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ABSTRACT

Object tracking is a core element of computer vision and autonomous systems. As

such single and multiple object tracking has been widely investigated especially for

full motion video sequences. The acquisition of wide-area motion imagery (WAMI)

from moving airborne platforms is a much more recent sensor innovation that has an

array of defense and civilian applications with numerous opportunities for providing

a unique combination of dense spatial and temporal coverage unmatched by other

sensor systems. Airborne WAMI presents a host of challenges for object tracking

including large data volume, multi-camera arrays, image stabilization, low resolution

targets, target appearance variability and high background clutter especially in urban

environments. Time varying low framerate large imagery poses a range of difficulties

in terms of reliable long term multitarget tracking. The focus of this thesis is on the

Likelihood of Features Tracking (LOFT) testbed system that is an appearance based

(single instance) object tracker designed specifically for WAMI and follows the track

before detect paradigm. The motivation for tracking using dynamics before detecting

was so that large scale data can be handled in an environment where computational

cost can be kept at a bare minimum. Searching for an object everywhere on a large

frame is not practical as there are many similar objects, clutter, high rise structures

in case of urban scenes and comes with the additional burden of greatly increased

computational cost. LOFT bypasses this difficulty by using filtering and dynamics to

constrain the search area to a more realistic region within the large frame and uses

multiple features to discern objects of interest. The objects of interest are expected

xx



as input in the form of bounding boxes to the algorithm. The main goal of this work

is to present an appearance update modeling strategy that fits LOFT’s track before

detect paradigm and to showcase the accuracy of the overall system as compared

with other state of the art tracking algorithms and also with and without the pres-

ence of this strategy. The update strategy using various information cues from the

Radon Transform was designed with certain performance parameters in mind such as

minimal increase in computational cost and a considerable increase in precision and

recall rates of the overall system. This has been demonstrated with supporting perfor-

mance numbers using standard evaluation techniques as in literature. The extensions

of LOFT WAMI tracker to include a more detailed appearance model with an update

strategy that is well suited for persistent target tracking is novel in the opinion of the

author. Key engineering contributions have been made with the help of this work

wherein the core LOFT has been evaluated as part several government research and

development programs including the Air Force Research Lab’s Command, Control,

Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR)

Enterprise to the Edge (CETE), Army Research Lab’s Advanced Video Activity An-

alytics (AVAA) and a proposed fine grained distributed computing architecture on

the cloud for processing at the edge. A simplified version of LOFT was developed

for tracking objects in standard videos and entered in the Visual Object Tracking

(VOT) Challenge competition that is held in conjunction with the leading computer

vision conferences. LOFT incorporating the proposed appearance adaptation module

produces significantly better tracking results in aerial WAMI of urban scenes.

xxi



Chapter 1

Introduction

Motion imagery has become a vital part of intelligence, surveillance and reconnais-

sance (ISR) in recent years. Data collection capabilities have increased from being

rare a decade ago to a regular deployment stage in theater. Increasingly city wide

data collects are used for large scale surveillance during event gatherings where main-

taining safety and security is difficult. Wide-Area Motion Imagery (WAMI) provides

a hawk-eye view of an entire area making it extremely valuable when augmented with

standard closed-circuit television (CCTV) surveillance. Persistent large scale object

tracking has been a challenging problem. Though several commercial and academic

solutions exist, these are predominantly not focused on persistent tracking. Tracking

all moving objects or objects in a given area of interest (AOI) are typically the sce-

narios best suited for such methods. Given the high performance requirement in such

cases, a motion based, dynamics oriented approach is taken wherein one would iden-

tify all moving objects and then later solve the problem of data association. While
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these techniques do quite well and have proven their robustness in terms of lessen-

ing the number of track switches (distractors) the appearance component has largely

been sidelined due to the difficulty in effective appearance modeling.

1.1 Goals

Likelihood of Features Tracking (LOFT) system as a tracker has been used to track

objects in general everyday video with high frame rate and also on really low frame

rate video such as WAMI. While we specifically handle challenges that pertain to

vehicle tracking in wide-area video, LOFT has also proven to be quite robust in general

as well as Full Motion video (FMV) There are two goals to this work. First is to show

that appearance based tracking in WAMI can result in promising results. Second

is demonstrating how this can be achieved with techniques that address common

issues that are part and parcel of explicit appearance modeling techniques. We have

supplemented all findings by using state of the art metrics for reporting the results

that are part of literature and also have gone beyond the standard accepted metrics

for a more through and detailed analysis.

1.2 Challenges

1.2.1 Wide-Area Motion Imagery

• Low and variable frame rate imagery

Wide-Area Motion Imagery (WAMI) is characterized by extremely low frame
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rate of anywhere from 1 − 4 hertz. Due to hardware constraints that relate

to on-board data storage and the high pixel resolution of the camera systems

sometimes frame rate is sacrificed in order to get critical data. This results in

dropped frames or a consistently variable frame rate that impacts prediction

models on a scale and presents a challenge of its own.

• Occlusions

Typically, occlusions are characterized into two broad categories such as 1)

Partial and 2) Full occlusion. Partial occlusions occur due to a wide variety of

reasons such as

– Shadows due to foliage or tall structures such as buildings in urban envi-

ronments (severe illumination changes)

– Foliage such as trees with sparse branches that show a completely noisy

appearance of the object capable of throwing off the best of the appearance

models

– Bright structures on the road such as the paint on the crosswalks (rapid

illumination change)

A full occlusion occurs when the object that is being tracked is hidden com-

pletely from view due to a really tall structure such as a building or an adver-

tisement banner.

• Distractors

While wide-area imagery is characterized by a large amount of pixel data, the

resolution, or commonly referred to as ground sampling distance (GSD) is on
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the order of 40 − 65 cm. The typical orbiting flight height is around 1800 m

or 6000 feet. The support map for an object on the ground such as a vehicle

is thus reduced to around 20 pixels wide and about a maximum of 40 pixels in

height. This coupled with distortions that are caused by camera geometry and

the orbiting aerial platform, objects at such a small scale appear very similar

to each other.

• Very large amount of data

Datasets range from having 10−20 million pixels to gigapixel imagery for some

multi-camera systems. Appearance matching cannot be performed on such a

large scale and thus dynamics, prediction and filtering are essential for designing

a real time and more practical system.

1.2.2 FMV and Standard Video

• Appearance change due to affine transformations

Tracking in standard hand-held video is characterized by appearance changes

due to 3D motion of the object. FMV and standard video is usually 24− 35 Hz

and while the appearance changes are more gradual they are also complex such

as a face that goes through all the various poses possible.

• Occlusions

Occlusions, common with WAMI, also is a challenge in FMV and standard

video. Rapid appearance changes along with occlusions can be very difficult to

handle without explicit appearance modeling.
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• Dynamic background

Dynamic background such as snow, rain and other weather effects affect FMV

and standard video. This can make it very difficult for trackers which only

model the foreground object to not become confused with rapidly changing

background.

In this dissertation, we have tried to address most of these challenges by proposing

a tracking pipeline that is tailored to handle specific difficulties such as orientation

change by using a novel usage of the Radon transform, low pixel level resolution

by using multiscale features, occlusions by switching to prediction when appearance

information is not reliable and engineering a platform that is flexible enough such that

we have a more standardized way for researchers to leverage and study the impact of

individual modules on overall tracking quality on different types of datasets. The rest

of the thesis is organized as follows. Chapter 2 briefly covers the literature in tracking.

WAMI tracking literature is very different than tracking in standard imagery. The

clustering of techniques on one side or the other can clearly be seen in this literature

survey. Chapter 3 proposes our novel tracking pipeline. LOFT as a feature fusion

and appearance modeling system is highly modular. As a first step, the target and

search region need to be described by a robust feature set. This is followed by a

matching step, where in our case is comprised of several one-to-one feature matches

followed by a fusion process that aggregates the matching information to produce a

single probability map. Other modules that help with automatic termination and

intelligent handling of special cases such as missing or corrupt data is also described.

Chapter 4 introduces the radon transform along with the equations for a particular
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case. This describes and motivates the use of this technique for our orientation

estimation. Chapter 5 describes our proposed LOFT pipeline with the addition of

the appearance modeling that is derived from orientation estimation. It reviews

the techniques and usage of the radon transform in detail followed by algorithms

that describe how this information is converted into descriptors that help with the

appearance modeling. Chapter 6 introduces our engineering implementation of the

algorithm along with its modules. The integration work with other systems under

different programs are also described in detail. The modular architecture is shown

along with an interaction diagram. A proposed new method to plug in extra 3D

information is also shown that could potentially lead to better tracking results in

aerial imagery. Chapter 7 shows our experimental methodology and introduces the

data along with the final results. The interpretation of the performance numbers is

detailed and we have shown how LOFT outperforms various trackers in literature

along with a detailed performance table on the amount of improvement with the

added appearance modeling technique. Chapter 8 shows our collaborative effort in

running LOFT on a cloud computing architecture. It primarily focuses on evaluation

of LOFT in a streaming imagery pipeline for disaster scenarios while running in

networked mode. Resource allocation using the cloud computing environment and

running a data input heavy algorithm like LOFT would be a step towards making

tracking more pervasive. This chapter focuses on the engineering aspects of such a

system along with experiments that show the viability of scalable tracking. The final

chapter concludes the proposed work and discusses future directions.

6



Chapter 2

Related Work

Tracking in Wide-Area Motion Imagery (WAMI) poses a number of additional diffi-

culties for vision-based tracking algorithms due to very large gigapixel sized images,

low frame rate sampling, low resolution targets, limited target contrast, foreground

distractors, background clutter, shadows, static and dynamic parallax occlusions,

platform motion, registration, mosacing across multiple cameras, object dynamics,

etc. [1–11]. These difficulties make the tracking task in WAMI more challenging com-

pared to standard ground-based or even narrow field-of-view (aerial) full motion video

(FMV). Full motion video and standard video has its own set of difficulties where ap-

pearance modeling, typically machine learning based techniques do a lot better that

template based matching methods. In the next few sections in this chapter we will

cover all the varied set of trackers including those specifically designed for WAMI as

well as the most recent robust trackers for FMV and standard video.
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2.1 Overview

Traditional visual trackers either use motion/change detection or template matching.

Motion and appearance based techniques dominate the literature and are used in

a variety of videos. Machine learning methods in appearance based techniques are

more popular currently for tracking in complex videos. Persistent tracking using mo-

tion detection-based schemes need to accommodate dynamic behaviors where initially

moving objects can become stationary for short or extended time periods, then start

to move again. Motion-based methods face difficulties with registration, scenes with

dense set of objects or near-stationary targets. Accuracy of background subtraction

and track association dictate the success of these tracking methods [7, 8, 12, 13].

Template trackers on the other hand, can drift off target and attach themselves to

objects that seem similar, without an update to the appearance model [14, 15].

Visual tracking is an active research area with a recent focus on appearance adap-

tation, learning and sparse representation. Appearance models are used in [16–19],

classification and learning techniques have been studied in [20, 21], and parts-based

deformable templates in [22]. Gu et al. [19] stress low computation cost in addition

to robustness and propose a simple yet powerful Nearest Neighbor (NN) method for

real-time tracking. Online multiple instance learning (MILTrack) is used to achieve

robustness to image distortions and occlusions [20]. The P-N tracker [21] uses boot-

strapping binary classifiers and showcases reliability by generating lengthier tracks.

Mei et al. [23, 24] propose a robust tracking method using a sparse representation ap-

proach within a particle filter framework to account for pose changes. While there is

a lot of variety in the appearance based tracking literature, they are centered around

8



a few key techniques that are discussed in the next section. Wide-Area and aerial

imagery trackers focus more on dynamics and detection. There are a few algorithms

that add an additional appearance component while some have a clever technique to

solve for the data association problem which is described in the following subsections.

2.2 Model-free Tracking and Appearance models

Model-free tracking is a paradigm where an object of interest is manually marked

and the algorithm is expected to track the object reliably through the variety of

appearance changes[25]. Model-free tracking remains to be a challenging problem

and due to the limited information in the input, several algorithms have devised

methods to leverage this in multiple ways where MIL-track [20] samples around the

object for foreground and background patches and L1 [26] creates an array of tem-

plates which are a result of a warping function that can accommodate the appearance

changes. Adaptive appearance models are rare in complex imagery as there is always

the unsolved problem of drift. An appearance based tracker is said to have ’drifted’

if it eventually adapts to the background due to a defective match. Several meth-

ods have been proposed to alleviate this error [27]. A number of tracking strategies

such as Robust Fragments-based Tracking (FragTrack) [28], Multiple Instance Learn-

ing (MILTrack)[20] exist which can track reliably in the face of complex scenarios

such as occlusions, distractors and objects which have not very many distinctive fea-

tures. These methods have worked well for hand-held camera videos at 60 frames

per second. Smuelders et al. [29] recently ran a comprehensive evaluation over the
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ALOV++(Amsterdam Library of Ordinary Videos for tracking) dataset. This dataset

comprises of real-life videos from YouTube with several different types of targets. The

aim of this survey was to publish results of cutting edge methods in tracking liter-

ature on real-life data that does not focus on a particular type or kind of scenario.

Two highest performing trackers on this dataset were TLD [30] (Tracking, Learning

Detection) and Struck [31] (Structured output tracking with kernels).

2.3 Tracking in Wide-Area and Aerial Imagery

For Wide-Area class of aerial data trackers that do not explicitly handle the large

amount of data with low pixel level resolution do not always perform well. Motion-

Based trackers such as Reilly et al. [8], Saleemi et al. [32] achieved good results

on similar WAMI data. Multi-target tracking has a rich body of literature from

the computer vision community. The community has only more recently begun to

focus on tracking in WAMI from aerial platforms [10, 33–36]. In Prokaj’s work [36]

the goal was to detect shorter tracks and then associate them to existing tracks.

The shorter tracks are determined using background subtraction after registration of

aerial imaging. Pollard’s [35] work is similar with the exception that an additional

false alarm suppression step is performed by using learning of edges of background.

Keck [34] focused on a real-time engineering tracking system that processes tiles

separately with three frame differencing for the motion detection using efficient box

filters. Xiao et al. [37] had a different approach wherein they used the road network
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for modeling the dynamical behavior of vehicles and also a detection framework for

slow moving or stopped objects. The detections are associated using the classic

Hungarian algorithm. There are spatial constraints in place where the velocity and

distance difference is preserved between vehicles on subsequent frames. However,

this may cause wrong associations as applying such constraints uniformly across all

objects due to complex vehicle dynamics. Appearance modeling is using a simple

template approach that may not be as comprehensive in terms of detecting a varied

set of features to be effective under different imaging conditions.

Reilly et al. [8] propose the use of the Hungarian algorithm for detection associa-

tion and computing such associations only in smaller image cells in order to be more

efficient. Using spatial context, velocity orientation, orientation of the road between

detected objects a matching cost is estimated. It is not clear how more complex

vehicle dynamics such as a stop or yield situations would cause correct associations.

Tracking in aerial imagery which in turn inspired WAMI trackers is a similar problem

with the main difference being the difference in resolution and also the lesser number

of pixels to be pushed through a detection and tracking pipeline. Yu et al. [38] used

a general motion pattern in 4D space using position and velocity in 2D (x,y,vx,vy).

This voting framework is used to detect and segment motion patterns in this space. A

mean-shift algorithm is then used to stitch the tracks after the initial blob segmenta-

tion. In this method a much longer sequence is needed to detect such motion patterns

in the 4D space. This initial work may not be quite as realtime due to this require-

ment. Huang et al. [39] had an approach which would simultaneously detect and

track the objects of interest. In a feedback loop, the tracking results were then used
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as input to a detection module that would adjust thresholds in motion segmentation

to improve the detection performance. This method is sensitive to initial conditions

as a bad initialization could be irreversible resulting in poor detection performance.

Li et al. [40] used the road network which was extracted first which in turn are the

regions of interest. A registration method is proposed where the lane markers are

used for detection as well as a mean-shift based tracking method. Basharat et al. [41]

also use a Hungarian algorithm for association from frame to frame but also add

an appearance based hybrid approach for stitching slow moving or stopped objects.

This appearance based technique in future tests used our LOFT algorithm for better

results. Ling et al. [9] did a comprehensive evaluation of multiple popular visual

trackers on CLIF data followed by our work [42] which showed improvement in the

scores over other methods.

2.4 Trackers for Standard Video

There is an abundance of trackers for standard video in literature due to the growth in

popularity of the Visual Object Tracking Challenge [43]. The overwhelming response

of the tracking community has produced outstanding results on challenging every-

day video. These trackers are generally classified as short term trackers. The VOT

Challenge has contributed to a more comprehensive evaluation platform as previous

evaluations such as the Online Object Tracking (OTB) [44] and ALOV [29] would

initialize the algorithms on the first frame and letting the trackers run till the end

of the every sequence. Trackers are restarted on a significant drift when compared
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against groundtruth. This challenge has featured a very wide gamut of tracking al-

gorithms from traditional correlation based to convolutional neural networks with

descriptor and learning based approaches. The rest of this section focuses on intro-

ducing standard as well as cutting edge techniques designed and run on standard

video.

Normalized cross correlation (NCC), that can be attributed to Lucas et al. [45],

uses the appearance of objects from previous frames to match in the current frame

simply by correlating a template with a search region. It is also usually the baseline

as it is the simplest among all techniques. The Kalman Appearance Tracker [46] uses

prediction as its main approach towards handling appearance change. A normalized

template is represented by its intensities in a Kalman filter and it predicts the inten-

sity change over time. Target motion is independently predicted by a different filter

that maintains the motion dynamics. Candidate windows around the predicted tar-

get position are then compared to the predicted template appearance and as per the

greedy approach a best match is picked as the most likely location. Fragments-based

Robust Tracking (Frag-Track) [47] pursues matching an ensemble of patches. Partial

occlusions and pose changes are handled patch-by-patch. Candidate windows are se-

lected uniformly around the previous position similar to the NCC tracker. Incremental

Visual Tracking (IVT) [48] is a method in which stores the entire history of appear-

ances of a target over time. In order to reduce the dimensionality only the Eigen

images of the target are computed by incremental PCA over the target’s intensity

values. The Last-in-First-out (LIFO) order is maintained wherein the tracker forgets

the oldest appearance first. Foreground-Background Tracker (FBT) [49] uses a linear
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discriminant classifier that is trained on Gabor texture feature vectors derived from

local background, surrounding the target using color Speeded up Robust Features

(SURF) [50]. Tracking by Sampling Trackers (TST) [51] relies on tracking by sam-

pling many trackers. Each tracker is made from 4 components: a: appearance model,

b: motion model c: state representation and d: an observation model. The state of the

target stores the center, scale and spatial information. Multi-Domain Convolutional

Neural Network Tracker (MDNet) [52] pre-trains a convolutional neural network on

a generic set of sequences. During the tracking phase, samples are extracted around

the target and the appearance with the maximum score is selected. Spatially Regu-

larized Discriminative Correlation Filter with Deep Features (SRDCF) [53] uses the

SRDCF tracker and uses deep features instead of a hand picked feature set. Both

CNN based trackers outperformed all the other trackers and MDNet in particular is

better in both accuracy and robustness than other state of the art trackers. Several

trackers that participated in the challenge also compute histogram based features

for matching which is quite similar to our proposed algorithm. SumShift [54] uses

patch based histograms as a template descriptor. Descriptor computation is similar

to LOFT with the exception of splitting up the target into pre-defined sub-windows

before extracting histograms. S3Tracker is an extension of the SumShift tracker with

addition of likelihood for scale of the object to be searched. Both trackers ranked in

the top 15 set in VOT-2015.
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Chapter 3

LOFT: Likelihood of Features
Tracking System

Likelihood of Features Tracking (LOFT) system that is based on fusing multiple

sources of information about the target and its environment. LOFT uses image-

based feature likelihood maps derived from a template-based target model, object and

motion saliency, track prediction and management, combined with a novel adaptive

appearance target update model.

LOFT was primarily designed to track objects in WAMI. The overall LOFT track-

ing system shown in Figure 3.1, can be broadly organized into several categories

including: (i) Target modeling, (ii) Likelihood fusion, and (iii) Track management.

Given a target of interest, it is modeled using a rich feature set including inten-

sity/color, edge, shape and texture information [2, 55]. The novelty of the overall

LOFT system stems from a combination of critical components including a flexible

set of features to model the target, an explicit appearance update scheme, adaptive
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posterior likelihood fusion, a kinematic motion model, and track termination working

cooperatively in balance to produce a unified reliable tracking system.

The features used in the LOFT system can be grouped into four categories:

region-based, edge-based, local shape-based, and texture-based. Block-based simi-

larity measures such as intensity and gradient cross-correlations incorporate spatial

information, that histogram/distribution-based similarity measures lack and provide

better discrimination power, but are sensitive to pose and viewing orientation. On the

other hand histogram-based techniques provide global information about objects and

image windows that are tolerant of small changes due to motion, illumination, pose,

or viewing direction. We primarily use histogram-based descriptors and similarity

measures except for the normalized intensity and gradient magnitude correlation to

estimate feature likelihood maps. Gradient magnitude normalized cross-correlation

and gradient magnitude histograms are edge-based features computed similar to their

intensity counterparts. Gradient orientation information is captured using the his-

togram of oriented gradients (HOG) descriptor which has been successfully used in

many recent object and people detection applications [56]. HOG bins the gradient

magnitude weighted gradient orientations over an image patch and is a dense version

of the popular scale-invariant feature transform (SIFT) descriptor. Robust orien-

tation estimation is important for HOG-like descriptors. Our novel extension uses

more accurate orientation estimation based on the adaptive robust structure tensor

(ARST-HOG) [57]. Structure tensors are a useful tool for reliably estimating oriented

structures within a neighborhood even in the presence of noise. In our preliminary

car detection results ARST-HOG outperformed standard HOG. Local shape-based

16



features are measured using the eigenvalues of the Hessian matrix H, of the intensity

field I(x, y), that describes the second order structure of local intensity variations

around each image point, Two measures of local shape are the shape index and the

normalized curvature index features derived from the eigenvalues. In the experimen-

tal results an unsigned ordering of the eigenvalues was used. A third shape measure

is the magnitude weighted histogram of the Hessian eigenvector orientations. This

descriptor is similar to HOG but with orientations corresponding to Hessian (Jaco-

bian of image gradient) eigenvectors instead of a simple gradient measure. Textures

are easy to recognize but hard to define. Texture analysis approaches include features

of co-occurrence matrices, spatial filtering, random field models and texton pattern

modeling. A simple texture measure that combines statistical and structural mod-

els of texture is based on the local binary pattern (LBP) histogram [58]. The LBP

characterizes the quantized local intensity variability and various extensions to LBP

have been proposed including the median binary pattern (MBP) [59]. We use the

uniform rotation-invariant LBP consisting of 18 unique patterns. Feature likelihood

maps are computed using sliding window histogram differencing. Local maxima in

the feature likelihood maps that exceed a threshold are considered as high probability

target locations.

The likelihood map of each feature is generated by comparing the feature his-

tograms of the target and search regions. Each pixel in a likelihood map is a prob-

ability measure of the pixel belonging to the background. The likelihood maps are

then fused with a weighted sum and one of the important parameters of this step

is the relative importance of features. Previously we examined several different fea-
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ture fusion weighting schemes including Variance Ratio [18], Distractor Index [2] and

Feature Prominence [60] for fusion.

Predicted 
Search Window 

Target 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Target 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Figure 3.1: Likelihood of Features Tracking (LOFT) processing pipeline showing ma-
jor components including feature extraction, feature likelihood map estimation by
combining with the template, vehicle detection using support vector machine (SVM)
classification, fusion module that also incorporates prediction based motion and back-
ground subtraction based motion, to produce a fused likelihood for target localization.
The track management includes termination module, prediction with or without mul-
tiple hypothesis tracking (MHT) and object appearance updating for adaptive target
modeling [42].

The rest of the chapter is organized as follows. Section 3.1 describes estimating

features and fusing the posterior likelihood maps. Section 3.2 describes the novel

target appearance modeling and adaptive update modules. Section 3.3 describes

the tracker management component that is often lacking in other systems including

smooth trajectory assessment and appropriate tracker termination to maintain track

purity.
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3.1 Likelihood Fusion

The target area is modeled using features that can be grouped into categories such as

block, edge, shape and texture based. We use local binary patterns for texture, eigen-

values of the Hessian matrix for shape information, gradient orientation information

using Histogram of Oriented Gradients, gradient magnitude as edge-based features

and intensity as block based features. More details about these feature descriptors

and their computation presented in Palaniappan et al. [2].

The tracker decides the presence of target and its location according to the likeli-

hood of target being within the search region. A likelihood map is produced for each

feature by comparing the feature histograms of target and the search regions using

a sliding window-based approach (see Fig. 3.1). Each pixel in the likelihood map

indicates the posterior probability of that pixel belonging to the target. Using mul-

tiple features enables adaptation of the tracker to dynamic environment changes and

target appearance variabilities. It also provides more robust localization especially

for cluttered environments. Feature adaptation can be accomplished using fusion. In

our LOFT algorithm we use a weighted sum fusion rule which tends to perform better

than other methods such as the product rule [61]. The critical aspect in weighted

sum fusion is the relative importance of feature maps. Each feature performs dif-

ferently depending on the target characteristic and environmental situations during

tracking. Equally weighted fusion of likelihood maps can decrease performance, when

some of the features are not informative in a particular environment. The importance

assigned to each feature can be adapted to the changes in target pose and the sur-

rounding background. Temporal feature weight adaptation can improve performance
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under changes that are not explicitly modeled by the tracker.

We considered two weighting schemes including the Variance Ratio (VR) [18] and

the Distractor Index [2]. LOFT fuses the histogram based and correlation based

features in two stages. Firstly, histogram based features are fused using the VR

method [18, 62] which adaptively weights the features according to the discriminative

power between the target and the background measured using the two-class ratio

of total to within class variances. Secondly, non-histogram (i.e. correlation) based

features are combined with the fused histogram-based features using the Distractor

Index method proposed by Palaniappan et al. [2]. In this method, the number of

local maxima within 90% of the maximum likelihood and within the approximate

spatial support of the object template, NT , are estimated and used as the number

of viable peaks for the ith feature, mi ∈ [1,∞). Fusion feature weights in LOFT are

then calculated using [2],

wi ≈ m−1i (
n∑
i=1

1/mi)
−1. (3.1)

Consequently, high distractor index values will result in low weights for unreliable

features. By assuming the environment does not change drastically across frames,

the system fuses the likelihood maps of frame k using the feature weights which were

estimated at frame k−1. Calculating feature weights dynamically enables the tracker

to cope with small appearance changes in target and environment. Strong local

maxima in the fused map which exceeds a predetermined threshold are considered as

potential target locations.
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3.2 Target Modeling

LOFT [2] uses the principle of single target template-based tracking where target

features are used to match an area or region in subsequent frames. Static template-

based tracking has been studied in computer vision dating back to at least the 1980’s

[63]. Currently, generative models such as [16, 17] or discriminative models such as

[20, 64] all have online and offline versions to robustly adapt to object appearance

variability. Recently, several trackers based on sparse representation have shown

promise in handling complex appearance changes [24, 65, 66]. Our dynamic appear-

ance adaptation scheme maintains and updates a single template by estimating affine

changes in the target to handle orientation and scale changes [67], using multiscale

Laplacian of Gaussian edge detection followed by segmentation to largely correct for

drift. Multi-template extensions of the proposed approach are straightforward but

computationally more expensive.

3.2.1 Appearance Update

Given a target object template, Ts, in the initial starting image frame, Is, we want to

identify the location of the template in each frame of the WAMI sequence using a like-

lihood matching function, M(·). Once the presence or absence of the target has been

determined, we then need to decide whether or not to update the template. The tar-

get template needs to be updated at appropriate time points during tracking, without

drifting off the target, using an update schedule which is a tradeoff between plasticity

(fast template updates) and stability (slow template updates). The template search
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and update model can be represented as,

x∗k+1 = arg max
x∈NW

M(Ik+1(x), Tu), k ≥ s, u ≥ s (3.2)

Tk+1 =


Ik+1
c∈NT

(x∗k+1 + c), if f(x∗k+1, Ik+1, Tu)) > Th

Tu, otherwise

(3.3)

where M(·) denotes the posterior likelihood estimation operator that compares the

vehicle/car template from time step u, Tu (with support region, c ∈ NT ), within the

image search window region, NW , at time step k + 1. The optimal target location in

Ik+1 is given by x∗k+1. If the car appearance is stable with respect to the last updated

template, Tu, then no template update is performed. However, if the appearance

change function is above a threshold indicating that the object appearance is changing

and we are confident that this change is not due to an occlusion or shadow then the

template is updated to the image block centered at x∗k+1. Instead of maintaining and

updating a single template model of the target a collection of templates can be kept

(as in learning-based methods) using the same framework, in which case we would

search for the best match among all templates in Eq. 3.2. Note that if u = s then the

object template is never updated and remains identical to the initialized target model.

Our adaptive update function f(·) considers a variety of factors such as orientation,

illumination and scale changes.

In most video object tracking scenarios the no update scheme rarely leads to bet-

ter performance [16] whereas naively updating on every frame will quickly cause the
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Figure 3.2: Orientation and intensity appearance changes of the same vehicle over a
short period of time necessitates updates to the target template at an appropriate
schedule balancing plasticity and stability [42].

tracker to drift especially in complex video such as WAMI [2]; making the tradeoff be-

tween these two extremes is commonly referred to as the stability-plasticity dilemma

[68]. Figure 3.2 shows several frames of a sample car from the CLIF sequences as its

appearance changes over time. Our approach to this dilemma is to explicitly model

appearance variation by estimating scale and orientation changes in the target that

is robust to illumination variation. Segmentation can further improve performance

[69, 70].

We recover the affine transformation matrix to model the appearance update

by first extracting a reliable contour of the object to be tracked using a multiscale

Laplacian of Gaussian, followed by estimating the updated pose of the object using

the Radon transform projections as described below.

3.2.2 Laplacian of Gaussian

A multi-scale Laplacian of Gaussian (LoG) filter is used to increase the response of

the edge pixels. Using a series of convolutions with scale-normalized LoG kernels
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σ2∇2G(x, y, σ2) where σ denotes the standard deviation of the Gaussian filter,

Ik,L(x, y, σ2) = Ik(x, y) ∗ σ2∇2G(x, y, σ2) (3.4)

we estimate the object scale at time k by estimating the mean of the local maxima

responses in the LoG within the vehicle template region NT . If this σ̂∗k has changed

from σ̂∗u then the object scale is updated.

3.2.3 Orientation Estimation

The Radon transform is used to estimate the orientation of the object [67] and ap-

plying the transform on the LoG image Ik,L(x, y), we can denote the line integrals

as:

Rk(ρ, θ) =

∫∫
Ik,L(x, y)δ(ρ− x cos θ − y sin θ) dx dy. (3.5)

where δ(·) is the Dirac delta sampling function that samples the image along a ray.

Given the image projection at angle θ, we estimate the variance of each projection

profile and search for the maximum in the projection variances by using a second order

derivative operator to achieve robustness to illumination change [71]. An example

of vehicle orientation and change in orientation estimation is shown in Figure 3.3.

This appearance update procedure seems to provide a balance between plasticity and

stability that works well for vehicles in aerial imagery. More detailed explaination

of orientation estimation is found in our related work [72] and is described in the

upcoming Chapter 5.
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(a) (b)

(c) (d)

Figure 3.3: Vehicle orientations are measured wrt vertical axis pointed up. (a)
Car template. (b) Variance of Radon transform profiles with maximum at 90◦ (red
square). (c) Car template rotated by 45◦ CCW. (d) Peak in variance of Radon trans-
form profiles at 135◦ (red square). Change in car orientation is correctly reported as
45◦ [42].

3.3 Track Management

A robust tracker should maintain track history information and terminate the tracker

when performance is deteriorating irrecoverably (e.g. camera seam boundary), the

target leaves the field-of-view (e.g. target exiting the scene), enters a long oc-

cluded/shadow region, or the tracker has lost the target. LOFT incorporates multiple

track termination conditions to ensure high precision (track purity) and enable down-

stream tracklet stitching algorithms to operate efficiently during track stitching. Track

linearity or smoothness guides the tracker to select more plausible target locations

incorporating vehicle motion dynamics and a termination module for terminating the
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tracker.

3.3.1 Smooth Trajectory Dynamics Assumption

Peaks in the fused likelihood map are often many due to clutter and denote possible

target locations including distractors. However, only a small subset of these will

satisfy the smooth motion assumption (i. e. linear motion). Checks for smooth

motion/linearity is enforced before a candidate target location is selected to eliminate

improbable locations. Figure 3.4 illustrates the linear motion constraint. The red

point indicates a candidate object with a very similar appearance to the target being

tracked, but this location is improbable since it does not satisfy the trajectory motion

dynamics check and so the next highest peak is selected (yellow dot). This condition

enforces smoothness of the trajectory thus eliminating erratic jumps and does not

affect turning cars.

Figure 3.4: When the maximum peak (red dot) deviates from the smooth trajec-
tory assumption (in this case linearity) LOFT ignores the distractor to select a less
dominant peak satisfying the linearity constraint (yellow dot) [42].
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3.3.2 Prediction & Filtering Dynamical Model

LOFT can use multiple types of filters for motion prediction. In the implementation

evaluation for this paper we used a Kalman filter for smoothing and prediction [73,

74] to determine the search window in the next frame, Ik+1. The Kalman filter is a

recursive filter that estimates the state, xk, of a linear dynamical system from a series

of noisy measurements, zk. At each time step k the state transition model is applied

to the state to generate the new state,

xk+1 = Fk xk + vk (3.6)

assuming a linear additive Gaussian process noise model. The measurement equation

under uncertainty generates the observed outputs from the true (”hidden”) state.

zk = Hk xk + wk (3.7)

where vk denotes process noise (Gaussian with zero-mean and covariance Qk), wk de-

notes measurement noise (Gaussian with zero-mean and covariance Rk). The system

plant is modeled by known linear systems, where Fk is the state-transition matrix

and Hk is the observation model.

Possible target locations within the search window are denoted by peak locations

in the fused posterior vehicle likelihood map. Candidate locations are then filtered by

incorporating the prediction information. Given a case where feature fusion indicates

low probability of the target location (due to occlusions, image distortions, inade-

quacy of features to localize the object, etc.) the filtering-based predicted position is
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then reported as the target location. Figure 3.5 shows LOFT with the appearance-

based update module being active over the track segments in yellow with informative

search windows, whereas in the shadow region the appearance-based features become

unreliable and LOFT switches to using only filtering-based prediction mode (track

segments in white).

Figure 3.5: Adaptation to changing environmental situations. LOFT switches be-
tween using fused feature- and filterin-based target localization (yellow boxes) within
informative search windows (yellow boxes) and predominantly filtering based local-
ization in uninformative search windows (white boxes) [42].

3.3.3 Target vs Environment Contrast

LOFT measures the dissimilarity between the target and its surrounding environment

in order to assess the presence of occlusion events. If the variance ratio between the

target and its environment is below a threshold, this indicates a high probability that

the tracker/target is within an occluded region. In such situations, LOFT relies more

heavily on the Kalman filter. Figure 3.6 shows a sample frame which illustrates the

difference between high and low VR locations.
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Figure 3.6: Pixels within the red rectangle form the foreground (Fg) distribution,
pixels between the red and blue rectangles form the background (Bg) distribution.
(Left) High VR: Fg and Bg regions have different distributions. (Right) Low VR: Fg
and Bg regions have similar distributions [42].

3.3.4 Image/Camera Boundary Check

LOFT determines if the target is leaving the scene, crossing a seam or entering an

image boundary region on every iteration in order to test for the disappearance of

targets. If the predicted location is out of the working boundary, the tracker auto-

matically terminates to avoid data access issues (Figure 3.7). LOFT, as a tracking

Figure 3.7: Termination of tracks for targets leaving the working image boundary [42].

system, encompasses the modules described in this section. Image boundary checks

are required required for graceful termination, handling of partial and full occlusions

is required for continuing tracking effectively increasing track length. The linearity

check imposes constraints on smooth linear motion which is typical of objects in the

real world and especially vehicles driving on paved roads. The orientation estimation

modules are described more in detail in the upcoming chapters 4 and 5.
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Chapter 4

Orientation Estimation Using
Radon Transform

4.1 Introduction

The Radon transform in the discreet form is widely used in image processing and

particularly in biomedical imaging. Magnetic Resonance Imaging and fan beam re-

constructions use the inverse Radon transform to assemble the projections. The

projections are also used as a feature to describe and detect lines. A discreet version

of Hough and Radon transforms are related but they have key differences. The use of

projections is a very powerful descriptor for lines and line detection. The accumula-

tion of votes in the transform profile space can be used to describe lines. The general

Radon transform used in tomography and microscopy where the core function g(x, y)
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has no preferred orientation can be described by a line in its normal form:

ρ = xcosθ + ysinθ (4.1)

The general equation is written in the following form

R(ρ, θ) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)δ(ρ− xcosθ − ysinθ)dxdy (4.2)

4.1.1 Radon Transform of a Line

Using the normal equation of the Radon transform a line can be modeled with certain

parameters (ρ∗, θ∗) as given in Peter Toft’s thesis [75] is as follows:

R(ρ, θ) = δ(ρ∗ − xcosθ∗ − ysinθ∗)

R̂(ρ, θ) =

∫ ∞
−∞

δ(ρ∗ − (ρcosθ − ssinθ)cosθ∗ − (ρsinθ + scosθ)sinθ∗)ds

=

∫ ∞
−∞

δ(ρ∗ − ρcos(θ − θ∗) + ssin(θ − θ∗))ds

=

∫ ∞
−∞

1

|sin(θ − θ∗)|
δ

(
ρ∗ − ρcos(θ − θ∗)

sin(θ − θ∗)
+ s

)
ds, (4.3)

if sin(θ − θ∗) 6= 0

=
1

|sin(θ − θ∗)|
(4.4)

A peak if formed when ρ = ρ∗ and θ = θ∗ and this basic property can be used

to detect the spatial location and orientation of the lines. We have formulated our

problem as detecting orientation when an input image contains a set of lines or edges.
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While the technique is designed to detect lines, we have shown that using the raw

output is not always ideal and needs further calculations in addition to get acceptable

tolerances to orientation change error in real applications. This is demonstrated by

the orientation evaluation experiment wherein different inputs and different forms

of outputs are benchmarked. In this regard we have compared our technique to a

similar Radon based transform called the Geometric Transform [76]. The Geometric

Transform or GeT was used for appearance modeling for a parts based descriptor in

Li et al. [76].

4.2 Orientation Estimation Using Radon Trans-

form

We consider that the object to be tracked is defined by its initial appearance and

associated set of feature descriptors which are provided as input to the tracking

system. We denote the given sequence of images as Ik where k is the frame number.

The image patch or region, centered at (x, y), representing the target object in the

initial frame I0, is denoted as T0(x, y). Let us denote a new template T1 as the region

localizing the target in I1, and the variation between T1 and T0 as V1. Appearance

variations can be modeled by changes in shape and texture [27]. For our adaptive

model, we assume that the variations in shape and texture can be modeled by an

affine transformation matrix Ak, that includes translation, rotation, scale and shear

changes between time k−1 and k. When the variation in appearance Vk is significant

then an appearance update is performed.
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4.2.1 Orientation Estimation

We propose a robust way to estimate the orientation of vehicle objects based on

the Radon transform assuming that a reliable binary map is available. The Radon

transform computes a projection of the image as a sum of line integrals accumulating

pixel intensities along rays at a set of angles. The Radon transform line integral,

R(ρ, θ), maps the image to a new ρ and θ space, where a ray is given as, ρ =

x cos θ+y sin θ. The Radon transform of the binarized map, Ĩk,H , at time k is defined

as,

Rk(ρ, θ) =

∫∫
H(HW )δ(ρ− x cos θ − y sin θ)dx dy (4.5)

where δ(·) is the Dirac delta sampling function and where H(·) is the Heaviside

function such that positive values (inclusive of zero) are binarized to one and negative

values as zero. Given the Radon transform projections we can calculate the variance

of each profile (ρ varies while θ remains fixed),

Vk(θF ) ≡ V ar(Rk(ρ, θ = θF )) (4.6)

The second derivative properties of the profile variance function, Vk(θ), are quite

robust as an estimate of local structure orientation [71]. However, for our purposes

looking at the maximum value in the variance function results in sufficient accuracy

in the estimated angle. Figure 4.1 shows the example of a simple shape and it’s

corresponding result with the proposed method. The simple rectangle demonstrates

how the cumulative sum affects the radon transform profile. The shorter sides and

the longer sides show up as peaks and the magnitude difference shows how the longest
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edge is picked as being the orientation of the object.

(a) Projections of binary image (b) Radon Transform (RT) Pro-
file

(c) Variance of RT profile

Figure 4.1: Diagram showing Radon Transform projections on a binary image and the
resulting profile and variance curve. The estimated angle is at 120 degrees (measured
w.r.t vertical axis) [77]

4.2.2 Similarity to Geometric Transform

Modeling appearance inside a closed contour was proposed by Li et al. [76]. This

general transform was designed to combine shape and appearance information at

different resolutions and be invariant to deformations and occlusions. The different

formulations that were suggested were to model and encode the appearance informa-

tion. While not being explicitly used for orientation estimation, a similar procedure

to our Radon transform based estimation approach can be used to determine appear-

ance orientation. Since the transform is designed to encode changes in the appearance

of the object we believe that with similar techniques to estimate orientation we have

another very closely related method to compare against. We use the GeT equation 14
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from [76] as it is the closest in its formulation to our direct Radon transform technique

defined as follows:

R(ρ, θ) =

∫
g(x, y)δ(xcosθ + ysinθ − ρ)dxdy∫

H(I(x, y))δ(xcosθ + ysinθ − ρ)dxdy
(4.7)

Figure 4.2: Figure showing Radon Transform projections on a binary image and the
resulting profile with its corresponding variance curve. The estimated angle is at
120 degrees (measured w.r.t vertical axis). The bottom row shows the input to the
Geometric Transform (GeT) and its corresponding profile and variance plot. In this
case we are simulating an ideal segmentation groundtruth for the input to GeT by
providing a binary mask with ones only where there are gray values other than zero.
In this case, the GeT and the Radon Transform would determine the same angle
but there are key differences like the magnitude of the profile plot (y-axis) and the
multiple peak values (y-axis) in the variance plots.

In the rest of the chapter, we have compared the performance of both the tech-

niques. As an observation, the GeT simply uses only the projections that are con-
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tained inside a masked region. Our experiments show that given an ideal segmenta-

tion the GeT performs exactly the same as our approach of using binarized multiscale

edges and the Radon transform. However, the performance also relies mostly on the

quality of the segmentation which in our approach is not much of a problem at the

stage of computing the orientation. Figure 4.2 shows an ideal segmentation case for

GeT and perfect binary edges for input to our Radon transform approach.

4.2.3 Evaluation: Radon versus GeT

Table 4.1 shows a comprehensive evaluation between GeT and our Radon method

with different inputs. These experiments were conducted on Columbus Large Image

Format(CLIF) [78] dataset using groundtruth bounding boxes as input. The detailed

description of the CLIF data is given in Chapter 7. The use of groundtruth bounding

boxes eliminates inaccuracies in tracking and since this evaluation is focused only on

estimating the orientation correctly, the assumption of having ideal input is important

to highlight key differences. The groundtruth boxes have orientation information

since they are manually marked polygons instead of axis aligned boxes. We then

compare the estimated orientation against the orientation from the groundtruth and

if the estimate deviates by a certain number of degrees (in this case 5 degrees) then

it is considered as a wrong estimate for that frame. Maintaining a counter for the

number of correct estimates Table 4.1 shows this number for the different stated

techniques. Peak (P) indicates the angle associated with the maximum value in the

2D Radon Transform of the associated feature map (ie intensity, Hessian, or binarized

Hessian) is used as the estimate of the vehicle orientation. Variance (V) shows results
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Radon

Radon(R) GeT (G)

Intensity(I) Hessian(H) Intensity(I) Hessian(H)

Raw Raw Binary(B) Raw Raw Binary(B)

Peak (P) Variance (V) Variance (V) Peak (P) Peak (P) Variance (V) Peak (P) Variance (V) Peak (P) Variance (V) Peak (P) Variance (V)

Peak (P) Variance (V) Peak (P) Variance (V) Peak (P) Variance (V) Peak (P) Variance (V) Peak (P) Variance (V) Peak (P) Variance (V)

C0 3 0 17 4 28 28 33 28 22 11 13 5 0 12

C1 2 0 10 15 10 21 25 25 14 9 9 13 0 16

C1 4 0 36 18 43 36 31 27 13 12 12 3 0 14

C1 4 6 36 38 20 24 27 23 11 7 10 9 2 13

C2 4 1 21 25 19 28 19 26 6 5 4 3 0 20

C3 3 4 7 13 13 17 6 11 6 6 1 1 6 9

C4 1 0 9 9 6 6 7 7 6 1 5 1 6 7

C4 3 0 4 4 16 8 15 17 8 4 0 0 0 13

C4 4 1 17 16 16 16 23 25 18 21 13 27 0 14

C4 4 4 12 9 12 12 10 11 0 0 0 0 0 5

C5 1 4 18 5 23 24 24 24 0 0 4 0 8 22

C5 2 0 4 14 27 30 30 29 19 24 3 0 32 28

C5 3 7 27 27 27 27 27 27 27 5 4 1 0 26

C5 4 1 17 5 19 19 19 19 13 10 6 1 0 16

Total TP 235 202 279 296 296 299 163 115 84 64 54 215

Table 4.1: CLIF Orientation evaluation on all 14 sequences. The numbers indicate
the number of frames per sequence which are considered as true positive (TP) where
if the angle estimate by a particular method (columns) is within 5 degrees as when
compared with groundtruth angle. Hierarchical arrangement of 6 combinations for
each method such that binary code is ordered from top to bottom. For e.g. RHBV
→ Radon Binarized Hessian Variance. Bold denotes our method

where the predicted angle is estimated by maximizing the variance that is in turn

derived from the transform profile. There are three different types of image or 2D

map inputs to compute the transforms such as intensity, hessian (H) and binarized

hessian (BH). The results as shown in Table 4.1 indicate that our technique with the

binarized hessian and maximized variance has a minor improvement over maximizing

for the angle over the Radon transform profile. While RHBV, would be better than

the other methods, we need to design an experiment that could closely reflect the

accuracy difference better.

In this chapter we have seen the formulation of our proposed algorithm where we

use a binary map as input to the Radon transform. Once we compute the Radon

transform profile, the next step is to compute the variance which would then, once

maximized, indicate the predominant orientation in the map. The method is robust
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and shows promise as compared with another similar transform (GeT). In the subse-

quent chapter we will study how these equations are used in appearance modeling.
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Chapter 5

Appearance Modeling and
Adaptive Template Update Scheme

Visual feature-based tracking systems need to adapt to variations in the appearance

of an object and in the scene for robust performance. Though these variations may be

small for short time steps, they can accumulate over time and deteriorate the quality

of the matching process across longer intervals. Tracking in aerial imagery can be

challenging as viewing geometry, calibration inaccuracies, complex flight paths and

background changes combined with illumination changes, and occlusions can result in

rapid appearance change of objects. Balancing appearance adaptation with stability

to avoid tracking non-target objects can lead to longer tracks which is an indicator of

tracker robustness. The approach described in this paper can handle affine changes

such as rotation by explicit orientation estimation, scale changes by using a multiscale

Hessian edge detector and drift correction by using segmentation. We propose an

appearance update approach that handles the ‘drifting’ problem using this adaptive
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scheme within a tracking environment that is comprised of a rich feature set and a

motion model.

Object tracking is an important task from the point of view of security and surveil-

lance, recognizing people and objects of interest and is important towards other re-

lated tasks such as automatic annotation and retrieval, human computer interaction.

Monitoring traffic patterns though related to surveillance has in recent years en-

veloped more complex techniques like higher level fusion of other information such

as persistent tracking, association of entities and events and behavioral information.

Tracking can be challenging due to noise content in the images, articulated motion,

partial and full occlusions, illumination changes. Exclusive to wide-area motion im-

agery are other complications like camera geometry errors, smooth change in camera

angles coupled with ever changing illumination creates a unique combination which

makes the task challenging. Our tracking method is based on fusing multiple features

by comparing a target appearance model within a region on interest using feature

likelihood maps which estimates the likelihood and thus detects the most probable

location of the object. Appearance modeling is a complex problem and many tech-

niques in the literature exist that address this problem [17, 27, 79, 80]. Our main

contributions are: (1) we show that appearance based trackers can result in reliable

trajectories if it has a robust appearance and motion model, (2) we show that adapt-

ing to orientation of the objects and correcting for the drift can result in increased

accuracy without significant overhead. Our CLIF tracking results in this paper are

significantly improved over our previous results [72] due to the following extensions

to LOFT with orientation estimation: (a) contrast stretching, (b) initial template
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segmentation to get a reasonably tight bounding box, (c) identifying and skipping

duplicate frames using image differencing and use only the Kalman filter motion

without any appearance - treat it like an occlusion, (d) more sophisticated switching

between Radon transform estimation of orientation and Kalman filter estimate of

motion direction instead of just Radon transform-based estimate.

5.1 LOFT: A Wide-Area Tracking System

The wide-area tracking system, LOFT [2, 42], LOFT robustly tracks vehicles in wide-

area large format (WALF) video that is airborne imagery characterized by large

spatial coverage, high resolution of about 25 cm GSD (Ground Sampling Distance)

and low frame rate of a few frames per second. Wide-area large format imagery is

also known by several other terms including wide-area aerial surveillance (WAAS),

wide-area persistent surveillance (WAPS), Large Volume Streaming Data (LVSD)

and wide-area motion imagery (WAMI) [1–3, 5] as described in Chapter 3 Appear-

ance modeling or adapting to changes in object appearance has been handled in

different ways in the past, either by using target observations [16, 17], fusing multiple

sources of sensor information [70, 81], parts-based deformable templates [22, 82], as

a learning problem using on-line boosting [64], or on-line multiple instance boosting

[20], while earlier techniques used off-line classifier training [48, 83]. Off-line learn-

ing requires training on a set of image patches which introduces more complexity as

the accuracy then depends on factors such as the amount of variation in the image

patches, the training method used, size of the training set and avoiding over-training.
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Recently, sparse representation for object classification based tracking methods are

actively being investigated [24, 66], but L1 minimization is computationally expen-

sive, especially when very high dimensional feature vectors are used and appearance

adaptation is still challenging even using sparse models. A typical assumption in

appearance-based tracking is that the object’s visual representation does not change

significantly across a sequence of frames. Although this assumption may hold over

short intervals for high frame rate full motion video, it is often not valid across longer

time intervals, lower frame rates and abrupt changes in the environment or imaging

conditions. One (naive) approach to accommodate appearance changes, is to update

the target appearance model on every frame based on the results from the matching

algorithm. Updating on every frame can lead to instabilities in representing the target

due to variations in scene conditions and partial occlusions which leads to the drifting

problem, while updating less frequently can result in the model missing appearance

changes that are important for continuous tracking. Making this trade-off is referred

to as the stability-plasticity dilemma [64, 68]. The following sections describe the

appearance modeling strategy in detail along with algorithms that are part of the

LOFT system.

5.2 Appearance Based Target Model Update Strat-

egy

The way our proposed approach handles this dilemma is by trying to balance between

naive updating on every frame and a no update scheme using a single fixed template,
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by estimating when there is significant change in the appearance prior to an update.

Model updates can occur when there is rapid change in pose of the object or illu-

mination change thus maintaining plasticity,on the other hand when the changes in

orientation, scale or illumination is very small then an update is not performed and

contributes to model stability. Cars on turns contribute to significant change in tem-

plate appearance. We model this variation by estimating the change in orientation

from one frame to the other and taking the decision on whether the template needs an

update. Making the feature descriptors rotationally invariant may impact matching

performance as typically in WAMI, objects only have a small gamut of appearances.

WAMI data is also typically low frame rate compared to standard video sequences

but for aerial surveillance 1 − 4 frames per second is sufficient to predict change in

orientation of an object. We believe that our model of estimating orientation and

requesting updates is computationally inexpensive and this contributes a lot towards

accuracy of the tracker. Appearance update strategies have a significant influence on

the overall quality of the tracker by striving for high precision while increasing recall

which is a challenging tradeoff to achieve [68]. We maintain several update strategies

and select between them based on context and cues about the environment as well as

target behavior. The update strategy presented here tries to address the stability and

plasticity dilemma by employing the use of information such as amount of change in

the pose and scale of the object, any illumination changes, and time interval since
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the last update. Using the likelihood-based Eq. 5.2, one update condition,

Tk+4k =


Extract(Wk+4k, (xk+4k, yk+4k)),

Tk, if angleDiff /∈ [AL, AU ]

(5.1)

checks angleDiff , the difference in orientation between current and previous vehicle

templates compared to a user specified angle range. The function Extract(·) returns

an image patch centered at the given coordinates. Algorithm 1 describes the wrapper

code that takes two templates as input and outputs the orientation. Algorithm 2 is

the detailed pseudo-code that computes the orientation, the difference in orientation

as compared with last known good appearance and a confidence measure. Finally,

Algorithm 3 describes the template replace procedure under certain criteria once

compared with thresholds.

Algorithm 1 Appearance update driver

Input: Tk−4k, Tk
//Previously known good and current template (appearance)
xk, yk //Centroid from Likelihood function as in Eq. 5.2
Wk //Search Window of current frame

Output: anglek
//Orientation angle of template at time k
appConf
//Radon transform similarity between Tk−4k & Tk
Tpaddedk = Extract(Wk, (xk, yk), τ1)
//where Extract(·) is an overloaded function similar to Eq. 5.1 and τ1 is a scalar value

denoting number of pixels to pad around the center
BI(k)H = Canny(I(k)H, τ2)
BI(k−4k)H = Canny(I(k−4k)H, τ2)
//Binarize the Frobenius norm using the Canny edge detector with threshold τ2

(appConf, anglek) = RadonAngle(BI(k−4k)H, BI(k)H)

//Call function RadonAngle(·) as described in Algorithm 2
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Algorithm 2 RadonAngle

Input: BI(k)H,BI(k−4k)H
//Edge maps

Output: anglek //Orientation of BI(k)H
appConf
//Radon transform similarity between BI(k)H & BI(k−4k)H
angleDiff //Angular difference between anglek & anglek−4k
Rk(ρ, θ) = Radon(BI(k)H, τ3)
Rk−4k(ρ, θ) = Radon(BI(k−4k)H, τ3)
//Compute the Radon Transform as shown in Eq. 5.8
Vk = ComputeV ariance(Rk)
Vk−4k = ComputeV ariance(Rk−4k)
//Compute Variance as given in Eq. 5.9
anglek = argmax

θ
Vk(θF )

anglek−4 = argmax
θ

Vk−4k(θF )

//Find the peak in the variance by finding the maxima and return the correspond-
ing angle
angleDiff = Diff(anglek, anglek−4k)
//Find the angular difference in degrees
R(k)aligned = CircShift(Rk,−anglek)
//Circular shift the Radon profile from timestep k to normalize to ’zero’ degrees
R(k−4k)aligned = CircShift(Rk−4k,−anglek−4k)
R = RMSE(R(k)aligned, R(k−4k)aligned))
//Compute the RMSE between two normalized Radon maps Alg. 4
appConf = ComputeConf(D, τ5)
//Compute the confidence value based on the vector of distances and a maximum

threshold as shown in Eq. 5.10

5.3 Orientation Estimation Using Radon Trans-

form

We consider that the object to be tracked is defined by its initial appearance and

associated set of feature descriptors which are provided as input to the tracking

system. We denote the given sequence of images as Ik where k is the frame number.
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Algorithm 3 Appearance Update Decision

Input: AngleTk−4k
, AngleTk //Car orientation [0,180] degrees

threshDiffAngleU, threshDiffAngleL
//Allowed Upper and Lower angular difference in degrees
appConfThresh //Appearance confidence threshold
initTurn //Flag to denote target initialized on a turn
updateAppStatus //Check frame count since last update
appConf //Object appearance confidence

Output: updateAppearance //Appearance update flag
angleDiff ← |AngleTk−4k

−AngleTk |mod 180
updateAppearance← 0
if initTurn AND appConfidence ≥ appConfThresh OR updateAppStatus AND
appConf ≥ appConfThresh then
updateAppearance← 1

end if
if angleDiff ≥ threshDiffAngleL AND angleDiff ≤ threshDiffAngleU AND
appConf ≥ appConfThresh then
updateAppearance← 1

end if

The image patch or region, centered at (x, y), representing the target object in the

initial frame I0, is denoted as T0(x, y). Let us denote a new template T1 as the region

localizing the target in I1, and the variation between T1 and T0 as V1. Appearance

variations can be modeled by changes in shape and texture [27]. For our adaptive

model, we assume that the variations in shape and texture can be modeled by an affine

transformation matrix Ak, that includes translation, rotation, scale and shear changes

between time k−1 and k. When the variation in appearance Vk is significant then an

appearance update is performed.The following subsections describe the appearance

modeling approach that we use along with the criteria for updating followed by a

description of the update strategies.
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5.3.1 Extracting an Approximate Template

We assume that the tracking position localization is satisfactory so that we can ex-

tract an image patch with the same parameters as the initialized template model or

the previously updated appearance model. The localization using the fused feature

conditional likelihood map of the target is given by [42],

(xk, yk) = arg max
x,y

L(Wk(x, y), Tk −4k) (5.2)

where L(Ik+1, Tk) is the likelihood matching function, (xk+1, yk+1) is the estimated

target position at time k+ 1, and at this location we extract a patch Tk+1(xk+1, yk+1)

that becomes the object template at time k + 1. Let us denote W as the search

window which is a sub-region of the full resolution image on which the likelihood

function L, as given above, is computed. The two target appearance models, Tk and

Tk+1, with coordinate locations are used in the update module.

5.3.2 Multiscale Edge Detection

Diminishing the influence of background pixels is important as the accuracy of ori-

entation estimation depends on a reliable edge map. A multiscale edge detection

approach is used based on [84] which developed a vessel enhancement filter based on

an eigenvalue analysis of the Hessian matrix across scale space. The Hessian matrix

47



uses second-order image derivatives:

HW = Wxx = σ2

 Ixx Ixy

Ixy Iyy

 (5.3)

where σ2 is used to achieve invariance under image rescaling [79, 85]. Let λ1, λ2 be

the eigenvalues and e1, e2 the corresponding eigenvectors of the Hessian matrix with

|λ1| ≥ |λ2|. The Hessian is computed after convolving the image with a 2D isotropic

Gaussian,

G(x, y, σi) = (1/
√

2πσi)exp(−(x2 + y2)/(2σ2
i )) (5.4)

where σi is the standard deviation of the Gaussian distribution for the ith scale. We

search across a range of scales based on target size and use the Frobenius norm of the

Hessian matrix at the optimal scale as a measure of the second order structureness,

optimal scale being the scale with the maximum response in terms of the largest

eigenvalue:

σmax(x, y) = argmax
σ
|λ1(x, y, σ)| (5.5)

Ik,H(x, y) = ||H||F (5.6)

=
√
λ1(x, y, σmax)2 + λ2(x, y, σmax)2 (5.7)

The best scale at each pixel, σmax(x, y), is determined by the maximum response

of the maximum eigenvalue or λ1. A range of smaller scales is selected in order to

suppress blob-like responses which after thresholding will produce an enhanced edge

map while small scale responses in the background are diminished using the second
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order structureness [79].

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 5.1: Figure showing car 1 and the corresponding orientation response. Top row
shows the original image, binarized edge map and resulting Radon transform. Middle
row shows the Radon transform profiles for theta = 1, 45, 90, 135. Last row shows the
variance plot with a red marker indicating the estimated orientation and the Radon
transform profiles for theta = 121 maximum and theta = 43 minimum [77].
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 5.2: Figure showing car 14 and the corresponding orientation response. Top
row shows the original image, binarized edge map and resulting Radon transform.
Middle row shows the Radon transform profiles for theta = 1, 45, 90, 135. Last row
shows the variance plot with a red marker indicating the estimated orientation and the
Radon transform profiles for theta = 20 maximum and theta = 145 minimum [77].
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5.3.3 Orientation Estimation

The Radon transform is used to determine the orientation as described in Chapter 4

Equation 4.5. The only difference between Equation 4.5 in Chapter 4 and Equation 5.8

is that the binarized map is the second order structureness image Ik,H from Equation

5.5. We follow the same procedure where we compute the variance 5.9 similar to

Chapter 4 Equation 4.6.

Rk(ρ, θ) =

∫∫
H(HW )δ(ρ− x cos θ − y sin θ)dx dy (5.8)

where δ(·) is the Dirac delta sampling function and where H(·) is the Heaviside

function such that positive values (inclusive of zero) are binarized to one and negative

values as zero. Given the Radon transform projections we can calculate the variance

of each profile (ρ varies while θ remains fixed),

Vk(θF ) ≡ V ar(Rk(ρ, θ = θF )) (5.9)

Figures 5.1, 5.2, 5.3, 5.4 show real examples from the CLIF [78] dataset where each

step of the computation output is shown. The figures contain the binarized map, the

radon transform profile and several profiles for a standard set of angles along with

the variance plots. This shows the inner workings of the proposed method.
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5.3.4 Appearance Update Confidence Using Radon Trans-
form Similarity

A confidence value is used during the decision process to adaptively determine when

an appearance update should take place to switch to the new template model Tk+i and

replace Tk. The confidence value is adaptively estimated by selecting and associating

the highest peaks in the Radon transform function (Eq. 4.5) across two time steps.

Let us characterize the set of strongest peaks (strength and angle θ ignoring ρ) at

two time points by lists p(k+i) and pk. Algorithm 4 is used to establish peak-to-peak

correspondences among the set of strongest peaks in the Radon transform domain.

Algorithm 4 RMSE of two aligned Radon Transform maps

Input: R(k)aligned, R(k−4k)aligned) // Two aligned Radon Transform maps
Output: Err // RMSE of the two maps
error =

∑
((R(k)aligned −R(k−4k)aligned))

2)/length(R(k)aligned)

Err =
√
error

Using the list of distances D from Algorithm 4 we sort and find the best association

of each peak in pk with a single peak in p(k−4k). The resulting set of peak matching

distances characterizes appearance confidence as,

Conf =


Distance/threshold, if Distance > 0

1− abs(Distance)/threshold, otherwise

(5.10)

where Dmean is the mean value in the distance array D and represents the best

association among the set of strongest peaks that in the ideal case would be zero

yielding the highest confidence value of one. The distance array D represents how

close one peak is in terms of its magnitude and orientation.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 5.3: Figure showing car 10 and the corresponding orientation response. Top
row shows the original image, binarized edge map and resulting Radon transform.
Middle row shows the Radon transform profiles for theta = 1, 45, 90, 135. Last row
shows the variance plot with a red marker indicating the estimated orientation and the
Radon transform profiles for theta = 109 maximum and theta = 48 minimum [77].

In this chapter the LOFT appearance modeling algorithm was described in detail.

The algorithms for appearance modeling are centered around the Radon transform
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 5.4: Figure showing car 12 and the corresponding orientation response. Top
row shows the original image, binarized edge map and resulting Radon transform.
Middle row shows the Radon transform profiles for theta = 1, 45, 90, 135. Last row
shows the variance plot with a red marker indicating the estimated orientation and the
Radon transform profiles for theta = 10 maximum and theta = 105 minimum [77].

technique described and evaluated in Chapter 4. The appearance confidence values

are also derived from the Radon transform which is used to recommend an update.
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Chapter 6

Applications and Implementation

The LOFT system that was described in previous chapters provides a solution to the

appearance based persistent tracking. However, the implementation of such a system

required a framework that would be flexible enough to be integrated with various

academic and government institutions and programs. LOFT’s initial implementation

was a prototype in MATLAB R©. The MATLAB implementation was required to

be compiled using the proprietary MATLAB compiler and needed the MATLAB

Compiler Runtime (MCR) during execution. Because of the MCR requirement, a lot

of integration effort focused on accommodating the closed source nature of MATLAB

and writing workarounds for certain shortcomings. One particular difficulty was the

inability to call a MATLAB compiled library or executable in a multi-threaded way

without using multiple instances of the MCR. Every instance of an MCR initialization

takes about 300 MB. This would have been highly impractical to track on 100− 200

objects in parallel as memory requirement would increase linearly in terms of number
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of objects. The effort continued to maintain a working version in MATLAB and

supporting requests for integration in a single threaded environment while focusing

on a pure C++ implementation. Towards the end of the integration effort we ported

over all the MATLAB functionality and replaced all our ongoing code integration

efforts with the native C++ implementation. As part of this, LOFT was designed

and written in a fully flexible C++ framework. Functionally modular, LOFT’s C++

implementation is divided into three components such as

• Driver

• Bridge and

• Core.

This implementation is shared across various projects such as Air Force Research

Lab’s (AFRL) Command, Control, Communications, Computers, Intelligence, Surveil-

lance and Reconnaissance (C4ISR) Enterprise to the Edge (CETE) project which fea-

tures an interface with Kitware’s motion based tracking pipeline, AFRL’s Enhanced

Exploitation and Analysis Tools (E2AT), Army Video Analytics Architecture (AVAA)

& a cloud based implementation separating functionality and I/O for processing in a

cloud-fog environment. The following content in this chapter will describe briefly the

shared codebase and the minor changes in the interface for the various projects.
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6.1 On-board Realtime Target Tracking

AFRL’s Control, Communications, Computers, Intelligence, Surveillance and Recon-

naissance (C4ISR) Enterprise to the Edge (CETE) program was designed to push ISR

closer to the sensor. As part of this goal our integration with Kitware’s KWIVER

based tracking platform, we split up our tasks in two main code roll-out phases. Ver-

sion one was a MATLAB R© based implementation that was used to evaluate using the

tracker in unassisted mode. In assisted mode the tracker is restarted as soon as it

deviates a certain number of pixels away from the true position. In unassisted mode

the tracker is set to run until it decides to terminate and returns control to the parent

calling function. Thus, in unassisted mode the tracker needs auto termination logic

which impacts true positives and false positives. Version 2 was a direct integration

with the KWIVER tracking platform as a compiled MATLAB library. For invoking

such code a MATLAB Compiler Runtime (MCR) which contains all the run-time li-

braries required to run in-built MATLAB functions. Version 3 replaces all MATLAB

code and is compiled directly as C++ source as a library. Version 3 is much more

efficient as there is no extra overhead of the MCR as in version 2. The following

subsections describe the LOFT system architecture through the different versions.

6.1.1 System Architecture

Figure 6.1 shows the modular structure of Version 2 of the C++ and MATLAB

compiled code interface. The MCR acts as a wrapper around any compiled MATLAB

code and adds the additional overhead for initialization. Figure 6.2 shows refactored
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Figure 6.1: LOFT-Lite modular architecture featuring the interface to MATLAB
code.

code for the next generation Version 3 codebase that was functionally modular with

the focus on using potential external programs for future use.

The three main components correspond to the previously mentioned design such

as a) Interface, b) Bridge (glue code) and c) LOFT core. While these modules make

the LOFT system an entirely independent tracker which contains data structures to

maintain state and prediction including the core feature computation, feature fusion

and the appearance module, the interface can be any external program or library.

The C++ based architecture, as shown in Figures 6.3, 6.4a, 6.4b, of the KWIVER

tracking and event detection pipeline, is sufficiently modular and reusable that we

have been able to integrate LOFT-Lite as part of several other video exploitation

frameworks including AFRL E2AT [86] and ARL Advanced Video Activity Analytics

program [87]
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Figure 6.2: LOFT-Lite flexible framework featuring modular functionality.

This architecture as shown in Figures 6.4a, 6.4b supports the data reduction

through the pipeline, starting from object detection where a significant portion of

the data is excluded when it is considered as non-moving. The 3D model of the

scene, a relatively newer addition, is used to distinguish between the false motion

parallax from the tall scene structures and the true movers. In the urban areas such
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Figure 6.3: LOFT-Lite flexible framework replaces the LOFT generic interface with
the KWIVER calling module. This figure was shown in Bashrat et al. [88]

a technique based on the scene model is particularly useful where the tall structures

my result in severe amount of false alarm. Such a design of the tracking pipeline

is scalable for processing larger amounts of data, where the onboard processing can

be distributed across the GPUs and various CPU workers for the various processing

tiles. Notice that the appearance matching block is a separate module, which implies
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(a) Onboard processing concept
used to design onboard processing
modules [88]

(b) Architecture of the KWIVER
tracker pipeline to integrate a fu-
ture 3D model and LOFT appear-
ance matching [88]

convenient integration of various algorithms. Our main contribution to this pipeline

is called LOFT-Lite (version 3) and uses the templated CImg library (cimg.eu) for its

internal data structures. The code that glues the KWIVER tracker with LOFT-Lite

is also in C++ and functions as a translator for data structures between the native

VXL types to CImg type arrays or structures. The glue code along with LOFT-Lite

is compiled to a dynamic library which is then loaded at runtime by the KWIVER

tracker. Currently, a fully C++ multithreaded environment has been completed and

delivered for the completion of the CETE project. Figure 6.4 represents the current

full flow diagram. The core functions are abstracted and named as initialize, match

and update in the figure. Thus, we have formulated a generic way of interfacing any

appearance based tracking algorithm in a similar way as LOFT (Figure 6.4a). We

have evaluated this pipeline with several appearance based trackers and key parameter

changes that are discussed in the subsequent chapter.
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Figure 6.4: Current flow diagram of existing CETE architecture including LOFT’s
core functionality (initialize, match and update) [88]

6.2 Advanced Video Activity Analytics (AVAA)

The AVAA system was designed with an objective for full Full Motion Video (FMV)

exploitation capability as part of a program by the Army Research Lab [89]. The

ultimate goal is to reduce the analyst’s workload and to enable faster and accurate

large scale video analysis [87]. Lower level algorithms will then provide feedback to

abstracted high levels of correlation of data across the enterprise by automatically

analyzing, annotating and processing large amounts of video streams.

Video Processing and Exploitation Framework (VPEF) [90] is an agile and flexible

framework that allows for fast integration of computer vision algorithms. VPEF is

based on a GStreamer framework that allows for plug-ins to be created and deployed

by an analyst. It allows for maximum flexibility while retaining robustness of an end to

end customized pipeline. VPEF achieves this by compartmentalizing computer vision
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(a) Overview of VPEF pipeline interacting with components of data
acquisition, storage, retrieval and processing [90].

(b) VPEF video streaming pipeline showing source and sinks for stan-
dardized input and output [90]. Standard UNIX tools like the use of
tee to split the input and output streams derived its design from the
functionality of GStreamer.

algorithms with standardized inputs and outputs. The design principles for LOFT

and VPEF are similar with the major difference being that VPEF is a more generic

and higher level controller while LOFT is one of the components and an available

option within this framework. Figures 6.5a and 6.5b show the overall VPEF plug-in

based video streaming pipeline and the internal data handling for the plug-in layer.

Completely asynchronous way of handling data IO minimizes risk of failure of the

entire pipeline by compartmentalizing each computer vision algorithm. LOFT has

been integrated as a plug-in within the overall VPEF architecture and is available

63



as a plug-in that can perform appearance based tracking. The overall flexibility and

state independent processing that is part of the modular implementation of LOFT

assisted us in integrating with the VPEF architecture in a matter of hours.
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Chapter 7

Experimental Results

The experimental methodology benchmarks the LOFT tracking algorithm as de-

scribed in Chapter 5. While many of the state of the art algorithms fail to perform

consistently across these two different set of images, LOFT performs well on an aver-

age with robust tracking results. LOFT as a general framework always outperforms

standard baseline algorithms without tweaking parameters. The chapter is organized

in three major sections. The first section describes our experimental methodology on

the CLIF dataset along with detailed results compared with standard trackers in liter-

ature. In the second section, we have demonstrated with experiments the impact and

usefulness of the appearance modeling and orientation estimation. The final section

describes the results of the multi-target tracking platform after integration within the

Kitware framework for the CETE project as described in Chapter 6 section 6.1.
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7.1 CLIF : Experimental Results

LOFT was evaluated using the Columbus Large Image Format (CLIF) [78] WAMI

dataset which has a number of challenging conditions such as shadows, occlusions,

turning vehicles, low contrast and fast vehicle motion. We used the same vehicles

selected in [9] which have a total of 455 ground-truth locations of which more than

22% are occluded locations. The short track lengths combined with a high degree

of occlusions makes the tracking task especially challenging. Several examples of

the difficulties in vehicle tracking in CLIF are illustrated in Figure 7.1. Figure 7.2

shows that half the sequences in this sample set of tracks have a significant amount

of occluded regions and Table 7.1 summarizes the challenges in each sequence. We

used several FMV sequences which have been used to benchmark a number of pub-

lished tracking algorithms in the literature. These sequences include: ’girl’, ’david’,

’faceocc’, ’faceocc2’ [19] and allow comparison of LOFT against a number of existing

tracker results for which source code may not be available.

7.1.1 Registration and Ground-Truth for CLIF WAMI

In our tests we used the same homographies as in [9] that were estimated using

SIFT (Scale Invariant Feature Transform [91]) with RANSAC to map each frame in a

sequence to the first base frame. Several other approaches have been used to register

CLIF imagery including Lucas-Kanade, and correlation-based [92], or can be adapted

for WAMI [93, 94]. Using these homographies we registered consecutive frames to the

first frame in each sequence. The homographies when applied to the ground-truth
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bounding boxes can produce inaccurate quadrilaterals since these transformations

are on a global frame level. All quadrilaterals were automatically replaced with axis

aligned boxes and visually inspected to manually replace any incorrect bounding

quadrilaterals, on registered frames, with accurate axis aligned boxes using KOLAM

[3, 4, 95] or MIT Layer Annotation Tool [96].

Figure 7.1: Example of challenging conditions: Target appearance changes during
turning (C4-1-0), low contrast and shadows (C3-3-4), shadow occlusion (C0-3-0) and
combined building and shadow occlusion (C2-4-1) [97].

Figure 7.2: Distribution of occluded frames in the 14 CLIF seq. Black: fully occluded,
Gray: partially occluded. Target is occluded in 22.4% of the frames [42].
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Track Target
Seq. No Challenges Length Size [pixel] Occ.Fr

C0 3 0 Occlusion 50 17x25 17
C1 2 0 Occlusion 27 21x15 2
C1 4 0 Occlusion 50 21x17 21
C1 4 6 Occlusion 50 25x25 15
C2 4 1 Occlusion 50 25x17 32
C3 3 4 Occlusion 27 27x17 12
C4 1 0 Turning car 18 15x25 -
C4 3 0 Occlusion 20 21x17 3
C4 4 1 Low contrast 30 17x21 -
C4 4 4 - 13 17x25 -
C5 1 4 Fast target motion 23 27x11 -
C5 2 0 Fast target motion 49 21x15 -
C5 3 7 - 27 27x47 -
C5 4 1 Low Contrast 21 27x19 -
Total 455 102

Table 7.1: Characteristics of the 14 CLIF sequences summarized from [9] showing
track length, vehicle target size and number of occluded frames. Image frames are
2008 × 1336 pixels.

7.1.2 Quantitative Comparison

We used several measures of performance to quantitatively evaluate the trackers.

The first one is the Missing Frame Rate (MFR) which is the percentage of number of

missing frames to the total number of ground-truth frames,

MFR =
# missing frames

# total GT frames
(7.1)
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A frame is labeled as missing, if the predicted/estimated object location with asso-

ciated bounding box overlaps with the ground-truth by less than 1% or there is no

bounding box at all, for example due to early track termination. The one percent

overlap threshold is the correct one that was actually used in the CLIF experiments

reported in Ling et al. [9] (not 50%). We used bounding boxes of roughly the same

size as the target at the predicted location; note that MFR does not explicitly penalize

the use of large bounding boxes.

Two commonly used criteria are precision and recall scores for the tracker pre-

dicted/estimated (single) target locations [98]. Precision (related to track purity) is

defined as the ratio of the number of correctly tracked frames, |TP |, to total number

of tracked frames or track length,

Precision =
# correct frames

# tracked frames
=

|TP |
|TP |+ |FP |

(7.2)

where number of correct frames are those in which target locations are within a set

threshold distance from the ground-truth (i.e. 20 pixel radius ribbon). Recall (related

to target purity) is the ratio of number of correctly tracked frames to number of

ground-truth frames for the target defined as,

Recall =
# correct frames

# GT track frames
=

|TP |
|TP |+ |FN |

≈ 1−MFR. (7.3)

The equality is approximate since MFR uses a bounding box overlap criteria whereas

precision and recall use a distance from ground-truth centroid criteria. The final

performance metric used for evaluating tracking performance is the tracking position
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CLIF Seq. MIL [20] MS [99] CPF [100] HPF [101] L1-BPR [9] NN [19] PN [21] LOFT

C0 3 0 0.860 0.980 0.940 0.980 0.760 0.920 0.940 0.740
C1 2 0 0.852 0.963 0.9636 0.963 0.630 0.962 0.962 0.000
C1 4 0 0.680 0.780 0.740 0.760 0.620 1.000 0.700 0.720
C1 4 6 0.360 0.940 0.800 0.880 0.360 0.980 0.560 0.580
C2 4 1 0.900 0.980 0.980 0.980 0.920 0.980 0.980 0.877
C3 3 4 0.963 0.963 0.963 0.963 0.704 0.962 0.962 0.370
C4 1 0 0.389 0.889 0.833 0.889 0.389 0.888 0.944 0.611
C4 3 0 0.650 0.950 0.950 0.800 0.750 0.947 — 0.005
C4 4 1 0.533 0.967 0.900 0.900 0.033 0.931 0.758 0.000
C4 4 4 0.000 0.923 0.385 0.307 0.000 0.076 0.923 0.000
C5 1 4 0.667 0.958 0.875 0.833 0.667 0.958 0.958 0.000
C5 2 0 0.918 0.979 0.959 0.979 0.979 0.979 — 0.062
C5 3 7 0.000 0.963 0.148 0.000 0.000 0.8516 0.259 0.000
C5 4 1 0.000 0.952 0.810 0.905 0.958 0.523 0.809 0.000
Mean 0.555 0.942 0.803 0.796 0.555 0.854 0.813 0.287

OverAll 0.627 0.940 0.833 0.837 0.611 0.909 0.680 0.333

Table 7.2: Missing frame rate (MFR) performance (lower the better) on CLIF WAMI
data. Results for Multiple Instance Learning Tracker (MIL), Mean Shift tracker
(MS), Covariance Based Particle Filter (CPF) tracker, Histogram-based Particle Fil-
ter (HPF) tracker and `1-Bounded Particle Resampling (L1-BPR or Sparse) tracker
are from Ling et al. [9]. Mean indicates average of sequence MFRs (shorter tracks
have higher influence) while OverAll is an ensemble average as in [9].

errors defined as the distance between the predicted object position and the ground-

truth centroid. Track completeness, fragmentation, mean track length, id switches

and other measures of multi-target tracking performance are necessary for a more

thorough evaluation of tracking performance [11].

LOFT performance was compared to several state-of-the-art trackers. Some of

the LOFT modules (see Figure 3.1) were turned off for the experiments including

binary classifier, background subtraction, and MHT in order to focus on evaluating

the appearance update performance. The tracking methods we ran using author

provided source code in the experiments are Nearest-Neighbor (NN) Tracker [19],

L1-BPR Sparse Tracker [24], Multiple Instance Learning (MIL) Tracker [20], and P-

N Tracker [21]. We did some limited parameter tuning for optimizing each tracker

70



Method Precision Recall

L1-BPR [24] 0.185 0.185
MILTrack [20] 0.271 0.271

P-N [21] 0.373 0.172
NN [19] 0.088 0.082
LOFT 0.603 0.405

Table 7.3: OverAll Precision - Recall scores across 14 CLIF sequences. Second best
performance underlined [42].

for both CLIF and FMV separately. Table 7.2 summarizes the MFR scores of these

five trackers on CLIF data. Table 7.3 shows the overall precision-recall scores for

the 14 sequences in the CLIF dataset. Figure 7.4 shows position errors three sample

CLIF sequences where LOFT does particularly well. These comparisons show that

our LOFT tracker outperforms all other trackers on this CLIF dataset. According

to the MFR scores, MILTrack and L1-BPR Sparse trackers produced comparative

results for some of the sequences, however, the lack of a termination module causes

their precision scores to drop significantly in Table 7.3. The P-N tracker has very

good performance on FMV, but the search method involves scanning the entire image

and thus testing on WAMI posed severe memory constraints. P-N tracker has the

second highest precision on the CLIF data. The NN tracker had the worst results

on CLIF WAMI likely due to the need to tune the SIFT features. Figure 7.3 shows

some visual trajectories of tracking results where LOFT does well. Two sequences

where LOFT did not do well, are C0 3 0 which is challenging for all of the trackers,

and C2 4 1 which has many nearby spatial and temporal distractors while turning

or strong occlusions; see Figure 7.1 for the visual appearance of these targets and

environments.
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: LOFT results (red tracks) for six sequences (First row: C0 3 0, C1 2 0,
C1 4 6, Second row: C2 4 1, C4 4 1, and C4 4 4) showing enhanced images with
ground-truth tracks in yellow. These are six of the nine sequences in which LOFT
outperforms other trackers. This illustration was created using Kolam [4] and was
shown in Pelapur et al. [42]
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Figure 7.4: Position error over the entire sequence in pixels versus frame index for
five of the trackers on three selected CLIF sequences [42] (C1 4 6, C4 4 1 and C5 3 7)
for which LOFT has a high accuracy.

72



Sequence PROST [102] AdaBoost [103] FragTrack [28] L1-BPR [23] MILTrack [20] P-N [21] NN-Track [19] LOFT

Girl 19.00 43.30 26.50 67.84 31.60 28.88 18.00 13.86
David 15.30 51.00 46.00 63.12 15.60 10.38 15.60 40.6

Faceocc 7.00 49.00 6.50 20.78 18.40 13.99 10.00 10.79
Faceocc2 17.20 19.60 45.10 73.27 14.30 19.14 12.90 13.25

Table 7.4: Mean Position Errors on standard full motion Videos with Prost, Adaboost
and FragTrack results from Gu et al. [19]. Best results and second best results are
shown in bold and underlined respectively [42].

Since most published trackers are designed for standard FMV sequences, we also

evaluated LOFT on several popular benchmark videos with very different scene con-

tent and characteristics compared to WAMI. Table 7.4 shows the mean distance error

to ground-truth for eight published trackers including LOFT, on four standard FMV

sequences across all frames of each sequence. The PROST, AdaBoost and FragTrack

results are taken from Gu et al. [19]. Figure 7.5 shows sample frames from the track-

ing results of LOFT compared to GT for ’girl’ and ’faceocc2’ sequences. Instead

of tight initial bounding boxes we used the actual GT bounding box for the appro-

priate start frame in each FMV sequence. Based on the mean distance errors, the

LOFT system is comparable to the other trackers on these four representative FMV

sequences. LOFT also produced better results than the other trackers for ’girl’ and

’faceocc2’ sequences.

7.2 Adaptive Appearance Evaluation on CLIF

The impact of using adaptive appearance updating on LOFT performance was as-

sessed using the challenging CLIF dataset [78]. We used the same 14 sequences as in

previous papers [9, 42] which provide more details about the targets and sequences.

We point out that the original CLIF sequences contain duplicated frames in some
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# 1 # 81 # 216 # 326 # 386 # 461

# 496

# 11 # 151 # 281 # 341 # 391 # 511

# 801

Figure 7.5: Tracking results [42] showing sample frames from ’girl’ and ’faceocc2’
sequences showing bounding boxes for ground-truth (yellow) and LOFT (red).

cameras which adversely affects Kalman filter predictions of target position. The

duplicated frames is a sort of saccadic masking effect wherein missing or corrupted

image data has been replaced with temporal duplicates. This is not particular to this

dataset alone but is commonly used during video capture of large sequences as it is a

way of mitigating the problem of out of order sequences between metadata and the

raw images. Our resulting solution of temporal image differencing to check for dupli-

cates is a solution which can help in all datasets. LOFT tracking performance in our

tests used the same modules for feature fusion and Kalman filter motion prediction

(offset) as described in [2, 42, 72] without background subtraction, local registration

(since the data was registered off-line), vehicle classification or MHT. We use preci-

sion and recall scores as a metric where precision measures the degree of repeatability
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of a video-tracking result [98],

Precision =
|TP |

|TP |+ |FP |
. (7.4)

Recall is the ratio of the correctly tracked frames to ground-truth frames,

Recall =
|TP |

|TP |+ |FN |
. (7.5)

For a frame to be marked as correctly tracked for precision-recall metrics, the cen-

ter was required to be within 20 pixels of the ground-truth center. We also use

the Missing Frame Rate (MFR) metric [9], with a 1% overlap between the tracking

bounding box and the ground-truth box as the match criteria; note that MFR has

no explicit penalty for the size of the box. Since the two match criteria are different,

MFR ≈ 1−Recall. Mean distance is defined as the distance between the last tracked

point in a track generated by a tracker to the corresponding point in ground-truth.

Note that this metric does not penalize the tracker for the remaining ground-truth.

Table 7.5 shows the tracking results with and without the update scheme. It can

be seen that the tracker using appearance updating consistently outperforms the one

without the update scheme, with average precision and recall being 3% and 11%

higher respectively. The average MFR is about 12% lower with orientation estima-

tion based appearance modeling. Table 7.6 shows the MFR as compared with other

standard trackers in literature. LOFT consistently outperforms the trackers such as

Multiple Instance Learning [20], L1-BPR [24], Tracking-Learning-Detection [30] and

Struck [31]. Figure 7.7 shows a summary of all results. The film-strip view was
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generated by sampling frames of a given object, estimating the orientation and the

frame at which the tracker terminated. It should be noted that the images have been

contrast enhanced for ease of viewing. For better visualization, Figure 7.6 shows the

orientation on the first frame which is represented as a tiled set of images showing all

14 vehicles in the CLIF sequence along with their variance plots with the estimated

angle marked in red.

Figure 7.6: Figure shows all 14 CLIF objects in grid format with real templates
(contrast enhanced) and their corresponding variance plots with labeled maximum
valued peak
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Figure 7.7: Figure showing detailed results of all 14 CLIF objects where estimated
orientation is denoted by arrows, the sampled frames are numbered in yellow and
the last correctly tracked frame (as compared with groundtruth) is marked with red
borders.
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Image GT Track Length Correctly Tracked False Alarms Precision Recall Mean Distance MFR
Sequence w/o update w update w/o update w update w/o update w update w/o update w update w/o update w update w/o update w update w/o update w update
C0 3 0 50 13 14 13 12 0 2 1.000 0.857 0.260 0.240 3.916 12.72 0.740 0.740
C1 2 0 27 27 27 20 26 7 1 0.741 0.963 0.747 0.963 45.94 3.735 0.222 0.000
C1 4 0 50 12 22 12 13 0 9 1.000 0.591 0.240 0.260 4.607 68.87 0.760 0.720
C1 4 6 50 41 29 21 21 20 8 0.512 0.724 0.420 0.420 270.9 177.2 0.580 0.580
C2 4 1 49 8 12 3 4 5 8 0.375 0.333 0.061 0.082 33.08 35.80 0.918 0.877
C3 3 4 27 21 17 14 17 7 0 0.667 1.000 0.518 0.630 42.37 4.454 0.481 0.370
C4 1 0 18 8 16 4 4 4 12 0.500 0.250 0.222 0.222 24.12 93.98 0.611 0.611
C4 3 0 20 18 20 15 18 3 2 0.833 0.900 0.750 0.900 17.59 5.930 0.250 0.050
C4 4 1 30 30 30 29 30 1 0 0.967 1.000 0.967 1.000 2.389 1.857 0.000 0.000
C4 4 4 12 12 12 12 12 0 0 1.000 1.000 1.000 1.000 0.966 1.333 0.000 0.000
C5 1 4 24 14 24 8 24 6 0 0.571 1.000 0.333 1.000 50.47 2.444 0.625 0.000
C5 2 0 48 30 45 27 44 3 1 0.900 0.978 0.562 0.917 4.843 4.136 0.396 0.062
C5 3 7 27 27 27 27 27 0 0 1.000 1.000 1.000 1.000 4.471 5.286 0.000 0.000
C5 4 1 19 19 19 19 19 0 0 1.000 1.000 1.000 1.000 1.982 2.534 0.000 0.000

Average 20 22 16 19 4 3 0.790 0.828 0.577 0.688 36.26 30.02 0.399 0.287
Overall 0.800 0.863 0.497 0.601

Table 7.5: LOFT performance on 14 CLIF sequences with and without appearance
updates showing Correctly Tracked frames (higher is better), False Alarms, Precision,
Recall, Mean Distance error (smaller is better), and Missing Frame Rate (MFR). Text
in bold highlights the better result. Table 7.2 published in [42] had a mistake in the
Missing Frame Rate (MFR) computation. Since then the computation was corrected,
more accurate groundtruth was generated and several improvements were made to
LOFT causing the change in the results.

Sequence MIL [20] L1-BPR [24] TLD [30] STR [31] LOFT-w/o-update LOFT-w-update
C0 3 0 0.860 0.760 0.920 0.980 0.740 0.740
C1 2 0 0.851 0.629 0.962 0.629 0.222 0.000
C1 4 0 0.680 0.620 0.700 1.000 0.760 0.720
C1 4 6 0.360 0.360 0.540 0.260 0.580 0.580
C2 4 1 0.900 0.920 0.979 0.979 0.918 0.877
C3 3 4 0.963 0.703 0.962 0.962 0.418 0.370
C4 1 0 0.388 0.388 0.944 0.888 0.611 0.611
C4 3 0 0.650 0.750 0.950 0.850 0.250 0.005
C4 4 1 0.533 0.033 1.000 0.966 0.000 0.000
C4 4 4 0.000 0.000 0.916 0.000 0.000 0.000
C5 1 4 0.666 0.666 DNR 0.958 0.625 0.000
C5 2 0 0.918 0.979 0.979 0.958 0.396 0.062
C5 3 7 0.000 0.000 0.962 0.000 0.000 0.000
C5 4 1 0.000 0.958 0.894 0.894 0.000 0.000

Average 0.555 0.555 0.901 0.737 0.399 0.287

Table 7.6: Table showing results of state of the art trackers such as Multiple Instance
Learning [20], L1-BPR [24], Tracking-Learning-Detection [30] and Struck [31], in
literature on WAMI-CLIF evaluated against LOFT with and without update
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7.3 Multitarget Tracking Results

LOFT-only CSURF-only Template-only Motion-only LOFT-Hybrid CSURF-Hybrid

Detection-Pd: 0.37 0.41 0.40 0.37 0.44 0.44
Detection-FA: 213 429 1144 35 488 397
Track-Pd: 0.95* 0.95* 0.95* 0.95* 0.95* 0.95*
Track-FA: 3 3 3 2 2 2
Avg. track purity: 0.95 0.97 0.95 0.99 0.93 0.97
Avg. target continuity: 4.45 2.85 4.7 2.7 2.1 2.5
Avg. target purity: 0.24 0.38 0.27 0.37 0.49 0.43

Table 7.7: ARGUS-IS tracking results through the proposed tracking system. Best
results in Bold, second best results in Italics. The proposed fusion of LOFT and
CSURF with motion produces the best results. ∗ missed one target due to a very
short truth track. These results were published in Bashrat et al. [88]

The proposed tracking framework is implemented in C++ with LOFT and CSURF

initially implemented in Matlab, and integrated through dynamic library interface.

LOFT implementation was later revised as a C++ based library and loaded through

the appearance tracker interface.

LOFT and CSURF algorithms were evaluated on the ARGUS-IS dataset, a sample

frame with detailed results is shown in Figure 7.8. This dataset included 1000 frames

@ 3Hz, with 19 manually annotated truth tracks for analyzing vehicle tracking. The

vehicles were annotated when they started moving and continued the annotation

when they stop momentarily or get parked. ARGUS-IS platform is able to capture

Wide-Area Motion Imagery (WAMI) over 40 square kilometers with a Ground Space

Distance (GSD) of 15 cm at video rates of greater than 12 Hz [104]. The frame-rate

of the dataset used here was limited to 3Hz, which makes the tracking more difficult

than the full frame-rate. In the past, ARGUS-IS data has been successfully processed

for surveillance and interpreting object behavior to recognize functional elements of

the scene [105].
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Figure 7.8: ARGUS-IS data showing LOFT tracks on frame #223 (full scene as in
Left-Bottom (LB)-purple). Three zoomed up insets are marked with colored boxes
(Right-Middle (RM)-yellow, Right-Bottom (RB)-light red, Top (T)-cyan) and each
of them show the area that was zoomed into in the overview image (LB-purple).
These tracking results were generated using LOFT-Hybrid (min speed for da= 3)
configuration, same as Table 7.8. Notice that in the (T) inset the objects that are
being tracked are those that were moving in the previous time steps and are now
stationary while two other moving objects (RM) & (RB) are in motion showing the
adaptive integration of appearance and motion model. This illustration was shown
in Bashrat et al. [88]
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The analysis of the track quality was performed by the commonly used metrics

based on probability of detection (Pd) and false alarm (FA). Our software for scoring

is available as KWANT open source tool under the KWIVER toolkit [106]. Metrics

used for scoring tracks are defined below along with the numerical ranges: Track-Pd

[0,1], ideal value = 1, number of computed tracks overlapping with true tracks /

Number of true tracks; Track-FA [0,∞), ideal value = 0, number of computed tracks

not overlapping with true tracks; Detection-Pd [0,1], ideal value = 1, number of

detections in computed tracks overlapping with true tracks / Number of detections in

true tracks; Detection-FA [0,∞), ideal value = 0, number of detections in computed

tracks not overlapping with true tracks; Target Continuity [1,∞), ideal value = 1,

number of tracks initialized on a given target; Target Purity [0,1], ideal value = 1,

percentage of associations with the predominant track utilizing the given target over

the life of the target. Continuity and purity are also defined for the tracks similar to

that for the targets.

Table 7.7 presents our main result as the measure of track quality under various

algorithmic configurations: using appearance only information (LOFT-only, CSURF-

only & Template-only); no appearance information (Motion-only); and fusion of ap-

pearance based updates with the motion detections to update tracks (LOFT-Hybrid

and CSURF-Hybrid). The first three configurations (columns) show the quality of the

tracks when the track update was performed only based on either LOFT, CSURF or

template matching (SSD) appearance trackers. Next column shows the performance

when only motion detections are used through data association to update tracks.

This is following by the hybrid of motion with LOFT or CSURF appearance track-
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ers based on min speed for da value of 3 m/s. The least amount of Detection-FA is

produced by Motion-only, which is consistent with a very conservative tracker with

lowest Detection-Pd and is not even expected to track moving cars through stops.

Overall LOFT-Hybrid seems to be producing the best results based on the majority

of the metrics showing this as the best configuration. CSURF-Hybrid is probably

the second best configuration, depending on the application the tracks are used in.

This shows that proposed fusion of appearance and motion detections is feasible and

suitable for the data analyzed.

Next, we analyze the impact of the min speed for da parameter on the fusion

between LOFT and motion detections. As shown in Figure 6.4, the system determines

whether motion detections should be considered for track update before appearance

tracker at low target speeds when the motion signature might be unreliable. The

impact of this parameter was studied in an experiment that involved sweeping a range

of values to analyze the impact on the track quality. As can be seen in Table 7.8, 0

m/s produces best results across most of the metrics; in this case motion detection

is preferred over LOFT and LOFT will be only used when the car is stationary.

Note that the configurations that are directly comparable are column #6 (LOFT-

Hybrid) in Table 7.7 and column #3 (3 m/s) in Table 7.8. The significant difference

in Detection-Pd between Table 7.7 and Table 7.8 is mainly due to rolling changes

made in the overall tracking pipeline. We attribute this difference to the changes

such in the C++ implementation and improvement of LOFT, ongoing improvements

to the overall software pipeline, and changes made to the scoring program. 3 m/s

configuration, a close second best here, generalizes very well in our experience on other
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Min. target
speed motion
det.(min speed for da)

0 m/s 3 m/s 5 m/s 10 m/s

Detection-Pd: 0.72 0.68 0.43 0.34
Detection-FA: 341 398 537 411
Track-Pd: 0.95 0.95 0.95 0.95
Track-FA: 2 2 2 1
Avg. track purity: 0.96 0.96 0.95 0.96
Avg. target continuity: 2.35 2.40 2.75 6.25
Avg. target purity: 0.52 0.52 0.44 0.24

Table 7.8: Analysis of various speed thresholds to fuse motion detections and LOFT,
as shown in Figure 6.4, to update tracks. In ARGUS-IS data, the best configuration
to use LOFT seems to be on the stationary cars. These results were published in
Bashrat et al. [88]

datasets. These datasets with lower resolution, and lower contrast gray-scale imagery

seem to generally have inferior motion detection quality at lower target speeds, where

using LOFT and CSURF improves results [22, 77].

In this chapter we have shown that LOFT with appearance modeling outperforms

many of the standard trackers in literature. It can also track on varied datasets and

helps in multitarget tracking as an appearance module. We believe that these results

showcase the robustness of LOFT as a flexible algorithm.
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Chapter 8

Scalable Tracking Using Visual
Cloud Computing

Cloud computing is a powerful technique to leverage the use of large off-site data

processing [107]. As in the case of wide-area tracking the amount of input data is large

but the output data is restricted to very sparse information. In case of fragmented

processing where individual components within the tracker core functionality can be

spread across various nodes for distributed processing, the output data could include

the tracker state. The tracker state as shown in Chapter 6 Figure 6.3, in case of

LOFT-Lite, is a structure that contains essential information and is the only data

structure that is required to continue tracking. The core functions of LOFT-Lite are

stateless and is therefore an ideal candidate for distributed processing. In this chapter

we describe an incident-supporting visual cloud computing solution by defining a

collection, computation and consumption (3C) architecture supporting fog computing

at the network-edge close to the collection/consumption sites, which is coupled with
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cloud offloading to a core computation, utilizing software-defined networking (SDN).

The evaluation mainly consists of looking at how SDN can help in the case of large,

medium and small scale images, in terms of resolution or number of pixels, using

LOFT-Lite as a case study. The main problem that can be tackled using such a

system is when the collection of large scale imagery is in a geographically different

location to where LOFT-Lite is hosted. Using the work done in integrating LOFT-

Lite within a cloud computing architecture is important in providing object tracking

software as a service. The experimental testbed also demonstrates the use of SDN

for on-demand compute offload with congestion-avoiding traffic steering to enhance

remote user Quality of Experience (QoE). The work described in this chapter focuses

on our collaborative work with a team comprised of faculty members and graduate

students [107].

8.1 Visual Cloud Computing

Computer vision commonly deals with the processing of large data sets, and a typical

system in this field usually comprises of several data processing stages such as: (a)

acquisition, (b) pre-processing, (c) analysis, and (d) post-processing. Data require-

ments change depending on the application in question, and the acquisition step itself

usually requires an enormous amount of storage apart from the bandwidth require-

ments for processing. Separating storage and bandwidth requirements could greatly

benefit overall processing time required for a data set. However, the processing time

of applications can also have some restrictions based on the location at which they
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are hosted. In most cases, it is scalable to have data sent over to a cloud-hosted

application host have it processed and have the analysis results sent back to the ori-

gin. Large-scale visualization and analysis such as NVIDIA’s Grid Computing [108]

have gained traction in the consumer market. Our work fosters the trend where

multimedia cloud computing discussed in [109–112] can provide high flexibility and

mobility to the end user. Demonstrations of similar systems exist in literature and

have been shown to work in an environment where hardware resources at data origin

are limited [113, 114].

8.2 Disaster Management

During a disaster, the standard requirements such as storage, networks and software

libraries may not be available. Providing an off-site service for processing algorithms

including a reliable streaming platform for images when the available network paths

are intermittently available, damaged or unavailable within the geographic location

of the incident scene is important to analyze data. Emerging techniques in the field

of mobile visual cloud computing are well suited for scalable processing of media-

rich visual data [115]. Private cloud ‘fogs’, as well as overlay network paths that are

dynamically constructed using software-defined networking (SDN) [116, 117] rely on

non-traditional network protocols such as OpenFlow [118]. These can be valuable

in the case of damaged or congested network infrastructure within the geographical

area of incidents. Fog computing extends cloud computing closer to the network-edge

locations of users and data sources. Coupled with SDN, fog computing at the edge
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can rapidly compute and organize small instance processes locally and move relevant

data from the incident geographical location to core cloud platforms such as Amazon

Web Services or NSF Global Environment for Network Innovations (GENI) [119]

for on-demand processing. Moreover, the overlay network paths can also be useful

for moving cloud-processed data closer to the locations of first responders for content

caching at fogs to enable low-latency access via thin-client desktops. Such on-demand

computation and integration of thin-clients for visualization can enable large data

processing within the cloud and deliver high user Quality of Experience (QoE).

8.3 Fog Computing

Many distributed computing applications benefit by leveraging fog computing in

terms of reduced service latency and operational efficiency. For instance, Jiang et

al. [120] benefited from the paradigm of fog computing in their efforts to optimize

web page performance by caching information at various fog nodes, versus using the

traditional content-delivery network platforms. Fog resource management solutions

are proposed in [121] to handle resource allocation and pricing based on user appli-

cation profiles. Interestingly, SDN has been leveraged in context of fog computing

recently by Stojmenovic et al. [122], where they studied benefits of fog computing

in application scenarios such as Smart Grid, and smart traffic lights in vehicular

networks. Another notable recent work that leveraged SDN integrated with fog com-

puting is [123], where benefits were shown in the context of vehicular adhoc network

cases to enhance resources utilization and decrease service latency. Our work lever-
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ages fog computing paradigm in the context of mobile cloud configuration with SDN

for disaster incident response scenarios, and shows benefits when handling media-rich

and data-intensive visual computing applications for situational awareness of first

responders.

8.4 SDN Management

Several studies have been done in prior works on SDN and cloud computing for

overlay network provisioning. Authors in [124] propose a new method to manage

Quality of Service (QoS) requirements of applications over SDN-enabled networks

based on multi-path routing. Their multi-path routing assumes intermediate hosts to

run agents that support their approach to allocate resources effectively by increasing

the search space for the idle resources. In the context of multimedia delivery over

large-scale SDN paths, Egilmez et al. [125] proposed a distributed OpenFlow-based

QoS architecture involving co-ordination of multiple controllers. Another related work

can be found in [126], where an adaptive routing approach is described to handle QoS

requirements of video streaming utilizing SDN. They divide the QoS flows into two

levels (base layer packets and enhancement layer packets), and provide highest priority

to the base layer to reroute via feasible path in case of the congestion in the shortest

path. Lastly, another exemplar related work on using SDN for video flow handling

can be seen in [127], where a QoS Controller (Q-Ctrl) system is used to control and

allocate bandwidth for the virtual machines supporting video streaming in a cloud

infrastructure. This work builds on earlier methodology Calyam et al. [128] on wide-
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area experimental testbeds such as GENI [119] and extends it for the WAMI data

processing context with OpenFlow based SDN controller implementations for path

computation and flow steering to improve user QoE.

8.5 Collection, Computation and Consumption (3C)

model

A collection, computation and consumption (3C) architecture is shown in Figure 8.1.

Our design of the architecture assumes incident videos or images are collected and

pre-processed at a fog near the disaster scene and are transferred utilizing SDN to

cloud servers where visual analytics such as 3D geometry, object recognition and

tracking can be performed. The 3D visual environment, object and tracking results

are subsequently transferred from the core cloud servers to a fog near first responder

mobile devices or thin-client desktops for crucial visual data consumption. Based on

this 3C architecture, we proposed a novel computation placement, and SDN control

algorithms designed to enable fog computing closer to the collection or consumption

sites, which is coupled with cloud offloading to a public cloud. The algorithms as-

sume the fogs are capable of handling small instance visual processing functions, and

are integrated with a public cloud infrastructure for handling large instance visual

processing functions by utilizing SDN.
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Figure 8.1: Overview of the visual collection, computation and consumption (3C)
system linking the fog at the network-edge with core cloud computing utilizing SDN
which is shown on the links [107].

8.6 LOFT-Lite: A Regional-Scale Application

Tracking in WAMI involves several pre-processing steps that have been tested on

large-scale aerial data [94, 129] as shown in Figure 8.2. These steps can be divided

into two main classes according to functionality such as:

• Small instance processing: Compression, storage, metadata processing, geo-

projection, stabilization and tiling

• Large instance processing: Initialize objects of interest, detection, tracking

and event analysis

Small instance processing classes mainly focus on pure pixel level information. Large

instance processing classes however, focus on pixel as well as object level information.
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Most of the large instance functions are dependent on the pre-processing stages in

order to work effectively. As an example, most trackers need the imagery to be

stabilized in order to produce the best results and hence registration becomes a key

pre-processing step.

 Metadata Processing 
and Correction

Geoprojection, 
Stabilization, and Tiling

Initialize Targets of 
Interest Detect and Track Post Processing and 

Event Analysis

Data Acquisition

Figure 8.2: Functional block diagram showing pre-processing and post processing
steps in a typical WAMI analysis pipeline [107].

LOFT-Lite as a version of LOFT [2, 42], which is a software framework for appear-

ance based tracking. It includes all the components of LOFT-Appearance tracking

with re-factored functionality and an easy plugin based C++ interface that includes

several optional modules such as motion dynamics and a tiled image reader. A track-

before-detect approach is employed which greatly reduces the search space and is

handy especially in large WAMI imagery where objects look similar and have a very

small support map. Constraining the search region also results in faster image read

throughputs as only multi-threaded partial tiles are read in memory. LOFT-Lite can

achieve processing rates of 300 milliseconds per frame (wall-clock time) per target.

Large single camera WAMI frames JPEG compressed occupy anywhere near 25-28

Megabits and at 5 frames a second, the minimum throughput required is high enough

to consider a large bandwidth streaming pipeline.

91



Figure 8.3: Illustrative example of data ecosystem: Tiled TIFF aerial image with
a resolution of 7800x10600 pixels and ≈80 MB size. The zoomed up insets show
the location of the objects that were tracked (right inset) in relation to the Bank of
Albuquerque towers (left inset) with zoomed up views [107].

8.7 Cloud/Fog System Architecture

Figure 8.4 shows the cloud and fog architecture, which consists of three layers: Mobile

User Layer, Fog Computation Layer, and Cloud Management Layer. The Mobile

User Layer is comprised of services that handle both the collection and consumption

activities for the proposed system. Incident scene images and video data is collected

using security cameras, civilian smart phones, and aerial perspectives and imported

into the system for transfer to the Fog Computation Layer. The processed visual

information can be accessed at the consumption sites of users via thin-clients such

as web browsers with interfaces to explore the outputs, or application client software

that downloads the data for local exploration, or appliances that use protocols such as

VNC, RDP or PCoIP to access virtual desktops with the exploration software. The

consumption fogs could also host caching services to bring the processed data closer
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to the user thin-clients and reduce the need to have round-trip requests to the cloud.

It is possible that the consumption phase involving an expert analyst may result in

active use of the caching services that leads to repost of data to the Fog Computation

Layer for further processing as part of deep exploration activities.

In the Fog Computation Layer, one service manages the small instance processing

in conjunction with directives from the Unified Resource Broker (URB) in the Cloud

Management Layer, and another service acts as the gateway to move data from the

fog to the cloud via a high-performance network overlay setup with SDN. Thus, the

Fog Computation Layer transforms the public cloud infrastructure into a mobile cloud

infrastructure and allows the management services in the public cloud to seamlessly

operate close to the user collection or consumption sites for end-to-end orchestration

and dynamic control of data processing locations. At the Cloud Management Layer,

the scalable computing services as well as the URB orchestrate the computation

placement either in the fog or in the cloud infrastructure. The URB serves as the

brain of the cloud, and manages the dynamic distribution of the application processing

workload to meet application QoS and user QoE requirements.

8.8 Regional-Scale Evaluation

Herein, we first consider characterize the resultant impact on the LOFT-Lite appli-

cation compute offloading to the cloud when using multiple video resolutions corre-

sponding to different mobile devices and under disaster network degradation condi-

tions. Next, we show user QoE improvements in data throughput and tracking time
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Figure 8.4: Illustration of the 3C system showing the relationships between mobile
user, fog computation, and cloud management layers. The URB (Unified Resources
Broker) controls how resources are provisioned and how data flows are routed with
SDN between fogs and the public cloud. The small and large instance processing in
the fogs and cloud for theater-scale and regional-scale applications is also shown [107].

when using our URB implementation that utilizes SDN and divides the LOFT-Lite

application into small and large instance processing for cloud/fog computation, versus

complete compute offloading to a core cloud over best-effort IP networks.
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(a)

(b)

Figure 8.5: LOFT-Lite results on (a) standard and (b) Full-Motion surveillance video.
Each frame in these video datasets is about 2MB compressed [107].

Disaster Network Experiments Setup and Results

Multiple video resolutions in practice need to be processed because the input source

imagery in surveillance typically spans a wide variety sensor technologies found in mo-

bile devices. In our experiments, we consider common resolutions in surveillance video

belonging to the broad categories of: (a) Full-resolution WAMI (7800 x 10600) (see

Figure 8.3), (b) Large-scale aerial video (2560 x 1900), and (c) Ground surveillance

video (640 x 480) (see Figure 8.5). To consider disaster network scenarios systemati-

cally that impact data transfer, we assume a 4G-LTE network configuration with an

initial bandwidth of 100 Mbps (best case) and apply a bandwidth degradation pro-

file during compute offloading test cases with different resolutions. For experimental
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purposes, the profile degrades the bandwidth at a rate of 20 Mbps per minute due

to heavy cross-traffic load or candidate network path failures till it falls to zero (i.e.,

worst case disconnection scenario).

Our visual cloud computing setup for the disaster network experiments includes

two virtual machines (VMs) for the data collection and computation sites, respec-

tively each with a single core CPU and 1GB of main memory in a GENI platform

testbed connected through an OpenFlow switch. Several performance metrics such

as estimated throughout, tracking time, waiting time and total time are measured

to characterize Quality of Application (QoA) of LOFT-Lite application computation

as well as SCP (standard secure copy utility) data movement under the bandwidth

degradation profile.

Table 8.1 shows measurement results averaged over ten trials with 95% confidence

intervals. Our full-resolution WAMI and large-scale aerial video processing pipelines

are non real-time and suffer relatively long wait times in comparison with the lower

resolution ground-based FMV pipeline that runs in real-time. These results quantify

system scalability and the benefits of reducing video resolution under disaster net-

work conditions to support single target real-time tracking for multiple instances of

LOFT-Lite. Standard video resolution results in the highest throughput over 3G/4G

networks.

Table 8.1: QoA impact for compute offloading of multiple video resolutions for a systematic
network degradation profile.

Performance Metrics Full-resolution WAMI Large-scale aerial video Ground-based standard video
(7800 x 10600) (2560 x 1900) (640 x 480)

(SCP QoA) Number of transferred frames 25.80± 0.26 180.9± 0.9 892± 9
(LOFT-Lite QoA) Estimated throughput (Mbps) 66.5± 0.9 76± 0.9 43.9± 0.4
(LOFT-Lite QoA) Tracking time (sec/fr) 0.4035± 0.005 0.368± 0.002 0.403± 0.004
(LOFT-Lite QoA) Waiting time (sec/fr) 9.03± 0.13 0.845± 0.014 0± 0
(LOFT-Lite QoA) Total time (sec/fr) 9.46± 0.13 1.214± 0.014 0.403± 0.004
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Figure 8.6: Data flows in the allocated GENI topology: (a) Standard video data flow interferes with
concurrent flow on the s2 → s1 link as regular network sends data through the best (the shortest)
path; (b) Using SDN and the NPP algorithm, we optimize network resources usage and redirect
concurrent flow through the longer path s2 → s3 → s1 which avoids congestion. Further, moving
image pre-processing to the fog (h2 instead of h1) enables real-time tracking using LOFT-Lite [107].

Table 8.2: QoA impact results comparison for core cloud computing over IP network versus
utilizing SDN and cloud/fog computing by dividing the application into small and large instance
processing.

Performance Metrics Core Cloud Computing Cloud/Fog Computing Perceived Benefits
over IP network utilizing SDN

(SCP QoA) Storage transfer time (sec/fr) 0.564± 0.007 0.402± 0.006 Avoiding congestion with SDN traffic steering
results in lower transfer time

(Imagemagick QoA) Pre-processing time (sec/fr) 0.1955± 0.0011 0.292± 0.023 No significant difference
(LOFT-Lite QoA) Estimated throughput (Mbps) 13.50± 0.34 41.85± 0.24 Lower transfer time and fog computation

maximizes application throughput
(LOFT-Lite QoA) Tracking time (sec/fr) 0.4097± 0.0022 0.4229± 0.0024 No significant difference
(LOFT-Lite QoA) Waiting time (sec/fr) 0.902± 0.032 0± 0 Achieving maximum application throughput avoids

waiting time and supports real-time computation
(LOFT-Lite QoA) Total time (sec/fr) 1.312± 0.034 0.4229± 0.0024 Cloud/fog computation of small and large instances

can produce 3X speedup over core cloud computation
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Cloud/Fog Computation Experiments Setup and Results

Standard (VGA) video resolution was used for the cloud/fog experiments to track

pedestrians [130] in a crowd (see Figure 8.5b). An adaptive contrast enhancement

global image pre-processing operation is applied as needed in the cloud/fog (using

Imagemagick) before images are sent to the core cloud for object tracking. All images

are pyramidal tiled TIFF (Tagged Image File Format) and the pre-processing retains

the tile geometry.

Our setup for the cloud/fog computation experiments includes six virtual machines

(VMs) in the GENI platform testbed as shown in Figure 8.6, where three of these

VMs emulate OpenFlow switches (s1, s2 and s3) and others are regular hosts (h1,

h2 and h3). Each host-to-switch link has 100 Mbps bandwidth, and each switch-to-

switch link has only 50 Mbps bandwidth to emulate congested and damaged network

infrastructure in a disaster scenario. Our LOFT-Lite application runs on h1 (quad-

core CPU, 4GB of RAM and 30GB of HDD) which acts as a computation cloud site,

whereas h2 (double-core CPU, 2GB of RAM and 30GB of HDD) acts as a collection

fog site, and h3 (single-core CPU, 1GB of RAM and 30GB of HDD) consumes raw

data from h2 by acting as a storage consumption fog site. Node h3 is configured with

cross-traffic flow consumption such that it interferes with the main data traffic for

the LOFT-Lite application. We call this cross-traffic as the ‘concurrent flow’, and the

application traffic for LOFT-Lite as the ‘main flow’. Finally, the thin-client (local

PC) acts as a data consumer at the user end. LOFT-Lite runs on a thread with a

backoff timer which sleeps for a specified delay while querying the local folder for the

image stream. To transfer data between hosts, we use the SCP utility.
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To differentiate between the cloud/fog and the core cloud computation, our ex-

periment workflow is as follows: (i) start sending concurrent traffic from h2 to h3;

(ii) start sending main traffic (video) from h2 to h1; (ii.a) while performing cloud/fog

computing, start pre-processing concurrently with step (ii) (we assume here that pre-

processing is faster than data transfer); (iii) wait till at least the first frame has been

transferred; (iii.b) in case of core cloud computing, start pre-processing before step

(iv) (in this case LOFT-Lite has to wait for each frame when its pre-processing ends);

(iv) start LOFT-Lite; (v) wait until all main traffic has been transferred; and (vi)

terminate both the applications and data transfers.

Table 8.2 shows the final timing results averaged over ten trials to estimate 95%

confidence intervals for the cloud/fog and core cloud computation cases. For each

trial, we used a 500 frame video sequence and measured several QoA performance

metrics such as estimated throughput, tracking time, waiting time and total time.

We can pre-process frames faster in the core cloud computation case in comparison

to cloud/fog computation. Due to congestion in best-effort IP network and the un-

availability of video at the computation cloud site, we cannot track with LOFT-Lite

application in real-time (with 0 waiting time) in the core cloud computation case.

Whereas in the cloud/fog computation utilizing SDN, LOFT-Lite can be run in real

time at 3− 4 Hz.
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Chapter 9

Conclusion and Future Research

The research presented in this dissertation showcases an appearance based tracking

framework that is highly flexible and addresses common problems in difficult low

resolution and low framerate video along with promising results in full motion video.

We have proposed a novel adaptive appearance scheme that extends likelihood based

matching in order to maintain a model that is free of occlusions and one that avoids

drift. Automated tracking is an essential step for many applications such as incident

detection, security, surveillance and also relatively newer applications like augmented

reality. As of this writing almost 300 hours of video is uploaded to YouTube every

minute. Newer higher resolution sensors and inexpensive storage has led to a large

number of video being stored more and more every year. Automated analysis of

such videos would require efficient tracking methodologies that are both, flexible and

robust. The common theme throughout this work is to identify and isolate data

specific challenges and tackle them in a way that can be treated as a plug and play
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solution. The fusion framework along with demonstration of the integration work

with many different engineering systems has shown great potential in terms of quality

of results. We believe that our current system is flexible enough to continue more

research where additional features or modules can contribute to better tracking.

9.1 Future directions

We recognize that several small changes can lead to improved results such as comput-

ing our histogram features on different parts of the foreground. Background can also

be modeled with our current framework which would encode a more powerful part

of the descriptor for more complex videos with dynamic backgrounds. Drift control

can then be handled with the help of a background descriptor which would then fall

under the class of discriminative classification. The flexible nature of LOFT allows

researchers to add and test such potential modules or functionality in a rapid manner.

As part of the natural extension to 2D tracking, incorporating 3D information also

needs to be studied in more detail. Our initial set of results show a lot of promise

for using 3D models of buildings to filter out short, mostly false, tracks. 3D informa-

tion can assist directly in effective detection of occlusions and avoid computing the

features on such frames. Even though current research mainly shows effective detec-

tion of tracks, our methodology along with comprehensive and accurate groundtruth

allows for a more in depth analysis of the trajectories. Object tracking will always

be a very complex task as data specific challenges will exist in the future. Keeping a

flexible framework that can be adapted to such different conditions and to effectively
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use and fuse different sources of information can bring tracking to a level where it

can be as pervasive as image filters.
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