1.1 Data and Intelligence  

The fundamental trait of what we perceive is that it somehow generates data. We 

see objects because it reflects light, millions of photons as data. We hear music because 

of audio signal data. As we perceive more data, our mind starts detecting patterns in the 

data. Thus, humans gain experience, knowledge, wisdom, insights, ability at problem-

solving, drawing analogies and much more. All these abilities make us intelligent.  

Current computational methods can replicate some of these abilities in isolation, 

including audio/image/video data analysis, text mining etc etc. 

Intelligent algorithms of the future must understand two attributes of data: its 

semantics and its social nature. The task is challenging, since the audio/video/textual data 

has associated graphs - social and semantic. Also, the data exists in various domains of 

the Internet (e.g., social streams, video sharing platform etc.). The different domains give 

rise to various non-related attributes to the data, e.g., making it real-time, noisy in 

grammatical construction, too huge in size to process in one machine, or having variable 

interpretation based on context. Therefore, a bunch of traditional algorithms fail to scale 

to these new properties of the data, which has been popularly termed as, Big Data.  

Human intelligence is a product of evolution. From Darwin's theory of evolution, 

we know that survival is directly correlated with adaptation to change. Any intelligent 

agent's adaptation to change is dependent on how quickly it can modify its action strategy 

in a new environment. The choice of strategy in the new environment further depends on 

how quickly it can learn about the new environment itself. Thus, the key to intelligent 

adaptation is learning, and transferring the learned information into successful actions 

required to accomplish a new task. In a similar fashion to most adaptable intelligent 

organisms, machine learning algorithms of the future must adapt to the features of this 

new social and semantic data existing in cross-domains over the Internet. In the next 
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three sections, we explore three issues key to this dissertation, (a) the advent of big data, 

(b) their feature disparity due to the existence of this data across domains,  which 

essentially complicates designing of a combined learning strategy, and (c) how new 

algorithms that transfer information from one domain to another can be built beyond 

existing single-domain machine learning.  

 

1.1.1 Big Data 

The advent of the Internet, faster processors, cheaper tablets and powerful mobile 

technology has enabled humanity to interact with each other and the surrounding 

environment with unprecedented elasticity. Our online activity, collected through 

ubiquitous information-sensing digital devices, creates a digital world around us that is 

getting progressively more local. Through these networked devices, we communicate 

with human and artificial intelligence in various ways on a daily basis, ranging from our 

social network activities to every web search we query. In this information ecosystem, 

there is also the pervasive presence of systems that record each of our digital 

correspondences. Such correspondence could include social network status updates, 

surveillance camera recordings, uploaded videos in YouTube, searches on mobile 

phones, the GPS tag in an uploaded photo etc. As of 2011, there 2.4 billion online users. 

Each individual is generating data every time he/she interacts with the networked digital 

world, resulting in massive amounts of data being generated. This has created an 

explosion in the amount of digital data available, so much so that 90% of the world's 

current digital data was created in the last two years! 

Thus was born Big Data - a compilation of large complex data sets collected from 

various sources and information-sensing domains. Examples of Big Data include, but are 

not limited to, web logs, sensor network data, RFIDs, social network and social media 
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data, organic Internet data (web documents), atmospheric science data, genomic 

databases, surveillance data, healthcare and medical records, video archives and e-

commerce data. 

Big Data has unique characteristics which make search, analysis, interpretation 

and visualization of such data considerably challenging using traditional database tools. 

The first challenge is to store and analyze the large volume of data generated. Consider 

the social micro-blog Twitter, where users generate almost 600 GB of tweets per day. 

Secondly, the Big Data is often in motion, having velocity or stream inflow. For example, 

Twitter generates around 300 tweets/second under normal operations. In peak 

circumstances (e.g., the Euro 2012 soccer finals), Twitter has been known to generate 

almost 15000 tweets/second. This means analysis and prediction models needs to be 

latency-sensitive so that the data change rate can be balanced against the decision 

window. Thirdly, the breadth of interpretation of such data varies largely with context. 

This has profound implications on predictions involving product strategy, brand 

sentiment etc. Finally, the data has significant variety depending of source of creation, 

arriving in different formats including unstructured data. In other words, each data set 

originates in some domain (e.g., social streams, video archives, semantic web) 

contributing to domain-specific features. Fig. 1 illustrates these key properties of Big 

Data. 
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Figure 1: Properties of Big Data. 

In spite of all the challenges involving intelligent analysis of Big Data, the 

promise it holds is immense. Big Data could be leveraged to develop and improve 

applications ranging from high frequency trading, real-time fraud detection, social media 

based recommendation, network traffic shaping and popularity based content caching, 

activity based advertisement, transportation and social gaming to name a few. Moreover, 

there is a non-deterministic angle to Big Data: it has the potential to facilitate exploratory 

search, model based analytics and support expert systems like Watson. Essentially, unlike 

usual data, Big Data allows a researcher to explore what questions to ask. 

Let us consider a few of such questions, e.g., is it beneficial to connect Big Data 

existing in different domains? Can data from one domain explain the observed behavior 

of data in another domain? If yes, then how can we go about in building frameworks that 

allow connections between Big Data from different sources for seamless information 

transfer1? Will a synergy between data from cross domains help us in better prediction 

                                                 
1 Seamless information transfer occurs when each of the four challenges (volume, velocity, variability and 

context) in handling Big Data is tackled in every domain involved in cross-domain learning   
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than existing models based on data from a single domain? How can we make such cross-

domain learning techniques scalable? Will cross-domain learning allow us to build 

ingenious new applications that could not be supported by traditional single domain 

approaches? 

Questions such as the ones stated above are not being tackled currently in the Big 

Data community, since researchers are predominantly occupied with improving 

application performance in a single domain. However, as we will show in this work, the 

key to improving prediction-based performance in one domain is by understanding why 

the domain data is behaving the way. The crucial factor in understanding data behavior is 

realizing that these domains are not independent, but strongly causal. We will call two 

domains causal if the generated data in one domain directly or indirectly affects the 

generated data in another domain. Understanding causality is one of the vital ingredients 

in envisioning a cross-domain learning systems, since the main aim of learning from one 

domain is so that we can make intelligent predictions in another domain. Causality 

analysis of domains can help learning cross-domain models that depict true data 

generating mechanisms and improve predictions that account for changes in the 

conditional distribution of the target variable. 

Therefore, the real objectives that need fulfillment to fabricate cross-domain 

learning approaches are: (1) Detect causal domains, (2) Develop a framework that allows 

for seamless information transfer between these domains, and (3) Discover novel 

applications supported by the synergy between the two cross domains, which are 

generally realizable exclusively by cross-domain learning approaches.  

 

1.1.2 Cross-Domain Data 
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Media on the Internet is unevenly distributed depending on platforms, popularity 

and bias. Its power is limited by the domain where it originates. For example, video 

popularity is usually judged by view count [25], but not by how trending the video topic 

is. We observed that viral videos, which spread by sharing, do not usually contain any 

common topics with the trending topics in social media. Another example is that Twitter 

users can only see related media shared in Twitter, but not from external sources. This 

compels users to perform unguided search in external resources manually. Such video 

sites are more often than not filled with an explosion of video/image information. Thus, 

we feel the need for better cross domain media recommendation systems to be a key 

constituent to social search and empower online media. Such media are collected from 

cross domain resources, and are not constrained by the bias of the social site or the 

analytics of the video publishing site. Thus, incorporating social knowledge into 

traditional media applications requires cross-domain information transfer, which contains 

the wisdom of the crowds. It is therefore important to develop a cross-domain knowledge 

transfer mechanism from the crowd-sourced social domain to traditional media (video) 

domain. 

There are various kinds of media on the Internet - some publish interest specific 

information, some share in real time and some provide crowd sourcing options. Although 

multimedia has become a primal entity on the Internet beating text-only content (like 

XML), it is essentially distributed disparately, e.g., tweets about Haiti Earthquake in 

Twitter and videos about the same event in separate video publishing sites like YouTube 

are potentially disconnected, unless users explicitly link them. The socialized power that 

each kind of media can enhance others has not been fully realized. For example, do 

trends detected in social streams have latent relations with user search patterns in video 

publishing sites? If such similar associations can be drawn and analyzed, user experience 
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in one media domain (e.g. social stream) can be enriched by virtue of information in 

another media domain (e.g. video publishing). This can help solve some problems that 

purely multimedia techniques cannot accomplish elegantly [22], such as better modeling 

of video popularity using socially trending topics/events. 

 

 

Figure 2: Existence of media resources in disparate domains on the Internet. 

Social Media 

Social Media gives ordinary people the power to be content creators and 

information disseminators. This information is embedded in multimedia shared across 

social networks, containing valuable indications about various facets of human life - what 

captures our attention, our sharing biases and digital traces we abdicate.  

Social media has become a disruptive platform for addressing many multimedia 

problems elegantly[4]. It has penetrated every realm of business and academia 

(marketing, advertising, journalism, broadcast, stock markets etc.) and its existence is 
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ubiquitous. Moreover, remarkable insights can be extracted from social media. For 

example, real-time social data is being utilized in a number of scenarios - from 

visualizing political activity and flu outbreaks [80, 98], forecast and prediction  to 

sentiment detection [99] and emergency advisory systems [97]. 

Social media has also largely affected existing models of communication and 

information retrieval. Akamai, a content-distribution company, recently reported that 

traffic from social sites has multiplied by five times in 2012, capping at 1 million requests 

per second. This has strong implications on traffic shaping for computer networks. 

Audiences are turning to social sites to ingest traditional news, e.g., 78% of web traffic to 

the New York Times website comes from just Facebook and Twitter combined. The rest 

22% arrives from the organic web. Existing political and non-profit campaign prediction 

models, search tools and media recommendation has also changed to incorporate the 

massive amounts of social data generated every day. 

One aspect of social micro-blogs like Twitter [80] is its short text format, which is 

fast and real time. Thus, social media data hits the web faster than articles, images, or 

videos on the same topic. In the chain of digitization of a real-world event (Fig. 3), social 

stream data like tweets from Twitter are often the source of breaking news. In fact some 

famous breaking news in the last year has been captured first as tweets, including the 

death of Osama Bin Laden, the Hudson plane crash, announcement of the royal wedding 

etc. This property can be leveraged to resolve interesting real time applications, e.g. 

semantic video indexing [19] and topic evolution and topic tracking [83]. 

It remains challenging to extract relevant and valuable information from social 

streams (e.g., Twitter) and correlate social media across different domains. One reason is 

due to the noisy nature of social streams. For example, each tweet in Twitter is limited to 

140 characters. This severely hinders techniques based on ‘bag-of-words’. The tweets are 
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often noisy and improperly structured in grammar/syntax, which makes them difficult to 

process using standard Natural Language Processing tools. An additional concern is that 

the incoming data of tweets typically arrives in high-volume streams (bursty traffic) and 

thus, algorithms mining them must scale in learning (for decomposition methods based 

on Normalized Cut are too slow to scale). Efforts such as Social multimedia signal 

processing aims to transform the noise-like phenomena in social media into signals useful 

for building novel socially-aware multimedia applications and targeted advertising 

techniques, and exploring new marketing methods and a fresh way to look at the 

existence of multimedia in online social networks. 

 

 

 

Figure 3: Chain of Digitization of real-world event. 

Semantic Web Data  

The semantic web is the next stage of evolution of the world wide web (WWW), 

where computers will not only be able to exchange data based on standard formats and 

protocols (like HTML), but also interpret contextual information in the data in an 

automated fashion, allowing machine readable assistance to users in making sense of the 

huge amount of information on the web [40]. The idea has been popularized as Linked 
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Data. Unlike the WWW where computers are connected, the Semantic Web is built on 

top of WWW where data is connected, or linked - hence the name Linked Data.  

The unit of the Semantic Web is a data model called the Resource Description 

Framework (RDF), which is similar to the classic entity-relationship conceptual model of 

organizing data. Each RDF entry is composed of three parts in the form of a triple 

<resource><property><value>, where the <value> is the Universal Resource Identifier 

(URI) of the resource, the describes an attribute of the resource and the represents the 

specific object value of the attribute. An example RDF is   

<http://dbpedia.org/resource/Abraham_Lincoln> 

<http://dbpedia.org/ontology/birthPlace> <http://dbpedia.org/resource/Kentucky>  

where the resource is ‘Abraham_Lincoln’, the property is ‘birthPlace’ and the 

value of that property is ‘Kentucky’. Thus, RDFs represent a subject-predicate-object 

expression for some resource on the Web. The general query language for RDF datasets 

is called SPARQL [40], which is a SQL like language to traverse through RDF resources.  

Built on top of RDFs, is a family of formal languages called Simple Knowledge 

Organization System or SKOS. It represents higher concepts than mere entity resources, 

specifically thesauri, classification schemes, taxonomies etc. The system has one core, 

called the SKOS core and many SKOS extension based on the field of classification. The 

core represents common concepts found in most fields. Concepts are organized in 

hierarchies.  

Natural Language Data  

Although understanding the rules of natural language is predominantly a branch 

of linguistics, artificial intelligence plays a big role in this task by extracting similar 

patterns in sentences, revealing the rules of the grammar itself. Irrespective of the content 

of the sentence, a certain set of grammatical rules must be followed in constructing the 
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sentence, without which, the semantic information in the sentence cannot be interpreted 

by the reader [47]. Fundamentally, every language has three key parts: (a) a lexicon 

which is similar to the vocabulary, (b) a parser than can show dependency of words and 

(c) a grammar, which upholds the lexical relationship in the sentence and necessary to 

understand the internal representation. 

Natural language texts occur almost all over the Internet. In fact, apart from 

tweets, videos, music or animation, most other written content on the web is in natural 

language. Thus, the importance of extracting semantic meaning from natural language is 

of immense importance. Unfortunately, humans often tend not to follow standard rules of 

sentence constructions [57]. This will often confuse an automated algorithm trying to 

extract semantics of the natural language sentence [52]. Therefore, it is key to find robust 

algorithms which can understand that diverse constructions of natural language sentences 

might still bear the same user intent, as is often encountered in web search queries [53].  

Multimedia Video Data 

A video is a sequence of images played at a particular frame rate, creating an 

impression of continuous moving image. Video data has several attributes, including 

aspect ratio that describes the dimensions of video screen and video picture elements, 

compression scheme which balances the quality vs. increased data rate, quality which can 

be measured with metrics like PSNR etc.  

With the advent of video publishing sites like YouTube [25], users can upload 

videos captured with the cameras onto the Internet. Such videos usually also come with 

meta data, such as the title, tags, description etc. This metadata is critical for video search 

engines to retrieve relevant videos based on user queries [26]. Extracting content 

information from the video signal itself (also called visual words) is another way to 

estimate the context of the video. However, slight variations in object recognition can 
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mislead the visual word extractor, thus, many video sites utilize only tags as keywords for 

video recommendation.  

Spatio-Temporal Data 

Finally, a new type of data is emerging in research nowadays called Spatio-

temporal social data. This data is essentially a time series of some signal generated by 

some entity or groups of entity, which has a spatial component to it [83]. Thus, the signal 

spreads out not only in space but also in time. The data could just be in the form of a 

series of time stamped locations.  

 

 

Figure 4: Dispersion plot showing spread of the geographical Aurora trend. 

A simple example of spatio-temporal trends is the geographical spread of a 

Twitter trend. When people in particular geographical locations talk increasingly about 
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some topic on Twitter, it is captured as a trend for that location [81]. This trend has an 

origin in a particular location, and then spreads to other locations as more and more 

people begin to talk about it in Twitter. Shown in Fig. 4, is the spread of the Twitter trend 

#Aurora, which reflects the discussion about the tragic theatre shooting in Aurora, 

Colorado. 

 

1.1.3 Learning Algorithms 

A learning algorithm discovers patterns from data, and uses it to make predictions 

or classifications on new data. The data must be independent and identically distributed. 

It must also maintain the same distribution throughout its period of generation, barring 

which, the learning algorithm must adapt to the new distribution [7]. The learning 

algorithm is embodied by the classifier - a program that classifies data based on 

previously seen patterns. Two key tasks that any learning algorithm must accomplish are 

representation of the data using features and generalization. The latter is the ability to 

accurately predict class or label of unseen data.  

Learning algorithms belong to the field of artificial intelligence called Machine 

learning [7]. It deals with algorithms that learn from experience in discovering 

conjectures and knowledge from specific data, rooted in statistical and computational 

principles. Given the algorithm has seen an instance of some data, with certain features 

and a known class, it can make intelligent prediction about the class of a new instance by 

reading the features of the latter.  

The taxonomy of learning algorithms include (a) supervised learning, where the 

learning function maps inputs to desired outputs (also called labels), (b) Unsupervised 

learning, where the learning algorithm clusters similar data into groups since labels are 
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not known in advance, and (c) Semi-supervised learning, where both labeled and 

unlabeled data is utilized to build a classifier.  

Many learning algorithms are known to researchers, including Decision Trees 

[44], Conditional Random Fields [62], Artificial Neural Networks, Support Vector 

Machines, Clustering, Genetic Algorithms etc. [100]. Applications of such algorithms 

have found wide adoption in academia and industry for tasks such as computer vision, 

natural language processing, stock market analysis, computational advertising, 

information retrieval, sentiment analysis and recommender systems.  

Some major drawbacks of current learning algorithms include their requirement to 

have identical distribution of features in both the training and test data, non-portability 

across multiple domains, too much reliance on statistics only causing over-fitting etc. 

(ANN) , inability to be implemented efficiently over a cluster (topic models). In this 

thesis, we shall augment these algorithms to transfer information between cross-domain 

media.  

 

 

1.2 Motivation 

There are several challenges in building learning algorithms that can scale big 

data constraints, learn from disparate feature sets of cross-domain data and transfer 

information among domains. Below are mentioned some key challenges addressed in this 

research.  

Challenges in Learning from Social Streams 

1. Dealing with the noisy, incomplete, ambiguous, and short form nature of 

social stream data. Each tweet is limited to 140 characters and often 



 16 

improperly structured in grammar/ syntax. Traditional language model 

(e.g., Bag-of-Words) would fail to scale up with such kind of data.. 

2. Social streams are real-time, trends appear and disappear within minutes. 

Twitter data is generated often at an average rate of 5000 tweets/ second, 

requiring the learning algorithm to scale (learn topics from one chunk 

before next chunk appears) with the incoming burst of data. 

Challenges in Transferring information from Social to Video Domain 

3. Developing an unified framework to combine the social and multimedia 

feature information which has different domain-specific properties. 

4. We need to align combinatorial features across two (cross) domains of 

data. For example, tweets from Twitter has a different feature set 

compared to videos from YouTube. Thus, we need to detect common 

feature that can describe both data. 

5. Formulating a transfer learning algorithm that can seamlessly propagate 

the knowledge (i.e. social topics) mined from the crowd sourced social 

streams to the video domain in real-time. 

6. The scaling up and adaptation of the transfer learning algorithm to the ever 

bursty real-time nature of the social streams. 

Challenges in Learning from the Semantic Web 

7. Building a graph database (Concept Graph) from Semantic RDF data that 

can relate concepts, and not just resources.  

8. Developing metrics that utilize the Semantic Web to quantify the semantic 

coherency in a topic or collection of entities.  

9. Using the network properties of the Concept Graph to explore various 

aspects of information, such as granularity or communities.  
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Challenges in Transferring Semantic Information from Concept Graph to Natural 

Language Search Queries 

10. Designing a canonical form for every natural language query, that can 

directly interface with the graphical structure of the Concept Graph. 

11. Performing query expansion (new words related to the query words) using 

the links in the Concept Graph.  

Challenges in Learning from spatio-temporal social trends 

12. Designing a criterion that models attention in social network user 

communities. 

13. Developing metrics that characterizes various attributes and the spread of 

spatio-temporal social trends. 

 

 

1.3 Contributions 

This dissertation makes contributions to areas of Computer Science that deal with 

learning from cross-domain data, aiming to string together an several approaches of 

simultaneously learning from data which are generated in disparate Internet domains. The 

key idea is that data in various domains can be beneficial to other domains, and if we can 

learn intelligently from that data, align combinatorial features across domains then 

efficient information transfer can be realized (Fig. 5). We evaluate our theory on social 

media data, multimedia data, natural language search data, spatio-temporal social trend 

data and semantic web data.  

The main contributions of this dissertation are as follows: 
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(1) We propose the concept of bridging social media and traditional media from 

disparate sources by building a common latent topic space, which represents one of the 

first attempts toward answering sociological problems using cross-domain social media. 

(2) We propose SocialTransfer, a novel transfer learning framework based on 

efficient graph spectra analysis by seamlessly integrating the topic space learned from 

social stream in real time. 

(3) We develop several socially aware media applications based on 

SocialTransfer, which could otherwise hardly be realized in conventional approaches, 

and evaluate through large scale real-world social media data.  

(4) We construct a graph database from the Semantic Web called the Concept 

Graph, that can be used to categorize and extract concepts from texts from various data 

domains on the Internet. It can further be used to model the semantic coherence within a 

group of entities (text or media).  

(5) We show how the semantic concept graph can enable us to accomplish cross 

domain tasks such as natural language search, predict movie profitability and extract 

cultural patterns from journalistic publishing.  

(5) We propose a cognitive model to tackle the noise in natural language query 

constructions. We computational develop this model and present results proving that the 

computational cognitive model is closer to human intent in query constructions.  

(6) We devise metrics that characterize the various aspects of spatio-temporal 

social trends. Using these metrics, we build an automaton that can predict the attention of 

various user communities on Twitter with respect to topics of interest. 
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1.4 Organization of the Dissertation 

Chapter 1 introduces readers to the three topics this dissertation will focus on time 

and time again: big data, cross-domain data and learning algorithms. It also provides 

motivation for the importance of this research and the considerable challenges we need to 

overcome to build scalable solutions.  

In Chapter 2, we discuss the technical background required to comprehend this 

research, focusing specially on topic modeling algorithms, transfer learning, natural 

language processing and search, semantic networks and various multimedia applications 

that could be improved with a social flavor. In this chapter, we want to clearly point out 

the existing and state of the art research in these fields, so that our contribution in the 

future chapters is clear.  

In chapter 3, we encounter our first real world dataset - Twitter tweets, and focus 

on a scalable way to learn topics from this social stream data. In doing so, we portray the 

novel idea of an intermediate topic space between various media domains. We also 

mention our proposed Online Streaming LDA algorithm for real time topic learning from 

social streams. 

In Chapter 4, we present our novel transfer learning algorithm, called 

SocialTransfer. We argue the social signal penetration theory on which our transfer 

learning scheme is based. Lastly, we demonstrate three novel socially-aware multimedia 

applications built on top of the SocialTransfer framework. Here, we deal with both social 

and video data. 

In Chapter 5, we dive into semantic data for the first time. Our goal in this chapter 

is to build a semantic network from existing RDF data. We further show how this 

semantic network is useful in various categorical classification tasks on real world data. 
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Moreover, the semantic network can be leveraged to measure the semantic coherence of a 

group of words. 

In Chapter 6, we aim to find semantics in natural language search queries. In 

order to do so, we leverage a cognitive model of semantic information understanding. 

Using the concept network and a learning technique called Conditional Random Fields, 

we recreate the cognitive model and use it to better understand natural language queries. 

In Chapter 7, we utilize spatio-temporal social trends to model the attention of a 

group of users in the social network. The learning model which predicts the attention of 

an user group with respect to some trend is called the Attention Automaton.  

Finally, in Chapter 8, we conclude the dissertation, discussing the how our work 

tackles the cross domain and the information transfer issue in the current state of the 

Internet.  We also suggest applications of our work and future research in this field. 

 

 
 

 Figure 5: Information Transfer across Cross-Domain Data using an intermediate topic 

space. 

 



 21 

CHAPTER 2:  BACKGROUND AND RELATED WORK 

 

 

In this chapter, we focus on the technical background required prior to diving 

deeper into this dissertation. We shall also mention key state-of-the-art research results so 

that it is easy to distinguish our contributions from existing previous work. Since we deal 

with different kinds of data, we shall focus on technologies that have been studied in 

relation to some of this data. A major portion of these technologies belong to the field of 

intelligent information understanding, machine learning and recommendation systems. 

We begin with topic modeling, the art of extracting topics from a collection of 

documents. Then we discuss a specialized branch of machine learning called transfer 

learning, which is applicable when the task to be solved/automated belongs to a domain 

where the labeled (training) data is not. However, some other domain has labeled data 

and thus, we must transfer information between domains. Following this, we discuss the 

growing area of natural language search which focuses on understanding user search 

intent from natural language queries, specifically beyond keyword oriented techniques. A 

significant portion of this dissertation deals with finding semantics in information. 

Therefore, we discuss semantic networks, semantic web and linked data research. Finally, 

we mention several multimedia applications that are gaining popularity and can be better 

realized using social and semantic signals. Often, these signals do not originate in the 

multimedia domain, but in some cross domain. Therefore, we must detect and estimate 

these social and semantic signals, transfer them across domains, and improve 

recommendations in the multimedia domain.  
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2.1 Topic Modeling 

Recently, topic modeling has gained a lot of popularity in analyzing semantic 

context in textual data [95]. Topic modeling originates from the impression that the 

construction of any sentence entails a mixture of topics [90]. Each word that the writer 

chooses to be part of the sentence is drawn from a mixture of topics in his head. 

Consequently each sentence, composed of these words, will also develop a membership 

towards some topics and not so much towards others. Thus, we can consider the mixture 

of topics to be the cause behind the generation of the entire document. Each document is 

a distribution over topics [89]. Topic modeling aims to uncover this inherent distribution 

of topics that guide the creation of the document.  

A topic is an abstract concept. It is a collection of words, which when grouped 

together make some semantic sense. Another word for 'showing semantic sense' is to 

exhibit 'semantic coherence'. There are several popular methods to uncover the 

underlying topic distribution given a set of documents, such as Latent Dirichlet 

Allocation [101], Probabilistic Latent Semantic Analysis [89], Hierarchical topic 

models[88], Latent Semantic Analysis [90] etc. As mentioned earlier, the goal of topic 

modeling is to generate several clusters of words. Each cluster represents a particular 

topic. The result of topic modeling is to generate two distributions, namely the topic word 

distribution P(w|z) and the document-topic distribution p(z|d). Before we dive into LDA, 

we will first briefly discuss its predecessors, PLSA and LSA and the general vector space 

model.  

The vector space model is a technique of representing documents as vectors of 

terms, usually the words in the documents. Each dimension corresponds to a separate 

term and when a term occurs in a document, its value in the vector is non-zero. Then, the 
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cosine of the angle between two vectors indicates the similarity between documents 

represented by the corresponding vectors. 

LSA falls into the category of vectorial semantics, where the features in a natural 

language sentence is represented by its words. Again, each document can be represented 

by a vector of words. The goal of LSA is to detect words that are semantically close. 

Given a collection of documents, each document can be represented as a column and the 

each word can represent the row. This generates a term-document matrix containing 

where each cell contains the number of times the word occurred in the document. 

Following this, a mathematical technique called Singular Value Decomposition is used to 

reduce the number of columns while preserving the similarity structure among rows 

[102]. Then, the cosine similarity between two rows represents how similar the two 

words are. Values close to 1 indicate very similar words while values close to 0 indicate 

dissimilar words.  

The disadvantage of LSA is its inability to detect polysemy. It also assumes that 

words and document hold a joint Gaussian probability model, however research has 

shown this distribution is often Poisson [91]. The alternative to this is using a 

multinomial model, which is the basis of PLSA.  

Probabilistic Latent Semantic Analysis is also statistical technique to understand 

co-occurrence of words in textual data. Unlike LSA which reduces a term-document 

matrix using linear algebra, PLSA uses a mixture decomposition from latent class 

models. As with LSA, let us assume there is a co-occurrence  (w, d) of words and 

documents. PLSA models the probability that each co-occurrence was a mixture of 

conditionally independent multinomial distributions, i.e. 
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where the latent class is c. More popularly, PLSA and LDA is often represented 

by the plate notation, shown in Fig. 6, where M is a set of documents, d is the document 

index, c is the word's topic drawn from the document's topic distribution P(c|d) and w is 

the word drawn from the word -topic distribution P(c|z). The shaded circles (w and d) are 

observable whereas the unshaded topic (c) is the latent variable. Of course, the number of 

parameters to learn equals cd + wc. These parameters can be learned using the 

Expectation Maximization algorithm [92].  

 

 

Figure 6: The plate representation of Latent Dirichlet Allocation. 

 

In essence, LDA is very close to PLSA in terms of how terms and documents are 

treated. The major difference is that LDA is completely generative model overlapping a 

Hierarchical Bayesian model. In other words, PLSA does not maintain a prior probability 

on the parameters to be learned. But LDA assumes this parameters are itself variables and 

thus can be treated as hyper parameters with prior probabilities. This prior is drawn from 

a Dirichlet distribution, owing LDA its name.  

LDA introduces two prior probabilities alpha and beta which affect how the per-

document topic distribution and the per-document word distribution respectively behaves. 

As shown in Fig. 6, the outer plate represents a set of documents M while the inner plate 

represents the inner represents the topics and words within one document N.   



 25 

The limitations of current topic modeling algorithms include the scalability with 

streaming or bursty set of documents, interpretability of the topics themselves and ..  

Social Stream Topic Mining 

Social data from Twitter streams can be mined to build a relevant topic space 

using topic modeling [17, 21]. Such topic space can act as a bridge between the social 

and the traditional media domain, supporting multimedia applications like social video 

recommendation and social video popularity. Topic modeling aims to extract topics from 

large corpus of unlabeled document by using generative models like Latent Dirichlet 

Allocation (LDA) [12]. There have been previous efforts to incorporate social data for 

recommendation [18, 23], but they do not use social streams specifically [21]. Social 

streams are more challenging to extract topics from; due to their dynamic, noisy, short 

and real-time nature [17]. Thus, large scale matrix decomposition is infeasible for social 

streams [18]. 

Previous research on mining social stream data assumes that the entire tweet 

stream is available to the algorithm at the beginning of the run. This assumption is only 

applicable in ideal case; it does not hold in real life situations. In our paper, we simulate 

the tweet stream in pseudo real-time, where the SocialTransfer algorithm has not seen the 

entire tweet stream in advance. Instead, the complete timeline is divided into time slots, 

and a certain number of tweets occupy each time slot as they are generated in real life, 

similar to the technique in [1]. Tweet chunks are fed to the SocialTransfer algorithm in 

time-sequential batches based on the time slots in which they are generated (pseudo real-

time). We show later how Social- Transfer is a unique method to combine scalable social 

stream topic modeling and transfer learning; providing a natural interface for topic 

modeling to fit into the process of transfer learning and seamlessly integrate topic model 

and transfer learning. 
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2.2 Transfer Learning 

Common machine learning techniques traditionally address isolated tasks. In 

contrast, transfer learning aims to transfer knowledge learned in one source domain and 

use it to improve learning in a related target domain. Fig. 7 shows the basic concept of 

transfer learning. The source domain data Zsrc contains the auxiliary data, while target 

domain Ztar contains the training and test data. A comprehensive survey of transfer 

learning techniques is provided in [114]. A unified framework for transfer learning in 

scenarios ranging from cross-domain, cross-category and self-taught learning is described 

in [8]. Transfer learning has been previously used in various cases including 

classification, image clustering, collaborative filtering, and sensor based location 

prediction [8, 20, 27]. 

Domain-independent feature representation in transfer learning can also have 

significant effects on performance (e.g., to avoid negative transfer) [8]. Spectral 

techniques have been used to address the problem of combined feature representation 

[11]. However, such spectral techniques (e.g., eigenvector extraction [18]) should scale to 

dynamic social stream traffic, which is addressed in this paper. Although [22] attempts to 

use transfer learning for social recommendation, their model is not real time and limited 

to non-streaming data only. Instead, we show how to model transfer learning from 

streaming social data in real time, which is a significantly challenging problem not yet 

resolved. 
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Figure 7: Transfer Learning compared to standard machine learning. 

 

Our SocialTransfer framework is inspired by the work in [8]. However, we 

distinguish ourselves from [8] in scaling transfer learning to specifically incorporate 

social stream data as source domain and show how topic learning can be smoothly 

combined with transfer learning in real-time. To the best of our knowledge, a framework 

that can handle social stream topics distinctively as source domain for cross-domain 

transfer learning has not been proposed before. This is challenging due to the unique 

characteristics of social stream data [16]. 

 

 

2.3 Natural Language Search 

The collaboration between researchers in information retrieval and linguists is 

helping us to transcend into an era of natural language search, where search engines can 

comprehend user intent or meaning from queries written in natural language (NL). This 

essentially requires algorithms that can not only retrieve results based on keywords, but 

more importantly, understand semantics, discourse and pragmatics in a NL sentence. 
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Understanding semantics of the query involves finding meaningful relations among its 

words, which can be represented as a network of words, called the semantic subnet of the 

query [46]. It has been found that semantic subnets enable identification of event 

structures within sentences [51] and assist higher-level NLP tasks, like Question 

Answering (QA) [52]. 

Although huge progress has been made in the field of computational linguistics, 

there still appears to be enough diversity in NL constructions that hinder sufficient 

information extraction purely from the NL query for improved search results. An 

alternative, suggested by numerous researchers, is to search the document space with 

more words than those contained in the original query [50]. This technique, called Query 

Expansion , relies on finding words that are semantically similar to query words but not 

in the query (called expanded words). There are two popular ways to find such expanded 

words. One way is to analyze the user search logs and discover which words occurred in 

the same query [63]. For example, the chances of 'flu' and 'medicine' occurring in the 

same query will be much larger than 'flu' and 'guitar', allowing the algorithm to realize 

that 'flu' and 'medicine' has stronger semantic similarity. However, this technique suffers 

from the problem of the long tail [93]. The second way is to use an ontology or a 

semantic network, where expanded words can be detected as multi-hop neighbors of the 

query word represented as a vertex. In other words, query words can represent concept 

nodes in the semantic network, and the expansion of the query can be realized using the 

linkage of the network. Unfortunately, a breath first search from each vertex node of the 

graph database that matches a query word is not computationally feasible.  

A common way to extract word connectedness from NL sentences is using parse 

trees, which depend on lexical structure of the NL sentence [51]. Further, functional 

keywords in NL can be detected using methods like Named Entity Recognition (NER) or 
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Semantic Role Labeling (SRL) [53]. Both these techniques provide a higher level of 

abstraction than the basic syntax/parse tree.  

Due to immense diversity in human query constructions, the lexical patterns too 

have a great variety. This noise in sentence structure will often mislead algorithms. 

Imprecision of NL usage is a major obstacle to computation with NL. Therefore, it is 

necessary to develop a technique that partially relaxes the rigid grammar of the language. 

While imprecise or varied grammatical constructions are difficult to capture using POS or 

predicate logic, note that the human cognition can often eliminate such noise to interpret 

meaning. At first this sounds like a baffling fact; but everyday experiences reveal that 

human cognition is significantly more robust in extracting meaning from poorly 

constructed sentences compared to state-of-the-art techniques for NL understanding [47].  

Several problems like word-sense disambiguation, specificity of grammar and 

keyword (not semantic) based approaches inhibit portability of several existing NLP 

techniques across systems and domains [49, 63]. The closest work to our research is [46], 

which uses a POS-based approach in extracting subnets from queries. The accuracy of 

query subnet extraction compared to a human standard can be evaluated using metrics 

such as Consistency Index [68]. The results stated in [46] are tested on a very limited 

number of queries (approx. 12), which does not come close to capturing the diversity in 

human query constructions or web scale. In contrast, we provide empirical results on 

5000 queries from three query datasets with different noise levels. 

 

 

2.4 Semantic Networks 

A semantic network is a directed or undirected graph where nodes are concepts 

and edges represent semantic relations between two concepts. Such graphs are the widely 
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used for knowledge representation. Popular semantic networks (and semantic databases) 

include WordNet [42], DBpedia [37],  Freebase [94] etc. Freebase is one of the key 

components of Google Knowledge Graph [43].  

Building large semantic networks starts with the construction of a Simple 

Knowledge Organization System (SKOS), which was recommended by the World Wide 

Web Consortium to be part of the Semantic Web [37]. It is a family of formal 

languages used to represent thesauri, classification schemes, taxonomies, subject-heading 

systems, or any other type of structured controlled vocabulary. The SKOS represents the 

core of the Semantic Web.  

As explained later (Chapter 5), when we query an SKOS-based semantic network 

with a concept or entity, it returns the possible categories to which the entity belongs to. 

Around the SKOS, various sets of concepts can be added (usually using other datasets), 

which can tackle more complicated tasks like semantic parsing, semantic role labeling 

and word sense disambiguation. The core graph is often quite sparse, especially when 

viewed with the force-atlas spread visualization as shown in Fig. 8. 
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Figure 8: Part of core SKOS network of DBpedia. 

 

It is important to note that the term Semantic Web is often confused with 

'Semantic Networks'. The former is a standards movement, which involves designing web 

pages in formats that can be easily machine-readable. It uses Resource Description 

Formats (RDF) as units to describe data. Semantic networks on the other hand, are 

generic graph that describe concept relations. The latter can be engineered by using data 

from the semantic web.   

Network science is the study of relational data in physical, biological and social 

systems leading to predictive modeling of related phenomena. In general, there are 

several metrics that can indicate the importance of a node in the network, its relation with 

other nodes and the properties of the network as a whole. Popular network attributes 

include its average degree, clustering coefficient and centrality-based measures [2]. When 
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the network nodes can be naturally grouped into overlapping cluster of nodes such that 

nodes within a cluster are densely connected, it is said to exhibit community structure [6]. 

The greater the number of communities in the network, the more is its modularity [2]. 

 

 

2.5 Multimedia Applications 

Multimedia is media that consists of many content formats, such as text, images, 

videos, micro-texts, interactive visualizations etc. Most multimedia applications are either 

linear or non-linear. Linear multimedia does not allow user interaction, meaning it is 

usually un-altered. Images, videos or audios are example of such multimedia. On the 

other hand, video games, social micro-texts etc. allow for users changing the content as 

they interact, meaning they fall into the non-linear category. 

 

 

Figure 9: Transforming traditional multimedia application to social-aware. 
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In today's digital world and online communities, the usage of multimedia 

applications are ubiquitous. From image viewers on Facebook (social network) to filters 

on Instagram (social photos), from screen-casting on Twitch (video games) to 3D 

modeling in Maya (motion picture 3D), from music players like Spotify to video 

publishing sites like YouTube and from e-book applications on Amazon's Kindle to gif 

videos like Vine - multimedia applications govern human interaction with machines.  

Several of these applications consists of challenging artificial intelligence 

problems. For example, in video publishing, the site needs to recommend relevant video 

to user based on what he/she is currently watching - a classic example of 

recommendation systems [26]. In image search, the web site must parse a natural 

language text, extract semantics and retrieve related images. Moreover, query suggestion 

helps users to restructure their query based on available media content on the website and 

what other users' have searched for [22]. Brands use social media to quantify audience 

engagement, which requires intelligent analysis of user-generated media content to detect 

user profiles. These are all scenarios we shall discuss in this thesis, and describe how 

cross-domain data can help in improving individual multimedia applications.   
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CHAPTER 3:  LEARNING FROM SOCIAL DATA 

 

 

As mentioned previously, two ideas within the last decade have fundamentally 

disrupted how humans obtain information. The first involved engineering powerful 

search techniques which could quickly retrieve relevant web documents. The second is to 

allow sharing of user-generated content by means of social media and social networks. 

Web search aims to retrieve relevant documents across many domains on the Internet. 

Thus, there is media data in different domains that can be searched. If one of those 

domains is social, it also enables you to access real-time data about users and connect it 

to relevant media.   

Realizing that there exists cross-correlation between media data in different 

domains often generated in response to the same events in the physical world, we aim to 

build a common topic space between two domains to enable cross-domain learning and 

recommendation (Fig. 13). As a proof of concept, in this research we show it is possible 

to sustain such a topic space between the domains of social stream and online video. In 

particular, we take the social stream of Twitter and the videos collected from a 

commercial video search engine as examples in this work. The principal reason behind 

building a topic space is to construct a base context platform upon which multiple media 

applications can be forged [4]. It acts like a bidirectional bridge between tweets and 

videos.   

We tweak the online LDA model [103] to learn topics in real time from social 

stream and adapt it to scale with the bursty nature of social streams. The proposed topic 

model, which we call Online Streaming LDA (OSLDA) is utilized to extract, learn, 

populate, update and curate the topic space in real time, scaling with streaming tweets 
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[4]. The learned topics can then be used as a supervised bias when transferring 

information from the social domain to the video domain, which will be discussed in the 

next chapter. 

 

 

3.1 Social Stream Mining 

It is challenging to extract and mine relevant and valuable information from social 

streams (e.g., Twitter) and correlate social media across different domains. This is 

because of the noisy nature of social streams. For example, each tweet in Twitter is 

limited to 140 characters. This severely hinders techniques based on “bag-of-words.” [95] 

Second, tweets are usually noisy and improperly structured in grammar/syntax, leading to 

the difficulty to process via standard Natural Language Processing (NLP) tools. Third, 

the input data typically arrives in high-volume streams (bursty traffic), and thus, 

algorithms mining them must scale in learning. 

We use Online Learning LDA (explained in the next page) to extract topics 

(   ) from a stream of tweets (   ) [101]. LDA generates two distributions: a 

topical word–topic distribution         and topics-tweets distribution       . The 

vocabulary consists of words    . Parameters   and   are Dirichlet priors to the 

topic-tweet and the word-topic distributions respectively. A tweet is a sequence of words, 

where    is the n
th 

word in the sequence. 

Consider a k-dimensional Dirichlet random variable   that can takes values in (k-

1) simplex. LDA assumes the following generative process for each tweet d in the corpus 

D: (i) Choose N from a Poisson distribution. (ii) Choose               . (iii) For each 

of the N words   : (a) Choose a topic                   (b) Choose a word    from 

         ), a multinomial probability conditioned on the topic   . The dimensionality k 
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of the Dirichlet distribution is assumed known and fixed. Please refer to [101, 103] for 

further details. 

Therefore, the joint distribution of the topic mixture  , the set of N topics Z and a 

set of N words in the vocabulary W is given by:  

 

                                                     
                      (1) 

                                  

LDA represents every tweet as a random mixture over latent topics whereas every 

topic has a distribution over the words. A topic is comprised of a set of topical words. For 

example, one topic generated by LDA is: {egypt, mubarak, tahrir, army, revolution, …} , 

which clearly is related to the concept of the Egyptian revolution in Feb, 2011. 

 

 

3.2 Online Streaming LDA 

Our system learns in real time by updating the topic space with every incoming 

stream of tweets in a time slot (Fig. 10). We call it Online Stream LDA (OSLDA), since 

it leverages online LDA [103] and also scales across streams of incoming tweets, 

updating tweet-topic and topic-video connections at the same time. Unlike [103], which 

updates the word-topic prior distribution   with time, our method updates the topic space 

with time, using an active time decay function. Thus, OSLDA assumes the word-topic 

distribution can change significantly due to the dynamic nature of tweets [4]. This makes 

our model robust to streaming nature.   

With each time slot, OSLDA models incoming bursts of tweets (Fig. 10)) and 

updates the topic space. Empirical studies showed that fixing number of topics to 30 was 

enough for 60K tweets per time slot. Intuitively, processing more tweets should take 
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more time, but the number of topics needed to be extracted from a sudden burst (say 

120K tweets) is usually less, since the burst is typically caused by a single event (single 

topic). So, the number of topics to be extracted does not double if the tweet burst doubles. 

 

 

Figure 10: OSLDA updating topics space with incoming stream over time. 

 

 A principal difference of OSLDA from previous topic modeling algorithms is that 

OSLDA is capable of scaling with bursts of tweets. It is important to remember that the 

stream size per chunk/time slot is not constant, and therefore any social stream topic 

mining learner must deal with different document sizes at different times. In traditional 

LDA, the number of topics (a prefixed parameter) to be extracted depends on the 

diversity and the number of documents [115]. If the number of tweets in the stream 

doubles, it would appear that the stream would certainly become more diverse. Thus 

normally, more topics should be extracted, which would take more time computationally.  

 Interestingly however, the reverse phenomenon is observed for social stream data. 

A burst of tweets usually indicates 1 or 2 big events, which causes the stream diversity to 
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drastically reduce. Thus, the necessary adaptation to bursts of tweets is not to increase the 

number of topics to be extracted, but reduce it. This single observation allows us to 

extract reasonable topics even when the stream size doubles. It allows OSLDA to scale 

with variable and bursty nature of social streams.  

 

 

Figure 11: Topics (trending) detected by OSLDA from Twitter stream over time. 

 

 An example of topics extracted by OSLDA on real-world data (half an hour of 

Twitter stream) over time is shown in Fig. 11. Each chunk of tweets is shown by the 

dotted vertical line, during which OSLDA runs once. Every block resembles a topic, 

consisting of topical words. Newly detected words in a topic are colored red.  

Are the extracted  topics relevant ?  

Fig. 12 shows the distribution of search queries with time in video query logs for 

the topic ‘Egypt’ with real-time trend variation on Twitter as detected by OSLDA. We 

clearly notice that there is few minutes time lag between a trend topic appearing on 

Twitter, and the same topical words being searched on the commercial video search 
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engine. This means as trends rise and fall in Twitter, the volume of queries on the same 

topic rises and falls for video search. patterns for web and image search on Feb 11, 2011.  

 

 
 

Figure 12: Trending score of topical word 'Egypt' (detected by OSLDA) compared to real-world 

video search trending keywords. It illustrates the periodic lag that video search sustains when compared to 

OSLDA topic detection. 

 

Topical Words Assigned Topic YouTube 

Category 

dance, adventure, 

photography, visit 

 

events 

Travel & Events 

anime, hero, online, 

celebrity, diva  

films Films & 

Animation 

iphone, games, showcase  electronics Sci. & Tech 

war, economy, army, 

revolution, blog, egypt 

politics News & Politics 

trailer, show, live, watch entertainment Entertainment 

wow, rap,  jam, gaga music Music 

Table 1: Topical Words detected by OSLDA belonging to certain topics. Column 3 represents 

relevant YouTube categories for these topics. 



 40 

 

It was not surprising that ‘Egypt’ was the hottest search topic that day. In fact, 

Google Web Insights (www.google.com/ insights/search/) provided us with the top 10 

web search keywords related to ‘Egypt’; seven of which had already been detected by 

OSLDA earlier. For Google Image search, 6 of the top 10 search keywords were detected 

by OSLDA. 

 

 

3.3 Topic Space 

Remember our main focus is to transfer the information among domains. Thus, it 

is necessary to store the learned topics somewhere and update it with time as new topics 

come in. This abstract space is called the topic space. The topic space is a matrix, where 

each row represents one topic and each column represents a feature word. The entry in a 

cell represents the probability that the word belongs to the topic, as given by OSLDA 

             . We maintain a list of 75 top topics at a certain time in the system, which 

means the number of rows in the matrix is 75. The feature word size varies depending on 

the type of topics, but on average it can be as large as 38,000. An easy way to detect the 

75 top topics is by adding each row and consequently sorting.    

As shown in Fig. 13, this topic space servers as the bidirectional connection 

between tweet and video domain. Once such a bidirectional connection is established, 

information can flow in either direction, consequently supporting applications such as 

social video recommendation or tweet enrichment by video. In the next sub-section, we 

describe how this is achieved mathematically. 
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Topic Space as the bridge  

Using the topic space, we can connect a set of videos for any tweet. On the 

vidSide, we have a set of videos (V) with related video identifiers. Our goal is to find the 

membership strength each video possesses with the set of topics in the topic space.  

 

 

Figure 13: The topic space, as a bridge between cross media domains. 

 

Please note that a video tag is a video identifier. For the j
th

 video, the set of tags is 

represented by   . We also have a set of topical words (which were already extracted 

from tweets). Let the topical words in the k
th

 topic  be represented by the set   . Then, 

treating the set of topics and videos as a bipartite graph, we can define a link weighting 

function U such that: 

 

                        
        

  
                                            (2) 

 

Thus, the more the common tags a video has with the words of a topic, the higher 

the weight     ; and thus the higher the membership of the video towards this topic. 
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Tweets are often noisy and difficult to understand for users. We can improve user 

experience of tweets by recommending related and relevant media. From the user 

perspective, this should enrich the information surrounding the tweet (in terms of the 

topic of the tweet), since media (image/ video) is probably easier to comprehend for the 

user. Once the LDA topic modeler is trained on a stream of tweets, we can use it to 

connect any tweet to a topic, and eventually the selected topic to a set of videos as 

described in the previous subsection. The idea is clarified using Fig. 13. 

Given a tweet d’, we can find the probability distribution of topics for that tweet 

using the LDA topic modeler. Subsequently, videos to be recommended are selected 

based on the optimization: 

 

                                                                      

       

                              

 

Thus, the tweet connects to those videos for which it has the strongest links 

through the topic space. Think of           signifying the tweet-topic link weight and 

     representing the topic-video link weight.  

 

Runtimes of OSLDA  

Our Twitter dataset consists of 3.6 million tweets generated on February 11th, 

2011. We fixed each time slot period to five min. We noticed that approximately 60K 

tweets were generated every five min. The first 50K tweets were used as training data. 

The rest of the 3.1 million tweets were used for test. Tests were run on a system having 

AMD Opteron 2.09 GHz and 64 GB RAM. Performance of OSLDA is summarized in 

Table 2.  
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# Topics 

Extracted /  

# Tweets 

5 topics  10 topics 30 topics 60 topics 

30 K Tweets  

0.66 
0.72 1.09 1.67 

60 K Tweets 1.41 1.83 2.11 3.31 

90 K Tweets 1.75 1.93 3.18 5.19 

120 K Tweets 2.53 3.1 4.42 6.81 

Table 2: Time taken (in minutes) to extract a certain number of topics from a tweet stream of size 

from 30,000 to 120,000 . 

In summary, we empower tweets with related videos from cross domain. On a 

related theme, we should note that Twitter social trends are also a distribution over topics 

in the topic space. We know that such trends are a measure of real-time social popularity. 

Thus, if we leverage this observation, we could augment video popularity based on 

socially trending topics. This is the theme of the next chapter.   
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CHAPTER 4:  TRANSFERRING INFORMATION FROM SOCIAL 

TO VIDEO DOMAIN 

 

 

The task of information transfer asks two fundamental questions (1) what 

information is transferable (2) how to transfer this information in real-time. In the 

scenario of social stream data, both these questions are considerably complex to answer.  

The first question is difficult to solve since streams are noisy, consisting of several non-

natural language user-generated textual data. Moreover, tweets are generated at a very 

fast rate, thus the speed of information transfer or update is not trivial either.  

 

 

4.1 Social Signal Penetration Hypothesis 

The social signal penetration hypothesis states that a social trend (which is 

associated to Twitter) behaves as a spatio-temporal signal which penetrates into other 

domains (like YouTube), i.e. data in YouTube is affected by the trend in Twitter after 

some time delay. We claim that the topic space allows for the signal to be carried over to 

the other domain [105]. In this part, we explain  the engine that lets this penetration 

possible. Remember our constrains in designing the engine: (1) Real-time. (2) 

Progressively updating the recommendations as the topic space changes. 

Problem Definition 

We have two datasets in the target domain; the target training data        

    
     

  with labels and the target test data           
     

  without labels. The training 

data contains M instances whereas the test data contains N instances. Unlike traditional 
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machine learning, we also have an auxiliary data set          
     

 , consisting of D 

tweets instances. We assume that the target data and the auxiliary data share the same 

categories (e.g., both a tweet and a video can be regarding music), but exist in different 

domains (e.g., tweet is social text-based micro-blogging while RVGs consist of videos).  

Consider a set of B videos in the target domain. For a video         , we can 

represent the set of tags of     as              Each tag in the set            is a word, 

represented as   
                . Now consider a stream of D tweets picked from 

the source domain to be used for modeling the social topic space. For a tweet        

 , let         represent the topical words in the topic of    (we consider only the 

principal topic, i.e. topic for which the conditional probability of topic given tweet is 

maximum). Then each instance/label of the twitter stream data can be represented as 

         ). These instances can be combined into the auxiliary data set        

    
     

 .  

All the instances                     are represented by the features in the 

feature space       
   

    
 . Our goal is to learn an accurate classifier     ) from 

      and      that can predict the testing data with minimum classification error. We 

call this classifier         ). Thus, the goal of transfer learning is to minimize the 

prediction error on       by leveraging the auxiliary data from     . 

In the next section, we present SocialTransfer – a scalable technique for real-time 

transfer learning between the domains of social streams and traditional media (like 

video). SocialTransfer utilizes topics extracted from social streams to build an 

intermediate topic space in between the social and video domains. The topic space is an 

abstract space containing several clusters of words belonging to various topics that reflect 

world events in real time, including current and past trends. We use the Online Stream 

LDA model (OSLDA) to learn topics from social streams [4].  SocialTransfer uses a 
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graph based framework to model the transfer learning problem (what feature information 

is transferable and how) between the social and the video domains. Spectral analysis of 

this graph fetches the eigenvectors, using which we can represent both the social and the 

video feature information as a combined feature representation [24].  Since the stream is 

temporal nature, SocialTransfer also allows progressively updating the topic space and 

seamlessly incorporating newer trends into the transfer learning framework for socially 

aware media recommendations.  

 

 
 

Figure 14: Example of using social topics in building social trend aware multimedia 

applications. In this example, we show that related video (i.e. video-video) recommendation can be 

enriched by using topics learned from the domain of social streams. This cross-domain transfer of 

knowledge is accomplished through a mutual topic space (e.g., the space includes the topics like “Japan” 

containing words like “volcano,” “earthquake,” and so on). 

 

Fig. 14 shows an example of this kind, for social video recommendations. The 

framework we develop can be reused for several multimedia applications where social 
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influence is capable of improving performance.  Our results show that SocialTransfer 

considerably outperforms traditional learners without transfer learning. 

 

 

4.2 SocialTransfer  

Our goal is to combine the training, test and auxiliary data into a single transfer 

framework for prediction. There are two problems we particularly need to solve in this 

framework: (1) we must learn the interconnected pattern of shared features between the 

source and the target data, and (2) since the topics modeled from social stream (auxiliary 

data) changes with the real world trends, we need a transfer framework that can allow 

progressive inclusion of topics in pseudo real-time.  

Let us focus on the first problem and understand how to learn the interconnected 

structure of shared features across the domains. The single transfer framework we use for 

this purpose is represented as a graph called the transfer graph G (see Fig. 16), which 

contains the videos, tweets, feature words and category information. To learn the 

interconnected pattern of shared features between the source and the target data, we 

perform spectral analysis [24] of the transfer graph.  As shown in Fig. 15, spectral 

learning uses a technique called Power Iteration [106] to extract the eigenvectors from 

the Laplacian representation of the transfer graph. Spectral analysis of the transfer graph 

gives us the combined feature representation of the auxiliary and the training data using 

eigenvectors. This eigen feature representation reflects the intrinsic structure in terms of 

the principal components of the combined source and training data. Traditional learners 

(like Support Vector Machines/SVM [27]) can then use the combined features for 

prediction rather than using only the training features.  
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Now, let us focus on the second problem of how to progressively include social 

topics. Since the tweet stream is incrementally witnessed by the algorithm, the transfer 

graph needs to be updated in order to progressively include the twitter topics in pseudo-

real time. Said alternately, in order to include topics as they are generated in real time, we 

must update the transfer graph and recalculate the graph spectra. This is achieved by 

treating the topics as input supervision before spectral learning (as shown in Fig. 15). In 

particular, to incorporate the new topical information to the existing transfer graph, we 

utilize selected topics from the topic space created from the tweets. We can treat the 

topical words of tweets and the corresponding topics as labeled instances, and then 

incorporate the new tweet information as a semi-supervised rank update (a rank update 

refers to cases where a matrix is updated using outer product (as opposed to dot product) 

on the existing Laplacian matrix as shown in the flow diagram Fig. 15. In other words, 

selected topics act as input supervision for the Laplacian matrix which allows for smooth 

incorporation of social topics into the transfer learning framework.  

We use the Online Streaming LDA (OSLDA) model for real-time topic learning 

from Twitter stream [4], described in Chapter 3. Each topic is comprised of a group of 

related words called topical words. Topic learning treats each tweet as a document and 

builds a generative model to connect the tweet to one or more topics. Thus, the topic of a 

tweet contains words (topical words) that are related to the tweet words but might not be 

explicitly present in the tweet itself. More precisely, the topic modeling generates two 

distributions, a tweet-topic distribution and a topic-word distribution.  

As mentioned earlier, extracting topics from social streams is non-trivial, due to 

the unique characteristics of social stream data [80]. Previous work has however shown 

that significantly popular topics (e.g. trending topics) can be extracted from social 

streams with reasonable accuracy [107]. Since every topical word in the topic space has 
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an assigned topic label as shown in Table 1, the entire topic space can be treated as some 

sort of social bias for any semi-supervised learning task that requires social influence. 

Again, devising a natural way to incorporate this social bias into transfer learning is not 

trivial, which is one of the important issues addressed in this dissertation. Note that each 

assigned topic consists of a cluster of topical words. Similarly, each topic can be 

considered a cluster in the topic space. We can limit ourselves to incorporating only 

selected topics from the topic space as input supervision (an additional set of labeled 

instances) for the transfer learning task. 

 

 
 

Figure 15: The flow diagram addresses the overall approach in solving the two key 

problems of SocialTransfer: (1) learning the shared feature representation across domains in terms of 

eigenvectors using Spectral Learning (Power Iteration), and (2) reflecting the progressive inclusion of 

topics by updating the transfer Laplacian matrix. 
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This choice will depend on factors such as whether we want to model only fresh 

(trending) topics or only video category specific topics. Thus for K topics in the global 

topic space, we can choose a particular set of topical words   
       for i=1, 2,…, K to 

act as the bias or input supervision to update the transfer graph before spectral learning. 

This sort of input topic supervision is fed into the transfer graph progressively, as is 

depicted in Fig. 15, where topics modeled in real-time from the social stream using 

OSLDA is used to update the transfer graph by means of a ranked update (Eq. 7) on the 

transfer Laplacian matrix representation of the transfer graph. This allows progressive 

and seamless inclusion of topics into the transfer graph as shown in Fig. 4, facilitating the 

social influence in transfer learning. 

Transfer Graph 

A general graph based framework for cross-domain transfer learning was 

proposed in [23], which includes the target and the auxiliary data with some common 

relations and attributes between them. We adapt that framework in our scenario. 

However, the graph in [23] cannot update itself to incorporate streaming tweets topic 

information in scalable fashion. Instead, the transfer graph in SocialTransfer is capable of 

updating itself with new tweets stream topics in real-time. The transfer graph’s main 

purpose is to capture the cross-domain attributes of social streams and videos for using in 

the transfer learning task and model the relation between the auxiliary data from Twitter 

and the target video data. This ‘transfer graph’ (Fig. 16) contains the instances, features 

and class labels of the target data and the observed auxiliary data as vertices. The edges 

are set up based on the relations between the auxiliary and the target data nodes. The 

transfer graph presents a unified graph structure to represent the task of transfer learning 

from social domain to video domain.  
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Before diving into the details of the transfer graph, it is important we mention that 

the novelty of our approach lies in how we incorporate the learned social topics into this 

transfer graph. We incorporate the learned topic model into the transfer graph by means 

of a ranked update on the Laplacian matrix representation of the transfer graph. 

SocialTransfer is a unique method to combine topic modeling and transfer learning; 

providing a natural interface for topic modeling to seamlessly fit into the process of 

transfer learning.      

 

 
Figure 16: Transfer graph for SocialTransfer with connections among auxiliary and target 

data including features and class labels. 
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Let us focus on the example in the transfer graph illustrated in Fig. 16. The 

feature word ‘recyclopath’
2
 occurs in the training video instance ‘Interview with Mel 

Kelly (aka Recyclopath)’ shown in the top right. Since the video lacks any tags related to 

‘Environment’, a traditional learner will find it difficult to extract the topic of this video 

to be related to ‘Environment’. However, the auxiliary data has a tweet instance 

belonging to the ‘Environment’ topic having the word ‘recyclopath’. Thus, the transfer 

learner can label this video as ‘Environment’-related and associate this video to another 

‘Environment’-related video. This is an example of discovery of video associations by 

understanding video topics with the help of social topics.  

As shown in Fig. 16, the transfer graph G(V,E) consists of vertices representing 

instances, features or class labels, and edges E denoting co-occurrences between end 

nodes in the target and the auxiliary data i.e.: 

                                                                                       (4) 

The weight of each edge where one of the end nodes belongs to   indicates the 

number of such co-occurrences. Let      represent the importance of the feature     

that appears in instance                    . Then, the weight of an edge where one 

of the end nodes belongs to   is indicated by     . The importance of a feature word 

     can be calculated using the topic-word probability distribution matrix obtained from 

OSLDA. The total number of features and class label nodes remains fixed in the transfer 

graph. Let      represent the true label of the instance. If     denotes the the weight of an 

edge between two nodes   and    in the transfer graph, then edge weights can be 

assigned as: 

                                                 
2 Recyclopath means a person who is almost paranoid about recycling and is an extreme environmentalist.  
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For all other cases except the ones mentioned in Eq. (5), we set      . The edge 

weights thus represent the occurrence/importance of a category or feature present in the 

auxiliary/target data, which will be eventually utilized as a distance metric during spectral 

clustering. Some nodes in the graph may be isolated with no edge connections. The 

matrix updating process adds new edges to the isolated nodes.  The transfer graph G is 

usually sparse, symmetric, real and positive semi-definite, which allows the possibility of 

calculating its spectra efficiently [21]. The graph spectrum in terms of eigenvectors is the 

impression of the structure of relations among the source and target data. This structural 

relation between the cross domain data is the essence of transfer learning [23]. Thus, it is 

necessary to represent the source and target data as a transfer graph and then analyze their 

structural relation by learning the graph spectrum.   

Learning Transfer Graph Spectra 

The highlight of SocialTransfer is how it learns transfer graph spectra and 

incorporates new social topics into the transfer graph in real-time. This task is non-trivial, 

since if not properly done, it may incur substantial costs in terms of scalability (e.g., in 

eigen-feature extraction) and interoperability (in integration of topics) between topic 

modeling and transfer learning. In this section, we demonstrate how we achieve both 

these goals efficiently.  

Once the transfer graph G=(V,E) is built, we can use graph spectra analysis to 

form an eigen feature representation, which combines the principal component features 
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from the training and the auxiliary data. In order to extract the top-q eigenvectors of the 

transfer graph G=(V,E), we first need to convert the graph into a Laplacian matrix. Let 

        denote the degree of the i-th vertex in G. Then the transfer graph Laplacian 

                       , can be obtained as: 

 

                  
                        

                                     

                                   

                                        

 If the Laplacian eigen values are represented as: 

             ,  

then the eigen gap can be defined as:           
  

    
.   

 

Since the Twitter stream is extremely dynamic, topics and trends change 

overtime. This requires a feature extraction scheme that can reflect and scale with the 

social stream. Previous approaches for spectral feature representation in transfer learning 

have suggested the use of the normalized cut (Ncut) technique for eigenvector extraction 

[23]. However, our experiments (Fig. 12 in Section 6.3) showed that the normalized cut 

technique is incapable of scaling with the twitter stream.  

Therefore, we use a Power Iteration technique for computing the q largest 

eigenvectors of        [106]. The method begins with a random         eigenvector 

matrix and iteratively performs matrix multiplication and ortho-normalization until 

convergence [24]. The speed of convergence of this method depends on the eigen gap, 

i.e. the difference between successive eigen values. In fact, Bach et.al. mention that the 

number of steps required for the orthogonal convergence in the Power Iteration method 

is   
 

          
  [24]. 

Since topics are updated in the topic space with time, we need to devise a way to 

progressively incorporate these new topics into the transfer graph. These topics could be 
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incorporated by picturing them to be a time-dependent labeled bias (like a semi-

supervised bias) which is an additional set of labeled instances acting as input 

supervision. One option for incorporating the semi-supervised topic bias as input 

supervision into the Laplacian representation of the transfer graph (      ) is by 

producing a ranked update on         (see Eq. 5). The update in effect recalculates the 

weights of edge/path between the features and the corresponding labels within the 

transfer graph, thus updating the characteristic of the Laplacian (Eq. 2, 3). Essentially, the 

ranked update on the Laplacian using the topic bias adds positive weights between 

feature words that share the same topic and adds negative weights between feature words 

that belong to different topics. Thus, the target and the auxiliary data instances act as sort 

of virtual nodes enabling this re-weighing of the feature edges. 

An additional reason for using the ranked update technique is that previous work 

[21] has also rigorously demonstrated that when Laplacians such as        is positive 

semi-definite, a ranked update can improve eigenvector extraction speed by spreading the 

eigen gap. The next subsection elaborates on how we use ranked updates to incorporate 

semi-supervised topic bias and update the transfer Laplacian.  

Incorporating Social Topics 

We know from topic modeling that the words in tweets can be clustered into 

topics.   Let us consider there are K such topic clusters. The semi-supervised topic bias is 

implemented by assuming we know the correct topic labels for a subset of the feature 

words. This input is learned by topic modeling using OSLDA, which was described in the 

previous chapter.  

 The semi supervised bias consists of a set of topical words for each topic 

  
       for i=1,2,…K that act as input supervision. Let us consider the simple case of 

two topic clusters   
   and   

  , such that       
     

    denotes the set of labeled bias 
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instances. Also, consider          and                 
. We can then define a 

regularization vector    as: 

 

                        
 

  

        
                  

                                          

                                    

 

where,        
      

   

      
   

 if     
   and          

      
   

      
   

 if     
  .  

 

The effect of the above Eq. 7 is to introduce a quadratic penalty if there is a 

violation in the topic bias label constraints. Said otherwise, this will cause vertices of 

features that belong to the same topic to cluster together while vertices of different topics 

will be assigned to separate clusters (due to the penalty). A rank-1 update on the original 

Laplacian can be made as: 

                                                   
                                             

Similarly, if there are K topics, we can modify the original matrix        with a 

rank-k update [21] instead of a rank-1 update. This supervised ranked update firstly 

allows us to seamlessly incorporate streaming data progressively. Secondly, it aims at 

tuning certain algebraic properties of the input Laplacian matrix which are related to the 

convergence rate of the Power Iteration method, eventually speeding the eigen 

decomposition. 

In summary, the input supervision using topics learned from the social stream 

allows us to implement rank-k updates on the transfer-Laplacian matrix as a similarity 

learning mechanism, where vertex similarities are adjusted on the basis of the topic bias.   

Note that the number of nodes in the graph is not changed during updating (dimension |V| 

is fixed); instead the updates only introduce new edges or re-weights existing edges in the 
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graph as it iteratively reuses the eigenvectors from previous update.  Due to lack of space, 

we refrain from describing in detail how the rank-k update improves the speed of 

eigenvector extraction. In fact, the ranked update increases the eigen gap, which 

accelerates the convergence of the Power Iteration method. For a detailed explanation of 

how a supervised bias using rank-k update accelerates the eigenvector extraction process, 

please refer to [21]. 

Algorithm for SocialTransfer 

Once the first q eigenvectors             have been found by iteratively using 

the Power Iteration method with the topic-based input supervision, we can form a 

combined feature representation that depends on both the training and the auxiliary data. 

Traditional learners like SVMs can use the combined features that include the transfer 

task to train a classifier f’(     ). Described below, is the algorithm for SocialTransfer for 

classification in the target domain based on auxiliary social stream data. 

 

Algorithm 1: SocialTransfer – Transfer Learning from Social 

 

Input: A target classification task which includes the target training data 

set       , the source auxiliary data set      and the target test data set      .  

Output: Classification result on       

1. Construct the initial transfer graph G(V,E) based on the social transfer clustering 

task (c.f. Section IV.D). 

2. Calculate transfer Laplacian matrix:        from G using Eq. (3). 

3. for each chunk of tweets entering the system do  

4. Calculate the regularization vector    using the input supervision of social topics 

    as shown in Eq. (4). 
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5. Perform semi-supervised topic bias update on transfer    Laplacian:              

               
    as shown in Eq. (5). 

6. Use Power Iteration to calculate the first q eigenvectors of            :            

which satisfy the generalized eigenproblem:                  . The resulting 

eigenvectors will be used as initial eigenvectors for the next updated Laplacian 

matrix. 

7. end for 

8. Construct matrix H with            as columns. 

9. for each    
   

 in        do 

10.      Let    
   

be the corresponding row in H  w.r.t    
   

. 

11. end for 

12. Use a traditional classification algorithm (we use SVM) to train the classifier 

f’(     ) based on         
   

    
  instead of the original training set         

    
   

    
  and then classify           

   
    
  in the eigen feature space. 

 

 

4.3 Applications 

We present three applications based on the SocialTransfer algorithm and the 

OSLDA topic modeling.   

 

4.3.1 Socially Relevant Video Recommendation 

Modern video publishing sites like YouTube use related video recommendation 

techniques [8, 9] based on RVGs to recommend a video to the user. The recommended 

video is related to the seed video which the user is currently watching by co-clicks or co-
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views, i.e. some signed-in user has clicked on both the seed and the related video in 

sequence. In contrary, Socialized Video Recommendation recommends videos which 

bear similar topics to a seed video the user is watching. Thus, proposed Social Video 

Recommendation is independent of the click through nature among videos, and has 

several advantages over traditional related video recommendation [25, 26], such as: (1) it 

considers video content/context (as in topics) while recommending videos, (2) its 

performance does not decrease as click data gets sparse, (3) it can recommend fresher 

videos that do not have significant user activity but are extremely relevant to the seed 

video and (4) it does not require signed-in user activity to learn and build RVGs. 

For related video recommendation, the system must be able to predict which 

videos are ‘related’ to a seed video and are good candidates for recommendation. The 

first step in solving this is to detect the topic of the seed video. Thus, the job of the 

classifier is to classify the topic of a test seed video. Once we detect the topic of the test 

seed video, we can assume all the videos belonging to that topic are candidates for related 

video recommendation of the seed. We then recommend only those videos from the 

candidate pool whose tags match the seed. A socialized video recommender can be 

developed by creating a learner that uses auxiliary tweet data by means of transfer 

learning. Given a set of RVG videos in the target domain, a traditional Non-Transfer 

learner like SVM [27] will aim to predict the related videos of a given seed video in the 

test data set by building a classifier only from the training data. Instead, SocialTransfer 

builds a classifier using both training video data and auxiliary tweet data. 

Data Description: Our study is based on a 5.7 million videos crawled from 

YouTube and 10.2 million tweets obtained from the NIST Twitter dataset [18]. The 

source domain is Twitter and the target domain is YouTube. The varying bursty nature of 

tweets can be observed from Table 3. We use a preliminary list of YouTube related video 
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ids collected for experiments in [8]. Video meta-data includes values for entities such as 

video id, title, tags, view count, age (in days since uploading), category, related video ids 

(which comprises related videos at depth 1 of RVG) etc. As mentioned earlier, the videos 

related to a given seed video is captured using a directed graph, which is known as 

Related Video Graph (RVG) [26, 28]. Thus, if a video y is in the related video list of a 

seed video x, then there is a directed edge/path     in the RVG [25]. Moreover, for an 

edge     in the RVG, its tags can be represented as the instance:           

                   , where           represents the set of tags of video   and ‘ ‘ 

means set difference. All such instance/label combinations of the B videos have to be 

randomly divided into two sets for training and testing, called            and       

respectively; where            and           represented as            
     

 , 

          
     

  where       and  
 

 
    . 

We have collected related video information up to five depths from an initial seed 

video ranging across the 14 main YouTube categories: Comedy, Entertainment (‘Enter’), 

Education (‘Edu’), Music, Film & Animation(‘F&A’), Non-Profits & Activism 

(‘NonProf’), Science & Technology (‘S&T’), Travel & Events (‘T&E’), Pets & Animals 

(P&A), HowTo & Style (‘H&S’), Autos & Vehicles (‘A&V’), News & Politics (‘N&P’), 

Sports, and People & Blogs (‘P&B’). Some videos are categorized unavailable, and in 

such cases we use the category of its parent video. Apart from these main categories, [29] 

has suggested around 75 sub-categories to the main YouTube categories. We include all 

of these as the pool of categories from which class labels can be drawn. Therefore, we 

tune the OSLDA to detect tweets where the tweet words fall into the tag space belonging 

to any of these category videos.  

Since RVGs are essentially related recommendation networks, distribution of 

categories over videos changes as we move one depth to the next. This introduces some 
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degree of intended diversity in the next video recommended [25], since it might be of a 

different category compared to the seed but somehow related. On average, we found that 

the next recommended video has 25% chance of being in the same category as the seed 

video. Fig. 17 shows the category distribution of related videos at depth 1 and 2 from the 

seed video being watched. 

 

 
Figure 17: Distribution of video categories of recommended videos by RVG at depth 1 and 

2 from the seed video showing the diverse nature of video recommendation in YouTube. 

The Twitter dataset consists of 10.2 million tweets generated in the US and 

collected between Jan 26
th

 2011 and Feb 11
th

 2011. We simulate the twitter data as a 

stream, with each batch of tweets representing approximately 5 minutes. The resulting 

rate at which tweets streams over the last week of Jan, 2011 is shown in Fig. 18, where 

the 5 min batch time slots account for a total of 288 slots spanning 24 hours in the 
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horizontal axis. We show the temporal stream volume (in no. of tweets generated) 

distribution only across seven days in order to avoid cluttering in Fig. 18. 

From Fig. 18 we can conclude that under normal circumstances, the tweet rate 

distribution has a general pattern over 24 hours: there is a minima around 8:15 AM, 

followed by a gradual rise until 3 PM in the afternoon, where a local maxima is achieved. 

Interestingly, another spike is usually noticed in tweets around 2:30 AM in the morning. 

The drops to almost zero on Jan 29
th

 can be accounted for by Twitter downtimes and the 

Blackberry outage in USA. The high spike around 5:15 PM on Jan 29
th

 is caused due to a 

high volume of tweets during the onset of the Egyptian revolutions.  

 

 
Figure 18: Daily tweet stream from 26

th 
– 31

st
 Jan, 2011. 

 

Experimental Results: For socialized video recommendation, we test 

SocialTransfer against a traditional learner like SVM [27], where SocialTransfer uses 

auxiliary social data in combination with training data, whereas a traditional learner uses 

only the training data for prediction (called Non-Transfer) and serves as our benchmark. 
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Here, the classification task is simple: given a seed test video, classify whether another 

video is a related video of the seed or not. This in aggregation is same as the case: given a 

seed test video, predict the list of related videos for the seed test video. 

For the experiments, we set  =1.25, limit the power method to extracting top-25 

eigenvectors and include 60% of the topic space for input supervision.  The reasoning of 

these choices is explained over the following sections. We have three datasets for transfer 

learning - the target training data, the target test data and the source auxiliary data. The 

target dataset consists of 5.7 million videos in total along with their RVGs (contains a list 

of related videos for each seed video). However, some videos do not have categories or 

are removed from YouTube, and therefore we experiment on a reduced set of 4.8 million 

videos. Our training data consists of 60% videos randomly picked from the 4.8 million 

YouTube videos. The rest 40% videos (~2 million) are used for testing. As auxiliary data, 

we use the 10.2 million tweets from the Twitter stream.  

 

# Topics 

Extracted /  

# Tweets 

5 topics  10 topics 30 topics 60 topics 

30 K Tweets  

0.66 
0.72 1.09 1.67 

60 K Tweets 1.41 1.83 2.11 3.31 

90 K Tweets 1.75 1.93 3.18 5.19 

120 K Tweets 2.53 3.1 4.42 6.81 

Table 3: Number of video instances in popular categories. 

We ensure to extract topics from tweets based on approximately 90 categories (16 

main + 75 other) so that the source and target domains share same categories. 

Additionally, we also evaluate category-specific predictions based on six popular 
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categories (Comedy, Film & Entertainment, Sports, People & Blogs, Music). Table 3 

shows the number of video instances used for evaluation in some of the popular 

categories.  

In Table 4, we report the average error in prediction for the Non-Transfer cases 

(SVM on training only) vs. SocialTransfer. Non-Transfer refers to application of the 

traditional SVM learner to the original target dataset with no social influence (only 

training features are used); SocialTransfer means to apply SVM on the combined feature 

representation learned using transfer learning from social data (training + auxiliary).  
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Table 4: Number of video instances in popular categories 

 

The performance in Table 4 is measured in error rate by averaging 10 random 

repeats on each dataset by the two evaluation methods. For each repeat, we randomly 

select 5000 instances per category as target training data. We report the prediction error 

rate in each of the main categories, along with the overall error for the entire data set. We 

also report the standard deviation of the repeats in Table 4. The two methods are well-

tuned using 10-fold cross validation. The overall gain using SocialTransfer is ~ 35.1% 

compared to non-transfer cases. Please note that the overall error rate is averaged over all 

the main categories and not just the six categories shown in Table 4.  Performance 
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improvement using transfer learning is most in category ‘People & Blogs’. In all the 

major categories, SocialTransfer performs better than a traditional non-transfer learner. 

 

4.3.2  Socially Video Popularity Prediction 

In this section, we discuss how to utilize the SocialTransfer in calculating the 

social prominence of a video and estimate its social popularity. The steps include: (A) 

calculate the trending score for each topic (called Tscore) and use SocialTransfer 

classification to find the principal topic of a video. The trending score of the principal 

topic of a video is its social prominence; and (B) fusing social prominence of a video 

with its traditional popularity (based on view count) to estimate the final trend aware 

popularity score (TAP). (C) The final goal of this work, predicting which videos will 

demonstrate bursty nature based on their TAP. 

Social Prominence: Trends are temporal dynamic entities, meaning they grow for 

a certain period of time, after which they suffer inevitable decay. In other words, trends 

remain socially prominent for some time and their attractiveness fades away. It is 

therefore necessary to include a time decay factor when modeling the trending score.  

More formally, consider SocialTransfer receives a set of D tweets in one time 

slot;       being the current time slot and        is the time slot when the trend was first 

observed. We can then define the trending score of a topic z as:  

 

                            
             

   
   

      
                                              

where                   is the time dependent decay factor which is a function 

of the current time slot and the time slot when the trend was first seen. The decay factor 

must actively respond to trend reoccurrences (i.e. when the trend rises after an initial 

fall). The decay can be formulated as:   
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                               (10) 

 

where       depends on the category of the topic z  (meme, music etc.). In 

addition to the usual trends, active decay can capture extremely dynamic trends like 

memes or sports related topics, which have short life spans compared to music or 

entertainment related trends. 

For some video v, let   
  be the topic to which the video has maximum 

membership. This membership measure can be easily retrieved using SocialTransfer 

classification, since the output of the classification is the topic of the video. Then the 

social prominence of video v is         
 . 

Trend Aware Popularity: In a traditional video ranking system (like in YouTube) 

videos with higher view counts are boosted in the rank list [30]. Thus, these videos get 

clicked more often, resulting in subsequent higher view counts for them [9]. Therefore, it 

is necessary to engineer a reasonable fusion of the traditional approach and our proposed 

social prominence approach. This fusion of the traditional popularity factors (like view 

counts) and the social prominence of the video is called the Trend Aware Popularity 

(TAP).   

In formulating the final popularity score, we also need to take into account the 

time when the video was uploaded (    ) since we need to discount the fact that older 

videos already have higher view counts. Thus, the net temporal Trend Aware Popularity 

score that we assign to a video v is: 
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where        represents the view count at time t and   is a weighting factor that 

balances social vs. traditional popularity control. The above equation measures the social 

trend aware popularity of a video. The traditional popularity is reflected by the adjusted 

view count measure, which fractions the view count of a video based on when the video 

was uploaded in video domain, when the video topic trend was onset in social domain 

and when the prediction was performed. 

The TAP score reflects the social popularity as well as the traditional (video 

domain) popularity for a certain video. Our hypothesis is that social popularity signal 

penetrates across media domains on the Internet. In other words, if a topic is substantially 

popular (trending) in the social domain, then media belonging to the same topic will gain 

popularity in other domains (in this case, video domain). Therefore, a ratio of TAP to a 

scaled         
  value will provide us with the quantitative estimation of the impact of 

the social signal in boosting the overall video popularity for some video v. The lower the 

value of this ratio, the higher the impact of the social prominence of the video in 

comparison to the adjusted view count score. Given the same social prominence, the ratio 

seems to favor videos with lower adjusted view count measure. However, this is not an 

issue, since the adjusted view count measure is lower when the trend has been seen for 

longer time period (           ), which practically means that we are more sure of the 

prediction if we are exposed to more of past trend data. Thus, for a certain video, if this 

ratio is significantly lower than for others (lower 10th percentile), we predict the video 

will gain bursty popularity. 

Experiments: Once again, we test our social transfer learning model against 

traditional learners like SVM [27] which do not use any auxiliary social data in 

prediction. We used LibSVM with the Radial Basis Function kernel for SVM 

implementation [108]. Here, the classification task is: given a test video, classify whether 
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it is bursty or not (bursty=1/0). For the experiments, we set  =1.25, limit the power 

method to extracting top-34 eigenvectors and include 60% of the topic space for input 

supervision.   

To measure the performance, we use error rate as a metric. Error rate is calculated 

as (1 - accuracy) where, 
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Table 5: Experimental Results of Error Rate in Predicting Bursty Videos for Social Video 

Popularity. The results are the averages of 10 random repeats along with their standard deviations. Both 

methods are tuned with 10-fold cross validation. 

In Table 5, we report the average error in prediction for the Non-Transfer cases 

(SVM on training only) vs. SocialTransfer. Non-Transfer refers to application of the 

traditional SVM learner to the original target dataset with no social influence (only 

training features are used); SocialTransfer means to apply SVM on the combined feature 

representation learned using transfer learning from social data (training + auxiliary). The 

performance in Table 5 is measured in error rate by averaging 10 random repeats on each 

dataset by the two evaluation methods. For each repeat, we randomly select 5000 

instances per category as target training data. We report the prediction error rate in each 

of the main categories, along with the overall error for the entire data set. The results are 
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provided category specific to show that the algorithm does better in certain video 

categories, potentially due to the fact that more information about those categories can be 

extracted from the social media in the first place. We also report the standard deviation of 

the repeats in Table 5. The two methods are well-tuned using 10-fold cross validation. 

The overall gain using SocialTransfer is ~ 39.9% compared to non-transfer cases. Please 

note that the overall error rate is averaged over all the main categories and not just the six 

categories shown in Table 5.  Performance improvement using transfer learning is most 

in category ‘Music’. In all the major categories, SocialTransfer performs better than a 

traditional non-transfer learner. The F1-score of positive bursty videos for the proposed 

SocialTransfer algorithm is 0.68 whereas for the non-transfer SVM it was 0.32.  

Additionally, we ran a baseline Naive Bayes classifier, which produces an F1 

score of 0.21 without any transfer of auxiliary data. If we replace the SVM in 

SocialTransfer with the Naive Bayes, the F1 score achieved is 0.49. The drop in 

performance of Naive Bayes in both transfer and non-transfer cases compared to SVM (-

0.19 and -0.11 respectively) is expected. Naive Bayes is easy to implement, but it suffers 

from strong feature independence assumptions.  Notice that this feature independence 

assumption is more costly in the transfer scenario, where the drop in performance is 

larger than in non-transfer scenario, potentially due to the heavy reliance of 

SocialTransfer on cross-domain feature alignment.  

We also provide results of using a majority-class baseline classifier (in place of 

SVM in Algorithm 1). The F1 score of the final bursty video prediction in this case is 

0.111. The distribution of bursty and non-bursty video in our dataset in 17% and 83% 

respectively. Thus, a majority-class baseline classifier, when directly applied to bursty 

video prediction, will classify every test video as non-bursty. 
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4.3.3 Social Query Suggestion for Video Search 

Let us first describe an application that utilizes the topic modeling using OSLDA 

within the SocialTransfer framework. Our intuition is that lack of a collaborative cross-

domain recommendation environment compels users into unguided video search (pure 

querying rather than smart recommendation). One effect of such activity is that users will 

use the words of trending issues and topics (topical words) when performing video search 

queries on the Internet. Learning topical words in real time from social streams could be 

leveraged to suggest queries for video search. We believe this is an important application 

of real time topical analysis from social streams. Our experimental results suggest: (1) 

user search queries in video search engines do contain words which we recovered as 

topical words from social streams using OSLDA. (2) There is a noticeable time lag 

between (a) OSLDA topic trend detection from social stream and (b) the increasing 

volume of search queries on that trend in an external (non-social stream) video search 

portal. This correspondence can be leveraged to augment user experience by socialized 

query suggestion for video search when the user is querying in the video portal. 

Socialized query suggestion for video search using the OSLDA model in 

SocialTransfer aims to recommend good query words in response to users’ query 

keywords. This will help searchers to better seek the more topic-relevant videos they are 

looking for, since the suggested topical words are connected to videos in the transfer 

graph. Said alternately, socialized query suggestion aims to localize the topic of the video 

the user is querying for by suggesting additional topical words. This is more effective in 

relevant video retrieval than just matching query keywords to video tags. Therefore, the 

prior knowledge of which query words the users’ will use for video search will not only 

enable the system to suggest better topical words for the user, but also improve the 

system’s capability in predicting which keywords the users will use for search and which 

videos they will potentially watch in the future. 
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Experiments: Experiments in this section are conducted using video query logs 

from a commercial video search engine and 10.2 million tweet data. The goal is to find a 

temporal pattern or common terms between tweet topic words and video search keywords 

from video logs. Fig. 19 shows the distribution of search queries with time in video query 

logs for the topic ‘Egypt’ with real-time trend variation on Twitter as detected by 

OSLDA. 

From Fig. 19, we clearly notice that there is few minutes time lag between a trend 

topic appearing on Twitter, and the same topical words being searched on the commercial 

video search engine. This means as trends rise and fall in Twitter, the volume of queries 

on the same topic rises and falls for video search. To further support our claim that 

people search for Twitter trends outside Twitter, Fig. 20 shows the query keywords used 

in a commercial video search engine on Feb 11, 2011. If we eliminate daily searches such 

as ‘cats’, ‘movies’, ‘funny commercials’ which are common (green dotted circles), then it 

is hard to miss that topical words (red solid circles) take up a significant portion of the 

remaining video search keywords. In the video search engine logs and for all queries on 

Feb 11
th

 that are not daily search terms (like ‘cats’), 63% of query words were detected 

by OSLDA. 
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Figure 19: OSLDA trend detection on Twitter (top blue) vs. topical word search trend in 

commercial video search (bottom brown). 
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Figure 20: A significant majority of video search keywords come from trending topical 

words (red circles). 

 

 
Figure 21: Data from Google Insights shows that words detected by OSLDA where among 

the top searches on Google. 

In fact, this technique of socialized query suggestion can be extended beyond 

video search. We used Google Insights to understand search patterns for web and image 

search on Feb 11, 2011. It was not surprising that ‘Egypt’ was the hottest search topic that 

day. Moreover, Google Web Insights provided us with the top ten web search keywords 

related to ‘egypt’; seven of which had already been detected by OSLDA earlier. For 

Google Image search  results shown in Fig. 21, six of the top ten search keywords were 
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detected by OSLDA. This is convincing evidence that the OSLDA detects relevant 

socially active topics within the SocialTransfer framework. 

 

 

4.4 Parameter Tuning 

Accuracy Variation with Stream Inflow 

We test the rate at which the prediction error decreases with incoming stream of 

tweets every day across 12 days of the social data (Jan 26
th

 – Feb 7
th

). Fig. 22 shows that 

there is a gradual decrease in error rate as more of the stream is seen by SocialTransfer. 

Lack of any sharp drops hints at the fact the social popularity is significantly trend 

category specific. On course of the 12 days, we see a 49.4% net reduction of error. 

 

 

Figure 22: Drop in prediction error rate with daily stream inflow from Twitter. 

The classification is done continuously at various time points. This is why the 

decrease in error can be tracked each day as shown in Fig. 22. However, the results 
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shown in Table 5 are calculated at the end of the entire period of time for which the 

dataset is available (26th Jan - 7th Feb). 

EigenVectors: 

Previously we mentioned that for the experiments, we fix the number of 

eigenvectors to be extracted from the transfer Laplacian  to 34. The reason for this choice 

is due to results of Fig. 23, which shows the variation of the error rate with the number of 

eigenvectors extracted. We see that when the number of eigenvectors extracted is greater 

than 34, the error rate is almost constant. 

 

 

Figure 23: The influence of the number of eigenvectors extracted on the error rate. 

 

However, there is a trade-off between the time duration required for extraction vs. 

error rate of prediction for a certain number of eigenvectors that can be extracted. Thus, 

since the variation of reduction in error rate is not significant beyond 33-35 eigenvectors, 

we can safely assume that the extraction of more than 34 eigenvectors is not necessary. 
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Scalability 

The speed at which the incoming stream of tweets is explored for topics by OSLDA 

together with the time required for eigen feature extraction from the transfer graph using 

spectral learning is important for maintaining scalability with the real-time social stream. 

In our system, the topic modeling is done in parallel with the eigenvector extraction to 

save time. Thus, our main aim should be to limit the time required to complete either of 

these tasks within the incoming tweet flow time.  

 

 
 

Figure 24: Runtime comparison for topic modeling and eigen decomposition with incoming tweet 

stream in SocialTransfer. 

 

Fig. 24 shows the comparison of runtimes for various settings of OSLDA, eigenvector 

extraction using power iteration (PI) and eigenvector extraction using Normalized cut 

(Ncut) with the time taken on average for an incoming chunk of tweets to stream in. For 

OSLDA, ‘20k’ (in legend) refers to 20 topics extracted and ‘50i’ refers to 50 iterations of 
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the generative process. Experiments were run on a IBM server with 2.67 GHz processor 

and 8 GB RAM. 

From Fig. 24, we can safely conclude that the model scales to incoming bursts of 

tweets, since the matrix decomposition with Power Iteration and the topic modeling using 

OSLDA require less time than the speed of incoming tweets. Note that the Normalized 

cut method (Ncut) does not scale as it takes longer time to extract eigenvectors than the 

speed of the incoming burst of tweets as shown in Fig. 10. Moreover, for more than 

40,000 tweets, Ncut causes our system to run out of memory. 
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CHAPTER 5:  LEARNING FROM SEMANTIC DATA 

 

 

Semantics, in its classical sense, refers to meaning in information that can be 

easily interpreted. When data is organized in such a way that it can be interpreted 

meaningfully without human intervention, we call it Semantic data. There are various 

ways to structure data so that machine-to-machine communication is fruitful. Most 

commonly though, semantic data is organized in terms of a Resource Description 

Framework (RDF), where each entry contains a piece of data instance, its property and 

the corresponding value that the data instance has for the given property. RDF data is 

often found in the Linked Data resources online, especially in sites like DBpedia. 

A parallel view of 'semantics' is that one instance of data can never be semantic. 

Ideally, semantics is captured by the relationship between two data instances. Such 

relationship are easily captured in graphs, were nodes represent data resources and edges 

represent the relationship between them with respect to some property. Several 

fundamental problems encountered in automated search, ranking, disambiguation etc. can 

be handled effectively using results from graph theory. Therefore, the first step in using 

semantic data is to create a concept graph. We call this concept graph, semNet.  

 

 

5.1 Building the Concept Graph (semNet) 

A semantic network is a graph that represents semantic relations between 

concepts. WordNet is a popularly used semantic network. When concepts are represented 

by resources in RDF data, we can call the graph a semantic RDF network. Concepts can 
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be obtained from ontologies. For example, DBpedia is an RDF dataset containing 

structured information extracted from Wikipedia [37].  It has been widely used in the 

research community to discover unknown relations in data, develop interoperable Linked 

Data applications and perform exploratory search and recommendation [38]. RDFs can 

be visualized as a semantic network, where each node is a resource from an RDF entry. 

RDFs are the building blocks of the semantic web, and Semantic RDF networks (also 

called ontology graphs in some communities) can be traversed to detect concept relations 

[39, 40]. Further, connecting the social web with the semantic web holds valuable 

promise as it gives rise to collective knowledge systems [41]. 

To incorporate RDF entries into a graph, we use each RDF resource is treated as a 

node, the RDF property as the edge label and RDF value as a node connected to resource 

node. Then using Algorithm 2, we can build a graph G(V,E) representing the semantic 

graph. In Algorithm 2,          refers to the label of the edge e i.e. the edge attribute. 

 

Algorithm 2: Semantic knowledge graph from DBpedia 

 

Input: RDF dataset (R) 

Output: Semantic knowledge graph (G). 

1. Initialize concept graph G(V,E) where |V|=|E|=0. 

2. while more unread RDF entries exist in R do  

3. Pick an unread RDF entry, mark it as read, represent it as: 

<Resource><Property><Value>. 
4.                 . 

5.                

6. if       not in V:  

7.      Add a new node named       to V 

8. if       not in V: 

9.       Add a new node named       to V     

10. Add a new edge e to E s.t.                 , i.e. e connects the resource and 

value nodes. 

11.                           
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To include newer RDF datasets into the semantic graph, we can modify 

Algorithm 2 as: (a) add the previous semantic concept graph       to the input and (b) in 

Step 1, initialize        . This enables us to build a huge concept graph consisting of 

concepts and their relations as obtained from DBpedia RDF datasets, a part of which is 

shown in Fig. 2. Once semNet is constructed, we use some additional subroutines to 

extract required information, e.g.                   retrieves the shortest path 

between nodes       and      . These simple utility-type algorithms (like shortest 

path etc.) are not mentioned in this paper to maintain brevity. 

 

Source RDF Dataset3 Nodes (in millions) Density   

= (2*|E|)/[|V|*(|V|-1)] 

SKOS  0.5 0.0009 

Homepages 0.41 0.0007 

Titles/ Labels 7.44 0.0015 

Short Abstracts 3.31 0.0028 

Images 1.72 0.0023 

Wikilinks 8.68 0.0017 

Table 6: Parts of the Semantic Graph built from DBPedia RDF datasets 

The concept similarity between two nodes in the network is identical to the 

semantic similarity of the concepts represented by these nodes; and can be calculated by 

using either the WordNet (WN) similarity metric [42] or the Normalized Google Distance 

(NGD) [43].  The WN similarity metric is calculated using the distance of the path length 

                                                 
3  For dataset specific information, refer to: http://wiki/dbpedia.org/Downloads37 
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between the two concepts in WN. We use the Resnik measure based for our purposes, i.e. 

a lowest common subsume is to be detected in the WN taxonomy which is shortest 

distance from the two concepts to be compared. The larger is the distance to this lowest 

common subsumer, the smaller the similarity.  

Sometimes, WN fails to retrieve the required similarity measure. In such cases, 

we use the NGD to calculate the similarity. Unlike WN, which is handmade ontology of 

words/concepts, NGD is derived from the number of hits returned by Google search for a 

specific set of keywords. Thus, keywords which are semantically similar tend to have 

small Google distance. NGD can be mathematically defined as:  

 

          
                               

                           
                            (12) 

where T is the total number of web pages retrieved by Google, f(x) and f(y) are the 

number of hits for search items x and y respectively and f(x,y) defines the number of 

pages where x and y co-occur. Note that unlike WN similarity which is node based, NGD 

is a statistical similarity measure. 

Links between semantic nodes is weighted using a dissimilarity measure of 

concepts represented by the nodes containing the link. This dissimilarity measure acts as 

a cost. A common way to measure similarity of two concepts is by using WordNet 

Similarity [10]. Thus, the similarity between two nodes v1 and v2 is given by: 

                                                                       (13) 

where, c1 = concept(v1) and  c2 = concept(v2) as seen on WordNet. 

When similarity is unavailable in WordNet, we can used Normalized Google 

Distance (NGD) as the metric, as described in Eq. 12. Calculating semantic similarities 

for the entire graph generates a matrix Dss = [VxV] of similarity scores. We use 

reciprocals to convert Dss into a dissimilarity matrix Dds. 
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          (14) 

This adds weights to the semantic graph (G), with edge weights representing the 

dissimilarities between two concepts Dds. 

 

 

5.2 Categorical Classification using Concept Graph 

Finding the correct category of a word depends on the context in which the word 

was used. As mentioned earlier, social media trend words have different lifetimes and 

patterns of growth or decay based on their categories. Predicting growth and decay 

patterns is essential to various applications, including targeting ads, popularity and buzz 

estimation or user affinity towards certain brands. Since trends within the same category 

have similar growth-decay patterns, it would be logical to first detect the category of a 

trend before predicting its other attributes, such as persistence or recurrence.  

A fundamental problem with real world data is that the noise associated with its 

generation can cause classification  and categorization challenges. In other words, a 

particular piece of text cannot be easily contextualized in terms of pre-selected 

categories. For example, the Twitter trend - 'Justin Bieber come to Spain', is partly about 

a location but also about music. Categorization is a primary challenge of either topic 

modeling or intelligent content analysis techniques. The basic task is to separate each 

data instances into a pre-selected categories. The task is non-trivial especially if the data 

is generated in real-time and is full of noise.  

The existing methods to categorize Twitter trends are ad hoc at the best. Some, 

like whatthetrend.com is human-curated. However, this severely limits the applicability, 
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since there is lack of enough labeled data. It can also be inconsistent at times, due to 

disagreement among annotators.  

The concept graph can be leveraged cleverly to detect potential categories for data 

instances. It is implemented in 4 simple steps, namely: (1) Detect semantic concepts 

related to trend words from a sample set, (2) Label categories based on semantic concepts 

related to trend words of this sample set, (3) Build training instances where semantic 

concepts have a category as class, (4) use an ensemble tree classifier [44] to find the 

probable category of the trend.  

 

 

Figure 25: Detecting semantic concepts of a trend from concept graph. 

 

Step 1 - Detect semantic concepts: When the concept graph is queried with a trend 

like 'Emma Stone', it returns with a list of semantic concepts which is related to the trend. 

As shown in Fig. 25, the concept graph tells us that Emma Stone was born in the year 

1988, has been an American reality television series and a child actor, voice actor and her 

place of living is Arizona and New York.   
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Step 2 - Label the category of semantic concepts: Our goal is to label semantic 

concepts with a category that is most suited for them. For example, as shown in Fig. 26, 

since Emma Stone is closely related to the category 'Entertainment', words like 'actor', 

'television', 'film' will be labeled with 'Entertainment'. Of course, this part of the process 

needs to be somewhat humanly curated or can be expanded from a seed set of labeled 

semantic concepts.   

 

 

Figure 26: Labeling semantic concepts with true category. 

 

 

Figure 27: Building training instances 
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Step 3 - Building training instances: In Step (3), we extend the previous step to 

take several semantic concepts and label them with categories, as shown in Fig. 27, 

which serves as our ground truth. We have 18 categories and 2000 semantic concepts as 

training instances. These concepts serve as training data for a decision tree, which helps 

in making the decision of which category might be contained within a set of semantic 

concepts.  

Step 4 - Ensemble Tree Classifier: In step (4), we give these semantic concept 

words and associated true labels to a ensemble decision tree. The purpose of the decision 

tree is to learn which words have a high probability of belonging to certain category. This 

ensemble decision tree serves as a classifier where each tree votes on a category and the 

majority voted category is chosen as the classified category of the trend (Fig. 28).  

 

 

Figure 28: Ensemble Decision Tree classification 

 

Now, we discuss three applications that uses the semNet in order to incorporate 

cross-domain semantic data into various learning algorithms applied to different domains. 
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5.3 Applications 

The applications we choose are driven by the following notions (1) A collection 

of words can represent a topic, provided they cluster well in the semNet. (2)  Network 

analysis and time series analysis provide techniques to reveal the evolution of dynamics 

systems, and (3) predictive tasks can be performed by gaining knowledge of topic and 

semantics in advance.  

The reason to use a network is to understand the relationships among cover issue 

titles, between issues and topics and amid topics only. These three aspects reveal 

distinguishing patterns such as what topics are focused on by one of the world's top 

magazines and how publishing distributes the topics evenly over various issue cover 

features. For example, time series analysis of topics from the Time magazine reveals 

increasing, decreasing, seasonal and bursty (sudden rise) topic trends over time. 

 

5.3.1 Evolution of Human Socio-Cultural Signals over time  

There are many anthropological chronologies regarding the history of topics that 

has captured attention of the world population over the last century. However, there is 

limited computational study of relations among these chronological topics that affected 

humanity and the causal chain of how attention to one topic caused another future topic. 

In this paper, we explore relative importance and correlations among topics that captured 

human attention across history using web pages that contain information about the cover 

page of the TIME magazine. TIME is an American magazine that enjoys the world's 

largest circulation for a weekly news magazine. For nearly a century, the cover of TIME 

magazine epitomizes some of the most important topics facing humanity. We use two 

techniques for our study. First, we employ network analysis to estimate the relations 
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among these topics and their evolution over time. Secondly, we utilize time-series 

analysis and illustrate the patterns of persistence, decay and correlations among topics 

that captured world interest over the last hundred years and shaped our current socio-

cultural dynamics of existence. 

Computational anthropology involves studying the dynamics of social, physical 

and cultural adaptations in society through computational methods [32]. Although this 

paper does not purely belong to the genre of anthropological studies, it strives to 

understand how we can extract signals of socio-cultural adaptations in humanity from the 

plethora of digital resources on the Internet [31].  We are swimming in a world of digital 

data. Online archives provide us with new means of investigating patterns governing 

human societies by intelligent data mining. Such patterns hold information regarding 

diffusion of topics through the society. 

One such online archive is the cover pages of the TIME magazine
4
. TIME 

magazine enjoys the world's largest circulation for any weekly news magazine. Although 

the magazine itself largely appeals to the American audience, the cover of the magazine 

usually features topics that affect a significant portion of the world population, either 

directly or indirectly. The cover page of the TIME magazine might feature an individual, 

event or topic (we call these cover features). All of the cover features contain related 

meta-data, i.e. categories to which they belong to. For example, when the cover feature 

includes 'Obama', it  belongs to Politics. Similarly, 'Olympics' belong to Sports.  

The semantic meta-data associated with each cover page is valuable information 

(Fig. 29), as it reveals what topics were interesting to the society in a certain week of a 

certain year. Our methods of analyzing this data are threefold. First, we explore what 

topics have been most featured (popular) in TIME magazine covers over the last century. 

                                                 
4 The archive is available at http://www.time.com/time/coversearch 
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Each topic is associated to a cover feature. Each cover feature contains a cover title in 

words (Fig. 29). Thus, we can build a network of word co-occurrences and perform 

community detection [33] for the entire dataset, revealing the clustering of similar topics 

based on the cover feature. 

Secondly, since the dataset is essentially a time series, we employ dynamic 

network analysis [34] to reveal how the key properties of the network (e.g., clustering 

coefficient, radius etc.) evolve over time.  Our final technique does not use co-

occurrence. Instead, for a given topic, it produces a signal of the topic's popularity with 

time based on the frequency of appearance on the cover. With simple signal processing 

and time series analysis, we can reveal interesting patterns of persistence, decay and 

correlations among topics.  

 

 

 
Figure 29: Example TIME magazine covers and corresponding topic meta-data from 4 

different decades. 
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 Collecting TIME Magazine articles: The archive of all TIME magazine cover 

features since 1923 is available online as archive. We wrote a simple crawler to collect all 

the web pages containing cover page of issues published. With each associated cover, 

there is topic meta-data regarding the main theme of the cover feature. For example, if 

the cover title is 'Global Warming' then the related topic meta-data includes Weather, 

Environment etc.   For each cover page, we store a triple entry. The triple entry describes 

three aspects of the cover, namely, its date of publishing, the cover title and the topics 

meta-data list. Thus, for the issue published on April 9th, 1956 (see Fig. 29), the triple 

stored is: {04/09/1956, American Express President Reed, [Business]}. After the entire 

crawling process, we collected 4,676 such triples, starting from March 23rd, 1923 to May 

14th, 2012. 

Meta-data and pre-processing: As mentioned earlier, with each issue cover 

feature, there is available a list of meta-data topics that signifies related topics with 

respect to the issue title. It is not known to us how TIME exactly performed this 

categorization of cover titles or how they decided on the seed set of categories. However, 

in most cases, we found the topic categories make sense and relate closely to the cover 

title. The pre-processing involves handling the usual problems related to text processing, 

e.g., tokenization of title words, stop word removal etc. In certain cases, we also employ 

stemming for terms such as "America's" i.e. we use Politics instead of 'political'. We do 

not use any significant natural language processing tasks like parts-of-speech tagging 

since the meta-data is not in natural language form. The topic meta-data list for an issue 

is essentially a collection of words that have semantic closeness.  

The Network of Topics-Issues: We build a network where each node is either a 

issue title or a topic. For a given issue title node, all the topics in its meta-data are set as 
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its neighbors in the network. For two issue titles, if they have common words (co-

occurrence), then there exists an edge between them in the network. The edge weight 

between issue title and topic in its meta-data is always set to 1. The edge weight between 

two issue titles with co-occurring words is the number of common words with some 

normalization, i.e. if titles A and B have      and      words respectively and the 

number of words in common between A and B is represented as       , then the edge 

weight between these two issue titles A and B can be written as: 

 

                                                                                           (15) 

 

 Although our network is built using co-occurrence of words in different 

issue titles, it is fundamentally different from the usual 'co-occurrence network' (Ozgur 

2008) where two words found in the same title would have an edge between them in the 

network. Instead, in our case, if two titles have at least one common word, then they are 

sure to have an edge connecting them in the network. As mentioned earlier, we pre-

process the data to remove stop-words so that an edge reflects reasonable similarities 

between the two titles. Nevertheless, the same word can reappear in many titles (e.g., the 

word 'World', 'America' etc.), which would give rise to too many cliques in the network. 

Therefore, when the same word connects more than 10 titles, we create a super-node (of 

that common word) and connect all the title nodes to that super-node instead of having 

edges between each pair of title nodes. A clique of n nodes has n*(n-1)/2 edges. The 

super-node hierarchy reduces this to n edges with (n+1) nodes. There are 350 such super-

nodes in the network.  

Properties of Topic-Issues Network: are 4475 nodes in the network and 22,768 

edges. The average degree is 10.176 with a density of 0.002, signifying that the graph is 
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pretty sparse. The average path length is 3.61, which is remarkably short. It is a desirable 

characteristic since shorter average path length indicates better chances of information 

diffusion and small-world nature [109]. The diameter of the network, defined as the 

greatest distance between any pairs of vertices, is 7.  On the other hand, the radius of the 

network is 4, which can be thought of as how far a node (title/ topic) is from another node 

most distant from it in the graph. The degree distribution of the entire network is shown 

in Fig. 30, which closely resembles a scale-free degree distribution, implying few topics 

are most often discussed.  

 The main purpose of building the network is to explore two aspects of the 

topics, (1) which topics have been most discussed over time, and (2) how have topics and 

cover features evolved in relation to one another. The first task is handled by centrality 

measures and community detection in the network. For the second task, we will use 

longitudinal network analysis. 

 

 

 
Figure 30: Node sizes represent the magnitude of Eigen Vector centrality of the node in the 

network. Only 4.14% of the nodes are shown in this figure to effectively illustrate the important topics. 
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Most popular topics: The centrality of a vertex within the network represents the 

relative importance of the topic node in the network. We used Eigen vector centrality for 

our analysis [33]. It measures the influence of a node in a network by assigning relative 

scores to all nodes based on the concept that connections to high scoring nodes contribute 

more to the score of the node in question than equal connections to low scoring nodes. By 

this definition, we expected topic nodes have higher centrality than issue title nodes. The 

observations (Fig. 30) justify our expectations, as the top 15 nodes with highest centrality 

were: {Politics, Health, Medicine, War, Military, Business, U.S., Presidents, World, 

Elections, Society, Science, Technology, Economy and Religion}. The higher the 

centrality, the more important the node in the network. By the same analogy, the higher 

the centrality, the more number of times the topic appeared in the issue cover. In other 

words, issue covers in TIME strongly relate to the topics : Politics, Health, Medicine, 

War, Military and  Business etc.  

 

 

Figure 31: Degree distribution of the entire network 
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Community formation among topics: In order to understand the relationship 

among issue title and between issue titles and topics, we need to further detect 

community structure in the network. A community structure implies the network divides 

into natural groups of nodes that are densely connected with others in the 

group/community and rarely with nodes outside the community. Sometimes communities 

might overlap. Our results revealed that the network possesses 21 different communities. 

5 of these communities have a significant more number of nodes than others (Fig. 32). 

The 5 communities formed around issue titles belonging to the topics of Politics, War, 

Health, Business and Middle East. The titles which are part of these communities is 

visualized in Fig. 32.  

 

 

Figure 32: The five major communities in the topic-issues network 
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Longitudinal Network Analysis: Longitudinal network analysis involves study of 

changes in the network topology with time. Analyzing networks over time is important to 

comprehend the decision cycle and causal chain of major events and topics [35]. For 

example, terrorism as a topic was not discussed before 1970s, and as such that node 

would not be present in the initial network. However, network structure and flow 

dynamics would be strongly affected when a topic which gains future prominence enters 

the network. The temporal variation in the network topology is visualized in appendix xx 

along with the numerical values of changes in network size (Fig. 34) and rate of change 

in number of nodes and edges for each passing decade (Fig. 33).  

 

 

Figure 33: Variation in the number of nodes and edges in the network with each passing 

decade. 

There are two main observations to be made from Fig. 33, 34. (1) The rate of 

increase in both the number of edges and nodes in the network follows an exponential 

decay. The decay rate for the first 20 years is approximately           whereas after 1953, 

the decay rate stabilizes at around          . This shows the saturating effect on the 
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network growth, i.e. a substantial number of recent issue titles belong to topics that were 

important even before 1953. (2) Secondly, for one particular decade, 1973-1983, the rate 

of increase of nodes is more than that of edges. This means during that decade, a number 

of new issues nodes were introduced in the network that had fewer relations to past 

topics. In other words, some important topics were first addressed in that decade. Going 

back to the data, we find that four topics that gained significant future prominence but 

had almost no discussions before 1970s were introduced in this decade. They were: 

Terrorism, Brain, Environment and Fraud. 

 

 
Figure 34: Variation in the rate of increase in the number of nodes and edges in the network 

with each decade. 

 

We record the variation of the average degree, average path length, average 

clustering coefficient and number of detected communities over time [35]. In this case, 

we plot the quantities against the network size for better understanding  of the underlying 

phenomenon. Fig. 35 shows that the average degree of the network remains almost 

constant (low variance) with increase in network size, implying there is lack of 

preferential attachment. This also establishes that the topics covered by TIME issues over 
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a decade does not bear a normal distribution. Instead, cover features are quite evenly 

distributed over topics.  
 

 

 
Figure 35: Variation of the Average degree and the no. of communities detected with 

increase in network size. 

 

 

Figure 36: Variation of the average path length with network size. 
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Figure 37: Variation of average clustering co-efficient with network size 

 

Although, the average path length remains around 3.5 for the entire 100 years of 

network evolution (Fig. 36), it drops after 1993, indicating current issues have strong 

connection to past topics and not too many new topics have been discovered. The average 

clustering coefficient is quite low, signifying the network is more random than small 

world. This is potentially due to the even distribution of topics covered in TIME issues 

over a year. 

Topic-Issues Network Evolution: The evolution of the network is a synergy of the 

evolution of the various topics represented by nodes in the network. In this section, we 

track the evolution of the topic signals over time and estimate which signals have strong 

temporal correlation. For each topic word, we measure how many times it appeared in 

issues over one year as an estimate of the importance of that topic in that specific year. 

Thus, the frequency of a topic word in the year's published issues represents its relative 

importance in that year. Since, there are 48 issues per year, the maximum possible value 
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of this frequency can be 48. Empirical results however showed that the maximum 

frequency achieved was 26, by the topic 'war'.  

 In Appendix A2, we show 54 most-occurring topic signals over time. The 

y-axis represents the frequency of the topic in a year whereas the x-axis represents the 

years from 1923 to 2004 (values not shown for brevity). There are certain notable 

observations that can be made from Appendix xx. There are 5 types of topic signals that 

we observed. There are topic signals that approximately (a) increase gradually, (b) 

decrease gradually, (c) tend to be seasonal and (d) increase suddenly over time and (e) 

stay evergreen. Topic signals that seem to have a gradual positive trend over time (getting 

popular) are Health, Disease, Research, Middle East, Terrorism, Technology, Computers  

etc. Certain other topics have a negative trend over time, (i.e. their popularity is 

decreasing as we get closer to present day) are France, Congress, Britain, Military, 

Transportation, Books, Theatre etc. Some topics maintain a more or less constant trend 

over time (evergreen topics), such as Employment, Industry, Television, Education, 

Singers, Baseball and Politics. There are also topic signals that display a seasonal pattern 

in rise in importance. Some topics that display strong seasonal behavior are Religion, 

Republicans, Elections, Broadcasting etc. Finally, there is also a type of topic signal that 

did not show a gradual rise in importance, but a very sudden rise. These topic signals 

include Iraq, Computers, Vietnam, Environment, Scandals and Terrorism. We believe 

this last type are motivated by major unforeseen global events. 

Correlation among topics: The correlation among topics is demonstrated using a 

corrgram [36] in Fig. 38. The topics signals used for this analysis are (shown in Fig. 38) - 

from top to bottom, Vietnam, Russia, Latin, Diplomacy, Journalism, Military, Labor, 

Germany, Singers, Industry, Congress, Cars, Britain, France, Transportation, Theater, 

Baseball, Aviation, Sports, Movies, Books, Business, Finance, Education, Broadcasting, 
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Research, Technology, Scandals, Medicine, Computers, Science, Women, Health, 

Children, Iraq, Employment, Social, Society, Crime, Middle East, Africa, Israel, 

Environment, America, Presidents, Television, Elections, Economy, Weapons, Space, 

NASA, Republicans, China, and Energy. In the corrgram, the larger bubble in a cell 

indicates higher absolute magnitude of correlation. Blue indicates positive correlation 

whereas red indicates negative.  

 

 

Figure 38: Corrgram of selected topics 

 

There are some interesting insights revealed from the corrgram. Certain strong 

positive topic signal correlations are obvious, for example, between Labor and 

Employment, between Germany, France and Britain (world war) or between Cars and 
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Industry. Other positive but intuitive correlations are between television and 

broadcasting, books and theatre, health and medicine, science and technology, 

republicans and elections, iraq and middle east, NASA and space etc. However, we 

noticed other correlations that we less expect. For example, congress and business, france 

and books, women and medicine, children and scandals, employment and latin, crime and 

society, africa and scandal, israel and social, and weapons and china. Analyzing the 

cultural basis of these unintuitive correlations are part of our future work, as is detecting 

if they were essentially spurious caused by latent agents. Negative correlations were 

found between congress and medicine, society and books etc.  

 

5.3.2 Predicting spatio-temporal evolution of social media trends 

Trends, observed in social network sites like Twitter or Facebook, are the 

aggregate effects of posts by many users who are spread geographically. These posts 

arrive in a sequences or batches, giving rise to a unique spatio-temporal trend signal 

pattern generated by user activity. A trend is a word,  a phrase or multi-word posted by a 

substantial number of users over a small period of time. The top trends make it to the 

Trending Topic List (TTL) shown in Fig. 72. Chapter 7 describes Twitter trends in more 

detail. Twitter collects trends based on users from various locations, thus we can say each 

trend is a 3-tuple (time, location, is it in TTL). 

Since trends represent the most popular topics at a given time, it is highly 

attractive to advertisers, marketers and even to network traffic and scalability researchers 

to know how the grow and decay. This makes predicting spatio-temporal trends an 

increasing lucrative field of research. A primary observation I made during my research 

is that different categories of trends behave differently in space and time. In other words, 

trends belonging to gaming behave significantly different to trends belonging to music or 
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sports. For example, a meme might hold a very high trending score for a small amount of 

time. On the other hand a trend concerning holiday will probably slowly increase in 

trending score over a long period of time. The growth and decay of different categories of 

trends are quite different, as shown in the following Fig. 39. 

 

  

  

 
Figure 39:        The growth-decay patterns of categorical trends and (below) examples of some 

trends in different categories. 

 

Not only do trends have different growth patterns in time, they also extend to 

different ranges of space geographically. This means some trends will extend to a few 

cities, while others will engulf the entire globe. One of the main questions in connection 

is being able to predict if a trend will persists for x number of hours, or a trend, that has 

fallen off the TTL will re-appear in the TTL after y hours. These two characteristics are 



 102 

called persistence and recurrence respectively. Both these properties are in turn affect not 

only by the category of the trend but also the time and location.  

Since this is a panel data where the random variables geo span, persistence and 

recurrence are affected by multiple dependent factors, like category, location and time of 

the trend in addition to each, we have to be careful in designing a model that will not over 

fit or bases on abrupt assumptions. Therefore, we must analyze the each variable 

separately to begin with.  

 

 

Figure 40:        The high volatile geographical locations 

 

Figure 41:        The geo-span of the various trend categories 
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Persistence: The persistence of a trend is the duration of continuous time units during 

which a particular trend resides in the TTL. Shown below in Fig. 42. is the trending topic 

'Didier Drogba' belonging to category sports illustrated as a dispersion chart. A 

continuous blue line shows the persistence of a trend at some location. A break in the line 

represents the trend dropping out of the TTL. 

 
Figure 42:        The dispersion chart showing persistence of a trend in 'sports' category 

 

Recurrence: The recurrence of a trend is the number of times it reappears in the TTL 

after initially dropping out the TTL. 

Path Analysis. The dependency among the set of variables (persistence, recurrence, 

geospan and volatility) is explored through a statistical technique called Path Analysis 

[96]. Fig. 45 explains the basic idea, where the variables are modeled to be correlated 

using edges. Edge weights represent the correlation coefficient between the two variables 

(nodes), also called path coefficients. The expected correlation between two variables 

that do not share an edge is the product of the path coefficients in the chain connecting 
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them. Equations 16, 17 and 18 represents the standardized regression equations that 

embodies the path analysis process. 

 

 

Figure 43:        The dispersion chart showing recurrence of a trend in the 'sports' category 

 

 

Figure 44:        The variation of persistence and recurrence for some categories. 

 

                                                                                               



 105 

                                                                           

                                                                                                

 

 

Figure 45:        The path analysis model for predicting trend attributes. 

 

 

Figure 46:        The persistence prediction error (in hours) for trends in certain categories 

Fig. 46 illustrates the results of using path analysis for persistence prediction of trends 

with varying periods of training data. We can observe that for some trend categories (e.g., 

lifestyle, memes), more training data (looking further into past) reduces the prediction 
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error, whereas for other trends (e.g., sports, politics) looking too far into past data reduces 

performance. The error here is calculated as (1-accuracy) as explained in Pg. 69. The 

experiment shows that a path analysis model can predict trend persistence to significant 

accuracy.  

 

5.3.3 Forecasting movie profitability by using the fine-grained semantic data 

The movie genome concept is similar to the Music Genome concept [3], aiming to 

capture the fine-grained features of multimedia, beyond genre, title etc. A taxonomy 

created by film professionals including attributes such as mood, tone, story, plot 

development etc. is being used as movie genome by Jinni [5]. Movie genome has several 

multimedia applications ranging from movie discovery and semantic search to powering 

movie recommendation engines [4, 16]. 

A variety of factors determine whether a movie will grow into a timeless classic 

or bomb at the box office. Some factors are extrinsic to the real content of the movie, 

such as the studio creating it or the budget considerations in production. Other factors are 

intrinsic to the movie content, including the story, plot development, genre, cast etc. 

Every movie is composed of a set of intrinsic elements that contain semantic 

meta-data about the movie. Examples of such elements could range from fine-grained 

semantics such as mood, plot, audience type, praise, style and whether it is based on a 

book or not to more traditional classes such as, genre, musical score, flags of violent 

content, Oscar-winners etc. These set of semantic features for a movie is called its 

genome [5]. Alternately, each semantic feature (e.g., mood) represents a gene.  

There are three interesting questions to be explored from movie genome data - (1) 

which set of genomes constitute good movies, (2) which set of genomes constitute 

unpopular movies and (3) is there a way to predict the best set of genomes that will give 
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rise to a successful movie. The questions are of vast importance in the media and 

entertainment industry, due to the inherent risk involved in selecting scripts and pre-

production efforts that is involved prior to a movie begins shooting [11].   

Previous attempts at predicting movie success has preferably used traditional box 

office data such as gross revenue of the movie, advertising budget, number of opening 

theatres etc. [12]. Other researchers have attempted to tackle the problem using social 

media signals as indicators of popularity [13]. However, results indicate that prediction is 

often inconsistent [14]. This paper attempts to answer the above mentioned questions 

using network science [10] and genetic algorithms [7]. We take a different approach, in 

the sense, we use a genetic algorithm based on fine-grained semantic meta-data 

surrounding the movie, represented by its genomes.  

Firstly, we attempt to understand which genomes produce positive impact in 

audiences and which do not. Our approach to studying this problem is by constructing a 

network, where each node represents a specific value for a gene and edges represents 

genes elements that have been found in the same movie. This is analogous to word co-

occurrence networks used in text mining [15]. Consequently, we try to detect 

communities of nodes in such networks, which represents the group of genes that had 

positive impact, given the network was formed out of successful movies. To answer the 

third question, we use genetic algorithms to find the strongest group of genes that 

identifies with most success. Our fitness function is comprised of variables chosen from 

the network topology metrics of the gene co-occurrence network. Thus, the structural 

properties of the network is embedded in the genetic heuristic, allowing for better 

convergence due to the natural dependence on network motifs.  

We use Internet Movie Database (IMDB) Top 250 movies 

(http://www.imdb.com/chart/top) as a dataset of 250 most successful movies. This list 
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contain a good mixture of box office hits and Oscar winners. We also use IMDB lowest 

100 ranked movies as a set of unsuccessful movies, which received very poor ratings 

from critics and users. For purposes of evaluating the utility of our genetic algorithm, we 

exploit an additional test dataset of 675 movies ranging from 2007 to 2011, released by 

the Motion Picture Association of America (MPAA).  

Genetic algorithms is a class of evolutionary algorithms that depend on a search 

heuristic and mimics biological evolution. The four major steps in any genetic algorithm 

include inheritance, mutation, selection and crossover [7]. Starting from a random 

population of candidate solutions, an optimization problem is evolved towards better 

solutions. The optimization is necessarily a fitness function, which needs to be scaled 

linearly or exponentially [1]. Every candidate solution is fundamentally a genome, 

consisting of several genes that can be crossed over, dropped or mutated. Genetic 

algorithms find wide application in bioinformatics, search, economics and phylogenetics 

[7]. 

Our results indicate that there are four key communities of genes that have 

positive impact and five communities of genes that could have negative impact on 

audience acceptance of a movie. Moreover, the genetic algorithm we develop improves 

the accuracy rate of predicting successful movies by 26% over baselines and 31% over 

traditional classifiers, including a 71% chance of accurately predicting high profitability 

movies.  

Data: We utilize three datasets in this research. Two datasets are crawled from 

IMDB for building the Movie Gene Co-occurrence network  (MGC). One other dataset is 

obtained from MPAA and contains success ratings of 675 movies released between 2007 

-2011. The latter is used to test the performance of our proposed genetic algorithm. The 

first two datasets are augmented by us, by attaching genomes to each movie. The third 
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dataset of movie success ratings contains profitability, box-office revenue and gross-

overall revenue for movies. 

Movie Genome: Each movie is represented by its genome as shown
5
 in Fig 47. To 

get the genome of a movie given its title, we use Jinni and Wikipedia. Meta-data from 

Jinni are structured. When we need to use Wikipedia, words from the plot and other 

sections of the related wiki page that are essentially web links is extracted as gene 

elements. We also utilize DBpedia RDF data for the corresponding movie, using similar 

techniques as mentioned in [16]. 

 

 

Figure 47:        Genome for the movie - 'A Beautiful Mind' (2001). 

A movie genome is composed of several genes, each gene indicating a certain 

feature of the movie. A gene is further composed of several gene elements that describe 

the movie gene using fine-grained semantic information.  There are 667 unique gene 

                                                 
5 Higher resolution images are available at: http://bit.ly/18yZht0 
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elements in our dataset. At this point, it is important to understand the difference between 

genome, gene and gene element in our model. As shown in Fig. 47, various combinations 

of gene elements can give rise to a gene. The set of genes for a movie is called its 

genome.  

Given the movie genome, our goal is to understand whether some genes are 

stronger than others, in sense the appear more often in successful movies. An elegant way 

to represent this data is by means of a network of gene elements, as described below and 

shown in Fig. 48. 

 

 

Figure 48:        The MGC network of IMDB Top 250 Movies. 
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MCG Network: Given the genomes for a set of movies, a simple algorithm is 

implemented to create a MGC network. The elements of a gene is represented by a node 

in the network. For example, in Fig. 47, 'gloomy', 'sincere', 'drama' etc. are elements of 

the gene, and thus appear as nodes in the network. The corresponding gene name, i.e. 

'mood' or 'plot' is not a node in the network. 

Edges indicate two elements that co-occur in the genome. Thus, 'gloomy' and 

'serious' will have an edge in the network since they both occur in the movie genome 

(Fig. 47). Every time the algorithm sees 'gloomy' and 'serious' in the same movie genome, 

it increases their edge weight in the network by 1. If one gene element in the pair is 

missing from the network, a node for that gene element is created an a corresponding 

edge added. 

Thus, in MGC network each node represents an element of some movie gene. 

Edges between two nodes indicate that the two corresponding gene elements co-occurred 

in some movie genome. Edge weights represent the number of times such a co-

occurrence was seen over the entire dataset of movies. This is a standard way of building 

co-occurrence networks [15]. 

Genome Communities: For the purpose of detecting communities in the MGC 

network, we use the adjacency matrix (A) representation of MGC network, where 

      represents an edge exists between nodes (elements) i and j. The modularity Q of 

MGC of n nodes can then be calculated as described in [2]: 

 

                                         
   

  
  

     

        
        

  

                                

 

where    is the degree of node i,   
 

 
      and    represents the community of 

node i. One way to detect the community is to use edge-between-ness repeatedly, as is 
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described in the Girvan-Newman algorithm [6]. The method systematically removes 

edges of highest betweenness and then recalculates the between-ness of the surviving 

edges. At some point the network breaks into two or more isolated sub-networks, 

representing the partitions (or communities). 

Two MGC networks are built from the IMDB-top-250 movies and the IMDB 

lowest 100 movies respectively. Separate community detection is employed on each 

network. For the top-250 movies, four distinct communities were detected. On the other 

hand, five communities were detected for the lowest 100 ranked movies. The most 

influential elements in each community is identified by the node (gene element's) Eigen 

Vector centrality, which is expressed as:  

 

                                         
 

 
          

     

                                            

 

where      represents the Eigen Vector centrality of vertex i,   is a constant and 

       if vertex v is linked to vertex t in MGC (0 otherwise). In Fig. 48 and 49, 

node/label size indicates the magnitude of Eigen Vector centrality of the gene element 

within the MGC network. 

We take note of gene elements with highest Eigen Vector centralities in each 

community for the IMDB top-250 and the lowest-100 movies. Our results hints at four 

sets of combined features that captivates audiences. One type is violent, rough, stylized 

movies similar to the cult favorite Pulp Fiction. Another type is movies that are 

blockbusters. Inception and Iron Man fall into this category. Community 3 contains 

movie gene elements that relate to 'Drama' or 'realistic' movies, like The Prestige. Finally, 

community 4 contains movie gene elements for critically acclaimed movies, like The 

Dark Knight or We need to talk about Kevin. 
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It is interesting to note that the same element may occur in two communities of 

good and bad movies, but it is the co-occurring elements in that community which 

provide semantic sense to any element. Thus, 'blockbuster' and 'adventure' may go very 

well together, but 'horror' and 'family' potentially do not. Note how communities in the 

low-100 dataset have high influence nodes which fail to make semantic sense together, 

e.g., 'action' and 'family'. 

 

 
Figure 49:        A Venn diagram showing gene elements unique to top-250 movies and lowest-100 

movies of the IMDB dataset. 

As a statistic, there are 667 unique gene elements present in the IMDB movies. 

Among these, 333 gene elements are observed in the lowest-100-movies while 418 are 

present in the top-250 movies. Some gene elements are found in both the top and lowest 

ranked movies. Fig. 49 shows some gene elements present in each group using a Venn 

diagram representation.   

The reasons for detecting communities will now be made more clear. A 

community, in sense, is a semantic cluster of gene elements that together contribute to 

forging good or bad movies. Thus, the influence of a node within the network and its 

community become key measures in the study of ideal ingredients (genes) for making a 

movie successful. 
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There are two key measures that we can calculate from the network in order to 

use as part of the fitness function of the proposed genetic algorithm: (1) The influence of 

the gene element within the MGC network, and (2) the tendency of the gene element to 

cluster with other gene elements in the MGC network. The first characteristic is exhibited 

by the Eigen vector centrality of the gene element within the network. The second 

property can be measured using a local clustering co-efficient of the node within its 

network community. Note that the first measure is with respect to the global network, 

while the second property is confined to the community in which the gene element finds 

itself. This balance is important, since a group of medium influential nodes might possess 

strong local clustering.  

Evolution of Movie Genomes: The problem we are trying to solve is searching for 

strongest cluster of genes that will produce a successful movie. The solution to the 

problem lies in the evolution of movie genomes using a genetic algorithm (GA). The 

main idea is to select an initial population of genes, develop a fitness function and then 

continuously update the gene combinations until the fitness function no longer improves 

or the population remains constant. Due to lack of space, we avoid discussing the entire 

detail of how GA's work in general; please take a look at [1]. The GA for movies that we 

developed is described in Algorithm 3. 

As shown in Fig. 50, each gene can be pictured as the strip of blue (indicating 

element present) and red (element missing). A crossover occurs when two sections of two 

genes are interchanged. A mutation refers to flipping one gene element (turns red to blue 

and vice versa). New genes are produced as a result of crossover and mutation. The next 

task then, is to measure which of these genes to select for the future population. This 

depends on the quality of the gene. 
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Figure 50:        Genetic Evolution of movie genes. 

The quality of a gene (x) is represented by its fitness. The fitness function depends 

on the location of each gene element in the MGC network of IMDB-top-250 movies 

(         and the MGC network for lowest-100 movies (        , as well as the 

communities within which they exist in the networks and their clustering coefficients. 

The clustering co-efficient for a graph s, is a measure of the tendency of the vertices of s 

to cluster together. As described in [2], it can be defined as: 

 

                     
                        

                              
                                   

 

where, a triangle refers to a sub graph of s with 3 vertices and 3 edges, whereas 

triples refer to a sub graph of s with 2 edges and 3 vertices. Thus, a triangle is a closed 

triple. The clustering co-efficient is the ratio of the number of closed triples (i.e. 

3*triangles) over the total number of triples (both open and closed).  

The fitness function we use for our evaluation is: 
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where       are gene elements of gene  ,    is the eigen vector centrality of the 

node element i (Eq. 20), k represents the number of different         communities in 

which the elements of x lie,      ,    is the subset of x that lies in community k of 

        and    is the clustering co-efficient of nodes in set s. 

The right hand side of Eq. (22) is not difficult to interpret. The stronger the 

influence of the node (element) in        , the greater is its chances of being chosen for 

evolution. The stronger the influence of the node (element) in        , the lesser is its 

chances of being chosen for evolution. Thus, the first term represents the number of hits 

(influence) by good nodes from top-250 gene elements, the second term represents the 

chances of deaths (influence of the element in the low-100 network). Finally, the last 

term represents the average clustering co-efficient of the elements within their 

communities in         network indicating their survival rate (strong clustering means 

higher chance of survival). The stronger the clustering, the more difficult is to find the 

gene element isolated, without its triangle-d elements.  

 

Algorithm 3: Genetic Algorithm for Movie Genomes 

 

1. Produce an initial population of genes X randomly selected from the movie gene 

database. Set     . 

2. Evaluate the fitness of each gene                 using Eq. 22. 

3. While    : 

4.           Filter/ select genes with a probability   . 

5.           Cross-over genes with cross-over probability   . 

6.           Mutate genes with mutation probability   . 

7.           Re-evaluate fitness and generate new population. 

8.        If new population is same as old population: 

9.          
 



 117 

 

 

 , the cycles of evolution, is initially set to 10. It is decreased every time the 

population becomes stable until it reaches 0, which serves as the termination condition 

for Algorithm 3. 

Three key parameters that need to be set are selection probability   , the 

crossover probability    and the mutation probability   . They are defined as follows. 

The selection probability is decided using the popular roulette wheel method of 

proportionate selection:  

 

                        
        

            
                                                             

 

We set         and        . The choice for these values for the parameters 

will be made evident from results obtained(shown later). Of course, these parameters can 

be made dynamic as well, depending on the topology of gene elements in MGC network. 

However, the dynamic setting of genetic parameters is left for future work. 

Evaluation: For testing, we use the third dataset containing movie profitability 

scores released by MPAA after the 2011 Academy Awards. Since this was released by 

MPAA, we consider it to be authentic. It has a total of 675 movies from year 2007 to 

2011 and serves as our ground truth. The attributes in this MPAA dataset include success 

measure for a movie, in terms of its average revenue earned on the opening weekend, 

total domestic gross earned by the movie, total foreign gross and the overall worldwide 

gross revenue. All these indicate towards the profitability of the movie. We divided the 

movies into 3 major categories based on the Profitability, which ranges from 10% to 
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766%.  Movies were labeled 'Low' category when their profitability lied 65.7- 298.6%, 

Medium for 298.7- 532.4% and High profitability for 532.3- 766%. 

The population size is chosen at 220 genes. The initial set thus consists of 220 

randomly selected genes. After each round of evolution, we select the top selection 

probabilities according to     and retain the population size. The task of GA is to search 

for the best possible set of genes that determine movie success. This set is produced over 

several rounds of evolution (in the order of 1000s). Result is the set 'success genes'. Thus, 

for each test movie, we calculate the fraction of genes of the movie that were 'success 

genes', and define the potential success as:  

 

                        
                             

             
                  

 

Thus, given the 'success gene' sequence generated by the GA and the test movie 

genome, we can calculate the potential success of the movie. After calculating the 

potential success of the movies in the dataset, we classify a top 65% quantile score into 

high class, the 30-65% quantile into medium and the lower 30% quantile is classified as 

low class. Note that Eq. 6 is very similar to the 'precision' statistic of information 

retrieval. In other words, we consider the successful movie prediction problem as a high-

precision search scenario. 

As a benchmark to the proposed approach of network communities-based genetic 

algorithm (NCGA), we employ a naive genetic algorithm (NGA) and a decision tree (DT) 

classifier on the test dataset. NGA does not utilize any properties of the network structure 

in its genetic algorithm, instead its fitness function is defined as:  
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where      represents the frequency of occurrence of element i among movies of 

IMDB-top-250 dataset and       is the frequency of occurrence of element i in IMDB-

low-100 dataset. For example, when i='critically acclaimed' then          whereas 

      . Similarly, when i = 'comedy' then         whereas        .  Eq. (7) serves 

as the fitness function for the Naive GA method (NGA). 

Table 7 shows the F-scores obtained for the MPAA test dataset. The results are 

averaged over 10-fold cross validation. From the results in Table 7, we can observe that 

NCGA outperforms the other benchmarks comprehensively. Note that DT performs well 

for high class, but is outperformed overall by NGA. This is caused due to some skew-

ness in the data, where the number of movies in high classes are lesser than medium or 

low class. The DT can easily determine the features that establish high successful movies 

but not so easily for movies with medium or low success. 

For all the methods, usually the F-score for high > medium > low, except for 

NGA where F-score for medium class takes a dip. This is potentially due to the fact that 

for the fitness function of NGA, the fitness score reflects well the case of very bad genes 

and very good genes, but genes with a mixture of good and bad elements are given a 

balanced score. This adversely affects the evolution, which creates uncertainty  and 

results in lowering the recall for 'medium' classes. 

Different tests were conducted to check how the efficiency of NCGA varied as we 

changed the parameter values in Algorithm 1. These parameters are called genetic 

operators. There are two main criteria to determine the efficiency of a GA. One criteria is 

the reliability, which  is the fraction of correct classifications. The F-score in Table 7 is 

obtained using the number of correct classifications. The second criteria is the number of 
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fitness evaluations (or populations) required to evolve - until a stable population is 

reached. According to [8], a simple equation can be used to judge efficiency of a GA: 

 

                          
                     

 
  

We use w = 3 and N=100,000 for our tests.  Let us now discuss parameter setting 

for each of the following genetic operators. 

Mutation: The mutation probability    measures the likeness that random 

elements in the gene are flipped/changed in order to introduce some diversity into the 

next generation. The flip occurs when a gene element was present in the original 

population (indicated by 1), but the mutation causes the child to not possess that 

particular gene element (set to 0). A    of .05 means 5 out of a 1000 gene elements 

picked at random will be flipped. Empirical results shown in Fig. 51 indicate that 

        produces best efficiency. 

 

Figure 51:        Variation of efficiency with mutation. 

CrossOver: Crossover probability refers to interchanging two sections of the 

gene. Again, empirical results illustrate that the efficiency is maximized when    nears 

0.72.  
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Figure 52:        Variation of efficiency with crossover probability. 

Population Size: Another parameter that requires setting in a GA scenario is the 

choice of how many genes to use in a population. Shown in Fig. 53 is the variation of 

efficiency with the population size. As the results indicate, the efficiency begins to drop 

beyond a population size of 220 genes. Thus, we choose 220 genes as our population size 

in Algorithm 3. 

Selection Criteria: The previously mentioned Eq. 22 follows the famous Roulette 

wheel fitness proportionate selection routine, where fitter genes are less likely to be 

eliminated. An alternative option is to not use fitness in the selection process at all. 

Instead, a selection scheme called tournament selection involves holding several 

'tournaments' among a random selection of genes from the population. The winner of 

each tournament is chosen for the next evolution. Thus, whereas, roulette wheel selection 

depends on an individual’s relative fitness, tournament selection depends on an 

individual’s rank and is not affected by the fitness distribution [9]. 
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Figure 53:        Variation of efficiency with population size. 

 

 

Figure 54:        Variation of efficiency with mutation probability. 

In Fig. 54, the efficiency is plotted against the mutation probability for both the 

tournament selection and the roulette-wheel (RW) selection scheme. It seems that 

initially, the efficiency increases for both the tournament scheme and RW. However, 

around         , RW starts performing better. This test was run with a tournament 
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size of 10. The bigger the size of the tournament, the more it will behave like RW in 

selection. 

 
Method Low Medium High Overall 

DT 0.381 0.404 0.536 0.44 

NGA 0.496 0.44 0.503 0.481 

NCGA 0.575 0.642 0.71 0.642 

Table 7:  Experimental F-Score results. Movie classes are low, medium, high.  

 

5.4 Semantic Coherence in Topics 

For the purposes of this section, we will use topics extracted from social media. 

Social topic modeling aims to extract topics from a stream of social data. In our 

experiments, we use 10.2 million Twitter tweets as the social data. The model represents 

words in tweets as a mixture of   topics which are multinomials over a vocabulary of size 

V. The probability that word w belongs to a topic     is represented as        and the 

probability of a tweet     originating from a topic z is       , where D is the chunk 

set of tweets. Both the multinomial parameters for topics-given-tweet and words-given-

topic are drawn from Dirichlet priors with parameters   and   respectively.  

The task of topic modeling is to use the training data in order to populate two 

matrices; a     topic-word matrix and a     tweets-topic matrix. The matrices are 

learned using collapsed Gibbs sampling (alternatively Variational Bayes’ can be used) 

[1], which iteratively samples the topic assignment z to every word in every tweet, using 

the update: 

                          
         

            
  

         

            
               (26) 
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where,       assigns the i-th word in tweet d to the topic t,        represents 

the current observed word i.e. w, and     represents the integer count arrays and   and   

are Dirchilet priors. Then the maximum a posterior (MAP) estimate of the topics 

           is given by: 

                                                           
     

        
                                        (27) 

Similar to previous work [6], we use the top-n topical words to represent the topic 

(we choose n=20 in our experiments).  

 

 

Figure 55:        A visual depiction of topic modeling. 

Fig. 55 shows an example of topic space extracted from Twitter data by applying 

Online LDA [103] for 50 topics and 100 rounds of iteration with Dirchilet priors set to 

0.5. Social topics (on the left in Fig. 55) are basically clusters of words, where each word 

has some membership score towards the cluster, defined in the     topic-word matrix. 

Each tweet also has some membership score towards a topic (see position in triangle on 

the right in Fig. 55) defined in the     tweets-topic matrix. In Fig. 55, we show only 3 
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topics and 3 tweets. Thus, ‘topic’ is an abstract name given to these cluster of topical 

words. 

To calculate the semantic quality of a social topic, we first need to project all the 

topical words onto semNet. The idea is shown in Fig. 56 and 57 using a small example 

graph and topic. Projecting topical words on semNet requires locating the topical words 

as concept nodes within the semantic network, which can be done in O(1) time for each 

projection due to dictionary data structure storage. Projection is requisite before we can 

calculate the centrality of the topical words comprising the social topic based on their 

structural occurrence (or motif) in the semNet. The notion of projecting topical words 

onto semNet is also illustrated in Fig. 56, which shows projection results from a real life 

dataset of three topical words on a section of semNet that comprises of ~ 22,100 concept 

nodes and ~ 42, 329 edges. We shall call the nodes in semNet which are obtained from 

topical word projection as projected topical nodes. 

 

 

Figure 56:        Analyzing semantic coherence of topical words (strong coherence). 
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For example in Fig 56. , the topical words of topic T1 are projected on the 

semantic network. Solid edges refer to direct edges (weight=1) between concept nodes, 

while dotted lines refer to multiple/indirect edges (weight>1) between concept nodes. 

Semantic topical centrality (STC) calculation (using Algorithm 2) for each of  the top 3 

words in T1 with respect to the top-5 topical words is shown in this figure. Alpha = 0.5.   

Traditionally, centrality determines the importance of a node   in the network 

G(V, E) based on other nodes of the network. When the centrality for a node v is 

dependent only on the neighbors of the v, it is called degree centrality [8]. Other 

variations, notably the Katz centrality, uses every node that is connected (has a path) to v 

to measure the centrality of v [8]. The purpose of projecting all the topical words onto 

semNet is to enable us to calculate the semantic topical centrality (STC) of a projected 

topical node v using only the linkage of v to other topical words (i.e. other projected 

topical nodes). Thus, STC can be treated as a variant of Katz centrality for topical words 

only.  

The semantic topical centrality (STC) of a topical word represents the importance 

of the word within the topic by endorsement from the semNet. Algorithm 2 shows how to 

calculate STC for topical words within a topic. STC of a topical word depends on the 

nearness of the projected topical word with respect to all other projected topical words for 

the topic. An attenuation factor   is used to discount the nearness between a pair of 

projected topical words (      . The larger the value of shortest path length (l ) 

between the pair of projected topical words  in semNet, the smaller the effect it has on 

semantic centrality. In other words, STC counts the number of walks from one projected 

topical node to another, while penalizing longer walks. For each topic z, we calculate the 

semantic topic centrality dictionary (           
 ). The STC for the i-th topical word in topic z 

can be extracted from the dictionary as            
    . 
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Algorithm 4: Semantic topical centrality of a topical word  

 

Input: Set of topical words in a topic (T), attenuation factor (       

Output: Semantic topic centrality dictionary (           
 ). 

1. for topical word w in T do 

2. Initialize       = 0.001. 

3. for each word n in the set       do 

4.      if a           exists in the semNet: 

5.            l = length of            

6.                           

7.  Add             to            
  as [key: value] pair  

 

 

 

 

Figure 57:        Analyzing semantic coherence of topical words (poor coherence). 

Example of topical words of topic T2 projected on the semantic network. Solid 

edges refer to direct edges (weight=1) between concept nodes, while dotted lines refer to 
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multiple/indirect edges (weight>1) between concept nodes. Semantic topical centrality 

(STC) calculation (using Algorithm 4) for each of  the top 3 words in a T2 with respect to 

the top-5 topical words is shown in this Fig 57. Alpha is set to 0.5. Far occurrence of 

projected topical words produce low STC values. 

We can now construct a preliminary semantic topic centrality measure   
  based 

only on centrality without statistical influence from topic modeling i.e. without word-

topic membership        as: 

 

                                   
               

    

   

                                                    

where i is a topical word of topic z. Finally, given the semantic topic centrality 

dictionary for each topic (           
 ) and the available word-topic distribution        

obtained from topic modeling, the semantic quality (  ) of a social topic z can then be 

calculated as: 

                                        
           

   

                                           

where i is a topical word of topic z. The significance of Eq. 4 is that it provides us 

with a combined measure of both the semantic and the statistical membership of a topical 

word towards a particular topic.            
     indicates the semantic membership of the 

topical word i towards topic z whereas        indicates the statistical membership of the 

topical word i towards topic z.  

A higher value of    implies that statistical results produced by the generative 

topic model (distribution of words over topic) is well-aligned to the inherent semantic 

network structure of the topical words. A low value of    might imply one of the two 

things: (1) the probability distribution of words produced by the generative statistical 

model for the topic does not match the semantic structure of the topical words, or (2) the 

topical words do not possess significant semantic interconnection. In either case, a topic 
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with low    value indicates an inferior quality of topic recovered. Thus, our intuition is 

that close/near and semantically connected occurrence of topical words when projected 

on the semNet is a good indicator of the quality of topic.   

Experimental Setup: For our experiments, we use a tweet collection consisting in 

total of 10.2 million tweets ranging from Jan 26
th

 2011 to Feb 7
th

 2011. Topics for the 

entire period of tweet data (approximately 2 weeks) are obtained by analyzing Twitter 

trends. For each day, we extract a set of 50 social topics. We randomly choose a total of 

30 topics per day for scoring by the annotators. There are 5 annotators that score the 

quality of each of the 30 social topics on a 4-point scale: 3 = “Very good”, 2 = “Good”, 1 

= “Neutral” and 0 = “Bad” based on the semantic coherence among the top-20 topical 

words in a topic.  

 

Tweet 

Stream 

Day 

Social Topics 

Topical Words 
Annotator 

Rating 

1/26/2011 beach, shower, economy, summer, holiday 2 

1/27/2011 null, yahoo, angel, glad, war 0 

1/28/2011 government, jesus, allah, hate, watching  1 

1/29/2011 egypt, tahrir, army, revolution, police  3 

1/30/2011 love, time, heart, promise, moments 3 

Table 8:  Selection of social topics and annotator ratings 

The annotators are given guidelines on how to judge a topic into the four quality 

classes mentioned above. Guidelines include showing illustrative examples of coherent 

topics or searching online. The main factor is deciding whether the topical words are 

interpretable, coherent, intuitive or meaningful; specifically whether the topical words 

would be natural choices for use when writing an article about that topic or if it is easy to 
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find a one word abstract label for the topic by seeing the topical words (e.g., ‘strings’, 

‘music’, ‘spanish’, ‘strum’ might refer to the topic label ‘guitar’). Eventually, it is left to 

the human annotators to make a final decision on topic quality, which is precisely the 

point, since humans use semantics to interpret language – and we use a semantic network 

to measure topic quality. We report the inter-annotator agreement scores in Table 8. On 

average, the annotators agreed on same quality class (based on the 4-point scale) for a 

topic on 83% occasions.  

In Table 8, we show an assortment of the social topics that were scored under 

different ratings by annotators. Note how low scoring topics display limited coherence in 

terms of word semantics. Topics were extracted using Online LDA [103], with parameter 

settings as: 50 topics, 100 round of iterations, batch size (for sampling) of 200 tweets and 

a chunk size of ~25,000 tweets. For STC calculation, we set      . 

Benchmarks: We compare our proposed approach to the Pointwise Mutual 

Information (PMI) technique based on term co-occurrence [95] and the Google Title 

Matches (GTM) [110]. The two benchmarks are described below: 

(1) Pointwise Mutual Information (PMI) scores word pairs using term co-

occurrence, such that for any two words, it represents the statistical independence of 

observing them in close proximity within a given corpus. In [111], Wikipedia is chosen 

as the corpus. Fixing the sliding window size to 10 words in order to identify co-

occurrence, the PMI for two words, x and y are calculated as: 

 

                                             
      

         
                                        

When evaluating topics, the authors in [6] found PMI to produce better results in 

representing word similarity compared to previous semantic relatedness techniques, 
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which are mostly based on Wikipedia page links or WordNet [42]. We consider the mean 

PMI as the representative score for the topic. 

(2) Google Title Matches (GTM): We also compare our proposed technique 

against search-engine-based similarity methods described in [110]. Using an external data 

source like the World Wide Web and Google Advanced Search, we query the top-10 

topical words in a topic and find the number of matches in the top-100 search results. For 

example, using the topical word set   

                                         6, there were 134 matches with the top-10 

words in the top-100 search results, so the           .   

Results. The results of the proposed approach when compared to the benchmarks 

are provided in Table 9 and Table 10. For each of the social topic evaluation methods, we 

use Spearman Rank Correlation and report the   values. The inter-annotator agreement 

(IAA) is also provided in the final column of Table 9 and Table 10 and serves as the gold 

standard for this task. IAA is calculated by using the Spearman Rank Correlation between 

an annotator and the mean of the remaining annotators for the particular topic.  

Results show that the proposed approach performs better than PMI and GTM 

consistently. We believe this improvement can be contributed to the centrality features of 

the semantic network built from the rich RDF data (semNet). Although PMI uses 

Wikipedia, its semantic relatedness is bounded by co-occurrence between topical word 

pairs alone. Thus, PMI cannot capture the pattern or motif in which the topical words 

exist within the semantic network, whereas    characterizes the interconnection in terms 

of centrality importance among the topical words when projected onto the semantic 

network. An alternative perspective is that    characterizes the diffusion behavior of the 

topical words in semNet. Diffusion behavior refers to the spread of information using the 

                                                 
6 The actual query performed on Feb 22nd, 2012: [egypt, +tahrir+army+revolution+police+egyptian+watching+world+support+jail]. 
Use ‘+’ to prevent Google from using synonyms or lexical variants of the topical words. 
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topical words. Considering interpretability as semantic information, it means that the 

higher is the centrality; the better is the diffusion and better is the interpretability. On 

average, our technique improves performance by 10.3% when compared to existing 

benchmarks for human interpretation of social topics.  

 

Tweet Stream Day 
Methods 

PMI GTM   
     IAA 

Jan 26
th
  0.61 0.60 0.67 0.69 0.71 

Jan 27
th
 0.62 0.66 0.72 0.72 0.73 

Jan 28
th
 0.55 0.61 0.66 0.67 0.70 

Jan 29
th
 0.62 0.55 0.76 0.76 0.79 

Jan 30
th
 0.53 0.61 0.67 0.67 0.69 

Jan 31
st
 0.61 0.66 0.71 0.73 0.73 

Table 9: Spearman rank correlation values for proposed approach against benchmark in Jan 2011. 

 

Tweet Stream Day 
Methods 

PMI GTM   
     IAA 

Feb 1
st
   0.65 0.71 0.75 0.76 0.78 

Feb 2
nd

    0.52 0.55 0.66 0.68 0.68 

Feb 3
rd

   0.65 0.66 0.73 0.74 0.75 

Feb 4
th
  0.62 0.68 0.72 0.72 0.76 

Feb 5
th
   0.60 0.65 0.71 0.72 0.73 

Feb 6
th
   0.62 0.66 0.71 0.71 0.75 

Feb 7
th
  0.62 0.63 0.69 0.70 0.70 

 

Table 10: Spearman rank correlation values for proposed approach against benchmark in 

Feb 2011. 

Moreover,   
  and    are surprisingly close in performance, indicating that it is 

the semantic backbone which is responsible for the major improvement over the 

benchmarks. However, a combination of semantic and statistical relatedness performs 
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best, i.e.   
  does not have better performance than   . The combined approach (Eq. 29) 

possibly smoothes over irregularities which can be introduced when very common words 

of the English language are modeled as topical words, causing significant semantic 

connectedness but low statistical word-topic membership scores.       

We also note that GTM usually outperforms PMI, except on certain occasions. 

One such scenario is when the social topics for the day do not account for sufficient 

breaking news stories. Breaking news stories are indexed as articles/documents in search 

engines in much larger proportion compared to some other topics (a music video release), 

which makes GTM perform better for news than music or entertainment related topics. 

The second case where the performance of GTM is degraded compared to PMI is when 

there is lack of sufficiently good topics. For example, on Jan 29
th

, there was a Blackberry 

outage in North America and Twitter had significant downtimes. The inconsistent 

temporal data produces poor topics, which causes GTM to perform considerably worse 

than PMI. It is unclear if this observation is attributed to the search engines ranking 

scheme. 

There are some interesting possibilities that arise from this line of research. The 

semantic centrality proposed in this paper is the first in a plethora of options for using 

complex network feature that are beyond similarity based techniques for judging the role 

of word connectedness in topic modeling (social or otherwise). Three avenues of future 

work can be considered: firstly, the attenuation factor ( ) in measuring STC of a word w 

(Step 6, Algorithm 4) can varied by making it sensitive to the importance of another 

topical word n. Thus,    could have higher values based on the named entity recognition 

for n (is n a person/place?) or the word-topic membership score. Secondly, the centrality 

of topic networks [34] (network of documents based on topic modeling) can be explored 

as an alternative evaluation technique of the topics extracted. One limitation of the 
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current work is that it often fails to link emotion words with concept words in the 

semantic network. Emotions occur very frequently in social data. Thus, future research 

could also combine sentiment analysis (connected emotion words) with the semantic 

network concepts to enrich the understanding of sentiments regarding a concept and 

opinion mining. The performance of all the existing topic models in terms of human and 

semantic interpretability can be verified by our technique.  

We address an important issue in this paper: the problem of automatically 

evaluating the quality of social topics based on semantic interpretability. Fundamentally, 

topic modeling is a generative statistical technique to find latent topics in data. For social 

data however, retrieved topics are often non-interpretable and lack semantic richness. 

This is a non-trivial problem, since social topic mining aims to serve social applications 

used by humans; and humans prefer intuitive information. Thus, automatic detection of 

good quality topics is necessary for most applications based on social information, e.g. 

social recommendations (video, ads etc.).   

This paper attempts to evaluate the quality of social topics using the centrality of 

topical words found in a semantic network. Unlike previous work which uses a corpus for 

evaluation, we utilize a semantic network built from DBpedia RDF data. Network 

analysis on these interconnected topical words reveals rich patterns of diffusion, which 

are used to score the quality of a topic. Our technique proves to be better at reflecting 

human interpretability of social topics compared to existing benchmarks. This work will 

allow researchers and developers to automatically detect quality topics in the topic space 

with greater accuracy, thus eliminating the chance of spurious recommendations by 

rejecting bad quality topics. 
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CHAPTER 6:     LEARNING COGNITIVE MODELS FOR NATURAL 

LANGUAGE SEARCH 

 

 

The future of natural language (NL) search hinges on semantic concept detection 

in queries, which includes detection of keywords in a query, followed by construction of 

some meaningful connected network comprising of such keywords [45]. This connected 

network of keywords is called a semantic subnet [46]. These keywords, represented as 

vertices in the subnet, together comprise what is called a semantic field [47]. The goal of 

this chapter is two-fold: (1) to efficiently recover the semantic sub-network from NL 

queries and (2) to generate robust concept detection techniques that improve semantic 

search We show how information from the semNet can be used to detect concept 

hierarchies, which boosts the concept relevancy detection for natural language search.   

Prior research suggests three main motivations for extracting semantic subnets 

from NL queries. Query subnets can be used to generate a candidate set of concepts 

within a larger ontology (like of DBpedia RDF network/ Google knowledge graph), 

which may align to the words in the query subnet [46]. Said alternately, a pattern 

isomorphic to the query subnet can be detected in the larger ontology, which assists 

domain identification and query expansion [46]. Secondly, a query subnet can act as a NL 

interface to concept graph databases [48], facilitating semantic information retrieval [49] 

and improved query understanding and semantic search [50]. Finally, semantic subnets 

enable identification of event structures within sentences [51] and assist higher-level NLP 

tasks, like Question Answering (QA) [52].  

It is possible to detect semantic keywords in NL queries using methods like 

Named Entity Recognition (NER) or Semantic Role Labelling (SRL) [53]. Both these 
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techniques provide a higher level of abstraction than the basic syntax tree. However, our 

task goes a step further: we aim to find out how these keywords are semantically 

connected in terms of a network. This is very difficult to achieve using NER alone, since 

detecting the named entities provides limited information about their relations. SRL does 

a better job at concept level parsing using predicate logic, but is bound by the strict 

predicate grammar. Therefore, although techniques such as NER and SRL is core to NLP, 

there is an inherent gap between requirements of intelligent tasks (like QA, textual 

entailment) and several state-of-the-art NLP techniques [54].  

As search is becoming more collaborative and social, queries turn noisier [50]. 

Often, the conceptual structure of the NL query is difficult to extract using simple (Parts-

Of-Speech) POS-based dependency parsing. Imprecision of NL usage is a major obstacle 

to computation with NL. Therefore, it is necessary to develop a technique that partially 

relaxes the rigid grammar of the language. While imprecise or varied grammatical 

constructions are difficult to capture using POS or predicate logic, note that the human 

cognition can often eliminate such noise to interpret meaning. At first this sounds like a 

baffling fact; but everyday experiences reveal that human cognition is significantly more 

robust in extracting meaning from poorly constructed sentences compared to state-of-the-

art NLP techniques for NL understanding. If we assume that ‘meaning’ of a NL sentence 

is captured in its semantic subnet, then it would be logical to conclude that human 

cognition possesses a more noise-resistant process of extracting semantic subnets. A 

rational explanation for this cognitive robustness is the presence of an improved model 

for detecting semantics in NL and subsequently constructing semantic information in the 

brain.  

Cognitive psychology has some interesting theories as to how the mind deals with 

imprecision, uncertainty and complexity of language [55]. One such theory, called the 
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structure-of-intellect model, proposes that humans perceive concepts contained within the 

words of a sentence as a semantic form [56]. Guilford referred to forms as ‘products’ - 

entities that describe granularities in any content perceived. His model has been widely 

used to study the cognitive intellect and the kinds of information that humans can extract 

from any observed semantic data (like NL sentences) [57]. In the context of NLP, 

semantic forms reflect the kinds of information that the human cognition can process 

from any semantic field. Five such forms were proposed by Guilford, namely units, 

classes, relations, systems, and transforms. Forms resemble levels of granularity, which 

allows extraction of finer or coarser information depending on the noise level of 

perceived data. The physical interpretation of this cognitive model is that no matter what 

the data is: at different resolutions or granularities, different features and relationships 

emerge. The model argues that human cognition is robust to noise because it dynamically 

changes the resolution at which data is to be semantically interpreted [47].   

Figure 58:        Level of abstraction in different NLP techniques: from lexical to conceptual. 
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Recognizing the potential of cognitive approaches in semantic information 

modelling, we propose to leverage semantic forms in the extraction of semantic sub-

networks from NL queries. These semantic forms, when connected in some networked 

pattern, becomes responsible for understanding the scope and context of a concept, and 

assists functional retrieval of related concepts and question answering/response [57]. 

Thus, our main insight in modelling semantic forms and their interaction patterns in NL is 

grounded on the idea: the subsurface form space demonstrates the query intent (expresses 

semantics) better than superficial (lower) query syntactical features, which might vary 

depending on diverse query construction. In other words, the higher is the level of 

abstraction for labelling, the more robust the extraction should become. This idea of 

cognitive abstraction provided by semantic forms is shown in Fig. 58. 

The main contributions of my work here are: 

 We propose the use of semantic forms, borrowed from cognitive science, as label 

category for NL sequence labelling tasks. 

 We propose a conditional random field based method of implementing the 

structure of intellect model, by labelling query words with semantic forms and 

analyzing the interconnected patterns in which such forms exist within a semantic 

field. 

We perform experiments on three diverse query datasets consisting of TREC, 

QA-type and Web queries to justify the robustness of our approach to varying noise 

levels. The proposed approach comprehensively outperforms existing works on query 

subnet detection [46]. 
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6.1 The Structure of Intellect Hypothesis 

J. P. Guilford introduced the structure-of-intellect model in [56], which covers the 

notion of semantic forms as ‘products’. ‘Products’ are the result of applying some 

cognitive operation (cognition, retention etc.) on specific content (semantic, symbolic 

etc.). The model has since been used, studied and analysed substantially in the cognitive 

science community. A detailed view of human cognitive semantics in linguistics is 

provided in [47]. Probabilistic models of cognitive linguistics are described in [55]. An 

insightful introduction to human cognitive abilities is available in [57].  

The main hypothesis proposed by the Structure-of-Intellect model is that human 

cognition is robust to noisy sentence constructions because it strives to detect semantic 

information at different levels of granularity. The noisier the sentence, the coarser is the 

granularity of semantic information detection employed by the human cognition. In this 

section, we qualitatively introduce the different semantic forms from Guildford’s 

structure-of-intellect cognitive model and describe how form interaction patterns play a 

key role in semantic subnet extraction.   

Semantic forms consist of five entities that capture the structure of information 

contained within a natural language sentence as perceived by the human cognition. A 

remarkable thing about semantic forms is that they are structured as granular hierarchies 

(i.e. one form is composed of other forms). Following is a description of the semantic 

forms starting with finer granularity:   

Unit.  Every item of a query sentence can be regarded as part of some chunk, of 

which units are the most basic entities. Units will cover most words of a sentence, from 

intangible ideas like ‘love’ to tangible objects like ‘cars’. For example, the name ‘Anna 

Chakvetadze’ is a unit. The cognition of semantic units has to do with one’s ability to 

recognize words, i.e. one’s vocabulary [56]. 
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Class. When units have one or more attributes in common, they can be grouped in 

classes. In a semantic network, units belonging to a class will share connectivity to at 

least one common attribute node. Classes can be narrow or broad. For example, the unit 

‘Anna Chakvetadze’ can belong to the very broad class ‘female’, a moderately broad 

class ‘Russia’ or a narrow class ‘Tennis’. The size of the class (narrow/ broad) 

qualitatively determines the size of the search space for related concept retrieval.   

Relation. Relations are kinds of connections between units. When any two entities 

are connected in the semantic network, there are three items of information involved – 

two units and the relation between them. Relations between search keywords play an 

integral role in realizing class or unit interconnections in the query. For example, ‘Steffi 

Graf’ and ‘Andre Agassi’ could be connected by the relation: married, while both 

belonging to the class: tennis players. 

System. A system is the most complex item in semantic information. Systems are 

composed of more than two interconnected units. Systems may also comprise of 

overlapping classes, multiple interconnecting units and diverse relations. They often 

occur as an order or sequence of units. Add ‘Maria Sharapova’ and ‘Sasha Vujacic’ to the 

previous example of ‘Steffi Graf’ and ‘Andre Agassi’, and we get a system: married 

sportspersons.  

Transform. A transform is a semantic form that captures any sort of change in the 

information perceived from a query word. This change (transformation) in itself is a 

semantic form. Transforms are usually caused due to the existence of polysemy in a 

sentence. Transforms occur when units can be represented as coarser granularities, like 

classes or systems.  We will explain the implementation of transforms in further detail a 

little later. Some examples of some word-form pairs are shown in Table 11. 
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Word Form Word Form Word Form 

Thursday unit market system Mansion unit 

witches class driving relation school system 

Table 11: Examples of word-form pairs. 

 

Strata based on node centrality  

 Nodes that possess a higher degree in the network have more neighbors with 

direct edge connections. In terms of topology, the higher degree node is more central 

[58], i.e. it is a more general concept node (super category). We employ this aspect to 

understand the strata of words, since strata are granular information entities. Thus, for 

every node (which represents a concept word), we can calculate the normalized degree 

centrality, which gives us an estimate of the generality of the concept node. This follows 

the intuition that a crawler will encounter the concept ‘Russia’ many more times than the 

concept ‘Anna Chakvetadze’ while browsing Wikipedia.  

Therefore, we calculate the degree distribution for the semNet nodes. This 

distribution follows a power law, as is the characteristic of semantic ontologies [59]. 

Then for a node, if its centrality belongs to the greater 80 percentile for the nodes 

centrality distribution, we suppose it is a system. For nodes with greater than 50 

percentile but below 80, we assign it   to strata class. Nodes with centrality belonging to 

less than 50 percentile are treated as units. These thresholds are designed based on the 

properties of systems that follow a power-law degree distribution, meaning they obey the 

80-20 rule
7
.  

 

                                                 
7 The 80-20 rule is sometimes referred to as the Pareto Principle, which states that for many systems, 

approximately 80% of the effects is generated by 20% of the causes.  
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6.2 Computational Modeling of the Cognitive Hypothesis  

In our proposed approach, consider each observed symbol as the tuple: {word, 

POS tag, NP chunk number}. We can employ basic sequence labeling idea here, by 

considering the chain of forms that link the tuples as hidden states. Using the training 

data, a CRF model [60] can then assign optimal state chains to samples of observed 

symbols, from which we learn the kinds of form chains (interactions) that exist. Steps for 

computationally modeling the cognitive notion of semantic forms are described in this 

section. 

We begin with formal definitions, followed by describing some pre-processing 

techniques and finally, the detailed description of model features.  

Consider an NL sentence Q. Our assumption is that Q is a carrier of information.  

Every word is a linguistic variable in Q. It is well known that information is expressible 

as a restriction (i.e. a constraint) on the values that a variable can take [61]. By this flow 

of thought, consider W as a constrained variable in Q, let R be the constraining relation in 

Q and   (zeta) represent how R constrains W. Then, every NL sentence Q can be 

represented as: 

        

It is possible for W to be a vector-valued random variable. The primary constraint 

R is a restriction on the strata values of W and is probabilistic in nature. Hence, W can 

take up values of different strata from the set (unit, class, … , transform) with 

probabilities (     ,       , …           ) respectively. Thus, W is constrained using the 

probability distribution R as: 
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The singular variable W takes values from the universe of discourse U, such that 

values of W are singletons in U (see Fig. 9). On the other hand, the semantic strata of W 

is a variable whose values depend on the granular collections in U. Said alternately; the 

granular precision of a word in U is expressed through its semantic strata. The type of 

strata assigned to a word depends on the cluster size of elements in U that have common 

attributes or behavior related with the concepts of that word.  

The overall process is described at an abstract level in Fig. 59, where ellipses 

represent the stratum of a word. Consider four key words W1, W2, W3, and W4 in the 

query (Q) that need to be connected as some semantic subnet. Let             denote 

the stratum associated with the word   . In step (i): we are uncertain of the semantic 

subnet or canonical form of Q. In (ii), our goal is to label the words with semantic strata. 

In (iii), we use the strata interconnection patterns  to retrieve the connection among the 

strata for the four words when they exist together in some Q. Finally, in (iv), we can 

connect the original words as a query subnet by shadowing the connected strata pattern. 

 

 

Figure 59:        Overall Process of subnet extraction. 
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We employ basic pre-processing techniques such as stop-word removal, POS 

tagging and chunking before we proceed to strata-based tagging. Stop-word removal is 

performed using the well-known Python NL toolkit stop word list. We used the Stanford 

POS tagger for POS tagging. For long queries, chunking is necessary. The chunking 

process is inspired by [52]. Let us briefly describe the chunking process before we 

proceed further. 

Chunking. Consider Q to be a query sentence in natural language L containing 

words belonging to the vocabulary set V. Let    be the sequence of POS-tagged symbols 

associated with a query Q, i.e.  

               , where           ,     ,       for N words in Q and 

T' is the set of possible POS in English grammar. Given    we can define the k
th

 chunk 

(    as:  

                                   

for some i < j ≤ N and 1 ≤ k ≤ M for a total of M chunks in the query. Then, the 

task involves determining all the M chunks based on    , s.t                    .  

This generates the chunked query set:  

                                              where              , 

     , for some  ,      .  

Following similar methods as used in [52], we can find                       

as: 

                

                                                                        
 
                   

 

where,    
                                



 145 

 Estimating Probabilities. Consider the training set               
 . Each 

element of the training set is a vector such that for    words in the k
th

 sample,      

          
 , where      denotes the i

th
 word in the k

th
 training sample and the 

corresponding labels                
 . Let us denote a word as w and the label as 

 . Let us also denote the current index as ‘curr’, the next index as ‘next’ and the previous 

index as ‘prev’, such that the previous word is       or the current label is       . Note 

from Eq. 1 that we are trying to find three conditional probabilities: 

               ,                      and                      . Also, let    

                         . Then the required probabilities can be estimated as 

(where #{} denotes the size of the set): 

                                           

                                  
                                  

                       
                                                    (32) 

 

                       
                                              

                                  
                                        

 

                       
                                              

                                  
                                            

 

The task of tagging words of a sentence with semantic strata from the set of 

strata (F) makes use of the CRF model described here. The result is the set     of strata 

labeled words. First, we briefly describe CRF in the light of our problem, followed by 

feature functions and learning weights. 

Conditional Random Field (CRF). Consider two random variable sequences X 

and Y of the same length.  Let X be the input sequence and Y be the output sequence and 

let us denote           and           for the generic input and strata label 
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sequence respectively. A CRF on (X, Y) is specified by two vectors: a local feature vector 

   and a corresponding weight vector  .  

A state feature is an element of    of the structure              where i is the 

input position, y is a label and x is the input sequence. A transition feature is an element 

of    of the structure                where y,   are labels. 

The global feature vector for an input sequence x and a label sequence y is: 

                                                                     

 

                                              

Individual feature functions are described a little later. A conditional distribution 

that obeys the Markov property, which is: 

 

            
                       

can be written as: 

 

                                                    
             

     
                                             (36)               

 

where                       . 

Note the denominator of Eq. 36 is independent of y. Then the most probable 

sequence of strata labels (y*) for the input sequence x is: 

 

                                                                                           

 

Eq. (37) can be solved using the Viterbi Algorithm [60]. In order to optimize the 

maximum likelihood of the training set, we use the preconditioned conjugate gradient 

method [62]. This is a well-known technique for linear and non-linear optimization. Fig. 

60 illustrates the CRF model with its feature functions. 
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Figure 60:        Types of feature functions in CRF. 

Feature Functions. Feature functions are key components of CRF. The general 

structure of a feature function is                which looks at two adjacent states      ,    

and the whole input sequence   where i is the current location in this sequence, and 

assigns some weight to the observed feature. They can be defined in different ways, e.g., 

we have a feature like:  if the current word is 'Nile' and the current state is 'unit' then we 

give the feature a positive weight, otherwise not. Each feature function                has 

a binary output and can take as inputs particular values of the current strata     and the 

previous strata     .  

We use the training corpus queries to build the atomic feature set for the CRF. Let 

   represent unit,    represent relation,    represent class and    represent system. In the 

examples below, a binary value of 1 indicates the presence of the feature, and 0 indicates 

the lack of the feature. ‘ ’ denotes logical AND. We implement four types of binary 

atomic features:  

(1) Simple Feature Function: A simple feature function depends only on a word 

and its connected strata. For example,  
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(2) Overlapping Feature Function: An overlapping feature function depends on 

strata of a word and on its successor word. Under normal conditions, Hidden Markov 

Models are unable to realize overlapping features (unlike CRFs). A suitable example 

would be:  

 

                                         

                                                      
  

 

(3) Strata Transition Feature Function: A strata transition feature function 

depends on successive strata such as:  

 

                 
                         
                                                   

  

 

(4) Mixed Feature Function: A mixed feature uses successive strata and 

preceding/following words. For example,  

 

                 
                                      
                                                                                           

  

 

In Fig. 60, each ‘s’ element in the POS-chunked pre-processed query space 

represents a tuple <word, POS, NP Chunk number>. There are  828 atomic features in 

our system, obtained from words in the vocabulary. This initial feature set is then grown 

using feature induction [60], resulting in a total of 23,713 features. Feature Induction is a 

well-known technique in machine learning to increase the feature set. It begins with a 

small seed set of features. Then it creates a set of candidate features consisting of 
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observational tests. The candidate features are evaluated based on the highest gain and a 

subset is added to the model. A quasi-Newton method is used to adjust all parameters of 

the CRF model to increase the conditional likelihood. When training the CRF, we use 

pre-conditioning to ensure fast convergence of the conjugate gradient method [62]. We 

tested how fast (in terms of number of iterations) the objective function reaches close to 

its maximum attainable value. On the average, our technique requires 12-13 forward-

backward iterations to reach an objective function value, which is in close proximity 

(~96%)  to the maximum. 

Feature Generation: Given a query Q, we can now score a labeling (y) by 

summing up the weighted features over all the words in Q as was described in Eq. 37. 

There are two individual probabilities involved in the process that need to be learned 

from the training data. These are the emission and the transition probabilities [62]. The 

emission probability estimates the probability that a word belongs to a certain strata 

when it is observed at some index in Q. The transition probability estimates the 

probability of observing two adjacent strata in a label chain (sequence of strata-tagged 

words). 

State Functions. The CRF labeller’s state feature set is assorted using a feature 

builder. The feature builder is trained using a seed set of words and their related strata 

obtained using DBpedia RDF resource. Fig. 61 illustrates how words and their tagged 

strata are collected from a training query. Keywords are identified from a query by 

stemming and eliminating stop words. Using DBpedia to classify the word into a 

semantic strata follows this, as described in Section 4. The vocabulary containing words 

 stratum is updated as more training examples are seen and used by the feature builder. 
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Figure 61:        Using queries to build training set 

 

Transition Functions. Given enough training samples of the sentence Q, the 

variable W and constraint R, we can deduce the pattern  , which identifies how R 

constrains W. This pattern   contains information about the ordering in Q with respect to 

W (remember W could be vector-valued) such that they are mapped to R. That is to say, 

every stratum has some specific interaction pattern with other strata when they exist 

together/adjacent in Q. This interaction pattern among strata in U is captured in  . 

Interaction patterns provide insight into the question: how are three or more strata 

connected when they appear in Q? For example, if we see three words {A, B, C} having 

strata {relation, class, unit} respectively, then would the query subnet be of the ordering 

A-B-C, or B-A-C or C-A-B? 
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Figure 62:        Trellis diagram of possible Viterbi paths representing sequence of labeled forms. 

From the training data, a 'networker' learns interaction patterns at the chunk level, 

modelling each chunk as a potential branch for a rooted semantic query subnet. This 

viewpoint is derived from the observation that branches of most annotated query subnets 

are composed of individual or contiguous chunks of the original query. The strata 

interaction set    is a simple ordered set: {(     )}, where         representing a 

complete or part of a directed chain      . We only use strata connected within a chunk 

to populate one element of the set   . That is to say, strata at the border of two chunks are 

not considered part of interaction. Fig. 61 shows results obtained from the training data 

by means of  a Trellis diagram.  

The key property of the Trellis decoder in Fig. 62 is that: to every possible state 

sequence in Q, there exists a unique path through the Trellis decoder. Solid arrows 

indicate probabilities greater than 0.5 whereas dashed arrows indicate probabilities < 0.5. 

Individual edge probabilities are not shown to avoid cluttering the figure. 
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Handling Transforms and Word Sense Disambiguation. As mentioned earlier, 

transform is a stratum that captures the change in granularity of an entity in the universe 

of discourse. Fig. 63 describes the transform phenomenon in the universe of discourse. In 

certain cases, entities that have been initially labeled as units by the labeler can be better 

represented as a class or system once more words in the query are seen by the labeler. For 

example, when a query contains the word ‘apple’, a labeling algorithm might not 

understand the users’ intent, since there are multiple possibilities: a ‘fruit’ or the company 

‘Apple Inc.’ or the idiom – ‘apple of the eye’? The strata of the word ‘apple’ could 

change from being a class (fruits) to a system (company) to just a unit in the idiom. 

This is similar to issue of word-sense disambiguation in NLP [63]. A naïve way to 

resolve this is by first retrieving information regarding the specific concept nodes which 

can potentially change strata during labelling. This information can be obtained using 

Wikipedia disambiguation pages [64]. There also exists an RDF dataset in DBpedia 

containing all of Wikipedia's disambiguation pages. Usually the disambiguation pages 

can be sorted into various levels of granularity. That is, using a similar technique of 

centrality as described in earlier chapters, the disambiguation concept pages can be 

classified ranging over units, classes and systems. Thus, we know the possible strata of 

each disambiguation concept. The idea is illustrated in Fig. 64. 

 

 

Figure 63:        Transforms in the universe of discourse 
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Figure 64:        Handling transforms 

Now, let us maintain a dictionary of words for various disambiguation documents 

as well as the co-occurrence words in those documents. Thus, given a disambiguated 

word w in some query Q, we can find the set of disambiguated documents D which 

contain w. Probability of a possible transform for w  *w with respect to some     is 

calculated as: 

                                                                                     (38)                            

where |Q| represents the number of words in the query and           represents 

the number of words that co-occurred in d and Q. Then, the transform can be represented 

as: 

                                                        (39)             

Eq. 39 refers to us choosing the document (  ) as representative of the concept 

word w for which there is most co-occurred words between the document and the query 

Q. 

 

 

6.3 Applications 

We strive to better model the conceptual linkage among words in a query 

sentence, such that the query subnet signifies a canonical form for the query, meaning it 
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can be searched for in large graph databases with various data attributes (social or 

semantic), including DBpedia RDF graph. Labeling using semantic strata might seem 

close to SRL in the sense that both produce some sort of parse tree. However, SRL 

produces a syntactic tree (POS-heavy) using predicate logic (verb-actions) whereas 

semantic strata aim to retrieve semantic information at a higher-level of abstraction than 

a syntax tree, principally motivated by information granularity. This means unlike SRL, 

we are not specifically concerned with the ‘action’ of every predicate (target verbs) in the 

sentence. On the contrary, what interests us is the granularity of the semantic 

information, i.e. whether we can represent a word as a class or a system, as detailed in 

Section 3. In addition to that, SRL is incapable of finding relations between multiple 

actions in the sentence [65], an issue that strata can alleviate.   

We deal with the problem of noise (varying query constructions having same 

intent) at the level of cognitive semantics, by making use of the concept of semantic 

strata. According to existing cognitive psychology, strata are used by the human psyche 

to process and store semantic information structures in the brain [57]. To the best of our 

knowledge, computationally modeling semantic strata borrowed from the domain of 

cognitive psychology has not been previously used in semantic query understanding in 

the domain of natural language processing. 

 

6.3.1 Natural Language Parsing 

We first describe the data and illustrate the tree-like subnets. Then we present 

metrics, benchmarks and results of two different experiments performed on three NL 

query datasets. The first experiment compares results of the cognitive canonicalized 

subnet to traditional POS-based subnets [46]. The second experiment  compares the 
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semantic coherency of the words connected in the canonical subnet pattern to SRL parse 

trees using graph ontologies.   

Data. We test our model on each of these three datasets: (a) The TREC 2011 

(TREC) web topic dataset has 50 topics [67]. Each topic has 1-7 queries associated with 

it. All queries within a topic resemble similar search intent. There are a total of 243 

queries in the TREC topic dataset. 77% of the queries in the TREC dataset have 11-14 

words. (b) The Microsoft Question Answering Corpus (MSQA), which is aimed at 

querying documents belonging to the Encarta-98 encyclopedia [66]. There are 1365 

usable queries in this dataset and 85% of the queries have 5-10 words. (c) The last dataset 

consists of ~ 3400 raw search query feeds collected from a commercial web search 

engine (denoted as ‘WSE’). Queries containing 4-20 words are chosen for evaluation. 

The distribution of average number of words per query for the three datasets is shown in 

Fig. 65. 

 

 

Figure 65:        Distribution of number of words per query in the three datasets 
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The three datasets represents gradually rising levels of challenge in terms of query 

construction diversity, number of words in query and interpretability, with TREC being 

the least diverse and WSE being the noisiest. For experimenting on each dataset, we use 

60% of the instances of the dataset for training and the rest 40% for testing. 

Query Subnets. Table 12 shows an example of machine generated query subnet as 

a result of the proposed approach. We only visualize units, class and system tagged words 

as vertices in the final query subnet. Relations are used to connect the rest of the strata-

tagged words. Other techniques (like stemming and stop-word removal) found commonly 

in NL toolkit are used to improve the visualization of the subnet. Thus, the canonical 

subnet usually consists of fewer vertices than the number of words in the original 

sentence. 

Several other small optimizations are implemented: (a) we collapse consecutive 

units into a single unit when creating the subnet. (b) We use a simple root selection 

algorithm: when only relation words are found connecting two chunks           , we 

search      for units or classes. If       lacks a unit or class, we search     instead. For 

example, in the query TREC#43 (Table 12) from TREC dataset, ‘various TV’ and ‘movie 

adaptations’ are connected by the conjunction ‘and’. Therefore, we search in 

                            and since we find a sequence of two units (‘Secret’, 

‘Garden’), we collapse it to a single unit and represent it as root.  

We used annotators to hand label the queries in the datasets to build query subnet 

trees. The inter-annotator agreement on subnet structure was 72.3%. Disagreements were 

limited to just 1 node position in 82% disagreed cases. Thus, we consider this hand 

labelled set as the gold standard for comparing the machine generated subnet. 
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Query ID Query Canonical Subnet 

TREC  

# 43 

Find reviews of the 

various TV and 

movie adaptations of 

The Secret Garden  

MSQA  

# 812 

What was Freud's 

theory on human 

development.  

Table 12: Examples of queries and their subnets 

 

Cognitive Canonicalized Subnets vs. Traditional POS-based subnets.  

 Since our output (query subnet) is a tree where each node belongs to the set of query 

words, a ‘tree-likeness’ metric is essential to judge quality of results produced in terms of 

structure. We use Consistency Index (CI) as a metric to judge the quality of the subnet 

generated [68]. CI was first used in the field of computational phylogenetic, where it is 

used to study the evolutionary relatedness among groups of organisms. It estimates the 

structural similarity between two trees T1 and T2. Mathematically, CI can be defined as: 

                      

                                                         

where, T1 represents the query subnet tree generated by a machine algorithm, T2 

is the query subnet tree of the gold standard and # represents the number of nodes. Thus, 

CI measures the number of correct node position matches of the machine generated 

output w.r.t the number required for best match. In [46], the authors evaluate their 

subnets using simple measures like ‘nodes correctly resolved’ or ‘semi-correctly 

resolved’. However, we believe that CI captures the effect of structural relatedness more 
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intuitively. Table 13 lists the average CI values obtained for various datasets for the 

proposed approach and the comparison benchmarks 

Benchmarks. We compare our proposed cognitive model (formNet) against 3 

benchmarks. As an external benchmark, we test our model against (a) the POS based 

approach introduced in [46]  for generating subnets from query sentences (called posNet). 

We also compare our performance against: (b) a non-strata CRF (denoted as nfCRF) 

used in [62], whose features are based on POS only (not strata), and (c) a non-chunked 

version of our model (denoted as noChnk), to compare the gain due to semantic strata vs. 

gain due to chunking. 

We measure the average CI for queries in each dataset with our technique 

(denoted as ‘formNet’) against the benchmark techniques described above. Results are 

reported in Table 13. For each dataset, we provide a detailed bar graph describing 

percentage of queries that produced outputs in some particular CI range. For the average 

CI measures in Table 12, we include results of parse tree generated by SRL. The SRL 

parse trees is generated using the NLP software described in [69], which processes an 

input query and generates a SRL parse tree. 

TREC dataset. Fig. 66 shows that formNet achieves CI=1 for 63.1% queries. In 

fact, only 9.2% of the queries produced a CI < 0.5 using formNet. The benchmark posNet 

does considerably well in retrieving half the query subnet pattern (CI=0.5), but fails to 

generate the exact human annotated subnet pattern (CI=1) for almost 80.2% queries. Net 

improvement of formNet over posNet benchmark is 52.5%. The performance of noChnk 

is significantly better than nfCRF as shown in Table 13, indicating that use of forms in 

CRF is more important than using a standard CRF. 
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Figure 66:        Consistency Index results on TREC dataset 

MSQA dataset. Table 13 shows that formNet provides an average CI=79.5 for 

MSQA queries whereas the benchmark posNet produces an average CI=53.6. This 

signifies ~ 49% improvement in performance. Fig. 67 shows that formNet can retrieve 

55% queries with perfect match and produces a CI>0.5 for 85% queries in the dataset. In 

contrast, the benchmark posNet could only produce CI>0.5 for 38% queries. TREC 

queries are grammatically richer than MSQA; therefore a drop in overall performance is 

expected when evaluating MSQA. Interestingly, strata seem to be playing a stronger role 

in MSQA, since a traditional CRF performs poorly in this case. 

WSE. WSE queries are most diverse in construction and number of words. In Fig. 

68, we see that performance is reduced for all techniques, but formNet still performs 

better than posNet by 51.86%. Observe that noChnk performs worst for TREC when 

compared to formNet than for any other dataset as indicated in Table 13 (difference 

between average CI for formNet and noChnk). This reaffirms our previous observation 

from the query data: TREC queries consist of longer sequence of words. Chunking has 

relatively larger effect on performance improvement for TREC, but not so much for 

MSQA or WSE queries that are shorter. 
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Figure 67:        Consistency Index results on MSQA dataset 

 

 

Figure 68:        Consistency Index results on WSE dataset 

 

Tree TREC MSQA WSE 

posNet 54.8 53.6 48.2  

nfCRF  58.6 43.4 36.1 

Canonical Subnet 83.6 79.5 73.2 

noChnk 74.0 77.3 68.4 

SRL 68.9 66.0 51.6 

Table 13: Average consistency indexes for benchmarks on different datasets 
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Our results in Table 13 suggest certain interesting points: (1) We notice that 

formNet outperforms nfCRF, which implies that the boost in performance is not due to 

the CRF model specifically, but due to the feature functions consisting of semantic forms. 

(2) Also, formNet does not perform substantially better than noChnk for MSQA and WSE 

datasets, whereas no chunking for TREC significantly deteriorates performance. This 

indicates that chunking has a stronger impact in TREC, a dataset where 77% queries have 

more than 11 words (Fig. 65). In comparison, only ~10.8 % queries in MSQA and 7.6% 

queries in WSE have more than 9 words. (3) SRL performance is significantly degraded 

if the grammar is improper (the drop in performance in WSE for SRL is much more than 

the drop in case of Canonical Subnets or noChnk). This is due to the noise in WSE query 

constructions and SRL is sensitive to the noise.  

Cross-dataset Testing. In cross-dataset testing, we train on one dataset and test on 

another. Our intuition behind cross dataset testing is that different datasets differ in query 

structure, context and the length of query (Fig. 65). Thus, to ensure robustness to 

different training environments, we perform cross dataset testing. Here, we report 

formNet performance by training on one dataset and testing on another (read 

TRAIN_TEST). The average CI achieved by formNet in cross-dataset testing (Fig. 69) is 

as follows: TREC_MSQA: 0.53, TREC_WSE: 0.44, MSQA_TREC: 0.68, MSQA_WSE: 

0.58. We can observe that cross dataset testing provides best results when we train on 

MSQA and test on TREC. This is potentially due to the fact that the TREC dataset query 

structures are quite limited in construction; such constructions are contained within 

queries of MSQA. Performance is worst when we train on TREC and test on WSE. This 

is potentially due to the diverse and noisy queries in WSE, which are not captured during 

limited training over TREC. Nevertheless, for MSQA_WSE, our technique retrieves 
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query subnets with CI > 0.5 in 73.1% cases and CI > 0.75 in 33% cases, suggesting 

robustness of formNet to web scale. 

 

 

Figure 69:        Cross-dataset testing on the 3 datasets 

 

 

6.3.2 Query Canonicalization 

In order to compare the cognitive canonicalized subnets to the SRL parse trees, 

we first need to generate the latter. This is achieved using a state-of-the-art NLP software 

described in [69], which processes an input query and generates a SRL parse tree. In Fig. 

71, the two trees (SRL and cognitive canonical subnet) are shown for the query : "Find 

reviews of the various TV and movie adaptations of The Secret Garden" from the TREC 

dataset. 

Our target is to determine which tree is more semantically coherent when they act 

as a canonical form for graph databases. The notion of semantic coherence refers to the 
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semantic similarity between all pairs of nodes in the tree. This similarity can be obtained 

using an ontology, as is described in [70]. Given the nodes in the trees, we first detect if 

they exist as vertices in the ontology graph. For words that do not exist in ontology graph 

(e.g., 'of' for SRL parse tree ), we eliminate them from analysis. For the set of nodes that 

do exist in the network, we calculate the closeness centrality among the nodes [71]. The 

reasons for choosing closeness centrality is described below.  

 

 

Figure 70:        Idea of cognitive canonicalization of NL queries 

In a graph, the farness of a node is defined as the sum of its distances to all other 

nodes. Closeness is the inverse of farness. Consider that we spot all the tree nodes in the 

ontology graph. Then, we can calculate the farness of any tree node with respect to the 

other tree nodes. Note that an ontology is a graph where similar concepts are connected 

by edges. Therefore, the further two nodes in the ontology graph, the lower is their 

semantic similarity. In other words, the farness of the nodes determines their semantic 

dissimilarity. Conversely, the closeness of the nodes signifies their semantic similarity. 

As mentioned earlier, this closeness is a good measure of the semantic coherency of the 

tree.  
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Let us measure the closeness of a tree node i (call it focal node) with respect to 

other nodes of the tree. According to [71], the closeness of the focal node is given by : 

                                                        
 

          
                                            

where d(i,j) is the shortest distance between nodes i and j, where j is any  node in 

the tree other than the focal node. Thus, we can calculate the semantic coherency of the 

subnet (S) with n nodes as : 

                                                            

 

   

                            

 

 

Figure 71:        SRL vs. Cognitive Canonicalized subnets 

Eventually the purpose of a subnet is to serve as an NL interface to graph 

databases, converting the NL query into the internal graph representation. This requires 

experimentation on how well the canonicalized tree can 'fit' into a graph database 

compared to an SRL tree. A higher magnitude of semantic coherence of the subnet 
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indicates a better fit. CI is not the appropriate metric in this scenario, because it compares 

to human annotation and not semantic similarity represented by graph database.  

Results. In Table 14, we provide results of the semantic coherence averaged over 

all queries in each dataset for three methods, the POS-based parse tree, the SRL parse 

tree [69] and our proposed cognitive canonical subnet tree. We assume each edge of the 

ontology has weight 1. Thus, two nodes i and j, separated by at least three hops, will have 

d(i,j)= 3. For each query subnet/parse tree, we calculate the closeness of each node in tree 

using Eq. 40 and then the semantic coherence of the entire tree using Eq. 41. The 

semantic coherence is averaged over all the queries in the dataset 

 

Tree TREC MSQA WSE 

POS Parse 0.041 0.054 0.027  

SRL Parse  0.055 0.072 0.048 

Canonical Subnet 0.066 0.078 0.081S 

Table 14: Avg. Semantic Coherence for the three datasets using various methods 

Some interesting observations can be made from Table 14. Firstly, the canonical 

subnet outperforms the other techniques for each dataset. Secondly, for both POS and 

SRL, performance deteriorates as : MSQA> TREC > WSE. However, for the canonical 

subnet, performance degrades as: WSE>MSQA>TREC. The second observation is 

potentially due to the nature of queries in the three datasets. MSQA queries have single 

frames [65], allowing each technique to perform better in MSQA because frame-relation 

modeling is not required. TREC has multi-frames with 'and' clauses, resulting in more 

complex natural language constructions. Recall that WSE has least number of words per 

query compared to the other datasets (Fig. 65). Thus, they are noisier than MSQA or 

TREC. POS tries to label the words in WSE but performs poorly due to the irregular 

grammar. Although SRL does better than POS, internet users often use keywords without 
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grammar or predicate-action verbs, confusing the SRL parser. Cognitive subnets, on the 

other hand, focus on the granularity of the words when constructions are noisy in the 

WSE queries. Thus, cognitive subnets will not try to connect all the words unlike SRL or 

POS parse trees  if the construction is noisy. This allows for far lesser words in the tree, 

reducing the closeness and boosting the semantic coherence.  

Extrinsic Evaluation and Ranking Results. Documented in this section are the 

results of extrinsic evaluation and performance of the proposed approach in searching and 

ranking documents corresponding to the MSQA dataset. For these experiments, we took 

the subnet of each query (generated by the various benchmarks in addition to our 

approach) and ran a iterative deepening DFS search [72] on the semNet to retrieve 

relevant expanded nodes for the query sentence. Each expanded node is a concept node 

which was in path between two neighbor nodes of the subnet. Remember that neighbors 

in the subnet could be many hops away in semNet. Following this, we aim to retrieve 

documents with the expanded query words (obtained from semNet) in addition to the 

original query words.  

The MSQA dataset has a document set of more than 37,000 documents from the 

Encarta 98 Encyclopedia in addition to 1300 queries mentioned in Section 6.2. On 

average, each query has approximately 7 related documents. Each document is given a 

relevancy scores from 0-5, based on how closely one or more sentences in the document 

accurately answers the query. Shown below is Fig. 72 is an example query and relevant 

documents for the MSQA dataset. 

The expanded list of words is retrieved for each of the baseline cases: (1) subnet 

from posNet, (2) subnet from noCRF, (3) subnet from noChnk, (4) SRL parse tree and (5) 

Explicit Semantic Analysis (ESA) [73], which uses a vectorial representation of text and 

uses Wikipedia. However, ESA does not use network hierarchies like strata in parsing. 
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These methods are compared against our proposed canonical subnet based on semantic 

strata. In addition, we use another baseline search engine called Lucene, which is a 

popular open source search software and powers many web applications, including 

Twitter's real-time search. Lucene's ranking uses a combination of the Vector Space 

Model (VSM) and boolean model [74]. 

 

 
 

Figure 72:        Example query and relevant documents for the MSQA dataset. Box marks the 

query. Underlines mark the answer sentence from the relevant document. Circles mark the context 

relevancy of the answer given the query. Content relevance of 0 represents 'no judgment made', 1 means 

'exact answer', 3 means 'off topic', 4 means 'on topic, off target', and 5 means 'partial answer'. Document 

ranking proceeds as 1>5>4>3>0. 

Since, we are not only concerned with document retrieval but also ranking of the 

retrieved documents, our evaluation metric is Normalized Discounted Cumulative Gain 

(NDCG) instead of F-Score. NDCG is a standard metric to evaluate search ranking 

results [75]. For a query q,        of a ranking of documents retrieved for query q is : 
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where    is the relevance level of the kth ranked document, and   
   

 is a 

normalization factor such that the best ranking gets         . For our experiments, 

we report the        and        .  

Interesting observations from results reported in Table 14 include: (a) Comparison 

between NDCG@5 vs. NDCG@10 tells us that over larger space of documents to be 

returned, the proposed approach will outperform ESA significantly. (b) Not using strata 

or vector model significantly deteriorates performance as reflected by posNet. (c) The 

canonical subnet will perform better compared to ESA with chunking, but performance 

will degrade to ESA level without it. (e) The canonical subnet will always perform better 

than SRL, even without chunking. (d) Lucene outperforms SRL parse when more 

documents are to be returned. (e) ESA and Lucene both use the vector space model, but 

ESA leverages Wikipedia which significantly improves its performance compared to 

Lucene. Overall, leveraging semantic strata allows the canonical subnet to edge out the 

existing techniques. 

 

Method NDCG @ 5 NDCG @10 

posNet 0.635 0.591 

noChnk 0.871 0.799 

Lucene 0.790 0.760 

ESA 0.872 0.788 

SRL parse 0.812 0.730 

Canonical Subnet 0.956 0.940 

Table 15: Average NDCG results for MSQA dataset 

Discussion. Several papers on computational cognitive psychology dwell on the 

fact that cognitive psychology models cannot be purely verified on the basis of 

behavioural experiments [55]. For researchers in the domain of NLP, a fascinating 
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possibility is to model cognitive techniques computationally and test their robustness to 

noise in NL. Natural languages are undeniably imprecise, especially in the realm of 

semantics. The primary reason of this imprecision is the fuzziness of class boundaries 

[61]. Surprisingly, robustness to imprecision is often achieved by slightly relaxing the 

rigidity imposed by lexical grammar, by means of parsing at a higher abstraction than 

POS. In some ways, the case is analogous to robust, scalable image/video transmission in 

the face of a noisy channel, where lower-resolution data is usually transmitted if the 

connection is weak or the channel is noisy. 

Essentially, there exists a hierarchy in every semantic network, exemplified by the 

network's degree distribution. This hierarchy identifies the generality of a concept node. 

Concepts are the essence of semantic information, and are granular in nature. Therefore, 

strata, which means levels, indicates this surreal hierarchy, which can be employed to 

understand the granularity of semantic information.  

In this paper, we reproduce the structure-of-intellect model of cognitive 

psychology computationally. Exploring the various interactions among the semantic 

strata provides insights into the higher level abstract (conceptual) connection among the 

query words, which is subsequently exploited in generating the canonical subnet. The 

canonical form is consequently searched in a semantic ontology. Our proposed approach 

comprehensively outperforms existing techniques for query subnet extraction  and 

produces more semantically coherent canonical parse trees compared to state-of-the-art 

NLP techniques like SRL.  
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CHAPTER 7:      LEARNING COLLECTIVE ATTENTION MODELS 

FOR SOCIAL MEDIA 

 

 

The vast quantity of information shared in social networked spaces has brought us 

to an age of attention scarcity, where getting users to be attentive to a message is not a 

given. It is a limiting factor in the consumption and spread of information. Understanding 

what captures the collective attention amongst a community of users is invaluable to 

applications such as product marketing, advertising and social or political campaign 

organization. Many scholars have analyzed how information spreads in social networked 

spaces, however few studies provide a quantitative method to model and predict attention 

over time within dynamic social networks.  

In this chapter, we discuss the Attention Automaton, a probabilistic finite 

automata that can evaluate the collective amount of attention given to a topic by a 

community of users who are either grouped geographically or through common interests 

(followers of a given account) on Twitter. We identify two key factors that drive 

collective user attention: (1) the volatility of the community, i.e. frequency of change of 

posted topics, and (2) the selective categorical affinity of the group towards certain 

topics. Our results, which are based on a 6-month dataset of Twitter trending topics 

across 111 geographic regions and audience trends of approximately 50 accounts show 

that the Attention Automaton can predict audience reception of impending trends based 

on selective category types and the inherent properties of the community. 

Background  

Human attention is the mental 'spotlight' on a stage full of information. The idea 

that attention is a scarce commodity was first laid out by Herbert Simon [76]. However, it 
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was Davenport et al. who first indicated that attention precedes activity on the web [77]. 

Given the overload of information in cyber space, search engines and recommendation 

systems attempt to learn from our interactions (click through data etc.) to identify and 

predict resources that users would be more attentive towards. Understanding the attention 

of online communities can be very useful for advertising leads, targeted advertising, 

marketing and understanding information diffusion in online social networks.  

Attention is captured by the behavior of social network nodes in the face of 

competing choices of interaction [78]. It has been found that attention is the primary 

barrier for social contagion and information propagation in online social networks (Hodas 

2012). The allocation of attention among a set of items in social news website Digg is 

log-normally distributed [80]. Lehmann et. al. found that the evolution of hash tags 

popularity in Twitter follows discrete classes, indicating user groups are attentive to 

selected categories of information [81]. The balance of attention dedicated to these 

categories is a relatively stable property over time [82]. Researchers have also shown that 

a combination of social network structure and finite attention is a sufficient condition for 

emergence of dynamics of social networks [83]. This makes attention modeling in social 

networks a vital prerequisite to predict future popularity and lifetime of trends. 

Our model also makes use of probabilistic automatons, which are finite state 

machines. Finite state machines are fundamental to computer science. They are widely 

used as spelling checkers and Hidden Markov models. A probabilistic automata is a state 

transition system, consisting of a series of states, actions that can cause transition 

between states, and a probability attached to each potential transition from one state to 

another [79].  

Since attention precedes online activity [77], it is pivotal to model attention of 

user communities in order to comprehend the fundamental differences in behavior 



 172 

between user groups, in other words, what makes them unique. There are two limitations 

in existing work in this domain: (1) Although social data mining reveals popularity and 

novelty of trends as a good indicator of attention patterns of users, it still does not help us 

quantify the collective attention shifts in communities or the categorical attention affinity 

that exists in users groups. Most importantly, it gives us few indications as to whether 

collective attention is at all computable (in terms of a model of computation) and whether 

we can predict the likelihood of a future trend to receive sustained attention. (2) 

Secondly, the dynamics of collective attention is substantially different from individual 

attention [83]. Our analysis shows that a collection of users bound together as followers 

of a given account or within close geographic proximity can play a big role in what 

becomes popular and receives attention. 

Our research strives to address these limitations. We build a probabilistic 

automaton, called the Attention Automaton, showing that attention states in user 

communities of Twitter are computable in terms of a finite state machines. Moreover, 

unlike previous work, we focus on collective attention which is endorsed by the 

collective behavior of the inherent communities we are part of in the social network.  

 

 

7.1 User Groups in Social Networks 

  Our research is based on two datasets containing Twitter trend data. The first data 

set includes Twitter trends based on geographical locations for approximately 7 months. 

The second data set contains trends for audiences who are subscribers/followers of some 

Twitter account for approximately 3 months. Let us describe the kind of user 

communities we see on Twitter and how they develop.  
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Twitter Trends  

  When a group of users on Twitter increasingly RT a message or tweet about some 

topic, then it is captured as a trend. We wrote a script that probes Twitter every 5 minutes 

and logs the TTL (Fig. 73) provided by Twitter for 111 geographical locations 

worldwide. This is essentially a time series, where each instance is of the form: 

{timestamp, location, [list of trends]}. Thus, each GT-TTL instance includes a list of 10 

trends and resembles the top topics of discussion based on tweets coming from the 

specific geo-locations. We have this data from Nov. 2011 to June 2012.  

 

 

Figure 73:        Example Trending Topic List (TTL) in New York on October 23rd at 8:15 AM - the morning after the 

3rd presidential debate in 2012. 

 

Audience Trends   

 We also collect tweets of followers for approximately 50 Twitter accounts (called 

brands hereafter). We maintain a diverse category list of brands, including News 

(@NYTimes), Sports (@ESPN), Politics (@CNNPolitics), Gaming (@IGN), 

Entertainment (@Miramax) etc. We follow a similar method to Twitter in detecting 

trends, i.e. based on how frequently a word appears in the collection of tweets. Thus, after 

pre-processing, we sort the most frequent words occurring in follower tweets for every 
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brand and store it as BT. We update this every 2 minutes and therefore, our maximum 

granularity for BT is 2 minutes. The maximum granularity for GT is 5 minutes. Thus, the 

BT data set instances also resemble a time series in the brand audience world. Each 

instance is of the form: {timestamp, brand, [list of trends]}. 

 Our underlying assumption is that attention of a user group is characterized by the 

trends of that group, as they are derivative of the cumulative topics published by the 

group. Thus, the attention of user group NY is judged by the trends appearing in TTL of 

NY. Similarly, trends from audiences following @EA (Electronic Arts) account indicate 

behavior of user group of EA. We uncovered three key insights from these two datasets 

regarding collective attention in user groups. They are described as follows: 

 User Groups possess inherent attention shift tendencies. Different user groups 

have diverse (unequal) durations for which they can maintain attention on a particular 

topic. Rapid attention shifts are reflected by frequent changes to the TTL of the user 

group over consecutive time slots. We noticed that the TTL in some cities (e.g., St. 

Louis) remains fairly constant over multiple hours, whereas in other cities such as New 

York it changes every 5 minutes. 

 User Groups possess selective affinity to certain categories of trends. We also 

found that user groups in different cities and for different followers are disparately 

receptive to trends in various categories. For example, San Francisco has strong affinity 

to trends in Gaming, whereas Boston has strong affinity to trends in Politics. In a similar 

fashion, we show later how audiences of Pepsi are very attentive to Entertainment trends, 

especially Justin Bieber, whereas audiences of Burberry have near-zero affinity towards 

Sports. 

 User Groups react to real-world events based on a combination of their attention 

shift patterns and their selective categorical affinity. We chalked some of the major 

events over a period of 7 months synchronized with the data sets (Fig. 75). We found that 

it is possible to quantify the attention shift within user communities occurring in  

response to real world events. In other words and contrary to popular belief, it is not more 

difficult to force something to trend in bigger user groups such as New York compared to 

Tallahassee, Florida (comparatively smaller user group); provided we know what New 
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York user group has affinity towards and its attention shift tendencies i.e. given the right 

conditions, trends can break into New York TTL as easily as it does in smaller user 

groups. 

Social networked spaces such as Facebook and Twitter emerged as platforms for 

connecting people who wanted to stay in touch, be heard, share  information and track 

viewpoints. With an increasing number of users, brands and highly visible celebrities 

joining these services, there came an inevitable explosion in the amount of content 

readily available to users. As the threshold to publishing nears zero, getting users to be 

attentive is a limiting factor in our networked information ecosystem [80]. One cannot 

demand attention, or even expect it at a given point in time. It is a scarce commodity that 

must be earned [84]. 

We can quantify user attention within social networks by looking at the level of 

interest that a node (user) dedicates in managing its interaction with another node or 

group of nodes within the observed social network [82]. The interaction can be captured 

in different activities, such as 'liking' a Facebook status update, 'retweeting' a tweet or 

posting to a topic that is trending on Twitter [83]. For example, we can consider that 

when node X on Twitter retweets (RTs) a message M of another node Y, then X was 

attentive to Y or to the content of M. Similarly, if node X tweets about a topic that is 

trending, then we can claim that X was attentive towards that trend. By extension, when a 

group of users RT a certain tweet, they display collective attention [81]. This group of 

users could be geographically co-located, or followers of the same user or part of a 

networked community. 

 

Motivation and Scope 

Understanding the dynamics of collective attention can help content producers 

and intermediaries better manage information flows under the constraint of human 
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attention. It also helps with the judgment of what, when and why some trend becomes 

popular, which has great relevance to monetization of online content. Social advertising 

utilizes a user and their community within social networked spaces, attempting to 

accurately target contextually relevant personalized ads. 'Promoted Content' on Twitter is 

a good example of targeted social ads. In news and media, it is key to judge which news 

topics will users be more receptive towards, potentially based on their location or the 

broadcast network they watch (follow). This necessitates prior knowledge of the facets 

that capture group attention. 

Previous research has attempted to capture the dynamics of popularity and 

information diffusion in social networks to get a sense of what receives user attention. 

Interesting findings from these papers show that attention is the deciding factor in 

information spread [85], that there are specific categories which potentially receive more 

attention [81]and that these categories remain relatively consistent over long periods of 

time [82]. However, most of this work aims to understand individual user attention and 

misses the insights provided by the larger community. If the attention of communities of 

users is captured in a computing model (e.g., in terms of finite state machines) that can 

represent the dynamics of collective attention, we can attempt to predict future collective 

behavior. 

This chapter discusses the development of a probabilistic automaton that aims to 

capture the dynamics of collective attention among user groups on Twitter, who are either 

geographically co-located or co-followers of the same Twitter account. Every state in the 

automaton is a list of trending topics from the user group. The trending topics list (TTL) 

of an user group, shown in Fig. 73, alters with time in response to user tweets (discussed 

further in related work). This phenomenon is captured by the Attention Automaton as it 

transitions from one state to another, mirroring the changes in the TTL over time (Fig. 
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75). The actions that cause the state transitions is a set of competing trends that are trying 

to break into the TTL at any given moment (impending trends). When a trend breaks into 

the TTL, it forces the automaton to jump to a new state, as the list changes. The 

probability of transition depends on two key factors: (1) the attention shift tendency of 

the group, and (2) the selective categorical affinity of the group towards certain trends. 

The attention shift tendency of the user group is modeled using a metric we call 

Volatility, which represents how frequently trending topics within the group change over 

time. We use a Levenshtein distance [86] based metric to formulate the volatility of the 

user group. The selective categorical affinity is obtained from the past history of topics 

that trended in the user group and their respective categories. 

Our results reveal interesting information: (1) Collective attention is mainly 

driven by two key opposing forces: volatility vs. categorical affinity of attention. (2) The 

collective attention of user groups over time on Twitter can be modeled as a probabilistic 

automaton. This automaton has predictive power over future states given a time series of 

impending trends. (3) The Attention Automaton can capture Twitter community reactions 

to real world events. 

 

 

7.2 The Attention Automaton 

 We first provide an overview of the automaton in terms of the Twitter ecosystem. 

We can then explain specifics of measuring attention shift, measuring categorical affinity 

and formulating the transition probability for the automaton. 

 A probabilistic automaton consists of a set of states, a series of actions and a 

transition probability attached to each potential jump from one state to another based on 
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the action. Let          denote the set of all probability distributions over X. Then the 

Attention Automaton (A) consists of four components:  

1.A set    of states.  

2.A non-empty set   
  of start states.  

3.An action signature              consisting of external and internal actions 

respectively. We assume that    and    be mutually disjoint and the complete set 

of possible actions is              . 

4.A transition relation                              

Notice that for each user group, we possess a time series of TTLs. Fig. 74 shows one such 

time series TTL data for London on Oct. 22, 2011 between 2 PM and 6 PM. Each time-

stamped TTL is a state in the automaton. As time passes, the automaton moves to another 

time-stamped TTL state, based on the new trends that replace some old trends in the latter 

TTL. We represent the TTL state at time t by   . It is also important to note that time is 

deterministic. At a given instant, the automaton can be in only one state. The start state 

for all actions on or after time (t+1) is   .  

 

 

Figure 74:        GT-TTL in London on Oct. 22, 2011. Only hourly TTLs are shown here 
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 A jump from one state to another defines a transition. Each transition is brought 

upon by an action. The action is a set of impending trends that are attempting to break 

into the TTL list at time (t+1) so that they can be part of      (see Fig. 75). Thus, when 

trend r successfully breaks into the TTL, it fundamentally changes the content of the      

compared to   . Changes in the TTL is represented by the automaton jumping among 

states based on the action and a transition probability. 

 

 

Figure 75:        TTL changes in London on Oct. 22, 2011 between 8-11 AM. Only hourly TTLs are shown here 

 The final component of the automaton is the probability of the transition between 

two states. As mentioned earlier, we found that this probability depends on two factors: 

(1) the attention shift tendency of the user group, and (2) the categorical affinity of the 

user group. We first discuss our approach in modeling both these phenomena. Following 

that, we discuss combining the two attention factors to produce the transition probability. 
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Modeling Attention Shifts 

 We devise a metric called 'Volatility' to measure the tendency of attention shift over 

time for a user group. Since we represent content that is receiving attention in an user 

group based on the TTL (which is ranked) in one time slot, measuring the difference 

between the TTLs in consecutive time slots is an acceptable measure of attention shift. 

Difference between consecutive TTLs.  

 The difference between consecutive time slot TTLs is basically the edit distance 

between the two TTLs. In other words, consider each TTL to be a string of trends. Then 

the difference of two TTLs can be visualized as string edit distance. We use the 

Levenshtein distance to measure the difference between two TTLs. 

 Mathematically, the Levenshtein distance between two strings a and b, of sizes i 

and j, can be expressed as: 

 

            

 
  
 

  
 

                                                         
                                               
                                                

    

             

             

                     

           

                       

  

The above equation (Eq. 43) illustrates,            is the minimum number of edits 

required to convert string a to string b. In our scenario, we represent the Levenshtein 

distance defined as the minimum number of changes needed to convert TTL     to TTL 

     as        ,   ).  By using Eq. 43, the Levenshtein distance between TTLs at time 

09:05:03 and 10:05:03 in London on Oct. 22, 2011 (shown in Fig. 75) is 2. On the same 



 181 

day, the Levenshtein distance between TTLs at time 17:05:04 and 18:05:03 in London 

(Fig. 75) is 10. 

Volatility 

Each pair of TTLs in consecutive time slots generate one    value. Thus, over a given 

range of time slots, we have a series of    values which is representative of how fast the 

TTL of the user group was changing over time. Let us consider T as the number of time 

slots for the duration of observation, i.e. if we want to calculate the volatility per day and 

each time slot is 5 minutes, then T= (24*60)/5 = 288. 

Then, the volatility for user group g starting at time st can be defined as: 

 

                                                          

   

   

                                       

 Note that the granularity of volatility measures can be adjusted. For example, if we 

measure the half-hour-wise change in the TTL  for a day, then we can set T to 

(24*60)/30=48. In Fig. 77, we show the volatility time series over 5 months in some 

major US cities (with T=288). Peaks in the Fig. 77 refers to days when the TTL was 

changing rapidly. Peaks are not appealing to us, since rapid changes in TTL indicate that 

the attention of user groups is shifting rapidly. i.e., there is lack of persistent attention. 

 However, a minima in the volatility curve is of significant interest. Minima 

resemble days when the TTL was not changing significantly. In other words, attention is 

not shifting constantly, rather it is persisting. This can be caused due to two reasons, (1) 

Nothing is happening that is attention worthy, or (2) Something huge has captured user 

attention.  

 Especially, when a majority of the user groups display the same minima together on 

some day, like on March 8th, 2012 (see Fig. 76), then it indicates focused attention within 

all the user groups to some potentially big event. On March 8th 2012,  every city in the 
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US (and most parts of the world) was trending #KONY2012, which was one of the 

largest online campaigns ever launched through social media
8
. The attention received by 

the event leads to the combined drop in volatility across all cities on March 8th (Fig. 

77).Within user groups of brand audiences, we noticed a strong relation between 

volatility and the user groups' reaction to these physical world events, as shown in Fig. 

76, where real-world events in 2012 were chosen for the visualization. Notice how Pepsi 

user group pays attention to anything involving Justin Bieber (Entertainment). 

  The categorical affinity within user groups, which we observed in Fig. 76, is 

triggered in this real world situation, causing audiences of Pepsi to strongly react to 

Entertainment events. Similarly, user group of Associated Press is very attentive to 

Politics and News. All user groups pay focused attention when there is an earthquake 

(emergency breaking news). 

 

 
Figure 76:        Variation of user group attention with real world events. The Attention Automaton uses the categorical 

affinity of user groups of  brands with varying volatility to reflect how audiences react to real world events, such as 

earthquakes, election results etc 

                                                 
8 Twitter trending #KONY2012 all day in every city significantly contributed to the campaign video receiving a record 60 million 

views in just 4 days! 



 183 

Volatility Signal-to-Noise ratio 

From the volatility time series of an user group, we can also infer that some user groups 

are always volatile (New York), while others are volatile only on few days (Salt Lake 

City). Volatility Signal-to-Noise ratio (VSNR) is a metric that captures how often an user 

group is volatile. Let    represent the volatility time series of some user group g, i.e., 

 

                                               

where t1 is a time instant and T is the number of slots over which the volatility was 

calculated (for a day T=288). Then, VSNR can be defined as: 

 

                           
        

             
                                                     

 It is evident why we call this signal-to-noise ratio, since it is basically the ratio of 

the mean to the standard deviation of the volatility  signal. VSNR gives us a single 

number representing the attention shift tendency of the user group. appendix axxdepicts 

VSNR across cities worldwide. We notice Tokyo, New York, Djakarta, London, Los 

Angeles have high VSNR. In comparison, Montreal, Glasgow, Johannesburg and 

Mumbai have low VSNR. There can be two explanations of this observation, (1) cities 

with high VSNR have greater diversity in tweeter profiles - thus lots of topics capture 

attention and/or (2) cities with higher VSNR are strongly linked to other user groups, 

allowing for much larger exposure to diverse information forcing high attention shifts. 
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Figure 77:        The volatility per day in some major US cities over a period of 5 months. Note the combined minima on 

March 8th, 2012 across all the cities, which is attributed to the #KONY2012 campaign 

Attention Shift Tendencies 

Consider the complex ecosystem where a set of user groups (agents) are consuming 

information. Each user group has some VSNR ( ), indicative of the perturbation of the 

user group caused by information flow in the underlying social network. Perturbance 

dynamics in complex networks suggest that there exists a feedback pattern created by the 

sub-structural network, such that the perturbation of each agent is directly or indirectly 

affected by another [87]. To put it simply, since the underlying social network governs 

information flow, the potential of information consumption (attention) of some user 

group depends on its connections to other user groups through which information reaches 

it
9
. Assuming all information produced is consumed within the social network, the 

attention shift tendency of an user group is the probability of consuming information 

(using attention) by the user group relative to the entire system. It can be defined as a 

simple ratio: 

                        
   

   
 
   

                              

where g' is some user group and G is the set of all user groups. Equation 46 gives us the 

probability of attention shift for some user group g' existing in a world of G groups. A 

                                                 
9 Observe from A that locations such as NYC, Los Angeles and London have high VSNR, potentially needing to consume the increased information 

flow attributed to the numerous social network links between users in these locations.  
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higher probability indicates the user group is potentially more likely to transition to a new 

state every time. 

 Category Affinity. User groups also behave differently to trends in different 

categories. For example, the audience of Pepsi is highly attentive to any trend about 

Entertainment, especially Justin Bieber, whereas user group of San Francisco is more 

attentive to trends in Gaming, such as the trend '#halo4'. We categorize trends over 15 

categories, based on whatthetrend.com and the category of the trend word in Wikipedia 

[112]. These categories are    {entertainment, gaming, lifestyle, science, sports, 

technology, business, spam, meme, conference or event, news, place or location, holiday 

or date and charity or cause }. 

 Follower Affinity. A similar selective affinity to trends is demonstrated in BT-TTL. 

Followers of specific accounts have selective congeniality to certain trend categories. Fig. 

78 shows the categorical distribution of trends that was observed in 3-months worth BT 

data for followers of four brands, namely Harvard, Burberry, Pepsi and Economist. 

 It is very interesting to notice how followers are receptive to certain category trends 

(larger bubbles in Fig. 78) and not so much to others. For example, Pepsi's followers are 

predominantly sensitive to trends in Entertainment whereas Burberry's followers do not 

care much about Sports. Moreover, notice that Harvard followers have a versatile set of 

categories they are interested in (many same sized bubbles in Fig. 78). Due to lack of 

space, we cannot provide all the charts. The main indication from this data is that user 

groups have selective categories they are attentive towards. Therefore, whether an user 

group allows an impending trend to enter its TTL is partially dependent on the category 

of the impending trend. 
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Transition Probability  

 As mentioned earlier, the transition probability determines the probability of a state 

transition in response to an action stimulus. In the previous sub-sections we describe two 

probabilistic random variables:  attention shift        and categorical affinity        for 

the user group g'. Note that although        has no concern for the action stimulus, 

       is fundamentally determined by the action. We know that the joint probability of 

two mutually independent random variables X and Y is given by: 

                   

In our scenario, the categorical affinity is assumed to be independent of the attention shift 

tendency, and thus, the transition probability can be considered a joint distribution, 

written as:  

                                                                    

which completes the transition relation mentioned earlier. 

 

 
Figure 78:        Distribution of categories for trends among followers of some brands. Size of bubble shows 

percentage of trends in the user group that belonged to a particular category 
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7.3 Applications 

7.3.1  Modeling Collective Attention in Geographical Communities 

Experimental Settings. To test the model, we first need to prepare a dataset of action 

trends. This is shortlisted from the trends data. Let all user groups be denoted by U. Let 

               represent the trends in the TTL of user group g' at time t. To test a particular user 

group g', we need to choose actions strings consisting of trends not currently in the user 

group. Note that these trends are competing simultaneously to be part of                    . For this 

purpose, we collect all the unique trends across all user groups U at time t that are not in 

              . We also record the number of times they have occurred in other TTLs. Thus, this 

gives us a set D of potential action trends: 

                

where            represents a trend along with the number of other TTLs it 

occurs in at t, i.e.                                    .  We collect the top-k trends in D 

and choose action strings of different sizes to feed to the automaton. The various action 

strings encompass the set of actions (mentioned in Section 4.1), which can be written as, 

         
                           

and     
 represents the standard notation of number of combinations of n items 

taking r at a time. The above equation selects combinations of m* items from the set K as 

action string. Empirically, we found that k =500 and         are good parameters 

for experiments. 

The overall purpose of the automaton is to predict most probable future states. 

The future state depends on the new trends introduced in the next TTL state          . At 

each time instant t,        defines the trends that are competing to make it to                    .  

However, only q new trends will eventually be in                    . In other words,                     

                  . The task of our evaluation is to correctly detect the q trends that will cause 
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the automaton to jump from state         to state           forced by the action string of q 

trends. Said alternatively, we need to detect the q trends which the automaton will accept 

out of all the competing trends; that essentially mirrors the actual TTL shift in the Twitter 

world at that time instant. 

Benchmarks. Lack of exact comparative work limits our options in selecting 

benchmarks. However, since this is a time series prediction scenario, we use the 

traditional Auto-Regressive Integrated Moving Average (ARIMA) model which is widely 

used in statistical analysis of time series with drift [113]. Given a time series, ARIMA 

can predict future values in the series. The model is generally referred to as an 

ARIMA(a,i,v) model where a, i, and v are non-negative integers that refer to the order of 

the autoregressive, integrated, and moving average parts of the model respectively. We 

use ARIMA(1, 2,1) to predict trends for future TTLs. The 'statmodels' python package 

was employed to implement ARIMA in our scenario (http://pypi.python.org). 

Additionally, we use a random selection scheme, where the predictor randomly 

chooses trends to appear in the next TTL. This benchmark is chosen to study if the trend 

shifts resemble random jumps. 

Metrics. Since the task is detecting a set of correct trends that mirrors the actual 

Twitter world TTL state transition, we can simply utilize the precision and recall metrics 

which are popular in information retrieval. Precision measures how many of the 

identified trends were actually in q. Recall measures how many of the q trends were 

retrieved. The harmonic mean of precision and recall is called F-Score, which is 

                                      and serves as our evaluation metric. A 

higher F-Score suggests higher accuracy of test results. 
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Figure 79:        F-scores obtained in testing different models on user groups based on brand following 

Results. We select 30 user groups of brands to perform similar experiments as the GT 

user groups. For each BT user group, half the time series is used for training and the other 

half for testing.  

Results are reported in Fig. 79 for ten of these brand user groups. The average F-Score 

achieved using the random method, the ARIMA model and the Attention Automaton is 

0.163. 0.317 and 0.552 respectively. Overall, the improvement using the Attention 

Automaton with respect to F-score was 238% over the random scheme and 74% over the 

ARIMA model. 

 One interesting observation is that the F-score improvement of the Automaton over 

ARIMA is different for different user groups. More precisely, Automaton performs  

61% better for user groups of EA, Pepsi, Burberry and Walmart compared to Harvard, 

Associated Press or CNN. We contribute this nature to the distribution of categorical 

affinity of user groups. User groups of Pepsi, EA and Bur-berry have small number of 

categories they have affinity towards, effectively reducing the decision space for 

prediction. As shown in Fig. 78, Pepsi has high affinity to 'Entertainment' trends. In 

contrast, user groups of CNN/Harvard have a large number of categories they have 

affinity towards. ARIMA lacks understanding of categorical affinity, as it is driven by the 
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statistical variation in the time series. Therefore, for user groups that have very high 

affinity to very few categories, the Attention Automaton performs significantly better 

than ARIMA/ 

 

7.3.2 Modeling Collective Attention in Geographical Communities 

Geographical Trend Initiation. For GT-TTL, a simplistic way to experiment categorical 

affinity of user groups is to find the location where a trend originated (first trended in the 

Twitter world) and note the category of that trend. We call this the trend initiation of an 

user group. Given trends in a category, we can observe the proportion of these trends that 

originated in some city, and normalize it by initiation in other cities worldwide. This 

provides us with a Normalized Initiation Score (NIS) between 0 and 1.  

 

 

Figure 80:        Initiation scores for trends in different categories across US cities 

In Fig. 80, we show the NIS for five major US cities. Notice most Gaming trends in the 

Twitter world originate in San Francisco whereas a significant portion of Business trends 

originate in New York. Somewhat surprisingly, Boston leads all these cities in generating 

political trends. 
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User Group Random ARIMA Automaton 

New York 0.18 0.33 0.45 

Los Angeles 0.17 0.30 0.49 

Baton Rouge 0.14 0.28 0.42 

Boston 0.19 0.34 0.48 

Paris 0.15 0.36 0.51 

London 0.14 0.27 0.43 

Dublin 0.16 0.32 0.54 

Atlanta 0.18 0.35 0.55 

San Francisco 0.13 0.31 0.50 

Glasgow 0.19 0.37 0.44 

 

Table 16.       F-scores obtained in testing different models on user groups in various geographical locations 

 

We randomly select 30 locations worldwide to perform these tests. The average 

F-score obtained using the Attention Automaton, ARIMA and Random models was 0.49, 

0.34 and 0.18 respectively. Overall, the F-score performance using the Attention 

Automaton was 44% better than ARIMA and 171% better than random selection. The F-

score of user groups in 10 out of the 30 locations chosen for testing is provided in Table 

16, which was generated using 3 months of the user group data for training and 3 months 

for testing.  
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CHAPTER 8:  CONCLUSION AND FUTURE WORK 

 

 

The age of Big Data is upon us; irrespective of how varied are its definitions by 

both camps - the ones who think it will be pivotal to our progress in understanding nature 

and humanity and the others who claim it is merely another technology bubble. However, 

we cannot deny its impact on our lives. Media hails Facebook as the world's biggest 

friend circle, Twitter as the world's biggest cocktail party, IBM's Watson as the 

breakthrough expert system and Google as the world's most intelligent search engine. 

Most major companies leverage huge amount data which they did not foresee two decade 

ago. Whether these titles will be held in the next decade is another story. Moreover, long 

standing technologies are being disrupted due to this data. SQL databases are no longer 

capable of efficiently handling this streaming data. Real time algorithms are winning the 

battle in almost every field ranging from finance to biology.  

More importantly though, I feel the urgent need of algorithms that can understand 

this data across different platforms, and in one word - make sense of it all. This grand 

challenge is non-trivial due to a many factors, including the fact that platforms do not 

want to share data freely. Different platforms also have different noise levels in data, 

vastly disparate features and dissimilar rates of data generation. To approach this 

problem, the first task would be to observe two key facts: (1) the data across domains 

have a semantic connection and might symbiotically assist the understanding of one 

another, and (2) data in some domains have traces of social touches by online users, 

giving us the power to leverage crowd-sourced information. The second task is to detect 

data domains that can work in synergy with one another. This thesis identifies such 

domains and enables machine learning algorithms to use data of one domain to augment 
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computational performance in another. Over the next paragraphs, we summarize how this 

is achieved in various chapters of this work.  

The various domains in which data can be used synergistically - that is the data of 

one domain can enrich the data in another is identified in Chapter 1. It also discusses the 

role of the multimedia with respect to this data, i.e. some of this data is natural language, 

some are stored as images, some videos and others in micro-texts format.  Learning from 

data in any domain is possible through machine learning algorithms, which are described 

in Chapter 2. This chapter also mentions the different formats of data and the challenges 

that algorithms must overcome to recover intelligent features from disparate data formats. 

Following this, each chapter picks up data from two domains and explains how a 

machine learning algorithm's performance can be improved by the cross-domain data 

usage.  

In Chapter 3, we propose a way to learn from social streaming data. Our Online 

Streaming LDA is able to scale with the bursty nature of Twitter while making sense of 

the noisy tweets. It creates an intermediate topic space, which can allow for bidirectional 

information exchange between Twitter and any other data domain. In Chapter 4, we use 

YouTube videos as the other domain and explain how this cross-domain information 

transfer actually happens. This chapter is critical to the thesis, it describes the very engine 

that can handle the fast Twitter stream, learn information in real-time and use it to 

augment video domain application performance. Specifically, three different video 

domain applications are shown to be boosted by this cross-domain information transfer 

and transformed into socially-aware media applications, namely, social video 

recommendation, social video popularity prediction and social query suggestion.  

Moving away from social and video data, Chapter 5 focuses on the Semantic 

Web, and ways to leverage semantic data in various diverse applications. We show how 
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semantic network data can be used to augment web page data, categorizing and 

predicting social trending topics and forecasting popularity of movies. Thus, here the 

cross-domain data involves semantic network data, social trends, movie data etc. In 

Chapter 6, we show how the semantic web data can be used to better understanding 

natural language data of search queries. We also computationally reanimate a cognitive 

psychology model in this chapter and use it for improved natural language processing. 

Finally in Chapter 7, we argue that all this data is creating an essential change in the 

world - ushering the age of attention economy, where there is too much information to 

pay attention to. As a result, users pay attention to few things, shifting between categories 

of information. We demonstrate how to build an automaton that can model these attention 

shifts in online social networks.  

 

 

8.1 The Cross-Domain Issue 

The Cross-Domain issue is deeply tied with the structure and evolution of the 

world wide web and major organizations dealing with huge amounts of data. All this data 

cannot potentially be located in a single platform, for business and technological reasons. 

Thus, data is spread across various domains on the Internet (Fig. 81). These different 

domains bear data which have dissimilar rates of generation, disparate feature space, 

formats, types and may reflect the physical world in different scopes.  

However, some of these domains possess data which have semantic connections 

and social undertones. This is observed in the way the data instances behave (e.g., in 

terms of life length, popularity etc. ). Thus, data from two domains can be sometimes 

used synergistically - allowing performance of algorithms in one domain to be boosted by 

using some data from another domain.  
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The usage of this cross-domain data requires intelligent understanding of the 

feature space, in addition to the combinatorial alignment of features that results in 

performance improvement and avoids negative information transfer.   

 

 

Figure 81:        Multimedia is available in different formats, and domains often specialize in generating data  

           of one format.  

 

 

8.2 The Information Transfer Issue 

Once data domains are detected, we need to build a technique to efficiently 

transfer this information across domains. In most situations, this is dependent on (1) the 

source domain, (2) the target domain and (3) the algorithm being used in the target 

domain to improve performance. In other words, different machine learning algorithms 

handle data differently, and seamlessly associating cross-domain data into them might be 

tricky.  
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The need for information transfer is critical to the progress of computing in 

general, where algorithms are intelligent to analyze disparate data streams efficiently. It is 

important we learn to semantically connect a tweet, an image, a video, a Wikipedia 

article, a gif  and match it to a search query by some user, in real-time, taking into 

account social network of the user. This is how collective intelligence will become 

reality, where the algorithms are not bound by same data distributions and features 

(which is a current problem with most machine learning algorithms). 

Finally, we must understand that if the human brain is an organic computer, then 

it has a very efficient information transfer technique. We learn the basics and school and 

at an young age, which we use and re-use as modules in several tasks of growing 

complexity and difficulty. The human mind is exceptional at detecting data domains that 

can be used together to solve a task, and how information in this cross-domain data can 

be seamless combined in a learning process. If computational intelligence is ever to reach 

the levels of human intelligence, it must make sense of cross-domain data in real-time 

and find efficient techniques of transferring information.  

 

 

8.3 Future Work 

I believe this work will open several avenues of future research. (1) Firstly, the 

intermediate topic space we built in Chapter 3 can be made richer by connecting topics 

using semantic information from semantic networks. Questions still remain as to how we 

can archive older topics to make space for new ones. (2) Secondly, I leave it to future 

researchers to find applications were social information inclusion will boost performance, 

beyond the domain of video relevancy and popularity prediction. (3) Visualizing data 

across domains and how information transfer takes place will be very important in 
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edutainment. (4) During my research with social trends, I found traces of proof that 

trends originate and initially appear across various geographical locations in a near-

chaotic order (before they are global trends), and then reach a tipping point after which, 

they explode into global trends. An example of this is shown in Fig. 82, where a social 

trend breaks the tipping points and starts trending globally, instead of just in a few cities. 

What makes a trend reach the tipping point? Is there a critical order to reach the critical 

point?  

 

 

Figure 82:        The tipping point after origin, after which a trend becomes global/national and starts trending   

             in all cities 

 

(5) Finally, while analysis social trend signals in Chapter 4 and 7, we came to the 

conclusion that some properties of the network might be encoded in the trend signal. 

Thus analyzing the trend signal can give us information about the dynamic information 

transfer within the network itself. This is a fascinating perspective, wherein a network 



 198 

can then be analyzed without relying solely on graph theory. Instead, we could perform 

signal analysis on the trend signal to attain information about the network.   

 

 

8.4 Last Impressions 

As a collection of last impressions, I would like to elucidate the broader impact of my 

research. Here we discuss some deeper questions from three perspectives:  (1)  the value 

of this research beyond computer science, in other scientific and non-scientific fields of 

education, (2) the socio-cultural connotations of the thesis, and (3) the philosophical 

essence of the thesis. 

Value of the research beyond Computer Science, in other scientific and humanities 

domains:  

  --In Digital Media (detecting popular content): One of the key metrics used in 

evaluating the quality of digital media is the popularity of the corresponding published 

work among the circulation masses. Popularity is a result of widespread exposure, 

collective attention and information cascades. In Chapter 3, we demonstrate how to detect 

popular topics in Twitter using OSLDA. Many popularity signals with reference to 

Twitter trending topics are transferred across domains, like YouTube, where content 

related to trending topics gains popularity (such as more view counts) - as shown in 

Chapter 4. Most of Chapter 7 is also devoted to measuring collective attention of users 

towards various digital media (and other) brands boosting popularity of such content.  

 --In Journalism (spotting news stories quickly using OSLDA) : One of the most 

desired applications of news editors is a tool that allows them to quickly figure out what's 

'news', so they can share the story with the world. Sadly, most editors still need to spend 

long hours reading through posts on Reddit/Digg or Twitter to figure out what news they 
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should feature on their publishing sites. In Chapter 3, we describe the OSLDA algorithm 

which can learn and score trending topics from Twitter. The corresponding software can 

recommend news articles/tweets that are being shared/RT-ed a lot, and is being used by 

editors (news and social media) to decide what content is worth featuring on their news 

sites.   

 -- In Cultural Anthropology (evolution of TIME magazine topics) : Culture 

encompasses the range of human phenomena which are not manifested by genetic 

inheritance. Fundamentally, cultural anthropology studies the cultural variation of 

humans, in various communities and over time. In Chapter 5 (pages 86-99), we discuss 

the evolution of topics as featured on the cover page of the TIME magazine. We claim 

these topics have enough socio-cultural importance, given that the magazine has the 

largest circulation for a weekly news magazine.  

 -- In Sociology (social attention, persistence etc.) : Sociology is the systematic 

study of human social actions. A significant portion of this thesis is devoted to 

understanding the concept of 'social attention' caused by interaction among social agents 

on some multimedia content shared in social media. Most prominently in Chapter 5 

(pages 100-105), we explore the spatio-temporal evolution of social trends, which 

involves developing a model that can answer some key questions about social attention - 

what persists, what is likely to reappear, what spreads furthest and what user groups are 

most receptive to changing trends.  

 -- In Linguistics (computational cognitive model) : The scientific study of 

language has an extremely wide range of impressive work. One existing challenge 

involves an intuitive explanation of what makes humans highly robust (can easily 

understand/comprehend) to noisy sentence constructions (which deviate from 

grammatical rules), whereas machines fail to make sense of such sentences. In Chapter 6, 
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we propose a cognitive model to reason and provide empirical proof that adaptation and 

robustness to noise in sentences constructions can be achieved by adjusting the resolution 

at which semantics needs to be extracted from the sentence. This conceptual abstraction 

was computationally modeled and proves to be significantly better than some state-of-

the-art techniques in natural language processing (NLP).  

-- In performing arts (movie genome communities) : The movie genome community 

detection described in Chapter 5 (pages 106-122) shows a novel way in predicting the 

ingredients that comprise a likable movie. It could be an interesting tool for movie 

studio/network producers and actors to gauge the potential of a movie based on its 

genetic composition of the movie before they commit to making the movie. 

Socio-Cultural Connotations:  

 In this part we focus on the socio-cultural effects of this work and how it 

improves our understanding of the human condition. The Time magazine analysis gives 

us a comprehensible depiction of what topics have affected human lives over decades. 

For example, it is remarkable to notice how less we were concerned about the 

environment before 1950s or the somewhat sad but decreasing interest in theater over 

time (Appendix A2, pg. 205).  

 Further, remember that 'memes' are often called the unit of culture. Memes are 

very commonly found on Twitter as trending topics, and thus measures like 'persistence', 

'recurrence' described in Chapter 5 give us information about their growth-decay patterns 

- explaining the human condition around ideas that quickly capture our attention. This 

also concerns the concept of social contagion theory, which was mentioned as one of the 

future works in this thesis. 

 Another factor that led to socio-cultural evolution was language, which helped us 

to communicate. One continual topic of scholarly discussions for centuries has been the 
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question on the origin of languages. Language is important for a key human ability - 

communication and thinking. The minimalist theory of Chomsky proposes that there 

must be a minimal generative grammar that lexically assures fixed sentence structure for 

comprehensible meaning. However, humans can understand mis-constructed sentences 

surprisingly well. Thus arose the field of cognitive linguistics, which argues that principal 

linguistic phenomena such as syntax is essentially conceptual in nature - i.e. humans 

recognize grammar in terms of conceptualization and not purely lexical constructs. One 

computational implementation of cognitive linguistics is described in Chapter 6, where 

we re-create the 'Structure-of-Intellect' model computationally to extract semantics from 

natural language search queries. 

 Finally, in Chapter 7, we show empirical proof of evolution of social dynamics as 

users respond to real-world events by tweeting about them on Twitter. Social dynamics is 

a critical component of the human condition - our behavior governed by not only the 

physical reality but also the digital activity of individuals. Exploring the aggregate 

behavior of a group of users based on their location or their preference for some 

brand/company can answer interesting sociological questions about the global yet 

dispersed attention spans of such communities within the set of human population which 

are digitally connected. 

Philosophical Essence:  

  Let us discuss the philosophical spirit of this thesis in terms of its impact to the 

scientific way, humanity and existence. I think my research addresses a fundamental 

question of epistemological philosophy - the question of 'knowledge that, knowledge how 

and knowledge acquaintance'. For example, in mathematics we possess the 'knowledge 

that' 3+3 =6, then the 'knowledge how' the + operator works and the 'knowledge 

acquaintance' that 3 dogs + 3 cats does not make 6 dog-cats. 
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 The 'knowledge that' data from one domain can improve performance in another 

domain is covered in most chapters of this thesis, for example from Twitter to Video 

domain, or from Semantic Web to Natural Language domain. Then comes the question of 

'knowledge how' , i.e. how do we transfer this knowledge. Recall that SocialTransfer 

shows us how to transfer the knowledge. Finally, the 'knowledge acquaintance' topic 

always rests in the background, which is why we do not claim social media data can help 

understand brain FMRI (functional magnetic resonance imaging) data. The final claim 

might be proved wrong, since 3 dogs + 3 cats does make 6 animals - similarly someday 

social media data might help us understand brain signals better. 

 In truth, the reality of human existence is strongly dependent on our perception 

through senses. The sensory information has different features (image/sound etc.), 

however, it is in our potential of combining these disparate data and making sense of it is 

what makes us a strong species. Making sense of what we perceive is the task of the 

knowledge gathered from our experiences. This knowledge must be transferred across 

various layers, starting in detecting which two pockets can be combined, how to combine 

them and how to store it and utilize in future applicable scenarios. 

 Returning from broader discussions to the Computer Science, I strongly believe 

that understanding of the philosophy of Computer Science is more important than ever in 

the modern world, given its ubiquitous applicability in our present existence. Our world 

is clandestinely governed by data and algorithms, ensuring we have a safe flight between 

cities, alleviating our surprise when it snows, assuring us of safely performing online 

banking transactions and guiding the Curiosity mars rover 140 million miles away from 

Earth. Thus, it is extremely important to study different types of data and understand how 

algorithms can be modified or reinvented to deal with them using both social and 

semantic structures. 
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APPENDIX A:  VISUALIZATIONS 

 

 

 
A1.  The dynamic evolution of the topic network for the Time magazine 

articles.  
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A2.  The topic signals for various categories in the Time magazine articles.  

 

 

 

 
 



 206 

 
 

 

 



 207 

 
 

 

 
A3.  The timeline of trend categorization using semantic web and decision 

trees described in Chapter 5   
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A4.  Community in the movie genome co-occurrence network 

 

 
 

 

 
A5.  The Volatility-signal-to-noise ratio at various geographical locations 

 

 

 
 
 

 

 

 



 209 

A5.  Spread of trend '#stopkony' 
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