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ABSTRACT

We are encountering an explosion of data volume, as a stunyagss that data
will amount to 40 zeta bytes by the end of 2020. This data estpioposes significant
burden not only on data storage space but also access lateanggeability, and pro-
cessing and network bandwidth. However, large portione®huge data volume contain
massive redundancies that are created by users, applisasigstems, and communication
models. Deduplication is a technique to reduce data volureimoving redundancies.
Reliability will be even improved when data is replicateteafleduplication.

Many deduplication studies such as storage data deduphcand network re-
dundancy elimination have been proposed to reduce sto@agaimption and network
bandwidth consumption. However, existing solutions arneeffacient enough to optimize
data delivery path from clients to servers through netwdikence we propose a holis-
tic deduplication framework to optimize data in their pa@ur deduplication framework
consists of three components including data sources amtsliretworks, and servers. The



client component removes local redundancies in cliengsn#twork component removes
redundant transfers coming from different clients, andsiéerwer component removes re-
dundancies coming from different networks.

We designed and developed components for the proposed loedigm frame-
work. For the server component, we developed the Hybrid EDwduplication System
that achieves a trade-off of space savings and overheadnfait systems. For the client
component, we developed the Structure Aware File and Enmeduplication for Cloud-
based Storage Systems that is very fast as well as having gpsae savings by using
structure-based granularity. For the network componeatdeveloped a system called
Software-defined Deduplication as a Network and Storagécsathat is in-network dedu-
plication, and that chains storage data deduplication abhslork redundancy elimination
functions by using Software Defined Network to achieve btdhegie space and network
bandwidth savings with low processing time and memory si¥e.also discuss mobile
deduplication for image and video files in mobile devicesroligh system implementa-
tions and experiments, we show that the proposed framewvifagtigely and efficiently
optimizes data volume in a holistic manner encompassingnhiee data path of clients,

networks and storage servers.
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CHAPTER 1
INTRODUCTION

We live in the era of data explosion. Based on the IDC’s digitéverse study [34]
as shown in Figure 1, data volume will increase by 50 time&drigat the end of 2020
than itis in 2010, which amounts to 40 zetabytes (40 millietapytes - more than 5,200
gigabytes for every person). This huge increase of datanw®libas a critical impact on
the overhead costs of computation, storage, and network.

(Exabytes) 20,000

10,000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 1: Data explosion: (Source - IDC’s Digital Universei®/, sponsored by EMC,
December 2012)

Interestingly, massive portions of this enormous data aravedd from redundan-
cies in storages and networks. A study [46] shows there idani@ancy of 70% in datasets
collected from file systems of almost one thousand compurteas enterprise. Another
study [71] finds that 30% of incoming traffic and 60% of outgptraffic are redundant
based on packet traces on a corporate research environnter3@@0 users and web

servers.
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1.1 Redundancies

Redundancies are produced in clients, servers, and networarious manners
as shown in Figure 2. Redundancies increase on the client Aidser copies a file with
a different file name and creates similar files with small upsla These redundancies
further increase when users copy redundant files back atiddarong people within an
organization. Another type of redundancy is generated Iplicagions. For example,
currently there is a popular trend to take pictures of mowabgcts, called burst shooting
mode. In this mode, we can take 30 pictures within a secordichaose good pictures
or remove bad pictures. However, this application can predarge redundancies among

similar pictures. Another type of redundancy occurs fromilsir frames in video files.



A video file consists of many frames. In scenes where acta@p taking with the same
background, large portions of the background become rexhaies.

Redundancies also occur on the network side. When a useegstsqa file for
the first time, a unique transfer occurs, which does not predadundant transfers in a
network. However, when a user requests the same file agdmdeant transfer occurs.
Redundancies are also generated by data disseminationasugldeo streaming. For
example, when different clients receive a streaming filenfdoutube, redundant packets
must traverse through multiple Internet Service ProvigSBs).

On the server side, redundancies are greatly expanded veugrbepin the same
organization upload the same (or similar) files. The redonigs are accelerated by repli-
cation, Redundant Array of Inexpensive Disks (RAID), antioge backup for reliability.

Then, what problems arise from these redundancies? Frowliémt and server
sides, storage consumption increases. On the networkmngtieork bandwidth consump-
tion increases. For clients, latency increases becauss ksep downloading the same
files from distant source servers each time. We find that malucies significantly im-
pact storages and networks. Then, the next question is: sehations exist to remove (or

reduce) these redundancies.

1.2 Existing Deduplication Solutions to Remove Redundanes

As shown in Figure 3, there are three type of studies throug$torages and net-

works. The first type is storage data deduplication that aorsave storage spaces. In
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Figure 3: Existing solutions to remove redundancies

this approach, only a unique file or chunk is saved, but rednnhdata are replaced by in-

dexes. Likewise, an image is decomposed into multiple chenrkd redundant chunks are

replaced by indexes. A video file consists of I-frame thatthasmage itself and P-frame

that has the delta information between images in I-frantea.Video file where the back-

grounds are same, I-frames have large redundancies thajdaeed by indexes. Servers

deduplicate redundancies coming from clients by usingag®data deduplication.

The second type is Redundancy Elimination (RE). This aimedace traffic loads

in networks. The typical example is the Wide Area Network (WAoptimizer that re-

moves redundant network transfers between branches (anatjrto a head quarter and

4



a data center to a different data center. WAN optimizer wdikesthis. Suppose a user
sends a file to a remote server. When the file is passing, the W#hizer splits the
file into chunks and saves the chunks and correspondingésdéhe file is compressed
and delivered to the WAN optimizer at other side where thadikegain split into chunks
which are saved along with indexes. Next time when the sam@disses, the WAN op-
timizer replaces the file with small sized indexes. The WANirajzer at the other side
reassembles the file with previously saved chunks basedierés on a packet. The other
example is network-wide redundancy elimination, netwardle RE where a router (or
switch) is specially named as an RE device. In this apprdactg unique transfer, RE
devices save unique packets. When transfers become reduadaRE device replaces
redundant payload within a packet with an index (called dimgy), and reconstructs the
encode packet (called decoding).

The third type is Information Centric Networking (ICN) thaims to reduce la-
tency. In ICN, any router can cache data packets passingimg, vhen a client requests

data, any router with the proper cache can send the requeested

1.3 Issues of Existing Solutions

Problems exist within these current solutions. First,eggerdata deduplication has
considerable computation and memory overhead in clienseers. Many studies are
focused on the trade-off between space savings and ovebasad on granularity. Us-
ing small sized granularity like 4 KB can find more redundeadhan using large sized

granularity such as a file, but it suffers from large proaggsime and index overhead.



Second, redundancy elimination (RE) has resource-intertgerations such as finger-
printing, encoding, and decoding at routers. Also a reprtasige RE study suggests a
control module that involves traffic matrix, routing poksi, and resource configurations,
but there are not many details and some of them are basedunatssns. Thus, we need
to have an efficient way to adapt RE devices with dynamic caan@hird, information
centric networking (ICN) uses name-based forwarding &tflat grow much faster than

IP forwarding tables. Thus, large table lookup times antbbdéy issues arise.

1.4 Objective of Ph.D. Study

To remove (or reduce) issues of existing solutions, theadivg of my Ph.D.
study is to develop a deduplication framework that optirsidata from clients to servers
through networks. The framework consists of three compizteat have different levels
of removing redundancies as shown in Figure 4.

The client component removes local redundancies with atciad is basically
comprised of functions to decompose and reconstruct a filees& components should
be fast and have low overhead considering the low-capatityost clients. The network
component removes redundant transfers coming from difteteents. In this component,
RE devices intercept data packets and eliminate redun@aat RE devices are dynami-
cally controlled by Software Defined Network (SDN) conteoi. This component should
be fast analyzing large amount of packets and should beldedtaa large number of RE
devices. Last, server component removes redundanciesigdrom different networks.

This component should satisfy high space savings. Thusgfimeed deduplication and
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Figure 5: Components developed for deduplication framkwor

fast response are fundamental functions.

1.5 Contributions

We propose a deduplication framework using components wigiaed and devel-
oped for the proposed deduplication framework as shown gur€i 5. For the server
component, we developed Hybrid Email Deduplication SystelaDS, that achieves

a balanced trade-off of space savings and overhead for eyst#dms. This work has



been published in IEEE International Conference on Ubogsitand Future Networks
(ICUFN), 2012. For the client component, we developed StinecAware File and Email
Deduplication for Cloud-based Storage Systems, SAFE #ifaist and has high storage
space savings by using structure-based granularity. Tanik has been published in IEEE
2nd International Conference on Cloud Networking(ClougN2013. For the network
component, we developed Software-Defined Deduplicatioa &etwork and Storage
Service, or SoftDance. SoftDance is an in-network dedapba that chains storage data
deduplication and redundancy elimination functions bygssoftware Defined Network
(SDN), and achieves both storage space and network baridsagings with low pro-
cessing time and memory overhead. This work will be subuhittea premier conference
and we applied for invention disclosure. For the extensiothe client component, we
are also working on mobile deduplication that removes rdduanies of popular files like
images and video files in mobile devices. Part of this workdesen submitted to a book

chapter.

1.6 Organization

This dissertation follows the order of components that weetitged for the dedu-
plication framework. We give background information ablotv deduplication works in
Section 2, and introduce existing deduplication studieddation 3. After that, we elabo-
rate on each component for the deduplication framework grank. In Sections 4 and 5,
we present a server component and a client component: Hgbradl Deduplication Sys-

tems (HEDS) and Structure-Aware File and Email Deduplocator Cloud-based Storage



Systems (SAFE) respectively. In Section 6, we elaborate deduplication can be used
for networks and storages to reduce data volumes by using&wefdefined Deduplica-
tion as a Network and Storage Service, or SoftDance. We shwver-going project,

mobile deduplication, in Section 7. Section 8 concludes digsertation.



CHAPTER 2
DEDUPLICATION TECHNOLOGY

Though various deduplication techniques have been proposg used, there has
been no one-best-fit solution to handle all types of reduciéan Considering perfor-
mance and overhead, each deduplication technique has lesetopled with different
designs’ considering characteristics of datasets, sységracity, and deduplication time.
For example, if datasets to be handled have many duplicate éieduplication can com-
pare files themselves without looking inside the file contentaster running time. How-
ever, if datasets have similar files rather than identicakfideduplication should look
inside the file content to check what parts of the file conteatthe same as previously
saved data for better storage space savings. Also dediptichould consider different
designs up to the capacity of the system. High capacity seoan handle considerable
overhead for deduplication, but low capacity clients stdwve lightweight deduplica-
tion designs for fast performance. There have been studiesduce redundancies at
routers (or switches) within a network. This approach rezpithe fast processing of data
packets at routers, which is of great necessity for Intedeetice Providers (ISPs). Mean-
while, if a system should remove redundancies directly irrigevpath within a confined
storage space, itis better to discover redundant dataéstoring. On the other hand, if a
system has residual (or idle) time or space enough to stéadelaporarily, deduplication

can run after data are placed into temporary storages.

10



Table 1: Deduplication classification

Methods per granularity Place Time
Server-based deduplication
File-level deduplication Client-based deduplication : —
o o AR Inline deduplication
Fix-size block deduplication Redundancy elimination(RE) Offline dedunlication
Variable-size block deduplication (End-to-end RE, P

Network-wide RE)

In this chapter, we classify existing deduplication teciuais based on dedupli-
cation methods per granularity to be used, deduplicatianeggland deduplication time.
Then, we describe how each deduplication technique woodkegalith existing approaches
in brief. We elaborate detail of existing commercial anddaraical existing deduplica-

tion approaches in next chapter.

2.1 Dedupication Classification

Deduplication can be divided based on methods per gratu(#ne unit of com-
pared data), deduplication place, and deduplication taseshown in Table 1. The main
components of these three classification criteria are dhgnkashing, and indexing.
Chunking is a process that generates the unit of compared ddted a chunk. To com-
pare duplicate chunks, hash keys of chunks are computedoangaced, and a hash key
is saved as an index for future comparison with other chunks.

For methods, deduplication is based on different grartylarhe unit of compared
data can be file-level or sub-file level which are further diéd into fixed-size block,
variable-size chunk, packet payload, or byte streams inckgtgayload. The smaller

granularity is used, the more indexes are created, but the redundant data are detected

11



and removed.

For deduplication place, deduplication is divided intoveeibased and client-
based deduplication for end-to-end systems. Server-loesheplication traditionally runs
on high capacity servers whereas client-based deduglicains on clients that have nor-
mally limited capacity. Deduplication can occur on the n@tnside, called Redundancy
elimination (RE). The main goal aedundancy eliminatiotechniques is to save band-
width and reduce latency by reducing repeating transfecuth network links. Redun-
dancy elimination is further divided into end-to-end RE wendeduplication runs at end
points in network and network-wide RE (or in-network dedecgion) where deduplica-
tion runs at routers in network.

For deduplication time, deduplication is divided into hdiand Offline dedupli-
cation. Inline deduplication runs deduplication beforéadae stored into disks whereas
Offline deduplication runs deduplication after data areesto Thus, Inline deduplica-
tion does not require extra storage space but incurs latverhead within a write path.
Oppositely, Offline deduplication does not have latencyrlosad but involves extra stor-
age space and more disk bandwidth because data saved inréeyngimrage are loaded
for deduplication and deduplicated chunks are saved ag&innmore permanent stor-
age. Inline deduplication mainly focuses on latency-semsprimary workload, whereas
Offline deduplication concentrates on throughput-seresgiecondary workload. Thus,
Inline deduplication studies tend to trade-off storagecemavings for fast running time.

We elaborate classified deduplication techniques in detal by one hereatfter,

in the order of methods, place, and time. Please note thadgptleation technique can
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Figure 6: File-level deduplication

belong to multiple categories like a combination of vargabize block deduplication,

server-based deduplication, and inline deduplication.

2.2 File-level Deduplication

File-level deduplication uses file-level granularity whis the most coarse-grained
granularity. File-level deduplication compares entiredibased on a hash value of a file
like SHAL [56] to avoid saving the same files. For example,has# in Figure 6, sup-
pose we have two identical files. When we save the first fileyplechtion computes an
index which is a hash value by one-way hash function. If tliexnis not found in index
table, the file is unique. In this case, the index and the fiéesaved into index table and
storage respectively. For the second file, the index of teadifound in the index table,
so the corresponding file is not saved.

File-level deduplication has been used for removing rednngks of identical files

in storage, email systems, cloud-based storage systemstdrage, EMC’s Centera [23]

13



uses file-level deduplication to reduce redundancies irag&o For email systems, Mi-
crosoft Exchange 2003 [47] and 2007 [48] use file-level dédaton, called Single In-
stance Store (SIS) [7]. An email with multiple recipientc@pied into multiple mail-
boxes, resulting in having multiple copies of the email. Histcase, SIS saves only one
copy of an email in recipient’'s mailbox and saves only thenfers of the email in other
recipients’ mailboxes without storing the email redundlaimtindividual recipients’ mail-
boxes. Many cloud-based storage services such as Just3@} chnd Mozy [52] also
use file-level deduplication. There has been a study [46]aor@orate users’ file systems
where simple file-level deduplication can achieve threatgus of the space savings of
aggressive expensive block deduplications (which we wdtudss at the next two sec-

tions) at a lower cost in performance and complexity.

2.3 Fixed-size Block Deduplication

File-level deduplication can find redundancies of idertites, but cannot find
redundancies within similar files. To find redundancies milsir files, fixed-size block
deduplication has been proposed and uses fixed-size blatk gianularity. However,
fixed-size block deduplication has an issue finding matcbargents in similar files when
content in the beginning of files is changed. For example es/shn Figure 7, suppose
deduplication uses 15 byte fixed-size block as granuldiitlyen we save an original file
Filel, deduplication splits a file into 15 byte fixed-size blockskewise, when we save
an updated filé-ile2 where we add small text “welcome” in the beginning of the io¥ad

file, deduplication again splits a file into fixed-size blocke®wever, blocks split from the
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e.g. granularity : 13 byte fixed size

File1  nice people, good papers, and good company are ...

nice people, go | | od papers, and | | good company ar | ......

No redundancies found

File2  welcome,|nice people, good |papers, and gooH1 company are, ... J.

different | welcome, nice p || eople, good pap | |ers,and good c | ......

Figure 7: Fixed-size block deduplication

updated second file are totally different from blocks spbtfi the original first file. This
is because contents are shifted in a file, and this is calfisét-shifting problem
Fixed-size block deduplication has been used for archteahges like Venti [63].

Venti uses fixed-size block as granularity and compares Shish keys of blocks with
previously saved hash keys following on-disk index hidngurcA popular cloud storage
system, Dropbox [14] uses a very large fixed-size (4 MB) bldekuplication. Drop-
box reduces network redundant traffic and redundant sauirsggver by communication
with indexes between clients and servers before sendirsg @egtailed information how

Dropbox works is explained in Chapter 5.
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Figure 8: Variable-size block deduplication

2.4 Variable-size Block Deduplication

Variable-size block deduplication has been proposed teestble offset-shifting

problemof fixed-size block deduplication. Variable-size block dplication relies on

contents rather than fixed-offset. Figure 8 illustrates awable-size block deduplica-

tion works. Suppose we have two fildslelis an original file andrile2 is an updated file

where we add a small texts in the middle of a file. When we sawEital, deduplication

slides a small sized window from the beginning of the file. Whihe window is sliding

byte by byte, a fingerprint [64] of each window is computed dredlowest two digits are

compared to a pre-defined value. If they are the same, theowirgidset to a chunk bound-

ary. Then, the content from the previous chunk boundaryeathirent chunck boundary

are determined as a chunk. The window keeps sliding and finchimnk boundaries in
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the same manner. As a result, three unique chuBksC2, andC3) and corresponding

indexes are saved. When we save the updated second file,lidatop again slides a

window and finds chunksC4 is found to be unique, an@1 andC3 are found to be re-

dundant. Here, we see chunk boundaries are maintainedttumrgents are shifted in

a file. Thus, content-based variable-size block dedupdicatan find more redundancies
than offset-based fixed-size block deduplication.

Since variable-size block deduplication provides fine glarity chunking tech-
niques to achieve high storage space savings, it has bedrfardeackup [12] [16] [29]
[44] [76] [78] or file systems [8] [70]. However, to speed umeessing time by reduc-
ing number of disk accesses, this approach like Data DoméerSystem (DDFS) [78]
exploits efficient caching schemes like bloom filter and ¢himadex cache, and locality-

based disk layout.

2.5 Comparsion of Deduplications by Method per Granularity

Overall, as shown in Figure 9, the deduplication ratio thdtaates how many re-
dundancies are removed, variable-size block deduplic&imuch better than others. For
processing time, variable-size block deduplication istbest due to expensive chunking.
For index overhead, fixed-size and variable-size block gkchation is much worse than
file-level deduplication, and index overhead of fixed-sizd gariable-size block dedupli-
cation changes depending on block or chunk size. Thus blargze block deduplication
is good for deduplication of updated files or server-basetigikcation because high ca-

pacity servers can handle excessive processing time aed merhead. On the other
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Figure 9: Comparisons of deduplications

hand, file-level deduplication is good for deduplicatiortto# copied files or client-based

deduplication considering low capacity clients.
2.6 Bloom Filter

Deduplication aims to find as many redundancies as possitle waintaining
processing time. To reduce processing time, one typichhigoe is to check indexes of
data in memory before accessing disks. If the indexes of @l@&asame, deduplication
does not access the disk where indexes are stored, whicbaggwocessing time.

A Bloom filter is used to see if duplicate chunks of a data existtorage. The
Bloom filter is a bit array of m bits, that are set to O initialyiven a set U, each element
u (u € U) of the set is hashed usirighash functiong, ..., .. Each hash functioh; (u)

returns an array index in the bit array, that ranges from @.te 1. Subsequently, a bit

18



Initial 0 0 0 0 0 0 0
bloomfilter @
0 1 0 1 0 0 1
hi
2
Chunk h3

(a) bloom filter after c1 chunk is saved

aftercl
bloomfilter 0 1 0 1 0 0 1

)

2 —————

Unique h3
chunk

(b) bloom filter when c2, a unique chunk is compared

afterc2
bloomfilter 1 1‘ ]: ]". 0 1 1
hl
2
Unique
chunk h3

(c) bloom filter when ¢3, a unique chunk is compared (falsé-pos
tive). A unique chunk is found to be redundant

Figure 10: How bloom filter works
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of the index is set to 1. If the bit of the index was set to 1,alyst1. This Bloom filter is
used to check if an element was already saved into a set. Whelement attempts to be
added into the set, if one of the bits corresponding to themetalues of hash functions
hi, ..., hy is 0, the element is considered as a new one in the set. Ifdntsgponding to
return values of hash functions are all 1, the element isidered to exist in the set.

Let us explain how bloom filter works in an example. As showfrigure 10(a),
the bloom filter initially have all O bits. When a chunk cl ived, the array indexes of
bloom filter are computed by using three different hash fionst(1, h2, andh3). Here,
h1, h2, andh3functions return 2nd, 4th, and 7th index respectively. 8ghsntly indexes
of bloom filter are setto 1. Suppose the same chunk cl is s@adl. a he chunkis found
to be redundant because all three indexes by hash functieadraady set to 1. As shown
in Figure 10(b), when a unique chunt?j is saved, indexes by three hash functions are
computed again. Now, the elements of the three indexes lBde dhus, a chunk?2 is
determined to be unique. However, in Figure 10(c) , bloorarfitan have false positive;
that is, bloom filter says that a chunk is redundant but thenkhs unique. The array
indexes forc3 are 2nd, 3rd, and 4th, which were set by other chunks. In @sg,cwe
will lose a unique chunk without saving it. Thus, bloom filggrarantees that a chunk is
unique with any of one 0 index, but it does not guarantee tlthiuak is redundant with
all three 1 indexes. Thus, in this case, chunk index cacheldte checked after bloom

filter.
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2.7 Server Based Deduplication

Server based deduplicatitvas emerged as a disk-based substitute of tape storage,
and backs up large size data at fast speeds using high parioenand dedicated backup
systems. There are many commercial products [24] [58] [74].

In this approach, clients send backup data to servers wia¢aeade de-duplicated.
Clients have light-weight backup by application throughiahhdata are sent to servers,
avoiding large CPU computation and memory overhead of gsuiar backup purposes.
Figure 11 shows how server-based deduplication works. Adfiteansferred to a server
through a client application. In the server, the file is sefst to chunks typically using
variable-size block deduplication. Indexes of chunks amamuted and compared with
indexes previously saved using a bloom filter or a chunk ircehe. Suppose a chunk
clis redundant and a churd? is unique in this example. Then, a chuok and its
corresponding index are saved into storage.

Server based deduplication finds significant redundanbigisincurs excessive
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Figure 12: Client based deduplication: c1 and c2 are chuhisl) and h(c2) are hash
keys (indexes) of chunks.

redundant data traffic because duplicate data are deliversetvers to be deduplicated.
What is worse, servers have large CPU computation and meoverhead for chunking
and indexing of all backup data. To handle backup quickijhliis overhead within a
limited backup window, efficient in-memory and on-disk layare required such as Data

Domain File System (DDFS) [78].

2.8 Client Based Deduplication

In client based deduplicatigrclients can keep indexes of deduplicated data or
have a backup agent to check indexes that exist in servemsither case, clients check
unigueness of data in local indexes or in remote indexesigfirdbackup agent. Only
unique data are then delivered to servers. Client basegdedtion [22] [75] removes ex-
cessive redundant network traffic by performing dedughceat the client before data is
transmitted. However, clients incur CPU computation andiowy overhead for backup.

Pure client based deduplication, where a client removegnaght data before
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sending data to a server, does not collaborate with a sevvese(vers); redundant data
among clients are transferred to a server, which increaaastahffic in network. Thus,
client based deduplication typically communicate with evee and Figure 12 displays
how client based deduplication works with the help of a seruéne client splits a file
into chunks ¢1 andc2) and compute indexe#(cl), h(c2). Then, the client sends all
the indexes of the file to server which then returns indekés2) of unique chunks that
have not been saved previously. The client then can senduaidye chunksd?) in this
manner.

LBFS [54] improves space savings by adding a communicatiotopol that sends
indexes to a server before sending a real data chunk. Howieuatroduces latency to
run the protocol. Overall, a client based deduplicationesyshas difficulties with limited

capacity of clients to perform an expensive deduplicati@cess.

2.9 End-to-end Redundancy Elimination

End-to-end RHike WAN optimizers [9] [10] [65] removes redundant network
traffic at two end points (e.g. branch to headquarter andatateer to data center). Fig-
ure 13 illustrates how end-to-end RE works. End-to-end R& WAN optimizer is lo-
cated just before an ingress router (sending side), andfigstan egress router (receiving
side). Suppose clients send the same fileajdf2) to a server. When a unique fifé is
transferred, the file is split into chunks (h&®andc2) and corresponding indexes(¢1)
andh(c2)) are saved into the cache; subsequently, chunks and indexeaved onto disk

that is now shown here. The file is compressed and deliversert@r side where chunks
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Figure 13: End-to-end redundancy elimination: c1 and cZlhuaks. h(cl) and h(c2) are
hash keys (indexes) of chunks.

and indexes of the received file are saved into the cache.

Now, when another client sends the same (fil), chunks off2 are split and in-
dexes of the chunks are compared with previously saved @sdekhe file f2 is found to
be duplicate because same indeix@sl)andh(c2)are found in cache. Thus, the contents
of the file are replaced (or encoded) by small sized indbkek)and h(c2), which reduces
packet size. When the encoded packet arrives at serverasitief2 is reassembled with
chunkscl andc2 based on indexes in the packet. The reassembled file is elirécta

destined server.

2.10 Network-wide Redundancy Elimination

Network-wide RE4] [5] [71] eliminates repeating network traffic acrosswetk
elements such as routers and switches. Network-wide RE u@msndexes [64] for the
incoming packet payload, and eliminates redundant padket®mparing indexes with
the packets saved previously. Redundant payload is endodsdhall sized shims and

decoded before exiting networks. However, this approadfersufrom high processing
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time due to sliding fingerprinting at routers and high memowvgrhead to save packets
and indexes.

The goal of network-wide RE is to remove redundancies of paplyloads and
the granularity is byte strings in a payload. Figure 14 digplhow network-wide RE
works. In network-wide RE, there are special routers (otcves), called RE devices.
When an RE device receives a packet, it slides a small sizadomi on the payload,
and computes fingerprints of all windows. Then, some fingetpiare compared with
fingerprints in local cache. If they are same, pointed bygeores are expanded to the left
and to the right while comparing with a packet in local cacBgpanded byte region is
replaced by a small sized shim header with a fingerprint ateldfjsets. These processes
are encoding. The encoded payload is reconstructed by arefREedon a path, called
decoding. Decoded packets are delivered to a server.

As we see here, network-work RE saves bandwidth in links éetwan encoder
and a decoder. However, as shown in Figure 15, sliding fimgenpg requires excessive
processing time, and packets which are saved in cache sgraamory requirements.
More importantly, redundancies removed in network areorest in a decoder before
reaching the server. Thus, the server should run deduiplicagain to remove redundan-
cies using expensive chunking. That is, there are redurddaduplication operations in

network as well as in server. We address this issue by demgi@oftDance in chapter 6.
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2.11 Inline deduplication

Inline deduplicatioris a deduplication that removes redundancies before data ar
stored onto disk. Inline deduplication can be applied famary workloads like email,
user directories, databases, and secondary workloadsuidteves and backups. Fig-
ure 16 elaborates how inline deduplication works for priynaorkloads (latency sen-
sitive) as well as secondary workloads (throughput semsiti For primary workloads,
as shown in Figure 16(a), deduplication runs on a directevaitd read path. When a
user or client writes data, deduplication intercepts thta dad checks for redundancies.
Only unique data and indexes are saved into storage alohgcatthe. Applications us-
ing primary workloads are highly latency sensitive; thusgaplication typically uses in-
memory cache to reduce disk I/O requests. Figure 16(b) showsleduplication works
for secondary workloads. In these workloads, deduplicatims when data are archived
or backed up in backup server. Backup server does not maiadalitional storage.

Inline deduplication has been proposed to remove redumeafar primary work-
load [20] [72] and secondary workload [11] [44] [58] [78] Wdut incurring extra space
overhead and more disk bandwidth. However, this approagphines latency overhead
in a write path. iDedup [72] exploits temporal locality arghsal locality to maintain
fast processing time in a write path. Content address s#0f@¢.S) systems [23] [63]
run inline deduplication because blocks are addresseddy fthgerprints. A few file

systems [8] [70] use inline deduplication for primary sgea
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2.12 Offline deduplication

Offline deduplicatiofi2] [21] [33] runs deduplication after data are stored orkgis

thus, it does not involve latency overhead in a write pathréquires extra storage space.

As shown in Figure 17, data are saved into storage withowtplezhtion. Offline dedupli-

cation runs out of a critical write and read path using alyesal’ed data, which does not

hurt latency to write and read data. However, offline deaapion has several drawbacks:

1) extra disk space is needed to hold data temporarily befedeiplication, 2) dedupli-

cation runs on system idle time, so deduplication can be defgyed if the system is

running almost all the time, and 3) data on disk are loadedgmary for deduplication,

so disk bandwidth is unnecessarily consumed.
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CHAPTER 3
EXISTING DEDUPLICATION APPROACHES

In this chapter, we elaborate existing and representaédelication approaches

based on deduplication classification.

3.1 File-level Deduplication

File-level deduplication is used for Microsoft Exchang®2@nd 2007 based on
Single Instance Store (SIS) [7]. SIS stores file contents'BiiS Common Store’. In SIS,
a user file is managed by an SIS link that is a reference to thediled ‘Common Store
File’. Whenever SIS detects duplicate files, SIS links aeatgd automatically and file
contents are saved into the common store. SIS consists ef syStem filter library that
implements links and a user level service detecting dudities (which are replaced by
links). SIS can find duplicate files but cannot find large rethnties within similar files.
We addressed this issue by developing the ‘Hybrid Email [pedation System’ [40].

File-level deduplication is used for popular cloud storagstems such as Just-
Cloud [39] and Mozy [52] to reduce latency in a client. Cloudrage system client
applications run file-level deduplication that computesratex (hash key) of each file
and checks if the index exists in a server. If the server hagdfex, client does not send
the duplicate file. Running the file-level deduplication e tclient before sending data

to server allows cloud storage systems to consume lesgstspmce and bandwidth. A
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study [32] measured performance of several cloud storagtersys including Mozy.

A study [46] evaluates the tradeoff in space savings betviigmievel dedupli-
cation and block-based (fixed-size and variable-size) plezhtions, claiming that file-
level deduplication provides simpler complexity and reziimore file-fragmentation than
block-based deduplications. The study collected file systentents from almost 1000
desktop computers in a corportation, and measured file dethaies and space savings.
Authors show file-level deduplication achieves 87% of sps@ngs compared to block-
based deduplications. Figure 18 shows the evaluation sétthe study. ‘File system

scanner’ computes indexes of blocks or chunks by runninglfstee and variable-size
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block deduplication with the minimum and maximum chunk si2ekB and 128 KB re-

spectively. The expected chunk size ranges from 8 KB to 64Kt computed indexes
are collected by post-processing module that checks redhanes of indexes using two
bloom filters. The size of the bloom filter is 2 GB. Analyzeduies are saved into a
database. The computed total size of files is 40 TB and the auaoflfiles is 200 million

files. The file duplicates are found in post-processing bgtifigng files where all chunks
matched. This study also mentions semantic knowledge dtfilstures will be useful to
reduce redundancies with less overhead, and our approaabtige aware file and email
deduplication (SAFE) exploits the semantic informatidnfite structures as shown in

chapter 5.

3.2 Fixed-size Block Deduplication

Venti [63] is a fixed-size block deduplication and uses aevance policy, pre-
venting data from being inconsistent or malicious data.ld$®& main idea is that a file
is divided into several blocks, and that the index (hash kéyach block is created by
SHAL hash function. If the index of the block is same as anxmuleviously saved,
the block is not saved. The index is arranged into a hash trees€onstructing a file
which contains the block. To improve the performance, Viesdis three techniques called
caching, striping, and write buffering. Block as well aserdare cached. Venti shows
the possibility of using hash to differentiate each bloclaifile. Most of de-duplication
applications which have been published split a file into ssvielocks (or chunks) and

save each block based on the index (hash key) of each block.
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Figure 19 shows how files are saved into tree structure ofivVéntlata block is
pointed by an index (hash key) of the block, and the indexegacked into a pointer
block with pointers. As shown in Figure 19(a), Venti creadssh key of a pointer block
P, that is a root pointer block dilel. Venti creates new pointer blockd and P, that
subsequently point t&,, D, D5, and D3. Thus, data blocks of filel are retrieved fol-
lowing on the tree structure of pointer blocks starting frBgn Figure 19(b) demonstrates
how the tree structure is changed when a similar file3) is saved. Suppodde2 has
two identical data blocksl{, and D,) as file1, but two unique data block®( and Dy).
Venti does not change pointer blocks but instead creategpoewer blocks 5 and F,)
for file2. File2 can be retrieved using pointer blocRs, P;, andF;.

Dropbox [14] uses fixed-size block deduplication with a 4 MBe#l block as its
granularity. A study [13] discovers internal mechanism®adpbox by measuring and
analyzing packet traces between clients and Dropbox seni@ropbox is accessed by
Web Ul (http://www.dropbox.com) or dropbox client. We leage SAFE into a Dropbox
client to deduplicate structured files in a client side. rayp consists of two type of
servers; one is a control server and the other is a storagersetontrol servers hold
meta data of files such as hash value of individual blocks aapping between a file
and its blocks. Storage servers contain unique blocks inZem&3 [3]. Dropbox client
synchronizes its own data and indexes with Dropbox servers.

Figure 20 shows how Dropbox works. Circles with numbers aeedrder in
which a file is saved.File-A is a file andBlk-X is a block which is separated from a

file. h(BlIk-X)means hash value of a block. ThibkBlk-X) andBIk-X are considered as
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Figure 20: Dropbox internal mechanism

hash values and blocks which already existed before a filavisds A user’s device is a
mobile phone, tablet, labtop, or desktop. Dropbox follotws hext steps to save a file.
(1) As soon as a user savéide-A into a shared folder in a Dropbox client, the fixed-size
block deduplication of Dropbox splits the file into blocksskd on 4 MB granularity, and
computes hashes of the objects. If a file is larger than 4 MBlgadithe same as an
object, and an hash value of the file is computed. Dropbox 88256 [57] to compute

a hash value. (2-4) Dropbox client sends computed all hasles®f a file to a control
server that returns only unique hash values after checkiegqusly saved hash values.

In this example, hash @lk-Bis returned to a client because the hasBI&gfA is found to

35



be duplicate. (5-6) The Dropbox client sends to the storagees the blocks of returned
indexes. Ultimately, storage servers have unique blociasaall Dropbox clients. Note
that storage saving occurs in a server (thanks to not s&8iiaé again), and the incurred

network load is reduced thanks to sendiig-B only.

3.3 Variable-size Block & Server-based Deduplication

Variable-size block deduplication involves expensiverghng and indexing for
finding large redundancies, requiring an efficient in-menmeache and on-disk layout in
high capacity servers. DDFS [78] exploits three technigoelieve disk bottleneck,
reducing processing time. The ‘Summary vector’ that is agachin-memory data struc-
ture is used to find new data. ‘Stream-informed segment Eyanutdisk layout, is used to
improve spatial locality for both data and indexes. The ioie&tream-informed segment
layout is that a segment tends to reappear in the similaresegs with other segments.
This spatial locality is called ‘Segment duplicate logdlitLocality preserved caching’
uses segment duplicate locality to acquire a high hit ratithe memory cache. The
study removes 99% of the disk accesses and achieves 100 ¢/1de210 MB/sec for
single-stream throughput and multi-stream throughpuyteetvely.

Sparse indexing [44] uses sampling and a sparse index tecedtie number of
indexes, decreasing RAM requirements. The study choosal gartions of chunks in
the byte stream as sample, and avoids full chunk indexekauBIDFS. This approach

employschunk locality tendency for chunks in backup data streams to reoccurhteget
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Figure 21 shows the deduplication process of Sparse ingdexmSparse indexing, seg-
ment is the unit of storage and retrieval, and a sequenceuniksh A byte stream is split
to chunks by Chunker using variable-size chunking, and aesezp of chunks becomes
a segment by Segmenter. Two segments are similar if they shaumber of chunks.
Champion chooser chooses sampled segments, called chmrfrpim sparse index (in-
memory index). Deduplicator compares chunks in incomirggrents with chunks in
champions (selected segments). Unique segments are sagpdrse index for future

comparison, and new chunks are saved into Container store.

3.4 Hybrid Deduplication

Hybrid approachesiave been proposed by adaptively using variable-size block
level deduplication and file-level deduplication eitheséa on fixed policy or dynami-
cally changed file information [40] [50]. Min et al. [50] engyls context-aware chunk-
ing where they use a file-level deduplication for multimedontent, compressed files,
or encrypted content and uses variable-size block-levd@liplecation for text files. Our
approach, Hybrid Email Deduplication System (HEDS) [4(§tfseparates the message
body and individual attachments, and performs a varialzke{dock-level deduplication
if the object size exceeds a predefined threshold. Otheraifile-level deduplication is

used.
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Figure 21: Sparse indexing: deduplicaiton process [44]

3.5 Object-level Deduplication

Fixed-size block deduplication and variable-size bloc#tug#ication can be used
for all types of files because they rely on the physical byterg format of a file. However,
for specific file formats, they may be inefficient due to expenshunking. Thus, object-
level deduplication that splits a file based on the semaatitogical) format of a file has

been proposed. A festructure-aware data deduplicatidechniques [41] [43] [45] [77]
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have been proposed to simplify the chunking mechanism mgusjects. Our approach,
SAFE [41] splits structure files including compressed filscument files (docx, pptx,
and pdf), and emails based on files’ structured formats. ADMA5] separates a file into
variable-size semantic segments, called meaningful ch(MKs), based on the metadata
of each file. Although the idea of ADMAD to decompose a file inlijects according to
the object structure is similar to the SAFE, ADMAD is limitéal a specific file format.
For example, ADMAD does not deal with document file types sagtocx, pptx, and pdf.
In addition, ADMAD does not handle an email with multipleaagtthments. [43] and [77]

show similar concepts where they deduplicate structurgetts

3.6 Client-based Deduplication & End-to-end Redundancy Einination

Low bandwidth file system (LBFS) [54] reduces latency andvoek bandwidth
through collaboration of the client and server. That is, BB&voids sending data over
network when the same data can already be found in the sefileisystem or the client’s
cache. In order to reduce bandwidth requirement, LBFS ésptooss-file similarity. As
shown in Figure 22(a), LBFS consists of LBFS client and seeved both sides maintain
chunk indexes in chunk database.

Figure 22(b) shows how LBFS works when a file is written to avsefrom a
client. When a user closes file, a client chooses a file dascignd calls MKTMPFILE
RPC; subsequently, a server creates a temporary file. Atdits a file into chunks
(chunkl and chunk2) and compute hash keys of chunks, arslCAQINDWRITE RPCs

with hash keys. Suppose the server has shal (hash key fokIhdout does not have
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sha2 (hash key for chunk2). Server returns HASHNOTFOUNDsF&?2 request; that is,
server does not have chunk2. The client sends only chunk&vers and server create a
file with chunkl (previously saved chunk) and chunk2 (chusdeived by TMPWRITE

RPC). LBFS can be considered as a client-based deduphchéicause the client split
the file into chunks and saves the indexes. Also, LBFS can bsidered as end-to-end
redundancy elimination because client and server holde sdiunks and indexes, only
unique chunks are transferred through the network, and &idés (client and server)

maintain chunks for unique and redundant files.

3.7 Network-wide Redundancy Elimination

A study [4] proposes network-wide deployment of redundaglayination tech-
nology. Authors assume that routers have the ability toaleiad encode redundant
content from network packets on the fly by comparing packaterus that were stored
in a cache previously. In this approach, unique packets andsponding fingerprints of
bytes in packet payload are saved into a packet store andgnngestore. When a packet
comes to a router, a small sized window slides on the payleadpacket, and finger-
prints are computed for all windows. Among all fingerprimtespresentative fingerprints
are selected randomly. If the same fingerprints are founideicache, the matched region
from pointed byte regions on a payload are expanded botletettand to the right while
comparing the two packets (incoming packet and packet ihegad he expanded region
is replaced by a small sized shim header.

Figure 23 illustrates how many redundant packets are rechowagure 23(a)
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shows traditional shortest path routing where 18 packetdransferred from a sender
to two destination®); and D,. Using redundancy elimination on the routers, padRet
on each link is removed as shown in Figure 23(b), which is a 38&tiction of total
packets. This study proposes redundancy-aware routed basedundancy profile (that
explains how oftent content is replicated across diffedsgtinations) for intra domain
routing and inter domain routing. Figure 23(c) supportsitiea that redundancies are
further reduced using redundancy-aware routing, whichuamhto a 44% reduction of

total packets.

3.8 Inline & Offline Deduplication

Inline deduplication [16] [11] runs deduplication beforata are saved onto disk
storage. iDedup [72] has been proposed as inline dedupliicédr primary workload.
iDedup exploits spatial locality and temporal locality @imgperformance (running time).
For spatial locality, iDedup performs selective dedugl@aand mitigates the extra seek
time for sequentially read files. For this purpose, iDedugnexes blocks at write time,
and only deduplicate full sequences of file blocks if and ainlye sequence of blocks are
1) sequential in the file and 2) have duplicates that are seiglien disk. For temporal
locality, iDedup maintains dedup-metadata &®ast Recent Used (LRWdache by which
iDedup avoids dedup-metadata 10s.

ChunkStash [11]is a flash-assisted inline deduplicatistesy where chunk meta-
data (with chunk index as key, and with chunk location andtleras value) are saved into

flash memory rather than disk. Considering that flash mensd9 times faster than disk,
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ChunkStash reduces the penalty of index lookup misses in R®Nth increases inline
deduplication throughput. ChunkStash also uses in-meimasi tables using the variant
of cuckoo hashing [61], and compact key signatures ratlaer fill keys are stored in the
hash table, which reduces RAM size.

HYDRASstor [16] is a grid of storage nodes. It works based oms&riduted hash
table (DHT) to save blocks into distributed storages, milie-duplication based on im-
mutable and content-addressed and variable-sized bldatasyesilience by erasure cod-
ing, load balancing, preservation of locality of data stnedy pre-fetching. HYDRAstor
achieves scalability (by DHT), efficient utilization (bydigplication), fault-tolerance (by

data resiliency), and system performance (by load balgnhticality, and prefetching).
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CHAPTER 4
HEDS: HYBRID EMAIL DEDUPLICATION SYSTEM

In this chapter, we show a server-side deduplication comppHEDS (Hybrid
Email Deduplication System) for the proposed dedupliceiamework. HEDS removes
redundancies by trading-off of file-level and block dedcgtion for email systems while

achieving good storage space savings and low processimigead:

4.1 Large Redundancies in Emails

Email is a prominent method of communication today, and tlame of emails
is greatly increasing and requires huge storage space ahsameers. Email servers have
large amount of redundancies. For example, an email withiphelrecipients is copied
into multiple mailboxes, and email threads (where emailthersame topic are repeatedly
sent and received with same or similar attachments) inenegkindant attachments. The
redundancies in the emails are further increased as theppred over multiple storages
for reliability or performance.

The volume of email data can be reduced by properly remowviegedundancies.
Fixed-size and variable-size block deduplication can elus find redundant contents
in emails. However, fixed-size block deduplication cannot fredundancies between

similar emails whose beginning contents are changed dueetoffset shifting problem.
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Variable-size block deduplication efficiently finds redandies of similar emails but in-
creases processing time overhead due to expensive chunkisigling a window. File-
level deduplication can be used to find redundancies of daggiemails with multiple
recipients quickly, but cannot find redundancies insideilsnaad attachments, resulting
in low space savings.

There have been few studies to remove redundancies fourrdail. eSingle In-
stance Store (SIS) [7] uses file-level deduplication whareraail is the unit of compared
data. In this approach, only unique email is saved, and cahtremails are linked by
pointers, which increases storage space savings by noigséng same emails. However,
SIS does not exploit redundancies within email messageattachments.

Considering the overhead as well as performance of a dedipln, we developed
Hybrid Email Deduplication System, HEDS, that trades-dfile-level and variable-size
block deduplication in terms of space savings and indexlmad. HEDS separates at-
tachments from an email, runs file-level deduplicaton ferrttessage body and separated
attachments, and adaptively runs variable-size blockolezition only if data size is over
a predetermined threshold. The reason for this threshahdismall sized message body
and attachments are generally unique, and that using blediplication for small data
does not give any performance benefits considering the gsotgoverhead. Evaluation
of results using real email datasets show that HEDS acheege®d deduplication ratio
while keeping the CPU and memory overhead manageable. foherd sheds light on
in-line deduplication for email servers. This chapter igamized as follows. We describe

the design and implementation of HEDS in Section 4.2. Th&uatian results are shown
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Figure 24: Proposed hybrid email deduplication system (BED

in Section 4.9. We conclude this chapter in Section 4.13.
4.2 Hybrid System Design

To explain the architecture of HEDS, we begin by presentingpeerview of
HEDS, and then elaborate each module in HEDS. HEDS is a skaged deduplication
that consists of six modules including EDMilter, meta dataver, chunk index cache,
bloom filter, storage server, and email de-duplication @ligo (EDA). When an email
comes in the Mail Transfer Agent of a receiving SendmaileeizDMilter intercepts the

email and divides the email into meta data and content. @botmsists of message body
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and attachments. EDMilter forwards the content to the Emea#duplication Algorithm
(EDA) through a virtual file system, and delivers the metadatthe meta data server.
The meta data server holds meta data such as email id, nresipand sent date. EDA
deduplicates content that is interceptedLbypf use through a virtual file system. EDA
plays a key role in the deduplication and communicates witbther modules. We im-
plemented EDA with filesystem on userspace, FUSE [28]. Clinaix cache and bloom
filter speed up processing time by reducing the number ofabsksses. We explain each

module hereatfter.

4.3 EDMilter

As shown in Figure 25, we have developed the Email Dedupdicdilter, called
the EDMilter, based on the Milter [49] API. Milter is an emélter that intercepts emails
coming into the sendmail server. When a sendmail serveiversean email, the Milter
Library accepts an email from the Mail Transfer Agent (MTAdgpasses the email into
the EDMilter with a callback. The EDMilter extracts neededtadata from the SMTP
header such as a mail id, senders, receipients, the numbrecipfents, and the size
of email content that comprises of the body and attachmeAtsthe same time, the
EDMilter receives the content from the email and requessat@ it into a directory that
IS a mounting point in a virutal file system. EDMilter also derthe email meta data to

the meta data server through a message queue.
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Figure 25: EDMilter

4.4 Metadata Server

The metadata server saves email meta data and chunk indexeach email.
Email meta data includes email id that is 14 byte stringsprewts, the number of re-
cipients, and the size of email contents. The chunk indeseesegeived from the Email
Deduplication Algorithm (EDA) when EDA splits an email cent to chunks if the size
of the content is over the threshold. Ultimately, the metadarver saves the meta data
and chunk indexes into a meta data store. Meanwhile, to speedading and writing
based on temporal locality, the metadata server mainta@ta data and chunk indexes of
the latest emails in a meta data cache. Each meta data ingdhe bas a time stamp to
evict old meta data based on Least Recently Used (LRU) intbassache grows over the

cache size limit. The size of the metadata cache is confitgirab
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45 Bloom Filter

A Bloom filter is used to see if duplicate chunks of a currenagexist in chunk
storage. The Bloom filter is a bit array of m bits, that are ed tnitially. Given a set
U, each element w( € U) of the set is hashed usirighash functions:, ..., h;. Each
hash functiom;(«) returns an array index in the bit array, that ranges from @:te 1.
Subsequently, a bit of the index is set to 1. If the bit of theéexwas set to 1, it stays
1. The Bloom filter is used to check if an element was alreadgdato a set. When an
element attempts to be added into the set, if one of the brtegponding to the return
values of hash functiorts,, ..., i is 0, the element is considered as a new one in the set. If
bits corresponding to return values of hash functions drg, ghe element is considered
to exist in the set. However, the Bloom filter has a false pasivhere it says that an
element exists though it does not. In HEDS, the purpose tehesBloom filter [6] is to
speed up the writing of emails or chunks by reducing the nurobeisk accesses. DDFS
(Data Domain File System) [78] shows how big the memory sizd3foom filter should
be used with a certain false positive rate; for example, toese a 2% false positive, the
smallest size of the Bloom filter i&s = 8n bits (m/n = 8), and the number of the hash
functions can be 4K = 4) wherem is the size of the Bloom filter in bitg; is the key
size. We use four hash functions, and the key size is 160Wwitsh is the size of the
SHAL [56] hash key. Therefore, the smallest size of the bldter for our case is 8 *

160 bits = 1280 bits.

50



4.6 Chunk Index Cache

Chunk index cache is the next level of cache after Bloom fiéted saves indexes
for chunks that are saved as unique chunks. The chunk indegedassified into three
different categories based on what the source of the chuthes source can be an entire
email, an attachment, or part of an email text. Chunk indexdsatest emails are saved
into the chunk index cache, and if chunks or a chunk of a cuaerail exists in the chunk
index cache, the chunk(s) is not saved into the chunk stoeedisk. Because of limited
size of the chunk index cache, old indexes are evicted tolcktorage if size of cache
grows over a certain threshold. Likewise, loaded indexas fthe chunk store have new

time stamps. The key of each entry in chunk index cache is al9t#&h value of a chunk.

4.7 Storage Server

The storage server checks whether or not the chunks of thentwemail exist in
chunk storage by accessing the disk, saving non-existemkshinto the chunk storage,
or reading chunks from chunk storage. We have used Berk&dgbchunk storage, and

pairs of<chunk index, chunk are saved into the chunk storage.

4.8 EDA (Email Deduplication Algorithm)

The Email Deduplication Algorithm (EDA) interacts with ather modules in
HEDS. Algorithms 1, 2, and 3 show how EDA works on an email withvithout attach-
ments. As shown in Algorithm 1, EDA separates email contamtsmessage body and

attachments that are further divided into individual dttaent. As shown in Algorithm 2,
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Algorithm 1 Email Deduplication Algorithm
Input: email content

1: if Not Exist(attachmentghen > email without attachments
2: messageBody- email content

HybridDedupDecision(messageBody)

4: else > email with attachments

w

5: separate email content into message body, attachments
6: HybridDedupDecision(messageBody)
7 for all each attachmer attachmentslo
8: HybridDedupDecision(attachment)
9: end for
10: end if

Algorithm 2 HybridDedupDecision
Input: data, sizethreshold

1: if size(data)> sizethresholdthen > variable-size block deduplication
2 chunks« variableSizeChunking(data)

3 for all each chunke chunksdo

4: checkindexAndSaveData(chunk)

5 end for

6: else > file-level deduplication
7 checkindexAndSaveData(data)

8: end if

EDA checks the size of a divided attachment or message bbsligel of the data is over
a configurable threshold, EDA splits the data into chunksdiggivariable-size chunking
based on Rabin fingerprint [64]. Then, as shown in AlgorithnEBA checks to see if
each chunk or data has been already saved based on Bloonarittehen chunk index
cache. In case of chunk index cache miss, EDA checks indéxasuak store in disk.

If the Bloom filter says “no” (this means chunk or data are ueig EDA saves a chunk

(or data) and the corresponding index into store. The retmsoheck chunk index cache
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Algorithm 3 Check Index and Save Data
Input: data
Output: saved data

1. if ExistinBloomFilter(data)then

2 index<«+ hash(data)

3 if ExistinChunkIndexCache(index)then > duplicate in cache
4 return

5 if ExistinChunkStore(index)then > cache miss, duplicate in storage
6 return

7 end if

8: end if

9: end if > unique data

10: index<— hash(chunk)
11: saveToStore(index, chunk)

after Bloom filter says “yes” (that means chunk or data mayeloeindant) is due to false
positive of Bloom filter: the chunk or data may or may not baurethnt. Also, the reason
for relying on size is that small sized message body or attacits tend to be unique, and
using variable-size block deduplication does not give agydhits considering overhead
costs.

Figure 26 shows how variable-size block deduplication wwarka case where
EDA adaptively runs block deduplication. As is shown in Fg@7, EDA basically runs
file-level deduplication if size is under the threshold. Histcase, EDA does not separate
the content into chunks but considers the content as a clioakis, none of variable-size

chunking is necessary, which reduces index and processergead.
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Table 2: Datasets

Enron dataset Gmail dataset
Type Corporate emails (Enron)Personal emails
Attachment Removed Retained
Number of users 150 1
Number of emails 0.5 million 0.01 million
Size of dataset 1.3GB 1GB
Duration 1998 - 2002 2007 - 2011

4.9 Experiment Setup

We evaluate HEDS with respect to deduplication performaand the overhead
costs of memory and CPU usage with the generated chunk isdg¥e compare HEDS
with file-level and variable-size block deduplications. #s the deduplication perfor-

mance, we use a deduplication ratio that is computed as below
Dedup ratio = 1 — (deduped size | original size)

For the experiments with HEDS, we have set up two sendmagsyswhere one
system sends and the other system receives emails. We glyei® an internal DNS
server for the mail servers. The speed of network cards of¢imeers is 100Mbps. All
servers have a Linux operating system whose kernel versi@r6i35.9, and the version
of mail servers is sendmail 8.14.4. We experiment with twaskats including a corporate
email dataset, called the Enron dataset [42] and a singtegusa| dataset. Table 2 shows
the summary information of the two datasets.

For the Enron dataset experiment, we created 150 mail usethd receiving
email server, according to the recipients shown in the e@at&gith the gmail dataset, we

created only one email user who receives all the emails,eagrttail dataset belongs to
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Figure 28: Distribution of the Enron corporate email sizes

one person. At a sender’s email server, emails were sentyonadsequentially, in the
order of emails in the datasets. For all cases, we analyzgeitheplication ratios and the
overhead of CPU and memory to process and store the chunkeisde

We adjusted the threshold size, based on which HEDS perfdeaisplication on
either an file-level or a block, adaptively. In order to gaisight on a proper threshold
size, we observed the distributions of email sizes of thasas.

Figures 28(a) and 29(a) display complete distributions] Bigures 28(b) and
29(b) are distributions with ranges zoomed in ranges foroaesl look. The mean and
median email sizes for the Enron dataset were about 1.9 KB0ah&B, respectively.
Meanwhile, the mean and median email sizes for the gmaikdataere around 28 KB
and 5 KB, respectively. Note that the Enron dataset did ndtude attachments in the
emails. Thus, we select the threshold sizes that are abaueater than the mean value
of 1 KB and 2 KB for the Enron dataset. Bigger threshold sizeschosen including 512

KB, 128 KB, 16 KB, and 4 KB for the gmail dataset. As for the exteel average chunk
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Figure 29: Distribution of the gmail personal email sizes

size, we have used 0.5 KB for the Enron dataset, and 2 KB fogthail dataset, con-
sidering the means and medians of the datasets. We notééhatevious deduplication
studies [44, 46, 78] have used the expected average chumkasiging from 4 KB to 64

KB.

4.10 Deduplication performance

In this section, we measured a deduplication ratio thatcatds how many re-
dundancies are removed. Overall, we discovered that mastdohdancies are found in
attachments rather than in message bodies. Thus, for eep@nron) datasets without
attachments, variable-size block deduplication and HEB&ved lower deduplication
ratios than file-level deduplication because the low dedapbn ratio cannot offset the
index overhead. However, for the gmail dataset with attaits) variable-size block
deduplication and HEDS has a greater deduplication ragdadlarge redundancies com-

ing from attachments. We explain in detail.
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Figure 30 shows the deduplication ratio of Enron datas&pp ‘dedup’ means
file-level deduplication. ‘Block dedup’ means variableesblock deduplication. ‘Hy-
brid’ means HEDS with variable thresholds, 1 KB and 2 KB. Adddiplication showed a
deduplication ratio over 55% on average. This means a sgmdail server sent to 2 re-
cipients on average. Without the index as shown in Figura)3@{(ock deduplication and
HEDS achieved 2% to 3% more deduplication ratio than filelleleduplication. How-
ever, with the index as shown in Figure 30(b), the slight athge of block deduplication
and HEDS is overridden due to chunk index overhead.

For gmail dataset as shown in Figure 31, the deduplicatiba = different as
compared to Enron datasets. Figure 31(a) shows deduphaatios without chunk index
overhead. Since the gmail dataset belongs to one persongdweiksee the benefit using
file-level deduplication. That is, the deduplication ratidfile-level deduplication is 0%
meaning that the file-level deduplication cannot reduce stoyage size. By contrast,
block deduplication reduced 15% more space than file-leedugdlication. HEDS with
small threshold sizes like 4 KB, 16 KB has the same spacegsasblock deduplication,
and HEDS with large threshold sizes like 512 KB reduces 10%ermspace savings than
file-level deduplication. Figure 31(b) depicts dedupliatratios including the chunk
index overhead. Even after including the overhead, the\behaf deduplication ratios
shown in Figure 31(a) still remains, which indicates tha tBmoved duplicates well
over-compensate for the overhead.

We next investigated the sudden increase of deduplicatitbmsrobserved in Fig-

ure 31(a) with the gmail dataset. We found that they wereathby temporal locality of
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Table 3: Locality of attachments

emailid | Date | Size | Attachment size Dedup ratio
(bytes) (bytes) (%)
74 Jan.8| 12873 9844 0
75 Jan.8| 17805 9844 32.09
80 Jan.8| 11957 9844 33.08
81 Jan.8| 12012 9844 41.07
86 Jan.9| 14896 9593 0

attachments. In Table 3, we show the changes of a relativeptiedtion ratio compared
to the previous email from the 74th email to the 86th emaile Tirst column shows the
email ids in the dataset. The second column displays théveztdate. The third, fourth,
and fifth columns show the size of an entire email, the size@iteached file, and relative
deduplication ratio compared to the previous email, reppedyg. Five emails in Table 3
are in the same email thread, where each email has the saeetsartd title of attach-
ment as the other emails. The 74th email shows 0 deduplicedim that does not show
a deduplication benefit. However, every time the 75th, 8atld 81st emails were re-
ceived, we acquire a high deduplication ratio because watlsave the same attachment
that was stored in the 74th email already. Interestinglyse® that the 86th email does
not show a deduplication ratio, though the title of attachtiethe same as other emails.
Looking into the attachment, we find that the contents of tteeched file in the 86th email
have been changed a lot, so even block deduplication camabidundancies inside an
email. This observation tells us that temporal locality magtl be found in emails, and
thus, we can exploit the temporal locality with caches.

Table 3 illustrates that 1) file-level deduplication doesdetect the same attach-

ments in emails with a different message body. 2) block dichtpn can detect the
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same attachments, but it has to do chunking of the same atéadh every time emails
are received, resulting in unnecessary CPU and chunk indsskead. Furthermore, if the
email contents are changed heavily, it does not detect dathirparts in the attachments
as we see at the 86th email; 3) HEDS can detect the same agaththough a message
body is different because it extracts attachments unlikelé¥el deduplication. More-

over, an attachment in the next email is not chunked if thé kakie of the attachment is

found, resulting in less CPU and chunk index overhead owaiadieduplication.

4.11 Memory overhead

In order to find the existence of a chunk in a new email in thetexg chunk index,
the chunk index is stored in memory. The more chunk indexesnsienore memory
overhead. Here, we evaluate the amount of the chunk indexesiged with different
deduplication approaches. The more chunks an email isaepainto, the more chunk
indexes are created. For our experiments, our system lgelédaough memory and thus,
all the chunk index could be stored in memory. In practicaydaer, memory would
contain only a partial chunk index due to the limit of cacheesand handle continuous
incoming emails that result in a huge demand in the cachen,Tdheache management
scheme, such as LRU, can be used.

As expected, we find that a block-level deduplication shdvedargest chunk in-
dex overhead, whereas an application-level deduplicatamvs the least overhead. Fig-

ures 32(a) and 32(b) indicate the accumulated chunk indes svith the Enron dataset
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and the gmail dataset, respectively. HEDS shows varyingnkhodex overhead be-
tween application-level and block-level deduplicatiohesmes corresponding to different
threshold sizes. HEDS with a small size threshold, e.g. 4 KB6KB, shows a close
chunk index overhead than a block-level deduplication. el@v, HEDS with a large size
threshold, e.g. 512 KB or 128 KB, shows a less chunk indexieas than a block-level
deduplication. It is observed that there are sudden inessiachunk index overhead over
time. This is because many chunks are created from a largé sinail that does not have
much redundancies compared to previously saved chunkastingsin creating excessive

chunk indexes in memory.

412 CPU overhead

Finally, we observe the extra CPU overhead of an applicd@eel, HEDS, and
a block-level deduplication scheme. Figure 33 shows the Ggdgde measured with the
datasets. As for the Enron dataset, an application-levatlglecation takes 1.6 times as
much CPU as sendmail without a deduplication scheme. A biead deduplication
shows the highest CPU usage, and HEDS’s CPU usage stayseetinestwo schemes.
The gmail dataset shows the similar relative behavior antbaghree kinds of schemes,
but uses generally higher CPU usage, as itincludes attadisraed thus a greater number
of chunks is generated. In short, HEDS achieves a good tifdaktoveen an application-

level and a block-level deduplication scheme.
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4,13 Summary

We developed a server-based and hybrid deduplication app(®EDS) for email
servers to minimize data storage size while minimizing therlbead of CPU and mem-
ory. It performs hybrid data deduplication adaptively,re granularity of a file-level or
chunk-level, based on the size of emails and the existeratsmhments. We have imple-
mented and evaluated the hybrid approach on email servérseel email data sets, and
we have shown that it achieves a significantly better redoatatio of storage consump-
tion than file-level deduplication, and low CPU and memorgrieeads than variable-size

block deduplication.
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CHAPTER 5

SAFE: STRUCTURE-AWARE FILE AND EMAIL DEDUPLICATION FOR
CLOUD-BASED STORAGE SYSTEMS

In this chapter, we introduce SAFE, a client-based dedatio that is fast and
has the same space savings as variable-size block dedigulibg using structure-based
granularity rather than physical chunk granularity forutlebased storages.

Cloud-based storages including Dropbox [14], JustClow],[8nd Mozy [52]
have been popular as people can access data at any time ,apyahd with various types
of devices such as laptops, tablets, and smart phones. dtd-bhsed storage services
use de-duplication techniques to avoid sending and stalupdicate files (or blocks),
reducing network bandwidth and storage space, which ghestbsequent benefit of
data upload speed. Existing deduplications (file-levelfareti-size block deduplication)
that cloud-based storages use are fast and have a low indekead, but find fewer
redundancies than variable-size block deduplication. &l@r due to excessive CPU
and memory overhead from chunking, indexing, and fragntemtavariable-size block
deduplication cannot be used for cloud-based storages.

Thus, we developed SAFE, Structure-Aware File and Emailupgdation, that
achieves both fast speeds and shows good space savingerits &y using structure-
based granularity for cloud-based storage systems. BEiuauesults show that SAFE
has as good storage space savings as existing variabléleide deduplication while

being as fast as file-level or a large fixed-size block deidapon.
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5.1 Large Redundancies in Cloud Storage Systems

A structure file is a file that consists of meta data and objdatdext and image
objects. Typical examples of structure files are compreslesdzip, rar), document files
(Microsoft Word document, Powerpoint document, and PdetBlocument Format-PDF),
and emails. Everyday, people are creating large numbensuatsgred files, and cloud-
based storages of document suites contain large amourttsiciused files. For example,
for one of datasets that we used, 89% were structured filed &¥dwere unstructured
files.

We observed that a structure file can be decomposed intargaotgects with off-
sets whose positions are dynamically changed based ondaigdo of the objects. As an
example, an email is decomposed into multiple objects sscheta data, message body
which is text, and attachments. Among attachments, a steufite is further divided into
objects like meta data, text, and image objects. Thus, we ghat following structures
of a file, we can remove redundant objects without expensiuaking.

Based on our observations, we developed SAFE, a fast dd&sed deduplication
that runs on the client-side for cloud-based storage syst&8AFE is as fast in processing
time as file level (or fixed size block deduplication) as wallraving the same storage

space savings as block deduplication by using structuseebgranularity.
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Figure 34: SAFE deduplication architecture

5.2 SAFE Modules

SAFE consists of cooperative modules through which a filaved into storage.
We begin by outlining an architecture of SAFE with modules] elaborating each mod-
ule. We explain structures based on which objects are egttand de-duplicated. Last,
we describe how to embed SAFE into a popular cloud storageceeDropbox.

SAFE incorporates our Structure-Aware de-duplicationhvekisting file-level

deduplication. As shown in Figure 34, SAFE system considBwail parser, File parser,
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Object-level dedup, Object manager, and Storage managduleso SAFE also exploits
file-level deduplication to identify redundancy of unstuwred files for low CPU and
memory overhead. SAFE has two parsers including email parse file parser. The
Email parser module extracts attachments of an email baseunail policy, and saves
indexes (hash values) of the body and attachments for recatisn of an email. File-
level dedup module receives input data (that is, files) fromaieparser or file system. If
a file is an unstructured file such as an image or a video file ESdiFectly saves the file
into a storage after compression at the Store manager mddthierwise, a structure file
is sent to the File parser where afile is decomposed into tdpased on a file policy. The
File parser sends parsed objects to the Object manager. Ojeetdevel dedup module
computes hash value of each object and checks if an objeatuplecate based on the
object index table. Last, the Store manager saves unigeetshjhose indexes are sent
from the Object-level dedup into storage after compressiva elaborate each module

hereafter.

5.3 Email Parser

The Email parser runs as a light-weight mail filter on a sentseaver [69]. It
intercepts an email using Milter [49] APIs when a Mail TrarsAgent (MTA) of a send-
mail server receives an email. Milter API is a part of the Seail Content Managment
API that can look up, add, and modify email messages. FigarélBstrates how the
Email parser works. When an email comes into MTA in an emaileseMilter intercepts

and sends the email to the Parser that decomposes the etoathéta data, body, and
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Figure 36: Structure of an email
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attachments based on the email policy. The email policy trastare information of an
email as shown in Figure 36, and the structure is based orotheaf of Multipurpose
Internet Mail Extensions (MIME) [27]. The Email parser degmses an email based
on a boundary string that are given at “Content-Type:Bowwlan meta data, which is
“<boundary-" in the figure. There can be several attachments that arebgpihe same
boundary string, £boundary-". Each attachment may be encoded using different en-
coded type like “base64” that are designated by “ConteatiSier-Encoding”. Thus, the
Email parser runs decoding before processing (sendingher obodules) a decomposed
attachment.

In Figure 35, the Email indexer computes SHA1 [56] hash \alfemeta data,
body, and attachments decomposed; saves all indexes ietaahindexer table by using
the unique email ID that is a 14 byte string. The buffer hasreayadata structure where
it holds data decomposed from an email, and sends the artay(ttiat is, files) to the

File-level dedup where each file is identified to be uniquesdundant.

5.4 File Parser

The File parser decomposes three types of structured daotdites such as Mi-
crosoft Word (docx), Powerpoint (pptx), and Adobe Portdbteument Format (PDF).
SAFE deduplicates a file based on two key aspects: (1) howttaaobjects from a
file, and (2) what granularity is efficient for deduplicatio®SAFE uses an object or a
combination of objects for a granularity. We explain how e parser works in detail.

MS word (docx) and powerpoint (pptx) are based on the straaifiMS Office
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Open XML format which is standardized at ECMA-376 [18] an@If=C 29500 [37], as
shown in Figure 37(a). An Open XML file is a ZIP [62] file that ¢ams multiple files
such as texts and images. An Open XML file format containgwbfit sections (with meta
data and data) that are chained with offsets from the end ¢¢,aaind data are tracked
down along the offsets upwards. In Open XML format, data acated in sections with
local file headers in the beginning of a file. Track to a datasfaom “End of central
directory record” section with offset of “central direcgdneader” section that describe a
directory. The directory has offsets of files in it and thrbige offsets, a section of a file
is accessed. Each file section consists of a “local file héaamekfile data. The “local file
header” contains meta data such as compression method emndiie. Likewise, other
files are accessed through offsets in the “central dire¢teagler” section. In Figure 37(a),
Gray bars are signatures. Signatures of “end of centrattding record”, “file header” in
the central directory header, and the “local file headerOaf6064b50, 0x02014b50, and
0x04034b50, respectively. The encryption which comes betwocal file header and file
data is not shown.

A PDF physical format contains also multiple sections such &eader, a body,
cross references, and a trailer. A PDF structure is definé8@t32000 [1], and data
are accessed through chains of offsets. The header segtionthe beginning of a file,
which shows the version of a PDF file. The body section costalnjects with a text or an
image. The cross reference section has offsets that poinigjécts in the body section.
The trailer section at the end of file has offsets that poictéss reference sections. Thus,

data in objects are accessed through offsets from the endilef @pwards. The body
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section contains objects surrounded by “obj” and “endobgteof which may have a text
or an image. Two keywords including “stream” and “endstréaorround the data. A
stream is encoded by a compression algorithm and can be etbydhe corresponding
decompression algorithm shown in the meta data of the qljatied ‘dictionary’ (i.e,
<</[Type../Filterkdecompression algorithsl..>>). According to ISO 32000, there are
10 different decompression algorithms among which Flatede and DCTDecode are
used to decode a text stream and a JPEG image stream reslyectiv

Figure 38 shows how the File parser works. Dotted lines argrabflows and
solid lines are data flows. Output of the File parser is indexfeall objects including

individual objects and combined objects of a file. The Filespareceives and parses
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a structured file into objects based on file policy. Encodeeéatb are decoded based
on a decoding algorithm that is specified in structure. Thalmoer concatenates small
objects into a larger object to reduce number of indexes @obd The combined objects
are mainly small-sized meta data whose contents are alwaysged for each file, in
which case we cannot find any redundancy of the objects. Aegawbject that is not
combined comprises a 5-tuple including hash value of ancbdgngth of an object, ID
of container that contains an object (file ID for Open XML fatand obj ID for PDF),
decoding scheme (if specified), and object itself. A comtbiabject is a contatenation
of 5-tuples. The object putter sends an individual objech aombined object into the
object manager that subsequently holds the objects in @cidijffer until deduplication
of the objects is finished. The trigger combines all objedeies and sends them to the
object-level dedup where redundancy of objects are idedtifi

SAFE runs parsing and combining based on a different filepgler file type. To
do that, SAFE creates a dynamic instance for each file. SABEhabstract base class,
FilePolicy, that defines functions to be implemented imvdsticlasses such as DOCXFile-
Policy, PPTXFilePolicy, and PDFFilePolicy. The file parserates a derived class object
corresponding to a file type and executes functions of tresa@ject. Thus, a structure
file with new format can be implemented as a derived class s/basic functions are
already defined.

For combining, SAFE puts together metadata objects thasmd!, but uses a

image and text(content) objects without combination bagetbgical structures per file
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type. Figure 39 illustrates a logical structure of docx aptkgdiles. As shown in Fig-
ure 39(a), texts of a Word file are contained in a documentobjdct, and image objects
are under a media directory, and other directories showharfigure contain metadata
objects. Likewise, a Powerpoint file in Figure 39(b) has a imelirectory, but has dif-
ferent metadata objects. In addition, texts per slide atesired into each individual

slide<number-.xml. A presentation.xml holds the pointers of slide olgect

5.5 Object-Level Deduplication and Store Manager

The Object-level deduplication module receives indexesbpécts from the File
parser, and checks if each index exists in the object ind#&.t# an index does not exist,
the index is unique. Unique indexes are are saved into arciinj@ex table and sent
to the Store manager module that fetches objects corresmpial the unique indexes
from the Object manager module. If an index does exist in thjeab index table, the
index is redundant. Redundant indexes are excluded fongtoiThe Object manager
module retrieves an object that store manger requests fier®bject buffer. The Store
manager stores a pair efobject index, object into object storage after compression.

Unstructured files are stored through Store manager wittheddplication.

5.6 SAFE in Dropbox

In this section, we describes how SAFE can be embedded intoud storage
service like Dropbox [14]. Dropbox removes redundancy itwoek and storage using a

large (4MB) fixed-sized block deduplication. Thus, we addreow SAFE can improve
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data reduction of current Dropbox with minimal additionakdchead of processing and
memory.

A recent study [13] discovers internal mechanisms of Drogiomeasuring and
analyzing packet traces between clients and Dropbox sen@ropbox is accessed by
Web Ul (http://www.dropbox.com) or dropbox client. We |leage SAFE into a Dropbox
client to deduplicate structured files in a client side. ayp consists of two type of
servers; one is control server and the other is storagersefemtrol servers hold meta
data of files such as hash value of a block and mapping betwieraad blocks. Storage
servers contain unique blocks in Amazon S3 [3]. Dropboxntlgy/nchronizes its own
data and indexes with Dropbox servers.

Figure 40 shows how Dropbox works. Circles with numbers shwavorder in
which a file is saved.File-A is a file andBlk-X is a block which is separated from a
file. h(BlIk-X)means hash value of a block. ThibkBlk-X) andBIk-X are considered as
hash values and blocks which already existed before a filavisds A user’s device is
mobile phone, tablet, labtop, or desktop. Dropbox follolws hext steps to save a file.
(1) As soon as a user savEse-A into a shared folder in a Dropbox client, fixed-size
block deduplication of Dropbox splits a file into blocks bésas 4 MB granularity, and
computes hashes of objects. If a file is larger than 4 MB, adithé same as an object,
and an hash value of a file is computed. Dropbox uses SHA256¢50mpute a hash
value. (2-4) Dropbox client sends the computed hash valtiadite to a control server
that returns only unique hash values not found through ehgglkreviously saved hash

values. In this example, hash Bfk-B is returned to a client because hashBik-A is
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Figure 40: Dropbox internal mechanism

found to be a duplicate. (5-6) A Dropbox client sends to tlueagje server the blocks
of returned indexes. Ultimately, storage servers haveusigjocks across all Dropbox
clients. Note that storage saving occurs in the server khamnot savindlk-A again),
and the incurred network cost is reduced thanks to seriliad only.

SAFE can complement the fixed-size block deduplication irr@pbox client as
shown in Figure 41. Suppose that an unstructured file (F)larl a structured file (File-
B) are added into a Dropbox folder. The file-level dedupia@amodule checks duplicate

files using the file index table whose entry has a paikbfsh value of file contents,
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file path of the first unique fite. For duplicate files, the entry is added into a file index
table without savings of a file in local storage. An unstruetufile follows the fixed-
size block deduplication. A structured file is fed into théeFparser, and objects of the
file are extracted. The trigger module calls the REST API [@Bpropbox to send the
hash values of objects. The control servers act as an dejtdedup module. We
used SHA256 hash function in SAFE for compatibility with Pbmx. The store manager
sends objects corresponding to returned hashes from aotestwer to a storage server
through the REST API. Thus, in the integration of SAFE witloplbox, control servers

function as object-level dedup module. In the Figure 41ckHonts such as(Blk-X),
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h(Obj-X), Blk-X, and Obj-X are existent already befofiée-A andfile-B are saved.

5.7 Metrics and Setup

We discuss the performance evaluation criteria and datased in this section.
We then show the evaluation results of performance and eaérbf the proposed SAFE
approach, compared with a file-level deduplication thatQlesid [39] and Mozy [52] use,
a fixed-size block deduplication that Dropbox [14] uses, wtable-size block dedupli-
cation schemes.

The major performance metrics are the deduplication rattbiacurred data traf-
fic amount. The deduplication ratio indicates how much gferspace can be saved by

removing redundancies, and is computed by Equation (5.1).

(5.1)

InputDataSize — ConsumedStorageSize « 100
InputDataSize

Data traffic incurred designates how much data are traesfao a storage that is the
amount of unique data out of the input data.

As overhead metrics, we measure the processing time ang siwke  Since the
overhead is proportional to the data size, we compare theepsing time and index size
overhead relative to the file-level deduplication that esléast overhead.

We collected real datasets of structured files includingkdpptx, and pdf from
the file systems and emails of five graduate students in the separtment. Table 4
summarizes the information of datasets that were colldcted file systems and emails.
Individual user’s data is labeled as ‘P-'#, and ‘Group’ is sum of all personal datasets

and ‘no.’ is the number of structured files in each datasattif®experiments with email
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Table 4: Used datasets
file systems emails

Data set| size (MB) no. | size (MB) no.
P-1 1,721 4,384 637 955

P-2 509 590 554 720
P-3 266 523 249 480
P-4 869 1,499 358 859
P-5 864 1,430 744 823

Group 4,229 8,426 2,542 3,837

datasets, we deployed two sendmail servers; structuredifieeattached to emails from a
sending sendmail server, and the attached structuredfdexaacted by the email parser
at a receiving sendmail server. Structured files in the fistesy datasets are fed into the
file parser directly.

Figure 42 shows the ranges of the file sizes in the email gr@ipgsdt whose
mean value (673 KB) is relatively small compared to the maxmblock size 4 MB of
Dropbox. 10 and 20 in x-axis indicate 5 MB and 10 MB, respetyiv Meanwhile, we
measured the percentages of the structured files amongaahat files of five people’s
emails. As shown in Figure 43, the structured files occupy 8@%wf all attached files.
PDF occupies 44% and the percentage of docx and pptx is 11&gdries such as jpg,
bmp, and png belong to unstructured file types. Despite thedl sze of datasets, the
high percentage of structured files (89% for all types ofdtred files and 55% for docx,
pptx, and pdf structured files) validates the popularitytafictured file types on which
SAFE is based.

The datasets used may be considered to be relatively snwllevér, we note that
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the results obtained in this evaluation will only be stranigrger datasets of an organi-
zation are used, since the redundancy levels would becoeageyr For the variable-size
block deduplication, we use 2 KB, 8 KB, and 64 KB as minimunerage, and maximum
chunk sizes, respectively. For fixed-size block dedupboatwe use 4 MB as the fixed
block size as Dropbox does. Fixed-size block deduplicasdhus the same as the file-
level deduplication for files smaller than 4 MB. We carried the evaluations on Fedora

16 Linux operating systems of kernel 2.6.35.9 SMP on InteeCbDuo 3GHz.

5.8 Storage and Data Traffic Reduction Performance

We first evaluate the deduplication ratio for each datasie¢. deduplication ratio
of a group is larger than that of each personal dataset. Fofilthsystems, the high
deduplication ratio of a group is due to the same or similarteat files shared among
people in the same department. For emails, the high de@diplicratio of a group is
due to duplicates of multiple-recipient emails as well asghme or similar attachments
delivered and updated through email threads.

Figure 44 presents the deduplication ratio of six datasetading personal datasets
and a group dataset. File, Block-F, and Block-V means fikelldeduplication, fixed-size
block deduplication and variable-size block dedupliaaticespectively. Deduplication
ratios with the email datasets are higher than those witHillheystem datasets due to
the frequent email threads in addition to shared attachesl dinong people in the same
department. Compared to the file-level deduplication iruFégd4 on an average based

on group datasets, SAFE can further reduce 15% redundaaruieachieves about 40%
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better performance than that of the file-level deduplicatior the email datasets, SAFE
shows almost 99% of the performance level of the variatdesiock deduplication. Fur-
thermore, SAFE’s deduplication ratio is better than thealde-size block deduplication
in the file system datasets. It is because SAFE can find thedaoies of objects more
efficiently in complicated structured files than the vargbize block deduplication, es-
pecially for PDF that uses compressions for more individigécts than other structured
files such as docx and pptx. Note that file system datasetstiwaseeas many PDF files
as email datasets.

We next evaluate the incurred data traffic for group dataseshiown in Figure 45.
For file system datasets, SAFE shows the lowest data traffangrall dedeuplication
types: concretely, SAFE has the lowest data traffic with tleesfystem datasets, and the
second to the lowest (just behind the variable-size blodkudgwith the email datasets.
This supports that SAFE can be used as a deduplication tpehirior personal cloud
storage services like Dropbox due to the expected decraasetivork bandwidth con-
sumption. In addition, for email datasets SAFE reduces 5 tlaffic out of the email
group dataset (1.4 GB out of 2.5 GB). Compared to the filetHawd fixed-size block
deduplications, SAFE has lower data traffic by 30% for theiedaasets (and 15% for
the file system datasets), which indicates that SAFE effigieeduces the network band-

width requirement storing emails to cloud storages.
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5.9 Memory and CPU Overhead

Here we show the assessments of the processing time and gneweshead. As
shown in Figure 46, the file-level deduplication runs thedsssfor both datasets types,
due to no overhead of separating a file. We present relatveepsing time based on
file-level deduplication that (whose value is 1) is shown asefause y-axis is set in
log scale. The fixed-size block deduplication shows clogegssing time overhead to
the file-level deduplication. Even if it is slower than thefievel deduplication, SAFE
processing is relatively fast on average for the datasefgitéethat we do not use salient
cache management schemes in our implementation. In add8®AFE is faster by two
orders of magnitudes than the variable-size block dedafiic.

We now compare the relative index overhead in Figure 47. prkeessing time,
we present relative index overhead compared to file-levélipkcation. SAFE shows 2

to 3 times less index overhead than the variable-size bleckiplication. We use a 40
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bytes-hexadecimal string of SHA1 hash value for a chunkxndell testing deduplica-
tion schemes. Though smaller sized chunk index can redueshead of variable-size
block deduplication, the relative ratios shown in Figurewiduld be maintained. The
index overhead increases proportionally to the number @fuenchunks. For the email
datasets, the numbers of unique chunks for file-level dechtpin, fixed-size block dedu-
plication, SAFE, variable-size block deduplication werdk 2.5K, 33K, and 92K, re-
spectively. For the file system datasets, the numbers fér @aduplication scheme were
5K, 5.5K, 155K, and 248K, respectively. SAFE with the filetgeys datasets shows a little
more chunk index overhead than with the email datasets. i3 iscause the file system
datasets had higher percentages of pdf files than the entadeda. PDF files have a rela-
tively complex structure where files are divided to many $wigjkects, and the current file
policy we implemented for PDF saves each object indiviguaithout combining. By
combining multiple small objects into a large object as ia fiblicy for docx and pptx,

SAFE would reduce more chunk index overhead for PDF files.

5.10 Summary

We developed a fast client-based deduplication, SAFE #rabves redundant
objects based on a structure-based granularity insteagingj @ physical chunk gran-
ularity. Unlike traditional deduplication that is a trad#-between deduplication ratio
and processing overhead, SAFE gains benefits of both highpdiedtion ratio and low
processing overhead. Our experiments with real datasdtsrgiementation on a cloud

storage client show that SAFE achieves more storage spaicgsdy 10% to 40% and
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less data traffic by 20% on average than the file-level andiZedsblock deduplication
which are used in existing cloud-based storage servicesldition, SAFE shows permis-
sible processing time on average to be used in a client foidebase storage system, and
is faster by two orders of magnitude than variable-sizelbtteduplication. Thus, SAFE

can be used for deduplication in a client that should be fadtaoduces low overhead.
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CHAPTER 6

SOFTDANCE: SOFTWARE-DEFINED DEDUPLICATION AS A NETWORK AN
STORAGE SERVICE

In this chapter, we focus on removing redundancy in a chawwvden end-systems
through a network. As nodes are massively connected throetytorks, redundancy oc-
curs in various domains (storage and network) and in diweese including copying and
modifying files, redundant transfers through networkskbbpand replication in servers.
Simply leveraging data reduction techniques developedach @lomain does not give
benefits, and even incurs significant redundant processiadiead. In this chapter, we
present SoftDance, software-defined deduplication asveonietand storage service.

SoftDance chains and virtualizes storage deduplicatiahretwork redundancy
elimination by using Software Defined Network (SDN) to agkiboth storage space and
network bandwidth savings while reducing expensive owveihaf processing time and
memory size. SoftDance uses encoding and indexing scham8sftDance middlebox
(SDMB) and control mechanisms for an SDN controller. Evatraresults show Soft-
Dance reduces 2-4x more bandwidth than network-wide realurydelimination tech-
nique and achieves equal/close storage space saving tm@xise best storage saving

techniques.
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6.1 Large Redundancies in Network

Redundancies that occur in various domains (storage amerigtconsume stor-
age spaces and reduce available network bandwidth as nosl@saasively connected
through networks. In storage domain for data reductitata deduplication (Dedugd)as
been proposed [7] [40] [41] [44] [46] [63] [78]. Dedup compsatindexes of chunks (split
from file) and does not store redundant chunks by comparinmgieuindexes with indexes
of chunks saved previously. Each index points to a uniquakhln a network domain,
network redundancy elimination (NREas been studied [4] [5] [71] for data reduction.
NRE computes indexes [64] for the incoming packet payload, @moves redundant
byte strings in packets by checking packets saved prewiod$lough Dedup and NRE
share the same goal of identifying and removing redundatat, danctionalities of the
two are orthogonal. Thus, they do not provide any benefitedoh other and even incurs
redundant processing overhead on both end-systems andrketw

We propose an efficient framework feofivare-definedle-duplicatioras anetwork
and storage sersg (SoftDance) to save storage space and network bandwidile veh
ducing overhead of processing time and memory overhead.résepted in Figure 48,
SoftDance consists of SDMBs (SoftDance middlebox), Opemtthes, a SoftDance
controller, and lightweight modules at end-systems. SDMddnty performs encoding
and indexing algorithms. SDMB identifies a packet payloadfecoding, stores an index
of unique packet payload, and replaces redundant packé&igohwith an index (called
encoding). SDMB also maintains an appropriate indexes byneonicating with a Soft-

Dance controller. A SoftDance controller provides dedtgilon function virtualization
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Figure 48: SoftDance architecture

and control mechanisms by coordinating end-systems ambretlements. SoftDance
uses a packet payload as a unit of comparison, which enabtrse @hunking mechanism
through deduplication function virtualization. Consieythat chunking is a culprit of
expensive processing time, SoftDance reduces this priogggsie significantly. In addi-
tion, SoftDance distributes indexes to reduce memory @agtton SDMBs based on hash
based sampling [68]. Various index distribution algorighane designed and implemented
in a SoftDance controller.

To validate our approach, we implement the proposed framewmad algorithms
on both a testbed system and mininet-based emulation bg &sftware Defined Net-
work (SDN) technologies. We built a testbed system by usipgr®ySwitches, a flood-
light SDN controller, and Linux based SDMBs that interceptkets using userspace

netfilter library. Mininet-based emulation compares SaftPe with Dedup and NRE
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techniques based on typical Data Center Network (DCN) togiek including tree, multi-
rooted tree, and fat-tree. Our evaluation results from bedtbed and mininet-based emu-
lation show that SoftDance reduces 2-4x as much bandwidibtasork-wide redundancy
elimination (SmartRE) and has equal/close storage spawegs existing storage do-
main techniques. Furthermore, in scenarios of both entdsysand networks performing
deduplication redundantly, SoftDance achieves much effigprocessing and memory
overhead.

The rest of the chapter is organized as follows. We begin Ipja@xing Software
Defined Network as a background information in Section 6.2 d&scribe the design
and implementation issues on packet encoding and indelgogithms of SDMB and a
system coordination scheme of a SoftDance controller ini@eé.3. We evaluate our

approach in Section 6.7, and Section 6.12 concludes thigeha

6.2 Software Defined Network

SoftDance is based on Software Defined Network (SDN) to sefffipent paths
for removing more redundancies and reducing indexes inor&sy Software Defined
Network is a new paradigm that separates the control plastecttmputes forwarding
rules and the data plane that forwards data packets in a negl@ment. As shown in
Figure 49, SDN moves the control plane from a switch to a ediméd SDN controller
that has global network view and decides paths based oncapph requirements or
policies. When a data packet arrives at a switch without eesponding forwarding rule,

the switch asks a controller. Then, the controller sets &mdmg rules to the switch, and
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data packets are forwarded based on the rules.

6.3 Control and Data Flow

To effectively reduce redundancies in chains from clieotsérvers through a
network, SoftDance coordinates clients, servers, and S®Ndhg a SDN controller. A
SDN controller with global network view controls data trearservice requests of clients,
and provides an efficient path from a client to a targetedesel®ading to low processing
and memory overhead. Next, we explain the design and impitanen of SoftDance.
We start by presenting control and data flows. We then elédorathe encoding scheme
processed at SDMBs. Last, we describe four distributed imagxing algorithms.

SoftDance uses control flows to set up a service request frohemst and data
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Figure 50: SoftDance control and data flows

packets flow based on the set-up through switches and SDMBsSoffDance con-
troller coordinates control flows through communicationhwglients, servers, SDMBS,
and OpenVSwitches.

As drawn in Figure 50, the SoftDance process starts withemt$ deduplication
service request (C1). A client sends the request along Wwélclient’'s and server’s IP
addresses to a SoftDance controller. When a SoftDanceotientreceives the service
request from a client, the controller performs Algorithm A.controller computes and
selects a path between a requested client and a targetest, setvieves SDMBs and
switches on the selected path, and computes hash rangasi@feé SDMBs. Then, a
controller pushes flow table entries into switches on thé p@R). Figure 51 illustrates
forwarding tables with entries in each switch. A controBends hash ranges computed

to SDMBs on the path, and SDMBs set up the hash range for eabh(®3). Then, a
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Algorithm 4 SoftDance Controller
Input: inPacket(ServiceRequest)
Output: outPacket

senderlP getSenderIP(inPacket)

/] set up service

srclP =getSrcIP(inPacket)

dstIP =getDstIP(inPacket)
(SDMBList, switchList)«— setupPath(srclP, dstIP)
computeHashRange(SDMBList)
pushFlowEntry(switchList, SDMBList)
assignHashRange(SDMBL.ist)
registerToService(srclP, dstIP)
outPacket— “confirm”

. forward outPacket(senderIP)

el
= o

controller sends a configuration message to a destinatafioo preparing deduplication
in the storage system (C4). Finally, a controller regiséeservice with a pair (A,B) and
acknowledges to the requesting client.

When a client’s SoftDance request has been approved, 4 steets sending data
packets. For forwarding data packet, we use most signifteanbits on TOS fields. The
first biton TOS is called a service bit that represents if a @atket uses our deduplication
service. The second bit on TOS is called a encoding bit tliatates if a data packet has
been encoded by the previous SDMB. A client sends a data paftke setting a service
bit and resetting an encoded bit (D1). When a switch recewdsta packet, if a service
bit is on and an encoded bit is off, a switch forwards the daizket to a SDMB (D2).
Otherwise, the data packet is forwarded to the next switabr. eikample, as shown in
Figure 51, if the service bit is on and the encoded bit is adfghown at the third row),

switch 1 forwards the data packet to a SDMB through port 3.e@tise, data packets
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Switch 3: Forwarding Table

SoftDance Src | Dst |TOS(1) [TOS(2) | Port
Controller A B X X 3

Src | Dst | TOS(1) | TOS(2) | Port Src | Dst | TOS(1) | TOS(2) | Port
A B 0 X 2 A B 0 X 2
A B 1 1 2 A B 1 1 2
A B 1 0 3 A B 1 0 3
Switch 1: Forwarding Table Switch 2: Forwarding Table

Figure 51: SoftDance forwarding table example

are sent to the next switch (switch 2) through port 3. A SDMBaks redundancy of a
data packet while comparing an index of its payload with jgnesty saved indexes. If the
same index exists, the data packet is redundant. In this a@sg/load is replaced with an
index and an encoded bit is set (D3). When a server receivatagedcket, if an encoded
bit is not set, an index and data itself is saved. Otherwisl;, imdex is stored for the

future data reconstruction (D4).

6.4 Encoding Algorithms in Middlebox (SDMB)

An SDMB takes SoftDance service packets that are forwargea switch, and
encodes redundant packets among the taken packets. Ilrethisrs we explain how to
take packets and encode redundant packets.

Algorithm 5 explains packet processing in SDMB. SDMB congsué path ID of
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Algorithm 5 Packet Processing in SDMB
Input: inPacket
Output: outPacket

1: // pathID is<srcIP> _ <dstIP>

2: pathlD =getPathID(inPacket)

3. payload =getPayload(inPacket)

4: hashKey =computeHash(payload)

5. hashRangeKey somputeHashRangeKey(hashKey)

6: if hashRangeKey hashRange(pathIiD)then

7 if hashKeye indexTablethen

8 /l redundant packet - encode

9 replacePayload(hashKey, inPacket, outPacket)

10: recomputeChecksum(outPacket)
11: else

12: // unique packet

13: saveTolndexTable(hashKey)

14: outPacket— inPacket

15: end if

16: else

17: outPacket— inPacket

18: end if

19: forward(outPacket)

a packet based on a source IP address and a destination #3s&ttdm the packet header,
and retrieves the payload from the packet. Then, SDMB coegpaihash range key of a
packet by using SHA1 hash key [56]. Though it is implementaspecific, we use SHA1
hash key for uniform distribution of dataset. To computehhange key, we take the 18
most significant bits from a SHA1 hash, use a modulo operatitn100, and divide the
remainder by 100 to have a range of floating point from 0 to 1théf computed hash
range key is in the hash range that is set by a controller gw#at-up phase (we defer

how a controller compute hash range for a SDMB in next set®BMB compares the
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hash key of a packet with hash keys (indexes) saved preyiol#ten current hash key

exists in index table, the current packet is redundant.dalybf a packet is replaced by a
hash key and checksum is recomputed for continuous formgudii a packet is unique, a

hash key is saved into index table for future comparison,zapdcket is sent to next hop
without encoding the index.

We implement an SDMB as a userspace program that is a calfbactton based
on libnetfilterqueue userspace library [60]. An SDMB runs on a Linux bridgs ton-
nects the incoming and outgoing network interfaces. Toroefg an incoming packet,
we set up the iptables rules in a filter table. We set up iptahlkes with OUTPUT for a
client module, a FORWARD for an SDMB, and INPUT for a serverdule along with
iptables-extension NFQUEUE [59]. Whenever packets comeagkets are given to a
userspace program through netfilter queue. A userspaceapndgandles an incoming
packet and a processed packet is forwarded back to eithemenkeelements such as

switches and SDMBs or a server.

6.5 Index Distribution Algorithms

An SDMB stores indexes of unique packets to compare redwydsrfiuture pack-
ets. As the large amount of indexes cause significant primgeasad memory overhead,
we propose distributed indexing mechanism. By using hased sampling [68], a Soft-
Dance controller distributes hash ranges to SDMBs on a afuadlow, and each SDMB
handles only a data packet whose hash range key belongs shadrae assigned by a

controller. In this manner, SoftDance can reduce procgdsime and memory size by
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Algorithm 6 Compute hash range (uniform, merge)
Input: sdMBList, pathList
Output: nodes with hash range

1: for all pathe pathList do > retrieve each path
2 if approach == “uniform”then
3 fraction = 1 /numSDMBs(path)
4: else if approach == “merge’then
5: totalDegree getTotalDegree(path)
6: end if
7 sdMBs =getSDMBs(path)
8 range =0
9: for all sdMB € sdMBs do >a sdMB in a path
10: if approach =="“merge’then
11: fraction = sdMBgetDegree() / totalDegree
12: end if
13: sdMB.lowerBound = range
14: sdMB.upperBound = range + fraction
15: range = range + fraction
16: end for
17: end for

handling a data packet only once on a flow. In this section, asziibe four different
index distribution algorithms.

SoftDANCE-full (SD-full) : SD-full is an approach with a full hash ranges(0,1). Thus,
using SD-full, an SDMB processes all incoming data packetslelds indexes of the
unique packet among incoming packets. The index size codiplger route is O(n*m)
where n and m are the number of unique packets and the numisMBs on a path
respectively.

SoftDANCE-uniform (SD-uniform) : ND-uniform distributes hash ranges uniformly to

all SDMBs over a flow path. Each SDMB handles only packets whhash-range key is
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in its hash-range. This scheme reduces index sizes comfmahd-full with the trade-
off of reducing bandwidth saving. As presented in AlgoritBima SoftDance controller
retrieves a path between a client and a server, and compuifesn fractions of SDMBs
on a path. Then, a controller assigrdigjoint hash rangef each SDMB by accumulating
sequentially from the closest SDMB (to client) to the fash8DMB. For example, in
Figure 52, a pathH1-H4 has three SDMBs. Thus, each SDMB has an fractioé of
0.33. Hash ranges are computed from the first SDIRB) ¢o the last SDMB R4) on a
path, starting from 0 by accumulating the hash ran&§&s assigned [0,0.33), where O is
inclusive and 0.33 is exclusive. In this manneBandR4 are assigned [0.33, 0.66) and
[0.66, 1) respectively.

Table 5 demonstrates an example how many memory indexesB@+a pro-
duces on a topology of Figure 52. ‘-’ means a SDMB is not on a.pat(dup A)’ means
a packetA is redundant and none of redundant index is stored. Supplodesats send

two packetsA andB, and hash range keys of packétandB are 0.3 and 0.7 respectively.
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Table 5: SD-uniform hash ranges and generated index size

Path | R1 R2 R3 R4
H1-H4 | - [0,0.33) | [0.33,0.66)| [0.66,1)

Hash rangg H2-H4 | [0,0.25) | [0.25,0.5)| [0.5,0.75) | [0.75,1)

H3-H4 [0,0.5) [0.5,1)

H1-H4 | - 1(A) 0 1 (B)
Index H2-H4 | O O(dupA)| 1(B) 0

H3-H4 | - - 1(A) 0 (dup B)

Total | O 1 2 1

Assuming clientdH1, H2, andH3 send sequentially, total memory size to be stored is 4.
Concretely, hash ranges are computed uniformly among SDdBspath. When a client
H1 sends packeta andB, SDMBsR2andR4 stores indexes oA andB. An SDMB R3
just forwards data packets without storing indexes bechask range keys & (0.3) and

B (0.7) are not in a hash range [0.33,0.666)R¥ When a clientH2 sends packeta
andB, SDMB R2finds a data packei is redundant, and SDMR3 stores an index of
data packeB whose hash range key (0.7) is within hash range [0.5,0.75DdB R3
Likewise, a data packeéd from a clientH3 is found to be redundant at SDMB4, not
storing an index again. In this manner, SD-uniform reduoegx sizes from 8 (in case
each SDMB stores indexes of packeandB) to 4. The complexity of index size per path
is O(n), where n is the number of unique packets on a flow path.

Soft DANCE-merge (SD-merge) SD-merge assigns the disjoint hash ranges only for the
SDMBs that have more than one incoming flows of the same degtm(merge). As

presented in Algorithm 6, SD-merge counts total incomingyee of merge SDMBs on a

: : h incoming degree of a SDM B
path. Then, a fraction ofan SDMB is computedtb,tgl Tcoming deqrec o merge SDMBson a path”

sdMB.getDegree() function returns 0 if a SDMB is not mergdaydeading fraction to 0.
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Table 6: SD-merge hash ranges and generated index size

Path | R1 | R2 (merge)| R3 (merge) R4
H1-H4 | - [0,0.5) [0.5,1) -
Hash range H2-H4 | - [0,0.5) [0.5,1) -
H3-H4 | - - [0,1) -
H1-H4 | - 1(A) 1 (B) -
Index H2-H4 | - O (dupA) | 0(dupB) -
H3-H4 | - - 1(A),0(dupB)| -
Total |0 |1 2 0

Hash ranges are computed by accumulating fractions, regaitom O like SD-uniform.
In Figure 52, for a path H1-H4, there are two merge SDMBs, R2RB. Thus, R2 and
R3 are assigned [0,0.5) and [0.5,1) respectively, but Rétsassigned hash ranges; that
is, incoming packets to R2 are just forwarded to the next hoph{s case, H4) without
encoding.

Table 6 shows how many indexes SD-merge produces. PathsAHinti H2-H4
have two merge SDMBs (R2 and R3), and H3-H4 has only one m&MBESR3). When
a client H1 sends data packets A and B, R2 stores index of @paAcknd R3 stores index
of a packet B. Data packets sent from H2 are found to be reciiredl&®?2 and R3. When
a client H3 sends data packets, an index of data packet Ansdstd R3 but an index of
data packet B is found to be redundant. R1 and R4 just forwaadkets because their
hash ranges are out of [0,1). The total index size of SD-migrgew 3 that is lower than
that of SD-uniform. This shows that assigning hash rangesiypmerge nodes can find
more redundant packets.
SoftDANCE-optimize (SD-opty As both SD-uniform and SD-merge assign the hash

range based on the flow path information, they may not be aldensider the dynamic
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Algorithm 7 runOptHashRange: Compute hash range (optimize)
Input: sdMBList, pathList
Output: nodes with hash range

rProfileList<— importRProfile() > match, ,,matchSizg,
pathList(packef) « importPacketCounts()
pathList(packet,ique) < importUniqueCounts()
/l hash range is set to lowerbound, upperbound in a node
solveLP(sdMBList, pathList, rProfileList) > by LP
range =0
for all pathe pathList do
for all sdMB € path do >a sdMB in a path
fraction = sdMBfraction() > set bysolveLP()
setHashRange(sdMB, range, range+fraction)
range = range + fraction
end for
. end for

el ol
w N B o

conditions such as network traffic, packet redundancy, asdurce constraints. To get
better hash ranges, we use a linear programming (LP) foomafi SmartRE [5] for SD-

opt scheme. Algorithm 7 presents how to compute hash rarggegilon LP. To run LP,
SD-opt needs input constants: (1) redundancy profile tidicabes how many packets
across paths are redundant (denoted as matcand how many bytes across paths are
redundant (denoted as matchSige (2) number of packets that passed SDMBs on a
pathp (denoted as packgt (3) number of unique packets that passed SDMBs on a path
p (denoted as packet,iue). SDMBs maintain these input constants and a SoftDance
controller uses the input constants that are collected 88MIBs. The solveLP() function
runs LP, computes fractions of SDMBs which are results ol sets the fractions into
SDMBs. The setHashRange() function computes hash rangédradtions of SDMBs on

a path; concretely, lower bound and upper bound are compoteach hash range.
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Adopted formulation of SD-opt is different from the formtitan of SmartRE [5].
SoftDance stores only indexes while SmartRE stores packetedl as indexes, which
changes the memory constraint in our formulation. Also,t3afce performs index-
ing and encoding at SDMBs, but SmartRE runs storing packetsdecoding encoded
packets, which changes the processing constraints in oonutation. Formulation of
SD-opt has three constraints: memory constraints, proggsenstraints, and fraction
constraints. For memory constraint in Equation 6.1, eacMBD3tores all indexes of
unique packets that are within hash ranges assigned, andd&e sizes in the SDMB
should be less than available memory sidg, is a fraction of a packet that an SDMB
r can hold on a patp. indexSizas 40 byte of a hash key stringhacket,, ynique IS the
number of unique packets on path M, is the maximum available memory of a SDMB

r.

vr, Z d,, X packety, ynique X indexSize < M, (6.1)
p:rep

For the processing constraint in Equation 6.2, each SDMBlchkash range and
index table for checking redundancy, and encodes redupdakets. The total processing
should be less than maximum available processing capaldilit packet,, is the number
of packets passing a SDMB on a path match, , is the number of packets matched

across pathp andag.

vr, Z d, » packet, + Z dqrmatch, ; < L, (6.2)

DTEP D,q:TEDq
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Table 7: REST API URIs
URI Method Description

lwm/re/cmdkop>/<ip> GET get hash range (ip: ip address of sdMB)

Iwm/re/lcmd/hashRangebp> GET signal to compute hash range

fwm/re/setkop> POST send node information(ip, mac addr) to
controller

/wm/re/getkop> GET

retrieve paths

Vp, Y dyy <1 (6.3)

rirep

The third constraint is shown in Equation 6.3 where the maxmsum of the
fraction on a path is 1. The objective shown in Equation 614 #&nd the largest amount
of redundant packets considering the storage space and/igthdavingsmatchSize, ,

is the total size of matched packets across pptisdqg. Our objective is different from

SmartRE that is to achieve only bandwidth savings.

max (Z Z Z dgr X matchSizep,q) (6.4)
P

r qTreq
6.6 Implementation: REST, JSON, Middlebox

We use Floodlight [26] to implement a SoftDance controlléie implement
a Floodlight module [25] that computes hash ranges. A cleadule, SDMBs, and
a server module communicate with a SoftDance controllesuiin REST API using

CURL [73]. We add REST API URIs into Floodlight module for comanication. SDMBs
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"hashRanges": [

{
"hashRangelLB":"0.5",

"hashRangeUB": "1.0",
"path": "192.168.2.12_192.168.2.5"

"hashRangelLB":"0.5",
"hashRangeUB": "1.0",
"path": "192.168.2.11_192.168.2.5"

}
]

Figure 53: JSON format example: response of hash range URI

use C++ JSON parser [38] to parse JSON data (with hash ratiges$ delivered from
a SoftDance controller. A few important URIs are shown inl&ab. For example,
“lwm/re/setkop>"is used for a SDMB to send node information including IP and®
addresses to a controller using POST methadp> is one of “uniform”, “merge”, and
“opt”. “/wm/re/cmd/<op>/<ip>"is used for a SDMB to receive hash range from a con-
troller.

Figure 53 describes JSON format of an example responded ebygét hash
range” URI. SD-opt requires input constants including @agck...., packef, match, ,,
matchSizg,, M,, L, to run a LP. In our prototype, SDMBs maintain the input contsta

during each SoftDance service.

6.7 Experiment and Emulation Setup

We measure the performance and overhead of SoftDance cedhfzaother ex-

isting storage and network data reduction techniques. Wenlxy describing our setup
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of testbed experiment and emulation along with topologyraetrics. We then compare
overall and per-topology performance and overhead of Swite with others. Finally,
we contrast SoftDance with combined existing techniques.

We deployed a testbed experiment to verify that Soft DANCEks@ractically in
a physical testbed system. As shown in Figure 54, the expaticonsists of 3 clients
(H1,H2, andH3), a serverid4), 4 SDMBs R1to R4), OpenVSwitches, and a controller.
The controller is connected to all nodes through an outasfebnetwork (not shown in
figure). There are three paths and each client sends the satagetias other clients.
Thus, redundancy of all dataset%ls

We also set up several topologies such as a tree, a muledae, and a fat-tree
based on mininet [51] as shown in Figure 55. The purpose odsihg the topologies

is to validate SoftDANCE on typical topologies in Data Certietwork (DCN). In all
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Figure 55: Emulation topology
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topologies, we choose a server that is on the far right $#tfein tree,H16 in multi-tree
and fat-tree. Other hosts act as clierf®x} is a SDMB andS{x} is an OpenVSwitch.
A controller communicates with all nodes through in-banot @hown in figure). We do
not use multi-path because our main purpose is to measui@mance and overhead
on the same path for all compared techniques: a switch isechiog a spanning tree in
both multi-tree and fat-tree. Thus, number of nodes salefctemulti-tree and fat-tree
are same with a single core switch. Like experiment, alhtéesend the same dataset as
other clients, so redundancygs‘or tree and% for multi-rooted tree/fat-tree.

We use two metrics for measuring performance: storage sgmdag and net-
work bandwidth saving, and other two metrics for measurivgrloead: processing time
and memory size. To present storage space saving, we usglidatian ratio. Dedupli-

cation ratio is a typical means to show how much storage sigaegluced, and is com-

wolume of redundant data eliminated
pUted by total volume sent by all clients

x 100. Network bandwidth saving is computed by

Reduced traf fic size
Total traf fic size without redundancy elimination

x 100. For overhead metrics, we measure pro-
cessing time occurred at clients, a server, and RE boxes. |8en@easure the size of
memory that clients, a server, and RE boxes hold.

For the dataset, we use campus log data that has been captaradiversity data
center. The log data are backed up to storage servers eveky Whe used dataset has
rare redundancies under 2%. Thus, for all techniques ustd;riedundancy ratio found
when a single client sends a dataset is under 2% at maximum.

SoftDance is compared with client Dedup, server Dedup, &atwark wide RE

111



o a = S S a w = c o g
: 5 * £ 3 °© 5 © g § °©
& o > o) =

(a) Storage space saving (b) Bandwidth saving

Figure 56: Comparison of performance

(SmartRE). We implemented existing techniques for conspari Client Dedup is de-
noted as ClientD. Server Dedup is divided into file-grantyddedup (File Dedup), fixed-
size block granularity Dedup (Fix Dedup), and variableesthunk granularity Dedup
(Var Dedup) based on granularity. SmartRE distributes masges based on its opti-
mization LP [5]. SmartRE is denoted as SRE. We also comparapproaches including

SD-full, SD-uniform, SD-merge, and SD-opt.

6.8 Storage Space and Network Bandwidth Saving

We present overall performance of SoftDance compared tstiegitechniques
across all evaluation topologies: experiment and emuigti@e and multitree/fat-tree).
For this purpose, we compare relative value normalized lfanetrics as in Figures 56
and 57. We use log scale for Figures 57(a) and 57(b) becaagmthbetween largest and
smallest one is huge, and multiplg* and10? respectively to read figures easily.

For storage space saving as shown in Figure 56(a), SoftDsrmes the closest
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performance to server Dedup (ServerD) that is the best fomgatorage space in existing
techniques. SD-full shows exactly the same space savingrasrdDedup. This indicates
SD-full does not miss any redundancy through network. SBetm, SD-merge, and SD-

opt have close space saving to the server Dedup. Meanwhdat Dedup is the worst

for space saving and has only 1.6% saving by eliminatingnmddncy inside a client.

This shows client Dedup does not deal with redundancy actiesgs. SmartRE does not
contribute storage space saving because it runs only ororietvan application agonistic
fashion. In SoftDance approaches, SD-merge shows betferpance than SD-uniform

due to finding more redundancies at merge SDMBs.

For bandwidth saving in Figure 56(b), SoftDance shows 2-4xerbandwidth
saving than SmartRE. The reason that SmartRE shows lowetwidth saving than
SoftDance is that SmartRE fails to find inter-path redungepassing different ingress
routers that are encoders. For example, in Figure 54, twacdte packets that arrive
encodersR1andR2) from different hostsil1 andH2) are determined to be unique, and
thereafter traverse to a server without eliminating recdumog as if they were unique pack-
ets. To investigate our argument, we choose a multi-rooéedas shown in Figure 55 and
build a test case where edge SDMB is connected to only a ckegt, R5is connected
to only H1 but not withH2,H3, andH4). We choose 4 clientd{1,H5,H9,H13) and one
server H16). The bandwidth saving on the test case shows only about 484steumma-
tion of intra-path redundancy from each client: 70% intatiredundancy is not detected

(3(T5%) — 4%).
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In SoftDance, SD-opt (optimize) shows close storage spagagto SD-full con-
sidering resource constraints, but has lower bandwidtimgatian SD-merge. Note that
SD-opt optimizes based on matches between packets, wlakh eeerall benefit of space
and bandwidth saving rather than only a single benefit. Tlamgle benefit can be lower

than heuristic approaches.

6.9 CPU and Memory Overhead

For processing time in Figure 57(a), SoftDance (denotedu#ly iE the lowest
among all techniques. Client Dedup (denoted as ClientD)Mandedup (denoted as S-
Var) have 100x and 10x higher processing time than SmartREaexpensive chunking.
Even SmartRE (denoted as SRE) shows larger processingtané&oftDance because of
the sliding fingerprinting. For memory size in Figure 57@®@ftDance (denoted as Full)
has 40x less memory than SmartRE. This is because SoftDauhgstores indexes but
SmartRE saves packets as well as indexes in caches for ea@kdecoders. Evicting
indexes and packets from caches can reduce memory size,ayutead to low band-
width because same packets of evicted ones are not encddeds(tthey are found to
be unique). However, SoftDance (Full) still consumes largemory than server Dedup
and client Dedup due to more indexes on fine-grained gratul@oftDance uses 1.5
KB packet payload, but server Dedup and client Dedup use 8i{Bk(or block) granu-
larity). To reduce memory size, SoftDance distributes xedebased on hash-based sam-
pling [68]. Figure 58 demonstrates that memory size (cdatyendex size) required by

SD-full can be reduced up to 3x by SD-opt.
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6.10 Performance and Overhead per Topology

We show performance per metric and changes of performarmeEndang on dif-
ferent topologies. The differences among topologies acefthd: number of clients and
location of clients. First, the number of clients in treedimgy is more than that in exper-
iment, resulting in more redundancy because each clienisstie same dataset as other
clients in our evaluation. Second, in experiment, clienésaatached to both edge and in-

terior switches while in emulation, clients are attachedrity edge switches. Our focus
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is what performance each technique acquires on the diffesen

Storage space saving increases as the number of clierdagss for all techniques
(except for SD-opt) as shown in Figure 59(a). This is becaedendancies increase pro-
portionally to the number of clients that send same dataSBk:full shows exactly the
same space saving as server Dedup, which indicates SDde#l dot miss any redun-
dancies through the network. In experiment, SD-merge shogiger space saving than
SD-uniform, which indicates a merge SDMB has more redunganckets (originated
from different paths) than a forwarding node with one incognilegree. SD-opt achieves
the most space saving among distributed indexing apprea¢t@vever, we find SD-opt
in multi-tree/fat-tree shows a bit anomalous result whi@swxpected to be higher than
in tree topology. We are investigating the anomaly.

For bandwidth saving in Figure 59(b), SoftDance shows mamdividth sav-
ing than SmartRE. In experiment, SmartRE has much less hdtidsaving by 10-40x
times than SoftDance while in tree (or mtree/fattree), $Rtahas 2-3x less bandwidth
saving than SoftDance. The significant difference betweaezxperiment and in tree(or
mtree/fatree) for SmartRE is not caused by the increasesindimber of clients but by a
fact that SmartRE fails to find inter-path redundanciesipggdifferent ingress routers.

As the number of clients increases, processing time ineseas shown in Fig-
ure 60(a) for all techniques (except for SmartRE). Howetleg, velocity of change is
different; SoftDANCE (denoted as Full) increases more Slaw processing time than
others. Other SoftDance approaches such as SD-uniforrm&De, SD-opt (not shown

here) have the almost same processing time as SD-full. tdledup and variable-size
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server Dedup are not shown as readable figures due to exe@sstessing time. Inter-
estingly, in experiment, SmartRE shows larger processing than in tree topology. We
find that computers used for REboxes in experiment are musheslthan a computer
used for emulation (tree and multi-tree/fat-tree), whioipéfies processing time slowed
by fingerprinting. Memory size increases proportional wéase in the number of clients
as shown in Figure 60(b). For SmartRE (not shown in figurenorg size in SDMBs is

X, 1.1X, 2.5X for experiment, tree, and multi-tree/fatanespectively where X requires
40 times more memory than SD-full. SD-full has more index simmn server Dedup and
client Dedup, but SoftDance can reduce the indexes by iagjian indexing scheme like

SD-merge to reduce memory size of SD-full in the figure.

6.11 SoftDance vs Combined Existing Deduplication Techniges

We tested some of scenarios when client data is transfecredsanetwork links to
be stored in a server, while each Dedup and NRE can be perddianea benefit of its own
domain. The data may go through various forms of deduptiogtrocesses redundantly
that may incur significant processing and memory overheadompare with SoftDance,
we envision two combined approaches that can be used as arketad storage service
using existing techniques: client Dedup (storage serivc8martRE (network service)
and server Dedup (storage service) + SmartRE (networkcsrvi

For storage space saving as shown in Figure 61(a), SoftB4uoves the best space
saving equal to “ServerD+SRE". Both two combined approackly on storage services

including client Dedup and server Dedup because SmartR&tiapplicable for storage
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space saving. For bandwidth saving as shown in Figure 63¢@#)Dance saves the most
bandwidth compared to two combined approaches. For two cwdlapproaches, band-
width saving is determined by performance of SmartRE. Focgssing time, SoftDance
outperforms the two combined approaches as shown in Fig{eg.6The slow processing
time of the two combined approaches is due to expensive ahgiakd fingerprinting. For
memory size as shown in Figure 62(b), SoftDance requiresthesnory size than the two
approaches combined. This is attributed to the fact thatr®&R&astores packets itself as
well as indexes. The slight reduction in memory size insidBemt becomes invalid due
to excessive memory size needed by SmartRE. Overall, tHeat\an results show that
in the scenarios of both end-systems and networks perfgrdeduplication redundantly,

SoftDance achieves very efficient processing and memomhead.
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6.12 Summary

In this chapter, we proposed SoftDance, an efficient soévidafined deduplica-
tion as a network and a storage service that gives both €cq@are savings and network
bandwidth savings while significantly reducing processimg and memory size. We de-
veloped efficient encoding and indexing algorithms for aSahce middlebox (SDMB)
and an effective control mechanism for an SDN controller. al¢® built a prototype of
testbed experiments and Mininet-based emulations to aeaboftDance on real system
environments and typical DCN topologies. Our evaluatigults show that SoftDance
saves 2-4x more bandwidth than an RE technique (SmartREsame/close storage
space saving to the Dedup technique with low overhead, vatitgeving very efficient

processing and memory overhead.
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CHAPTER 7
MOBILE DE-DUPLICATION

In this chapter, we show an enhancement of client-basedbtiedtion for popular
files in mobile devices, where each file is deduplicated baseithe file’s structure con-
sidering low capacity mobile device. We also consider ggcaf the files, and observed
performance of encryption algorithms based on systemsadiffétrent CPU types such as

android mobile device (ARM-CPU) and desktop Linux servatdF-CPU).

7.1 Large Redundancies in Mobile Devices

Currently, massive files are popularly created and used inilendevices. Large
amount of documents and image files are generated and usedbiterdevices. Also
watching video streams is one of major usages in mobile dsvic

We address two issues. The first issue is that large redursgaedst in files of
mobile devices. For example, nowadays there is a very poapfdication to take pictures
of moving objects, called burst shooting mode. In this magde,can take 30 pictures
within a second and choose good pictures or remove bad onethi® application may
experience large redundancies between similar picturéso, A video file consists of I-
frame that has images and P-frame that has delta informag¢ioveen I-frames. In scenes
where actors keep talking in the same background, largéopsrof background become

redundant: that is, I-frame has large redundancies thatearemoved. The second
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issue is that security becomes critically important in ge#tation in mobile devices, and
encryption function should be fast and consider low eneansumption considering the
low capacity of mobile devices.

Thus, our approaches are to use structure aware dedupthdatifiles based on
files’ structured formats with strong and fast encryptiore #oose many different types
of files including documents, emails, and image files in nebdivices. For structure
aware deduplication, we decompose a file into objects, addpdieate objects based on
structure library where structure formats are defined. Eousty, the encryption algo-
rithm has different performances and strengths. Genesdlignger encryption is slower
due to more computation. Thus, we develop an idea that foe security-sensitive ob-
jects, strong encryption should be used, but for less dgesgnsitive objects, weaker
encryption can be used for fast performance.

For varying systems with different CPU types, we measuredorformance of
strong encryption algorithms like Advanced Encryptionstard (AES) [17] and weaker
encryption algorithms like Blowfish [67], Data Encryptiota8dard (DES) and 3DES [55],
and RC2 [66]. Based on the results, we found that the perfocsaf encryption can be

effected by encryption strength as well as CPU types (Inté&lRiM).

7.2 Approaches and Observations

We propose structured-based deduplication using enoryftinctions based on
different level of security. Thus, in our approaches, wemyaiocus on two purposes:

how to efficiently decompose and reconstruct files in mobéeicks, and how fast and
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strong encryptions can be used for security of decomposjedtsb For the first purpose,
we are using structure aware deduplication that has beehfosSAFE. we are inves-
tigating how efficiently it deduplicates images and videesfiin mobile devices, and we
will focus more on the second purpose for security. The sgcand privacy issues on

deduplication are discussed in many studies [30] [31] [33] .

7.3 JPEG and MPEG4

JPEG [35] is popular compression technique for digital pgaaphy, and current
mobile devices use JPEG as a default image format due to &8 &uotprint compared
to other image files. JPEG uses efficient compression digorsuch as Discrete Cosine
Transformation (DCT). We argue that JPEG efficiently redusglundancies of a single
image, and our approach reduces redundancies among simages. MPEG4 [36] is a
popular compression for audio and video files. For exampleasiing files in youtube

are MPEGA4.

7.4 Throughput and Running Time of Encryption Algorithm

We show how encryption algorithms are performed dependmgitierent file
types and systems with different CPU types. Overall, AESedbrms other com-
pared encryption algorithms on Intel-based system in teviygerformance. However,
for ARM-based systems like smart phone, blowfish shows tisé¢ pperformance among
other algorithms.

As shown in Figures 63 and 64, we observed that encryptioorighgns show
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different performances per system with different CPU typgesshown in Figure 63, we
measured throughput of encryption algorithms in a Linux nae with Intel IS5 and in

a Nexus 7 with ARM, for different file types including audiop@iment, image, text,
and email files. We found that in Linux, AES outperforms otéecryption algorithms,
but in nexus 7, blowfish has the highest performance. We weegested in this result
because a previous study [19] insisted that blowfish alwagsline best performance. The
reason of AES’s best performance in Linux system is that @R has hardware-support
instruction sets for AES; that is call AES New InstructionH&NI). In the same vein,
Figure 64 presents that AES is the fastest in Linux systenblmwnfish is the fastest in
Nexus?.

We measured throughput and processing time of encryptgorighms in Linux
and nexus 7, varying the data size from 4 KB to 1 GB. Overalbdth systems, through-
put and processing time increase as the growth of data siaeever, for throughput as
shown in Figure 65, there is a threshold size (here, 10 MY afhich throughput de-
creases. For processing time as shown in Figure 66, very siaial (like 4 KB) takes
longer time than relatively larger data (like 128 KB). Howewhe processing time from
4 KB to 128 KB decreases for both AES and blowfish in both systeithese results
show the importance of choosing granularity of deduplargtconsidering performance
of encryption in deduplication. 128KB is 32 4KBs. Thus, ating a 128 KB object is
32 times faster than encrypting 32 4KB objects. Howeveng428KB granularity finds
less redundancies using 4 KB granularity. As a result, welieeselect a granularity

considering balance between removing redundancies amgption processing time.
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7.5 Summary

In this chapter, we show a client-based deduplication fauper files in mobile
devices, mobile deduplication that remove redundancigbefiles in mobile devices.
Considering low capacity of mobile devices, we propose sisicture aware dedupli-
cation for the files to improve processing time. Also, we obseé that the performance
of encryption is changed depending on the strength levetafirsty as well as systems
with different CPU types. In future work, we are investigatiefficient structure aware
deduplication for JPEG [35] and MPEG4 [36] files in terms @frage space savings and

processing time overhead.

129



CHAPTER 8
CONCLUSIONS

In the era of data explosion, huge redundancies exist imgésr and networks.
Existing deduplication solutions such as storage datamledtion and network redun-
dancy elimination are not as efficient as possible to opemdiata moving from clients to
servers through networks.

Thus, my contribution is devoted to develop an efficient gididation framework
to optimize data in a chain from clients to servers througiwoek, and to make com-
ponents for the framework. We developed the componentsasi¢tybrid Email Dedu-
plication System (HEDS) on the server side, Structure Avlieeand Email Deduplica-
tion for Cloud-based Storage Systems (SAFE) on the cliel#, ©ind Software-Defined
Deduplication as a Network and Storage Service (SoftDamcéhe network side for the
deduplication framework. HEDS efficiently achieves an éradf of file-level and block
deduplication for email systems. SAFE a exploits struchased granularity rather than
using physical chunk granularity, which enables SAFE t@asds file-level deduplication
and has the same space savings as block deduplication withaverhead. SoftDance, as
an in-network deduplication, chains storage data dedtipicand network redundancy
elimination functions by using Software Defined Network (§Dand it achieves stor-
age space savings and network bandwidth savings with loeegeing time and memory

overhead in storages and networks. We are also working onlensdduplication with
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popular files such as image and video files in mobile devices.
For the future work, we are planning to deploy and exploreemetiability for
network dynamics, storage workload, and failure, as wedicagability in Cloud environ-

ments.
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