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5.1 The proposed Normal Vector Pattern (NVP) feature is robust to the

viewing angle variation, one of major causes of intra-class variations.

Top : Two pairs of RGB and depth images for the same coffee mug. Each

pair corresponds to a view angle. The yellow rectangles locate the exact

same region of the coffee mug from which we extract the depth feature.

Middle: the current state-of-the-art depth descriptor—Histogram of Ori-

ented Normal Vector(HONV) [4, 5] on the two depth images. Bottom:

one histogram of our NVP feature on the two depth images (NVP contains

certain number of histogram, each behaves with the view-angle invariant

characteristics). The proposed NVP adopts the 2D histogram quantization

as HONV, but bases on fundamentally different angles, explained in Sec-

tion 5.4. Thus as we could see from the figure, the NVP histograms for the

two view angles are quite similar. Especially the domain bins almost keep

the same. In contrast, the HONV histograms are totally different in these

two view angles. So clearly NVP has the advantage of view-angle invari-

ance. With this metric, NVP outperforms the prior art HONV [4] by 12%

in Mean Average Precision on standard Washington RGB-D dataset [6]. . . 66
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5.2 Example showing the discriminative characteristics of NVP. For bet-

ter illustration, in this example, we assume that the three different surfaces

are all perpendicular to the “Y-D” plane. Top: The left image shows the

three surfaces in the “XYD” 3D space. While the right image gives out

the three surfaces from the viewpoint that is perpendicular to “Y-D” plane.

The red arrows here show the orientations of surface normal vectors. Mid-

dle: The 2D histogram of surface normal HONV [4] on the 3 surfaces.

In [4], the normal vector is represented by its two angles, azimuthal an-

gle ϕ and zenith angleθ. Bottom: The 2D histograms of the proposed

NVP on the three surfaces. The 2D histogram of NVP is determined by

two different angles α and β, explained in Section 5.4.2 & Section 5.4.3.

The HONV [4] counts the normal vectors in the surface independently and

discards their location information. Therefore it cannot distinguish these

three surfaces. In contrast, the proposed NVP not only captures how large

the surface varies but also describes the shape of the surface,e.g., concave,

convex, etc. Therefore it is able to differentiate the three surfaces. . . . . . . 68

5.3 The inner product and the cross product of neighboring normal vec-

tors. Suppose the local surface are S1 and S2. The angle α is the an-

gle between the two neighboring normal vectors ñ1 and ñ2, shown in the

left image. While c represents the cross product vector of ñ1 and ñ2.The

right image shows the cross product in the “XYD” coordinate system. The

Kinect sensor locates at the view position O, and the “X-Y” plane is al-

ways parallel to the sensor plane. The azimuthal angel and zenith angle of

c are denoted by β and γ. Finally we use α, β to define NVP. The yellow

arrows in the right image represent the three types of rotation: Pan, Tilt,

Roll. Based on the three kinds of rotation, we did the analysis why we keep

β instead of γ. The details are explained in Section 5.4.2. . . . . . . . . . . 72
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5.4 Examples showing the importance of angle β. The two surfaces are sym-

metric to the “X-Y” plane. Thus the relative angles α and α′ are the same.

As a result, you can not distinguish the “concave” surface 1 and “convex”

surface 2. Fortunately, with the help of the cross product vector C and C′

(or more specifically, the different β angle as shown in Figure 5.3 ), we

could easily differentiate these two surfaces, explained in Section 5.4.2. . . 73

5.5 Examples showing the β angle is not sensitive to the view angle change.

In the left image, the cross product vector of the two local surfaces is de-

noted as red arrow C on the 3D surface. Supposing the original view angle

of the Kinect sensor is O, we could move the sensor horizontally to the

position O1 with view angle change 4ω1, or we could also move the sen-

sor vertically to the position O2 with view angle change 4ω2. No matter

how the sensor rotates, the Depth axis of our “XYD” coordinate system is
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ABSTRACT

We have observed significant advances in object detection over the past few decades

and gladly seen the related research has began to contribute to the world: Vehicles could

automatically stop before hitting any pedestrian; Face detectors have been integrated into

smart phones and tablets; Video surveillance systems could locate the suspects and stop

crimes. All these applications demonstrate the substantial research progress on object de-

tection. However learning a robust object detector is still quite challenging due to the fact

that object detection is a very unbalanced big data problem.

In this dissertation, we aim at improving the object detector’s performance from dif-

ferent aspects. For object detection, the state-of-the-art performance is achieved through

supervised learning. The performances of object detectors of this kind are mainly de-

termined by two factors: features and underlying classification algorithms. We have done

thorough research on both of these factors. Our contribution involves model adaption, local

learning, contextual boosting, template learning and feature development. Since the object

detection is an unbalanced problem, in which positive examples are hard to be collected,

we propose to adapt a general object detector for a specific scenario with a few positive

examples; To handle the large intra-class variation problem lying in object detection task,

We propose a local adaptation method to learn a set of efficient and effective detectors for

a single object category; To extract the effective context from the huge amount of negative

data in object detection, we introduce a novel contextual descriptor to iteratively improve

the detector; To detect object with a depth sensor, we design an effective depth descriptor;

To distinguish the object categories with the similar appearance, we propose a local feature

embedding and template selection algorithm, which has been successfully incorporated

into a real-world fine-grained object recognition application. All the proposed algorithms

and features have achieved state-of-the-art performances on extensive object detection and

recognition benchmark datasets.
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Chapter 1

Introduction

Among various approaches to object detection, the sliding window approach [7, 8] domi-

nates due to its good performance [9, 10, 11, 12, 13, 14], efficiency [7, 15], parallelizability,

and easy implementation. The sliding-window-based detectors treat the object detection as

a classification problem: The whole image is densely scanned from the top left to the bot-

tom right with rectangular scanning windows of different sizes. For each possible scanned

rectangle, certain features such as edge histogram, texture histogram, or wavelet coeffi-

cients, are extracted and fed to an offline trained classifier using labeled training data. The

classifier is trained to classify any rectangle bounding an object of interest as a positive

sample and to classify all other rectangles as negative samples.

The performances of sliding-window-based detectors are mainly determined by two

factors: the feature and the underlying classification algorithm. In this dissertation, we aim

at improving the performance of object detectors by researching on both of these factors.

We start from investigation on the aspect of the underlying classification algorithm. Many

supervised learning algorithms such as various boosting algorithms [7, 16, 17], SVM of

different flavors including linear, kernel, multi-kernel, latent, structured, etc. [8, 12, 14, 9,

13], and Convolutional Neural Networks (CNN) [18], have been applied to object detection

during the past decade.
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However the performance of supervised learning algorithms heavily depends on the

labeled training dataset. For a specific classification task, a generic classifier trained with

the data collected from various environments may only achieve fair performance because

it has to accommodate the extensive dataset. Whereas the classifier trained using only the

data sampled from the testing environment tends to overfit the training data and perform

poorly if the variation of the testing dataset is big. This is the trade-off we have to balance

in practical applications; we can adapt a generic classifier to a specific task, but we have to

tune the adaptation rate according to different application scenarios.

Although the performance of an offline-trained classifier can be improved on-site by

adapting the classifier, the performance gain is substantially affected by the adaptation rate.

Poor selection of the adaptation rate may worsen the performance of the original classifier.

Therefore, automatic model adaptation for classification tasks is an important problem with

great application value.

Various model adaptation approaches [19, 20, 21, 22, 23, 24, 25] have been proposed

under the scenarios of online learning for detection/tracking tasks. Zhang et.al. [26] ele-

gantly formulate the model adaption problem as an optimization problem on the combined

cost function of the old dataset and the new dataset. The cost function of the old dataset

is approximated with its second order Taylor expansion to alleviate the storage burden and

computational complexity. However, in their work, the adaption rate is an empirical pa-

rameter affects the adaptation performance significantly and demands careful fine tuning.

To avoid tuning the important adaptation rate parameter, we propose a conservative

model adaptation method [27] by considering the worst case during the adaptation process.

We first construct a random cover of the set of the adaptation data from its partition. For

each element in the cover (i.e. a portion of the whole adaptation data set), we define the

cross-entropy error function in the form of logistic regression. The element in the cover

with the maximum cross-entropy error corresponds to the worst case in the adaptation.

Therefore we can convert the conservative model adaptation into the classic min-max op-
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timization problem: finding the adaptation parameters that minimize the maximum of the

cross-entropy errors of the cover. Taking the object detection as a testbed, we implement an

adapted object detector based on binary classification. Under different adaptation scenarios

and different datasets including PASCAL, ImageNet, INRIA, and TUD-Pedestrian, the pro-

posed adaption method achieves significant performance gain and is compared favorably

with the state-of-the-art adaptation method [26] equipped with the fine tuned adaptation

rate. Without the need of tuning the adaptation rates, the proposed conservative model

adaptation method can be extended to other adaptive classification tasks.

With the help of proposed Min-Max model adaptation algorithm, we move on to address

another learning problem: striking a good balance between model complexity and learning

capacity.To ensure the detector has enough learning capacity to learn from training data and

can be generalized well, people frequently resort to the Occam’s razor principle [28, 29]

to select underlying classifiers: we want to pick up a classifier, as simple as possible, with

good performance on training data. With a spectrum of classifiers with different model

complexity, is it possible to automatically pick up a classifier with appropriate complexity

and to learn the corresponding model parameters? When the distribution of data in the

input space is uneven, local learning algorithms can adjust the learning capacity locally to

improve the overall performance. Zhang et.al. [30] proposed SVM-KNN that successfully

tackles the problem of high variance of the data complexity in the input space, at the ex-

pense of high computational complexity. Similar idea was introduced in [31]. These local

learning algorithms are superior in adjusting the learning capacity according to the local

data distribution.

However, the local learning algorithms have three difficulties in real world applications:

First, probing the local data distribution is very expensive. For example, both of the local

learning algorithms [31, 30] rely on the K-Nearest Neighbor (KNN) algorithm to guide

the local classifier. This probing procedure limits the application of the local learning

algorithms in large scale learning practice such as object detection. Second, the localities
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depend on data distributions: a region with a simple distribution should be covered with a

relatively small number of local classifiers whereas a region with a complicated distribution

should be covered with a large number of local classifiers. The “K” in KNN algorithm is

a constant and cannot fulfill such an adaptive task. Third, the performance of a local

classifier relies on the population of the cluster. Complicated distributions may lead to

low-population clusters, making the corresponding local classifier under trained.

To tackle the difficulties above, we developed a hybrid learning algorithm combining

the global classification and the local adaptations, which automatically adjusts the model

complexity according to the data distribution. As sketched in Figure 3.1, we divide the

data samples into two groups, easy samples and ambiguous samples, using a learned global

classifier. A local adaptation approach based on spectral clustering and Min-Max model

adaptation is then applied to further process the ambiguous samples. The idea behind the

proposed hybrid algorithm is straightforward: 1) Easy regions do not need local learning;

2) The local classifier can leverage on global classifier to avoid under-training; 3) Data in

hard regions can be automatically clustered based on their affinity matrix using acceler-

ated spectral clustering. Taking human detection as a testbed, under different scenarios and

datasets, including Caltech pedestrian dataset [3], self-collected large pedestrian dataset,

and INRIA dataset [8], the proposed hybrid learning method achieves significant perfor-

mance gain. Compared with 11 state-of-the-art algorithms [3] on Caltech, the proposed

approaches achieves the highest detection rate, outperforming the deformable part based

algorithm [9] 17% at FPPI=1. Additionally, without the need of tuning parameters, the

proposed algorithm automatically generates the optimum group (verified by brute force

enumeration) of local classifiers for different scenarios, which makes the algorithm easily

be extended to different object detection tasks.

Besides the great effect of algorithm design in object detection task, the feature design

also plays an important rule. Currently context has been playing an increasingly impor-

tant role to improve the object detection performance, especially the context information
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from the surrounding area of a target object. However the different surrounding scenarios

make it hard to extract useful contextual feature. To handle this, we propose an effective

representation [32], Multi-Order Contextual co-Occurrence (MOCO), to implicitly model

the high level context using solely detection responses from a baseline object detector. The

so-called (1st-order) context feature is computed as a set of randomized binary compar-

isons on the response map of the baseline object detector. The statistics of the 1st-order

binary context features are further calculated to construct a high order co-occurrence de-

scriptor. Combining the MOCO feature with the original image feature, we can evolve the

baseline object detector to a stronger context aware detector. With the updated detector,

we can continue the evolution till the contextual improvements saturate. Using the suc-

cessful deformable-part-model detector [33] as the baseline detector, we test the proposed

MOCO evolution framework on the PASCAL VOC 2007 dataset [10] and Caltech pedes-

trian dataset [34]: The proposed MOCO detector outperforms all known state-of-the-art

approaches, contextually boosting deformable part models (ver.5) [33] by 3.3% in mean

average precision on the PASCAL 2007 dataset. For the Caltech pedestrian dataset, our

method further reduces the log-average miss rate from 48% to 46% and the miss rate at 1

FPPI from 25% to 23%, compared with the best prior art [35].

While color image based detection systems are very popular, depth sensor based de-

tection systems have many advantages such as easy foreground segmentation, insensitivity

to illumination variation and texture/background clutter. So we also investigate the depth

sensor based object detection problem. For object detection with a depth sensor, feature

design is also a key problem. We thus propose an effective feature, Normal Vector Pattern

(NVP), designed exclusively for object detection with a depth sensor. The trade-off that

a feature can achieve between the discriminative power and the invariance is essential for

the classification performance: a superior feature should be discriminative enough to de-

tect inter-class variations, whereas the feature invariance minimizes the disturbance caused

by the intra-class variations. This feature trade-off depends on both the sensor type and
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the application. For the depth sensor based object detection task, the proposed NVP is a

successful attempt due to its two components: the cross products of neighboring normal

vectors induce the discriminative power and the inner products of the normal vectors lead to

the view-angle invariance. The superiority of the proposed NVP is evident: with a simple

linear SVM model, the proposed framework outperforms the state-of-the-art features based

on more complicated models such as the deformable parts model on standard Washington

RGB-D [6] and NYU benchmark datasets [36].

Finally for object detection in big data, it is hard but important to distinguish an object

category from similar categories. This problem belongs to fine-grained object categoriza-

tion problem. If not tackle carefully, these similar object categories will affect the detec-

tion accuracy substantially. We research this problem with a real-world application: font

recognition. Since fonts appear quite similar and have thousands of categories, it is a per-

fect problem to evaluate the fine-grained object categorization problem. We addresses the

large-scale visual font recognition (VFR) problem, which aims at automatic identification

of the typeface, weight, and slope of the text in an image or photo without any knowl-

edge of content. Although visual font recognition has many practical applications, it has

largely been neglected by the vision community. To address the VFR problem, we con-

struct a large-scale dataset containing 2,420 font classes, which easily exceeds the scale of

most image categorization datasets in computer vision. As font recognition is inherently

dynamic and open-ended, i.e., new classes and data for existing categories are constantly

added to the database over time, we propose a scalable solution [37] based on the nearest

class mean classifier (NCM). The core algorithm is built on local feature embedding, local

feature metric learning and max-margin template selection, which is naturally amenable to

NCM and thus to such open-ended classification problems. The new algorithm can gener-

alize to new classes and new data at little added cost. Extensive experiments demonstrate

that our approach is very effective on our synthetic test images, and achieves promising

results on real world test images.
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Our contributions are in five-folds: 1) we propose a model adaptation algorithm that

without the need of tuning the adaptation rates, the algorithm achieves significant perfor-

mance gain and is compared favorably with the state-of-the-art adaptation method with the

fine tuned adaptation rate. 2) we develop a hybrid learning algorithm that enables the appli-

cation of local learning algorithm in large-scale tasks; 3) we propose a contextual feature

which enhances the detection performance by iterative evolution. 4) we propose an effec-

tive depth descriptor to improve the object detection with a depth sensor. 5) we propose a

local feature embedding and template selection algorithm to distinguish object categories

sharing similar appearance.

7



Chapter 2

Object Detection by Adaptation:
Min-Max Model Adaptation

2.1 Overview

Object detection is an unbalanced problem, in which positive examples are hard to collect

and label. Thus in this chapter, we focus on adapting a general object detector for a specific

scenario with a few positive examples. As we know, the performance of an offline-trained

classifier can be improved on-site by adapting the classifier towards newly acquired data.

However, the adaptation rate is a tuning parameter affecting the performance gain substan-

tially. Poor selection of the adaptation rate may worsen the performance of the original

classifier. To solve this problem, we propose a conservative model adaptation method [27]

by considering the worst case during the adaptation process. We first construct a random

cover of the set of the adaptation data from its partition. For each element in the cover

(i.e.a portion of the whole adaptation data set), we define the cross-entropy error function

in the form of logistic regression. The element in the cover with the maximum cross-

entropy error corresponds to the worst case in the adaptation. Therefore we can convert the

conservative model adaptation into the classic min-max optimization problem: finding the
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adaptation parameters that minimize the maximum of the cross-entropy errors of the cover.

Taking the object detection as a testbed, we implement an adapted object detector based on

binary classification. Under different adaptation scenarios and different datasets including

PASCAL, ImageNet, INRIA, and TUD-Pedestrian, the proposed adaption method achieves

significant performance gain and is compared favorably with the state-of-the-art adaptation

method with the fine tuned adaptation rate. Without the need of tuning the adaptation rates,

the proposed conservative model adaptation method can be extended to other adaptive clas-

sification tasks.

2.2 Introduction

The performance of supervised learning algorithms including various flavors of SVM [28,

25], boosting [38, 39, 40, 7], neural networks [41, 18], heavily depends on the labeled

training dataset. For a specific classification task, a generic classifier trained with the data

collected from various environments may only achieve fair performance because it has

to accommodate the extensive dataset. Whereas the classifier trained using only the data

sampled from the testing environment tends to overfit the training data and perform poorly

if the variation of the testing dataset is big. This is the trade-off we have to balance in

practical applications; we can adapt a generic classifier to a specific task, but we have to

tune the adaptation rate according to different application scenarios.

Although the performance of an offline-trained classifier can be improved on-site by

adapting the classifier, the performance gain is substantially affected by the adaptation rate.

Poor selection of the adaptation rate may worsen the performance of the original classifier.

Therefore, automatic model adaptation for classification tasks is an important problem with

great application value.

To solve this problem, we propose a conservative model adaptation method by con-

sidering the worst case during the adaptation process. We first construct a random cover
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of the set of the adaptation data from its partition. For each element in the cover (i.e. a

portion of the whole adaptation data set), we define the cross-entropy error function in the

form of logistic regression. The element in the cover with the maximum cross-entropy

error corresponds to the worst case in the adaptation. Therefore we can convert the con-

servative model adaptation into the classic min-max optimization problem: finding the

adaptation parameters that minimize the maximum of the cross-entropy errors of the cover.

Taking the object detection as a testbed, we implement an adapted object detector based on

binary classification. Under different adaptation scenarios and different datasets including

PASCAL, ImageNet, INRIA, and TUD-Pedestrian, the proposed adaption method achieves

significant performance gain and is compared favorably with the state-of-the-art adaptation

method with the fine tuned adaptation rate. Without the need of tuning the adaptation rates,

the proposed conservative model adaptation method can be extended to other adaptive clas-

sification tasks.

The remainder of the chapter is organized as follows. Sec. 2.3 formulates the adaptation

cost as the cross-entropy error function. Converting the adaptation in the worst case into an

classical min-max optimization problem is discussed in details in sec. 2.4. Experimental

results are presented and discussed in Sec. 2.5. Finally we draw the conclusion in Sec. 5.6.

2.3 Cross-Entropy Error as the Adaptation Cost

To train a classifier, positive and negative examples are given as a training dataset S =

{(xk, yk), k = 1, . . . , K, (xk, yk) ∈ X × Y)}, in which yk is the label of the example xk.

If xk is a positive example, yk = 1 and yk = 0 if it is a negative example. A parametric

learning algorithm is then applied on S, to find the decision function:

Z = F (X|w), (2.1)
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where w is the parameter vector of the trained classifier. In Eq.(2.1), each z ∈ Z is a

mapped label of the corresponding example x ∈ X . Usually, w should be optimized

according to a cost function defined to measure the classifier performance over the training

dataset:

C(Z,S) = C(F (X|w),S). (2.2)

During the model adaptation, the parameter vector of the classifier trained on old dataset

S(o) is used as the initial parameter vector, denoted as w(o). With a labeled dataset S(n)

(also called as adaptation dataset) collected from a new environment, we want to obtain

an adapted classifier with the updated parameter vector w(n), which performs better in the

new environment. That is to find the parameter vector minimizing the cost function on the

new dataset S(n):

w(n) = arg min
w

C(n)(w) (2.3)

There exist many formulations to define the cost function, among which we choose

logistic regression [42] for its good performance, applicability, and popularity. Specifically,

for a data set S = {(xk, yk), k = 1, . . . K}, the likelihood of an example xk being a positive

example is:

pk =
1

1 + exp{−Score(xk,w)}
, (2.4)

where the Score(xk,w) is the confidence score of the example xk computed by the classi-

fier with the parameter vector w. Therefore, the likelihood function of the whole data set

can be written as:

P =
K∏
k=1

pykk (1− pk)1−yk . (2.5)

We define the cost function by taking the negative logarithm of the likelihood; this
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definition leads to the cross-entropy error function:

C = − 1

K
lnP = − 1

K

K∑
k=1

{yk ln pk + (1− yk) ln(1− pk)}. (2.6)

The entries of the gradient vector OC(w) and the Hessian matrix HC(w) of the cost

function can be computed as:

∂C

∂wj
=

1

K

K∑
k=1

xk(j)(pk − tk), (2.7)

and
∂2C

∂wi∂wj
=

1

K

K∑
k=1

pk(1− pk)xk(i)xk(j), (2.8)

where xk(i) is the ith entry of the feature vector xk.

2.4 Model Adaptation as Min-Max Optimization

The model adaptation problem aims at adapting a previously trained detector, to fit new

data with a distribution different from the one of the data used to train the original detector.

The distribution of the new data determines the adaptation rate. If the variation within

th new data is small, i.e. the new data are relatively similar to each other, we should

set a high adaptation rate. On the other hand, if the variation within th new data is big,

that means fast adaptation to the new data is risky since we cannot estimate the new data

distribution robustly; we have to set a low adaptation rate to avoid overfitting. But how do

we estimate the variation of new data? We can randomly split the whole new data in to

many overlapped subsets and watch the differences among these subsets: big differences

indicate large variation and vice versa.
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2.4.1 Constructing a random cover from the adaptation dataset

To estimate the data variation of the adaptation set S(n), we randomly divide it into M

small partitions:

S(n) =
M⋃
i=1

S(n)i , (2.9)

constrained by the non-intersection condition:

S(n)i ∩ S(n)j = ∅, for i 6= j, (2.10)

where i, j = 1, . . . ,M .

With this random partition, we construct an N -element random cover of S(n), denoted

as {G1, G2, . . . , GN}, as illustrated in Figure 2.1:

Gj =
⋃
i∈Ej

S(n)i , (2.11)

for j = 1, . . . , N − 1, and

GN = S(n) −
N−1⋃
j=1

Gj, (2.12)

where Ej ⊂ {1, . . . , N} is a random subset.

This random cover construction avoids the complete enumeration of the power set of

the partition (i.e., the uniform sampling), which leads to huge computation.

2.4.2 Min-Max objective function

Since direct evaluate the data distribution on each element (i.e., each Gj) of the random

cover is very difficult, we resort to evaluate the cost function on the Gj . We denote the cost

functions on the old dataset and the adaptation dataset asC(o)(w) and C(n)(w) respectively.

For eachGj , the corresponding cost function is denoted as Cj(w). Their logistic regression
13



Figure 2.1: The construction of the random cover of the adaptation dataset. Each small
block represents S(n)i , an element of the partition. The Gj’s could have different size and
overlap with each other.

formulation is given in Eq. (2.6).

Different from previous methods which update parameter vector w through minimiz-

ing the C(n)(w), we propose a conservative adaptation approach, to guarantee that the

adapted detector performs relatively well even when the adaptation dataset has scattered

data distribution. During the adaptation, we focus on updating the parameter vector w to

improve the detector’s performance on theGj with the largest cost function, i.e., the biggest

cross-entropy error. Therefore, we formulate the conservative adaptation into a min-max

problem:

w = arg min
w

(
max
j

[
Cj(w)

])
. (2.13)

Do solve this min-max problem, at each adaptation iteration, we define the cost function

on the adaptation dataset as

E(w) = max
j

[
Cj(w)

]
. (2.14)
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2.4.3 Min-Max optimization

Noticing the positivity ofCj(w)’s in Eq.(2.13), we can compute max[Cj(w)] as the infinity

norm of the cost function vector, C(w) = (C1(w) C2(w) . . . CN(w))T . Therefore,

we have

max
j

[Cj(w)] = ||C(w)||∞ = lim
q→+∞

( N∑
j=1

[
Cj(w)

]q) 1
q

. (2.15)

Therefore Eq. (2.13) can be approximated with a large q:

w = arg min
w

(E(w)) ' arg min
w

( N∑
j=1

[
Cj(w)

]q)
. (2.16)

To update the parameter vector w, we use Newton-Raphson [42] method to compute

the minimizer of the cost function above:

w[i+1] = w[i] −H−1
E (w[i]) · OE(w[i]), (2.17)

where OE(w) and HE(w) are the gradient and the Hessian matrix of the cost function

E(w). They can be computed as:

OE(w[i]) = q
N∑
j=1

([
Cj(w

[i])
]q−1 · OCj(w[i])

)
(2.18)

HE(w[i]) = q
N∑
j=1

([
Cj(w

[i])
]q−1 ·HCj

(w[i])

+(q − 1)
[
Cj(w

[i])
]q−2 · [OCj(w[i])]2

)
. (2.19)

We use the parameter vector w(o) of the classifier trained on the old dataset to initialize

the iterative optimization process: w[0] = w(o). The iterative optimizing process terminates
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at a certain threshold ξ:

√
OE(w[i])

T ·H−1
E (w[i]) · OE(w[i]) < ξ. (2.20)

Our algorithm is summarized in Algorithm(1).

Algorithm 1: The Min-Max Based Adaptation

Input: Old detector with parameter vector w(o) , adaptation dataset S(n), and
threshold ξ.

Output: w(n) for adapted detector.
Based on Eq.(2.10), divide S(n) into M small subsets:
S(n) = S(n)1 ∪ S(n)2 ∪ . . . ∪ S(n)M ;
form N data covers G1, G2, . . . , GN refer to Eq.(2.11, 2.12), and get the cost
functions C1(w), C2(w),. . . , CN(w);
define cost function E(w) on S(n) using Eq.(2.13);
approximate E(w) as shown in Eq.(2.15);
set w[0] = w(o), T =∞, i = 0;
while T >= ξ do

compute HE(w[i]), OE(w[i]) as Eq.(2.18, 2.19);
compute w[i+1] refer to Eq.(2.17);

T =

√
OE(w[i])

T ·H−1
E (w[i]) · OE(w[i]);

i = i+ 1;

w(n) = w[i];
return w(n);

2.5 Experiments

We now present experiments to evaluate the proposed model adaptation algorithm. The

model adaptation algorithm is test for two group of adaptation scenario: the first three ex-

periments are designed to adapt an original human detector trained on the same old dataset

to three different adaptation datasets; the last experiment emphasizes on the adapting a

general object detector. The good performance of the proposed adaptation algorithm is

validated by these experiments.
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Figure 2.2: From left to right, the first box gives the examples we use to train our generic
human detector , all coming from INRIA dataset; the second to the fourth boxes give posi-
tive examples sampled from three adaptation dataset: the INRIA dataset, the TUD dataset,
and the PASCAL dataset.

The rest of this section consists of seven subsections: the first subsection describes

the features we use, and details the parameters used; the second subsection presents the

comparison of the adaptation methods; the third subsection introduces the generic human

detector we use and evaluates our method on part of the INRIA dataset [8]; the fourth sub-

section tests our algorithm on the TUD-pedestrian dataset [43]; the fifth subsection adopts

our method on adapting a “motorcyclist” detector, with data sampled from the PASCAL

dataset [44], and with the analysis on the effects of the related parameters; the sixth sub-

section focuses on regular object detector: adapting a Parrot detector from a generic bird

detector, in which training and test images come from ImageNet dataset [45]; the last sub-

section gives the computational complexity and a short experimental discussion.

2.5.1 Image representation and experimental setup

Shape and Texture descriptors. In all of the following experiments, we use integrated

HOG-LBP features [2]. HOG has been widely accepted as one of the best features to cap-

ture the edge or local shape information, whereas LBP is an exceptional texture descriptor.

Parameters setting. For all of the positive and negative examples, we fix their sizes

as 64 × 128 pixels. Thus, the HOG-LBP feature is a 5668 dimensional vector, which

makes the Hessian matrix in Eq.(2.17, 2.19) a 5668 × 5668 matrix. Considering the huge

computational cost in computing the Hessian matrix, we use a small positive number α =
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0.1 · I to replace the Hessian matrix in Eq.(2.20). To construct the random cover, we

firstly split the adaptation set into 10 small subsets, and then form 5 data covers. In the

third experiment, we analyze the effect of data cover number N using PASCAL dataset.

As mentioned before, the q in Eq.(2.15) affects the approximation of our proposed cost

function. Theoretically, bigger q leads to better approximation. In our experiments, we

assign 3 to q and achieve quite good performance. The iteration threshold ξ is set 0.04.

2.5.2 Performance comparison between different adaptation methods

Taylor expansion adaptation with optimizing adaptation rate.Taylor expansion adap-

tation method proposed in [26] gives us a good way to adapt a generic classifier in a new

environment. The method uses Taylor expansion of the cost function on the old data as an

approximation, and then combines it with the cost function on the adaptation dataset:

J(w) ≈ C(o)(w
(o)) + OC(o)(w

(o) · (w −w(o)) +

1

2
(w −w(o))T ·HC(o)

(w(o)) · (w −w(o))

λ · C(n)(w) (2.21)

where J(w) is the overall cost function, and λ is the parameter controlling the adapta-

tion rate.

The adaptation rate λ is a very important parameter and requires careful tuning in [26].

The poor setting of λ will make the adapted detector perform worse than the original de-

tector. So we improve this algorithm using cross-validation to find the optimal λ. Shown

in Algorithm.(2), the improved version of [26] is used as a baseline to compare with our

conservative adaptation algorithm based on min-max.
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Algorithm 2: Taylor Expansion Adaptation With Optimizing Adaptation Rate

Input: Old detector with parameter vector w(o) , and adaptation dataset S(n)

Output: w(n) for adapted detector
divide S(n) into K same size partitions S1,S2, . . . ,SK ;
i = 1;
while i <= K do

take Si to validate, the rest parts to adapt;
for λ = 0→∞ do

use Eq.(2.21) to adapt. validate on Si, find the optimal λi
i = i+ 1;

λ̄ = 1
K

∑K
i=1 λi;

set λ = λ̄ in Eq.(2.21), do adaptation and get w(n);
return w(n);

2.5.3 INRIA dataset

The INRIA person dataset [8] now has become a standard to evaluate human detector on,

which provides 2416 positive samples and 1218 negative images for training, 1132 positive

samples and 453 negative images for testing. All the positive samples are set into 64× 128

pixels.

Looking at INRIA dataset, we find there exists one interesting point that the positive

samples from training and test set can be divided into two parts: pedestrian images and

cyclist images. So they could be separately used to train a generic pedestrian detector and to

adapt a cyclist detector. We pick up 246 cyclist positive examples from the whole dataset,

and take all the 453 negative images from test set, to build up the cyclist dataset. Then

using 116 positive examples and 79 negative images in it for adaptation, the rest positive

and negative for evaluation. In the INRIA dataset, the rest 3302 positive pedestrian samples

together with 1218 negative images from training set are used to train a generic pedestrian

detector. This detector is treated as the old classifier in experiment 1-3.

Fig. 2.5(a) shows that the old detector already works very well in the cyclist dataset.

When false alarm rate is 0.02, detection rate is already 99.3%. In certain point, it proves our

generic pedestrian detector performs well on norm person detection task, suitable to be used
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as old detector in experiment 1-3. Also, we could see our proposed adaptation algorithm

could further improve the detector rate, even when the old one already performs well.

However, experiment 1 is not quite able to show the good performance of our algorithm,

when comparing with the rest experiments.

2.5.4 TUD-pedestrian dataset

TUD-pedestrian dataset [43] is a new benchmark for pedestrian detection. In this dataset,

images are sampled from a long video sequence, which is collected by an on-board camera

from a driving car in urban environment. So this dataset is a realistic and challenging

pedestrian dataset for human detector. It contains 3552 positive samples with mirroring

and 192 negative image pairs for training and 508 test images with 1269 evaluation positive

examples.

As we mentioned before, the INRIA pedestrian images train an old detector. From

TUD dataset, we use 1000 positive samples with mirroring from training dataset and 1620

negative examples extracted from 81 frames(20 negative examples per image), to adapt the

old detector. Then we test our adaptation algorithm on the whole TUD testing dataset(1269

positive examples, 10160 negative examples from 508 images). From Fig. 2.5(b), it is

easy to observe that the detector adapted by our algorithm outperforms the old detector

by 15% − 20% detection rate in FPPW, and 7% − 10% higher comparing with the Taylor

expansion algorithm result with optimal parameter λ.

2.5.5 PASCAL dataset

PASCAL VOC [44] is probably one of the most difficult and widely used reference datasets

in computer vision. The PASCAL VOC 2007 is the latest version having labels for both

training and test datasets. For the human detection specific category, there are 2000+ im-

ages for training and 2000+ images for testing. Using our generic human detector on these,
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Figure 2.3: Evaluation of the effect of data cover number N in our algorithm, experiment
is on PASCAL dataset. We randomly set N , and draw the curve when N = 2, 4, 5, 10, 15,
all comparing with Taylor adaptation method with optimal λ.

we find the performance in “motorcyclist” images is bad. So we extract these images out,

constructing a motorcyclist dataset, containing 600 positive examples, and 200 negative im-

ages randomly selected from images which not contain person in PASCAL dataset. From

this small dataset, we take 92 positive samples, and 1440 negative samples extracted from

72 images(20 negative examples per image) as our adaptation dataset, the rest positive and

negative are all considered as test dataset.

Fig. 2.5(c) illustrates how badly the old classifier works on this motorcyclist dataset.

If using Taylor expansion method, we can improve it a lot, about 30% detection rate in

FPPW. While using our adaptation algorithm, the performance can be further improved

by 10% − 15%, and now the adapted detector turns out to be a good detector on this new

dataset.

Effect of data cover number N In Fig. 2.5(c), there exists a STD bar(standard devi-

ation bar) in the curve of our proposed adaptation algorithm. It represents the effect of

different adaptation data cover number N to our algorithm. It is obvious that this effect is
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small and tolerable. TuningN , the performance of our adaptation algorithm is always good

with slight fluctuation. This means, our algorithm is stable to parameters. So it doesn’t have

much troubles in tuning parameters. Fig. (2.3) presents more details.

Figure 2.4: First two rows show positive and negative examples to train our bird detector, all
extracted from ImageNet dataset; The third row gives some positive examples we labeled
for our parrot dataset

2.5.6 ImageNet dataset

ImageNet [45] is a huge image dataset designed according to the WordNet [46] hierar-

chy(recently only with the 8000+ nouns), in which each node of the hierarchy is described

with hundreds and thousands of images.

This dataset follows tree-like structure, while images of each concept in it own good

quality and provide some annotations. These characteristics make it able to train tons of

object detectors. Considering the time and labor consumption, training a generic detector

for node in low level and adapting this for node in high level(root node is treated as level

0) might be an optimal way to get detectors for different categories.
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Our proposed adaptation algorithm provides an efficient, good and non-expensive method

to complete this job. We demonstrate this in bird category. From the ImageNet dataset, we

extract 2762 bird positive examples and 749 negative images from different other categories

to train a generic bird detector, which is regarded as old detector in this experiment. Then

we labeled a small parrot dataset, including 400 parrot positive examples, and 100 negative

images selected from other categories. 20% of the parrot dataset are used for adaptation,

the rest for test. In Fig. 2.5(d), we could see the adapted detector obtained by our algo-

rithm outperforms the old bird detector by 10% − 20%, the Taylor’s adapted detector by

5%− 10% in FPPW. So it proves our algorithm could make a norm generic detector adapt

into a good detector for certain specific category.

2.5.7 Experiments discussion

Computational Complexity On a Core 2 Duo 2.8 GHz computer, when we adapt with

2000 examples which generate 5 data covers, the average adaptation time of our proposed

algorithm is 3 hours for 10000 adaptation iterations, which usually returns near-optimal

adapted detector.

These experiments indicate, firstly the adapted detector generated by our algorithm

works well in different detector adaptation tasks and outperforms the old detector and the

Taylor expansion adaptation detector. Even when the old detector already performs very

well in certain environment, as shown in experiment 1, our adapted detector also further

improves the performance. Secondly, Comparing with the Taylor expansion adaptation

method, our adaptation method has much less “tuning parameter” troubles, which means

it’s easy and efficient to apply for detector adaptation tasks. Finally, from the PASCAL ex-

periment, we find the adaptation data cover numberN during division of adaptation dataset

affects less to our algorithm’s performance. In Figure(2.6), we sample some detection re-

sults from our experiments. Comparing with old detector and Taylor’s adapted detector,

the results from our adapted detector are mostly better. The positive and negative examples
23



are separated further away.
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(c) PASCAL dataset
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Figure 2.5: Evaluation of our method on multiple datasets, compared with other adaptation
method. In the curve of PASCAL dataset, the standard deviation bar represents the effect
of data cover number N on the performance of our algorithm.

2.6 Conclusions

We have proposed an object detector adaptation algorithm which has little worry about

tuning many parameters. This idea is to generate several adaptation data covers from the

adaptation dataset according to certain rules, and during each adaptation iteration, always

consider the worse data cover. The adaptation problem then changes into a Min-Max prob-

lem which could be solved by approximation of infinite norm method. This algorithm
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has the ability to train performance-guaranteed detectors for different categories in various

environments. This characteristic of our algorithm is also demonstrated in experiments.

(a) INRIA dataset (b) TUD dataset

(c) PASCAL dataset (d) ImageNet dataset

Figure 2.6: Performance comparison between detectors, all the number are detection
scores.The first row is from old detector; the second row is from adapted detector generated
by Taylor expansion adaptation method with the optimal adaptation rate; the third row is
from detector adapted by our proposed algorithm. In each dataset, we samples 3 positive
and 3 negative examples. The score difference between positive and negative examples is
larger, the performance is better.

25



Chapter 3

Object Detection by Local Learning:
Divide with Global Classifier, Conquer
with Local Adaptation

3.1 Overview

In previous chapter, we introduce a novel Min-Max model adaptation algorithm. Start-

ing from it, we move on to propose a local learning algorithm to handle large intra-class

variation problem in object detection, which would be detailed in this chapter. Observing

the fact that classifiers used for object detection are task dependent and data driven, we

develop a hybrid learning algorithm combining global classification and local adaptations,

which automatically adjusts the model complexity according to the training data distribu-

tion. Using a learned global classifier, we divide the data samples into two groups, the

group of easy samples and the group of ambiguous samples. A local adaptation approach

based on classification-accuracy-driven clustering and Min-Max model adaptation is then

applied to further process the ambiguous samples. The proposed algorithm automatically

determines model complexity of the local learning algorithm according to the distribution

of ambiguous samples. By striking a balance between model complexity and learning ca-
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Figure 3.1: A Toy Example of Two-class (“o” vs “x”) Classification Using Our Approach:
A global classifier (blue solid line) and its boundaries (blue dotted lines) divide the data
space into easy regions and hard regions. The ambiguous data in hard regions are clustered
according to the data distribution, which automatically adjusts the model complexity. Each
cluster of samples are classified using locally adapted classifier that avoids under training.
The hybrid learning algorithm autonomously strikes a balance between model complexity
and learning capacity.

pacity, the proposed hybrid learning algorithm incarnates a human detector outperforming

the state-of-the-art algorithms on a couple of benchmark datasets [8, 3] and a self-collected

pedestrian dataset. Compared with lots of state-of-the-art algorithms benchmarked on the

Caltech dataset [3], the proposed approaches achieves the lowest Log-average miss rate.

3.2 Introduction

Among various approaches to object detection, the sliding window approach [7, 8] domi-

nates due to its good performance [9, 10, 11, 12, 13, 14], efficiency [7, 15], parallelizability,

and easy implementation. The sliding-window-based detectors treat the object detection as

a classification problem: The whole image is densely scanned from the top left to the bot-

tom right with rectangular scanning windows of different sizes. For each possible scanned
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rectangle, certain features such as edge histogram, texture histogram, or wavelet coeffi-

cients, are extracted and fed to a offline trained classifier using labeled training data. The

classifier is trained to classify any rectangle bounding an object of interest as a positive

sample and to classify all other rectangles as negative samples.

The performances of object detectors of this kind are mainly determined by two factors:

features and underlying classification algorithms. In this work, we aim at improving the

performance of object detectors from the aspect of classification algorithm. Observing the

fact that classifiers used for object detection are task dependent and data driven, we de-

veloped a hybrid learning algorithm combining global classification and local adaptations,

which automatically adjusts model complexity according to data distribution. We divide

data samples into two groups, easy samples and ambiguous samples, using a learned global

classifier. A local adaptation approach based on spectral clustering and Min-Max model

adaptation is then applied to further process the ambiguous samples. The proposed algo-

rithm automatically determines model complexity of the local learning algorithm accord-

ing to the distribution of ambiguous samples. By autonomously striking a balance between

model complexity and learning capacity, the proposed hybrid learning algorithm incarnates

a human detector outperforming the state-of-the-art algorithms on a couple of benchmark

datasets [8, 3] and a self-collected pedestrian dataset. Compared with 11 state-of-the-art

algorithms [3] on the Caltech dataset, the proposed approaches achieves the highest de-

tection rate, outperforming the seminal and successful deformable model approach [9] by

17% at FPPI=1.

Our contributions are in three-folds: 1) we develop a hybrid learning algorithm that

enables the application of local learning algorithm in large-scale tasks; 2) the proposed

hybrid learning method can automatically adjust the model complexity according to the

distribution of the training data; 3) the proposed scheme of local adaptation from global

classifier avoids the common under-training problem for local classifier: we gain significant

performance enhancement in human detection over traditional algorithms, with very little
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Postive Negative

Figure 3.2: Sample results of our automatic clustering on ambiguous sample data. Each
row corresponds to a particular cluster, showing similar shape, background, and appear-
ance.

increment in computational cost.

The rest of the chapter is organized as follows. Sec. 3.3 describes our global classifica-

tion process for dividing the candidates into easy and ambiguous cases. Sec. 3.4 details our

clustering method for balancing model complexity and learning capacity. Sec. 3.5 presents

our local adaptation algorithm to further enhance learning capacity. Experimental results

are shown in Sec. 3.6 followed by conclusion and future work in Sec. 3.7.

3.3 Divide by Global Classification

Our approach starts with a global classifier learned using all of the training data. The

classified training data are then divided into two groups: easy samples and ambiguous

samples. The ambiguous samples are further processed using a local adaptation algorithm.
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The learned global classifier partitions the input space into easy regions and hard re-

gions. Only the ambiguous data in hard regions will be passed into the next stage and

handled by more discriminative local classifiers. Various general global learning algo-

rithms [47, 48, 9, 49] are suitable to this task. Since one role of global classifier is a filter

to select hard regions for local learning/adaptation, we require the global classifier to be

efficient and highly generalizable with a relative satisfactory performance. Linear SVM

meets our requirements. In order to locate the hard regions of ambiguous data, we set up

the upper bound Θ1 and lower bound Θ2 based on the classification scores of the global

classifier. The data bounded inside are ambiguous data, requiring local learning.

3.4 Clustering - Adjusting Model Complexity

After filtering by the global classification, the remaining data (ambiguous data) are then

processed using an automatic clustering algorithm. This provides an efficient and effective

way to probing the local data distribution for each sample. The number of clusters and

the population of each cluster are automatically adjusted. Together with a follow-up local

adaptation, it strikes a balance between model complexity and learning capacity. Specifi-

cally we use a tailored spectral clustering algorithm to automatically divide the ambiguous

data into local regions in feature space. This essentially adjusts the model complexity au-

tonomously according to the data distribution.

3.4.1 Distance Metrics

In order to effectively cluster the ambiguous data, we first define the distance metric be-

tween a pair of samples in the feature space. Different distance metrics may lead to dif-

ferent clustering on the data. Here for popular shape descriptor and texture descriptor, we

introduce several frequently used distance measures.

Crude distance Several simple and yet good measures are frequently used for comput-
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ing distance in feature space, such as L1-sqrt distance, L∞-Norm distance, and Euclidean

distance. These crude distance measures have been widely adopted as meaningful solutions

to distance computation.

Accurate distance Alternatively, more costly “accurate” distance measures were de-

veloped. [50] proposes shape context distance that matches the point sets of two shapes

and scores how different the shapes are; χ2 distance [51] maps the texture of each example

to a histogram of “textons”, then defines distance as the Pearson’s χ2 test statistic between

the two histograms; Adapted from [51] , marginal distance [52] sums up the distances

between response histograms to measure the texture distance.

All these metrics may be used for clustering. In our experiments, crude distance already

yields reasonable results with low computational complexity. Specifically we adopt the

Euclidean-like distance. For each sample, the features are normalized according to their L2

norm, then the Euclidean distances with others are computed. The normalization is critical

for finding and setting proper clustering parameters.

3.4.2 Clustering Algorithm

Many clustering algorithms can be adopted for clustering the ambiguous data. One straight-

forward method is k-means with a given number of clusters k. However inappropriate k

may drastically deteriorate the performance of the system: if k is too small, certain lo-

cal clusters would contain too many samples resulting in over-complicated models; On

the contrary, if k is too big, most local clusters may be sparsely populated and inevitably

suffer from under-training. Thus care must be taken to choose an appropriate k, which is

usually unknown beforehand. To find the appropriate value of k, one may need to exhaus-

tively search all possible k and check the associated performance, demanding formidable

computations.

To solve this problem, we adopt spectral clustering to effectively find appropriate value

of k and compute the clustering. Inspired by [53, 54] we search for certain drop in the
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Algorithm 3: Spectral Clustering with Eigen-Selection

Input: ambiguous data points {xi|xi ∈ Rd}ni=1; eigen-selection parameters α, β
(0 < α, β < 1).

Output: k partitions of the input data.
1. Form the affinity matrix A with elements:

aij = exp(− ||Dis(xi,xj)||2

2σij2
), i, j = 1, . . . , n ;

2. Compute diagonal matrix D with elements di=
∑n

j=1 aij;
3. Compute Normalized Laplacian matrix L:

L = D−
1
2 · (D − A) ·D− 1

2 ;

4. Compute eigenvalues of L and sort in descending order:

λi ≥ λi+1, i = 1, 2, . . . , n− 1

5. Get k by eigenvalue selection:
for i = 2→ n do

if λi ≤ α · λi−1 or λi ≤ β then
break;

k = i− 1;
6. Form normalized matrixS using k largest eigenvectors;
7. TreatingS’s row as point, cluster points by k-means;
8. Assign original data xi to cluster j if and only if row i of

the matrix S was assigned to cluster j;

magnitude of the eigenvalues to decide the number of clusters. The clustering algorithm is

summarized in Algorithm (3).

In Algorithm (3), parameters α and β define the criterion for selecting number of clus-

ters, and Dis(xi, xj) is the distance between data points xi and xj . The scaling parameter

σij is a measure to decide whether two examples are similar, which can be specified by

self-tuning [55]:

σij =
√
σi · σj (3.1)

where,

σi = Dis(xi, xkth) (3.2)

In Eq.(3.2), xkth represents the k’th nearest neighbor of point xi, typically k=7. Although
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Algorithm (3) produces high-quality clustering result, the computational complexity of

O(n3) limits its application to large-scale data. Note that usually the number of ambiguous

data is huge, so a fast approximation of spectral clustering should be applied, such as

KASP [56], explained in step 3–6 of Algorithm (4).

3.4.3 Parameter Selection & Fast Approximation

The spectral clustering algorithm helps effectively avoid exhaustive search for optimal

model complexity. To balance learning capacity, we determine the parameters of spec-

tral clustering, α and β, based on the accuracy of corresponding locally learned classifiers.

Specifically, we randomly partition the ambiguous training data into M (typically M=10)

subsets for cross validation to find the optimal parameters. For each fold, we first apply

step 1–4 of Algorithm (3) on training set and sort the eigenvalues in descending order.

We search for drops between consecutive eigenvalues that are bigger than half of the prior

eigenvalue. The corresponding {α, β} are marked as candidate parameter sets. For each

candidate set, we then apply step 6–8 of Algorithm (3) to construct clusters. Local learning

algorithm (Section 3.5) is applied for each cluster and the detection rates are evaluated.

Among all candidate parameter sets, we use the one with the best detection rate as the

optimal parameters.

Given the clustering parameters α and β, we can apply Algorithm (3) to do clustering.

However as explained in Sec. 3.4.2, when the data set is large, directly applying Algo-

rithm (3) is computationally prohibitive. We use a fast approximation KASP to speed up

this process. Specifically, for the desired k clusters, we first apply k0-means and compute

the centroid {yj}k0j=1 of each cluster (k0 defined in step 1–3 of Algorithm (4)). We then run

Algorithm (3) on {yj}k0j=1. The cluster membership of each sample xi is recovered using a

table of correspondences with yj .

The complete proposed clustering algorithm with parameter selection and fast approx-

imation is summarized in Algorithm (4). It not only speeds up the original clustering
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Algorithm 4: Accelerated Automatic Clustering

Input: ambiguous data points {xi|xi ∈ Rd}ni=1.
Output: same as Algorithm (3)
1. Randomly split {xi}ni=1 into partitions {Pi}Mi=1 for
M -fold cross validation to find optimal parameters α, β:

for m = 1→M do
1) Define training set Ptr and validation set Pva

Ptr = {xi}ni=1 −Pm, Pva = Pm;
2) Apply step. 1-4 of Algorithm (3) on Ptr and get all

eigenvalues {λ′
i}
n1
i=1, where n1 = |Ptr|;

3) Search candidate eigenvalue drops. Initialize T = 0:
for i = 2→ n1 do

if λ′
i ≤ 0.5 · λ′

i−1 then
T = T + 1;
k

′
T = i− 1, α′T = λ

′
i−1/λ

′
i, β

′
T = λ

′
i;

4) Cluster and check performance for each candidate:
for t = 1→ T do

Apply step. 6-8 of Algorithm (3) with k = k
′
t on

Ptr to get clusters C
′

t;
Learn local classifiers F′t on each cluster of C

′

t;
Evaluate F′t on Pva and get detection rate ε′t;

5) {αm, βm, km} = arg min
{α′

t,β
′
t,k

′
t}
{ε′t}Tt=1

2. Set optimal parameters:
α = 1

M
· (
∑M

m=1 αm), β = 1
M
· (
∑M

m=1 βm)

3. Fix a k0, where k0 ≥ 20 · 1
M
· (
∑M

m=1 km) and
k0 << n, then perform k0-means on {xi}ni=1 to get the
cluster centroids {yj}k0j=1 ;

4. Build a correspondence table to associate each xi with the
nearest cluster centroid yj;

5. Run Algorithm (3) on {yj}k0j=1 to obtain the k cluster
membership for each of yi;

6. Recover the cluster membership for each xi using that of
the associated yj by looking up the correspondence table.

method in Algorithm (3), but also simplifies the query. During test, for each sample we

simply compute its nearest neighbor in the k0 centers, then use the correspondence table

to find its cluster membership. A sample of clustering results by our algorithm is shown

in Figure (3.2), where different rows correspond to different clusters. As we can see, the

proposed method works well: images from each row shares similar shape, background, and
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appearance.

3.5 Local Adaptation - Enhancing Learning Capacity

After the ambiguous data being appropriately clustered, local learning is used to enhance

the learning capacity.

A straightforward local learning approach is to train a general classifier [49, 9] directly

using the data from each local cluster. Considering speed and performance, linear SVM

seems to be a good choice. However the disadvantage of direct learning is obvious: it

only uses limited samples in a local cluster and discards the information from the whole

dataset that are usually beneficial. Hence, the performance of generated local classifier

heavily relies on the population and data distribution of the cluster, and often suffers from

under-training.

To address this issue, we propose a model adaptation strategy that leverages on global

classifier for effective local learning. Though the global classifier F0 trained in the first

stage may not behave perfectly on each local cluster, it should not be too far from the op-

timum classification boundary. Furthermore, it contains non-negligible information about

global data distribution. Therefore, we treat the local learning problem as utilizing a coarse

global classifier F0 to adapt into different fine local classifiers. This effectively enhances

the learning capacity of our classification algorithm in each local cluster.

Here we adopt Min-Max model adaptation [27] in our algorithm. Comparing with other

state of the art adaptation methods, such as [21, 25, 26, 24], the Min-Max is free of tuning

parameters(e.g., the adaptation rate) and able to adapt from general parametric classifier.

Thus F0 could be trained by various complicated methods such as [49, 9]. We summarize

our local adaptation approach in Algorithm (5).
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Algorithm 5: Local Learning by Min-Max Adaptation

Input: Pre-learned global classifier F0 with parameters w0; K clusters {Sk}Kk=1

obtained using Algorithm (4); Min-Max adaptation parameters.
Output: Adapted local classifiers {F ′

k}
K
k=1

for k = 1→ K do
1. Form N data covers{Gj}Nj=1 from data in Sk;
2. Build the cost functions {Cj}Nj=1 based on

logistic regression;
3. Define cost function E(w) on Sk:

E(w) =
(

maxj
[
Cj(w)

])
4. Approximate E(w) as∞-Norm:

E(w) = ||C(w)||∞ ≈
(∑N

j=1

[
Cj(w)

]q) 1
q

5. Set w[0] = w0, T =∞, i = 0;
while T >= ξ do

compute the gradient and Hessian matrix OE(w[i]), HE(w[i]), and update w:
w[i+1] = w[i] −H−1

E (w[i]) · OE(w[i]);

T =

√
OE(w[i])

T ·H−1
E (w[i]) · OE(w[i]);

i = i+ 1;

6. Set parameter for classifier F ′

k: w
′

k = w[i];

3.6 Experiments

We evaluate our algorithm on pedestrian detection from images that is important and yet

challenging in practice. We compare our algorithm with state of the art single layer (non-

cascaded) detectors and demonstrate that our algorithm greatly improves the detection

rates. We also compare our approach with state of art using the same evaluation methodol-

ogy used in [3]. We show both qualitative and quantitative results on several challenging

datasets to confirm the advantages of our approach.

The rest of this section consists of five parts: the first one explains the experiment design

and implementation details; the second part tests our algorithm on a large challenging

pedestrian dataset “In-House” collected by ourselves; the third and fourth parts respectively

evaluate our algorithm on two popular benchmarks: Caltech [3] and INRIA [8] datasets;
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(a) Local learning with K-means by linear SVM
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(b) Local learning with Algorithm (4) by linear SVM
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(c) Local learning with Algorithm (4) by Min-Max adaptation
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(d) Local learning with K-means by linear SVM
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(e) Local learning with Algorithm (4) by linear SVM
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(f) Local learning with Algorithm (4) by Min-Max adaptation

Figure 3.3: Evaluation of the proposed algorithm on In-House (1st row ) and Caltech (2nd

row) datasets. All results are plotted as miss-rate w.r.t. false-alarm-rate in FPPW. The first
column details performances of local linear SVM learning with k-means clustering, where
k varies from 1 to 2000; The second column shows performance achieved by proposed
clustering methods, compared with the best results in the first column; The final column
compares performances achieved by 2 different local learning methods.

and finally the algorithm efficiency is discussed.

3.6.1 Experimental Setup

Parameter setting. In Algorithm (3) the eigenvalue-selection parameters α, β are chosen

as discussed in Sec. 3.4.3. In our experiments, α=0.2 and β=0.01 yields the best perfor-

mance. This holds true over cross-validation experiments with the In-House dataset. Later

experiments confirm that the same setting also applies for Caltech and INRIA datasets.

As stated before, the scaling parameter σij could be automatically decided by self-tuning,

which requires extra computation on neighbor searching to ensure good performance. In

practice we found the local-learning performance is similar to self-tuning when σij is be-
37



tween 2 and 5 and the performance is insensitive to different values of σij in that range.

Thus to speed up, σij can be simply set as a constant, e.g. 3. The Min-Max adaptation

parameters in Algorithms (5) are the same as [27].

Image representation. We test both shape (HOG [8]) and texture (LBP [2]) descriptors

with our learning framework, since HOG has been widely accepted as one of the best

features to capture the edge or local shape information and the LBP is an exceptional texture

descriptor. We use only the HOG descriptor for In-House and Caltech datasets, and HOG

together with LBP for INRIA dataset. Experimental results confirm that our algorithm can

robustly find the clusters that yield good detection rates.

Experiments design and evaluation measure. First, to show the effect of clustering

on detection accuracy, we cluster every dataset by simple k-means with different values of

k. We then construct local classifiers for individual clusters by linear SVM and compare

the overall performance with respect to different values of k. Second, to show the effec-

tiveness of our clustering algorithm, we compare the performance of our clustering method

with the best result achieved by k-means approach. Finally, we compare the performances

improvement gained by two different local learning methods: directly learning by linear

SVM and local adaption with Min-Max, not only on detection rate but on speed. For all

three types of experiments, we plot detection curves in terms of FPPW instead of FPPI to

evaluate the performance of classifiers, since FPPW allows a better assessment of the learn-

ing algorithm and isolates the impact of post-processing such as non-maximal suppression.

Additionally, in order to compare with 11 algorithms [3] presented in Caltech dataset [3],

we also present the accuracy of our detection system in FPPI for Caltech dataset.

3.6.2 In-House dataset

The In-House dataset is collected and labeled by ourselves, containing 5691 images with

fixed resolution at 320 × 240. Performing detection on this dataset is challenging due to

the fact that many of the pedestrians are small, partly occluded, and hardly identifiable
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from background even by human eyes. We randomly divide the dataset into 3 partitions for

3-fold cross-validation.

Firstly, we directly apply k-means clustering followed by local learning using linear

SVM with k varying from 1 to 2000. The results with different k are shown in Fig-

ure 3.3(a). k = 1 means considering all ambiguous data as a single cluster and training

for one classifier, similar to a re-training on the whole dataset. As we can see, when k

increases from 1 to 200, the performance improves logarithmically. However, if k exceeds

200, the performance starts to drop. The results at k=50 or 200 are similarly the best. Since

smaller number of clusters leads to better efficiency in the testing stage, we take k=50 as

the optimal clustering. The results confirm that an appropriate local learning would greatly

improve the detection performance. Compared with the traditional approach without local

adaptation, the miss rate at k=50 is significantly reduced by 25% at 10−5 and 16% at 10−4

False-Alarm rate in FPPW.

Secondly, we evaluate our local learning algorithm with the proposed clustering and

compare with the best results in the first experiment. With a proper k0=2000, the number

of clusters computed by Algorithm (4) is 55. We then perform local learning with linear

SVM on individual clusters. As shown in Figure 3.3(b), our method achieves the results

as good as the best on in the first experiment. It confirms that our method autonomously

strikes a good balance between model complexity and learning capacity.

Finally, we compare the two local classification methods. For fair comparison, we

learn classifiers based on the proposed clustering in the second experiment. The detection

performance of the two types of local learning algorithms are shown in Figure 3.3(c). As

we can see, the Min-Max adaptation method performs better, further reducing the miss rate

by 5% at 10−4 FPPW. Training the linear SVMs is much faster, 55 local classifiers taking

only half an hour to train, while Min-Max adaptation takes 1 day. Overall, the proposed

local adaptation algorithm achieves the best detection rates, reducing the miss rate by 30%

at 10−5 and 21% at 10−4 FPPW compared with the single global classifier.
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Figure 3.4: Comparison between proposed algorithm and state of the art on Caltech training
dataset, adopting the same experimental setting and evaluation methodology as [3], plotted
as miss-rate w.r.t. FPPI. The precision values at FPPI=1 are shown for easy comparison.

3.6.3 Caltech dataset

Caltech dataset is currently one of the most challenging pedestrian datasets, since pedes-

trians appear from multiple viewpoints and with a wide range of scales. Additionally, lots

of cars and buildings make the background very cluttered. The labeled Caltech training

dataset contains six sessions (S0-S5), each with multiple videos taken from a moving vehi-

cle. We follow the same 6-folder-cross-validation evaluation methodology as [3] and only

consider the “Reasonable” [3] pedestrians.

Following the same step as In-House dataset, we first evaluate the performance with k-

means where k varies from 1 to 2000. Figure 3.3(d) show our experiment results. We can

see that clusters with k=50 achieve the best result, outperforming the traditional methods

by 15% at 10−5 and 35% at 10−4 in FPPW. Then we test our method with the proposed

clustering, which automatically clusters data in 87 classes. The detection rate is similar to

the best case in the previous experiment, detailed in Figure 3.3(e). Finally, we compare

our local adaptation with direct local learning, as shown in Figure 3.3(f). Again Min-Max
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Figure 3.5: Evaluation of local SVM learning after k-means clustering on INRIA dataset.
When k = 1 or 2 the performance increases slightly. However, further increasing k deteri-
orates the performance quickly.

model adaptation achieves about 10% higher detection rate at 10−4 FPPW while taking

longer time to train. Figure (3.6) show some example images.

Comparison with state-of-the-art Taking the same evaluation procedures as [3], we

show the comparison with 11 algorithms [3] on Caltech training dataset.From the FPPI

curves in Figure (3.4), our algorithm achieves the lowest miss rate at 1 FPPI, 6% lower than

the best in [3]. Our method only uses the HOG feature, while many of the 11 algorithms

combine several different descriptors. It tells more about the advantage of our method when

only comparing with methods using similar features, such as HOG [8], LatSVM-V2 [9],

HikSVM [12]. As shown in Figure (3.4), our method outperforms them by 13%, 17%, and

16% at 1 FPPI respectively.

3.6.4 INRIA dataset

INRIA [8] dataset is also popular for researchers to test human detectors. We evaluate on it

to show the advantage of our method and its robustness on handling complex backgrounds
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and using different kinds of features.

Again, we start with testing the performance of k-means clustering. From Figure (3.5),

we can see that when k=1 or 2, the performance has a little improvement than that with-

out local adaptation. However, when the cluster number increases, the performance drops

quickly. When k=10, the performance drastically decreases by 50% at 10−4 FPPW . Inap-

propriately divide them into smaller clusters will lead to under-training. It also confirms

that carefully balancing between model complexity and learning capacity is critical for lo-

cal learning algorithm to achieve desired performance improvement. The reason is that, for

INRIA dataset, the traditional method (HOG+LBP) has already achieved an impressively

high detection rate, and the few remaining ambiguous data are difficult to be clustered in

feature space (only 2% miss detection in 10−4 FPPW). Therefore, instead of gaining im-

provement in performance, forcing clustering and local learning would make it worse. In

such a case, the proposed clustering method is able to automatically identify the proper

number of cluster is 1, warning us over-increasing model complexity would break the bal-

ance with learning capacity and deteriorate the detection performance. It thus ensures

reliable local learning.

(a) Without local learning (b) Local learning by lin-
ear SVM

(c) Local learning by adap-
tation

(d) Without local learning (e) Local learning by lin-
ear SVM

(f) Local learning by adap-
tation

(g) Without local learning (h) Local learning by lin-
ear SVM

(i) Local learning by adap-
tation

(j) Without local learning (k) Local learning by lin-
ear SVM

(l) Local learning by adap-
tation

Figure 3.6: Comparison of detection results on Caltech dataset, between one-stage global
classifier without local learning, local learning by linear SVM, and local learning by Min-
Max adaptation. The last approach achieves both the best detection rate and the lowest
false alarm rate.
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3.6.5 Computational Complexity in Testing

Compared with one-stage learning methods, the only extra computation for our algorithm is

cluster query and classification by corresponding local classifier. Since we use hierarchical

k-means with cluster number k0 before fast spectral clustering, the cluster query computes

log (k0) times of distance, while SVM-KNN [30] needs at least log (ntrain) times (ntrain

is the number of samples in training set, where ntrain � k0), and more cost on training

kernel SVM during test. From our experiments, adding the local-adaptive stage only takes

less than 10% extra time during test.

3.7 Conclusion and Future Work

We developed a hybrid learning algorithm combining global classification and local adap-

tations, which automatically adjusts model complexity according to data distribution. The

proposed adaptation algorithm automatically determines model complexity of the local

learning algorithm according to the distribution of the training samples.

In term of classification algorithm, we have shown that our method effectively improves

the performance compared with the state-of-art methods, especially when using similar fea-

tures. On the other hand, the recently proposed features such as Integral Channel Features

[57] and Multi-Resolution Features [58] have been successfully used for pedestrian detec-

tion detection and achieved highly competitive results. We plan to incorporate such features

into our hybrid learning algorithm and believe this can further improve the detection per-

formance.
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Chapter 4

Object Detection by Context Learning:
Detection Evolution with Multi-Order
Contextual Co-occurrence

4.1 Overview

In previous two chapters, we introduce novel algorithms to learn effective detectors. Ac-

tually in object detection task, the feature design also plays an important rule. In this

chapter, we would like to introduce a novel context feature for object detection. Recently

context has been playing an increasingly important role to improve the object detection

performance. However the different types of noise and clutter background make it hard

to extract useful contextual information. To handle this, we propose an effective represen-

tation [32], Multi-Order Contextual co-Occurrence (MOCO), to implicitly model the high

level context using solely detection responses from a baseline object detector. The so-called

(1st-order) context feature is computed as a set of randomized binary comparisons on the

response map of the baseline object detector. The statistics of the 1st-order binary context

features are further calculated to construct a high order co-occurrence descriptor. Combin-

ing the MOCO feature with the original image feature, we can evolve the baseline object
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detector to a stronger context aware detector. With the updated detector, we can continue

the evolution till the contextual improvements saturate. Using the successful deformable-

part-model detector [33] as the baseline detector, we test the proposed MOCO evolution

framework on the PASCAL VOC 2007 dataset [10] and Caltech pedestrian dataset [34]:

The proposed MOCO detector outperforms all known state-of-the-art approaches, contex-

tually boosting deformable part models (ver.5) [33] by 3.3% in mean average precision on

the PASCAL 2007 dataset. For the Caltech pedestrian dataset, our method further reduces

the log-average miss rate from 48% to 46% and the miss rate at 1 FPPI from 25% to 23%,

compared with the best prior art [35].

4.2 Introduction

Detecting objects from static images is an important and yet highly challenging task and

has attracted many interests of computer vision researchers in the recent decades [17, 11,

59, 33, 14, 60, 61]. The difficulties originate from various aspects including large intra-

class appearance variation, objects deformation, perspective distortion and alignment issues

caused by view point change, and the categorical inconsistency between visual similarity

and functionality.

According to the recent results of the standards-making PASCAL grand challenge [10],

The detection approach based on sliding window classifiers are presently the predominant

method. Such methods extract image features in each scan window and classify the features

to determine the confidence of the presence of the target object [62, 7, 63]. They are further

enriched to incorporate sub-part models of the target objects and the confidences on sub-

parts are assembled to improve detection of the whole objects [64, 59].

One key disadvantage of the approaches above is that only the information inside each

local scanning window is used: joint information between scanning windows or informa-

tion out of the scanning window are either thrown away or heuristically exploited through
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Figure 4.1: The proposed MOCO Detection Evolution. The input image with ground
truth label (red dotted rectangle) is shown at top-right corner. The framework evolves the
detector using high-order context till the convergence. At each iteration, response map and
0th-order context is computed using the initial baseline detector (for the 1st iteration) or the
evolved detector from the prior iteration (for later iterations). Then the 0th-order context is
used for computing the 1st-order context, upon which high order co-occurrence descriptors
are computed. Finally context in all orders are combined to train a evolving detector. The
iteration stops when the overall performance converges. The evolution eliminates many
false positives using implicit contextual information, and fortifies the true detections.

post-processing procedures such as non-maximum suppression. Naturally, to improve de-

tection accuracy, context in the neighborhood of each scan window can provide rich in-

formation and should be explored. For example, a scanning window in a pathway region

is more likely to be a true detection of human than the one inside a water region. In fact,

there have been some efforts on utilizing contextual information for object detection and

a variety of valuable approaches have been proposed [65, 66, 67]. High level image con-
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Figure 4.2: Procedure for Computing Multi-order Context Representation. We first
build image pyramid and smooth the corresponding detector response map as discussed in
Sec. 4.3.1. For each detection candidate (red dotted rectangle), we locate its position (red
dotted rectangle) in the image pyramid and its position (red solid area) in the smoothed
detection responses map. We define its context structure Ω(p) (0th-order) as in Sec. 4.3.1.
Finally we compute the 1st-order binary comparison based context features, upon which
we further extract high order co-occurrence descriptor detailed in Sec. 4.3.3.They are com-
bined as the proposed MOCO descriptors.

.

texts such as semantic context [68], image statistics [66], and 3D geometric context [69],

are used as well as low level image contexts, including local pixel context [8] and shape

context [70].

Besides utilizing context information from the original image directly, another line of

works including Spatial Boost [71], Auto-Context [72], and the extensions elegantly inte-

grate the classifier responses from nearby background pixels to help determine the target

pixels of interest. These works have been applied successfully to solve problems such

as image segmentation and body pose estimation. Inspired by these prior arts, Contex-

tual Boost [35] was proposed to extract multi-scale contextual cues from the detector

response map to boost the detection performance. Contextual information directly from

the responses of multiple object detectors has also been explored. In [73, 74, 75] the

co-occurrence information among different object categories is extracted to improve the

performance in various classification tasks. Such methods require multiple base object

classifiers and generally necessitate a fusion classifier to incorporate the co-occurrence

information, making them expensive and sensitive to the performance of individual base

classifiers.

In this chapter we aim at developing an effective and generic approach to utilize con-
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textual information without resorting to the multiple object detectors. The rationale is that,

even though there is only one classifier/detector, higher order contextual information such

as the co-occurrence of objects of different categories can still be implicitly and effectively

used by carefully organizing the responses from a single object detector. Since only one

classifier is available, the co-occurrence of different object types cannot be explicitly en-

coded as the multi-class approaches. However, the difference among the responses of the

single classifier on different object regions implicitly conveys such contextual information.

An example is illustrated in Fig.(4.1). The responses of a pedestrian detector to various ob-

ject regions such as the sky, streets, and trees, may vary greatly, but a homogeneous region

of the response map corresponds to a region with semantic similarity. Actually, the initial

response map in Fig.(4.1) can lead to a rough tree, sky and street segmentation. This rea-

soning hints a possibility to encode higher order contextual information with single object

detection response. Therefore, if we treat the single classifier response map as an “image”,

we can extract descriptors to represent high order contextual information.

Our multi-order context representation is inspired by the recent success of randomized

binary image descriptors [76, 77, 78]. First we propose a series of binary features where

each bit encodes the relationship of classification response values for a pair of pixels. The

difference of detector responses at different pixels implicitly captures the contextual co-

occurrence patterns pertinent to detection improvements. Recent research also shows that

image patches could be more effectively classified with higher-order co-occurrence fea-

tures [79]. Accordingly we further propose a novel high order contextual descriptor based

on the binary pattern of comparisons. Our high order contextual descriptor captures the

co-occurrence of binary contextual features based on their statistics in the local neighbor-

hood. The context features at all different orders are complementary to each other and are

therefore combined together to form a multi-order context representation.

Finally the proposed multi-order context representations are integrated into an itera-

tive classification framework, where the classifier response map from the previous iteration
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is further explored to supply more contextual constraints for the current iteration. This

process is a straightforward extension of our contextual boost algorithm in [35]. Similar

to [35], since the multi-order contextual feature encodes the contextual relationships be-

tween neighborhood image regions, through iterations it naturally evolves to cover greater

neighborhoods and incorporates more global contextual information into the classification

process. As a result our framework effectively enables the detector evolving to be stronger

across iterations. We showcase our “detector evolution” framework using the successful de-

formable part models [33] as our initial baseline detector. Extensive experiments confirm

that our framework achieves better accuracy monotonically through iterations. The num-

ber of iterations is determined in the training stage when the detection accuracy converges.

On the PASCAL VOC 2007 datasets [10], our method outperforms all state-of-the-art ap-

proaches, and improves by 3.3% over the deformable part models (ver.5) [33] in mean

average precision. On the Caltech dataset [34], compared with the best prior art achieved

by contextual boost [35], our method further reduces the log-average miss rate from 48%

to 46% and the miss rate at 1 FPPI from 25% to 23%.

4.3 Multi-order Context Representation

Fig.(4.2) summarizes the flow chart for constructing the multi-order context representation

from an image. First, the image is densely scanned with sliding windows in a pyramid

of different scales. For each location of scan window, image features are extracted and a

pre-trained classifier is applied to compute the detection response. The detection response

maps for each scale are smoothed as in Sec. 4.3.1. We define the context region in terms of

spatial and scale for each candidate location. We then compute a series of binary features

using randomized comparison of detector responses within the context region, as detailed in

Sec. 4.3.2. Finally, we compute the statistics of the binary comparison features and extract

high order co-occurrence descriptors as shown in Sec. 4.3.3. They together construct the
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proposed Multi-Order Contextual co-Occurrence (MOCO).

4.3.1 Context Basis (0th-order)

Intuitively, the appearance of the original image patch containing the neighborhood of tar-

get objects provides important contextual cues. However it is difficult to model this kind

of context in original image because the neighborhood around target objects may vary dra-

matically in different scenarios [61]. A logical approach to this problem is: firstly convolve

the original image with a particular filter to reduce the diversity of the neighborhood of

a true target object as foreground with various backgrounds; then extract context feature

from the filtered image. For object detection tasks, we prefer such a filter to be detector

driven. Given the observation from Fig.(4.1) that the positive responses cluster densely

around humans but occur sparsely in the background, we simply take the object detector as

this specific filter and directly extract context information from the classification response

map, denoted asM.

Since the value range of the classification response is [−∞,+∞], we first adopt logistic

regression to map the value at each pixel s into a grayscale value s′ ∈ [0, 255].

s
′
=

255

1 + exp(α · s+ β)
, (4.1)

where α = −1.5, β = − η
α

, and η is the pre-defined classifier threshold. Eq. (4.1) turns the

response map into a “standard” image, denoted asM′ .

The detection responses are usually noisy. To construct context feature fromM′ , Gaus-

sian smoothing with kernel size 7*7 and std value 1.5 is performed to reduce noise sensi-

tivity, as shown in Fig(4.1, 4.2). In the smoothedM′ , each pixel Ṗ represents a local scan

window in the original image and its intensity value indicates the detection confidence in

the window. Such a response image thus conveys context information, which we denote as

0th-order context.
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We define a 3D lattice structure centered at Ṗ in spatial and scale space. We set Ṗ

as the origin of the local 3-dimensional coordinate system, and index each pixel a by a

4-dimension vector [x, y, l, s]. Here [x, y] refers to the relative location with respect to Ṗ ;

l represents the relative scale level with respect to Ṗ ; s means the value of the pixel a in

the smoothed response imageM′, e.g. [2, 3, 2, 175] means the pixel a locates in the 2-level

higher than Ṗ , (2, 3) in (x, y)-dimensions relative to Ṗ , with pixel value 175. The context

structure Ω(Ṗ ) around Ṗ in the spatial and scale space is defined as:

Ω(Ṗ ;W,H,L) =

{
(x, y, l, s)

∣∣∣∣∣
|x| ≤ W/2

|y| ≤ H/2

|l| ≤ L/2

}
, (4.2)

where (W,H,L) determines the size and shape of Ω(Ṗ ). For example, (1, 1, 1) means the

context structure is a 3× 3× 3 cubic region.

4.3.2 Binary Pattern of Comparisons (1st-order)

Given the 0th-order context structure, we propose to use comparison based binary features

to incorporate the co-occurrence of different objects. Although we only have a single object

detector, the response values at different locations indicate the confidences of the target

object existing. Therefore, each binary comparison encodes the contextual information of

whether one location is more likely to contain the target object than the other.

Comparison of Response Values

Specifically, we define the binary comparison τ in the 0th-order context structure Ω(Ṗ ) of

size W × H × L as:
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τ(s; a,b) :=

{
1 if s(a) < s(b)

0 otherwise
, (4.3)

where s(a) represents the pixel value in Ω(Ṗ ) at a = [xa,ya, la]. Naturally selecting a

set of n (a,b)-location pairs inside Ω(Ṗ ) uniquely defines a set of binary comparisons.

Similar to [77], we define the n-dimensional binary descriptors fn = [τ1, τ2, . . . , τn] as our

1st-order context descriptor. However, care needs to be taken for selecting the n specific

pairs for the descriptor.

Randomized Arrangement

There are numerous options for selecting n pairs of binary comparisons in Eq. (4.3). As

shown in Fig.(4.3), two extreme cases of selection are:

(i) The locations of each test pair (ai,bi) are evenly distributed inside Ω(Ṗ ) and binary

comparison τi can occur far from the origin point: xai
,xbi
∼U(−W

2
, W

2
),i.i.d

yai
,ybi
∼U(−H

2
, H

2
),i.i.d; lai

, lbi
∼U(−L

2
, L

2
),i.i.d;

(ii) The locations of each test pair (ai,bi) concentrate heavily surrounding the origin:

∀i ∈ (1, n), ai = [0, 0, 0], and bi lies on any possible position on a coarse 3D polar grid.

Type (i) ignores the facts that the origin of Ω(Ṗ ) represents the location of the detection

candidates and thus the context near it might contain more important clues; while type (ii)

yields too sparse samples at the boarders of Ω(Ṗ ) to stably capture the complete context

information. To address these issues, we adopt a randomized approach:

(iii) ai,bi∼Gaussian(µ,Σ), i.i.d. µ = [0, 0, 0], and Σ =
∣∣∣ ε1·W 2 0 0

0 ε2·H2 0
0 0 ε3·L2

∣∣∣. So Σ is

correlated with the size of context structure Ω(Ṗ ) and the scaling parameters [ε1, ε2, ε3] are
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Figure 4.3: Multi-order Context Representation. In the context structure Ω(Ṗ ) with size
W ×H × L around a position Ṗ (green dot), we first define binary pattern of randomized
comparisons (1st-order) based on certain distributions shown on left, described in Sec.
4.3.2 and 4.3.2. We then define the closeness measure vi and divide each dimension into
t intervals yielding m = t3 subregions (bounded by the solid and dotted red lines), upon
which we compute the histogram hj using Eq. (4.5,4.4) as the high-order co-occurrence
descriptor.

set empirically as [0.15, 0.15, 0.15] that give the best detection rate in our experiments.

The randomized binary features compare the 0th-order context in a set of random

patterns and provides rich 1st-order context. The patterns of comparisons capture co-

occurrence of classification responses within the context structure Ω(Ṗ ). We can then

construct the high order context descriptor using the 1st-order context.

4.3.3 High Order Co-occurrence Descriptor

It has been shown that higher-order co-occurrence features help improve classification ac-

curacy [79]. Inspired by it, we exploit higher order context information based on the co-

occurrence and statistics of the 1st-order context.

Denote fn = [τ1, τ2, . . . , τn] the randomized co-occurrence binary features, where τi

corresponds to a comparison between two pixels ai = [xai , yai , lai ] and bi = [xbi , ybi , lbi ].

For each pair of pixels ai and bi, we define a closeness vector vi = [ |xai | − |xbi|, |yai| −

|ybi |, |lai | − |lbi | ] to measure the absolute difference of the locations of ai and bi in

x-dimension, y-dimension, l-dimension. For example, |xai| − |xbi| > 0 implies that in x-
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dimension, ai is closer to the origin Ṗ than bi. Thus vi measures whether ai or bi is closer

to Ṗ . This is an important measure as it can be easily observed that stronger detection

responses occur in regions closer to the true positive locations. Accordingly the distribution

of τi w.r.t. vi contains important context cues. To compute a stable distribution that is robust

against noise, we evenly divide each dimension into t intervals yieldingm = t3 subregions,

and compute a histogram hm = [h1, . . . , hm], as shown in Fig.(4.3).

Specifically, suppose nj co-occurrence tests fall into the j-th subregion and their values

are {τj1 , τj2 , . . . , τjnj
}, the corresponding histogram value hj is calculated as

hj =

{ ∑nj
i=0 τji
nj

if nj 6= 0

0 otherwise
(4.4)

The high order co-occurence descriptor is then constructed as follows,

fp = {gkl | gkl = hk · hl, (k,l=1,...,m)}, (4.5)

While the 1st-order co-occurrence features fn describes the direct pair-wise relationships

between neighborhood positions in a local context, the high order co-occurrence features fp

capture the correlations among such pair-wise relationships in the local context. Comple-

mentarily they provide rich context cues and are combined into the Multi-Order Contextual

co-Occurrence (MOCO) descriptor, fc = [fn, fp].

4.4 Detection Evolution

To effectively use the MOCO descriptor for object detection, we propose an iterative frame-

work that allows the detector to evolve and achieve better accuracy. Such a concept of

detection “evolution” had been successfully used for pedestrian detection in Contextual

Boost [35]. In this chapter, we straightforwardly extend the MOCO based evolution frame-
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work to integrate with deformable-part models [59, 33] for general object detection tasks.

4.4.1 Feature Selection

Our detector uses the MOCO descriptor together with the non-context image features ex-

tracted in each scan window in the final classification process. The image features can

further consist of more than one descriptors that are computed from different perspectives,

e.g., the FHOG descriptors for different parts in the deformable-part-model [59, 33]. As

a result, the dimension of the combined feature descriptor can be very high, sometimes

more than 10, 000 dimensions. Feeding such features to a general classification algorithm

can be unnecessarily expensive. Therefore a step of feature selection is employed when

constructing the classifiers at each iteration of detection evolution. Many popular feature

selection algorithms have been proposed, such as Boosting [80, 40] or Multiple Kernel

Learning [14, 81]. Either of them can be used for our purpose. In our experiments boost-

ing [40] is used for feature selection.

4.4.2 General Evolution Algorithm

The iterative process of the detector evolution framework is similar to Contextual Boost [35].

Given an initial baseline detector, the iteration procedure for training a new evolving de-

tector is as follows. First, the baseline detector is used to calculate the response maps.

Then, the MOCO as well as the image features are extracted on all the training samples.

Bootstrapping is used to iteratively add hard samples to avoid over-fitting. Next, feature

selection is applied to select the most meaningful features amongst the MOCO and image

features. Finally, the selected features are fed into a general classification algorithm to con-

struct a new detector, which will serve as the new baseline detector for the next iteration. As

our MOCO is defined in a context region, the iteration will automatically propagate context

cues to larger and larger regions. As a result, more and more context will be incorporated
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through the iterations, and the evolved detectors can yield better performance. The itera-

tion process stops when the performances of the evolving detectors converge. In the testing

stage, the same evolution procedure is applied using the learned detectors respectively.

4.4.3 Integration with Deformable-Part-Model

The deformable-part-model approach [59, 33] has achieved significant success for general

object detection tasks. The basic idea is to define a coarse root filter that approximately

covers an entire object and higher resolution part filters that cover smaller parts of the

object. The relationship between the root and the parts is modeled in a star structure as,

sf = sr +

Np∑
i=1

(spi − di), (4.6)

where sr is the detection score of the root filter, spi and di respectively represent the de-

tection score and deformation cost of the i-th part filter, and Np is the number of part fil-

ters. The star-structural constraints and the final detection are achieved using a latent-SVM

model.

From the viewpoint of context, the deformable-part-model essentially exploits the intra

context inside the object region, e.g., various arrangements of different parts. In contrast,

the proposed MOCO deals with the co-occurrence of scanning windows that cover the

object region and its neighborhood. Therefore it exploits the inter context around the object

region. Clearly these two kinds of context are exclusive and complementary to each other.

This encourages us to combine them together to provide more comprehensive contextual

constraints.

Note that Eq. (4.6) consists of both the final detection response sf and the detection

responses spi from the Np part filters. Since each response s corresponds to a response

map, we calculate the MOCO descriptors using each of the response maps. We follow

the same procedure of computing the MOCO descriptors fc for the root filter from sf , to
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obtain the MOCO descriptors f ′ci for parts on spi . Furthermore, to effectively evolve

the baseline deformable-part-model detector using the calculated MOCO, we apply the

iterative framework not only on the root filter but also on part filters and detectors for every

component. The detailed training procedure for integrating our MOCO and the deformable-

part-model is summarized in Algm. (6). The input to the algorithm includes the training

dataset Strain and the deformable-part-model Ψ0 as the initial baseline detector. In each

iteration, we first adopt the same iteration process as in Sec. 4.4.2 for part filters and

the model for each component, and evolve the component model accordingly for the next

iteration. This step is shown as step 2 in Algm. (6). Then we use the latent-SVM to fuse

the Nc components and retrain an evolved detector for the next iteration. Bootstrapping

is again used to avoid over-fitting. The iteration process stops when we observe that the

detection accuracy rate converges.

Algorithm 6: Detection Evolution
Input: Pre-trained deformable-part-model Ψ0 with Nc components, each containing Np part

filters; training data set Strain; detection accuracy rate (e.g. average precision) δ0 of
Ψ0 on Strain; convergence threshold ξ.

Output: Iteratively evolved detectors Ψ1, . . . ,ΨNd

Set R = 0
Do

1. R = R+ 1, Nd = R.
2. for i = 1→ Nc do

1). Extract the image feature fI according to the ith component of Ψ(R−1) on Strain.
2). Compute the detector response maps on Strain using Ψ(R−1).
3). For each detection candidate Ṗ , compute the 1st-order and high-order context
descriptors on Ω(Ṗ ) according to Eq. (4.3, 4.4, 4.5) for each of the Np part filter
responses, resulting multiple MOCOs as [fc, f

′
c1 , . . . , f

′
cNp

]
4). Do feature selection using Boosting [40] on [fI , fc, f

′
c1 , . . . , f

′
cNp

], to learn the
informative features fLi for the ith component.
5). Bootstrap and retrain the evolved detector for the ith component.

3. Bootstrap and retrain the evolved detector ΨR via latent-SVM [59, 33] for fusing the
responses from the Nc evolved component detectors.
4. Evaluate the detection rate δR on Strain using ΨR.

While δR − δ(R−1) > ξ;
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4.5 Experiments and Discussion

We have conducted extensive experiments to evaluate the proposed MOCO and the de-

tection evolution framework. To demonstrate the advantage of our approach, we adopt

the challenging PASCAL VOC 2007 dataset [10] with 20 categories of objects, which are

widely acknowledged as one of the most difficult benchmark datasets for general object

detection. We use the deformable-part-model [33] with default setting ( 3 components,

each with 1 root and 8 part filters) as our initial baseline detector. First, to demonstrate

the advantage of the MOCO, we compare the performance achieved by using different or-

ders of context information. We show performances with various parameter settings to

demonstrate the characteristics of the MOCO. Second, we compare the performance at dif-

ferent iterations as the detector evolves to show that the detectors quickly converge in about

2∼3 iterations. Third, we compare the performance of our method with those of state-of-

the-art approaches and show substantial improvement. Furthermore, we also experiment

on Caltech pedestrian dataset [34], which was used as the main evaluation benchmark for

Contextual Boost [35]. The comparisons demonstrate the advantages of our approach.

4.5.1 Multi-order Context Representation

We first evaluate the MOCO representation and experiment with different parameters set-

tings. We use 5 categories (plane, bottle, bus, person, tv) from PASCAL VOC 2007 and

experiment on “train” and “val” set for various parameters. All experiments in this sec-

tion only run 1-iteration of detection evolution. We compare the mean Average Precisions

(mAP) to show how the performance varies with different parameter settings.

Context Parameters. Two important parameters that directly affect the computation

of context descriptors are the size of Ωp and the number n of binary comparisons. Since the

binary comparisons {τ1, τ2, . . . , τn} are randomly sampled inside the 3D context structure

Ω(Ṗ ), the comparison number n is chosen proportional to the size of Ω(Ṗ ), W ×H × L.
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Figure 4.4: Mean AP (mAP) Varies for Different Parameters: the sizeW×H×L of context
structure Ω(Ṗ ) and the number n of binary comparison tests. Only 1st-order context feature
and the image features is used for evaluation.

As shown in Fig.(4.4), bigger size of Ω(Ṗ ) and number n correspond to richer context

information and thus yield better performance, yet requiring more computation. To balance

the performance and computational cost, we finally choose 11× 11× 9 as Ω(Ṗ ) size, and

512 as the binary comparison test number, where the scale factor is 20.1 as in [59] and 9

scales up is about 2 times.

1st-order Context. According to the analysis in Sec. 4.3.2, we choose type iii of

Gaussian sampling for constructing the 1st-order context descriptor. We compared the

detection performances using different Gaussian parameters. As shown in Fig.(4.5), the

best accuracy is achieved when the variances in the three dimensions are [0.15, 0.15, 0.15]

respectively. Fig.(4.5) also shows the comparison with the sampling methods of type i and

type ii, which confirms the advantage of Gaussian sampling.

High Order Context. The most important parameter for computing high order context

descriptor is the dimensionm of the histogram. Since the high order context descriptor fp is

complementary to the 1st-order context feature fn, they are combined when evaluating the

detection performance. Table.(4.1) shows the detection accuracy when choosing different

values ofm, where the best accuracy is achieved when the closeness vector space is divided

into m = 27(= 33) subregions.
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Figure 4.5: Mean AP (mAP) Varies for Different Arrangements. Only 1st-order context
features and the image features is used for evaluation.

m = 0 m = 8 m = 27 m = 64 m = 125
46.0 46.3 46.7 46.5 46.1

Table 4.1: Mean AP (mAP) varies with respect to the length of high-order co-occurrence
feature fp. The high order context descriptor together with 1st-order context feature and the
image features are used. m = 0 refers to not using any high order feature.

Context in Different Orders. To show that different orders of context provide com-

plimentary constraints for object detection, we compared the detection accuracy using dif-

ferent combinations of the multi-order context descriptors. For 0th-order context, we chose

the best parameter settings presented in [35]. As shown in Table.(4.2), clearly the MOCO

descriptor that combines all orders of context achieves the best detection performance. This

confirms that none of the multi-order contexts is redundant. Another way of exploring the

1st-order context is to extract the gradient-based features such as SURF [1] or LBP [2]

directly on each scale of the context structure Ω(Ṗ ). However it does not help improve the

accuracy in our experiments, as shown in Table.(4.2). This means that the context across

larger spatial neighborhood or different scales can be more effective than the context con-

0th 1st 1st +H 0th + 1st 0th + 1st +H SURF LBP
45.5 46.0 46.7 46.8 47.2 44.7 45

Table 4.2: Mean AP (mAP) varies with the combination of different order context fea-
ture, where 0th, 1st, H respectively refers to 0th, 1st and high order descriptors. We also
compared with SURF [1] or LBP [2] extracted on each level of context structure Ω(Ṗ ).
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0 1 2 3(converged) 4 5 6
35.4 37.6 38.3 38.7 38.8 38.7 38.7

Table 4.3: Mean AP (mAP) varies with respect to the proposed detection evolution algo-
rithm, where 0-iteration in the left refers to the baseline without detection evolution.

plane bike bird boat bottle bus car cat chair cow table
Leo [11] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2

CMO [61] 31.5 61.8 12.4 18.1 27.7 51.5 59.8 24.8 23.7 27.2 30.7
Det-Cls [60] 38.6 58.7 18.0 18.7 31.8 53.6 56.0 30.6 23.5 31.1 36.6
Oxford [14] 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5
NLPR [17] 36.7 59.8 11.8 17.5 26.3 49.8 58.2 24.0 22.9 27.0 24.3
Ver.5 [33] 36.6 62.2 12.1 17.6 28.7 54.6 60.4 25.5 21.1 25.6 26.6

Our method 41.0 64.3 15.1 19.5 33.0 57.9 63.2 27.8 23.2 28.2 29.1
dog horse motor person plant sheep sofa train tv mAP

Leo [11] 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6
CMO [61] 13.7 60.5 51.1 43.6 14.2 19.6 38.5 49.1 44.3 35.2

Det-Cls [60] 20.9 62.6 47.9 41.2 18.8 23.5 41.8 53.6 45.3 37.7
Oxford [14] 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 32.1
NLPR [17] 15.2 58.2 49.2 44.6 13.5 21.4 34.9 47.5 42.3 34.3
Ver.5 [33] 14.6 60.9 50.7 44.7 14.3 21.5 38.2 49.3 43.6 35.4

Our method 16.9 63.7 53.8 47.1 18.3 28.1 42.2 53.1 49.3 38.7

Table 4.4: Comparison with the state-of-the-art performance of object detection on PAS-
CAL VOC 2007 (trainval/test).

veyed by local gradients between adjacent positions.

4.5.2 Detector Evolution

Using the best parameters for the MOCO descriptor obtained using the “train” and “val”

datasets, we evaluate the detector evolution process across iterations. The entire PASCAL

dataset is used as the testbed, e.g., training on “trainval” and testing on “test” [10]. We

run Algm. (6) and compare the detection accuracy through iterations. For most categories,

our framework converges at the second or third iteration. To better show the trend of the

detector evolution process, we keep it running for 6 iterations. As shown in Table.(4.3), the

accuracy is steadily improved through iterations and converges quickly.
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4.5.3 Comparison with State of Art

Finally, we compare the overall performance of our approach with the state of art.

PASCAL VOC 2007. We first compare our method with state-of-the-art approaches

on PASCAL dataset [10]. As shown in Table.(4.4), our algorithm stably outperforms the

baselines [33] in all 20 categories. Especially on the categories of sheep, tv, and monitor,

the algorithm achieves significant AP improvements by 6.6%, 5.7%. When compared with

all prior arts, our approach outperforms 12 out of 20 categories, and achieves the highest

mean AP (mAP) at 38.7, outperforming the deformable model (ver.5) [33] by 3.3%.

Figure 4.6: The comparison between our algorithm and the state of the arts in Caltech
Pedestrian test dataset.

Caltech Pedestrian Dataset. We also experiment our algorithm on Caltech pedestrian

dataset [34]. We follow the same experimental setup as [35, 34] for evaluations. We use

LBP [2] to capture the texture information and FHOG [59] to describe the shape informa-

tion, and only consider “reasonable” pedestrians of 50 pixels or taller with no occlusion

or part occlusion [35, 34]. We compare our algorithm with the state-of-the-art results sur-

veyed in [34], as shown in Fig.(4.6): the best reported log-average miss rate is 48% [35],

while our algorithm further lowers the miss rate to 46%. If we consider the miss rate at 1
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FPPI, the best reported result is 25% [35], and our algorithm achieves 23%.

4.5.4 Processing Speed

Our detection evolution framework needs to evaluate each test image Nd times, where Nd

is the number of evolved detectors. The experiments show that it generally converges after

2 or 3 iterations and thus the computational cost would be around 2 or 3 times of the

deformable part models (ver.5) [33]. On PASCAL dataset [10], for a 500× 375 images, it

takes about 12 seconds. One way to speed up the detection is to adopt the cascade scheme.

In that case most negative candidates can be rejected in early cascades, and the detection

could be around 10 times faster [82].

4.6 Conclusion

In this chapter we have proposed a novel multi-order context representation that effectively

exploits co-occurrence contexts of different objects, denoted as MOCO, even though we

only use detectors for a single object. We preprocess the detector response map and ex-

tract the 1st-order context features based on randomized binary comparison and further

develop a high order co-occurrence descriptor based on the 1st-order context. Together

they form our MOCO descriptor and are integrated into a “detection evolution” framework

as a straightforward extension of Contextual Boost [35]. Furthermore, we have proposed to

combine our multi-order context representation with the recently proposed deformable part

models [33] to supply a comprehensive coverage over both inter-contexts among objects

and inner-context inside the target object region. The advantages of our approach are con-

firmed by extensive experiments. As the future work, we plan to further extend our MOCO

to temporal context from videos and contexts from multiple object detectors or multi-class

problems.
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Chapter 5

Object Detection with Depth Sensor:
Depth Sensor Based Object Detection
Using Normal Vector Pattern

5.1 Overview

In previous chapters, we propose algorithms and features for object detection with a com-

mon RGB camera. While as we know, the depth sensors have many advantages over RGB

cameras such as easy foreground segmentation, insensitivity to illumination variation and

texture/background clutter. So in this chapter, we investigate object detection with the

depth sensor. We propose an effective feature, Normal Vector Pattern (NVP) , designed ex-

clusively for object detection with a depth sensor. The trade-off that a feature can achieve

between the discriminative power and the invariance is essential for the classification per-

formance: a superior feature should be discriminative enough to detect inter-class varia-

tions, whereas the feature invariance minimizes the disturbance caused by the intra-class

variations. This feature trade-off depends on both the sensor type and the application. For

the depth sensor based object detection task, the proposed NVP is a successful attempt

due to its two components: the cross products of neighboring normal vectors induce the
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discriminative power and the inner products of the normal vectors lead to the view-angle

invariance. The superiority of the proposed NVP is evident: with a simple linear SVM

model, the proposed framework outperforms the state-of-the-art features based on more

complicated models such as the deformable parts model on standard Washington RGB-

D [6] and NYU [36] benchmark datasets.

5.2 Introduction

The improvements or the breakthroughs in hardware inevitably impact the successive algo-

rithms, which may revolutionize the existing applications or generate new applications. The

quick growth in gaming industry leads to the fast development of GPU, which facilitates the

high performance parallel computing based on GPU and fosters the large scale learning on

big data [83]; the proliferation of personal mobile devices such as smart-phones and Google

glasses catalyzes the research in egocentric vision [84, 85]; the recently emerging low-cost

depth sensors, i.e.the Kinect depth sensor [86, 87], have fostered researchers to revisit un-

solved vision problems such as object recognition/detection [6, 88, 89, 90, 91, 92, 93, 94],

motion capture [88], and action recognition [5, 95, 96].

Depth sensors have many advantages over RGB cameras such as easy foreground seg-

mentation and insensitivity to illumination variation and texture/background clutter. For

the challenging object detection task, many image features [97, 98, 99] are proposed, pre-

sumably taking the RGB or gray level images as the input. A depth image is essentially

different from RGB or gray level images, because the intensities of the depth image repre-

sent the distances between the depth sensor and object surface points. If we treat a depth

image shown in Figure 5.1 as a gray level intensity image and simply apply off-the-shelf

vision algorithms originally designed for intensity images such as SIFT [97], HOG [98],

and LBP [99], we may only achieve suboptimal results, as noticed in [5, 4]. We therefore

propose an effective feature, Normal Vector Pattern (NVP), designed exclusively for object
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Figure 5.1: The proposed Normal Vector Pattern (NVP) feature is robust to the view-
ing angle variation, one of major causes of intra-class variations. Top : Two pairs of
RGB and depth images for the same coffee mug. Each pair corresponds to a view angle.
The yellow rectangles locate the exact same region of the coffee mug from which we ex-
tract the depth feature. Middle: the current state-of-the-art depth descriptor—Histogram of
Oriented Normal Vector(HONV) [4, 5] on the two depth images. Bottom: one histogram
of our NVP feature on the two depth images (NVP contains certain number of histogram,
each behaves with the view-angle invariant characteristics). The proposed NVP adopts
the 2D histogram quantization as HONV, but bases on fundamentally different angles, ex-
plained in Section 5.4. Thus as we could see from the figure, the NVP histograms for the
two view angles are quite similar. Especially the domain bins almost keep the same. In
contrast, the HONV histograms are totally different in these two view angles. So clearly
NVP has the advantage of view-angle invariance. With this metric, NVP outperforms the
prior art HONV [4] by 12% in Mean Average Precision on standard Washington RGB-D
dataset [6].

detection with a depth sensor. The proposed NVP, as illustrated in Figure 5.1 and Figure

5.2, captures the geometric characteristics of an object and tolerates the intra-class varia-

tion caused by the viewing angle change. We make the NVP achieve a trade-off between

the discriminative power and invariance: In contrast to the state-of-the-art HONV feature,

the proposed NVP is quite robust to the viewing angle variation as show in Figure 5.1.
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Meanwhile, the proposed NVP is discriminative enough to detect inter-class variations.

For example, as illustrated in Figure 5.2, for a concave surface and a convex surface with

same surface norm distribution, the HONV based representations are identical whereas the

the difference between the corresponding NVP representations are quite obvious: Telling

the difference between a baseball hat and a bowl is very difficult for HONV feature but

quite easy for NVP feature.

The success of the proposed NVP is mainly due to its two components to be detained

in Section 5.4.2: The cross products of neighboring normal vectors induce the discrimina-

tive power and the inner products of the normal vectors leads to the view-angle invariance.

The superiority of the proposed NVP is evident: with a simple linear SVM model, the pro-

posed framework outperform the state of the arts feature based on more complicated models

such as the deformable parts model on Washington RGBD [6] and NYU [36] benchmark

datasets.

Our contributions are three folds: 1) For pan-tilt-roll viewing angle changes, we give

a thorough analysis on the variations of the inner product and the cross product between

the neighboring normal vectors. 2) Based on this analysis, we propose an very effective

feature, NVP, achieving a performance superior to the state of the arts. 3) A very efficient

implementation of the NVP is given, making the NVP ready for the realtime demo.

5.3 Related Work

Researches have been working on images with depth information or range images for

decades [100, 101, 102, 103]. However, the emergence of cost-effective depth sensors,

especially the Kinect sensor [86, 87], has catalyzed the research in this direction [89, 90,

91, 92, 93]. Some of these approaches either adapt the existing techniques to the depth

image, or combine the RGB and depth information to improve the recognition accuracy,

whereas others propose new techniques designed specifically for the depth image. Bo et
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Figure 5.2: Example showing the discriminative characteristics of NVP. For better il-
lustration, in this example, we assume that the three different surfaces are all perpendicular
to the “Y-D” plane. Top: The left image shows the three surfaces in the “XYD” 3D space.
While the right image gives out the three surfaces from the viewpoint that is perpendicular
to “Y-D” plane. The red arrows here show the orientations of surface normal vectors. Mid-
dle: The 2D histogram of surface normal HONV [4] on the 3 surfaces. In [4], the normal
vector is represented by its two angles, azimuthal angle ϕ and zenith angleθ. Bottom: The
2D histograms of the proposed NVP on the three surfaces. The 2D histogram of NVP is
determined by two different angles α and β, explained in Section 5.4.2 & Section 5.4.3.
The HONV [4] counts the normal vectors in the surface independently and discards their
location information. Therefore it cannot distinguish these three surfaces. In contrast, the
proposed NVP not only captures how large the surface varies but also describes the shape of
the surface,e.g., concave, convex, etc. Therefore it is able to differentiate the three surfaces.

al. [91] develop a set of kernel features on depth images that model size, 3D shape, and

depth edges in a unified framework, which has been demonstrated to have much better per-
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formance than spin images [104]. The Relational Depth Similarity Features (RDSF) [89]

calculates features derived from a similarity of depth histograms that represents the rela-

tionship between two local regions using the Bhattacharyya distance [105]. Lai et al. [93]

tried to address the joint object category and instance recognition problem in the context

of RGB-D (depth) cameras using instance distance learning. Jamie et al. [88] proposed a

real-time pose recognition method using the Kinect. Cai et al. [106] proposed a regular-

ized maximum likelihood deformable model algorithm for 3D face tracking. There is also

some work on 3D modeling in indoor environments [107, 108, 109] which takes advantage

of the depth information . Xia et al. [90] proposed a model based approach which detects

humans using a 2-D head contour model and a 3-D head surface model.

A large-scale 3D object dataset, the RGB-D dataset, was recently announced as a

benchmark dataset [6] for object recognition algorithms using depth information. The

state-of-the-art algorithms such as Depth Kernel Descriptors (DKD) [91], Hierarchical Ker-

nel Descriptors (HKDES) [92] and Instance Distance Learning (IDL) [93], are all evaluated

and compared on this benchmark dataset.

Tangent feature has been used for object recognition. Yu and Zhang [110] extended the

Local Coordinate Coding (LCC) [111] algorithm by exploring the local tangent directions.

In contrast to these approaches, which represents the data manifold through local PCA, the

HONV [4] feature represent an object in 3D space as a distribution of the normal vector

orientation. Xu and Xu [112] proposes an object description and recognition approach

based on the relationship between the arc length and tangent orientation of object contours.

5.4 Normal Vector Pattern (NVP)

The robustness of surface normal vector has been extensively verified in many computer

vision tasks, e.g., object detection [4], action recognition [5]. However the previous works

treat each surface normal vector independently and consequently perform histogram quan-
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tizations over a lattice structure in the region of interests. We notice that a local surface

could be represented more effectively by using the relationship between neighboring nor-

mal vectors. In this section, we present the proposed 3D depth image descriptor—Normal

Vector Pattern (NVP), and show its superiority over direct histogram of surface normal

vectors [4].

5.4.1 The surface normal

We represent each pixel p of in a depth image I as a three-dimensional vector [x, y, d],

which encodes the X-Y spatial information in the image plane and the distance between

the optical center and the reflecting point. Therefore, we can model the depth image I as a

function R2 → R1 : d = f(x, y), which in the 3D space constitutes a surface: S(x, y, d) =

d − f(x, y) = 0. For any point (x0, y0, d0), on the surface, (i.e.S(x0, y0, d0) = 0), we can

linearize the function S(x, y, d) locally, with the first order Taylor expansion,

S(x, y, d)
.
= S(x0, y0, d0) +


x− x0

y − y0

d− d0


T

· 5S. (5.1)

The corresponding tangent plane at the point (x0, y0, d0) is:

S(x0, y0, d0) +


x− x0

y − y0

d− d0


T

· 5S = 0. (5.2)

Therefore, the surface normal vector at (x0, y0, d0) can be computed as:

n = 5S = (−∂d
∂x
,−∂d

∂y
, 1)T . (5.3)
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The magnitude of the surface normal of an object is directly related to the physical size

of the object and the scale under which the object is observed, which is irrelevant to object

categorization or detection. Therefore we normalize the normal vector n to a unit length

normal ñ:

ñ = (− 1

‖n‖2

· ∂d
∂x
, − 1

‖n‖2

· ∂d
∂y
,

1

‖n‖2

)T (5.4)

After the normalization, the normal vector ñ inherently preserves richer information

than the 2D gradient orientation (− ∂d
∂x
,−∂d

∂y
)T . This is because, the third dimension of the

unit normal ñ encodes the magnitude of the gradient 1
‖n‖2 , and experimentally this extra

dimension enhances the discriminative characteristics of normal vector descriptor [4, 5].

5.4.2 Patterns of neighboring normal vectors represented as inner and
cross products

After computing the surface normal vector ñ as in Equation 5.4, the previous works [4, 5]

simply quantized the normal vector space into specific bins, and accordingly constructed

the histogram-based feature.

However several problems exist in these methods: 1) surface normal vector records the

absolute orientation information(e.g., zenith angle and azimuth angle of the normal vector)

of every pixel in the depth image. Consequently it would be sensitive to the view angle

change, as shown in Figure 5.1. 2) the quantization method of surface normal in each local

region(e.g., 8× 8 pixel image patch [4]) treats the normal vectors independently, and then

represents the distribution of normal vectors as a histogram [4]. This procedure ignores to

model relative relationship information between each pair of normal vectors. While, in fact

the shape of each local surface should be determined by the angles between the neighboring

normal vectors. To better illustrate this, considering the three typical surfaces as shown in

Figure 5.2, where surface 1 and surface 3 are symmetric to the plane “X-Y” in the “XYD”

space. Surface 2 could be represented as a linear combination of surface 1 and surface 3.
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Thus the naive histogram quantization of normal vectors [4] for the three surfaces cannot

differentiate their types of surface shapes, e.g., concave, convex or sawtooth.

To address this issue, we propose a novel normal vector pattern descriptor, which lever-

ages on the strength of neighboring normal vectors to describe the surface shape robustly.

For a normalized normal vector ñ1 computed on local surface S1, we denote a neighbor-

ing/nearby local surface as S2 and its normal vector as ñ2. The relative relationship between

this pair of normal vectors represented as their inner product and cross product describes

the surface shape variation from S1 to S2, shown in Figure 5.3.

Figure 5.3: The inner product and the cross product of neighboring normal vectors.
Suppose the local surface are S1 and S2. The angle α is the angle between the two neigh-
boring normal vectors ñ1 and ñ2, shown in the left image. While c represents the cross
product vector of ñ1 and ñ2.The right image shows the cross product in the “XYD” coor-
dinate system. The Kinect sensor locates at the view position O, and the “X-Y” plane is
always parallel to the sensor plane. The azimuthal angel and zenith angle of c are denoted
by β and γ. Finally we use α, β to define NVP. The yellow arrows in the right image
represent the three types of rotation: Pan, Tilt, Roll. Based on the three kinds of rotation,
we did the analysis why we keep β instead of γ. The details are explained in Section 5.4.2.

We first compute the inner product of ñ1 and ñ2 to represent how large the surface

varies across this pair of local surfaces. The inner product is then converted into the angle

α ∈ [0, π]:

α = cos−1 (ñ1 · ñ2) , (5.5)
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i.e.the angle between neighboring normal vectors. The metric of adopting angle α is quite

straightforward: this angle is totally determined by the object shape, not sensitive to the

view angle change. However there is also a disadvantage: This view-invariant description

only tells how large the local surfaces varies, while it can not distinguish the local surface

type, as shown in Figure 5.4. In another word, α is not discriminative enough to describe

the shape of local surface. This shortcoming is also proved by experiments, detailed in

Section 5.5.3.

Figure 5.4: Examples showing the importance of angle β. The two surfaces are symmet-
ric to the “X-Y” plane. Thus the relative angles α and α′ are the same. As a result, you can
not distinguish the “concave” surface 1 and “convex” surface 2. Fortunately, with the help
of the cross product vector C and C′ (or more specifically, the different β angle as shown
in Figure 5.3 ), we could easily differentiate these two surfaces, explained in Section 5.4.2.

To handle this problem and give a comprehensive representation of local surface, We

also compute the cross product between this pair of normal vectors. The magnitude of

cross product,which equals to sin (α), is redundant since it’s already captured by the an-

gle between neighboring normal vectors α in Equation 5.5. All we care is the orienta-
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tion of the cross product, which contains abundant information to describe the surface

type(e.g., concave, convex), shown in Figure 5.4. We denote the cross product vector as

C = [Cx, Cy, Cd]
T , where

C = ñ1 × ñ2,

β = tan−1

(
Cy
Cx

)
,

γ = tan−1

(Cx2 + Cy
2
) 1

2

Cd

 (5.6)

The angles β and γ determine the orientation of the cross product of a pair of neighbor-

ing normal vectors. More specifically, we name the angle γ the Zenith Angle of the Cross

product (ZAC) and the angle β the Azimuthal Angle of the Cross product (AAC). Here we

only keep the angle β and discard the angle γ. This is because in practice when the Kinect

captures a depth image, the D axis of the XYD coordinate system is always perpendicular

to the Kinect sensor while as a result “X-Y” plane is parallel to the sensor plane. When

viewing the S1 and S2 with different viewpoints, The angle β with a range [0, 2π) is not

sensitive to the view angle change variation, as shown in Figure 5.5. But γ does not own

this character. Also, the value of angle β could clearly differentiate a surface is concave

or convex, etc. Therefore, combining α and β, we are already fully able to describe the

surface variation from S1 to S2: α tells us how large the variation is, while β distinguishes

the surface type, such as convex or concave. Figure 5.2 demonstrates this advantage. In the

meanwhile these two angles are neither sensitive to the viewpoint variation, as examples

shown in Figure 5.1, overcoming the weakness of naive surface normal vector feature, e.g.,

HONV [4].
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Figure 5.5: Examples showing the β angle is not sensitive to the view angle change.
In the left image, the cross product vector of the two local surfaces is denoted as red arrow
C on the 3D surface. Supposing the original view angle of the Kinect sensor is O, we
could move the sensor horizontally to the position O1 with view angle change4ω1, or we
could also move the sensor vertically to the position O2 with view angle change4ω2. No
matter how the sensor rotates, the Depth axis of our “XYD” coordinate system is always
perpendicular to sensor while “X-Y” plane is parallel to the sensor plane. According to
the three view angles O, O1, O2, we could compute the angle β, β1, and β2 respectively.
In the right column, we draw the three angles. We observe that ||β1 − β|| ≤ || 4 ω1||,
||β2 − β|| ≤ || 4 ω2||. This means the β is not sensitive to the view angle change.

5.4.3 Efficient normal vector pattern (NVP)

After defining the angles α and β, we need to find a way to transform them into descriptors.

In the depth image of an object, each pixel pi corresponds to a local surface Si. Thus for

each pair of pixels{pi, pj}, we could compute the angles {αij, βij} to describe the surface

variation from local surface Si to local surface Sj . Supposing the depth image has size
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M × N , we could get as many as (M × N)2 relative relationships. The huge number of

relationships contains too much redundant and useless information, which inspires us to

propose an efficient depth feature. We name it Normal Vector Pattern (NVP). This repre-

sentation is desired to balance the discriminative characteristics and view-angle invariance.

In the meanwhile, it should be efficient enough for the object detection task. Also note

that, αij = αji, but βij = π + βji. This means the relative position has large impact to the

feature representation. Therefore, we need to define NVP in a way that counts the different

types of relative location independently.

For a pixel pi of the depth image, we define a surrounding region centered at pi. We

sample K pixels on the region boundary {pik |k = 1, 2, . . . , K}. Each pair of {pi, pik}

corresponds to one type of relative relationship patternRk, e.g., pixel pik is on left-top of the

center pixel pi. Therefore, according to each Rk, we could get the two-dimensional angle

vector [αiik , βiik ]. In another word, each pixel pi would have K pairs of two-dimensional

angle vectors. Now for each relationship pattern Rk, we could perform the quantization

separately based on angle vectors that belong to this pattern Rk.Note that, we only pick up

the k pixels on the boundary, because we want the pixels {pi, pik} have some distance to

each other. This behavior will preserve more context information and resist noise better.

As illustrated in Figure 5.6, following successful cell-structured histogram features such

as HOG [98] and LBP [113], firstly we divide the detection window into m by n cells,

which could be non-overlapped or overlapped with each other. In each cell, every relation-

ship pattern Rk corresponds to a 2D histogram hk. Then inside the same cell, all the angle

vectors belonging to relationship pattern Rk are voted into the 2D histogram hk. Assuming

I bins and J bins are used for α and β respectively, We will generate a I × J dimensional

feature vector for each relative relationship for each cell. To avoid boundary effects, the

angle values are softly voted into multiple neighborhood bins using bilinear interpolation.

The final feature representation of the detection window is obtained by concatenating the

histogram-based feature from each cell, and each cell has feature length K × I × J .
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Figure 5.6: Computation of NVP descriptor. (a) extraction of NVP descriptor for each
depth image pixel. For each pixel p (red point), we define a surrounding region and sample
K pixels {p1, p2, . . . , pK} (denoted by green points) on the boundary. Here K equals 8.
Then for each pixel pair {p, pk}, we compute the angle vector [αk, βk]. Finally assign it into
2D histogram hk according to which relationship pattern Rk it belongs to. (b) extraction
of NVP for the whole detection window: split window into cells, get the K histograms for
each cell Vij = [hij1 , h

ij
2 , . . . , h

ij
K ], and finally concatenate all the histogram-based feature

V = [V11, V12, . . . , Vnm].

5.5 Experiments

We have conducted extensive experiments to evaluate the proposed NVP. We first introduce

the experiment setup in Section 5.5.1, followed with experimental results and analysis. We

show both qualitative and quantitative results that confirm the advantages of the proposed

NVP.

5.5.1 Experiment setup

Dataset We evaluate NVP on two challenging RGB-D object datasets: Washington RGBD(

WRGBD) dataset [6] and the NYU-Depth(NYU) dataset [36]. Among the existing 3D

datasets [6, 36, 114], B3DO dataset [114] focuses on office scenes and is very valuable to

experiment the context learning algorithm [115] and RGB/depth information joint-learning
77



algorithms [36, 116]. However only relying on depth information, the B3DO dataset is

not a good choice. Since many categories appears too small and similar in the depth im-

ages. The literature [114] has demonstrated that using only depth image descriptor would

perform very bad, achieving less than 5% average precision (Figure 6 in [114]). In con-

trast, WRGBD [6] dataset contains 250,0000 RGB and depth image pairs, in which both

RGB and depth images are captured from three different positions for each instance. It is

quite suitable to evaluate the characters of the depth descriptor, such as toleration of the

view angle variation, discriminative capacity to different types of surface shape. So we

treat WRGBD as our main testbed. Similarly, NYU dataset [36] contains some foreground

categories in multi-viewpoints that are good for feature evaluation. We also report the

performance on it.

Baselines we compared with several popular descriptors in RGB and depth images,

including the HOG [98], HOGD [6], HONV [4], HONV+HOG [4].Also we compared

with current state-of-the-art performance achieved by [116] on WRGBD dataset. Besides

these baselines, we build up a baseline named “Inner Product” by ourselves: we only keep

the angle between neighboring normal vectors α and throw away the AAC β angle. The

rest steps are exactly the same as NVP. We evaluate this baseline to show the importance

to keep the angle β.

Parameter setting. Each detection window is divided into 12×12 pixel cells, and every

cell takes 50% overlapping with surrounding cells. For efficient detector learning, Linear

SVM is employed. Besides these setting, there exists several important parameters in NVP:

the size of surrounding region defined for each depth image pixel; number of the relative

relationship pattern K; The bin numbers of the 2D histogram. For these parameters, we

have evaluated them thoroughly on the WRGBD dataset, detailed in Section 5.5.2.
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side length d = 8 d = 12 d = 16
AP 62.8 67.0 53.9

Table 5.1: AP(%) varies with respect to the side length d of surrounding region

5.5.2 Parameter study

We first experiment with various different parameter settings of NVP on soda can cate-

gory of the WRGBD dataset. We compare the average precision(AP) to show how the

performance varies with different parameters.

Surrounding region size For each pixel pi, we define a squared surrounding region

with side length d and compute the angle vector between p and a boundary pixel pik . d

here determines how far the local surfaces we are interested in their relationship. If d is

too small, the two surface normals would be too similar and easily affected by noise. In

the other side, a too large d will lead the two surface normal vectors irrelative and their

relationship meaningless. The effect of d is shown in Table 5.1. Experiments shows that

d = 12 is the best choice.

Number of relative relationship pattern After fixing the surrounding region size, the

following important parameter is the relative relationship pattern numberK. Supposing the

side length of surrounding region is d, thus there are totally d2 possible relative relationship

patterns. We only sample K patterns out of the d2 candidates instead of using all of them.

Because every relationship pattern Rk corresponds to a 2D histogram hk for each cell in

the detection window. Thus large K will result in a very high-dimension descriptor, which

is a huge burden for computation. Here we evaluate the effect of the number K to the NVP,

the results are shown in Table 5.2. We observe that K = 16 achieves similar performance

as K = 8, while it would double the feature length. So finally we choose K = 8.

Bin number of 2D histogram As discussed in Section 5.4.3, for each relative relation-

ship Rk, we build up a 2D histogram of α and β in each cell. So the bin number of the 2D

histogram will affect the performance substantially. We denote I and J as bin numbers for

angle α and angle β respectively. Too few bins would reduce the discriminative ability of
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RR number K = 4 K = 8 K = 16
AP 63.5 67.0 67.1

Table 5.2: AP(%) varies with respect to the number of relative relationship pattern (RR
number) K.

(I,J) (5,4) (5,16) (10,8) (10,16) (20,8) (20,16)
AP 58.1 59.3 61.4 64.1 67.0 66.4

Table 5.3: AP(%) varies with respect to 2D histogram bin number (I, J) for angles α and
β.

NVP while too many bins would make NVP too sensitive. Here we test these parameters,

shown in Table 5.3. Finally we adopt the best bin numbers: (I, J) = (20, 8).

5.5.3 WRGBD dataset

The testing set for the detection task in WRGBD dataset contains 8 clips of video in 8 dif-

ferent scenes, primarily capturing 6 object categories: bowl, cap, cereal box, coffee mug,

flashlight and soda can. On this dataset, we compare our NVP with different state-of-the-

art methods, including [4, 116]. The precision-recall curves are presented in Figure 5.7. It

clearly demonstrates that NVP works best and outperforms other features in five of the six

categories by big margins. Note that in these five categories, even combining the state-of-

the-art depth feature HONV [4] and HOG on the RGB image together still suffers large gap

from our NVP . In the category of “soda can”, our NVP performs slightly worse than HOG

on color image, but still much better than other depth features. For the reason that feature

on RGB image performs better on “sode can” category, previous literature [4] already con-

cluded: it’s mainly because the soda can is very small and the Kinect depth sensor could

not produce sufficient resolution to extract discriminative depth features.

In addition, Figure 5.7 tell that the Inner Product descriptor already works well: except

the “cap” category, it stably outperforms the state-of-the-art HONV descriptor. When we

investigated the unsuccessful “cap” category, we observed that many instances belonging to
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Figure 5.7: Precision-recall curves for object detection on the WRGBD dataset.

“bowl” category acted as false alarms even we added many “bowl” images as negative data

on purpose during detector learning. This experimentally proves that the Inner Product

can not distinguish some different types of surface shape. Fortunately our NVP feature

incorporates the AAC β angle information besides the angle α between neighboring normal

vectors, and finally overcomes this disadvantage. Therefore comparing with Inner Product

feature, NVP gains great performance improvement in all categories.

For quantized comparison we present the average precision obtained in Table 5.4.
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FEATURE HOG HOGD HONV HH IP NVP
bowl 51.6 63.1 70.6 71.6 71.3 75.1
cap 33.3 33.1 65.3 71.5 42.2 72.6

cereal box 21.4 24.3 45.8 50.0 61.3 66.4
coffee mug 54.1 43.1 59.3 61.8 59.9 71.0
flashlight 32.1 15.3 37.7 44.4 45.8 54.8
soda can 71.0 46.6 54.3 60.6 58.9 67.0

AVERAGE 43.9 37.6 55.5 60.0 56.6 67.2

Table 5.4: Summarization of AP (%) obtained with the six feature configurations on the
WRGBD dataset. (HH means the combination of the HOG and HONV feature; HOGD
means HOG on depth image; IP means Inner Product.) The best performance is shown
in bold with underline. Except the category of soda can, the best performances are all
achieved by our proposed NVP.

Clearly the NVP outperforms others a lot. Comparing with the state-of-the-art depth de-

scriptor HONV [4], our depth feature NVP significantly outperforms it by 12% mean av-

erage precision(mAP) in the WRGBD dataset. Also, We beat the HONV+HOG [4] by

7.2% mAP. Considering the additional RGB information which is complement of depth

information is augmented in HONV+HOG setup, it would be easier to observe the good

performance of NVP. In addition, the state-of-the-art algorithm in [116] also reported per-

formance of 4 categories in WRGBD dataset: coffee mug, cap, soda can and flash light.

With the powerful DPM framework [117], it boosted the mAP of the four categories to

62.1%. Comparing with it, we achieved 66.4% mAP on this four categories, outperforming

it by 4.3%. Note that we only adopt the simple linear SVM to learn the detectors.

5.5.4 NYU dataset

The NYU Depth dataset [36] contains a total of 1449 labeled images and we randomly split

the set into 800 images for training, the rest for test. Since NYU dataset [36] is originally

for scene analysis and provides pixel-level labels, some instances are heavily occluded and
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Figure 5.8: Summarization of AP (%) obtained on the NYU dataset.

in low resolution. We refine some labels and ignore the instances occluded more than 50%1.

We evaluate in 5 foreground categories: bed, sofa, table, chair and door. Comparing with

state-of-the-art depth descriptor HONV [4], our NVP improves the mAP from 27.3% to

33.0%, outperforming HONV by 5.7% mAP. The results are summarized in Figure 5.8.

5.6 Conclusion

In this chapter we have proposed a novel depth feature, Normal Vector Pattern (NVP), with

application for object detection with a depth sensor. NVP feature has achieved a good bal-

ance between discriminative power and view-angle invariance. With a simple linear SVM,

our NVP already outperforms the state of the art features based on more complicated mod-

els such as Deformable parts model. Extensive experiments on WRGB [6] and NYU depth

datasets [36] demonstrate the effectiveness of the proposed NVP feature. Our efficient

representation of NVP also making itself possible for the real-time demo in the future.

1Prior art [115] did an excellent precise labeling( visible region and context region both labeled) for
NYU dataset [36], but unfortunately their label is not available currently, thus we cannot experiment on its
configuration
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Chapter 6

Fine-grained Object Recognition by
Local Feature Embedding and Template
Selection

6.1 Overview

Unlike the previous chapters that study the general object detection problems, the following

chapter will focus on a specific task in computer vision: fine-grained object recognition.

Currently fine-grained recognition has drawn lots of attentions due to its valuable practical

usage. Fine-grained recognition has great potential to improve the performance of object

detection. For example, if we would like to train a sedan car detector, we need to distinguish

all sedan cars from SUVs. This requires us have a good fine-grained recognition algorithm

in advance. So in this chapter, we first introduce a scalable and effective algorithm to ad-

dress a special large-scale fine-grained recognition problem—visual font recognition(VFR)

problem. VFR problem aims at automatic identification of the typeface, weight, and slope

of the text in an image or photo without any knowledge of the content. Although visual

font recognition has many practical applications, it has largely been neglected by the vision

community. To address the VFR problem, we construct a large-scale dataset containing
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2,420 font classes, which easily exceeds the scale of most image categorization datasets

in computer vision. As font recognition is inherently dynamic and open-ended, i.e., new

classes and data for existing categories are constantly added to the database over time, we

propose a scalable solution [37] based on the nearest class mean classifier (NCM). The core

algorithm is built on local feature embedding, local feature metric learning and max-margin

template selection, which is naturally amenable to NCM and thus to such open-ended clas-

sification problems. The new algorithm can generalize to new classes and new data at little

added cost. Extensive experiments demonstrate that our approach is very effective on our

synthetic test images, and achieves promising results on real world test images. Then we

propose a more scalable hierarchical algorithm for fine-grained object recognition, which

shows advantage in both accuracy and speed.

6.2 Introduction

In real world, many object categories appear similar and correlated to each other. A good

object detector should be able to distinguish them effectively, otherwise, there would be too

many false alarms and accordingly the detection system would crash. To do a thorough re-

search on fine-grained object categorization, we use the font recognition as our testbed due

to their high similarity to each other and large-scale charachteristic.Typography is a core

design element of any printed or displayed text; graphic designers are keenly interested in

fonts, both in their own works, as well as in those of others. Consequently, they frequently

encounter the problem of identifying “fonts in the wild.” For example, a designer might

spot a particularly interesting font on a restaurant menu and would like to identify it for

later use. Currently, a designer’s best recourse is to take a photo of the text and then seek

out an expert to identify the font, such as on an online typography forum1.

With hundreds of thousands of possible fonts to choose from, it is extremely tedious

1E.g. myfonts.com or www.flickr.com/groups/type
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Figure 6.1: Visual font recognition on two real-world test images. The algorithm correctly
classifies both (top of the list) and returns four other similar typefaces, despite the high
level clutter and noise.

and error-prone, even for font experts, to identify a particular font from an image manually.

Effective automatic font identification could therefore greatly ease this problem, and could

also facilitate font organization and selection during the design process. To address this

need, we propose the application of computer vision methods to automatically identify the

typeface, weight and slope of the text in a photo or graphic image. We dub this problem Vi-

sual Font Recognition (VFR), in contrast to the well-studied problem of Optical Character

Recognition (OCR). (That said, we note that the two problems are coupled in that accurate

VFR has the potential to greatly improve OCR accuracy, and vice versa.)

Remarkably, the computer vision research community has largely neglected the VFR

problem. The few previous approaches [118, 119, 120, 121, 122, 123, 124] are mostly from

the document analysis standpoint, focusing on small number of font classes on scanned

document images that typically have high quality, in terms of resolution and contrast, and

low geometric distortion. Consequently, tasks such as binarization, noise reduction, char-
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Figure 6.2: Example images of character a and c in different fonts: (i) Adobe Garamond Pro
Bold, (ii) Adobe Calson Pro Bold, (iii) Adobe Calson Pro SemiBold, and (iv) BauhausStd-
Demi.

acter segmentation, connected component analysis, geometric alignment, and OCR can be

robustly applied. Building on these image processing steps, global texture analysis [119,

122], high-order statistical features [124] and typographical features [125, 121, 118] have

been exploited for font recognition. However, such scanned image-based techniques are

much less applicable to our VFR problem, which needs to be effective even on very short

strings or single words from noisy web images and photos taken with mobile devices. In

particular, photos in the wild typically suffer from noise, blur, perspective distortions, as

well as complex interactions of content with background.

Even though there has been great progress in OCR from photos [126], OCR is generally

designed for standard body text fonts and is not very effective for unusual fonts which are

often the ones designers wish to identify. In our own experiments with state-of-the-art

publicly available OCR engine [127] on our VFR-2420 dataset, which contains 2420 font

classes each with 1000 clean English word images, whole words were correctly recognized

only 60% of the time. Furthermore, words from more than 13% of our font classes were

correctly recognized less than 30% of the time. The poor performance of OCR on wider

range of fonts will adversely affect character-based font recognition algorithms. Therefore,

current systems such as whatfontis.com, rely on humans in the loop, involving tedious

user interactions, to solve the character segmentation and recognition problem for font

recognition on real photos.
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Even with human intervention, these systems are still far from robust enough for prac-

tical use. Equipped with recent advances in machine learning and image categorization

[128, 129, 130, 131, 132, 133], we propose to develop an automatic algorithm that does

not rely on character segmentation or OCR, and therefore, is applicable to the range of

inputs needed for VFR. However, compared with previously studied image categorization

and fine-grained recognition problems, visual font recognition has the following additional

challenges:

• VFR is an extremely large-scale recognition problem in terms of number of classes.

For instance, myfonts.com alone claims that they have more than 100,000 fonts in

their collection, which is much larger than most image categorization problems the

vision community has thus far addressed. This is dramatically different from previ-

ous font recognition works, where, limited to the scope of scanned documents, they

have only investigated the problem on a scale of tens of fonts.

• VFR is inherently dynamic and open-ended in that new font classes need to be con-

tinually added to the system. It is therefore critical that the algorithm is able to adapt

to new classes with low added cost, and to scale sub-linearly with the number of

classes.

• VFR is a combination of super fine-grained recognition and coarse-grained image

categorization, and it is character-dependent. For example, consider Fig. 6.2, where

fonts (i) and (ii) only differ slightly at the letter endings (in red rectangles), (ii) and

(iii) only differ on font weight, while all three fonts (i), (ii) and (iii) are visually

distinct from font (iv). However, in all cases, without knowing the characters, it is

very hard to find a feature space where character a is closer to c from the same font

than to character a from another font.

In this chapter, we develop a scalable data-driven approach to VFR that does not de-

pend on character segmentation or OCR to address the above challenges. Therefore, our
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algorithm does not need to know the context of the word when recognizing the font. Specif-

ically, our contributions are as follows:

1. Inspired by the recent object recognition and fine-grained recognition work [129,

131, 132], we propose an image feature representation called local feature embedding

(LFE) that captures salient visual properties to address the simultaneous fine-grained

and coarse-grained aspects of VFR.

2. Adopting the nearest class mean (NCM) classifier, we build a scalable recognition

algorithm with metric learning and max margin template selection based on the LFE

representation. Similar to [133], the new algorithm can generalize to new classes at

very little added cost.

3. We have synthesized a large-scale dataset for visual font recognition, consisting of

2,420 font classes each with 1,000 English word images. We also collected a small

test set of real world images, each with a known font class label that is one of the

classes in the training set. We will release both datasets with publication in the future.

Fig. 6.1 shows our visual font recognition on two real world images, where our algo-

rithm correctly classifies both (top of the list) and returns four similar other typefaces,

even though the text images have high levels of clutter and noise, and some perspective

distortion (right).

6.3 A Database for Visual Font Recognition

In this work, we focus on visual font recognition for the Roman alphabet. As the most

common case for font recognition is to identify the font class of short texts in images, we

want to collect images that contain short strings or single English words as the training data.

However, collecting real world examples for a large collection of font classes turns out to
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be extremely difficult because many attainable real world text images do not have font label

information. Furthermore, the error-prone font labeling task requires font expertise that is

out of reach of most people. Instead, we turn to synthesizing these images for the given

fonts to obtain the training data.

In order to get a representative English word set, we randomly select 1,000 English

words from the most common 5,000 English words sampled from a large corpus. The

English words have variable lengths, resulting in word images of different sizes. To capture

the variations caused by letter cases, we randomly divide the selected 1,000 English words

into lower and uppercases with equal probability. We collect in total 447 typefaces, each

with different number of variations resulting from combinations of different styles, e.g.,

regular, semibold, bold, black, and italic, leading to 2,420 font classes in the end.

For each font class, we generate one image per English word, which gives 2.42 million

synthetic images for the whole dataset. To normalize the text size2, we add two lower

case letters “fg” in front of each word when synthesizing the image. This helps us to find

the ascender and descender lines of the text. We then normalize the image size by fixing

the distance between the ascender line and descender line. The two letters “fg” are then

removed from the synthesized images. After normalization, we obtain all word images

with the same height of 105 pixels.

Besides the synthetic data, we also collected 325 real world test images for the font

classes we have in the training set3. These images were collected from typography forums,

such as myfonts.com, where people post these images seeking help from experts to iden-

tify the fonts. Compared with the synthetic data, these images typically have much larger

appearance variations caused by scale, background, lighting, noise, perspective distortions,

and compression artifacts. We manually cropped the texts from these images with a bound-

ing box to normalize the text size approximately to the same scale as the synthetic data.

2In font rendering, the same font size may not generate the same text size in pixels for different fonts.
3As we mentioned earlier, it is really hard to collect real world test images for the given fonts. We are still

growing our real-world dataset. Nevertheless, the current small dataset should be sufficient to give us a teaser
of the real problem.
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Figure 6.5 in the experiment section shows some real-world test images from different font

classes.

6.4 Our Approach

In this section, we first present our image feature representation for visual font recognition,

and then we describe our large-scale classification algorithm based on local feature metric

learning and max-margin template selection.

6.4.1 Local Feature Embedding

Most of the current state-of-the-art generic image classification systems [134, 135, 129] fol-

low the pipeline of first encoding the local image descriptors (e.g., SIFT [136] or LBP [130])

into sparse codes, and then pooling the sparse codes into a fixed-length image feature rep-

resentation. With each image represented as a collection of local image descriptors {xi}ni=1

with xi ∈ Rd, the first coding step encodes each local descriptor into some code (typically

sparse),

yi = f(xi, T ), (6.1)

where T = {t1, t2, ..., tK} denotes the template model or codebook of size K and ti ∈

Rd, f is the encoding function (e.g., vector quantization [134], soft assignment [137],

LLC [129], or sparse coding [135]), and yi ∈ RK is the code for xi. Then the pooling

step obtains the final image representation by

z = g({yi}ni=1), (6.2)

where g is a pooling function that computes some statistics from each dimension of the set

of vectors {yi}ni=1 (e.g., average pooling [134], max pooling [135]), and z ∈ RK is the
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pooled feature vector that will later be fed into a classifier.

While the above feature extraction pipeline is effective at distinguishing different cate-

gories of objects, it is not sufficient to capture the subtle differences within a object category

for fine-grained recognition, e.g., the letter endings in Fig. 6.2. Inspired by the recent fine-

grained recognition work [138, 131, 132], we extend the above feature extraction pipeline

by embedding the local features into the pooling vector, in order to preserve the details of

the local letter parts. Specifically, using max pooling in Eqn. (6.2), we not only pool the

maximum sparse coefficients, but also record the indices of these max pooling coefficients:

{z, e} = max({yi}ni=1), (6.3)

where z contains the max coefficients pooled from each dimension of the set {yi}ni=1 and

e is its index vector. Denoting ek = e(k) and zk = z(k), it is easy to see that zk = yek(k).

Instead of using the max pooling coefficients as the final image feature representation [129],

we obtain the pooling coefficients together with the local descriptor that fires each of them

{zk,xek}Kk=1. We construct the final feature representation by concatenating these local

descriptors weighted by their pooling coefficients:

f = [z1xe1 ; z2xe2 ; ...; zKxeK ] . (6.4)

The max pooling procedure introduces a competing process for all the local descriptors to

match templates. Each pooling coefficient zk measures the response significance of xek

with respect to template tk, which is effective at categorizing coarse object shapes [129,

135], while the pooled local descriptor xek preserves the local part details that are dis-

criminative for classifying subtle fine-grained differences when the pooling coefficients are

similar [138]. Therefore, our feature representation in Eqn. (6.4) can capture both coarse

level object appearance changes and subtle object part changes, and we call this feature

representation local feature embedding (LFE).
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Our local feature embedding embeds the local descriptors from max pooling into a

much higher dimensional space of RKd. For instance, if we use 59-dimensional LBP

descriptors and a codebook size of 2048, the dimension of f without using SPM is al-

ready 120,832. Although embedding the image into higher dimensional spaces is typically

amenable to linear classifiers [128, 129, 135], training classifiers for very large-scale appli-

cations can be very time-consuming. What’s more, a major drawback of training classifiers

for large-scale classification is that, when images of new categories become available or

new images are add to the existing categories, new classifiers have to be retrained at a very

high computational cost [133]. In the following section, we propose a new large-scale clas-

sification algorithm based on local feature metric learning and template selection, which

can be easily generalized to new classes and new data at very little cost. For this purpose,

we modify the LFE feature in Eqn. (6.4) into a local feature set representation:

f = {(zk,xek)}Kk=1. (6.5)

6.4.2 Large-Scale Classification

In our large-scale visual font recognition task, the dataset is typically open-ended, i.e.,

new font categories appear over time and new data samples could be added to the existing

categories. It is, therefore, important for a practical classification algorithm to be able

to generalize to new classes and new data at very little cost. Nearest class mean (NCM)

together with metric learning [133] has been explored for large-scale classification tasks,

where each class is represented by their mean feature vector that is efficient to compute. In

this chapter, we generalize this idea to NCM based on pooled local features to form a set

of weak classifiers. Then we propose a max-margin template selection scheme to combine

these weak classifiers for the final classification.
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Within-Class Covariance Normalization

Given the LFE feature f = {(zk,xek)}Kk=1 for each image, we would like to learn a Maha-

lanobis distance metric for each pooled local feature space, under which we formulate the

NCM classifier using multi-class logistic regression [133], where the probability for a class

c given a pooled local feature xek is defined by

p(c|xek) =
exp(−‖µck − xek‖2

Wk
)∑C

c′=1 exp(−‖µc′k − xek‖2
Wk

)
, (6.6)

where µck is the class mean vector for the k-th pooled local features in class c, and

‖µck − xek‖2
Wk

= (µck − xek)TW T
k Wk(µ

c
k − xek). (6.7)

Denoting Σ−1
k = W T

k Wk, we can see the k-th pooled feature space (or its projected sub-

space) is modeled as a Gaussian distribution with an inverse covariance matrix Σ−1
k .

To learn the metricWk for the k-th pooled feature space, we use a simple metric learning

method called within-class covariance normalization (WCCN). First, interpreting zk as the

probabilistic response of xek to template tk, we can compute the class mean vector µck by

µck =
1

Zc

∑
i∈Ic

zikx
i
ek
, (6.8)

where i is the index for the i-th training image with LFE feature f i = {zik,xiek}
K
k=1, Ic

denote the sample index set for class c, and Zc =
∑

i∈Ic z
i
k is a normalization factor. Then,

we compute Σk as the expected within-class covariance matrix over all classes:

Σk = E [Σc′k] ≈
C∑
c′=1

p(c′)Σc′

k , (6.9)

where

p(c′) =

∑
i∈Ic′

zik∑
i z

i
k

(6.10)
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is the empirical probability of class c′, and Σc′

k is the within-class covariance for class c′

defined as

Σc′

k ≈
1

Zc′

∑
i∈Ic′

zik(x
i
ek
− µc′k )(xiek − µ

c′

k )T , (6.11)

with Zc′ =
∑

i∈Ic′
zik. In practice, empirical estimates of Σk may be noisy; therefore, we

add a certain amount of smoothness by shrinking it towards the scalar covariance as

Σ̂k = (1− α)Σk + ασ2I, α ∈ [0, 1), (6.12)

where Σ̂k represents a smoothed version of the empirical expected within-class covariance

matrix, I is the identity matrix, and σ2 can take the value of trace(Σk). Suppose we

compute the eigen-decomposition for each Σ̂k = UkDkU
T
k , where Uk is orthonormal and

Dk is a diagonal matrix of positive eigenvalues. Then the feature projection matrix Wk in

Eqn (6.6) is defined as

Wk = D
−1/2
k UT

k , (6.13)

which basically spheres the data based on the common covariance matrix. In the trans-

formed space, nearest class mean can be used as the classifier, which lays the foundation

for the multi-class logistic regression in Eqn. (6.6).

To further enhance the discriminative power of Wk, we can depress the projection com-

ponents with high within-class variability, by discarding the first few largest eigenvalues in

Dk, which corresponds to the subspace where the feature similarity and label similarity are

most out of sync (large eigenvalues correspond to large within-class variance). In this case,

it can be shown that the solution of WCCN can be interpreted as the result of discriminative

subspace learning [139].
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Max-Margin Template Selection

After we learned the metric for each pooled local feature space, and assuming the templates

in T are independent, we can evaluate the posterior of a class c for the input image feature

representation f by combining the outputs of Eqn. (6.6) using a log-linear model:

p(c|f) =
1

H
exp

(
a+

∑
k

wk log p(c|xek)

)
. (6.14)

whereH is a normalization factor to ensure the integrity of p(c|f), wk weights the contribu-

tion of each pooled local feature to the final classification, and a is a small constant offset.

Here, the weight vector w = [w1, w2, ..., wK ]T , shared by all classes, acts to select the most

discriminative templates from the template model T = {tk}Kk=1 for the given classification

task. Then classification for f is simply to choose the class with the largest posterior:

c∗ = arg max
c′

p(c′|f). (6.15)

Alternatively, we can treat the multi-class logistic regression for each pooled local feature

as a weak classifier, and then linearly combine them to obtain a strong classifier:

s(c|f) =
K∑
k=1

wkp(c|xek). (6.16)

In this way, we can avoid the numerical instability and data scale problem of logarithm

in Eqn. (6.14). The score function s(c|f) does not have a probabilistic interpretation any

more, but classification is again simply to find the class with the largest score output. In

practice, we find this formulation works slightly better than the previous log-linear model,

and we adopt this linear model for all the experiments.

Given the training samples {f i, ci}Ni=1, where ci ∈ {1, ..., C} is the class label for the

i-th data sample, we want to find the optimal weight vector w such that the following
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constraints are best satisfied,

s(ci|f i) > s(c′|f i), ∀i, c′ 6= ci, (6.17)

which translates to

K∑
k=1

wk
(
p(ci|xiek)− p(c′|xiek)

)
> 0, ∀i, c′ 6= ci. (6.18)

In order to learn w, we define a cost function using a multi-class hinge loss function to

penalize violations of the above constraints

L(f i, ci; w) =
∑
c′ 6=ci

max{0,−γi(c′) + 1}, (6.19)

where

γi(c′) =
K∑
k=1

wk
(
p(ci|xiek)− p(c′|xiek)

)
. (6.20)

Then learning w is simply to solve the following optimization:

min
w

λ
N∑
i=1

L(f i, ci; w) + ρ(w), (6.21)

where ρ(w) regularizes the model complexity. In this work, we use ρ(w) = ‖w‖2
2, and

Eqn. (6.21) is simply the classical one-class SVM formulation. To see this, denoting

pi(c) =
[
p(c|xie1); p(c|x

i
e2

); ...; p(c|xieK )
]
, (6.22)

and qi(c′) = pi(ci)− pi(c′), Eqn. (6.19) can then translate to

L(f i, ci; w) =
∑
c′ 6=ci

max{0,−wTqi(c′) · 1 + 1}, (6.23)
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where qi(c′) can be regarded as feature vectors with only positive label +1. Therefore, the

optimization in (6.21) is the classical SVM formulation with only positive class and thus

can be readily solved by many existing SVM packages, e.g.., [140]. The regularization term

ρ(w) here may also take other forms, such as ‖w‖1, where the `1-norm promotes sparsity

for template selection, which typically has better generalization behavior when the size K

of the template model T is very large.

After we learn the WCCN metric for all pooled local feature spaces and the template

weights based on LFE, classification for a given f is straightforward: first compute the

local feature posteriors using Eqn. (6.6), combine them with the learned weights w, and

then predict the class label by selecting the largest score output c∗ = maxc′ s(c
′|f). When

new data or font classes are added to the database, we only need to calculate the new

class mean vectors, and estimate the within-class covariances to update the WCCN metric

incrementally. As the template model is universally shared by all classes, the template

weights do not need to be retrained.4 Therefore, our algorithm can easily adapt to new data

or new classes at little added cost.

6.5 Experiments

We now evaluate our large-scale recognition algorithm on the collected VFR database. We

implement and evaluate two baseline algorithms: 1) a representative font recognition al-

gorithm on scanned documents [124]; and 2) a widely used image recognition algorithm

LLC [129]. To get the local feature embedding (LFE) representation, we evaluated several

state-of-the-art texture or shape descriptors including covariance feature [141], shape con-

text [142], local binary pattern (LBP) [130] and SIFT [136], which have been extensively

verified in many computer vision applications. We find that SIFT works the best. For the

local descriptor encoding, we use LLC coding [129] to compare fairly with the LLC base-

4Same as other supervised learning algorithms, if the new added data or classes change the data distribu-
tion substantially, the template model and their weights need to be retrained.
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line, although other coding schemes can also be used, such as soft assignment and sparse

coding.

Our algorithm has very few parameters. The local descriptors(e.g., SIFT, LBP) are

extracted from 12× 12 image patches sampled from a regular grid on the image with step

size of 6 pixels. The template model T is learned by kmeans with size 2048. To compute

the smoothed version of the within-class covariance in Eqn. (6.12), we set α = 0.1 as a

constant. When calculating the projection matrix Wk in Eqn. (6.13), we throw away the

first two largest eigenvalues from Dk to depress the components with high within-class

variability.

6.5.1 Dataset Preparation

Our experimental dataset consists of three distinct sets: VFR-447, a synthetic dataset con-

taining 447 typefaces with only one font variation for each typeface; VFR-2420, a large

synthetic dataset containing typefaces with all variations; and VFR-Wild, which has 325

real world test images for 103 fonts out of the 2420 classes, each class with the number

of images ranging from 1 to 17. Each class in VFR-447 and VFR-2420 has 1,000 syn-

thetic word images, which are evenly split into 500 training and 500 testing. There are no

common words between the training and testing images.

To model the realistic use cases, we add moderate distortions and noise to the synthetic

data. First, we add a random Gaussian blur with standard deviation from 2.5 to 3.5 to

the image. Second, a perspective distortion is added by moving each corner of the image

randomly by ±5 pixels along x and y directions (images are pre-normalized to have the

same height of 105 pixels), which defines a perspective transformation. Third, the fore-

ground (text) and background intensities are randomly perturbed between [0, 255] with the

constraint that the intensity of foreground is at least 20 intensity levels smaller than the

background. Finally, some small Gaussian noise is added to the image, where we assume

the noise of a test images will be reasonably reduced with some simply preprocessing.
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Codebook 512 1024 1536 2048
LLC + SVM 64.63 73.04 78.13 82.23
LFE + Naive 76.04 80.20 81.77 84.21
LFE + FS 80.44 85.26 87.73 91.35
Improvements 18.36% 25.56% 32.69% 45.22%

Table 6.1: The top 1 accuracy of different algorithms with different template model sizes
on VFR-447. “Improvements” shows error reduction percentage of LFE+FS against LFE
+ Naive.

Covariance [141] Shape C. [142] LBP [130] SIFT [136]
44.13 54.13 89.02 91.35

Table 6.2: The top 1 accuracies of different local descriptors with our proposed LFE+FS
algorithm on VFR-447.

6.5.2 Results on VFR-447

Table 6.1 shows the recognition results on the VFR-447 synthetic dataset under different

template model sizes in terms of top 1 accuracy. “LFE+Naive” denotes our method without

template selection, i.e., equal weights in Eqn. (6.16), and “LFE+FS” denotes our method

with template selection. In all cases, both our methods significantly outperform the baseline

algorithm LLC [129]. Table 6.2 lists the recognition results with different local descriptors.

We can see that SIFT performs the best. LBP is slightly worse than SIFT, but its efficiency

justifies itself as a good alternative to SIFT.

In Table 6.3, we evaluated the top 1, 5, and 10 accuracies on the VFR-447 dataset with

2048 templates, in comparison with the two baseline algorithms [124] (denoted by “STAT”)

and LLC [129]. In all cases, our algorithm works the best. The previous font recognition

algorithm [124] focuses on scanned documents. It depends on a large text sample to extract

stable texture statistics for recognition. Therefore, it won’t work well in our case where the

test images have very short texts with noisy background. Since the VFR-447 dataset does

not have font variations within each typeface, i.e., most font classes are visually distinct,

coarse-grained techniques such as LLC is still working reasonably well.
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Methods Top 1 Top 5 Top 10
STAT [124] 25.12 30.30 33.41
LLC + SVM [129] 82.23 93.39 95.32
LFE + Naive 84.20 94.14 95.53
LFE + FS 91.35 98.90 99.62

Table 6.3: The top 1, 5, 10 accuracies of different algorithms with template model size
2,048 on VFR-447 synthetic dataset.

Figure 6.3: Sorted template weights (left) and top 81 selected templates (right) with largest
weights. Many of these selected templates correspond to letter endings.

Figure 6.3 depicts the max-margin template selection results on the 2,048 template

model. The left figure plots the sorted weights for the 2,048 templates after max-margin

template selection using optimization in Eqn. (6.21). Although all templates are selected

(using ‖w‖2
2 regularization), only a small portion of the templates are selected with large

weights. The right figure illustrates the top 81 selected templates5, most of which corre-

spond to letters endings and curvature strokes that are most informative for font recognition.

6.5.3 Results on VFR-2420

In Table 6.4, we report the top 1, 5, and 10 accuracies on the VFR-2420 dataset with

template model of size 2,048 and LBP as local descriptor. Compared with the results on

5The templates are visualized by image patches whose local descriptors are the nearest neighbors to the
selected templates
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Methods Top 1 Top 5 Top 10
STAT [124] 15.25 20.50 26.68
LLC + SVM [129] 50.06 72.48 78.49
LFE + Naive 65.20 85.36 89.93
LFE + FS 72.50 93.45 96.87

Table 6.4: The top 1, 5, 10 accuracies of different algorithms with template model size
2,048 on VFR-2420 synthetic dataset.

VFR-447 in Table 6.1, the top 1 accuracy of our algorithm for VFR-2420 drops notably,

from 91.35% to 72.50%, which is expected as the problem becomes super fine-grained with

font variations within each typeface. However, the top 5 and 10 accuracies are much better,

suggesting that our algorithm is effective at retrieving similar font classes, even though it

is confused by subtle font variations for top 1 classification. In contrast, LLC works much

worse than our algorithm on this dataset, due to its ineffectiveness in handling fine-grained

recognition tasks. Again, STAT [124] performs the worst.

To see that the top 1 accuracy of our algorithm is mainly affected by the similarity of

font variations within each typeface, Fig. 6.4 plots a sub-confusion matrix for 100 fonts

indexing from 1515 to 1615. The sub-confusion matrix demonstrates a hierarchical block

structure, where large blocks correspond to font variations within a typeface, e.g., the large

dotted rectangle corresponds to all font variations within typeface Minion Pro, and smaller

blocks correspond to font variations within a subfamily of a typeface, e.g., the small rect-

angle corresponds to variations within Minion Pro Bold. Interestingly, there are also many

periodic off-diagonal lines inside the blocks, which are typically caused by one particular

font variation. For example, the line structure in the ellipse is caused by the similarity of

weight variation between bold and semibold, as indicated by their font names listed in the

accompanying table. Such observations suggest that our confusion matrix is a good reflec-

tion of font similarity, which may be useful for font organization, hierarchical grouping,

selection, and recommendation.
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Font list a Font list b
1534: Minion Pro Bold 1581: Minion Pro SemiBold
1535: Minion Pro Bold Caption 1582: Minion Pro SemiBold Caption
...

...
1549: Minion Pro Bold Subhead 1596: Minion Pro SemiBold Subhead

Figure 6.4: The sub-confusion matrix for 100 font classes indexing from 1515 to 1615.
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Methods Top 1 Top 5 Top 10 Top 20
STAT [124] 4.13 7.30 9.08 10.17
LLC + SVM [129] 26.46 44.00 51.08 57.23
LFE + Naive 29.54 46.15 54.46 62.46
LFE + FS 52.61 58.40 62.14 64.16

Table 6.5: The top 1, 5, 10, and 20 accuracies of different algorithms with 2,048 templates
on real world dataset.

6.5.4 Results on VFR-Wild

Table 6.5 shows the performance of our algorithm on the real world test images. As intro-

duced in Section 6.3, all the real-world images were roughly cropped and oriented man-

ually. Then we only did minimum preprocessing of denoising using a bilateral filter with

fixed parameters for all images. For heavier distortions, more complicated preprocessing is

needed, which we leave as future work. As shown in Table 6.5, compared to the synthetic

data, the performance drops notably, which is expected because of the mismatch between

training and testing data. Nevertheless, our LFE combined with template selection again

significantly outperforms both LLC and LFE without template selection. STAT was devel-

oped for scanned documents and performs very poorly on the wild data. Fig. 6.5 shows

some example real world test images that are (a) correctly and (b) wrongly classified by

our algorithm. Remarkably, our model, although trained on the synthetic dataset, is robust

to cluttered background and noise to a large extent shown by (a). In cases of decorated

texts, very low-resolution, extremely noisy input, and very cluttered background shown in

(b), the algorithm will fail. Better image preprocessing techniques will definitely help in

such cases, which we leave as future work. Considering all these challenging factors in

real world VFR, a recognition rate of 52.61% at top 1 accuracy is very promising. Note

that most of our real world images contain very short strings. In cases where the input

may contain long strings of text, we can cut the them into short strings and combine the

algorithm’s inferences on all of them.
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(a) (b)

Figure 6.5: (a) Real world images that are correctly classified (rank one). (b) Real world
images that are wrongly classified (fall out of top rank 20).

6.6 Extension work

The previous sections introduce our local feature embedding and template selection(LFS)

algorithm. The LFS algorithm adopts the nearest class mean (NCM) classifier, which pro-

vides a scalable solution to Visual Font Recognition (VFR).In this section, we would like

to discuss a new algorithm based on LFS.

We have observed that LFS [37] is very effective on our collected VRF-447 and VFR-

2420 synthetic dataset, and it achieved very promising results on the VFR-wild real-world

test dataset. However there still exists great potential to achieve improvements over LFS

in terms of both recognition accuracy and scalability. Currently, LFS could be recognized

as a flat multi-class classification problem, which treats each font class equally and tries to

learn classifiers that separate them simultaneously. While clearly, some fonts are sharing

a lot (usually they belong to the same font typeface) and only take small variations, such

as aspect ratio of character, stroke width, and ending slope. So the differences between

them are subtle and classifying these fonts is usually quite different from classifying fonts

that share very little. To solve this problem, we prefer to finding a good way to cluster the

fonts, which makes fonts inside each cluster are similar but vary dramatically from fonts
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in other clusters. Then we will be able to learn specific classifiers for each cluster of fonts

and brings better classification accuracy. This naturally leads to a hierarchical classifica-

tion scheme based on a good tree structure. Another equally important aspect of using

a tree-based hierarchical classification is that the algorithm is much faster, and thus our

new algorithm is even more scalable to large scale problems. Hierarchical algorithms or

called tree algorithms are widely used in recognition area. To handle large-scale classifica-

tion, currently a bunch of “label tree” algorithms [143, 144, 145] have been proposed and

achieved state-of-the-art performances in classification benchmark. They usually define a

clustering algorithm to split classes inside each node, and then learn classifiers specifically

for each node. Following a similar step, we propose a novel node splitting and tree-learning

algorithm.

6.6.1 Node hard-splitting: Discriminative classification clustering

During this node splitting process, suppose there are total N font classes in this current

node i, we want to assign these N fonts into C child nodes. Here we only allow each font

class being assigned into 1 child node. That means, the child nodes contains no same font

classes. This step is called node hard-splitting.

Distance between font classes In our method, we use local feature embedding (LFE)

to represent each font image: f = {(zk,xek)}Kk=1, where K is the codebook size, zk is

pooling coefficient of the k-th code, xek represents the pooled local descriptor vector. So

based on LFE feature, we could compute mean vector µck for each font class:

µck =
1

Zc

∑
i∈Ic

zikx
i
ek
, (6.24)

and we could also get the within-class covariance matrix [146] over all font classes, denoted

by Σk. So now for each font class, we could use {(µck,Σk)}Kk=1 to represent it. After this,
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we define the distance between each pair of fonts:

d(c1, c2) =
K∑
k=1

wkdM(µkc1 , µ
k
c2

), (6.25)

where dM(µkc1 , µ
k
c2

) = ‖µc1k − µc2k ‖2
Σk

is the Mahalanobis distance between the template

mean vectors µc1k and µc2k . While wk is the weight to incorporate the importance of the k-th

template. If the k-th template is more effective than other templates in separating the fonts,

we would like to give it a larger value. Initially we do not know the importance of the

templates, so we set all wk = 1/C at first.

Sparse affinity matrix After defining distances between font classes, we could build

a distance matrix D with element dij = d(ci, cj). and the affinity matrix A with element:

Aij = exp(−d(ci, cj)/σ) , where σ is the scaling parameter. Clearly the affinity matrix A

is symmetric and the diagonal elements are all 0. The meaning of matrix A is: The higher

value Aij is, the more similar the two font ci and cj are.

With the full (non-sparse) affinity matrix A, we could use many classic clustering algo-

rithms to cluster these fonts. Here we use spectral clustering [54] to do this. Suppose we

want to cluster these N fonts into K clusters, the steps for spectral clustering are

1. Compute the diagonal matrix T with elements Tii =
∑N

j=1 Aij;

2. Compute the normalized Laplacian matrix: L = T−1/2(T − A)T (1/2);

3. Compute and sort eigenvalues of matrix L in descending order: λi ≥ λi + 1, i =

1, · · · , n;

4. Form normalized matrix S using C largest eigenvectors;

5. Treating each row of S as a data point, cluster all the data points by K-means with

cluster number C.
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However, from experiments, we found that clustering on a full affinity matrix A is usually

non-stable and performed badly; Besides, the clustering is usually quite sensitive to param-

eter σ. Without a carefully-tuned σ, the clustering is often not successful. Consequently,

a bad clustering will make the font classification algorithm(LFE+FS) fail. To solve these

two problems, we propose a method that returns stable and appropriate clustering results.

The basic idea is:

1. Firstly, normalize the distance matrix D by dividing each element dij by the median

value d̄ of matrix elements in D, i.e., d̄ = median(dij).

2. Only keep the distance values of q-nearest fonts for each font. The distance with far

fonts are set as inf. The parameter q is chosen in this way: suppose there are total N

font classes, and we want to split them into C clusters, then q = N/C.

3. Now the affinity matrix A is a sparse matrix. Note that, the scaling parameter is fixed

value σ = 1. This is due to normalization step 1.

4. Make the affinity matrix A symmetric: A← 1
2
(A+ AT ).

5. Finally, perform spectral clustering algorithm [54] on matrix A as before.

From experiment, we found our proposed sparse affinity matrix works pretty well.

Comparing with previous self-tuning spectral clustering algorithm [55], our algorithm works

much better and stable. In the meanwhile, there are no sensitive parameters and thus avoids

tuning. This character is really important for tree construction. Note that, in above step 1,

we use median not mean, since in statistic viewpoint, median is usually more stable than

mean.

Discriminative classification clustering As mentioned above, we want to introduce

the importance weight wk when computing the font distance d(c1, c2) in Equation 6.25.

Since our previous work LFE+FS finally performs a template selection step and assigns a
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weight to each template feature. For the templates good at classifying different fonts, the

LFE+FS would give them larger weight. So we could directly use this weight as the impor-

tance weight wk. So, initially we set wk = 1/C and perform clustering on all fonts. After

clustering N fonts into C clusters, we treat each cluster as a new class, and learn LFE+FS

to classify these classes and get the weights wk. With wk, we re-compute the distance be-

tween font classes. Then we get a new sparse affinity matrix and perform clustering again.

This procedure can be repeated to get better clustering results. The algorithm steps are as

following:

1. Firstly, set all wk = 1/C, perform the clustering algorithm introduced above.

2. Perform LFE+FS and get a set of importance weights {wk}. Evaluate current classi-

fication accuracy.

3. Based on the new template weights {wk}, perform clustering again.

4. Run step 2 and 3 untill classification performance converges.

From experiments, this discriminative classification clustering works well and iteratively

improves the classification performance. Typically, it converges in 4 or 5 iterations.

6.6.2 Node soft-assignment: Error-bounded splitting

After node hard-splitting step, we get a good assignment for each font class. However,

there still exists one serious problem: error propagation during tree growth. This error

propagation is quite straightforward: since each font class in the node i only belongs to 1

child node. Suppose after hard-splitting, we know the way to assign each font into child

nodes and thus we train a LFE+FS classifier fi to judge a test data which child node it

belongs to. So if a test data is misclassified by fi, then it will falls into the wrong child

node, then this test data can never find its true font label in the following steps. Here we
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denote the error of fi as εi, then in this node layer, the classification accuracy is upper-

bounded by 1− εi. The problem becomes worse when we have a tree with multiple layers.

This character is called error propagation in hierarchical algorithms.

Suppose for a tree, we have M layers, node layer i has upper-bounded classification

accuracy 1 − εi. Then the upper-bounded classification rate of the whole tree would be

ΠM
i=1(1 − εi). Suppose M = 3, εi = 0.15. Then this trees best classification accuracy

would be bounded by 0.614. In practice, εi is usually much larger than 0.15. So this error

propagation problem is quite serious.

To solve this problem, we propose the node soft-assignment method, which we called it

error-bounded node splitting. Firstly we use node hard-splitting method introduced above

to get the initial splitting and LFE+FS classifier for the node i. Then based on classifi-

cation accuracy of each font class, we allow it to be assigned into multiple child nodes.

Imagine that, for font class j, it is supposed to belong to child node ci, however, dur-

ing test we find the test data of font j could fall into child nodes {cl, cl+1, cl+2, ..., cL}.

Then we could compute the probability of the test data of font class j falls into these child

nodes {pl, pl+1, pl+2, , pL}. We select the top R child nodes {cr, cr+1, , cR} with the highest

probability such that the summation of the probability is larger than a pre-set threshold:∑R
r=1 pr ≥ θ. Finally we assign this font class into the child nodes {cr, cr+1, , cR}.

With this step, we could make sure the classification accuracy of each font in this node

i is at least θi. Thus we could bound the error rate of each node less than 1 − θi . So the

entire trees upper-bound classification rate would be ΠM
i=1θi . In practice, we usually chose

θi = 0.95 or higher, so if M = 3, the trees upper-bounded classification accuracy would be

0.857, which is much higher than without soft assignment.

Font class soft-assignment time: the average number of child nodes that each font class

is softly assigned. Obviously if a font class is assigned into too many child nodes, it will

increase the computation complexity. From experiments, we find usually the average as-

signment time is 2.2 3.5, which is only slightly burden for computation.
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6.6.3 Error-bounded tree construction

With step 1 and step 2, we have the error-bounded node splitting method. Then its straight-

forward that we could build up the error-bounded tree. Suppose totally we get N font

classes, and the root node has C child nodes. Then we firstly use step 1 (hard-splitting) to

assign the N fonts into C child nodes; Then we use step 2 (soft-assignment) to re-assign

the N fonts into C child nodes with certain error bound, denoting the average assignment

time for each font as R. Then each child node i contains on average Ni = RN/C font

classes. Then for this child node i, we could continue to split it by dividing its Ni font

classes into Ci children. Following the same procedure, we could build up the hierarchical

error-bounded tree. In our experiments, currently we build a 2-layer tree: first layer is the

C child nodes of the root node and each child node has certain number of fonts. The second

layer is the leaf nodes, which means each node in the second layer only contains one font

class.

For each tree node, we learn a specific codebook for it and perform the template se-

lection by 1-class SVM. Also, for classification at each layer, we keep track of the top

probabilities that a test sample is assigned to the child node. Aggregating these probabili-

ties, we can obtain a global ranking.

6.6.4 Performance Evaluation

Speed Comparing with our previous flat classification algorithm(LFS), the error-bounded

tree is more efficient. For each test data, we need compare with every font class mean to

find the nearest font label.

Suppose we totally have N font classes, the computation complexity of flat classifica-

tion algorithm would be O(N). If we build up a 2-layer error-bounded tree, 1st layer has

C child nodes, the average soft-assignment time is R, then the average font class number

in each child node is Ni = RN/C. So 1st-layer node on average has RN/C leaf nodes. So
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Methods Top 1 Top 5 Top 10
STAT [124] 15.25 20.50 26.68
LLC + SVM [129] 50.06 72.48 78.49
LFE + Naive [37] 65.20 85.36 89.93
LFE + FS [37] 72.50 93.45 96.87
Error-bounded Tree 78.41 94.67 96.35

Table 6.6: The top 1, 5, 10 accuracies of different algorithms with template model size
2,048 on VFR-2420 synthetic dataset.

the computation complexity for the 1st-layer is O(C) and the computation for the second

layer is O(RN/C). So the complexity of the error-bounded tree is O(C + RN/C). In our

experiments, we set C ≈
√
N . So the complexity of our error-bounded tree is O(

√
N),

which is sub linear to the number of font classes. Comparing with flat classification com-

plexity O(N), the error-bounded tree is much more efficient, especially when font class

number N becomes large.

Accuracy The tree algorithm will cluster the fonts that make similar fonts falls into

the same child node. Then we could learn specific codebook and pool out image feature

that more discriminative in classifying these fonts to each other. Thus the classification per-

formance will be better. From experiment, the error-bounded algorithm works much better

than flat classification algorithm. In VFR-2420 dataset, the Top 1 classification accuracy

of the error-bounded tree algorithm improves around 6%, increasing from 72% to 78%, as

shown in Tab 6.6.

6.7 Conclusion

In this chapter, we focus on the large-scale VFR problem that has long been neglected

by the vision community. To address this problem, we have constructed a large-scale set

of synthetic word images for 2,420 font classes, and collected a small set of real world
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images. Experiments on synthetic test data demonstrate the effectiveness of our approach,

and experiments on real test images show very promising results. We then introduce a more

scalable error-bounded tree algorithm, showing good accuracy and speed. For future work,

we will grow the dataset of real test images. We will also explore the effects of different

levels of distortions and noise added to synthetic data on the final performance on real

test images. Machine learning and computer vision techniques, e.g., transfer learning and

robust local descriptors, will be exploited to close the gap between synthetic training and

real world testing.
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Chapter 7

Conclusion

This dissertation summarizes my research during the PhD study, covering object detection

and fine-grained recognition topics. For object detection, we have proposed different al-

gorithms to handle different kinds of problems. For fine-grained object recognition, we

introduce a scalable and effective algorithm which is efficient for real-world applications.

To efficiently adapt an object detector for a specific scenario, we propose a Min-Max

model adaption algorithm, which avoids tuning the important adaptation rate parameter. It

is a conservative model adaptation method by considering the worst case during the adap-

tation process. Taking the object detection as a testbed, we implement an adapted object

detector based on binary classification. Under different adaptation scenarios and differ-

ent datasets including PASCAL, ImageNet, INRIA, and TUD-Pedestrian, the proposed

adaption method achieves significant performance gain and is compared favorably with the

state-of-the-art adaptation method [26] equipped with the fine tuned adaptation rate. With-

out the need of tuning the adaptation rates, the proposed conservative model adaptation

method can be extended to other adaptive classification tasks.

To tackle the large intra-class variation difficulty, we developed a hybrid learning al-

gorithm combining the global classification and the local adaptations, which automatically

adjusts the model complexity according to the data distribution. Taking human detection as
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a testbed, under different scenarios and datasets, including Caltech pedestrian dataset [3],

self-collected large pedestrian dataset, and INRIA dataset [8], the proposed hybrid learning

method achieves significant performance gain. Compared with 11 state-of-the-art algo-

rithms [3] on Caltech, the proposed approaches achieves the highest detection rate, outper-

forming the deformable part based algorithm [9] 17% at FPPI=1.

To extract the effective context information from the background, we propose an ef-

fective context descriptor, Multi-Order Contextual co-Occurrence (MOCO), to implicitly

model the high level context using solely detection responses from a baseline object de-

tector. We test the proposed MOCO evolution framework on the PASCAL VOC 2007

dataset [10] and Caltech pedestrian dataset [34]: The proposed MOCO detector outper-

forms all known state-of-the-art approaches, contextually boosting deformable part models

(ver.5) [33] by 3.3% in mean average precision on the PASCAL 2007 dataset. For the Cal-

tech pedestrian dataset, our method further reduces the log-average miss rate from 48% to

46% and the miss rate at 1 FPPI from 25% to 23%, compared with the best prior art [35].

To investigate object detection with a depth sensor, we propose an effective feature,

Normal Vector Pattern (NVP). The proposed NVP is a successful attempt due to its two

components: the cross products of neighboring normal vectors induce the discriminative

power and the inner products of the normal vectors lead to the view-angle invariance. The

superiority of the proposed NVP is evident: with a simple linear SVM model, the proposed

framework outperforms the state-of-the-art features based on more complicated models

such as the deformable parts model on standard Washington RGB-D [6] and NYU bench-

mark datasets [36].

Finally for the fine-grained object recognition problem, we propose a scalable and ef-

ficient algorithm to address a special large-scale fine-grained recognition problem—visual

font recognition(VFR) problem. We construct a large-scale dataset containing 2,420 font

classes, which easily exceeds the scale of most image categorization datasets in computer

vision. As font recognition is inherently dynamic and open-ended, i.e., new classes and
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data for existing categories are constantly added to the database over time, we propose a

scalable solution based on the nearest class mean classifier (NCM). The core algorithm is

built on local feature embedding, local feature metric learning and max-margin template

selection, which is naturally amenable to NCM and thus to such open-ended classification

problems. The new algorithm can generalize to new classes and new data at little added

cost. Extensive experiments demonstrate that our approach is very effective on our syn-

thetic test images, and achieves promising results on real world test images. Based on

this local feature embedding and template learning algorithm, we then introduce a novel

error-bounded tree algorithm to further the efficiency and effectiveness of our framework.
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