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ABSTRACT 

 

 

 Dendrograms establish the evolutionary relationships and homology of species, 

proteins, or genes. Homology modeling, ligand binding, and pharmaceutical testing all 

depend upon the homology ascertained by dendrograms. Regardless of the specific 

algorithm, all dendrograms that ascertain protein evolutionary homology are generated 

utilizing polypeptide sequences. However, because protein structures superiorly conserve 

homology and contain more biochemical information than their associated protein sequences, 

I hypothesize that utilizing the structure of a protein instead of its sequence will generate a 

superior dendrogram.  

 Generating a dendrogram utilizing protein structure requires a unique methodology 

and novel bioinformatic programs to implement this methodology. Contained within this 

dissertation is an original methodology that permits the aforementioned structure-based 
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dendrogram generation hypothesis. Additionally, I have scripted three novel bioinformatics 

programs required by this proposed methodology: a protein structure alignment program that 

proficiently superimposes distant homologs, an accurate structure-dependent sequence 

alignment program, and a dendrogram generation program that employs a novel structural 

molecular clock hypothesis. The results from this methodology support the proposed 

hypothesis by demonstrating that generating dendrograms utilizing protein structures is 

superior to those generated utilizing exclusively protein sequences. 
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CHAPTER I 

INTRODUCTION 

 

 Dendrograms establish the evolutionary relationships and homology of species, 

proteins, or genes. The importance of dendrograms is demonstrated in numerous biological 

disciplines: They are utilized in homology modeling to ascertain which sequences are the 

most evolutionarily homologous to the query sequence. This enables the calculated structure 

of the query protein to be based upon the most evolutionarily homologous structures. 

Additionally, the cost of ligand binding experiments for pharmaceutical testing is reduced by 

establishing accurate dendrograms of enzymes. Specifically, deriving evolutionary 

relationships of proteins with known ligands facilitates the calculation of the most probable 

possible ligands for a query protein. A final example demonstrating the importance of 

dendrograms is the homology of bacteria or viruses in medicine. The classification of 

pathogens by evolutionary homology enables the systematic selection of a medicine(s) for 

each pathogenic class. Furthermore, ascertaining the classification of a novel pathogen 

enables the manageable innovation of a treatment medicine.  

 Regardless of the specific algorithm, all dendrograms are generated utilizing 

nucleotide or polypeptide sequences. Unfortunately, when generating a protein dendrogram, 

utilizing sequences prevents the derivation of evolutionary relationships for distant 

homologs. Additionally, polypeptide sequences contain sparse information about a protein 

relative to that of other biochemical properties such as structure or function. Because protein 
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structures superiorly conserve homology and contain more biochemical information than 

their associated protein sequences, I hypothesize that utilizing the structure of a protein 

instead of its sequence will generate a superior dendrogram.  

Although no established or substantiated methodology exists to generate a structure-

based dendrogram, a possible example methodology utilizing current bioinformatics 

programs would involve: 1) structurally aligning the input proteins, 2) deriving a sequence 

alignment based upon the superimposed protein structures, and 3) inputting this derived 

sequence alignment into a conventional dendrogram generator. However, this example 

methodology possesses numerous limitations: First, current structural alignment programs 

are inaccurate when aligning complex, distant homologs. Although these alignments can 

possibly be simplified for a more accurate alignment, simplification requires considerable 

manual curation of the input data. The second limitation of the presented example 

methodology is the inability of any current bioinformatics program to accurately derive a 

sequence alignment utilizing superimposed protein structures. Finally, although the sequence 

alignment was derived utilizing protein structural information, the final step in the example 

methodology continues to utilize protein sequences to generate the dendrogram. 

Consequently, this final step disregards and contradicts any advantages initially obtained 

from implementing structural information. Although methodological variants exist for 

generating a dendrogram utilizing protein structure, they all possess the aforementioned 

technological and methodological limitations.  

 Generating a dendrogram utilizing protein structure requires a unique methodology 

and novel bioinformatic programs to implement this methodology. Contained within this 

dissertation is an original methodology that permits the aforementioned structure-based 
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dendrogram generation hypothesis. Additionally, I have scripted three novel bioinformatics 

programs required by this proposed methodology: a protein structure alignment program that 

proficiently superimposes distant homologs, an accurate structure-dependent sequence 

alignment program, and a dendrogram generation program that employs a novel structural 

molecular clock hypothesis. The results of this methodology support the proposed hypothesis 

by demonstrating that generating dendrograms utilizing protein structures is superior to those 

generated utilizing exclusively protein sequences. 
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The Molecular Clock and Dendrogram Generation 

 The molecular clock hypothesis relates nucleotide or polypeptide mutational 

accumulation to the amount of time required for these mutations
1
 to occur (Krane and 

Raymer, 2003). This relationship is derived from both the number of mutations and the 

probability of each specific mutation occurring. Because of selection pressure or isolation 

mechanisms, inevitably, one common nucleotide or polypeptide sequence will evolve into 

two divergent sequences. As the time since mutational divergence increases, the two resultant 

sequences increase in dissimilarity both to the common ancestral sequence and to each other. 

Furthermore, as the time interval increases, the probability of the accumulation of a rare 

mutation (i.e., a mutation with a relatively low probability of occurrence) also increases.   

 The time required for the mutational divergence between two sequences to occur is 

called evolutionary distance. Graphically, the static states of sequences and the evolutionary 

distances between them are represented in a dendrogram or phylogenetic tree as vertices 

(nodes) and edges (lines) respectively (Orwant et al., 1999). Dendrograms illustrate the 

evolutionary relationship between homologous species, chromosomes, genes, or proteins. 

The final representations of species, chromosomes, genes, or proteins (whether extinct or 

extant) on the terminal nodes are called operational taxonomic units (OTUs). Establishing the 

evolutionary relationship of OTUs permits the inference of an unknown quality (e.g., 

structure, ligand binding, introns/exons, etc.) of one OTU utilizing the known quality of a 

homologous OTU. Practical biological implications of this inference include protein 

structural homology modeling, pharmaceutical drug engineering, and ligand binding. 

  

                                                             
1
 Throughout this dissertation, the term “mutation” encompasses amino acid substitutions, 

insertions, and deletions. 
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Implementation of Sequence and Structure  

in Dendrogram Generation 

 Calculating evolutionary distances and establishing the phylogenetic relationship of 

homologous OTUs is not trivial. Therefore, utilizing the molecular clock hypothesis, 

numerous dendrogram generation methods have been developed. Early methods included the 

implementation of substitution or distance matrices such as neighbor joining or UPGMA 

(Unweighted Pair Group Method with Arithmetic mean) (Ewens and Grant, 2005; Isaev, 

2006; Krane and Raymer, 2003). These were followed by the maximum parsimony 

generation method which combinatorically calculates the evolutionary distance by 

determining which OTUs display the most sequence similarity (i.e., the maximal amount of 

parsimony) (Krane and Raymer, 2003). Modern dendrogram generation methods include the 

maximum likelihood (ML) and the Bayesian inference algorithms. The ML dendrogram 

generation algorithm combinatorically maximizes the total probability of alignment and 

clustering utilizing a probability matrix (containing the probabilities of nucleotide or amino 

acid substitutions) (Ewens and Grant, 2005; Isaev, 2006). Additionally, the Bayesian 

inference algorithm is similar to that of the ML algorithm but it further permits the inclusion 

of prior phylogenetic knowledge (Huelsenbeck and Ronquist, 2001).  

 Unfortunately, although the mathematical and statistical methodologies deriving 

dendrograms have improved, the quality of the aforementioned dendrogram generation 

calculations is limited by the quality of the input data. Specifically, to establish the 

evolutionary relationship of input proteins, current dendrogram generation methods are 

dependent upon the input protein sequences. As the homologies of proteins decrease, the 

difficulty of establishing the evolutionary relationship of these proteins increases as a result 

of their increasing sequence divergence. Additionally, if two proteins possess less than a 
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thirty percent sequence identity, then any corresponding sequence alignment is likely 

incorrect (Rost, 1999). Therefore, calculation of the evolutionary relationship between 

proteins is difficult unless the homology of the input sequences supersedes this threshold. 

 Amino acid sequences input into dendrogram generators are limited in the amount of 

sequence divergence they can possess. Consequently, dendrogram generators are unable to 

derive the evolutionary relationship of distantly related homologs (e.g., proteins belonging to 

different protein families). However, because selection pressure influences the structure of a 

protein more directly than it influences its amino acid sequence, the structure of a protein is 

more evolutionarily conserved (Marti-Renom et al., 2000). That is, as the evolutionary 

distance between proteins increases, the sequence disparity of the proteins increases at a 

greater rate than that of structural divergence. Therefore, when deriving the evolutionary 

relationships of distant homologs possessing inadequate sequence similarity, the 

corresponding protein structures will theoretically generate a superior dendrogram because of 

structural conservation.   
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Methodological and Algorithmic Overview 

 

Methodological Overview 

 Generating a dendrogram based upon protein structure is a complex endeavor that 

requires a multistep methodology to complete. The following is an overview of the proposed 

methodology required for structure-based dendrogram generation: 

1) Superimposing the protein structures. Regardless of algorithmic details, 

calculation of the relative evolutionary relationships between the input protein 

structures requires a method of protein structural comparison. The three-dimensional 

spatial coordinates of protein structures are stored in Protein Data Bank (PDB) files 

(Berman et al., 2000). Because the spatial location and orientation of each protein in 

each PDB file varies (despite homology), comparative structural calculations require 

that all input proteins be structurally superimposed.  

2) Derivation of a structure-dependent sequence alignment. Calculating a 

comparative structural measurement not only requires superimposing the proteins, it 

also requires establishing atomic coordinate homology (i.e., determining which atoms 

will match and thus share calculations). Biologically, a sequence alignment that is 

derived utilizing the superimposed proteins permits the determination of atomic 

homology (and thus the ability to calculate a comparative measurement) because each 

amino acid comprises consistent backbone atoms. Therefore, atomic homology is 

established by determining amino acid homology. Importantly, the sequence 

alignment must be derived utilizing the spatial positions of the amino acids 
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comprising the structurally superimposed proteins; it cannot be conventionally 

derived by amino acid identity.  

3) Calculating the evolutionary relationship of the proteins. Upon completion of 

superimposing the proteins and structurally-deriving the atomic homology, the 

protein structures must be comparatively measured. Furthermore, the calculated 

comparative quantities must be accurately and consistently translated into 

evolutionary distances. Finally, these evolutionary distances collectively comprise a 

matrix and a hierarchical clustering algorithm generates the dendrogram.  

 

Novel Algorithms 

 Unfortunately, the three aforementioned procedures necessitate nonexistent programs 

and algorithms. Therefore, I created three novel programs and one module (the BioInfo 

module), each capable of accomplishing one of the aforementioned methodological 

challenges. Below are concise descriptions, methodological solutions, and outlines of the 

programming scripts for each program:  

1) The Structural Alignment By Maximum Likelihood Estimation (SABLE) 

program utilizes only protein structural information to accurately superimpose both 

evolutionarily similar and distant homologous proteins. Furthermore, it possesses the 

versatility to align an unlimited number of input proteins, each composed of 

indiscriminant and variable numbers of subunits. Although other protein structure 

superimposing algorithms exist, none accurately and comprehensively superimpose 

distantly related, complex homologous proteins.  
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 Primary Program 

o print_time – prints the date and time of execution 

o recovery_input – permits the input of recovery data if program fails 

o recovery_output – outputs an emergency recovery file containing data  

o spatial_parameters – calculates the spatial perimeter and spatial 

midpoint of each input protein 

o largest_protein – calculates the protein possessing the largest spatial 

perimeter  

o protein_standard_deviation_calculation – calculates the protein and 

subunit standard deviations 

o template_protein_rotation – rotates the template protein 

 single_atom_translate_rotate – translates and rotates a single 

atom around a spatial center utilizing quaternion calculations 

o sa_probability_calculation – calculates the probability of each 

pseudostate in a list 

 chain_probability_filter – retains pseudostates with greatest 

chain probabilities (Phase 1 only) 

 chain_matching_with_trans_rot – determines chain homology 

for a pseudostate 

 single_atom_translate_rotate 

 protein_translate_rotate – translates and rotates all atoms in a 

protein around a spatial center utilizing quaternion calculations 

 single_atom_translate_rotate 
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o pseudostate_cutter – removes least probable pseudostates from a list 

o first_translation_rotation – executes Phase 1 of SABLE 

o second_translation_rotation – executes Phase 2 of SABLE 

 sa_probability_calculation 

 pseudostate_cutter 

o third_translation_rotation – executes Phase 3 of SABLE 

 protein_translate_rotate 

 maxtrix_to_list_conversion – alternates data structures 

 optimal_template_protein – calculates optimal template protein 

based upon mean center 

 template_protein_rotation 

 sa_probability_calculation 

 pseudostate_cutter 

 Required Modules 

o Bioinfo::Struct 

 pdb_input – inputs information from PDB files 

 pdb_output – generates output PDB files for aligned proteins  

o IO::Handle 

 autoflush – implements the automatic transference of buffer 

data during the interprocess communication (IPC) of parallel 

processes 

o Math::Quaternion 

 normalize – normalizes quaternion to unit length 
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 rotate_vector – rotates a point around a spatial center utilizing 

the quaternion geometry 

o Math::Combinatorics 

 permute – generates all possible combinations from a list of 

values 

2) Unfortunately, SABLE only superimposes proteins and does not derive a 

resultant structure-dependent sequence alignment. Therefore, the Universal True 

SDSA (Structure-dependent Sequence Alignment), or UniTS, program calculates the 

most probable sequence alignment derived from multiple superimposed protein 

structures. Although other algorithms have been developed to derive a sequence 

alignment from aligned structures utilizing atomic proximity, none of these 

appropriately manages multiple residue matches, prevents the incorrect ordering of 

residues, and sequentially aligns structurally nonconserved regions. 

 Primary Program 

o spatial_parameters – calculates the spatial perimeter and spatial 

midpoint of each input protein 

o protein_standard_deviation_calculation – calculates the protein and 

subunit standard deviations 

o optimal_template_protein – calculates optimal template protein based 

upon mean center 

o multiple_chain_alignment – aligns multiple chains to a template chain 

 chain_matching - determines the chain homology of two 

proteins 
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o sdsa_protein_removal – removes proteins from the Grid  

o find_amino_acid_name – derives the consensus amino acid sequence 

for each chain 

o pairwise_sdsa – performs a pairwise SDSA 

 amino_acid_order_refinement – resolves multiple homologous 

amino acid matching 

 inconsistent_ordering_algorithm – generic algorithm 

that sorts amino acid matches 

 multiple_muscle_amino_acids – derives amino acid for a Grid 

position in which a residue is not numerically superior 

o fasta_seq_align_output – outputs the SDSA in FASTA format 

o rmsd_calculation – calculates quality assessment scores for pairwise 

superimposed proteins 

o positional_sd_calculation – calculates quality assessment scores for 

multiple superimposed proteins 

 standard_deviation_algorithm – calculates the standard 

deviation of a list of numbers 

 Required Modules 

o Bioinfo::Struct 

 pdb_input – inputs information from PDB files 

o Storable 

 dclone – duplicates a complex data structure 

o Math::Combinatorics 
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 permute – generates all possible combinations from a list of 

values 

3) The Phylogenetic Tree Using Structural Homology (PUSH) program 

generates a dendrogram utilizing a novel structural molecular clock hypothesis to 

derive a probability matrix. The dendrogram is then graphically displayed utilizing a 

hierarchical clustering algorithm. The calculation results of the proposed structural 

molecular clock hypothesis are unique and, therefore, require a unique program to 

implement. Furthermore, despite the existence of numerous hierarchical clustering 

and dendrogram generation modules, none permit the implementation of a custom 

matrix; instead, each derived a substitution matrix utilizing conventional sequence-

based methods.  

 Primary Program 

o print_time – prints the date and time of execution 

o evolutionary_distance_calculator – calculates the evolutionary 

distance between two input protein structures 

 Required Modules 

o BioInfo::Struct 

 pdb_input – inputs information from PDB files 

o BioInfo::Phylo 

 hierarchical_clustering – utilizes a matrix to calculate a 

dendrogram 
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 _node_object_completion_ - completes the data in a 

node object then dichotomously divides the object into 

two node objects 

o _max_distance_using_matrix_ - calculates the 

maximum evolutionary distance in a distance 

matrix 

 print_dendrogram – prints the dendrogram as a .gif file 

 _max_distance_using_object_list_ - normalizes 

evolutionary distances 

 _branch_y_coordinate_calculator_ - calculates the 

length of each branch in pixels  

 node_object_to_newick – converts a dendrogram represented 

as node objects into the Newick format  

o BioInfo::Seq 

 fasta_input – inputs information from FASTA files 

o GD::Image 

 colorAllocate – assigns colors to a variable 

 line – draws a line on a graphic 

 string – permits a string of characters to be placed on a graphic 

The included methodology detailing the derivation of a dendrogram utilizing protein 

structures requires the implementation of all the aforementioned programs. Importantly, 

however, I designed each program to be utilized independently and associate with a distinct 

category of bioinformatic algorithms. Additionally, I have empirically demonstrated that the 
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results of each of these programs are superior to those of other programs and algorithms in 

their respective bioinformatic categories. The following three sections discuss each category 

in detail, the algorithmic specifications of each program, and the comparative results 

generated utilizing each program.  
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CHAPTER II 

SABLE: STRUCTURAL ALIGNMENT BY MAXIMUM  

LIKELIHOOD ESTIMATION 

 

Introduction to Structural Alignment  

and Superpositioning 

 Superimposing proteins has become fundamental to molecular biology and is required 

for research in everything from homology modeling to comparing protein conformational 

states to sequence alignments of evolutionarily divergent proteins. Unfortunately, 

superpositioning programs require a preliminary sequence alignment and thus cannot be 

employed for superimposing divergent homologous protein structures. Alternatively, 

structural alignment programs are dependent on the influence of secondary structures and 

thus generate an alignment from incomplete information. 

 SABLE (Structural Alignment By Maximum Likelihood Estimation) is a protein 

superimposing program that combines the versatility of a structural alignment program with 

the accuracy and comprehensiveness of a superpositioning program. SABLE implements a 

maximum likelihood algorithm to thoroughly compare possible protein structural 

translocations. It then calculates the optimally superimposed position for each input protein 

utilizing a novel distance-based probability scoring algorithm that accurately manages 

extreme distances. Importantly, SABLE does not require a preliminary sequence alignment. 

Furthermore, it will theoretically accept an unlimited number of input proteins, each 

composed of indiscriminant and variable numbers of subunits. 
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Structural Alignment and Superpositioning  

Algorithms 

 Proteins are flexible, dynamic structures that most bioinformatics algorithms restrict 

to a static state. In PDB files, protein structure is represented by utilizing static atomic 

coordinates, while the flexibility of the protein is expressed utilizing the B factor (Berman et 

al., 2000). Many algorithms that superimpose protein structures (including SABLE) postulate 

each structure to be in both a static state and a single conformational state; therefore, they do 

not transmute the structures to improve the quality of the superimposition. Unfortunately this 

limits the biological implications of superimposing protein structures. Primarily, algorithms 

may be incapable of superimposing even highly homologous protein regions if these regions 

are flexible and in different positions. Furthermore, conformational changes in protein 

structure can translocate entire subunits, thus making it impossible to superimpose their static 

structures. Like many bioinformatics algorithms that utilize static protein structures, SABLE 

possesses the aforementioned biological limitations because it does not transmute input 

protein structures.  

 The method of measurement used to superimpose protein structures is a philosophical 

consideration without a single correct answer. That is, what exactly does it mean to 

superimpose proteins as “closely” as possible? Although many of these methods exist (e.g., 

energy minimization [Micheletti and Orland, 2009]), the distance-based method is the most 

intuitive. The distance-based method of superimposing proteins attempts to minimize the 
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spatial distance between matching or homologous atoms
2
. Importantly, this minimizing 

distance is not required to explicitly be direct distance; instead, it can be a measurement 

based on the distance. For example, the probability measurement of SABLE is derived from 

the distance between homologous atoms.  

 Protein structures can be superimposed utilizing a distance-based approach with or 

without a priori knowledge of the sequence alignment. Specifically, superpositioning 

software requires a preliminary sequence alignment, while structural alignment software does 

not. Because the preliminary sequence alignment required for superpositioning software 

determines atomic homology, the distance (or distance-based measurement) calculations 

between homologous atoms depend on this sequence alignment. Therefore, despite the 

specific superpositioning algorithm, the quality of the superpositioning solution is dependent 

on the quality of the sequence alignment. This dependency is unimportant for proteins 

demonstrating a high sequence identity because the sequence alignment is assumably correct. 

However, if the sequence identity is less than thirty percent, the sequence alignment is 

assumably incorrect, leading to incorrect structural superpositioning (Rost, 1999).   

 Because structural alignment software is utilized to infer protein homology and 

evolutionary relationships, the preliminary sequence alignment is unknown and must be 

derived by superimposing the protein structures. This enables structural alignment programs 

to theoretically align considerably divergent proteins since they are not dependent on an 

input sequence alignment. Distance-based structural alignment algorithms utilize a generic 

                                                             
2
 Homologous atoms are atoms located at the same position in homologous amino acids. 

Homologous amino acids are two amino acids that are considered to be a match or aligned. 
Note that “matching” is a broad term and does not exclusively occur through homology by 
sharing a common amino acid in an ancestral protein. For example, “homologous” amino 
acids are featured when aligning two of the same proteins in different conformational states. 
Importantly, homologous atoms are only present in the backbones of amino acids unless the 
amino acids are identical residues.   
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algorithm despite distinguishing details. The algorithm divides the input proteins into 

oligopeptide substructures based on the protein folds and secondary structures in a contact 

map
3
. Most structural alignment algorithms then implement a combinatorics algorithm to 

minimize the distance (or a distance-based measurement) between the oligopeptides (Holm 

and Sander, 1993; Konagurthu et al., 2006; Ortiz et al., 2002). Furthermore, the matched 

oligopeptides are used to generate the optimal sequence alignment.  

 Unfortunately, structural alignment programs also have limitations. Numerous 

programs alter protein structures by translocating relative atomic positions to generate an 

improved alignment (for a list of programs, see Micheletti and Orland [2009]) (Menke et al., 

2008). Because protein structures are flexible in vivo, the researcher may prefer this feature. 

However, flexible proteins may generate negative consequences if the researcher requires the 

proteins retain their unaltered structures. Another limitation of structural alignment programs 

is the derivation of a sequence alignment based upon matching oligopeptide pairs 

(Konagurthu et al., 2006). This not only fails to generate a sequence alignment based upon 

the entire protein, it also fails to generate a complete sequence alignment (i.e., the alignment 

consists of only a fraction of the total number of amino acids). Additionally, many structural 

alignment programs use arbitrary values such as gap penalties to generate the sequence 

alignment (Konagurthu et al., 2006; Ortiz et al., 2002).  

 In addition to the aforementioned limitations, structural alignment algorithms that 

divide proteins into secondary structure and fold oligopeptides possess a primary 

disadvantage: The alignment overweighs the secondary structural influence in each protein. 

That is, consistent secondary structures or folds in the proteins will align at the expense of 
                                                             
3
 A contact map is generated utilizing a distance matrix containing the distances between all 

the alpha carbons in a protein. A distance threshold is arbitrarily established (usually four or 
five angstroms); any distance less than the threshold is black, while any distance greater than 
the threshold remains white. See Holm and Sander (1993) for more detailed information. 
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the remainder of the protein structures. Although the secondary structures are theoretically 

more conserved than other regions of the proteins (Marti-Renom et al., 2000), highly 

divergent proteins may possess inconsistent secondary structures. Furthermore, conserved 

regions of the protein such as active sites or a conserved “core” are not guaranteed to be 

composed of secondary structures. Additionally, current structural alignment algorithms 

align input proteins on a fold-level because they match consistent secondary structures and 

“superimpose” the proteins by minimizing the distance between these secondary structures 

(Ortiz et al., 2002). Superpositioning algorithms, however, superimpose the proteins by 

atomic distance minimization; therefore, the optimal superposition is an atomic-level 

calculation. Superimposing proteins at the atomic-level instead of the fold-level ensures the 

minimum possible distance between the proteins instead of simply ascertaining fold 

homology.  

 

Superpositioning by Structural Alignment 

 Because SABLE is a structural alignment program and does not require a preliminary 

sequence alignment, it is capable of aligning distant homologs without a minimum sequence 

identity threshold. However, unlike current structural alignment programs, SABLE does not 

divide input proteins into oligopeptides and match them at a fold-level. Instead, SABLE 

implements a maximum likelihood algorithm that superimposes proteins on an atomic-level. 

Superimposing proteins on an atomic-level provides SABLE with numerous advantages over 

traditional structural alignment programs. Because SABLE considers all amino acids in the 

structural alignment, the generated sequence alignment is derived from the entire protein 

structure, not merely oligopeptide structural matches. Furthermore, SABLE is able to 
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implement a more advanced measurement algorithm that compares to those utilized in 

superpositioning algorithms (Theobald and Wuttke, 2006a, 2006b, 2008). 

The final advantage SABLE possesses over traditional structural alignment programs 

is the elimination of secondary structural bias without completely disregarding the 

conservative homology of the secondary structure. Although recently developed structural 

alignment programs distinguish conserved structures from secondary structures (e.g., the 

unit-vector RMS calculation in the MAMMOTH program [Kedem et al., 1999; Ortiz et al., 

2002]), early alignment programs emphasize the contribution of secondary structure to the 

alignment because they are theoretically the most conserved regions in homologous proteins 

(although, as stated in the previous section, this is not guaranteed to be true). The SABLE 

algorithm, however, superimposes proteins by utilizing all input amino acids, thus 

eliminating the overweighed alignment contribution of secondary structures. Furthermore, by 

nature of the maximum likelihood algorithm, SABLE automatically considers the influence 

of the conservation of secondary structures. This influence is generated naturally because 

aligning the conserved regions of homologous proteins will produce the greatest structural 

superimposing likelihood, while attempting to align nonconserved regions will produce a 

lower likelihood. Otherwise stated, aligning the nonconserved regions at the expense of the 

conserved regions will result in a lower likelihood than aligning the conserved regions at the 

expense of the nonconserved regions. Therefore, SABLE considers the influence of all 

conserved regions (even those not composed of secondary structures) in a biologically 

accurate approach, while still utilizing the entire protein structure to superimpose the input 

proteins.   
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SABLE Algorithm 

 

Maximum Likelihood Structural Alignment 

 Numerous bioinformatic programs use the maximum likelihood (ML) algorithm to 

ascertain the most probable solution for a problem. In its most generic format, the ML 

algorithm calculates every possible solution to a problem. The probability or likelihood (£) of 

each possible solution (i.e., a pseudostate [Krane and Raymer, 2003]) is then measured 

relative to the ideal solution. Consequently, the solution most similar to that of the ideal (i.e., 

the one with the greatest £; denoted max(£) ) is selected as the most likely solution to the 

problem.  

 Given a pseudostate, £ of the pseudostate will change as the value of one of its 

parameters changes. Geometrically, the x-axis represents the range of the changing parameter 

and the y-axis represents £. The parameter value that generates max(£) can be calculated by 

setting the derivative of the curve equal to zero (the derivative-based approach) (Ewens and 

Grant, 2005). Alternatively, calculating £ at specific intervals of the parameter (the brute-

force approach) will also generate the likelihood curve. Note that increasing or decreasing the 

parameter value by the interval generates a new pseudostate. Furthermore, decreasing the 

interval size increases the number of possible pseudostates to be generated. 

 A new axis is added to the geometric system for each changing parameter. Therefore, 

the brute-force approach dictates that increasing the number of changing parameters 

increases the number of possible pseudostates. SABLE changes seven parameters to generate 

a brute-force likelihood curve: three translation parameters, three rotation parameters, and the 

input sequence alignment (note that the three translation and three rotation parameters 
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delineate the location of the pseudostate). This combinatorics-like algorithm generates 

millions of pseudostates; therefore, the derivative-based approach would seem to be the 

superior option because it is computationally faster. Unfortunately, altering the sequence 

alignment will not generate a consistent likelihood curve, thus preventing the calculation of 

max(£) using the derivative of the curve. Therefore, SABLE uses the brute-force approach to 

superimpose proteins with the accuracy of the ML method, while still not requiring a 

preliminary sequence alignment.    

 

Protein Geometry Terminology 

 When represented as a Protein Databank (PDB) file, a protein is a static structure 

whose atoms are points in a three-dimensional space (Berman et al., 2000). This space 

possesses x-, y-, and z-axes to enable the PDB file to display atoms in terms of x-, y-, and z-

coordinates. Using the coordinates of every atom in a protein, the greatest x-coordinate (xmax) 

and the least x-coordinate (xmin) indicate the x-axis’ spatial perimeter. The distance (in 

angstroms) between xmin and xmax is the x-axis diameter (δx). These same definitions of 

spatial perimeter and diameter also apply to the y- and z-axes (i.e., δy and δz). Together, the 

spatial perimeters of all three axes compose the protein’s total spatial perimeter.  

 The spatial center (  ) of a protein, which is the center of the protein based upon the 

spatial perimeter, is defined as follows: 

     
  
 
       

  
 
       

  
 
       

The mean center (  ) of a protein is the average of all the atomic coordinates that compose 

the protein:  
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where        is the total number of atoms in the protein.   

 

Superimposing Measurement of SABLE 

 Traditionally, the root mean squared deviation (RMSD) is used to determine the 

quality of protein structural alignments. Unfortunately, long atomic distances (outliers) are 

overweighed, causing a disproportionate increase in the RMSD (Mechelke and Habeck, 

2010). Although many structural alignment programs utilize RMSD-based measurements 

(e.g., the unit-vector RMS and the normalized weighted RMSD [Kedem et al., 1999; Wang 

and Dong, 2012]) to quantitatively calculate the alignment quality of protein structures 

(Konagurthu et al., 2006), recent structural superpositioning programs quantitatively 

superposition proteins utilizing variance or covariance matrices (Theobald and Wuttke, 

2006a, 2006b, 2008). The novel scoring algorithm of the SABLE program further develops 

this concept by implementing the standard deviation (similar to variance) to calculate a 

probability curve. Therefore, to determine the probability of superimposing two atoms, 

SABLE utilizes a Gaussian probability curve (Figure 1).  
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Figure 1. The relationship between Gaussian probability and atomic spatial distance. 

 

As the distance between two atoms increases, the probability decreases by approaching zero. 

Alternatively, as the distance between two atoms decreases, the probability increases by 

approaching the zenith of the curve. This probability scoring measurement eliminates 

overweighing large atomic distances because the change in the probability decreases as the 

probability curve approaches the asymptote at the x-axis. Furthermore, when two atoms are 

close together, the algorithm will not emphasize moving them closer together at the expense 

of other atoms because of the plateau at the height of the probability curve.  

 Based upon a normal probability distribution curve, the general formula for the 

probability (p) of a random point being at x location along the x-axis is as follows:  
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where σ is the standard deviation and μ is the mean location of the points (Stewart, 2003, p. 

616). However, when calculating the probability of two atoms superimposing, the mean (μ) is 

equal to zero and x becomes the distance between the two atoms (d), thus simplifying the 

equation to: 

    
 

    
  

   

    

 The σ is a measure of the deviation between the diameters (δ) of all the proteins (to 

determine subunit homology) or subunits (to determine atomic probability). Importantly, σ is 

averaged across all three dimensions, thus allowing the protein to rotate without having to 

recalculate σ for each dimension. The protein standard deviation (σp) is calculated using 

the mean of all diameters (δμ) of the program’s input proteins. That is, δμ is the mean of the 

x-, y-, and z-axis diameters for every protein in the alignment.  

     
        

 

     
 

where np is the total number of input proteins. 

 The subunit standard deviation (σs) must be calculated using the mean diameters 

from all the subunits of all input proteins. The mean diameter of a single subunit (δs) in an 

input protein is calculated using the following equation:  

     
          

  
 

 
 

 

where ns is the number of subunits in the protein and δx/y/z are the diameters for the subunit’s 

respective protein. The mean diameter for all the subunits is then calculated by averaging δs 

for all the input proteins. The σs calculation is finished using a population standard deviation 

equation.  
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where nt is the total number of subunits in all the input proteins and δμ is the mean diameter 

of all the subunits of all input proteins. Note that δs represents each subunit, not each protein; 

therefore, the same δs will be used multiple times if the protein possesses multiple subunits. 

Further note that when calculating σp, δμ is the average of all the protein diameters, while δμ 

is the average of all the subunit diameters when calculating σs.  

 Importantly, no degrees of freedom are subtracted when calculating σs because every 

atom in the subunit is used in the σs application (to determine atom probability). Conversely, 

σp is a sample standard deviation equation that requires the subtraction of a degree of 

freedom. The sample standard deviation equation is necessary because its application (to 

determine subunit homology) uses only five amino acids per subunit (discussed 

subsequently), thus σp represents only a sample of the total population of atoms.   

 Although the aforementioned equations calculate the probability of superimposing 

two homologous atoms, SABLE must be able to calculate £ of superimposing entire protein 

structures for each pseudostate. First, the probability of each homologous pair of backbone 

atoms (alpha carbon, carboxyl carbon, and amine nitrogen)
4
 is calculated. To derive £ of 

superimposing proteins in a pseudostate, SABLE multiplies the individual atomic 

probabilities (patom):  

                                                             
4
 Although the carboxyl oxygen is a consistent backbone atom, contrary to many structural 

measurements (e.g., backbone RMSD [Guex and Peitsch, 1997]), the probability 
measurement of SABLE does not incorporate this atom. Including the carboxyl oxygen in the 
probability calculation doubles the influence of the psi dihedral angle relative to the omega 
and phi angles. For example, assuming the amine nitrogen remains stationary, the spatial 
location of the carboxyl carbon represents the phi angle rotation. However, immobilizing the 
alpha carbon and rotating the psi angle relocates the spatial position of both the carboxyl 
oxygen and the amine nitrogen of the adjacent amino acid. Therefore, two atomic probability 
scores represent this dihedral rotation.  
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where the function        is the likelihood of the input parameters (I) given a pseudostate (S) 

(Isaev, 2006). This multiplication is a logical “and” statement, representing the probability of 

superimposing all homologous atoms. The only input parameter (I) is the sequence 

arrangement that dictates homologous atoms (described below). Additionally, SABLE 

delineates the pseudostate location (S) using three translation and three rotation parameters.  

 Regardless of the specific scoring algorithm, any distance-based structural alignment 

program must determine homologous atom matches before calculating the distance (or 

distance-based measurement) between them. Generically, SABLE uses a combinatorics (i.e., 

an all-possible-combinations) algorithm to determine sequence homology. Duplicate amino 

acid matches are permitted and the sequence homology that generates max(£) is the correct 

matching arrangement. Theoretically however, the number of possible sequence 

arrangements is too numerous to practically calculate £ for each arrangement. Therefore, 

SABLE performs heuristic steps to minimize the number of sequence arrangements to be 

calculated. Without these heuristic steps, calculating max(£) would require calculating the 

probability between each amino acid from one protein to every amino acid in the second 

protein. However, SABLE predicts a limited range of amino acids from the second protein to 

match each amino acid from the first protein. This range is determined by first calculating the 

difference between the two sequence lengths (  ; will be at least ten percent of the longer 

sequence). Then, each amino acid in both sequences is converted from a position in the 

sequence to a percentage of the sequence (the n-terminus is zero percent and the c-terminus 

is one hundred percent). For each amino acid in the first sequence, an amino acid from the 

second sequence is selected that possesses approximately the same sequence percentage. The 
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range for the second sequence is     from the selected amino acid. Generating this range 

operates on the assumption that a large deletion from one terminus and a correspondingly 

large insertion on the other terminus did not occur as the two sequences evolved 

independently.  

 

Subunit Homology 

 Unfortunately, the PDB does not require consistent chain designations amongst 

homologous proteins (Berman et al., 2000). Therefore, to structurally align proteins 

composed of multiple subunits, SABLE must first determine subunit homology of the input 

proteins. Subunit homology is determined by calculating which amino acids are 0, 25, 50, 75, 

and 100 percent of the sequence (initiated at the n-terminus) for each subunit for all the input 

proteins. SABLE pretends each subunit is composed of only these five amino acids; 

therefore, when calculating subunit probabilities, it will match only amino acids with the 

same sequence percentage. These individual atomic probabilities are then multiplied to 

obtain the probability of one subunit superimposing the other. Having only five amino acids 

per subunit makes performing an all-possible-combinations (of subunits) algorithm practical. 

The likelihood of each subunit combination is calculated by multiplying the individual 

subunit probabilities to obtain the total likelihood of superimposing the proteins. Importantly, 

when determining subunit homology, because SABLE calculates these probabilities utilizing 

only five amino acids per subunit, they are not the true probabilities of superimposing two 

subunits or proteins. Furthermore, because subunits can statistically deviate on a protein-

scale, the probability calculations require that σp be implemented as σ.  
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Reducing Infinite Pseudostates 

 Theoretically, once a method of measuring structural superimposing is established, a 

program can use an ML algorithm to determine optimal structural alignment. Generically, the 

ML algorithm will keep one protein stationary (the template protein; Pt) while translating 

and rotating another protein (the mobile protein; Pm) around the three-dimensional 

coordinate space. As Pm moves, its position at any point in time is a pseudostate (Sn) of the 

protein (i.e., a “snapshot” of the mobile protein). Because the coordinate space is infinite in 

all directions, boundless translation of Pm would produce an infinite number of possible 

pseudostates (S∞). Even if Pm is contained within bounds, translating it by an infinitesimal 

fraction of an angstrom or rotating it by an infinitesimal fraction of a radian will produce a 

new pseudostate, thus S∞ continues to be the number of possible pseudostates.  

 SABLE reduces S∞ to St (where t is a finite number of total pseudostates) by 

endorsing the bounded translation and rotation of Pm by a specified distance or angle. The 

translation length between Sn and Sn+1 is L0, while the rotation angle between Sn and Sn+1 is 

θ0. Pm perpendicularly translates by L0 in the direction of each three-dimensional axis (in 

both positive and negative directions). That is, Pm does not translate diagonally relative to the 

three axes. Additionally, Pm rotates unidirectionally by θ0 around each of the three axes. 

Within the translation boundary, for each pseudostate that is translated by L0, Pm will be 

rotated by θ0 multiple times along each axis until Pm has been rotated by one radian around 

each axis. A new pseudostate is generated for each θ0 around any axis. Despite a rotation of 

only one radian per axis, Pm can still invert completely due to cumulative rotation along all 

three axes.  

 



31 
 

SABLE: Phase 1 

 The SABLE program is divided into three structural alignment phases. For Phases 1 

and 2, Pt is selected and each Pm aligns to Pt separately in a series of pairwise structural 

alignments. Each pairwise alignment features Pt remaining stationary, while Pm generates 

pseudostates by translating and rotating by L0 and θ0 respectively. After t pseudostates have 

been generated, the probability of each Sn in St is calculated using the aforementioned 

probability formulas. One quarter of St with the greatest probabilities are retained for Phase 

2.  

 As Pm translates by L0, it must remain within a boundary around Pt. The translation 

boundary for Phase 1 is the spatial perimeter of Pt. The cΔ of Pm is prohibited from exiting 

the cube generated by this spatial perimeter. During Phases 1 and 2, Pt must be the largest 

input protein (based on cubic angstroms using the spatial perimeter dimensions) to establish 

the correct boundary. If Pm was the larger protein, it is possible that Pt would never 

superimpose the periphery of Pm.  

 Unfortunately, the generous boundary and numerous translation and rotations make 

Phase 1 the most prolonged phase of SABLE. Many pseudostates in St, however, produce Pm 

positioning that is either too distant or too transposed from Pt to result in a meaningful 

       . Therefore, SABLE utilizes a filtering algorithm to prevent the unnecessary lengthy 

probability calculation of significantly incorrect pseudostates. Calculating the complete £ 

requires the probability computation of every amino acid; therefore, the filtering algorithm 

uses the probability calculated when determining subunit homology because this calculation 

requires probability computation of only five amino acids per subunit. Once this probability 
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is calculated for each Sn, the filtering algorithm will discard a certain percentage of the least 

probable pseudostates in St.   

 When calculating the percentage of St to be removed by the filtering algorithm, 

SABLE assumes Pt is a globular protein with an ellipsoid shape. Furthermore, SABLE 

assumes that any Sn featuring the cΔ of Pm outside the general ellipsoid shape of Pt but 

remaining within the spatial perimeter is likely to possess an unsatisfactory homologous 

subunit probability. Therefore, the percentage of St to be filtered (S%) is expressed by the 

following equation:  

       
  
  

 

where Vc is the cubic volume of the spatial perimeter and Ve is the volume of the ellipsoid 

(Weisstein): 

    
 

 
   

  
 
 
  
 
 
  
 
    

       
 

 

Note that δ is the diameter and must be halved to equal the radius. Using the above Ve 

equation, S% equals the following value: 

      
 
       

 
 

      
     

 

 
       

Additionally, considering computational efficiency, SABLE assumes that half of the Sn 

featuring the cΔ of Pm inside the general ellipsoid shape of Pt will also possess unsatisfactory 

probabilities. Therefore, SABLE increases the calculated percentage of St to be removed by 

the filtering algorithm to 75 percent.   
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SABLE: Phase 2 

 Because Pm translates within the voluminous spatial perimeter of Pt, the initial 

parameters of L0 and θ0 must be generously large to minimize the number of pseudostates in 

St. Unfortunately, although large initial parameters reduce the size of St, they also decreases 

the accuracy of the structural alignment. Therefore, Phase 2 of SABLE gradually decreases 

the translation length of L0 and the rotation angle of θ0 until they are less than or equal to a 

final pair of parameters containing lesser quantities (Lf and θf). Decreasing the sizes of the 

two initial parameters to those of the final parameters will increase the accuracy of the 

structural alignment without exponentially increasing St.  

 Phase 2 of SABLE receives St from Phase 1 and retains twenty percent of the 

pseudostates with the greatest £. The quantities of L0 and θ0 are then halved (L0.5 and θ0.5) and 

used to generate new pseudostates. A portion of these new pseudostates is generated by 

translating the retained pseudostates in St by L0.5 in the positive and negative direction of 

each axis. That is, each Sn is translated by L0.5 in each of the six directions (positive x-

direction, negative x-direction, etc.) to generate six new pseudostates. The final portion of the 

new pseudostates is generated by rotating each Sn (including those recently generated by a 

translation of L0.5) along each axis in both the positive and negative directions by θ0.5. Once 

these new pseudostates are assembled into St, SABLE calculates £ for each Sn. SABLE then 

retains a specific number of those pseudostates in St possessing the greatest £. Importantly, to 

prevent the exponential growth of St, the number (not the percentage) of retained 

pseudostates equals the number of pseudostates retained immediately following Phase 1 and 

remains constant for all iterations. The parameters of L0.5 and θ0.5 are then halved and the 
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process repeats for multiple iterations until L ≤ Lf and θ ≤ θf. For each Pm, the Sn with the 

greatest £ is retained for Phase 3.  

 

SABLE: Phase 3 

 In both Phases 1 and 2, SABLE selects a Pt based on the size of the spatial perimeter 

and structurally aligns it to each of the other input proteins (Pm) in a series of pairwise 

alignments. In Phase 3, however, SABLE selects a new Pt and aligns it to the remaining 

proteins using another series of pairwise alignments. The protein that possesses the least 

mean center error distance (MCED), which is the distance between the cμ of each input 

protein and the cμ of all the proteins combined, is selected as the new Pt. Designating Pt as 

the protein with the least MCED minimizes the total translational and rotational movement 

required for all the Pms to structurally align to Pt. Therefore, each Pm is converging on a Pt 

that possesses the most “average” spatial position.  

For each pairwise alignment between Pm and the newly designated Pt, SABLE 

generates new pseudostates similarly to those generated in Phase 2. However, only a single 

iteration using Lf and θf is performed instead of several iterations that half L and θ. 

Additionally, σs is hardcoded to equal four angstroms to increase the probability curve 

sensitivity. Furthermore, instead of Pm translating and rotating each iteration by only a single 

quantity of L and θ, Phase 3 permits Pm to translate and rotate by multiple quantities of Lf and 

θf. The number of quantities Pm can translate and rotate is equal to Lf / MCED (rounded to the 

nearest integer). That is, the MCED determines the translational and rotational deviation 

from the current position of Pm relative to the position Pm must achieve for adequately 

superimposing Pt. Finally, SABLE calculates         of the pseudostates generated by Phase 
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3. For each Pm, SABLE then selects the Sn achieving max(£) to be the final position of Pm in 

the structural alignment.  

 

SABLE Accuracy Program 

 If more accuracy is required upon execution of SABLE, the aligned protein structures 

may be input into the SABLE Accuracy program. SABLE Accuracy is an independent 

program that increases the accuracy of the SABLE results by decreasing Lf and θf. The 

program executes multiple iterations similar to Phase 2 of the original SABLE until L and θ 

are reduced to the new Lf and θf. However, why not simply utilize these reduced quantities in 

the primary SABLE program? The spatial divergence of the proteins before the structural 

alignment necessitates that SABLE incorporates numerous calculations to prevent a heuristic 

problem. However, following the structural alignment of SABLE, the proteins will be 

relatively superimposed and the prevention of heuristic problems is unnecessary; therefore, 

many of these extraneous calculations are nonessential (e.g., the number of pseudostates 

retained per iteration decreases, σs is hardcoded to equal four angstroms, etc.). Therefore, 

compared to the primary SABLE program, SABLE Accuracy increases the speed at which L 

and θ are reduced. 
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SABLE Results 

Because SABLE combines the versatility of a structural alignment program with the 

accuracy and comprehensiveness of a superpositioning program, optimal methodology 

requires that SABLE be compared to both these algorithms. To demonstrate the accuracy 

with which SABLE superimposes proteins, I comparatively superimposed several 

homologous proteins utilizing SABLE, the MUSTANG structural alignment program 

(Konagurthu et al., 2006), and the Theseus structural superpositioning program (Theobald 

and Wuttke, 2006b). The results indicate that, although all three programs accurately 

superimpose monomeric protein pairs, only SABLE accurately and consistently 

superimposes three or more multimeric proteins. Specifically, MUSTANG is incapable of 

aligning multimeric proteins (Konagurthu et al., 2006); furthermore, Theseus inconsistently 

superimposes multimeric proteins and is unable to competently superimpose more than four 

proteins.  

Similar to other conventional structural alignment programs, MUSTANG identifies 

secondary structures utilizing a derived contact matrix (Holm and Sander, 1993; Konagurthu 

et al., 2006; Ortiz et al., 2002). It then aligns the complete structure of the proteins by 

superimposing these secondary structures. Importantly, MUSTANG only employs secondary 

structures to calculate the alignment, while nonconserved regions are consequently 

insignificant (Konagurthu et al., 2006). The Theseus program calculates structural 

translations and rotations utilizing a derivative-based ML algorithm (Theobald and Wuttke, 

2006b). To establish the necessary homology of the alpha carbons, Theseus requires the input 

of a preliminary sequence alignment. For the Theseus results contained herein, I generated 
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this preliminary sequence alignment utilizing the MUSCLE program (Edgar, 2004a, 2004b; 

Edgar and Sjolander, 2004).  

 

Measuring Structural Superimposition 

Numerous methodologies quantitatively assess the quality of superimposing protein 

structures (e.g., the RMSD). However, all quality assessment methodologies fundamentally 

measure the distance between the spatial coordinates of atoms (although some methodologies 

require the mathematical modification of this distance). Therefore, calculation of the spatial 

distance measurements requires determining the homology (matching) of amino acid 

residues. To compare the SABLE, MUSTANG, and Theseus quality assessment scores of 

superimposed proteins, correct methodology requires the derivation of homologous amino 

acids utilizing the superimposed protein structures. Unfortunately, although Theseus 

calculates numerous quality assessment scores (including the classical RMSD) for pairwise 

superpositions (Theobald and Wuttke, 2006b), the amino acid homology utilized to generate 

these calculations is derived from the preliminary sequence alignment. Therefore, calculating 

the most probable sequence alignment derived from superimposed protein structures 

necessitates an unpublished structure-dependent sequence alignment (SDSA) program called 

UniTS (Universal True SDSA). The UniTS program calculates the most probable SDSA 

utilizing both the spatial distances between homologous atoms and sequence information in 

structurally nonconserved regions of the superimposed proteins. Utilizing this newly 

generated SDSA, UniTS calculates improved, structure-based, quality assessment scores for 

the superimposed proteins (more information regarding the UniTS program is available in 

Chapter III).  
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Importantly, SABLE does not derive an SDSA and MUSTANG only derives a partial 

SDSA (based upon the secondary structures), thus preventing the calculation of quantitative 

assessment scores for their generated structural alignments. Incidentally, I utilized UniTS to 

supplement these limitations; therefore, the combination of SABLE or MUSTANG and 

UniTS is capable of calculating a structural alignment, a corresponding sequence alignment, 

and quality assessment scores for the superimposed proteins. Because UniTS calculates the 

SDSA and structural quality assessment scores for the superimposed protein derivations of 

SABLE, MUSTANG, and Theseus, the results contained herein are measured utilizing equal 

(structure-based) methodologies. This eliminates the influence introduced into the results by 

inconsistent and possibly contrasting measurement methodologies.  

 Conventionally, the RMSD spatial distance measurement is utilized to quantitatively 

assess the quality of a pairwise protein structural superposition. However, the RMSD 

quantity is dependent upon the number of amino acids utilized in the calculation (i.e., the 

length of the sequence alignment), as is evident by the RMSD equation. The dependence of 

the RMSD on sequence length induces incorrect methodology because UniTS calculates 

marginally dissimilar, and thus incomparable, numbers of amino acid matches for each trial 

of superimposed proteins. Therefore, to quantitatively assess the quality of protein 

superimpositions, I formulated two novel measurements: the mean standard deviation and the 

mean probability. Calculation of the mean standard deviation (σm) consists of averaging the 

individual standard deviations of each homologous atom position (see Chapter III, section 

“UniTS Algorithm”, subsection “Multiple SDSA Quality Assessment: Mean Standard 

Deviation” for additional details on this calculation). I utilize individual standard deviations 

instead of basic spatial distances to accommodate more than two superimposed proteins. 
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Although σm is superior to the RMSD because it is length independent and accommodates 

more than two superimposed proteins, σm also continues to overweigh structurally 

nonconserved regions (see Chapter II, section “SABLE Algorithm”, subsection 

“Superimposing Measurement of SABLE” for more details). To compensate for this 

limitation, I derived a novel mean probability (pm) measurement:  

            
     

 

where n is the number of homologous amino acid positions and patom is the probability of two 

homologous atoms utilizing a σ of 4 angstroms (as detailed in Chapter II, section “SABLE 

Algorithm”, subsection “SABLE: Phase 3”). Because the preceding equation frequently 

calculates a quantity too small for standard computational precision, I augmented the 

equation with logarithms:    

              
        

 

Although the pm measurement is comparable to that employed by SABLE to calculate 

comparative pseudostate likelihoods, as a mean quantity, pm is independent of utilized amino 

acid (or homologous atom) quantities. The quality assessments of superimposed proteins 

contained herein are measured utilizing both σm and pm. 

 

Monomeric Pairwise Comparison 

To compare the pairwise superimposing capabilities of SABLE, MUSTANG, and 

Theseus, I conducted four superimposition trials; each trial represents a protein family 

consisting of two homologous monomers. Table 1a displays the two PDB designations, the 
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mean sequence length, and the sequence identity characterizing each protein family, while 

Table 1b lists the species of each PDB designation (Berman et al., 2000).  

 

Table 1a. Protein family characteristics for pairwise monomeric comparison 

Protein Family First Protein 

PDB 

Second Protein 

PDB 

Mean 

Length 

Sequence 

Identity
b
 

Protein Kinase C
c
 1BDY

a
 2ENJ 127 47.1 

Isocitrate Dehydrogenase 1T09
a
 1XGV

a
 422 20.8 

Pectate Lyase 1PLU 2BSP 375.5 20.3 

Polygalacturonase 1CZF
a
 1HG8 342 40.1 

a
Chain A of the protein. 

b
The sequence identity was calculated utilizing the MEGA5 sequence analysis software 

(Tamura et al., 2011). 
c
This is the C2 domain of the protein kinase C protein. 
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Table 1b. PDB designation species for pairwise monomeric comparison 

PDB Designations First Protein Species Common Name/Type 

1BDY
a
 Rattus norvegicus Brown Rat 

2ENJ Homo sapiens Human 

1T09
a
 Homo sapiens Human 

1XGV
a
 Aeropyrum pernix Archea 

1PLU Erwinia chysanthemi Bacteria 

2BSP Bacillus subtilis Bacteria 

1CZF
a
 Aspergillus niger Fungi 

1HG8 Fusarium verticillioides Fungi 

a
Chain A of the protein. 

 

 

I chose each protein family either arbitrarily or for collaborative purposes. The C2 domain of 

protein kinase C (PKC) is present in the conventional and the novel subfamilies (but not 

present in the atypical subfamily). Although nonfunctional in the novel subfamily, the 

conventional subfamily C2 domain permits the binding of Ca
2+

, one of the activation ligands 

of PKC (Voet and Voet, 2004). The PKC structures included herein (1BDY and 2ENJ) are 

both from the novel subfamily (Berman et al., 2000). Isocitrate dehydrogenase is a citric acid 

cycle protein that utilizes a decarboxylation reaction to convert isocitrate and NAD
+
 

(nicotinamide adenine dinucleotide) to α-ketoglutarate and NADH (reduced form of NAD) 

(Voet and Voet, 2004). Both pectate lyase and polygalacturonase catalyze the degradation of 

plant cell walls. Pectate lyase catalyzes the eliminative cleavage of pectin in cell walls, while 

polygalacturonase depolymerizes the pectin component polygalacturonic acid (Marín-
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Rodríquez et al., 2002; Voet and Voet, 2004). Both protein families permit the softening of 

fruits during the ripening process and are utilized by microbes to cause diseases in plants 

(Marín-Rodríquez et al., 2002; Voet and Voet, 2004) 

 Figure 2 contains images of the SABLE structural alignment for each protein family. 

Images of the Theseus and MUSTANG superimpositions are not shown because they possess 

a similar spatial resemblance to those generated by SABLE. 
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Figure 2. Atomic (left) and ribbon (right) image formats of each pairwise structure alignment 

generated by SABLE. The protein families represented include: (a) the C2 domain of protein 

kinase C, (b) isocitrate dehydrogenase, (c) pectate lyase, and (d) polygalacturonase. The PDB 

designations of each input protein are colored appropriately. Graphical imaging was 

performed utilizing Swiss-PdbViewer (Guex and Peitsch, 1997). 

 

 

Tables 2 and 3 present the σm and pm quantities of each superimposed protein family 

as calculated utilizing SABLE, MUSTANG, and Theseus. As previously stated, each time 

one of the aforementioned programs superimposed a protein family, I utilized UniTS to 

derive a consequent SDSA. I then utilized this resultant SDSA to determine the amino acid 

matches required to calculate σm and pm. In Table 2, because the quantities are measured in 

angstroms, a lesser quantity indicates superiorly superimposed proteins; in Table 3, a greater 

probability equals a superior superimposition.  
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Table 2. Mean standard deviation (σm) of protein families 

Protein Name SABLE σm MUSTANG σm Theseus σm 

Protein Kinase C 0.95 Å
a
 0.87 Å 0.92 Å 

Isocitrate Dehydrogenase 2.47 Å 1.89 Å 2.17 Å 

Pectate Lyase 1.98 Å 2.78 Å 1.70 Å 

Polygalacturonase 0.54 Å 0.56 Å 0.54 Å 

a
The colors indicate the relative quality of the values. Green indicates the most superior 

quantity of the three; yellow the intermediate; and red the most inferior.  

 

 

Table 3. Mean probability (pm) of protein families 

Protein Name SABLE pm MUSTANG pm Theseus pm 

Protein Kinase C 3.989
a
 4.010 3.983 

Isocitrate Dehydrogenase 3.106 3.444 3.160 

Pectate Lyase 3.185 2.824 3.361 

Polygalacturonase 3.771 3.768 3.770 

a
The colors indicate the relative quality of the values. Green indicates the most superior 

quantity of the three; yellow the intermediate; and red the most inferior.  

 

 

The results of Tables 2 and 3 illustrate sporadic capability by each program. Therefore, no 

program consistently produces significantly superior structural results.  

To compare the quality of the SDSAs generated utilizing the SABLE alignments to 

those generated utilizing the MUSTANG alignments and Theseus superpositions, I 

calculated conventional sequence alignment log-odds scores for each SDSA generated (Table 

4). A greater log-odds score indicates a more probable sequence alignment as calculated 
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utilizing amino acid identity and similarity (information regarding the log-odds score 

calculation is described in Chapter III, section “UniTS Results”, subsection “UniTS 

Compared to Chimera”). 

 

Table 4. Log-odds scores for each protein family 

Protein Name SABLE Log-odds MUSTANG Log-odds Theseus Log-odds 

Protein Kinase C 314.4
a
 284.5 314.4 

Isocitrate Dehydrogenase -179.8 -180.4 -126.7 

Pectate Lyase 68.2 -136.2 58.0 

Polygalacturonase 677.2 673.9 677.2 

a
The colors indicate the relative quality of the values. Green indicates the most superior 

quantity of the three; yellow the intermediate; and red the most inferior.  

 

 

The results illustrated in Table 4 indicate that UniTS generated the most probable SDSAs for 

the superimposed proteins derived utilizing SABLE and Theseus. Specifically, both SABLE 

and Theseus produced identical PKC (C2 domain) and polygalacturonase SDSAs. 

Furthermore, of the two remaining protein families, each program derived a single superior 

log-odds score. Importantly, the log-odds measurement is the same measurement employed 

by conventional sequence alignment algorithms. Therefore, because Theseus superpositions 

proteins utilizing a preliminary sequence alignment (which by default exhibts the maximum 

log-odds score), the proteins are superimposed indirectly utilizing a maximum log-odds 

score. However, the log-odds scores generated by the SABLE alignments contain no indirect 

sequence bias.  
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Despite the insignificant variation exhibited by the SABLE and Theseus SDSAs, 

Table 4 indicates that the SDSAs generated utilizing the MUSTANG alignments are 

significantly inferior. Consequently, although the MUSTANG quantities in Tables 2 and 3 

indicate equally superimposed proteins to those of SABLE and Theseus, these quantities 

were calculated utilizing inferior SDSAs. Therefore, I recalculated each σm and pm utilizing 

amino acid matches derived from the most probable SDSA for each protein family (Tables 5 

and 6).  

 

Table 5. Mean standard deviations (σm) of protein families calculated  

utilizing the SABLE and/or Theseus SDSAs 

 

Protein Name SABLE σm MUSTANG σm Theseus σm SDSA From… 

Protein Kinase C 0.95 Å
a
 0.95 Å 0.92 Å SABLE/Theseus 

Isocitrate Dehydrogenase 2.40 Å 2.18 Å 2.17 Å Theseus 

Pectate Lyase 1.98 Å 2.65 Å 1.95 Å SABLE 

Polygalacturonase 0.54 Å 0.55 Å 0.54 Å SABLE/Theseus 

a
The colors indicate the relative quality of the values. Green indicates the most superior 

quantity of the three; yellow the intermediate; and red the most inferior.  
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Table 6. Mean probability (pm) of protein families calculated  

utilizing the SABLE and/or Theseus SDSAs 

 

Protein Name SABLE pm MUSTANG pm Theseus pm SDSA From… 

Protein Kinase C 3.989
a
 3.988 3.983 SABLE/Theseus 

Isocitrate Dehydrogenase 3.142 3.191 3.160 Theseus 

Pectate Lyase 3.185 3.072 3.164 SABLE 

Polygalacturonase 3.771 3.770 3.770 SABLE/Theseus 

a
The colors indicate the relative quality of the values. Green indicates the most superior 

quantity of the three; yellow the intermediate; and red the most inferior.  

 

 

Utilizing the most probable SDSAs, the comparative capabilities of SABLE remain 

approximately unchanged in Table 5; however, Table 6 illustrates that SABLE produces a 

superior pm in nearly all protein families. Because pm is a superior indicator of 

superimposition quality compared to σm, the results elucidated in Table 5 are justifiably more 

legitimate. Therefore, although the differences between the pm quantities are likely 

inconsequential, SABLE predominantly produces superior superimposition and SDSA 

results. 

 I attribute the inferior alignment of isocitrate dehydrogenase to the sporadic positions 

of the composing secondary structures. The alignment accuracy of the regions containing 

secondary structures was likely compromised to compensate for the intermittent regions; 

however, algorithms utilizing a contact matrix ignore these intermittent regions. The 

significant discrepancy revealed in Table 3 between the pm generated utilizing MUSTANG 

and those generated utilizing SABLE and Theseus further substantiates this explanation 

(although this discrepancy is reduced in Table 6). Note however, that the sporadic positions 
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of the secondary structures benefitted MUSTANG for isocitrate dehydrogenase because these 

structures superimposed optimally; however, if the secondary structures are unable to 

optimally superimpose, the inability of MUSTANG to compensate utilizing other protein 

regions will result in inferiorly superimposed structures. 

Importantly, SABLE, MUSTANG, and Theseus all satisfactorily superimposed each 

protein family. Consequently, although Tables 2, 3, 5, and 6 compare the pairwise 

performances of the three programs, the pm differential disparities equate to divergent 

RMSDs of only a fraction of an angstrom. However, superimposing more complex proteins 

will elucidate the comparative limitations of conventional structural alignment and 

superpositioning programs such as MUSTANG and Theseus.  

 

Multisubunit Pairwise Comparison 

To elucidate the multisubunit capabilities of SABLE, I superimposed the 

polygalacturonase proteins a second time utilizing a homodimeric 1CZF
5
 (Chains A and B) 

and the original monomeric 1HG8. Because MUSTANG is unable to align multisubunit 

proteins, I compared the multisubunit capabilities of only SABLE and Theseus. For the 

Theseus superposition of the polygalacturonase proteins, UniTS calculated a σm = 0.63 

angstroms and pm = 3.764; furthermore, UniTS calculated σm = 0.50 angstroms and pm = 

3.772 for the SABLE alignment. Although the quality assessment scores for each program 

are comparable, the addition of a single subunit to a simple pairwise superimposition caused 

the quality of the Theseus superposition to decline. However, the scores of SABLE remained 

relatively consistent despite the addition of the subunit (as indicated by comparing the 
                                                             
5
 1CZF is naturally a monomer. However, the 1CZF protein structure was derived utilizing x-

ray crystallography and the asymmetric unit contains two proteins (Chains A and B). 
Therefore, the “homodimeric” 1CZF is actually two polygalacturonase proteins in the same 
asymmetric unit.  
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aforementioned quantities to those in Tables 5 and 6). Consequently, although adding a 

single subunit minimally decreased the quality of the Theseus superposition, the 

accumulation of numerous complexities (i.e., introducing additional subunits, heterogeneous 

numbers of subunits, and/or increasing the number of input proteins) would likely 

cumulatively result in a significant discrepancy. This significant difference in quality 

demonstrates both the inevitable inability of Theseus to accommodate more complex 

multisubunit superpositions and the proficiency of SABLE at segregating and differentiating 

the calculations of independent polypeptide chains. 

Two reasons contribute to the inability of Theseus to superposition multisubunit 

proteins: First, MUSCLE is incapable of differentiating polypeptide chains while generating 

a sequence alignment. Second, the Theseus algorithm is dependent upon input proteins 

possessing similar polypeptide sequence lengths
6
; SABLE, however, is not limited by chain 

length differentiation. Furthermore, because the SABLE algorithm properly differentiates 

and aligns polypeptide chains, it is limited by neither multiple subunits nor heterogeneous 

numbers of subunits.  

 

Multiple Alignment Comparison 

To demonstrate the multiple structural alignment capability of SABLE, I 

superimposed three protein assemblages utilizing SABLE, MUSTANG, and Theseus. Each 

                                                             
6
 Because Theseus utilizes a preliminary sequence alignment to derive homologous atoms, 

similar monomeric sequence lengths prevent the occurrence of extreme atomic mismatches. 
Therefore, despite an inadequate input sequence alignment (i.e., a sequence alignment 
exhibiting a sequence identity of less than the conventional 25% threshold (Rost, 1999), 
homologous atom determination will remain approximately correct. However, the 
introduction of a single dimeric protein prevents the two input proteins from possessing 
comparable sequence lengths. These divergent sequence lengths preclude Theseus from 
compensating for an inadequate preliminary sequence alignment. 
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protein assemblage consists of multiple (i.e., greater than two) homologous proteins. As with 

the previous alignments, I assessed the quality of each superimposed protein assemblage 

utilizing both the pm and σm measurements.  

The initial two protein assemblages both consist of four homologous proteins: two 

pectate lyase and two polygalacturonase proteins (see Table 1 for specific PDB 

designations). One assemblage consists of all monomers (including the monomeric version of 

the 1CZF protein), while the other assemblage includes all monomers except the 

homodimeric version of 1CZF. Figures 3 and 4 graphically illustrate the SABLE alignment 

of each superimposed assembly of proteins.  

 

 

Figure 3. Atomic (left) and ribbon (right) image formats of a multiple structure alignment 

generated by SABLE. This structural alignment incorporates the monomeric version of the 

polygalacturonase protein possessing the PDB designation of 1CZF The PDB designations of 

each input protein are colored appropriately. Graphical imaging was performed utilizing 

Swiss-PdbViewer (Guex and Peitsch, 1997). 
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Figure 4. A ribbon image format of a multiple structure alignment generated by SABLE. This 

structural alignment incorporates the homodimeric version of the polygalacturonase protein 

possessing the PDB designation of 1CZF. The PDB designations of each input protein are 

colored appropriately. Note that because the other proteins are monomers, they only align to 

one of the 1CZF subunits. Graphical imaging was performed utilizing Swiss-PdbViewer 

(Guex and Peitsch, 1997). 

 

 

Utilizing UniTS, I generated pm and σm quantities for each assemblage of superimposed 

proteins as calculated by SABLE, MUSTANG, and Theseus (Table 7). The results indicate 

that SABLE superiorly superimposes both assemblages of proteins. Although the disparity 

between the monomeric proteins superimposed by SABLE and those superimposed by 

Theseus is likely insignificant, the additional of the homodimeric 1CZF protein increases this 

disparity to significant proportions. As initially demonstrated in the “Multisubunit Pairwise 

Comparison” subsection, the inability of Theseus to superimpose proteins composed of 

multiple or inconsistent subunits demonstrates its lack of versatility. Comparatively, 

MUSTANG unsuccessfully superimposed the quad polygalacturonase/pectate lyase 
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assemblages. In addition to its inability to superimpose input monomers to the homodimeric 

1CZF, MUSTANG derived significantly inferior results to those of SABLE and Theseus 

when aligning the four polygalacturonase/pectate lyase monomers. 

 

Table 7. Mean probabilities (pm) and mean standard deviations (σm)  

for each assemblage of proteins 

 

Assemblage SABLE MUSTANG Theseus 

Quad Alignment (1CZF monomer) pm 3.608
a
 2.878 3.589 

Quad Alignment (1CZF monomer) σm 3.31 Å 4.53 Å 3.36 Å 

Quad Alignment (1CZF homodimer) pm 3.492 NA
b
 3.294 

Quad Alignment (1CZF homodimer) σm 3.41 Å NA
b
 4.83 Å 

a
The colors indicate the relative quality of the values. Green indicates the most superior 

quantity of the three; yellow the intermediate; and red the most inferior. 
b
MUSTANG is unable to superimpose protein possessing multiple subunits. 

 

 

 The final assemblage consists of five monomeric polygalacturonase proteins. Two of 

these are published in the PDB (monomeric 1CZF and 2IQ7 [Berman et al., 2000]); two are 

unpublished but have reserved designations in the PDB (1ZEU and 1ZFW); the fifth is an 

unpublished tomato polygalacturonase that I designated as TOMA until a formal designation 

is assigned.
7
 Figure 5 illustrates these five proteins as superimposed utilizing SABLE. 

 

                                                             
7
 The three unpublished protein structures were provided courtesy of Marilyn Yoder, Ph.D., 

at the Division of Cell Biology and Biophysics, School of Biological Sciences, University of 
Missouri-Kansas City. 
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Figure 5. Atomic (left) and ribbon (right) image formats of a five-protein multiple structure 

alignment generated by SABLE. The PDB designations of each input protein are colored 

appropriately. Graphical imaging was performed utilizing Swiss-PdbViewer (Guex and 

Peitsch, 1997). 

 

 

The quality assessment scores derived from UniTS for the proteins superimposed by SABLE 

are σm = 1.47 angstroms and pm = 3.725. Furthermore, these scores derived utilizing the 

proteins superimposed by MUSTANG are σm = 1.38 angstroms and pm = 3.730. 

Unfortunately, Theseus was unable to adequately superimpose the proteins. Throughout 

numerous superpositioning trials not included in this dissertation, Theseus repeatedly and 

inconsistently demonstrated an inability to adequately superimpose more than four proteins. 

This deficiency likely results from an error in the program rather than an algorithmic error. 

For this penta-polygalacturonase alignment, MUSTANG superiorly superimposes the 

proteins compared to SABLE (although the assessment score disparities are likely 

insignificant).  
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Although SABLE consistently aligned all three assemblages of proteins, the quality 

of the two MUSTANG alignments is inconsistent. The first assemblage superimposed by 

MUSTANG was significantly inferior to those of both SABLE and Theseus, while the 

quality of the MUSTANG alignment was slightly superior to that of SABLE for the third 

assemblage. To further complicate this demonstrated inconsistency, the proteins utilized in 

both assemblages are structurally similar. The inconsistency of the MUSTANG alignments 

possibly results from the additional and inconsistent secondary structures present in the 

monomeric quad polygalacturonase/pectate lyase superimposition (not including the beta-

helix) as illustrated in Figure 3. The penta-polygalacturonase superimposition illustrated in 

Figure 5, however, contains only negligible secondary structures in addition to the prominent 

beta-helix. The two aforementioned examples demonstrate the dependence of MUSTANG on 

secondary structures, its inability to align heterogeneous secondary structures, and the 

inconsistent results generated from these deficiencies. Furthermore, the three multiple 

superimpositions demonstrate the capability of SABLE to consistently derive quality results 

despite the complexities of considerable numbers of input proteins, multiple or 

heterogeneous numbers of subunits, or inconsistent secondary structures.  
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Discussion of SABLE Results 

SABLE combines the versatility of a structural alignment program with the accuracy 

and comprehensiveness of a superpositioning program by implementing a ML algorithm and 

a novel probability scoring algorithm. Comparable to conventional structural alignment 

algorithms, it implements structural information to superimpose protein structures rather than 

deriving information from amino acid sequences. The versatility of SABLE permits it to 

superimpose multiple input proteins, each comprising homo- or heterogeneous numbers of 

multiple subunits. However, SABLE is superior to conventional structural alignment 

algorithms because it implements the accuracy of a structural superpositioning algorithm, it 

is not limited by secondary structures in a contact matrix (Holm and Sander, 1993; 

Konagurthu et al., 2006; Ortiz et al., 2002), and it generates output files containing spatial 

coordinates.   

Although SABLE does not require a preliminary sequence alignment, its functioning 

is comparable to that of a superpositioning program. The results presented herein indicate 

that the accuracy with which SABLE superimposes two monomeric proteins is equal to that 

of the Theseus superpositioning program. Furthermore, for increasingly complex alignments 

(i.e., increasing the number of input proteins, increasing the number of chains, or by 

incorporating heterogeneous numbers of chains), the flexibility of SABLE permits the 

generation of significantly more accurate superpositions than those generated by Theseus. 

This versatility and accuracy allows SABLE to calculate structural alignments with minimal 

human intervention, reducing the need to curate results and increasing output through 

automation. Consequently, SABLE can automate applications such as generating a mean 

structure from divergent homologous proteins or modeling ligand binding.  
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CHAPTER III 

UNITS: UNIVERSAL TRUE SDSA (STRUCTURE-DEPENDENT  

SEQUENCE ALIGNMENT) 

 

Introduction to Structure-dependent  

Sequence Alignments 

Although protein structure is a superior indicator of protein homology because it is 

more evolutionarily conserved (Kim and Lee, 2007; Marti-Renom et al., 2000), utilization of 

protein sequences continues to be the primary method for determining protein homology due 

to sequence abundance, relatively inexpensive generation, and comparative algorithmic 

simplicity. However, as both computational power and the number of solved protein 

structures increase, the influence of structural information in protein biology is increasing. 

Evolutionary relationships and functional correlations between homologous proteins are 

increasingly determined utilizing protein structural alignment and superpositioning software 

instead of an exclusive reliance on sequence alignment software. While protein structural 

alignment and superpositioning software can calculate structural homology, the inability of 

this software to calculate an accurate corresponding sequence alignment limits its utilization. 

Although some algorithms either directly (e.g., the Chimera Match=>Align function [Meng 

et al., 2006; Pettersen et al., 2004]) or indirectly (e.g., inverse folding and structural 

alignment) attempt to calculate protein sequence homology utilizing structural information, 

no algorithmic solution permits the derivation of an accurate alignment while utilizing the 

complete protein (including nonhomologous regions).   
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Current SDSA Limitations 

Inverse folding structure-dependent sequence alignment (SDSA) algorithms, 

precursors to protein structure prediction methods such as threading or homology modeling, 

attempt to align the amino acid sequence of one protein to the sequence of another with a 

known structure (Bowie et al., 1991; Hong et al., 2010; Yang, 2002). To align sequences 

possessing less than thirty percent sequence identity (Rost, 1999), these SDSA programs 

utilize profile-based sequencing techniques (Bowie et al., 1991; Edgar and Sjolander, 2004; 

Hong et al., 2010). That is, they generate amino acid profiles based upon structural 

information to assist with the sequence alignment. Importantly, these profile-based SDSA 

algorithms continue to utilize conventional sequence alignment algorithms (Edgar and 

Sjolander, 2004). The amino acid profiles generated by structural information only 

supplement the conventional sequence alignment; they are not truly dependent on this 

structural information (Bowie et al., 1991; Kuzlemko et al., 2011). 

After superimposing protein structures, protein structural alignment algorithms
8
 must 

calculate a sequence alignment utilizing this structural alignment. Unfortunately, the 

sequence alignments generated by structural alignment algorithms constitute only a fraction 

of the total protein. Consequent of utilizing a contact matrix, only those amino acids 

contained within matching submatrices are sequentially aligned (Holm and Sander, 1993; 

Konagurthu et al., 2006; Ortiz et al., 2002). Therefore, the homologous proteins are 

sequentially aligned intermittently rather than universally, resulting in an incomplete 

                                                             
8
 Protein superpositioning algorithms require a preliminary sequence alignment to determine 

amino acid matching and function to superimpose the structures. Protein structure alignment 
algorithms do not require a preliminary sequence alignment and function to identify and 
align evolutionarily homologous regions of protein structures (Gibas and Jambeck, 2001; 
Ortiz et al., 2002). Although both types of algorithms ultimately superimpose protein 
structures, they require different input and utilize different methodologies.    
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sequence alignment. In addition to the decreased number of amino acid matches preventing 

the sequence alignment of structurally nonconserved regions, it also prevents the calculation 

of accurate structural alignment quality assessment scores (e.g., RMSD).  

Neither inverse folding SDSAs nor structural alignment algorithms are designed to 

specifically calculate a sequence alignment from superimposed protein structures. However, 

the Match=>Align function of the University of California-San Francisco’s Chimera protein 

structure visualization and modeling program is designed for this purpose (Pettersen et al., 

2004). Unfortunately, the Match=>Align function is unsophisticated and possesses numerous 

algorithmic deficiencies. First, while matching amino acids from homologous chains, it 

maintains the residue order of the polypeptide chains (i.e., it prevents the amino acids from 

becoming disordered) by serially matching them (Meng et al., 2006). This heuristic serial 

matching method prevents the algorithm from calculating the best SDSA for the entirety of 

the proteins. Second, similar to many structural alignment programs (Holm and Sander, 

1993; Ortiz et al., 2002), the Match=>Align function of Chimera is unable to directly match 

amino acids whose spatial distance exceeds a predetermined distance threshold. Instead, it 

utilizes arbitrary scores such as gap penalties and negative scores to match amino acids with 

a spatial distance greater than the threshold distance (Meng et al., 2006). These arbitrary 

scores are inconsistent with the utilization of structure to calculate sequence matches and 

thus prevent the determination of an accurate sequence homology for structurally 

nonconserved regions.  
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The UniTS Solution 

The Universal True SDSA, or UniTS, program calculates the most probable sequence 

alignment derived from multiple superimposed protein structures. Although designed to 

neither resolve the inverse protein folding problem (as are residue profile-based SDSA 

algorithms) nor superimpose protein structures, UniTS compensates for the aforementioned 

limitations and deficiencies inherent in residue profile-based SDSA programs, structural 

alignment programs, and other spatial SDSA programs such as Chimera. If superimposed 

protein structures are available, UniTS is truly structure-dependent because it derives the 

SDSA utilizing spatial coordinates instead of residue profiles. Additionally, compared to the 

incomplete or partial sequence alignment generated by a structural alignment algorithm, 

UniTS calculates a universal sequence alignment constituting information from the entire 

protein.  

Although the Match=>Align function of the Chimera program also derives a SDSA 

from superimposed protein structures utilizing atomic proximity (Meng et al., 2006), UniTS 

calculates the sequence homology of structurally nonconserved regions utilizing sequence 

information. Predicated on the evolutionary model, this method is biologically superior to the 

utilization of arbitrary scores. Furthermore, UniTS calculates residue matches 

comprehensively based upon the totality of the proteins instead of the heuristic serial 

matching performed by Match=>Align. 

 The consequent SDSA derived by UniTS permits the calculation of improved quality 

assessment scores (e.g., RMSD) for the superimposed proteins relative to those calculated 

exclusively by structural alignment and superpositioning algorithms. Unfortunately, as 

aforementioned, protein structure alignment algorithms derive a partial sequence alignment; 
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additionally, superpositioning algorithms require an input sequence alignment that is derived 

utilizing a conventional sequence-based alignment program (Theobald and Wuttke, 2006b). 

Therefore, neither the structure alignment nor superpositioning algorithms derive an accurate 

sequence alignment utilizing structural information. Consequently, both algorithms utilize 

inadequate sequence alignments to calculate quality assessment scores for the superimposed 

protein structures. In contrast, after proteins have been superimposed, UniTS can modify and 

improve both the sequence alignment and the quality scores.  

  



62 
 

UniTS Algorithm 

 

Pairwise SDSA 

Given two structurally aligned proteins, the pairwise SDSA algorithm of the UniTS 

program will generate a sequence alignment based upon the structural alignment. The 

simplest and most intuitive SDSA algorithmic solution would calculate the distances between 

all opposing alpha carbons (i.e., alpha carbons located in different proteins). This algorithm 

would then consider two opposing amino acids to be a structural match if the distance 

between them is less than a predetermined distance threshold (four to five angstroms in many 

programs [Holm and Sander, 1993; Ortiz et al., 2002; Meng et al., 2006; Pettersen et al., 

2004]). Unfortunately, this algorithmic solution is problematic despite being simple and 

intuitive.    

The first problem with the aforementioned algorithm is the possibility of a single 

amino acid matching multiple opposing amino acids. If the multiple opposing amino acids 

are adjacent to each other, any one of them can structurally match to the single amino acid. 

Furthermore, if the multiple amino acids are remote or nonadjacent, it is possible for the 

amino acids to match in an incorrect sequence order (as detailed in Figure 6).  
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Figure 6. Disarranged amino acid matches illustrated utilizing the homologous loops of two 

protein chains (Yellow and Cyan) with dots representing the alpha carbons of noteworthy 

amino acids. The Cyan Amino Acid and the Yellow Amino Acid 1 are truly homologous and 

calculated to be a structural match. However, the Cyan Amino Acid also structurally matches 

to Yellow Amino Acid 2 due to their close proximity. If the remaining amino acids in the 

loop are matched correctly, the Yellow Amino Acid 2 amino acid will be disarranged in the 

amino acid sequence. 

 

 

The second problem with this algorithm regards the handling of singular omega loops. As 

detailed in Figure 7, exclusively utilizing spatial coordinates in structurally divergent regions 

possessing random indels (amino acid insertions or deletions) prevents the determination of 

amino acid homology. Therefore, determining the SDSA is impossible in protein regions 

possessing divergent structural alignments.  
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Figure 7. The omega loop problem illustrated utilizing two homologous protein chains with 

dots representing the alpha carbons of noteworthy amino acids. Amino Acids 1, 2, 4, and 5 

for both proteins will be structurally matched. However, to which amino acid composing the 

omega loop (3A, 3B, 3C, 3D, or 3E) will Amino Acid 3 match? Assuming three of the four 

amino acids composing the omega loop were evolutionarily inserted (as opposed to the loop 

being deleted in the opposing protein), the original homologous amino acid can be any one of 

the loop amino acids. Conversely, utilizing only structural coordinates, the amino acid 

opposing the omega loop can be homologous to any of the amino acids composing the loop. 

 

 

The pairwise SDSA algorithm of the UniTS program proposed herein determines 

pairwise structural matches similarly to the aforementioned algorithm. UniTS considers two 

opposing amino acids to be structurally matched if the distance between the alpha carbon of 

each amino acid is less than three angstroms. The algorithm uses the distance of three 

angstroms because it is approximately the maximum distance that prevents the frequent 

occurrence of an amino acid matching multiple opposing amino acids. Note, however, that 

multiple and disarranged matches can still emerge and their occurrence must be resolved. 

Therefore, following the calculation of structural matches, the pairwise SDSA algorithm 

utilizes a sorting algorithm to resolve multiple and disarranged matches.   

The sorting algorithm orders a list of unordered amino acid positions by removing 

any position that obstructs the correct order. Positions are removed based upon the distance 
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from their ideal ordered index (Appendix A). Any position possessing multiple possible 

matches is input into the sorting algorithm as an element containing an “or” statement. 

However, the sorting algorithm continues to calculate an index distance for each possible 

match and removes them accordingly. Importantly, although the sorting algorithm can 

resolve multiple matches in which the opposing amino acids are not adjacent, it may be 

unable to resolve matches containing adjacent opposing amino acids. Therefore, if an amino 

acid position continues to match multiple opposing amino acids upon completion of the 

sorting algorithm, the algorithm will reject this position as a structural match. That is, UniTS 

is unable to structurally match this position based exclusively upon structural information. 

Instead, UniTS will resolve the match utilizing the same methodology it uses to align the 

remaining unmatched positions.   

 Although the sorting algorithm resolves matching multiple and disarranged residues, 

amino acids located in highly divergent regions of the structural alignment remain 

unmatched. A divergent region in a protein is an unmatched oligopeptide located between 

two structural matches and is composed of residues whose alpha carbons are greater than 

three angstroms from any opposing alpha carbon. As detailed in Figure 7, divergent regions 

of the structural alignment do not provide sufficient structural information to match 

homologous residues. Therefore, the UniTS program utilizes sequence information to align 

the amino acids of the divergent regions.  

 The pairwise SDSA algorithm utilizes the structurally matched amino acids to 

determine which divergent regions of each protein match. Divergent regions from opposing 

proteins that are located between the same structurally matched amino acids are matching 

divergent regions. The algorithm inputs the sequence from a divergent region of one protein 
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and the sequence from the matching divergent region of the other protein into the MUSCLE 

sequence alignment program and sequentially aligns (i.e., utilize sequence information) the 

regions (Edgar, 2004a, 2004b). This process is repeated for all divergent regions of both 

proteins. The algorithm inserts gaps as necessary to compliment any unmatched divergent 

regions. Upon completion, all amino acids will be matched (either to another amino acid or 

to a gap) by either the structural matching algorithm or the MUSCLE sequence alignment.   

 

The Grid 

Although deriving a pairwise alignment (conventional sequence, SDSA, or structure) 

is relatively straightforward, aligning multiple proteins introduces a fundamental difficulty in 

bioinformatics: How does one align multiple proteins at the same time? Many alignment 

programs (regardless of the specific type of information being aligned) solve this problem by 

subdividing the alignment into multiple pairwise-alignments. Inevitably, the program 

generates a multiple alignment by combining the results of these pairwise alignments (Gibas 

and Jambeck, 2001; Krane and Raymer, 2003). 

 Like many alignment programs, UniTS subdivides multiple alignments into numerous 

pairwise alignments. It subdivides and recombines pairwise alignments comparably to the 

Clustal algorithm (Gibas and Jambeck, 2001). Additionally, the way in which it dynamically 

modifies the results of each iteration in a data structure is analogous to the position specific 

scoring matrix (PSSM) in PSI-BLAST (Krane and Raymer, 2003). This PSSM equivalent 

data structure in the UniTS program, designated as the Grid, relates the amino acid positions 

of the overall multiple alignment (including gaps) to the amino acid positions of each input 

protein. Figure 8 is a visual representation of the Grid. UniTS designates the Grid to be an 
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abstract protein (i.e., the Grid protein) and utilizes it as the template protein to which the 

input proteins are aligned. The spatial coordinates of an alpha carbon at a certain position in 

the Grid protein are the mean of the alpha carbon spatial coordinates of any positions aligned 

to that Grid position. Note that because the aligned positions in the Grid are dynamic, UniTS 

continuously modifies the spatial coordinates of the Grid protein as it calculates new 

alignment iterations.  

 

Grid Position 1 2 3 4 5 

Protein A Position 1 2 - 3 4 

Protein B Position - 1 - 2 3 

Protein C Position 1 2 3 4 - 

Protein D Position 1 - 2 3 - 

 

Figure 8. Visual representation of the Grid. A gap is represented by a dash (“-“). The first 

amino acid in each of Proteins A, C, and D are aligned, while the first amino acid in Protein 

B aligns to the second amino acid in each of Proteins A and C. The spatial coordinates of the 

alpha carbon of the first Grid position are the mean of the coordinates of the first alpha 

carbon in each of Proteins A, C, and D. 
 

 

Residue Determination 

 In the aforementioned algorithm, the Grid protein is an abstract protein derived using 

the mean alpha carbon spatial coordinates of the input proteins. Deriving the mean of 

coordinates is possible because numbers are analog and capable of being averaged together. 

Conversely, divergent regions in the pairwise SDSA algorithm require the input of amino 

acid sequences into the MUSCLE program. Because the pairwise SDSA algorithm aligns the 

Grid protein to an input protein, the algorithm necessitates the sequence of the Grid protein. 

However, the digital or discrete nature of amino acid residues prevents the derivation of a 

mean sequence (e.g., how does one average a glycine and a phenylalanine?).  
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 The pairwise SDSA algorithm designates the amino acid identity for a Grid position 

as the most frequently occurring residue for that respective Grid position. However, if the 

residues aligned to a Grid position occur with equal frequency, deriving the Grid residue 

requires a more complex solution. Before UniTS inputs a divergent region of the Grid into 

MUSCLE, any Grid position without an established residue identity (because no residue is 

the most frequently occurring) receives the designation of an unknown amino acid (i.e., 

assigned an IUPAC abbreviation of “X” [Dixon et al., 1984]). For each Grid position 

featuring an unknown amino acid, UniTS substitutes the unknown amino acid with each of 

the possible amino acids available in the Grid position. MUSCLE then performs a sequence 

alignment for each of these substitutions. Note that only one amino acid is substituted for 

each sequence alignment; the other positions retain the unknown designation. For each of 

these alignments, MUSCLE outputs a scorefile containing the average BLOSUM62 score for 

each position aligned (Edgar, 2010; Gibas and Jambeck, 2001). Therefore, each of the 

possible amino acids for each unknown Grid position receives a BLOSUM62 score. The 

amino acid receiving the greatest BLOSUM62 score for a given Grid position is selected to 

represent that Grid position. Importantly, the amino acid positional designations are utilized 

exclusively for the MUSCLE alignment; furthermore, because the Grid is dynamic, the 

designations change with each iteration of the multiple SDSA algorithm.  

 

Multiple SDSA 

 Calculating the SDSA of multiple structures initiates by selecting one of the input 

proteins to be the initial template protein. Appendix B describes the methodology UniTS 

employs to select the template protein. UniTS inserts the selected template protein into the 



69 
 

Grid. Because this is initially the only protein in the Grid, the alpha carbon spatial 

coordinates assumed by the Grid protein will equal those of the template protein (i.e., the 

mean of a single number is that number). The UniTS program then performs a pairwise 

SDSA of the Grid protein (initially only the template protein) and another input protein. 

Thereafter, UniTS will insert the input protein into the Grid based upon this pairwise 

alignment. Because the Grid now contains two proteins, the alpha carbon spatial coordinates 

of the Grid protein are recalculated by averaging the coordinates of both proteins. UniTS 

performs another pairwise SDSA of the newly calculated Grid protein and another input 

protein. This process is repeated until all input proteins have been inserted into the Grid.  

 Because the spatial coordinates of the Grid protein are updated as each input protein 

is iteratively inserted, the alignment of the initial template protein (or any of the early 

subsequent proteins) to the final Grid protein may now be inaccurate. Therefore, after the 

insertion of all input proteins into the Grid, the UniTS program will individually remove each 

protein (beginning with the original template protein) from the Grid. Upon removal of a 

protein, UniTS recalculates the spatial coordinates of the Grid protein utilizing those proteins 

remaining in the Grid. The removed protein will then be realigned to the recalculated Grid 

protein (via the pairwise SDSA algorithm) and reinserted into the Grid. This removal and 

realignment calculation is repeated for each protein. A single iteration is delineated by the 

removal and realignment of all the proteins. The aforementioned iteration is repeated until 

the Grid stabilizes. That is, until all the amino acid positions of the input proteins remain in 

consistent Grid positions. Importantly, the UniTS program will not cease in the middle of an 

iteration. Once the first protein is removed and realigned, the iteration must be completed by 

removing and realigning the remaining subsequent proteins. Only after the removal and 
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realignment of the final protein will UniTS compare the current state of the Grid to its state at 

the conclusion of the previous iteration. If the positional state of the Grid in the current 

iteration equals that of the previous iteration, the iterations cease and UniTS achieves Grid 

positional stabilization. Upon stabilization, the final state of the Grid is the final SDSA.  

 

Multiple SDSA Quality Assessment: Mean  

Standard Deviation 

 Traditionally, structural alignment and superpositioning algorithms utilize the RMSD 

score to quantitatively assess the quality of two superimposed proteins (i.e., a pairwise 

alignment). Unfortunately, superimposing more than two proteins (i.e., a multiple alignment) 

prevents the calculation of the RMSD for quantitative analysis. Therefore, UniTS performs 

the quantitative assessment of a multiple protein superposition or structural alignment 

utilizing the mean standard deviation. Calculation of the mean standard deviation consists of 

averaging the individual standard deviations of each Grid position. UniTS calculates each 

individual standard deviation utilizing the spatial coordinates of all the alpha carbons 

constituting each Grid position. Specifically, it calculates the mean and standard deviation for 

the coordinates of each axis separately. The three mean coordinates (one from each axis) 

combine to establish the three-dimensional spatial coordinates representing the mean. UniTS 

then derives the standard deviation coordinates by adding the calculated standard deviation 

distance for each axis to each respective mean coordinate. The positional standard deviation 

equals the spatial distance between the mean coordinates and the standard deviation 

coordinates. 
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UniTS Results 

  To determine the accuracy of the UniTS program, I utilized UniTS to calculate the 

SDSA results of four protein families. The two PDB files comprising each protein family are 

illustrated in Table 8 (Berman et al., 2000). Species information for each PDB file (except 

those of the hemopexin repeats) can be found in Table 1b, while protein functional 

information can be found in the text subsequent of Table 1b. The hemopexin repeats are from 

the rabbit species of Oryctolagus cuniculus. Each repeat structurally composes a propeller-

shaped region of hemopexin. Hemopexin recovers unbound heme to prevent the oxidative 

damage it causes to tissues. 

 

Table 8. PDB designations associated with each protein family 

Protein family First protein PDB Second protein PDB 

Isocitrate Dehydrogenase 1T09
a
 1XGV

a
 

Pectate Lyase 1PLU 2BSP 

Polygalacturonase 1CZF
a
 1HG8 

Hemopexin Repeats 1QHU
b
 1QHU

c
 

a
Chain A of the protein. 

b
Residues 56-134. 

c
Residues 263-353. 

 

 

Because UniTS requires superimposed input proteins, I utilized the Theseus structural 

superpositioning program to superimpose the two proteins for each family (Theobald and 

Wuttke, 2006a, 2006b, 2008). I then compared the SDSAs, quality assessment scores, or 

generation parameters derived by UniTS to those results generated by the Theseus, DALI, 
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and Chimera programs (Holm and Rosenstrom, 2010; Pettersen et al., 2004; Theobald and 

Wuttke, 2006b). The subsequent results demonstrate that UniTS is currently the most capable 

and accurate algorithm for producing a SDSA if superimposed protein structures are 

available. 

 Because UniTS requires no input parameters (other than PDB files), I executed all 

comparison programs utilizing their default parameters. Additionally, although UniTS is 

capable of calculating a SDSA for multiple input protein structures (i.e., those involving 

more than two proteins), conducted comparisons utilize only pairwise alignments to reduce 

the complexity of manual analysis. Furthermore, all RMSD distances calculated herein 

incorporate only the alpha carbon atoms. Importantly, UniTS, Theseus, and DALI all 

perform distinctive primary functions. Therefore, UniTS does not replace these or other 

superpositioning and structural alignment programs; instead, UniTS supplements them by 

modifying their results. Finally, I performed no comparison of UniTS to a residue profile-

based SDSA because UniTS requires superimposed protein structures. This requirement 

prevents the utilization of UniTS to solve the protein folding problem, thus a comparison is 

unwarranted.  

 

UniTS Compared to Theseus 

 I performed the first UniTS comparison utilizing data output from the Theseus 

structural superpositioning program against the output data as subsequently refined by UniTS 

(Theobald and Wuttke, 2006b). Importantly, Theseus does not generate a resultant sequence 

alignment; instead, Theseus requires the input of a preliminary sequence alignment. 

Therefore, the conventional sequence alignment program MUSCLE derived the input 
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preliminary sequence alignment for all utilizations of Theseus presented herein (Edgar, 

2004a, 2004b). Upon input of the MUSCLE sequence alignment, Theseus superimposed the 

input proteins and calculated the classical RMSD utilizing the amino acid matches 

established by the MUSCLE alignment. I then input the superpositioned protein structures 

into UniTS to calculate a comparison RMSD and sequence alignment for each protein 

family.  

 The RMSD calculation is utilized to measure spatial similarity and requires the 

establishment of amino acid matching derived by various forms of homologous alignment. 

UniTS utilizes protein structure to derive a SDSA while Theseus utilizes a conventional 

sequence-based MUSCLE alignment; therefore, the amino acid matches established utilizing 

the SDSA of UniTS will more accurately represent the spatial homology of the two proteins. 

Table 9 illustrates a significantly decreased resultant RMSD calculated by the improved 

amino acid matches established by the UniTS SDSA.  

 

Table 9. Original RMSD reported by Theseus compared to the UniTS RMSD calculated from 

the proteins superimposed by Theseus for each protein family 

 

Protein family Theseus RMSD UniTS RMSD 

Isocitrate Dehydrogenase 15.23 Å 7.00 Å 

Pectate Lyase 11.85 Å 6.19 Å 

Polygalacturonase 1.99 Å 1.57 Å 

Hemopexin Repeats 3.22 Å 1.74 Å 
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UniTS Compared to DALI 

 I next compared UniTS to the DALI structural alignment program (Holm and 

Rosenstrom, 2010). In addition to calculating the SDSA and RMSD for each protein family 

as detailed in the previous section, I also calculated the number of structurally matched 

residues UniTS utilized for these calculations. As displayed in Table 10, for three of the four 

protein families, UniTS utilized more residue matches than DALI when calculating the 

sequence alignment and RMSD (even the shorter hemopexin chains utilized the same 

percentage of matched residues for each methodology). The increased number of amino acid 

matches permits UniTS to produce a more complete and comprehensive SDSA and thus a 

more accurate RMSD calculation.  

 

Table 10. The number of residue matches of DALI compared to the UniTS 

Protein family Shortest chain 

length
a
 

DALI res 

matches
b
 

UniTS res 

matches
b
 

DALI RMSD 

IDH
c
 414 299 (72%) 362 (87%) 2.57 Å 

Pectate Lyase 353 261 (74%) 307 (87%) 1.59 Å 

Polygalacturonase 335 325 (97%) 331 (99%) 1.13 Å 

HPX Rep
d
 79 70 (89%) 70 (89%) 1.53 Å 

 

a
Least number of amino acids comprising the two polypeptide chains representing each 

protein family. 
b
Number of amino acid residue matches. Parentheses contain the percentage of matched 

residues utilized out of the total number of amino acids.  
c
Isocitrate Dehydrogenase. 

d
Hemopexin Repeats. 
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Notably, the RMSD returned from DALI is less than that calculated by UniTS. 

Although appearing favorable to DALI, this discrepancy is a product of the fewer matched 

residues DALI utilizes to calculate the RMSD. Specifically, the RMSD calculated by DALI 

is derived utilizing exclusively structurally conserved residues (i.e., those residue matches 

containing spatially proximate amino acids), thus resulting in a lower RMSD value (Holm 

and Sander, 1993). 

 

UniTS Compared to Chimera 

 I performed the final comparison against the Match=>Align function of the Chimera 

protein structure visualization and modeling program (Pettersen et al., 2004). Although 

relatively unsophisticated, the Match=>Align function is a SDSA algorithm similar to 

UniTS. After superimposing each protein family utilizing Theseus, I derived two SDSAs for 

each superimposed family utilizing UniTS and Chimera respectively (Appendix C).  

 To quantitatively determine which SDSA represents the more accurate evolutionary 

homology for each family, I calculated the log-odds score of each SDSA utilizing a similar 

methodology to that of a sequence alignment algorithm. Specifically, the log-odds score for 

each SDSA represents the significance of the similarity between the composing polypeptide 

sequences given the amino acids matching therein. That is, it represents the significance of a 

nonrandom homologous relationship existing, with a greater score indicating a more 

significant, nonrandom alignment (Gibas and Jambeck, 2001). I calculated the log-odds score 

utilizing the Gonnet substitution matrix to score individual amino acid matches (Gonnet et 

al., 1992). The summation of these individual scores was then calculated to represent the 

sequence accuracy of the alignment.  
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 I quantitatively compared the SDSAs for each protein family twice: The first 

comparison employed a gap opening penalty of -10.0 and a gap extension penalty of -0.1 

because these constitute the standard default penalties in many sequence alignment programs 

(Tamura et al., 2011). However, the second comparison featured gap penalties of -5.0 and 

-0.1 respectively. The decreased gap opening penalty compensates for the increased number 

of gaps that will inevitably form when generating a SDSA as compared to a standard 

sequence alignment.  

Tables 11 and 12 contain the log-odds scores derived by both UniTS and the 

Match=>Align function of Chimera for each protein family. The polypeptide sequences 

contained within the SDSAs generated by UniTS demonstrate superior significance of 

evolutionary homology relative to those generated utilizing the Match=>Align function of 

Chimera. The single exception to the aforementioned results is the log-odds score of the 

hemopexin repeats derived utilizing the -10.0 gap opening penalty. This inconsistent result 

can likely be attributed to the relatively short length of the repeats (see Table 10 for a length 

comparison). The short length of the hemopexin repeats prevents an adequate number of 

amino acid matches that are required to counterweigh the large gap opening penalty. This 

explanation is reinforced by UniTS producing the superior SDSA when utilizing the lesser 

-5.0 gap opening penalty. 
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Table 11. Comparison of the UniTS and Chimera alignment scores utilizing a gap opening 

penalty of -10 

 

Protein family UniTS Alignment Score Chimera Alignment Score 

Isocitrate Dehydrogenase -126.7 -437.9 

Pectate Lyase 58.0 -108.8 

Polygalacturonase 677.2 643.3 

Hemopexin Repeats 14.6 16.0 

 

 

Table 12. Comparison of the UniTS and Chimera alignment scores utilizing a gap opening 

penalty of -5 

 

Protein family UniTS Alignment Score Chimera Alignment Score 

Isocitrate Dehydrogenase 58.3 -192.9 

Pectate Lyase 203.0 71.2 

Polygalacturonase 742.2 713.3 

Hemopexin Repeats 64.6 56.0 

 

 

Multiple PL/PG SDSA 

 To demonstrate the complete capability of UniTS, I calculated a multiple SDSA 

(Figure 9) and quantitatively assessed the structural superpositioning of four homologous 

proteins (Figure 10). The quad structural superpositioning was performed utilizing Theseus 

and consisted of two pectate lyase (PL) and two polygalacturonase (PG) proteins (see Table 8 

for specific PDB designations). The mean standard deviation for the quad superposition is 

3.36 angstroms.  
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Figure 9. PL/PG multiple SDSA derived utilizing UniTS.  
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Figure 10. Graphical representation of the PL/PG protein superposition in both atomic and 

ribbon formats. Protein superpositioning was derived by Theseus and graphical imaging was 

performed utilizing Swiss-PdbViewer (Guex and Peitsch, 1997). 

 

 

 In addition to calculating the total mean standard deviation for the entirety of the four 

protein structures superpositioned, UniTS also exhibits the capability of outputting the 

standard deviation for each individual amino acid position (i.e., the Grid position as 

described in Chapter III, section “UniTS Algorithm”, subsection “The Grid”). Furthermore, 

one can generate a graph correlating these individual standard deviations to their respective 

amino acid positions (e.g., the graph in Figure 11 demonstrates this capability utilizing the 

aforementioned quad superposition). This graph permits intelligible differentiation of those 

regions of the protein superposition that are structurally conserved from those that are 

nonconserved.   

 

(a) 
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Figure 11. Standard deviation for each Grid position of the PL/PG protein alignment. 
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Discussion of UniTS Results 

 Although only the Match=>Align function of the Chimera program directly calculates 

a sequence alignment utilizing spatial information from superimposed protein structures, 

other algorithms (e.g., inverse folding sequence alignments and structural alignments) are 

capable of performing this function indirectly. However, the aforementioned results indicate 

that UniTS is the most capable SDSA program to date. Furthermore, these results 

demonstrate the capability of UniTS to refine the sequence alignment input into a 

superpositioning program and utilize this refined alignment to calculate improved structural 

quality assessment scores. Importantly, because these quality assessment scores are 

consistently derived, they also provide the capability to compare different superpositioning 

and structural alignment algorithms.  

 Most significantly, implementation of the UniTS program requires a more formalized 

analysis of sequence alignments derived utilizing sequence information versus those derived 

utilizing structural information. That is, does amino acid sequence or protein structure 

primarily influence the evolutionary homology of proteins? Although the solution to this 

question is extraordinarily complex, the problem is reconcilable in many situations. 

However, consider the following question: Provided the results of a conventional sequence 

alignment and dissimilar results of an SDSA derived utilizing the same input proteins, which 

alignment most accurately represents the homology of the proteins? Unfortunately, this 

complex but reconcilable solution must now be simplistically reduced to two incompatible 

options. This inevitable problem substantiated by the UniTS program necessitates further 

research into protein sequential/structural correlation and robustness. 
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CHAPTER IV 

PUSH: PHYLOGENETIC TREE USING STRUCTURAL HOMOLOGY 

 

 Conventional dendrogram generation utilizes protein sequences and the established 

molecular clock hypothesis to generate results. However, because protein structure is more 

evolutionarily conserved than its corresponding amino acid sequence (Marti-Renom et al., 

2000), a dendrogram generated utilizing the structure of the input proteins will derive 

superior and more complete evolutionary results. Unfortunately, the conventional molecular 

clock hypothesis fails to establish the required correlation between structural divergence and 

evolutionary distance. Therefore, I developed the proposed structural molecular clock 

hypothesis to establish this correlation with biological accuracy. To implement this novel 

hypothesis, I developed the unique Phylogenetic Tree Using Structural Homology (PUSH) 

program that is capable of generating a dendrogram utilizing protein structures instead of 

conventional sequences. It generates a dendrogram utilizing the proposed structural 

molecular clock hypothesis to derive a probability matrix. The dendrogram is then 

graphically displayed utilizing a hierarchical clustering algorithm.  
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Structural Molecular Clock Hypothesis 

 

The Application of the Sequence-based Molecular  

Clock Hypothesis to Protein Structure 

 

 A molecular clock establishes a correlation between the magnitude of evolutionary 

modifications on a genome, gene, or protein and the quantity of time necessary for these 

modifications to evolve (Krane and Raymer, 2003). The time required for evolution is 

linearly expressed as the evolutionary distance (de). Apropos of protein sequences, the 

established sequence-based molecular clock hypothesis (MCH) assumes that random amino 

acid mutations (Rm), including insertions and deletions, accumulate at a consistent rate 

throughout time (Krane and Raymer, 2003). Specifically, although individual residues 

possess distinct mutation rates, the mean rate at which mutations manifest over time remains 

constant. This assumption allows the direct correlation relating de and sequential Rm. Rm is 

derived by the residue differentiation portrayed in the sequences of multiple homologous 

proteins. Therefore, the correlation relating de and Rm, and calculating Rm using sequence 

divergence, establishes a correlation between amino acid sequence divergence and de. That 

is, as the sequences of two proteins become more divergent, the de between the two proteins 

increases (Krane & Raymer, 2003). 

Although the established MCH successfully calculates de from input amino acid 

sequence data, the theoretical foundation of this hypothesis fails upon inputting protein 

structure data. To calculate de utilizing protein structure, structural dendrogram generation 

algorithms (e.g., DALI [Holm & Sander, 1993]) extend the conventional sequence-based 

MCH to a structural equivalent based upon the spatial distance between the atomic 

coordinates of multiple protein structures (Deeds, 2007). This logical extension of the MCH 
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is presumably correct because sequence mutations theoretically invoke structural 

transformation, thus establishing a correlation between structural divergence and Rm. 

Therefore, as the total spatial divergence of two proteins increases, de between the two 

proteins hypothetically increases proportionally.  

 Because the protein structures of homologous proteins are more conserved than their 

respective sequences (Marti-Renom, et al., 2000), a frequent problem experienced upon 

utilizing protein structural information to calculate de is the negligible spatial divergence of 

sequentially conserved regions (Deeds, 2007). Therefore, the spatial dissimilarity in 

sequentially nonconserved regions of homologous proteins most significantly contributes to 

de calculations. Unfortunately, the effect amino acid mutations in sequentially nonconserved 

regions assert on protein structure is unpredictable. Nonconserved regions are capable of 

significant spatial movements resulting from a single amino acid mutation (Deeds, 2007; 

Glasner, 2007). These considerable spatial displacements prevent the correlation of structural 

change to sequential Rm because they generate too many variables and possibilities. For 

example, consider a single mutation substantially spatially relocating a nonconserved 

peripheral loop. Sequentially, the single mutation (correctly) will derive a relatively short de; 

however, structurally, the substantial spatial relocation of the loop will generate a (incorrect) 

lengthy de.  

 In addition to the inconsistent calculation of de in mobile protein loops, structural 

information prevents the correct calculation of de for oligopeptide indel regions. It is possible 

for an oligopeptide indel to occur in a single evolutionary event as a solitary lengthy indel, 

thus producing a short de; however, the possibility also exists that this oligopeptide indel 

develops by multiple indels, each consisting of a single amino acid. The latter possibility will 
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derive a lengthy de because it requires numerous evolutionary events. Although resolving this 

discrepancy is possible, the resolution requires the utilization of sequence information rather 

than structural information.  

 The absence of significant spatial divergence between the sequentially conserved 

regions of homologous proteins and the inability of nonconserved regions to consistently 

predict Rm prevent the structural implementation of the established MCH. Therefore, 

calculating de utilizing protein structural information requires an alternative hypothesis. The 

structure-based MCH proposed herein resolves the aforementioned difficulties by employing 

a protein structural and functional evolutionary model. 

 

Proposal of a New Evolutionary Mechanism  

for Use as a Molecular Clock 

 The evolution of a protein can be monitored by observing the change in sequence, 

structure, or function of the protein. The rate of evolution is derived by establishing a 

molecular clock to calculate de; the established sequence-based MCH calculates de utilizing 

Rm as a molecular clock. Therefore, limitless types of quantitative biological information can 

be utilized to calculate de provided this information can be correlated to Rm. Unfortunately, 

an imperfect correlation decreases the accuracy of the molecular clock.  

 As illustrated in Figure 12, the central dogma of molecular biology ensures the linear 

transference of the correlation between protein sequence, structure, and function data types 

(Krane & Raymer, 2003). That is, establishing a correlation from protein structural 

information to sequence information is required before the calculation of de can proceed.
9
 

                                                             
9
 Conventionally, spatial coordinates or dihedral angles represent protein structural 

information. Therefore, the amino acid sequence extracted from structural information is 
likewise considered “sequence information”. The aforementioned approach is simply an 
alternate methodology for obtaining the amino acid sequence.  
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Additionally, a correlation from protein functional information to structural information is 

required prior to correlating this structure information to sequence information. Therefore, 

the established MCH will calculate a more accurate de utilizing sequence information rather 

than structural information because it requires one fewer correlation.  

 

 

Figure 12. The central dogma of molecular biology 

 

 While the molecular clock requires amino acid Rm to calculate de, the results derived 

utilizing structural information will be inferior to those derived utilizing sequence 

information. Fortunately, a second evolutionary mechanism influences protein structural 

evolution: selection pressure. Both random amino acid mutations and evolutionary selection 

pressure (Ps) influence the evolution of protein structure. Random sequence mutations 

continuously attempt to transform the structure of a protein, while Ps determines which of 

these mutations remain and which mutations are removed from the population.  



87 
 

Ps directly influences the function of a protein. Because the promoted function (i.e., the 

function selected for by Ps) influences the structure of the protein, Ps indirectly influences the 

structure of the protein. Furthermore, Ps also indirectly influences protein sequence because 

structural constraints influence the sequence of a protein. However, the influence of Ps on the 

structure of a protein is more direct than the influence of Ps on the sequence (as illustrated by 

the linear trajectory of influence in Figure 12). Therefore, a protein structure-based molecular 

clock that utilizes the evolutionary mechanism of Ps to measure de will be superior to one that 

utilizes Rm.   

  

Protein Structural and Function Evolution 

 The correlation of the structural divergence of homologous proteins and the 

magnitude of Ps exhibited on them requires knowledge of the evolution of protein structure 

and function. Research suggests that most novel families of proteins originate from 

pseudogenes or cryptic genes (i.e., genes that exclusively express under specific atypical 

conditions; sometimes lying dormant for generations). However, the origination of a novel 

class of proteins is rare because pseudogenes and cryptic genes accumulate mutations in the 

absence of Ps. Therefore, the respective proteins expressed from these genes will likely be 

nonfunctional (Glasner, 2007). 

 Although the creation of novel protein families is rare, creating a protein within a 

class is more common. The evolution of function within a class of proteins originates from 

promiscuous intermediate proteins. A promiscuous protein is an enzyme whose active site 

catalyzes one or more “promiscuous” reactions in addition to the primary reaction. The 

catalytic activity of these promiscuous reactions occurs on several orders of magnitude less 
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than the primary reaction. Additionally, if Ps promotes (i.e., selects in favor of) a 

promiscuous function in a promiscuous intermediate enzyme, the gene coding the 

promiscuous intermediate begins to evolve before gene duplication occurs. Once the 

magnitude of catalytic activity equalizes between the primary and promiscuous reactions, Ps 

manifests gene duplication because neither reaction can catalyze at an optimal rate unless 

two distinct proteins are generated (Glasner, 2007). 

 Additionally, research also suggests that an enzymatic active site evolves by 

incrementally changing a single elementary reaction in a multiple-step reaction mechanism. 

For example, if a catalytic reaction mechanism requires five elementary reactions, the active 

site structurally evolves to alter only a single elementary reaction. This minor structural 

alteration produces an evolved reaction mechanism that remains similar to the original 

reaction. Changing only elementary reactions is necessary to allow the protein to perform 

both the primary reaction and the promiscuous reaction. Furthermore, theoretically, this 

allows the construction of a dendrogram based upon protein functional evolution by 

traversing the changes in the elementary reactions over time (Glasner, 2007). 

 

Correlating Protein Structural Divergence  

and Evolutionary Selection Pressure 

 The magnitude of Ps exhibited on a protein influences the structure and function of 

the protein. Realistically, the magnitude of Ps fluctuates at any instant in time  
   

  
  based 

upon several variables including adaptability of the organism and the rate of environmental 

change. However, the first assumption of the proposed structure-based MCH is that the 

changes in Ps will average over a length of time  
   

  
  into a consistent and gradual 
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magnitude of Ps (i.e., 
   

  
   ). Even the increased deviation in Ps exhibited under 

conditions of punctuated equilibrium is averaged over time (Eldredge and Gould, 1972). This 

assumption is similar to that made by the conventional MCH regarding Rm (i.e., while Rm at 

any instant in time may vary, it will average to produce a consistent Rm) (Krane and Raymer, 

2003). 

 Assuming Ps is gradual and consistent over ∆t, the functional change (∆F) exhibited 

by the protein must also be consistent over ∆t  
  

  
 

  

  
  . This direct correlation exists 

because all proteins input into the proposed structural MCH must be extant proteins 

(otherwise data on the structure would be nonexistent). Any protein whose function is unable 

to adapt to Ps  
  

  
 

  

  
  will inevitably become extinct (i.e., removed from the population); 

therefore, an extant protein must have 
  

  
 

  

  
 to prevent extinction.   

 The general function of a protein determines the structural component of the protein 

that correlates with the function. In a structural protein the entire structure correlates with 

function because the structure of the protein is its function. Unlike structural proteins, 

however, in enzymes the active site correlates with function because it is the location at 

which the function is directly determined and produced. Function evolves by changing single 

elementary reactions in an enzymatic reaction mechanism (Glasner, 2007). To alter an 

elementary reaction, a corresponding structural transformation (caused directly or indirectly) 

in the active site is required. Therefore, the number of elementary reactions that change is 

directly proportional to the magnitude of structural change in the active site.  

 



90 
 

A Novel Structural Molecular Clock Hypothesis 

 The aforementioned section illustrates a correlation between the change in protein 

structure and Ps that can ultimately be utilized to calculate the relative lengths of de for a 

system of homologous proteins. Specifically, the spatial divergence of the enzymatic active 

site is directly correlated with the length of de. The active site and other conserved regions of 

homologous proteins lack structural divergence when compared to nonconserved regions of a 

protein. Therefore, any divergence in the active site that illustrates functional change will be 

eclipsed by the spatial alterations of peripheral loops and other nonconserved regions. This 

suggests that including nonconserved regions in the spatial divergence calculations will 

actually decrease the accuracy of de.  

 Unfortunately, the structural conservation of the active site results in insufficient 

structural divergence if only the active site is used to measure de (Deeds, 2007). Considering 

the level of error involved in structural determination and computation, this minimal 

structural divergence is likely inadequate for calculating de. Importantly, active site 

conservation only occurs if Ps promotes the retention of the primary function of the enzyme. 

However, if Ps promotes the expression of a promiscuous function, the structural divergence 

of the active site increases. Fortunately, the second assumption of the proposed structure-

based MCH is that input “homologous” enzymes possess folds exhibiting different or varying 

levels of catalytic functions. Therefore, because the input enzymes possess significant ∆F, 

the structure of the enzymatic active site will possess enough structural divergence to 

adequately calculate de.  

 Practical utilization of the proposed MCH dictates that it must possess a method of 

locating the enzymatic active site. Conventionally, the active site is located by finding the 
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sequentially conserved regions of the enzyme. This not only locates the active site, but also 

any region of the protein upon which Ps is acting. Unfortunately, the second assumption of 

the proposed MCH prevents the utilization of the aforementioned method because no region 

of the input enzymes can be sequentially conserved if the enzymes posses significant ∆F. To 

change the function of an enzyme, the active site must change in one of three ways: 1) A 

nonconserved peripheral region of the enzyme can mutate, thus indirectly changing the active 

site; 2) A mutation in the active site on an amino acid not directly involved in the catalytic 

reaction, thus causing a structural change in the active site; 3) A mutation in an amino acid 

directly involved in the reaction
10

 (Glasner, 2007). Because mutations possess an equal 

probability of occurring in any region of the protein (before the influence of Ps), and because 

the active site can be structurally changed by a sequence mutation occurring in any region of 

the enzyme, no region of an enzyme is sequentially conserved given ∆F.  

 Although the active site of an enzyme is not sequentially conserved, it remains 

structurally conserved. Because ∆F occurs by changing single elementary reactions, the 

structure of the active site will only change in minute increments as the enzyme evolves. A 

lengthy de would be required for the active site to be structurally nonconserved. Importantly, 

although the structure of the active site is relatively conserved, it is not completely conserved 

(such as if Ps promoted the primary enzymatic function).  

 The active site is not the exclusive structurally conserved region in the enzyme. 

Fortunately, although all regions of an enzyme featuring ∆F are sequentially nonconserved, 

all structurally conserved regions of the enzyme are influenced by Ps. Therefore, all 

structurally conserved regions of an enzyme (not only the active site) can correlate with Ps.  
                                                             
10

 The latter mutation has a more profound effect on the enzymatic function compared to the 
former two. However, the probability of a mutation occurring on an amino acid directly 
involved in catalysis is low because these residues are few in number and this mutation may 
prevent the promiscuous reaction from occurring. 
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Structural Molecular Clock Hypothesis Discussion 

 The structural divergence of homologous proteins should not be used to measure the 

length of the evolutionary distance between proteins utilizing the conventional molecular 

clock hypothesis. Correlating changes in protein structure to the rate of amino acid mutations 

required by the established molecular clock is discouraged because nonconserved regions 

exhibit unpredictable spatial movements while conserved regions demonstrate minimal 

structural divergence if enzymatic function remains static. Therefore, the novel molecular 

clock hypothesis proposed herein is required to correlate protein structural divergence with 

the length of evolutionary distance. 

 When selective pressure promotes functional change, any enzymatic region upon 

which the selective pressure influences must be determined utilizing structural conservation 

rather than sequence conservation. The spatial divergence of these structurally conserved 

regions correlates with the change in function over time exhibited by the enzyme. If the 

selection pressure influencing enzymatic function is applied gradually and consistently, the 

change in function must also be consistent. Therefore, the spatial divergence of structurally 

conserved regions of homologous proteins directly correlates to the length of the 

evolutionary distance between these proteins.   
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PUSH Algorithm 

 

Derivation of the Evolutionary Distance Matrix 

 As stated in the aforementioned structural molecular clock hypothesis, the amount of 

structural divergence exhibited between two proteins is directly proportional to the de 

between them. The PUSH algorithm utilizes superimposed input protein structures to 

compare the structural divergence of the proteins. The algorithm performs a pairwise 

comparison of all combinations of input proteins. The de results of these pairwise 

comparisons are placed in a     matrix, where n is the number of proteins input into the 

algorithm. The de between two proteins i and j is equal to the mean distance (di,j) between 

their homologous atoms. Importantly, the magnitude of de is equal to that of di,j; however, di,j 

is measured in angstroms, while de is measured as an arbitrary unit of time. If a time 

calibration scale is known, each de can be converted into the appropriate unit of time. 

Although the distance lengths will never change relative to each other, converting the unit of 

time will modify the magnitude of each de.  

 Conducting an evolutionary comparison of proteins structures by calculating the 

mean standard deviation requires the determination of homologous atoms. The PUSH 

algorithm utilizes an input sequence alignment to determine homologous amino acid 

matching. Although this sequence alignment can originate from any program, the 

methodology proposed herein requires the alignment be structure-based such as one 

generated utilizing UniTS. As outlined by the proposed structural molecular clock 

hypothesis, only those homologous amino acids located within structurally conserved regions 

of the proteins are considered in the evolutionary distance calculation. Specifically, each 
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amino acid is spatially represented by its associated alpha carbon, amine nitrogen, and 

carboxyl carbon. The spatial distances between the three homologous atoms for each amino 

acid are averaged into a mean distance (    ). Homologous amino acids are located within a 

structurally conserved region of the protein if        angstroms. Furthermore, any 

unmatched amino acids located within these conserved regions are ignored. To generate the 

de matrix, PUSH calculates di,j for each pairwise structural comparison by averaging all the 

individual      quantities located within structurally conserved regions.  

 

Hierarchical Clustering 

 Hierarchical clustering is the process of graphing a dendrogram based upon the 

quantities of the calculated de matrix. To complete the hierarchical clustering process, two 

algorithms are required: one algorithm will derive the relative orientation of the nodes, where 

each internal node represents a speciation event and each terminal node represents the final 

representation of an OTU (whether extinct or extant); the other algorithm will calculate the 

relative de between each node (both internal and terminal). The node orientation algorithm 

begins with the assumption that each internal node comprises all OTUs to whose terminal 

nodes they connect (Figure 13).  
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Figure 13. Node composition; each letter represents an OTU. 

 

Note that although Figure 13 independently labels the root node, the root node is considered 

an internal node. The hierarchical clustering algorithm is initiated at the root node and works 

towards the future terminal nodes, generating dichotomous child nodes for each internal node 

present. For all the OTUs contained within an internal node, the de between each OTU pair is 

known and located in the de matrix. By default, the pair of OTUs possessing the maximum de 

will be moved to opposite dichotomous child nodes. That is, one OTU will move to the upper 

child node and the other will move to the lower child node
11

; these initially moved OTUs are 

labeled upper child OTU and lower child OTU respectively. Any additional OTUs 

contained within the original node (i.e., the “parent node”) are placed in one of the child 

                                                             
11

 The terms “upper” and “lower” are derived assuming a horizontally oriented dendrogram 
(such as the one in Figure 13). For each internal node, dichotomous child nodes are 
generated. Conventionally, these are oriented vertically, with one being the relative “upper 
node” and the other being the relative “lower node”.  
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nodes. Each additional OTU is moved to the child node possessing the lesser de. That is, if de 

between the additional child OTU and the upper child OTU is less than that between the 

additional child OTU and the lower child OTU, then the additional OTU is moved to the 

upper child node. Conversely, the additional OTU is moved to the lower child node if de 

between the additional child OTU and the lower child OTU is the lesser quantity. This 

process of node generation continues until only terminal nodes (i.e., those possessing only 

one OTU) remain and the complete orientation of the nodes composing the dendrogram is 

established.     

 The second hierarchical clustering algorithm calculates de between all connected 

nodes in the dendrogram. Ideally, the quantities within the de matrix should consistently 

calculate the de between all dendrogram nodes. Unfortunately, realistic protein structural 

divergence produces de quantities in the de matrix that do not derive a consistent de between 

two nodes. Therefore, it is impossible to generate a perfect dendrogram whose de lengths 

correspond exactly to those contained within the matrix. If matrix quantities inconsistently 

represent a de length on the dendrogram, the discrepancy is commonly solved by utilizing the 

mean de of the inconsistent lengths. Although the calculation direction is reversed, PUSH 

calculates the mean derivation of each de similarly to that of the UPGMA algorithm (Ewens 

and Grant, 2005; Isaev, 2006; Krane and Raymer, 2003). Specifically, PUSH resolves 

inconsistent de lengths by averaging the de of each combination of upper and lower child 

nodes respectively for all internal nodes. Note that any internal node possessing terminal 

child nodes utilizes the de from the distance matrix because it is the only de to average.  
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PUSH Results 

 

 I generated three dendrograms to examine the proficiency of the structure-based 

dendrograms generated by the PUSH program. These dendrograms are modeled utilizing the 

three protein assemblages superimposed by SABLE to examine its multiple alignment 

capabilities (see Chapter II, section “SABLE Results”, subsection “Multiple Alignment 

Comparison” for more details on each protein assemblage). PUSH requires superimposed 

protein structures and a corresponding sequence alignment as input; therefore, each 

assemblage input into PUSH was structurally superimposed utilizing SABLE and the 

resultant SDSA was derived utilizing UniTS.  

Upon completion of the aforementioned PUSH dendrograms, I input the same 

proteins into the conventional amino acid sequence-based ML dendrogram generator from 

the MEGA5 evolutionary analysis program to generate corresponding comparison 

dendrograms (Tamura et al., 2011). Each comparison ML dendrogram was generated by 

deleting any sequence gaps and utilizing the Jones-Taylor-Thornton (JTT) substitution model 

(Jones et al., 1992). The input sequence alignment required for each ML dendrogram was 

derived utilizing the MUSCLE sequence alignment program (Edgar, 2004a, 2004b). 

 

Quad PG-PL Dendrograms 

 The initial two of the aforementioned dendrograms each consists of two 

polygalacturonase (PG) proteins (PDB designations: 1CZF and 1HG8) and two pectate lyase 

(PL) proteins (PDB designations: 1PLU and 2BSP). One dendrogram was generated utilizing 

the monomeric version of 1CZF and the other was generated utilizing the homodimeric 



98 
 

version. Because two proteins belong to the PG family and the other two belong to the PL 

family, the shape of the ideal dendrogram should reflect this familial divergence. That is, one 

internal node should evolutionarily relate the two PG proteins while another internal node 

should relate the two PL proteins. Figures 14 and 15 illustrate the dendrograms generated 

utilizing the conventional sequence-based ML algorithm, while Figures 16 and 17 illustrate 

the complimentary dendrograms generated utilizing PUSH.  

 

 

Figure 14. Dendrogram of two monomeric PG (1CZF and 1HG8) and two monomeric PL 

(1PLU and 2BSP) proteins generated utilizing a sequence-based ML algorithm. Dendrogram 

image was generated utilizing the MEGA5 evolutionary analysis program (Tamura et al., 

2011). 

 

 

 

Figure 15. Dendrogram of one monomeric PG (1HG8), one homodimeric PG (1CZF), and 

two monomeric PL (1PLU and 2BSP) proteins generated utilizing a sequence-based ML 

algorithm. Dendrogram image was generated utilizing the MEGA5 evolutionary analysis 

program (Tamura et al., 2011). 
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Figure 16. Dendrogram of two monomeric PG (1CZF and 1HG8) and two monomeric PL 

(1PLU and 2BSP) proteins generated utilizing the structure-based PUSH algorithm. 

Dendrogram image was generated utilizing the PUSH program. 
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Figure 17. Dendrogram of one monomeric PG (1HG8), one homodimeric PG (1CZF), and 

two monomeric PL (1PLU and 2BSP) proteins generated utilizing the structure-based PUSH 

algorithm. Dendrogram image was generated utilizing the PUSH program. 

 

 

Derivation of a dendrogram representing the “true” evolutionary relationship of the 

aforementioned proteins is simple because only four proteins are utilized to generate each 

dendrogram and the evolutionary relationship exhibited from the four proteins is 

straightforward. The simplicity of these dendrograms indicates that those generated utilizing 
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the conventional ML algorithm are likely a correct representation of the “true” dendrogram. 

Therefore, because the PUSH dendrograms in Figures 16 and 17 are identical to those 

generated utilizing the conventional ML algorithm in Figures 14 and 15, the PUSH 

dendrograms are also likely the correct representation of the “true” dendrogram. Importantly, 

when generating simple dendrograms, the correct PUSH dendrogram is likely identical to 

that produced by a conventional sequence-based ML algorithm. 

 

Penta-PG Dendrograms 

 The final dendrogram comparison was generated utilizing five monomeric PG 

proteins. Although all proteins included in these comparative dendrograms correspond to a 

single protein family, structural evolutionary distinctions exist. Figure 5 illustrates that the 

protein structures of 1CZF and 2IQ7 differentiate from those of the unpublished 1ZEU and 

1ZFW proteins. Furthermore, Figure 5 suggests that the unpublished (and unofficially 

designated) TOMA protein is a structural intermediate to the two PG groups. The 

dendrograms generated by both methodologies (Figures 18 and 19) confirm the close 

homology of the 1CZF protein to the 2IQ7 protein, as well as the close homology of the 

1ZEU protein to the 1ZFW protein. The dendrograms also verify the structural differentiation 

illustrated in Figure 5 of the two homologous pairs (i.e., the structural divergence of the 

1CZF/2IQ7 pair and the 1ZEU/1ZFW pair).   
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Figure 18. Dendrogram of five monomeric PG proteins (1CZF, 2IQ7, TOMA, 1ZEU, and 

1ZFW) generated utilizing a sequence-based ML algorithm. Dendrogram image was 

generated utilizing the MEGA5 evolutionary analysis program (Tamura et al., 2011). 
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Figure 19. Dendrogram of five monomeric PG proteins (1CZF, 2IQ7, TOMA, 1ZEU, and 

1ZFW) generated utilizing the structure-based PUSH algorithm. Dendrogram image was 

generated utilizing the PUSH program. 

 

 

 The results of the sequence-based ML algorithm indicate the TOMA protein is more 

closely related to 1CZF and 2IQ7, while the results of the PUSH algorithm indicate the 

TOMA protein is more closely related to the 1ZEU and 1ZFW proteins. However, both 

dendrogram generation algorithms demonstrate that the de between the TOMA protein and 



104 
 

the other PG proteins is approximately equal to the de between the 1CZF/2IQ7 pair and the 

1ZEU/1ZFW pair. Therefore, in the absence of the “true” dendrogram, the insignificantly 

short differential de (0.054 angstroms in the PUSH dendrogram) between the internal node 

(i.e., the node that relates TOMA to its most homologous pair) and the root node in each 

dendrogram suggests that this difference is negligible for purposes of comparing dendrogram 

generation algorithms. Additionally, the short differential de in both dendrograms indicates 

that if 1CZF and 2IQ7 belong to a subfamily
12

 and 1ZEU and 1ZFW belong to a separate 

subfamily, then TOMA likely belongs to a third distinct subfamily.  

                                                             
12

 The term “subfamily” in this context is utilized as an unofficial designation. In this context 
it is referring to a conglomerate of several closely-related homologous OTUs within a protein 
family.   
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CHAPTER V 

PUSH DISCUSSION AND GENERAL CONCLUSION 

 

 The hypothesis that the dendrogram generation methodology and software presented 

herein is superior to any current methodology utilizing conventional technology is thus far 

inconclusive because additional trials featuring proteins of distant homology are required. 

The SABLE program is capable of consistently and accurately superimposing pairwise 

monomers, pairwise proteins composing inconsistent numbers of subunits, and more 

complex multiple alignments. The capabilities of the comparison superimposing programs, 

however, were inconsistent, demonstrated inferior accuracy, induced an inferior SDSA, or 

required additional preliminary curation. Additionally, Theseus and other superpositioning 

programs require input of a preliminary sequence alignment; this requirement prevents 

superpositioning programs from superimposing distant homologs. Although the comparison 

programs were generally capable of superimposing monomeric proteins featuring close 

homologies, they demonstrated an inferior capability to superimpose proteins from distant 

homologs. For example, SABLE demonstrated significant superior proficiency when 

superimposing either the quad PG/PL assemblage of proteins or any assemblage containing 

the homodimeric 1CZF protein. Further note that, these assemblages are still relatively 

homologous; therefore, MUSTANG and Theseus would likely be incapable of accurately and 

consistently superimposing proteins from more evolutionary distant protein families.  
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 Analysis of the PUSH results in Chapter IV (“PUSH Results” section) also suggests 

the necessity of additional trials featuring proteins exhibiting distant homologies. The 

relatively few OTUs included in each dendrogram generation trial and the evident 

evolutionary relationships between the OTUs suggest the relative simplicity of the 

dendrograms generated herein. Because these dendrograms are relatively simplistic, a 

conventional sequence-based ML algorithm should correctly derive dendrograms that 

accurately represent the “true” evolutionary relationships of the inclusive OTUs. Therefore, 

ideally, the PUSH dendrograms would be identical to those generated utilizing a 

conventional ML algorithm. As hypothesized, the PUSH dendrograms are identical (the 

dendrogram relating the five PG proteins is insignificantly nonidentical) to those generated 

utilizing protein sequence.  

 Although the aforementioned results confirm the proficiency of PUSH discerning the 

evolutionary relationships between close homologs, more data is required to completely 

examine the competency of the PUSH algorithm utilizing proteins exhibiting distant 

homologies. Conventional sequence-based ML dendrogram generation algorithms are likely 

incapable of deriving the evolutionary relationships of multiple protein families all 

possessing a homogenous class of protein subunit. However, SABLE is proficient at 

superimposing any homologous proteins, UniTS calculates amino acid matches based upon 

these superimposed structures, and PUSH utilizes these protein structures and amino acid 

matches to derive evolutionary relationships. These programs permit the conservation of 

protein structural information throughout the entire proposed methodology. Therefore, 

additional data will likely demonstrate that the methodology and software proposed herein is 

likely capable of superiorly deriving evolutionary relationships of distant homologs.   
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APPENDIX A 

GENERIC SORTING ALGORITHM 

 

The following algorithm will delete numbers from an array that do not constitute the 

general ascending order of the numbers contained therein. The input for the algorithm is an 

array whose elements are numbers in a general ascending order. However, throughout this 

array are numerical elements that disrupt the general ascending order of the numbers. The 

algorithm will determine which numerical elements compose the general order and which 

ones need to be deleted. The final (output) array will contain only those elements retained. 

Furthermore, the final array will be in ascending order and will comprise fewer elements than 

the Input Array.  Although removing unordered array elements sounds simple, the difficulty 

lies in establishing  which elements comprise the general ascending order—a seemingly 

subjective task. 

The algorithm functions by copying the Input Array into a second array called the 

Sorted Array.  The Sorted Array is then sorted into ascending order, thus moving all those 

elements that are not in order already. The algorithm then measures how many indexes each 

element moves after being sorted using the following equation: 

                                                       

 The number of indexes moved is squared to eliminate negative distances. The 

numerical element(s) that moves the most (i.e., possesses the greatest Distance) is deleted 

from the Input Array. Using the refined Input Array, a new Sorted Array is generated and the 

process is  repeated until the Input Array matches the Sorted Array (i.e., the Input Array is in 

perfect  ascending order). Importantly, for each element that is deleted, the remaining 
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elements will shift more towards their Sorted Array positions. Therefore, even though all of 

the elements may have a Distance greater than zero(0) for the first iteration, these Distances 

will approach zero(0) as more  elements are deleted. 

 The following are additional notes; however, because this algorithm is a generic 

algorithm, not all of the following notes apply to the UniTS program: 

1. Duplicate numbers in the Input Array are permitted and are not deleted from the Input 

Array because the previous duplicate number is not less than the subsequent duplicate 

number (although they may still be deleted for compromising the general order 

relative to the other numbers). 

2. The elements may contain decimal digits as well as integers. 

3. The numbers within the elements do not have to be contiguous. 

4. Finally, having a Distance of one(1) means that an element is only one index away 

from  its ideal location in the Sorted Array, thus indicating than it must be switched 

with an  adjacent element (which will also have a Distance of 1). Because both 

elements are switched, the algorithm is unable to determine which element will 

remain in the Input Array and which will be deleted; therefore, the algorithm will 

delete both elements. 
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APPENDIX B 

TEMPLATE PROTEIN SELECTION 

 

 The mean center (cµ) of a protein is the average of all the atomic coordinates that 

compose the protein: 

 

where        is the total number of atoms in the protein. UniTS selects the template protein 

as the protein that possesses the least mean center error distance, which is the distance 

between the cμ of each input protein and the cμ of all the proteins combined (calculated by 

averaging all the cµs). 
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APPENDIX C 

UNITS AND CHIMERA SDSAS 

 

Isocitrate Dehydrogenase SDSAs 

 
>Chimera_1T09.pdb 

  

MSKKI----------------------------SGGSVVEMQGDEMTRIIWELIKEKL-I 

FP---YV-------ELDLHSYDLGIENRD--AT-N-DQ-VTKDAAEAIKKHNVGVKCATI 

TPDEKRVEEFKLKQMW-----KSPNGTIRN-ILGGTVFREAIICKNIPRLVSGWV-KPII 

IGRHAYGDQ----YRATDFVVPGPGK--------V--EITYTPSDGTQKV--TYLVHN-F 

EEGGGVAM-GMYNQDKSIEDFAHSSFQMAL-SKGW-PLYLSTKNTILKKYDGRFKDIFQE 

IYDKQYK-SQF-----------------EAQKIWYEHRLIDDMVAQAMKSEGG--FIWAC 

K-NYDGDVQSDSVAQG----------Y--G-SLGMMTSVLVCPDGKTVEAEAAHGTVTRH 

YRM-YQKGQETSTNPIASIFAWTRGLA-HRAKLDNNKELA-FFANALEEVSIETIEAGFM 

TKDLAACIKGLPNVQRS--D-YLNTFEFMDKLGENLKIKLAQAKL--------- 

  

>Chimera_1XGV.pdb 

  

-----SPPCTTEELSPPPGGSLVEYSGGSLRVPDNPVVAFIRGDGVGPEVVESAL-KVVD 

--AAVK-KVYGGSRRIVWWELLAGHLA-REKC-GELLPKATLEGIRL---ARVALKGPLE 

TPV-------------GTGYRSL-NVAIRQALDLYANIRPVRYYGQPA-PHKYADRVDMV 

IFRENT---EDVYAGIEWPH------DSPEAARIRRFL------------AEEFGIS-IR 

---EDAGIGVKPISRFATRRLMERALEW-ALRNGNTVVTIMHKGNIMKYTEGAFMRWAYE 

VALEKFREH-VVTEQEVQEKYGGVRPEGK---ILVNDRIADNMLQQIITRPW-DYQVIVA 

PNL-------------NGDYISDAASALVGGIG-MAAGMNMG-D-GIAVAEPVHGTAPKY 

A--GK-----DLINPSAEILSASLLIGEFM-G-------WREVKSIVEYAIRKAVQSKKV 

TQDLAR-HM--------PGVQPLRTSEYTETLIAYIDEA--DL—NEVLAGKRG 

 

>UniTS_1T09.pdb 

 

----MSKKIS---GGSVVEMQG----------------DEMTRIIWELIKEKL-IFP-Y- 

--------VELDLHSYDLGIENRDATNDQ-VTKDAAEAIKKHNVGVKCATITPDEKRVEE 

FKLKQMWKSPNGTIRNILG-GTVFREAIICKNIPRLVSGWVKP-III-GRHAYGDQYRAT 

-DFV-VPGPGK-V--EITYTPSDGTQKVTYLVHNFEEGGGVAMGMYNQD-KSIEDFAHSS 

FQMALSKGW-PLYLSTKNTILKKYDGRFKDIFQEIYDKQYKSQFEAQK------------ 

--IWYEHRLIDDMVAQAMKSEGG-FIWACKNYDGDVQSDSVAQGYGSLGMMTSVLVCPDG 

KTVEAEAAHGTVTRHYRMYQKGQETSTNPIASIFAWTRGLAHRAKLDNNKELA-FFANAL 

EEVSIETIEAGFMTKDLAACIKGLPNVQRSDYLNTFEFMDKLGENLKIKLAQA------- 

KL 

 

>UniTS_1XGV.pdb 

 

SPPCTTEELSPPPGGSLVEYSGGSLRVPDNPVVAFIRGDGVGPEVVE-SALKVVDAAVKK 

VYGGSRRIVWWELLAGHLAREKCGELLPKAT-LE---GIRLARVALKGPLETPV------ 

---GTGYRSLNVAIRQALDLYANIRPVRY-YGQPAPHKYADRVDMVIFR-ENTEDVYAGI 

EWPHDSPEAARIRRFL--------AEE--FGISIRE---DAGIGVKPISRFATRRLMERA 

LEWALRNGNTVVTIMHKGNIMKYTEGAFMRWAYEVALEKFREHVVTEQEVQEKYGGVRPE 

GKILVNDRIADNMLQQIITRPWDYQVIVAPNLNGDYISDAASALVGGIGMAAGMNMG-DG 

-IAVAEPVHGTAPKYAG-KDL-----INPSAEILSASLLIGEFMG-------WREVKSIV 

EYAIRKAVQSKKVTQDLAR---HMPGVQ---PLRTSEYTETLIAYIDEA--DLNEVLAGK 

RG 
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Pectate Lyase SDSAs 

 
>Chimera_1PLU.pdb 

  

------ATDT--GGYAA----TAGGNVTGA---VSKTATSMQDIVNIIDAA---RLDANG 

KKVKGGAYPLVITYTGNEDSLINAAAANICGQWS------------K------------- 

----------------------------DP--RGVEIKEFTKGITIIGAN-GSSAN-FGI 

WIKKSSDVVVQNMRIGYLPGG----------------AKDGDMIRVDDSPNVWVDHNELF 

A---ANHE--C-DG----TPDNDTTFESAVDIKGASNTVTVSYNYIHGVKKVGLDGSSSS 

D--TG--RNITYHHNYYNDVNARLPLQRGGLVHAYNNLYTNI--------TGSGLNVRQN 

GQALIENNWFEKA--I---NPVTSRYDGKNFGTWVLKGNN---ITKPADFSTYSITWTAD 

TKPYVNADSW--TS----TGTF-PTVAYNYSPVSAQCVKDKLPGYAGVGKNLATLTSTAC 

- 

 

>Chimera_2BSP.pdb 

  

ADLGHQTLG-SNDGWGAYSTGTTGGSK--ASSSNVYTVSNRNQLVSALG--KETN----- 

-----T-TPKIIYIKGTI----------------DMNVDDNLKPLGLNDYKDPEYDLDKY 

LKAYDPSTWGKKEPSGTQEEARARSQKNQKARVMVDI--PA-NTTIVGSGTNAKVVGGNF 

QIK-SDNVIIRNIEFQDAYD-YFPQWDPTDGSSGNWNS-QYDNITINGGTHIWIDHCTFN 

DGSRP-D-STSPKYYGRKY----QHHDGQTDASNGANYITMSYNYYHDHDKSSIFGSSDS 

KTSDDGKLKITLHHNRYKNIVQKAPRVRFGQVHVYNNYYEG-STSSSSYPFSYAWGIGKS 

SKIYAQNNVIDV-PGLSAAKTISVF---SGGTALYDSGTLLNGTQI-------------- 

---------NASA-ANGLSSSVGWTPSLHGSIDASANVKSNVINQAGAGKL--------- 

N 

 

>UniTS_1PLU.pdb 

 

AT------DT-GGYAA----TAGGNVTGA---VSKTATSMQDIVNIIDAARLDANGKKVK 

GGAYPLVITYTGN-----EDSLINAAAANI---------------CGQWSK--------- 

--------DP--RGVEIKEFTKGITIIGAN-GSSANFGIWIKKSSDVVVQNMRIGYLPG- 

-----------G---AKDGDMIRVDDSPNVWVDHNELFA---ANHEC-DG----TPDNDT 

TFESAVDIKGASNTVTVSYNYIHGVKKVGLDGS---SSSDTGR-NITYHHNYYNDVNARL 

PLQRGGLVHAYNNLYTNI-------TGSGLNVRQNGQALIENNWFEK---AINPVTSRYD 

GKNFGTWVLKGNNITKPADFSTYSITWTADTKPYVNADSWTSTGTF-PTVAYNYSPVSAQ 

CVKDKLPGYAGVGKNLATLTSTAC 

 

>UniTS_2BSP.pdb 

 

ADLGHQTLGSNDGWGAYSTGTTGGS--KASSSNVYTVSNRNQLVSAL--------GKETN 

T--TPKIIYIKGTIDMNVDDNLKPLGLNDYKDPEYDLDKYLKAYDPSTWGKKEPSGTQEE 

ARARSQKNQKARVMVDIPA---NTTIVGSGTNAKVVGGNFQIKSDNVIIRNIEFQDAYDY 

FPQWDPTDGSSGNWNSQY-DNITINGGTHIWIDHCTFNDGSRPDSTSPKYYGRKYQH--- 

-HDGQTDASNGANYITMSYNYYHDHDKSSIFGSSDSKTSDDGKLKITLHHNRYKNIVQKA 

PRVRFGQVHVYNNYYEGSTSSSSYPFSYAWGIGKSSKIYAQNNVIDVPGLSAAKTISVF- 

-SG-GTALYDSGTLLNGTQINASAANGL--------------SSSVGWTPSLHGSIDASA 

NVKSNVINQAGAGKL--------N 

 

Polygalacturonase SDSAs 

 
>Chimera_1CZF.pdb 

  

DS--CTFTTAAAAKAG-KAKCSTITLNNIEVPAGTTLDLTGLTSGTKVIFEGTTTFQYEE 

WA-GPLISMSGEHITVTGASGHLINCDGARWWDGKGTS--GKKKP-KFFYAHGLDS-SSI 

TGLNIKNTPLMAFSVQ-ANDITFTDVTINNADGDTQ--------GGHNTDAFDVGNSVGV 

NIIKPWVHNQDDCLAVNSGENIWFTGGTCIGGHGLSIGSVGDRSNNVVKNVTIEHSTVSN 

SENAVRIKTISGATGSVSEITYSNIVMSGISDYGVVIQQDYEDGKPTGKPTNGVTIQDVK 

LESVTGSVDSGATEIYLLCGSGSCSDWTWDDVKVTGG-KKSTACKNFPSVA--SC- 

  

>Chimera_1HG8.pdb 

  

--DPCSVTEYSGL-ATAVSSCKNIVLNGFQVPTGKQLDLSSLQNDSTVTFKGTTTFATTA 

DNDFNPIVISGSNITITGASGHVIDGNGQAYWDGKGSNSNSNQKPDHFIVVQKTTGNSKI 

TNLNIQNWPVHCFDITGSSQLTISGLILDNRAGDKPNAKSGSLPAAHNTDGFDISSSDHV 

TLDNNHVYNQDDCVAVTSGTNIVVSNMYCSGGHGLSIGSVGGKSDNVVDGVQFLSSQVVN 

SQNGCRIKSNSGATGTINNVTYQNIALTNISTYGVDVQQDYLNGGPTGKPTNGVKISNIK 

FIKVTGTVASSAQDWFILCGDGSCSGFTFSGNAITGGGKTSS-CN-YPT—NTCPS 
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>UniTS_1CZF.pdb 

 

DSCTFTTAAAAKAG-KAKCSTITLNNIEVPAGTTLDLTGLTSGTKVIFEGTTTFQYEEWA 

GP-LISMSGEHITVTGASGHLINCDGARWWDGKGTS--GKKKP-KFFYAHGLDS-SSITG 

LNIKNTPLMAFSVQ-ANDITFTDVTINNADGDTQG--------GHNTDAFDVGNSVGVNI 

IKPWVHNQDDCLAVNSGENIWFTGGTCIGGHGLSIGSVGDRSNNVVKNVTIEHSTVSNSE 

NAVRIKTISGATGSVSEITYSNIVMSGISDYGVVIQQDYEDGKPTGKPTNGVTIQDVKLE 

SVTGSVDSGATEIYLLCGSGSCSDWTWDDVKVTGG-KKSTACKNFPSVASC— 

 

>UniTS_1HG8.pdb 

 

DPCSVTEYSGL-ATAVSSCKNIVLNGFQVPTGKQLDLSSLQNDSTVTFKGTTTFATTADN 

DFNPIVISGSNITITGASGHVIDGNGQAYWDGKGSNSNSNQKPDHFIVVQKTTGNSKITN 

LNIQNWPVHCFDITGSSQLTISGLILDNRAGDKPNAKSGSLPAAHNTDGFDISSSDHVTL 

DNNHVYNQDDCVAVTSGTNIVVSNMYCSGGHGLSIGSVGGKSDNVVDGVQFLSSQVVNSQ 

NGCRIKSNSGATGTINNVTYQNIALTNISTYGVDVQQDYLNGGPTGKPTNGVKISNIKFI 

KVTGTVASSAQDWFILCGDGSCSGFTFSGNAITGGGK-TSSCN-YPT-NTCPS 

 

Hemopexin Repeats SDSAs 

 
>Chimera_1QHU_(residues_56-134).pdb 

 

HRGIRELISERWKNFIGPVDAAFRHGHTSVYLIKGDKVWVYT-S---------PKSLQDE 

FPGI----PFPLDAAVEC--HRGECQDEGILFFQG---- 

 

>Chimera_1QHU_(residues_263-353).pdb 

 

-GWHSWPIAHQWPQGPSTVDAAFSWE-DKLYLIQDTKVYVFLTKGGYTLVNGYPKRLEKE 

LGSPPVISLEAVDAAFVCPGS------SRLHIMAGRRLW 

 

>UniTS_1QHU_(residues_56-134).pdb 

 

HRGI-RELISERWKNFIGPVDAAFRHGHTSVYLIKGDKVWVYT-S---------PKSLQD 

EFPG---I-PFPLDAAVEC--HRGECQDEGILFFQG---- 

 

>UniTS_1QHU_(residues_263-353).pdb 

 

--GWHSWPIAHQWPQGPSTVDAAFSWE-DKLYLIQDTKVYVFLTKGGYTLVNGYPKRLEK 

ELGSPPVISLEAVDAAFVCPGS------SRLHIMAGRRLW 
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