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ABSTRACT

The purpose of this thesis is to advance the study and application of the field

of persistent homology through both categorical and quiver theoretic viewpoints.

While persistent homology has its roots in these topics, there is a wealth of material

that can still be offered up by using these familiar lenses at new angles.

There are three chapters of results.

Chapter 3 discusses a categorical framework for persistent homology that cir-

cumvents quiver theoretic structure, both in practice and in theory, by means of

viewing the process as factored through a quotient category. In this chapter, the

widely used persistent homology algorithm collectively known as reduction is pre-

sented in terms of a matrix factorization result.

The remaining results rest on a quiver theoretic approach.

Chapter 4 focuses on an algebraic stability theorem for generalized persistence

modules for a certain class of finite posets. Both the class of posets and their dis-

cretized nature are what make the results unique, while the structure is taken with

inspiration from the work of Ulrich Bauer and Michael Lesnick.

Chapter 5 deals with taking directed limits of posets and the subsequent expan-

sion of categories to show that the discretized work in the second section recovers

classical results over the continuum.

vi



Chapter 1

Introduction

This research is motivated by the crossover between pure mathematics and real

world problem solving. I have focused largely on topological methods of analyz-

ing data, and in particular the device of persistent homology [ZC05a], [EH10]. At its

inception, this field gathered algebraic topology, category theory, and quiver the-

ory to provide a new theory of robust analysis of data that is independent of scale.

Even in the short time since its inception, persistent homology has grown to give

and take from a staggering number of disciplines—mathematical and otherwise.

All the results featured in this manuscript are the result of collaborative efforts.

The nature of the material and the coauthors with which it was derived is split into

two groups.

The first result (Chapter 3) is from the paper [MPS17] and was written with my

dissertation advisor Jan Segert and fellow graduate student Andrei Pavlichenko.

We show that the category of filtered chain complexes is in fact Krull-Schmidt,

and that this allows for decomposition before applying the homology functor. Fur-

thermore, this abstract result—which we name the Categorical Structural Theo-

rem—constitutes a non-constructive proof of the Matrix Structural Theorem, which

is the matrix factorization result that is key to reduction, a common persistent ho-
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mology algorithm in the literature. The Categorical Structural Theorem is the

foundation for an alternate workflow for the persistent homology process that cir-

cumvents quiver theoretic decomposition results entirely, using instead a quotient

category to the category of filtered chain complexes.

The last three chapters of results were all obtained in collaboration with post-

doctoral researcher David Meyer. They stem from the papers [MM17a] (see Chap-

ter 4) and [MM17b] (see Chapter 5), and Chapter 6 is the result of our ongoing re-

search. All these results are related to algebraic stability between the interleaving

metric on persistence modules and bottleneck metrics on barcodes. One overarch-

ing goal of all three chapters is to bypass the wall raised by quiver theory on the

road to multi-dimensional persistence: that the immaculate decomposition result

over the An quiver fails for all but a very small list of additional quivers. In par-

ticular, the posets that would be used for multi-dimensional persistence have, as

quivers, representation theory that is known to be unsolvable. Through discretiza-

tion of the usual R-indexed persistent homology and a restriction on the permitted

category of indecomposables, we obtain algebraic stability results for a large class

of finite posets that are not totally ordered.
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Chapter 2

Preliminaries

2.1 Category Theory

Definition 2.1.1. A category C is:

• a class of objects, Obj(C), which we will simply denote as C itself,

• a set of morphisms Hom(X, Y ) for all pairs of objects X, Y ∈ C,

• an identity morphism 1x ∈ Hom(X,X) for all X ∈ C, and

• a composition map

Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z)

for all triplets X, Y, Z ∈ C, such that

1. for all φ ∈ Hom(X, Y ), 1y ◦ φ = φ = φ ◦ 1x, and

2. for all

W
f−→ X

g−→ Y
h−→ Z,

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Definition 2.1.2. We define the following morphism types:

3



• A category with zero morphisms is one in which for every pair of objects X, Y

there exists a morphism we will call 0X,Y such that, for any triple X, Y, Z and

any morphisms X f−→ Y
g−→ Z,

0Y,Z ◦ f = 0X,Z = g ◦ 0X,Y .

• A monomorphism is a homomorphism that cancels on the left.

If f ◦ g = f ◦ h, then f = h.

In a concrete category (one with additional underlying structure), injective

maps are monomorphisms.

• An epimorphism is a homomorphism that cancels on the right.

If f ◦ h = g ◦ h, then f = g.

In a concrete category, surjective maps are epimorphisms.

Definition 2.1.3. A functor F : C → D is a map F : obj(C) → obj(D) and a

collection of maps of morphisms HomC(X, Y ) → HomD(F(X),F(Y )) for every

pair of objects X, Y in C, such that F satisfies:

• F(1X) = 1F(X) for all X in C, and

• F commutes with composition. I.e., for any composition X f−→ Y
g−→ Z in C,

F(g ◦ f) = F(g) ◦ F(f) : F(X)→ F(Y )→ F(Z).

A functor as defined above is also called a covariant functor. A contravariant

functor is defined similarly save that the map of homomorphisms is backwards,
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HomC(X, Y ) → HomD(F(Y ),F(X)), and composition is subsequently reversed as

well, F(g ◦ f) = F(f) ◦ F(g).

Definition 2.1.4. A natural transformation is a morphism of (covariant) functors. A

natural transformation Γ between functors F,G : C → D is a collection of mor-

phisms Γ(X) : F (X) → G(X) for every object X in C, such that for every X, Y in

C and every morphism f ∈ HomC(X, Y ), the following diagram commutes:

F (X) F (Y )

G(X) G(Y )

F (f)

Γ(X)

G(f)

Γ(Y )

That is, G(f) ◦ Γ(X) = Γ(Y ) ◦ F (f).

2.1.1 Universal Properties: Kernels and Cokernels

Many basic categorical definitions are phrased as universal properies: for us, a pair

consisting of an object and morphism(s) that satisfy a given statement. The follow-

ing definitions are constructions that solve certain universal properties.

Definition 2.1.5. Let C be a category with zero morphisms. Let f ∈ HomC(A,B).

• A kernel of f is an object Ker(f) and a morphism k ∈ Hom(Ker(f), A) that

satisfy the universal property:

– f ◦ k is a zero morphism, and

– for any other pair X and x : X → A such that f ◦ x is a zero morphism,

x factors through Ker(f). I.e., there exists a unique morphism u : X →

Ker(f) such that k ◦ u = x.

5



Ker f A B

X

k f

x
u

Any kernel morphism is a monomorphism.

• A cokernel of f is an object Coker(f) and a morphism c ∈ Hom(B,Coker(f))

that satisfy the universal property:

– c ◦ f is a zero morphism, and

– for any other pair Y and y : B → Y such that y ◦ f is a zero mor-

phism, y factors through Coker(f). I.e., there exists a unique morphism

v : Coker(f)→ Y such that c ◦ v = y.

A B Coker f

Y

f c

y
v

Any cokernel morphism is an epimorphism.

• An image of f is a kernel of a cokernel of f . By definition, the pair (Im(f), im(f))

pre-composes with c to be zero. As this is also true of f , there is a unique

morphism v : A→ Ker(c) such that ker(c) ◦ v = f .

A B Coker f

Im f

f c

ker c = im fv

6



• A coimage of f is a cokernel of a kernel of f . By definition, the pair (Coim(f), coim(f))

post-composes with k to be zero. As this is also true of f , there is a unique

morphism u : Coker(k)→ B such that u ◦ coker(k) = f .

Ker f A B

Coim f

k f

coker k = coim f u

Note that these definitions are not inherently unique, nor do they necessarily

exist.

Definition 2.1.6. Let C be a category and A,B be objects.

• A product of A and B is (X, xA, xB) with xA ∈ Hom(X,A), xB ∈ Hom(X,B)

satisfying the universal property:

– for every (Y, yA, yB) with yA ∈ Hom(Y,A), yB ∈ Hom(Y,B), there exists

a unique u : Y → X such that the following commutes:

Y

A A×B BxA xB

u
yA yB

As in the above, such an object X is frequently denoted A×B.

• A coproduct of A and B is (X, Ax, Bx) with Ax ∈ Hom(A,X), Bx ∈ Hom(B,X)

satisfying the universal property:

– for every (Y, Ay, By) with Ay ∈ Hom(A, Y ), By ∈ Hom(B, Y ), there exists

a unique v : X → Y such that the following commutes:

7



Y

A AqB B
Ax Bx

vAy By

As in the above, such an object X is frequently denoted AqB.

• If product and coproduct agree in a category, we refer to both (either) of them

as the direct sum.

Definition 2.1.7. A category C is pre-abelian if

• Every Hom set can be endowed with the structure of an abelian group such

that composition

Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z)

is a bilinear map,

• it has all finite products and coproducts,

• every morphism has kernels and cokernels.

Definition 2.1.8. A category C is abelian if it is pre-abelian, and for any morphism

f ∈ Hom(A,B) the canonical morphism

Coim(f)→ Im(f)

is an isomorphism.

Ker f A B Coker f

Coim f Im f

k f c

coker k ker c
u

f

8



The canonical morphism is f̄ in the diagram above induced in the following way

from universal properties:

• The morphism u is induced by Coim(f).

• As c ◦ f is zero and u ◦ coker(k) = f , the composition c ◦ u ◦ coker(k) is zero.

But, as coker(k) is an epimorphism, it can be canceled on the right, and so

c ◦ u is zero.

• Then as Im(f) is a kernel of c, u factors uniquely through Im(f) via f̄ .

2.1.2 Additive and Krull-Schmidt Categories

Definition 2.1.9. A category C is additive if the following hold.

• Every Hom set can be endowed with the structure of an abelian group and

composition is bilinear (as in 2.1.7).

• There is a zero object, 0, with the properties that

Hom(0, X) and Hom(X, 0) are singletons

for all objects X .

• Any finite collection of objects X1, . . . , Xn has a direct sum X1 ⊕ . . .⊕Xn.

In an additive category, product and coproduct always have a canonical iso-

morphism: so, direct product.

Definition 2.1.10. In an additive category, a non-zero object X is indecomposable if

X = Y ⊕ Z guarantees that one of Y or Z is zero.

An object is decomposable if it is not indecomposable.
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Lemma 2.1.11. An object is indecomposable if it has a local endomorphism ring.

A ring R is local if it is unitary (1 6= 0) and for every element f ∈ R, either f

or 1 − f is a unit. The endomorphism ring of an object X in an additive category is

simply Hom(X,X).

Definition 2.1.12. A category C is Krull-Schmidt if every object is isomorphic to a di-

rect sum of indecomposables, and every indecomposable has local endomorphism

ring.

Remark 1. A Krull-Schmidt category has the property that every object is isomor-

phic to a direct sum of indecomposables, such that if

X ∼= V1 ⊕ . . .⊕ Vn ∼= W1 ⊕ . . .⊕Wm,

then n = m and there is a permutation σ such that Vi ∼= Wσ(i) for all 1 ≤ i ≤ n.

Note that the definition of a Krull-Schmidt category does not assume that the

additive category is abelian, or even pre-abelian. Later on we will take interest

in the linear category of filtered chain complexes, which is not abelian. But we

will use Abelian categories and their subcategories to show that this category is

nonetheless Krull-Schmidt. Atiyah’s Criterion [Ati56, Kra15] provides a very gen-

eral sufficient condition for an Abelian category to be Krull-Schmidt. Since many

of the categories of interest are linear, we will be able to use the following special

result:

Theorem 2.1.13. (Atiyah’s Criterion) A linear Abelian category with finite-dimensional

Hom spaces is Krull-Schmidt.
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Though Atiyah’s Criterion is powerful, its proof is nonconstructive. It neither pro-

vides an algorithm for decomposing a given object as a direct sum of indecom-

posables, nor a classification of those indecomposables, both of which we will be

interested in later on.

2.2 Quiver Theory

The recommended general reference for this section is the book An Introduction to

Quiver Representations by Derksen and Weyman [HD17].

Definition 2.2.1. A quiver Q is a quadruple Q = (Q0, Q1, h, t) where

• Q0 is a finite set of vertices,

• Q1 is a finite set of arrows,

• h, t are functions from Qo → Q1 and for an arrow a ∈ Q1, ha, ta are called the

head and tail of a, respectively.

A quiver, then, is a directed graph permitting multiple arrows and loops.

Example 2.2.2. The An quiver is the quiver with the following shape, and with any

orientation on the arrows:

. . .
1 2 3 n− 1 n

When all the edges are oriented i → i + 1, we call it the equi-oriented An quiver,

and denote it by
−→
An.

. . .
1 2 3 n− 1 n

11



Example 2.2.3. Consider the two quivers drawn below: a grid of vertices m ver-

tices wide and n vertices tall with arrows draw outward, and the concatenation of

multiple
−→
An quivers at a common minimal.

...
...

...

. . .

. . .

. . .

. .
.

...

..
. ..
.

. .
.

. . .

While there is a wealth of further examples in the literature, the results in this

document focus around theAn quiver with arbitrary orientations. The two quivers

above are examples of interest that will be referred to often for the sake of contrast,

in that the theory of representations over these quivers is immensely more complex

than that over the An quiver.

Definition 2.2.4. A respresentation V of Q is an assignment

• of a K-vector space V (i) to each vertex i ∈ Q0,

• and a K-linear map V (ta)→ V (ha) for each a ∈ Q1.

Example 2.2.5. Consider Q = A3.

a b

1 2 3

A representation V ofQ is any triplet of finite-dimensional vector spaces V (1), V (2), V (3)

and linear maps V (a), V (b)

V (a) V (b)
V (1) V (2) V (3)

12



where V (a) ∈Mdim(V (2))×dim(V (1))(K) and V (b) ∈Mdim(V (3))×dim(V (2))(K).

Definition 2.2.6. For a quiver Q and two representations V,W , a morphism V → W

is a family φ = {φi}i∈Q0 where each φi ∈ Hom(V (i),W (i)), such that the following

diagram commutes for all a ∈ Q1:

V (ta) V (ha)

W (ta) W (ha)

V (a)

φ(ta)

W (a)

φ(ha)

Composition of quiver morphisms are coordinate-wise. It is immediate that for

any quiver Q, the collection of representations and morphisms form a category,

denoted Rep(Q). If we wish to specify the category of finite-dimensional representa-

tions (a representation in which each V (i) is a finite-dimensional K-vector space),

we will write lowercase rep(Q).

2.2.1 The Path Algebra

A path in Q is a sequence of arrows p = a1a2 . . . an such that tai = hai+1. That is,

arrows are composed similarly to functions.

a1a2 . . . an =
a1←− a2←− a3←− . . .

an←−

For a representation V of Q and a path p = a1 . . . an, V (p) = V (a1) ◦ . . . ◦ V (pn).

The length of a path p is the number of arrows in p, and hp = ha1, tp = tan. Let ei

denote the trivial path of length zero that begins and ends at the vertex i. These

trivial paths are important objects for defining the following.

Definition 2.2.7. The path algebra KQ of a quiver Q is the K-linear span of all dis-

tinct paths in Q. That is, KQ has a basis consisting of {e1, . . . , en, p1, p2, . . .} where

13



the {pi} are all distinct paths inQ. Multiplication is given by concatenation p·q = pq

if tp = hq, and zero otherwise.

Remark 2. The path algebra KQ is finite-dimensional if and only if Q is acyclic:

that is, having no oriented cycles.

2.2.2 Quivers with Relations

In the case of quivers arising from posets, we are concerned with accepting only

representations that agree over parallel paths. That is, if x, y ∈ Q0 and p, q are two

paths with tp = tq = x and hp = hq = y, then we would like to consider only

representations V with the property that V (p) = V (q).

Definition 2.2.8. fill

1. A relation in KQ is an element of the form
n∑
i=1

λipi with each λi ∈ K and

such that all the pi share the same tail and same head: tp1 = . . . = tpn and

hp1 = . . . = hpn.

2. A quiver with relations is a pair Q,R where Q is a quiver and R is a finite set

of relations in the path algebra.

3. A bound quiver is a quiver with relations (Q,R) such that

• for every r =
∑
λipi ∈ R, the length of each pi is at least 2, and

• there is some natural numberN such that any path of lengthN or longer

belongs to 〈R〉, the two-sided ideal generated by R. The path algebra of

a bound quiver (Q,R) is A = KQ/〈R〉.

14



Definition 2.2.9. For a quiver with relations (Q,R), a (Q,R)-representation is a

Q-representation V such that V (r) = 0 for all r ∈ R.

Definition 2.2.10 (Hasse Quiver). Let P be a finite poset and QP be the quiver

given by the following:

• There is a vertex for every point in the poset, i.e., (Qp)0 = P .

• There is an arrow a ∈ (QP )1 with ta = x, ha = y whenever x < y and there is

no t ∈ P with x < t < y.

For any poset P , QP has no oriented cycles. Let RP be the set of relations con-

sisting of all p − q where p, q are parallel paths in QP . The bound quiver (QP , RP )

is called the Hasse quiver of the finite poset P .

2.2.3 Representation Type

The representation type of a quiver is a classification of its indecomposable repre-

sentations. There are three representation types commonly used in the literature.

We list them here with brief, colloquial definitions.

The following three representation types partition the collection of all possible

quivers.

• Finite representation type: Rep(Q) contains finitely many isomorphism classes

of indecomposables (resp., finitely many isomorphism classes of A-modules,

where A is the path algebra). There is a short, finite list of quiver shapes that

are of finite representation type.

• Tame: though Rep(Q) may possess infinitely many isomphism classes of any

given dimension, it is possible to parametrize them in a productive manner.
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• Wild: it is demonstrably impossible to organize or classify the isomorphism

classes of indecomposables in Rep(Q) in any meaningful way.

The classification of indecomposables is of great interest due to the following:

Proposition 2.2.11. For any quiver Q, the space of representations Rep(Q) has the Krull-

Schmidt property.

Definition 2.2.12. Let Q be the Hasse quiver of a poset P (in particular, all parallel

paths are modded out in the path algebra). Then by an interval module, we mean

a convex collection of vertices I (i.e., if vi, vj ∈ I and vi ≤ x ≤ vj for some x ∈ P ,

then x ∈ I), that determine precisely the following representation:

• V (I)(i) = K for all i ∈ I ,

• V (I)(i ≤ j) = 1K for all i, j ∈ I .

In the case that Q = An, the set I is necessarily an interval [x, y].

. . .↔ 0↔ K ↔ . . .↔ K ↔ 0↔ . . .

From this point forward, we frequently identify indecomposables of An (the inter-

val modules) with their interval of support, with endpoints given by the vertex

labels on the poset.

The quiver Q = An is representation-finite. In fact, according to the full result

of [Gab72], the complete collection of indecomposables for Q = An is precisely the

interval representations over An. Combining these statements, we have that any

representation V of An is of the form

V =
n⊕
i=1

[xi, yi].
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In the situation opposite the An quiver, the Hasse quivers of the posets in ex-

ample 2.2.3 are wild. This says definitively that there is no parallel decomposition

result to be had for these quivers, as there is not even a classification to be had for

the indecomposables themselves.

2.2.4 Equivalence of Categories

Theorem 2.2.13. Let (Q,R) be a quiver with relations. There is an equivalence of cate-

gories between Rep(Q) and the category of left modules over the path algebra KQ. This

equivalence restricts to finite-dimensional representations and finite-dimensional left mod-

ules.

For this reason we will frequently refer to representations of a quiver Q as (left)

modules over the path algebra, and vice versa.

2.2.5 Auslander-Reiten Theory

The recommended reference for this section is the book Quiver Representations by

Ralf Schiffler [Sch14].

Definition 2.2.14. For a quiver Q with finite representation type, we define a new

quiver called the Auslander-Reiten (A-R) quiver that relates the indecomposable

representations of the original quiver in the following way.

• The set of vertices is ΣQ, which is defined to be the set of isomorphism classes

of indecomposable representations of Q.

• For any two vertices (so, Q-indecomposables) σ and τ , there is an arrow σ →

τ precisely when there exists an irreducible morphism from σ to τ .
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We require that Q have finite representation type as otherwise the set ΣQ is

infinite, whereas a quiver requires a finite vertex set.

We leave the specifics of the existence of irreducible morphisms to the text men-

tioned above.

2.3 Persistent Homology

The reference for the following two sections is the book Elements of Algebraic Topol-

ogy by James R. Munkres [Mun96].

Persistent homology is an approach to large-scale data analysis that has found

application in studying atomic configurations [HNH+16], analyzing neural activ-

ity [GPCI15], and filtering noise in sensor networks [BG10]. Persistent homology

identifies clustering, holes, and higher-dimensional structures in data. This infor-

mation is obtained independent of scale. The flexibility and routes for expansion

within this topological approach to understanding data are what continue to draw

interest.

2.3.1 Simplicial Complexes

Suppose a fixed collection of ‘vertices’ (points in someRm) denoted by V = {v1, . . . , vn} =

{vi}i∈I , where I is some finite indexing set.

• A k-simplex is the convex hull in Rm of a collection of k + 1 vertices of V . We

denote a k-simplex by vi0...ik , or by vJ where J = {vi0 , . . . , vik}.

• A face of some k-simplex vJ is any vJ ′ where J ′ ⊂ J .

• A complex is a collection K of vertices and simplices such that if vJ ∈ K, then
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every face of vJ is also in K.

• A k-chain in K is ∑
ai0...ikvi0...ik

where the ai0...ik are in F with at least one non-zero. Let Ck denote the vector

space of k-chains (which has a K-basis consisting of all k-simplices). If V is a

collection of n vertices, then for 0 ≤ k ≤ n− 1,

dim(Ck) =

(
n

k + 1

)
.

For all values of k < 0 or k ≥ n, Ck is the zero vector space.

• The boundary map ∂ is a linear operator

n−1⊕
k=0

Ck →
n−1⊕
k=0

Ck

that is homogenous of degree−1. That is, we can choose a basis such that ∂ is

block-superdiagonal and nilpotent of degree 2, and we write ∂k : Ck → Ck−1

for all k.

The boundary operator ∂k : Ck → Ck−1 for any k is defined on elementary

k-chains (the basis elements for Ck) by

∂kvi1...ik =
n∑
j=1

(−1)jvi1...îj ...ik

For example, ∂1vab = vb − va and ∂2vabc = vbc − vav + vab.

2.3.2 Simplicial Homology

The nth-Homology of a simplicial complex is the vector space

Hn =
Ker ∂n
Im ∂n+1

,
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where we mean the linear algebraic definitions of Kernel and Image (rather than

the more general categorical ones, though this construction exists over arbitrary

pre-Abelian categories where quotient is taken as coknerel of the subobject mor-

phism). The dimension of H0(K) corresponds to the number of distinct connected

components ofK. For n > 1, Hn(K) counts the number of n+1-dimensional holes.

Consider the following simplicial complex. The shading of triangle denotes

that the 2-simplex abc is contained in the complex, but acd is not.

a b

cd

• C0 = 〈a, b, c, d〉

• C1 = 〈ab, ac, ad, bc, cd〉

• C2 = 〈abc〉

• Ck = 0 for all k 6= 0, 1, 2

Combining all of the above, and ordering our basis by dimension (with remain-

ing ties broken lexicographically), we have the following matrix representation of

the boundary operator ∂ :

0 0 0 0 −1 −1 −1 0 0 0
0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 1 0 1 −1 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0







a0 b0 c0 d0 ab1 ac1 ad1 bc1 cd1 abc2

a0

b0

c0

d0

ab1

ac1

ad1

bc1

cd1

abc2
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Degree of each basis simplex is denoted by its subscript. Breaking the matrix up

into its respective partials, we have ∂1 : C1 → C0 and ∂2 : C2 → C1:

∂1 =

ab1 ac1 ad1 bc1 cd1


a0 −1 −1 −1 0 0
b0 1 0 0 −1 0
c0 0 1 0 1 −1
d0 0 0 1 0 1

.

∂2 =

abc2


ab1 1
ac1 −1
ad1 0
bc1 1
cd1 0

.

• H0: As C−1 = 0, Ker ∂0 = C0 which has dimension 4. From the matrix

representation for ∂1 above it can be readily computed that the column-space

Im ∂1 has dimension 3. So

H0
∼= K4

K3
∼= K.

The intuition for this is that for any 1-simplex vij, ∂1(vij) = vj − vi, and so

all connected 0-simplices are in the same equivalence class. For this example,

this means that in Ker ∂0/Im ∂1, [a] ∼= [b] ∼= [c] ∼= [d], and that we have

equivalence class of connected components.

• H1: For i ≥ 1, ∂i(vi1 . . . vij) = 0 if and only if vi1 . . . vij is a closed cycle. So

Ker ∂1 = 〈bc− ac+ ab, cd− ad+ ac〉. As Im ∂2 = 〈bc− ac+ ab〉, we see that

H1
∼= K2

K
∼= K.

• H2: As C3 = 0, Im ∂3 = 0, as does Ker ∂2 = 0, and so H2
∼= 0.
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2.3.3 GPMs

Definition 2.3.1. A generalized persistence module (GPM) M over a poset P with

values in a category D is an assignment

• x→M(x) ∈ D for all x ∈ P ,

• (x ≤ y)→M(x ≤ y) ∈ Hom(M(x),M(y)) for all x ≤ y in P ,

such that M(x ≤ z) = M(y ≤ z) ◦M(x ≤ y) whenever x ≤ y ≤ z ∈ P .

For two GPMs M,N over P with values in D, a morphism of M → N is a col-

lection {φ(x)}x∈P where each φ(x) ∈ Hom(M(x), N(x)), such that the following

diagram commutes for all x ≤ y ∈ P :

M(x) M(y)

N(x) N(y)

M(x≤y)

φ(x)

N(x≤y)

φ(y)

With this structure, we denote by DP the category of GPMs over P with values in

D.

Remark 3. The similarity of this commutative diagram to the one for natural trans-

formations (and quiver morphisms) is not an accident. A GPM is a functor from

the poset category of P to the categoryD, and a morphism between GPMs is a nat-

ural transformation. Quivers (without relations, at least) are simply GPMs with

values in D = vect, the category of finite vector spaces.
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2.3.4 Process

Classical persistent homology transforms a data set (finite point cloud) into a set

of topological invariants (the barcode). The classical workflow for this process and

the objects obtained along the way are summarized below. Some nuances, evolu-

tions, and algorithmic implementations of this process are discussed throughout

Chapter 3, while the following is cursory overview of the fundamentals.

• Obtain an n-dimensional finite point cloud I .

• For each ε ∈ [0,∞) ⊂ R, construct the following simplicial complex, K(ε):

– K0(ε) is the collection of all 0-dim simplices (points/vertices) of the data

set.

– K1(ε) is the collection of all 1-dim simplices (edges) vi1vi2 such that d(vi1 , vi2) ≤

ε.

– Kn(ε) is the collection of the n-dim simplicies vi1 . . . vin+1 such that vi1 . . . v̂i . . . vin+1 ∈

Kn−1(ε) for all 1 ≤ i ≤ n + 1. That is, include every n-dim simplex such

that each of its n− 1-dim faces are contained in Kn−1(ε). (This inductive

definition terminates, as K|K0|(ε) is the last possible non-zero collection

of simplicies.)

• Taking this collection for all ε ∈ [0,∞), we have a GPM over [0,∞) with

values in the category of simplicial complexes.

• It is here that one may discretize in the following sense. LetE be the collection
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of ε such that

lim
ε′→ε−

K(ε′) 6= K(ε).

As we started with a finite data set, there are only finitely many such values

where the simplicial complex changes. So, the set E is one-to-one with some

subset of the natural numbers, {1, . . . , n} ⊂ N. Viewing only the simplicial

complexes over values in E, we have a GPM over the finite totally ordered

set E.

• For any ε1 ≤ ε2, it is clear that K(ε1) is a subobject of K(ε2). Let fε1,ε2 be the

subobject morphism of simplicial complexes K(ε1) ↪→ K(ε2).

• Having attached these morphisms, apply the desired homology functor.

• If one has discretized by now, we at last have a persistence vector space: a

GPM over a totally ordered poset with values in the category of vector spaces.

That is to say, we have a representation of the quiver Q = An.

• By Gabriel’s decomposition result, this object decomposes into interval mod-

ules with multiplicities. The multiset of these indecomposable interval mod-

ules is the barcode of the data set.

The barcode is usually the object of greatest interest, and is a topological in-

variant of the data set. It highlights topological features that persist across a range

of scale values. This process is robust under considerations of noise in the data

collection, in the following sense:

• The elements of the barcode that are long—persist across a wide range of

scale values relative to others—are true features of the data set.
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• Noise and other inaccuracies result in intervals that are short, and thus not

indicative of topological trends in the data.

2.4 Stability

Stability is an answer to the question: if a certain object in the persistent homology

workflow is perturbed slightly, how similar are the resulting objects? For example,

in the literature the two primary types of stability are:

• Soft stability: distance between persistence modules (quiver representations)

based on perturbations of the data set.

• Hard stability: distance between barcodes based on distance between persis-

tence modules.

Chapters 4 and onward are all at least partially concerned with hard stability

results. Before any statements of hard stability can be discussed, however, we must

have notions of distances between persistence modules and between barcodes.

2.5 Interleaving Metric

We begin the construction of the interleaving metric of Bubenik, de Silva, and Scott:

a metric on generalized persistence modules.

We measure interleaving distance by translations. A translation Λ on a poset P

is a monotone morphism. I.e.,

• Λ(x) ≥ x,

• Λ(x) ≤ Λ(y) for all x ≤ y in P .
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For example, in the totally ordered set {1 ≤ 2 ≤ 3 ≤ 4}, any map of vertices

that sends 1 → 4 and 2 → 3 is immediately not a translation. Any translation that

sends 1→ 4 must be the constant translation Λ(1) = Λ(2) = Λ(3) = Λ(4) = 4.

The set of translations T (P ) is itself a poset under the relation: Λ ≤ Γ when

Λ(x) ≤ Γ(x) for all x ∈ P .

The height of a translation Λ is

h(Λ) = max{δ(x,Λ(x)) : x ∈ P},

where δ is some metric on the poset.

Let D be a category. Then T (P ) acts on DP on the right by

• (V Λ)(p) = V (Λp), and

• V Λ(x ≤ y) = V (Λx ≤ Λy).

Likewise, for a morphism of GPMs F : V → W in DP , (FΛ) : V → W is given by

(FΛ)(i) = F (Λi) : V (Λi)→ W (Λi).

Remark 4. The action of translations on GPMs is that of a natural transformation

acting between functors: Γ : V → ΓV . (See Remark 3.)

Definition 2.5.1. For two GPMs V,W in DP and two translations Λ,Γ on P , a Λ,Γ-

interleaving between V and W is a pair of morphisms φ : V → WΛ, ψ : W → V Λ

such that both triangles of the following diagram commute.

φ

ψ

φΛ

ψΛ

V → V Λ

W →WΛ

V Λ→ V ΛΓ

WΛ→WΛΓ

V V Λ V ΛΓ

W WΛ WΛΓ
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The interleaving distance between V and W is

D(V,W ) = min{ε : max{h(Λ), h(Γ)} = ε and V,W are (Λ,Γ)− interleaved.}

If there is no interleaving between V and W for any translations, then we say that

the interleaving distance is infinite.

2.5.1 Fixed Points

For a translation Λ, the fixed points of Λ are precisely those points p ∈ P for which

Λ(p) = p. For example, any maximal element of P is fixed under all translations.

Lemma 2.5.2. Let V,W be GPMs over some poset P , Λ,Γ be translations and p ∈ P

be a fixed point of both translations. Then if dimKV (p) 6= dimKW (p), V,W cannot be

(Λ,Γ)-interleaved.

Proof. Suppose dimKV (p) < dimKW (p). Then the commutativity condition of the

triangle beginning at W (p),

φ(p) ψ(Λp) = ψ(p)

1W (p)
W (p) W (ΛΓp)W (ΛΓp) = W (p)

V (Λp)V (Λp) = V (p)

cannot possibly hold, as there is no linear map of full rank from V (p)→ W (p).

To put the preceding lemma in more direct form:

Proposition 2.5.3. Let P be a finite poset. Let V,W be two GPMs over P with values

in a category D. Then the interleaving distance between V and W is finite if and only if

V (p) ∼= W (p) for all points p ∈ P that are fixed by the set of translations.
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So if a point p ∈ P (such as a maximal element) is fixed for all translations, then

any two modules with different dimensions at p have no interleaving.

Specifically, for Q = An and two interval modules with similar supports that

are away from n, interleaving distance is small (see 2.5.6). But the moment one

includes n in the support of one and not the other, distance is infinite. In R this is

not an issue, as there are no maximal elements. In representations of finite posets,

which is the topic of interest in this document, the issue of infinite interleaving

distances must be addressed.

2.5.2 Submodules and Quotient Modules

Before going any further, we address what morphisms between persistence mod-

ules look like in specific settings, and in particular which pairs of persistence mod-

ules even possess non-zero Hom-sets.

Let P be a poset and I, J be interval modules—that is, modules fully described

by their supports. Consider briefly the following two non-commuting triangles.

...

V (q) =

V (p) =

...

...

=W (q)

=W (p)

...

K 0

K K
1K

φ(p)

...

V (p) =

V (r) =

...

...

=W (p)

=W (r)

...

K K

0 K
1K

φ(p)

Lemma 2.5.4. Let V,W be interval modules in DP . Suppose p ∈ supp(V ) ∩ supp(W ).

• If q ∈ supp(V ), q ≤ p, and q 6∈ supp(W ), it must be that Hom(V,W ) = 0.

• If r ∈ supp(W ), p ≤ r, and r 6∈ supp(V ), it must be that Hom(V,W ) = 0.

28



Extending on this idea, a submodule of a module V is a module S that is an

additive subgroup of V such that there exists a morphism V → S. A quotient of a

module V is a module Q that is an additive subgroup of V such that there exists a

morphism Q→ V .

In the case of a totally ordered poset {1, . . . , n} and some interval module I ∼=

[x, y],

• any submodule of I is of the form S = [x, r] where x ≤ r ≤ y,

• and any quotient of I is of the form Q = [q, y] where x ≤ q ≤ y.

S

Q = I/S
y

r = q r = q

x

I

When we have two interval modules I = [x1, y1], J = [x2, y2] over a totally

ordered set, there exists a non-zero morphism I → J if and only if y2 ≤ y1 ≤ x2 ≤

x1.
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y1

x1

y2

x2

I

J

supp(I) ∩ supp(J)

In this case, define ΦI,J to be the morphism

• ΦI,J(i) = 1K(i) if i ∈ supp(I) ∩ supp(J),

• ΦI,J(i) = 0 otherwise.

Clearly, Hom(I, J) = K〈ΦI,J〉.

Example 2.5.5. Let P = {1, . . . , 10}. Let V = [6, 8],W = [3, 7]. We need to choose

translations Λ,Γ such that

V → WΛ→ V Λ2 = V → V Λ2

and

W → V Λ→ WΛ2 = W → WΛ2.

First, Hom(V,WΓ) 6= 0 for Γ equal to the identity translation.

Hom(W,V Λ) 6= 0 only for Λ larger than or equal to the translation that sends

8 → 9 and 3 → 6. This is due to the fact that, if Λ(8) = 8, then there exists no

morphism W → V Λ by the properties of quotient modules (i.e., V Λ it too high at

the top). Similarly, if Λ(3) < 6, V Λ is not low enough at the bottom.
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Define Λ to be precisely the minimal translation given by the above constraints.

• Λ(3) = 6,

• Λ(4) = 6,

• Λ(5) = 6,

• Λ(8) = 9,

• and all other vertices are fixed.

With this choice of translation,

V Λ = V Λ2 = WΛ = WΛ2 = [3, 7].

Commutativity beginning at W is trivial. For V , the internal morphism V →

V Λ2 = ΦV,V Λ2 = 1[6,7]. The morphisms on the other sides of the triangle are

V → WΛ = 1[6,7], WΛ → V Λ = 1[3,7] which compose to 1[6,7] above, satisfying

commutativity.

As a comment that will be argued formally in a later chapter, one might guess

that in a totally ordered set, interleaving two indecomposable modules is strictly

a matter of minimally aligning upper and lower endpoints such that there exist

non-zero morphisms in both directions.

2.5.3 Weights and Suspension at Infinity

As previously mentioned, in the poset P = R, the interleaving distance between

any two finite persistence modules (i.e., excluding the indecomposables of type

[a,∞) or (−∞, b]) is finite. However, when P is a finite poset, we begin to en-

counter infinite interleaving distances due to fixed points.
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Example 2.5.6. Consider the totally ordered poset P = {1 ≤ . . . ≤ n} and the

category vect of finite-dimensional vector spaces over a base field K. Consider the

interval representations V = [1, n] and W = [1, n − 1]. Despite agreeing on all

vertices save for n, they have infinite interleaving distance by Prop 2.5.3.

To correct this, we shift to a setting in which maximals—which are always fixed

by the usual set of translations—are permitted to move, but we associate a new

(and possibly large) finite cost to the operation.

For a poset P , define the new poset P+ to be the collection of vertices P ∪ {∞}

with the original relations of P plus the new relations p ≤ ∞ for all p ∈ P . Now

there exist interleavings in P+ between any GPMs over P .

The Hasse quiver for P+ is the Hasse quiver for P with extra edges p → ∞ for

all maximal elements p of P . We assign weights to the edges of this new quiver/poset

to adjust the relative costs of translations acting within the original poset against

those translations that are capable of moving points outside the original poset.

There are two ways to add weights the poset P+ that will both be used in later

chapters. The first is with so-called democratic weights, in which all original edges

of the poset have weight a, and all new edges to ∞ have weight b. To capture

even more information, we call general weights those which assign possibly unique

weights to every individual edge of P+. See the examples below, in which both

weight-types are illustrated on
−→
An (democratic weights on the top, general weights

below).
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a1 a2 a3 an−2 an−1 b

a a a a a b

. . .
1 2 3 n− 1 n ∞

. . .
1 2 3 n− 1 n ∞

Example 2.5.7. Consider the same setup as in Example 2.5.6 but over the poset P+

with democratic weights. The indecomposables V = [1, n] and W = [1, n − 1] are

interleaved in P+ by the translations Λ,Γ that send n to ∞, and that fix all other

vertices. Since

V ∼[1, n] W ∼[1, n− 1]

V Λ ∼[1, n− 1] WΛ ∼[1, n− 1]

V Λ2 ∼[1, n− 1] WΛ2 ∼[1, n− 1]

it is easy to see that the interleaving morphisms commute. As any interleaving

between them must send b→∞, V and W have an interleaving distance of b.

2.6 Bottleneck Metric

A bottleneck metric provides a metric structure on the set of isomorphsim classes of

GPMs, which automatically yields a metric on barcodes. In general, a bottleneck

metric acts on multisubsets of a set Σ. It requires a metric d on Σ and a function

W : Σ→ (0,∞) compatible in the following way: for any σ1, σ2 ∈ Σ,

|W (σ1)−W (σ2)| ≤ d(σ1, σ2).

Following [BL13] and [BL16], define a matching between two multisets S, T of

Σ to be a bijection f : S ′ → T ′ between multisubsets S ′ ⊆ S and T ′ ⊆ T . For

ε ∈ (0,∞), we say a matching f is an ε-matching if the following conditions hold;
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(i) if W (s) > ε, then s ∈ S ′

(ii) if W (t) > ε, then t ∈ T ′, and

(iii) d(s, f(s)) ≤ ε, for all s ∈ S.

Intuitively, W measures the width of an element of Σ. In an ε-matching, ele-

ments of S and T which are actually identified are within ε of each other (according

to d), while all those not identified have width at most ε (according to W ).

For us, Σ will be a sub-collection of indecomposable modules of a quiver Q and

C the subcategory generated by direct sums over Σ.

Suppose Σ is the full collection of indecomposables of Q. Then multisubsets of

Σ are one to one with sums of indecomposables, and so, the collection of finite-

dimensional representations of Q. In particular, given a finite-dimensional repre-

sentation V of Q, the barcode of V , denoted B(V ), is the multisubset of the col-

lection of isomorphism classes that consists of precisely the indecomposable sum-

mands of V according to their corresponding multiplicities.

Definition 2.6.1. Let S, T be two finite multisubsets of any set Σ. Suppose d and

W are compatible. Then the bottleneck distance between S and T is defined by

DB(S, T ) = inf{ε ∈ R : there exists and ε-matching between S, T}

Let Σ be any fixed subset of isomorphism classes of indecomposable representa-

tions over Q. If V,W are finite-dimensional representations of Q with the property

that every indecomposable summand of V or W is isomorphic to an element of Σ,

then we may identify V,W with their barcodes B(V ), B(W ): two multisubsets of
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Σ. Then define

DB(V,W ) := DB(B(V ), B(W )).

While there are many examples of bottleneck metrics in the literature, in this

document we will examine the bottleneck metric based that is the pairwise (or,

diagonal) interleaving metric. In this situation, we will restrict ourselves to the

subcategory generated by Σ, the set of convex modules for the poset.

2.7 The Category Generated by Convex Modules

Since most posets have the property that their Hasse quiver is of wild representa-

tion type, a characterization of all of the isomorphism classes of its indecompos-

able modules will subsequently be impossible. Moreover, in all but the simplest

of posets, an indecomposable module will not be determined by its support (see

Definition 2.2.12). Fix a poset P and let Ω denote the set of isomorphism classes of

indecomposable representations. The function

Ω
Supp−−−→ P(P ) , which sends M

Supp−−−→ Supp(M)

may have infinite (and unknowable) domain, but always has finite range. Moti-

vated by one-dimensional persistent homology, we take the perspective that the

width of an indecomposable should be determined only by its support. We will

therefore restrict our attention to the category C generated by an appropriate set

Σ of indecomposable thin modules—modules whose dimension vector consists of

only zeros and ones.

The following is a generalization of the notion of interval modules to non-

totally-ordered posets.
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Definition 2.7.1. An indecomposable moduleM is convex if it is thin (dim(V (i)) ≤ 1

for all i) and isomorphic to a module M ′ where M ′ satisfies:

• for all x, y ∈ Supp(M ′) with x ≤ y, the linear map M ′(x ≤ y) is given by IdK .

In this document the terms interval module and convex module are used inter-

changeably.

Clearly, when we restrict our attention to the set of isomorphism classes of con-

vex modules, the function M → Supp(M) is one-to-one. Of course, the function is

not onto, as not every subset of P is the support of a convex module. One easily

checks that if S is some subset of the poset P , then there exists a convex module M

(unique up to isomorphism) with Supp(M) = S if and only if

(i) For all s1, s2 ∈ S there exists an unoriented path in the Hasse quiver of P that

connects s1 and s2 staying entirely within S , and

(ii) For all s1, s2 ∈ S the set {p ∈ P : s1 ≤ p ≤ s2} = [s1, s2] ⊆ S.

If S satisfies (i), we say S is connected, and if S satisfies (ii), we say S is interval con-

vex. Regardless of the representation type of the poset P , Σ = {[σ] : σ is convex }

is finite.

While the class of posets we will restrict to in Chapter 4 contain many posets

of wild representation type, they all have the property that every indecomposable

thin is convex.
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Chapter 3

Categorical Framework

3.1 Motivation

This chapter is based on a collaboration with Andrei Pavlichenko and Jan Segert

[MPS17].

3.2 Manifestations of the Structural Theorem

3.2.1 Introduction

Decomposition plays a central role both in the theory and in the applications of

persistent homology. The ubiquitous “barcode diagrams” encode a decomposi-

tion in terms of the types and multiplicities of indecomposable summands. This

data is an invariant, independent of the choice of decomposition. The summands

represented by long barcodes contain important characteristic information, while

the summands represented by short barcodes only contain random “noise” and

may be disregarded. A number of “stability theorems” [DCS07, Oud15] provide a

firm foundation for this intuitively appealing interpretation of the long and short

barcode invariants. In this paper we consider the interplay between the algorith-

mic and the categorical underpinnings for decomposition in persistent homology.

It is helpful to first review analogous decomposition issues for the much more
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familiar context of finite-dimensional vector spaces (over a fixed field F). The ordi-

nary Gaussian elimination algorithm can construct a basis for a vector space. Any

choice of basis then constitutes a decomposition of the vector space, wherein the

linear span of each basis element is a one-dimensional vector space. The direct sum

of these one-dimensional summands is canonically identified (naturally isomor-

phic) to the original vector space. A one-dimensional vector space cannot be fur-

ther decomposed as a sum of nonzero (dimensional) summands. This means that

one-dimensional vector spaces are the indecomposable objects, in the the category of

vector spaces. Since all one-dimensional vector spaces are mutually isomorphic,

there is just one type of indecomposable (object) in the category of vector spaces.

The familiar dimension of a vector space is just the multiplicity of the indecompos-

able (one-dimensional) summands in a decomposition, and this multiplicity is an

invariant independent of the choice of decomposition.

Now setting aside what we know about Gaussian elimination, we ask more ab-

stractly why is it that any vector space is actually decomposable? We first observe

that decomposability is a categorical property, since it involves both objects (vec-

tor spaces) and morphisms (linear maps). The theory of Krull-Schmidt categories

[Kra15] provides an appropriate, albeit abstract, categorical setting for questions

of decomposability. The axioms of a Krull-Schmidt category guarantee that every

object admits an essentially unique decomposition as a finite sum of indecompos-

able objects. For the category of vector spaces, this essential uniqueness encodes

the familiar fact that the dimension is an invariant independent of the choice of de-

composition. The goal then becomes to verify (and understand) the Krull-Schmidt
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property for the category of vector spaces. A concrete constructive verification of

the Krull-Schmidt axioms for the category of vector spaces follows easily from ba-

sic properties of Gaussian elimination and linearity, but this is more in line with

describing how to perform a decomposition rather than why vector spaces are de-

composable. Fortunately there is a complementary abstract tool available. A theo-

rem of Atiyah [Ati56] dating back to the early years of category theory provides a

very useful criterion for verifying the Krull-Schmidt property of a category. For the

category of vector spaces, Atiyah’s criterion reduces to checking certain elemen-

tary properties of linear maps. So Atiyah’s theorem nonconstructively answers the

abstract question of why any vector space admits a decomposition, complement-

ing our understanding of how to constructively decompose a given vector space

via Gaussian elimination.

In this paper we consider analogous questions of how and why decomposition

works in persistent homology. The following picture summarizes one common

description of the transformation from point cloud data to barcodes invariants:

Point
Cloud

Filtered
Simplicial
Complex

Filtered
Chain

Complex

Persistence
Vector
Space

Barcodes

Threshold Boundary Homology

Decomposition

The initial stages, going from a point cloud to a filtered chain complex, will be

briefly reviewed at the end of this section. Our primary focus will be the final

stages, going from filtered chain complexes to barcodes. At the homology step,

the homology functor Hn of the chosen dimension/degree n takes a filtered chain
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complex (which is a diagram of chain complexes) to a persistence vector space (which

is a diagram of vector spaces). The key final step is to compute barcode invariants

by decomposition of a persistence vector space. An important insight [Car09] is

that persistence vector spaces are quiver representations. A concrete consequence

is the applicability of decomposition algorithms from quiver representation theory,

showing how to decompose a persistence vector space and compute the barcodes.

An abstract consequence is that the appropriate category of quiver representations

is Krull-Schmidt by Atiyah’s theorem, showing why all of this works. So the Krull-

Schmidt property of persistence vector spaces nicely ties together the theoretical

and computational aspects. But there is one problem with this picture.

The standard computational algorithms for persistent homology [HE02, ZC05b,

ZC08] do not work by decomposing a persistence vector space. The following

picture summarizes how barcodes are normally computed:

Point
Cloud

Filtered
Simplicial
Complex

Filtered
Chain

Complex

Creators
and

Destroyers
Barcodes

Threshold Boundary

Reduction

Selection

The initial stages of the picture, going from a point cloud to a filtered chain com-

plex, are unchanged. The key reduction step [HE02, ZC05b, ZC08] is the construc-

tion of a special type of basis. Each basis element is interpreted as either a creator or

as a destroyer of a homology class. The selection step consists of keeping those cre-

ators and destroyers that correspond to nonzero barcodes of the desired homology
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dimension/degree n, and discarding the remaining basis elements. The question

remains of why there should exist such algorithms operating on filtered complexes,

rather than on persistence vector spaces.

In this paper we provide a categorical framework for the standard persistent

homology algorithms, using an equivalence of categories to unify the two pictures

above:

Point
Cloud

Filtered
Simplicial
Complex

Filtered
Chain

Complex

Persistence
Vector
Space

Quotient
Object Barcodes

Threshold Boundary

Congruence

Homology

Decomposition
Equivalence

Decomposition

The foundation is the Categorical Structural Theorem (Theorem 1.6), which asserts

that the category of filtered chain complexes is Krull-Schmidt. This gives an alter-

nate framework for persistent homology, where the barcodes describe the Krull-

Schmidt decomposition of an object in a quotient of the category of filtered chain

complexes. These are still the same barcodes as in the standard framework, be-

cause the quotient category is equivalent to the category of persistence vector

spaces. This gives a unified answer for why and how decomposition actually works

in persistent homology. We no longer need to rely on the Krull-Schmidt property

of the category of persistence vector spaces as an indirect theoretical foundation

for decomposition and barcodes, since we can directly appeal to the Krull-Schmidt

property already in the category of filtered chain complexes.

The Categorical Structural Theorem is the abstract version of what we call the

Structural Theorem of Persistent Homology. We give a nonconstructive categorical
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proof of the Categorical Structural Theorem, indirectly using Atiyah’s criterion.

Combining the Categorical Structural Theorem with a classification of indecom-

posable filtered chain complexes then yields a novel nonconstructive proof of what

we call the Matrix Structural Theorem (Theorem 1.4). The Matrix Structural Theo-

rem characterizes the output of any of the various standard persistent homology

algorithms in terms of a matrix factorization rather than the more common de-

scription in terms of creators and destroyers for homology. In this sense, any of the

standard algorithms can be thought of as constituting a constructive proof of the

Matrix Structural Theorem. In Section 3.7, we give a self-contained description of

one such algorithm in terms of elementary matrix operations.

This paper focuses on the final stages of topological data analysis, going from a

filtered chain complex to barcode invariants. We give below a simple example to

illustrate the first stage, going from a point cloud to a filtered simplicial complex.

In our example, we use the α-complex construction [EH09, Ede], which is suitable

for low dimensions. We note that for large point clouds in high dimensions, the

Vietoris-Rips construction [Car14, Oud15] is often preferable.

Example 3.2.1. The first step is to construct a Delaunay complex, the second step

is to construct a filtration of the Delaunay complex. Figure 1 illustrates the con-

struction of the Delaunay simplicial complex associated to a point cloud. The left

image shows a point cloud consisting four planar points labeled by n ∈ {1, 2, 3, 4},

together with the Voronoi cell V (n) of each labeled point. We recall [EH09] that a

Voronoi cell V (n) contains all the points x ∈ R2 such that n is the closest labeled

point to x (or one of the closest if several are equidistant). The right image shows
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the Delaunay simplicial complex encoding the intersections of the Voronoi cells.

We recall that the simplex [n0, . . . , nk], where ni ∈ {1, 2, 3, 4} and n0 < · · · < nk,

is included in the Delaunay complex iff V (n0) ∩ · · · ∩ V (nk) 6= ∅. For example,

the simplex [1, 2] is included because V (1) ∩ V (2) 6= ∅, but the simplex [3, 4] is not

included because V (3) ∩ V (4) = ∅.

Voronoi cells Delaunay Simplicial Complex

Figure 3.1: Delaunay Complex

The α construction assigns to each Delaunay simplex [n0, . . . , nk] a real nonneg-

ative “birth parameter” b([n0, . . . , nk]). Let Br(n) denote the closed ball of radius r

centered at the labeled point n, and consider the subset Ar(n) = Br(n) ∩ V (n) of

the Voronoi cell V (n). The birth parameter of the Delaunay simplex [n0, . . . , nk] is

defined to be the smallest value of r such that Ar(n0) ∩ · · · ∩ Ar(nk) 6= ∅. A value

of r is called a“threshold’ if it is the birth parameter for some Delaunay simplex.

The integer “level” p indexes the thresholds in increasing order, as illustrated in

Figures 2 and 3:
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Level p = 1 is the threshold r = 0 = Level p = 2 is the threshold
b([1]) = b([2]) = b([3]) = b([4]). r = 1 = b([1, 2]).

Figure 3.2: α-complex at level p = 1 and level p = 2.

Level p = 3 is the threshold r = 1.12 = Level p = 4 is the threshold
b([1, 3]) = b([1, 4]) = b([2, 3]) = b([2, 4]). r = 1.25 = b([1, 2, 3]) = b([1, 2, 4])

Figure 3.3: α-complex at level p = 3 and level p = 4.

The α construction produces a filtration of the Delaunay complex, and the sim-

plicial homology [Hat01] of this filtered complex is described in terms of the bar-

code invariants [Oud15, EH09, Zom05]. Conventionally the filtration and the cor-

responding barcodes are indexed by the real-valued threshold parameter r, which

44



for our example yields the H1 barcode diagram of Figure 4:

Figure 3.4: H1 barcodes indexed by the real threshold parameter r.

The diagram indicates that the first homology H1 detects two one-dimensional

“holes” that appear at r = 1.12 and are filled in at r = 1.25. In this paper we

will index filtrations and the corresponding barcodes by the integer-valued level

p, which for our example yields the H1 barcode diagram of Figure 5:

Figure 3.5: H1 barcodes indexed by the integer level p.

This diagram indicates the same information, namely that the first homology H1

detects two one-dimensional “holes” that appear at p = 3 (which corresponds to

r = 1.12) and are filled in at p = 4 (which corresponds to r = 1.25).

3.2.2 Matrix Structural Theorem

For simplicity, we start with the ungraded version of the structural theorem. A

differential matrix is a square matrix D satisfying D2 = 0. We’ll say a differential

matrix is Jordan if it is in Jordan normal form, meaning it decomposes as a block-

diagonal matrix built from copies of the two differential Jordan block matrices

J = 0

[ ]
, K = 0 1

0 0

[ ]
.
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We’ll say a differential matrix D is almost-Jordan if there exists a permutation ma-

trix P such that the differential matrix P−1DP is Jordan. Given an almost-Jordan

differential matrix D, it is trivial to construct such a permutation matrix P . We will

say a square matrix B is triangular if it is upper-triangular and invertible.

The standard algorithm for computing persistent homology is based on the pa-

pers [HE02, ZC05b, ZC08]. The result of a persistent homology computation, not

depending on a choice of algorithm, is conveniently summarized [VdS11, Oud15]

as a matrix factorization:

Theorem 3.2.2. (Ungraded Matrix Structural Theorem) Any differential matrixD factors

as D = BDB−1 where D is an almost-Jordan differential matrix and B is a triangular

matrix.

It is the triangular condition that makes this interesting: without the triangular

condition, this would follow immediately from the ordinary Jordan normal form.

Furthermore, the matrix D is unique by a standard result from Bruhat factoriza-

tion, as reviewed in Section 3.6. We’ll call D the persistence canonical form of the

differential matrix D. A column of the triangular matrix B is in kerD iff the corre-

sponding column of D is zero. We will say that B is normalized if each such column

has diagonal entry equal to 1. It is always possible to normalize B by scalar mul-

tiplication of columns, but even with normalization B is not unique in general. A

constructive proof of Theorem 3.2.2 follows from any of the algorithms for comput-

ing persistent homology. In Section 3.7 we discuss a simple version of the standard

algorithm, with complete proofs using ordinary linear algebra of matrices.

Example 3.2.3. Consider the filtered simplicial complex:
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a

b

a

b

a c

b

a c

b

a c

b

a c

b

p ≤ 0 p = 1 p = 2 p = 3 p = 4 p = 5 p ≥ 6

Figure 3.6: Filtered Simplicial Complex Number 1

With the usual convention for an adapted basis, the ordering of basis elements

prioritizes the level of the filtration over the degree/dimension of the simplex.

The initial basis of simplices is then ordered so the level (denoted by prescript) is

nondecreasing, and within each level the degree (denoted by postscript) is nonde-

creasing. Using lexicographic order to break any remaining ties, the initial adapted

basis is a1 0, b1 0, ab2 1, c3 0, bc4 1, ac5 1, abc6 2, and the boundary operator over the field

F = Q of rationals is represented by the differential matrix

D =

0 0 −1 0 0 −1 0
0 0 1 0 −1 0 0
0 0 0 0 0 0 1
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 −1
0 0 0 0 0 0 0





a1 0 b1 0 ab2 1 c3 0 bc4 1 ac5 1 abc6 2

a1 0

b1 0

ab2 1
c3 0

bc4 1
ac5 1

abc6 2

The persistence canonical form is

D =

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0





a1 0 b1 0 ab2 1 c3 0 bc4 1 ac5 1 abc6 2

a1 0

b1 0
ab2 1
c3 0

bc4 1
ac5 1

abc6 2

,

as verified by checking that D = B−1DB for the triangular (and normalized) ma-

trix

47



B =

1 −1 0 −1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 −1 0
0 0 0 1 0 0 0
0 0 0 0 1 −1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1





a1 0 b1 0 ab2 1 c3 0 bc4 1 ac5 1 abc6 2

a1 0

b1 0
ab2 1
c3 0

bc4 1
ac5 1

abc6 2

.

The persistence canonical form D is almost-Jordan in general, and in this exam-

ple it happens to be actually Jordan. The matrix B represents the basis change to

the new adapted basis a1 0, b1 0, ab2 1, c3 0, bc4 1, ac5 1, abc6 2. The level remains nonde-

creasing because B is triangular. Each basis element retains pure degree, although

Theorem 3.2.2 does not explicitly address issues of degree. The matrixD represents

the boundary operator relative to the new adapted basis.

We prefer to prioritize degree over level in ordering the elements of an adapted

basis. This has the advantage of encoding the degree in the matrix block structure.

The following version of the structural theorem is then manifestly compatible with

the grading by degree:

Theorem 3.2.4. (Matrix Structural Theorem) Any block-superdiagonal differential ma-

trixD factors asD = BDB−1 whereD is a block-superdiagonal almost-Jordan differential

matrix and B is a block-diagonal triangular matrix.

The block-diagonal structure of B ensures that the transformed basis elements re-

tain pure degree. The persistence canonical formD inherits the block-superdiagonal

structure of the differential D. It is always possible to normalize B by scalar mul-

tiplication of columns as in the ungraded case. Any of the algorithmic proofs of

Theorem 3.2.2 [HE02, ZC05b, ZC08] can be used to prove Theorem 3.2.4 by keep-
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ing track of degrees. We discuss this point for the standard algorithm in Subsection

3.7.2.

Example 3.2.5. We again consider the filtered chain complex of Example 3.2.3, but

with basis order prioritizing degree over level. Now the degree of basis elements

(denoted by postscript) is nondecreasing, and within a degree the level (denoted

by prescript) of basis elements is nondecreasing. Using lexicographic order to

break any remaining ties, the initial adapted basis is now a1 0, b1 0, c3 0, ab2 1, bc4 1, ac5 1, abc6 2,

and the boundary operator over the field F = Q of rationals is now represented by

the block-superdiagonal differential matrix

D =

0 0 0 −1 0 −1 0
0 0 0 1 −1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 −1
0 0 0 0 0 0 0





a1 0 b1 0 c3 0 ab2 1 bc4 1 ac5 1 abc6 2

a1 0

b1 0
c3 0

ab2 1
bc4 1
ac5 1

abc6 2

The persistence canonical form inherits the block-superdiagonal structure

D =

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0





a1 0 b1 0 c3 0 ab2 1 bc4 1 ac5 1 abc6 2

a1 0

b1 0
c3 0

ab2 1
bc4 1
ac5 1

abc6 2

as verified by checking that D = B−1DB for the block-diagonal triangular (and

normalized) matrix
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B =

1 −1 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 −1 0
0 0 0 0 1 −1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1





a1 0 b1 0 c3 0 ab2 1 bc4 1 ac5 1 abc6 2

a1 0

b1 0
c3 0

ab2 1

bc4 1
ac5 1

abc6 2

The persistence canonical form D is almost-Jordan, but not actually Jordan in this

example. The matrix B represents the basis change to the new adapted basis

a1 0, b1 0, c3 0, ab2 1, bc4 1, ac5 1, abc6 2. Since B is block-diagonal, each basis element re-

tains pure degree, and the degree remains nondecreasing. SinceB is triangular, the

level remains nondecreasing within each degree. The computation of this matrix

B via the standard algorithm is worked out in Subsection 3.7.2.

3.2.3 Categorical Structural Theorem and Structural Equivalence

A Krull-Schmidt category is an additive category where objects decompose nicely

as direct sums of indecomposable objects. A filtered complex will be called basic

if its boundary operator can be represented by differential matrix consisting of a

single Jordan block. We will use nonconstructive categorical methods to prove the

following structural theorem for the category of filtered complexes:

Theorem 3.2.6. (Categorical Structural Theorem) The category of filtered complexes is

Krull-Schmidt. A filtered complex is indecomposable iff it is basic.

In section 3.4 we will prove the equivalence of the matrix and the categorical

versions of the structural theorem. One direction is proved in Section 3.1:

Proposition 3.2.7. (Forward Structural Equivalence) The Matrix Structural Theorem

implies the Categorical Structural Theorem.
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This is followed by a detailed example of a Krull-Schmidt decomposition. The

other direction is proved in Subection 3.4.2:

Proposition 3.2.8. (Reverse Structural Equivalence) The Categorical Structural Theorem

implies the Matrix Structural Theorem.

Combining the Categorical Structural Theorem 3.2.6 and the Reverse Structural

Equivalence Proposition 3.2.8 yields a nonconstructive categorical proof of the Ma-

trix Structural Theorem 3.2.4. This contrasts with the various constructive algorith-

mic proofs of Theorem 3.2.4, one of which is reviewed in Subsection 3.7.2. The

constructive algorithmic proofs explain how persistent homology works, the non-

constructive proof explains why persistent homology works.

3.3 Proving the Categorical Structural Theorem

3.3.1 Persistence Objects and Filtered Objects

Persistence objects [Car09] and filtered objects [Aut] are described by categori-

cal diagrams. Suppose that X is a linear Abelian category (and therefore Krull-

Schmidt by Theorem 2.1.13). We will study persistence indexed by an integer

p ∈ Z, with ≤ denoting the standard partial order. A persistence object in X is a

diagram •X in the category X of type

· · · p−1X pX p+1X · · · .

A morphism of persistence objects •f : •X → •X
′ is a commutative diagram of

“ladder” type
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· · · p−1X pX p+1X · · ·

· · · p−1X
′

pX
′

p+1X
′ · · ·

p−1f pf p+1f

The category of persistence objects in X is Abelian, with pointwise kernels, coker-

nels, and direct sums. The set of morphisms •X → •X
′ between two persistence

objects is a vector space, but not finite-dimensional in general. We will say a cate-

gorical diagram is tempered if all but finitely many of its arrows are iso(morphisms).

We remark that the term “tame” is often used for conditions of this type, but we

prefer the specificity afforded by the uses of the nonstandard term “tempered”.

Since X is linear, the set of morphisms •X → •X
′ between two tempered persis-

tence objects is a finite-dimensional vector space. The tempered persistence objects

comprise a strictly full Abelian subcategory of the persistence objects. Theorem

2.1.13 now yields:

Proposition 3.3.1. Let X be a linear Abelian category. The category of tempered persis-

tence objects in X is Krull-Schmidt.

We next discuss subobjects in a linear Abelian category X . We make the addi-

tional assumption that the category X is concrete, meaning that an object in X is

a set with some additional structure, and a morphism in X is a map of sets com-

patible with the additional structure. For example, the linear Abelian category V

of (finite-dimensional) vector spaces is a concrete linear Abelian category. An in-

clusion X ↪→ X ′ in X is an arrow that is an inclusion of the underlying sets. We

say X is a subobject of X ′ iff such an inclusion arrow exists. An inclusion arrow

is monic [Mac71, Awo10], and the composition of inclusion arrows is an inclusion
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arrow. Any object X ′ in X has a zero subobject 0 ↪→ X ′, and is its own subobject

X ′ ↪→ X ′. A subobject X ↪→ X ′ is proper if X 6= X ′. A nonzero object is said to be

simple if it does not have a proper nonzero subobject. A simple object is obviously

indecomposable, but an indecomposable object need not be simple.

A filtered object in a concrete linear Abelian category X is a special type of

tempered persistence object in X . We say a tempered persistence object •X in X

is bounded below if there exists an integer j such that jX = 0 whenever p ≤ j. We

say •X is a filtered object if it is bounded below and if every arrow is an inclusion

arrow:

· · · p−1X pX p+1X · · · .

The filtered objects in X comprise a strictly full subcategory of the tempered per-

sistence objects. The properties of monics have several consequences. A filtered

object diagram has a categorical limit and a colimit [Mac71, Awo10]. The limit is

0 since the diagram is bounded below. The colimit X is kX for k sufficiently large

(satisfying pX = X whenever k ≤ p). Finally, any summand of a filtered object is

isomorphic to a filtered object. Combining these facts with Lemma 3.3.1 yields:

Lemma 3.3.2. Let X be a linear Abelian category. The category of filtered objects in

X is Krull-Schmidt. A filtered object •X in X is indecomposable iff its colimit X is an

indecomposable object in X .

We note that the filtered objects comprise a subcategory of the tempered per-

sistence objects, but this subcategory is not Abelian because a morphism of fil-

tered objects may have a kernel and/or cokernel that is not a filtered object. So
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Lemma 3.3.2 is not merely a corollary of Theorem 2.1.13. Finally we observe that

the category of persistence objects in a (concrete) linear Abelian category is itself a

(concrete) linear Abelian category, to which Lemma 3.3.2 applies.

3.3.2 Chain Complexes and Filtered Chain Complexes

A persistence vector space is a persistence object in the (concrete) linear Abelian cat-

egory X = V of (finite-dimensional) F-vector spaces. Tempered persistence vector

spaces are well-understood via the theory of quiver representations. A nonempty

subset I ⊆ Z will be called an interval if c ∈ I whenever a ≤ c ≤ b with a ∈ I

and b ∈ I . We associate to an interval I ⊆ Z the interval persistence vector space

•I constructed as follows: pI = F whenever p ∈ I , pI = 0 whenever p /∈ I , and

every arrow F → F is the identity morphism 1. We will often omit the bullet

prescript when context allows. For example, the interval persistence vector space

[1, 4) = •[1, 4) is the diagram of vector spaces

· · · 0 F F F 0 · · ·
p = 0 p = 1 p = 2 p = 3 p = 4

1 1

associated to the interval [1, 4) = {1, 2, 3} ⊆ Z. Proposition 3.3.1 applies to the

linear Abelian category of tempered persistence vector spaces. Furthermore, the

well-studied representation theory of An quivers (see e.g. [Sch14]) carries over by

a limiting argument to prove the following structural theorem for the category of

tempered persistence vector spaces:

Theorem 3.3.3. The category of tempered persistence vector spaces is Krull-Schmidt. A

tempered persistence vector space is indecomposable iff it is isomorphic to an interval.
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Theorem 3.3.3 can be applied to cochain complexes. A cochain complex, or co-

complex for short, is a tempered persistence vector space •V

· · · p−1V pV p+1V · · ·∂p ∂p+1

with the property that the composition of successive arrow ∂p+1 ◦ ∂p is zero. The

kernel of a morphism between cocomplexes is a cocomplex, as is the cokernel, so

the cocomplexes comprise a strictly full Abelian subcategory of the tempered per-

sistence vector spaces. Theorem 2.1.13 and Theorem 3.3.3 now yield the structural

result:

Proposition 3.3.4. The category Cop of cocomplexes is linear and Abelian, and therefore

Krull-Schmidt. A cocomplex is indecomposable iff it is isomorphic to an interval cocom-

plex.

Chain complexes are dual to cochain complexes. A complex (short for chain

complex) is a tempered diagram V• in V of type

· · · Vn−2 Vn−1 Vn · · ·
∂n−1 ∂n

with the property that the composition of successive arrows ∂n−1 ◦ ∂n is zero. A

morphism of complexes f• : V• → V ′• is a commutative ladder diagram. The cat-

egory V of vector spaces is isomorphic to its opposite category Vop via the du-

ality functor that takes a vector space to its dual and a linear map to its trans-

pose/adjoint [Mac71, Awo10]. Duality takes the category Cop of cocomplexes to

the category of complexes C. A complex is called an interval complex if its dual is

an interval cocomplex, and Proposition 3.3.4 becomes:
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Proposition 3.3.5. The category C of complexes is linear and Abelian, and therefore Krull-

Schmidt. A complex is indecomposable iff it is isomorphic to an interval complex.

The interval complexes are easily classified. An interval complex I• is associated

to an interval I ⊆ Z as follows: n ∈ I whenever In = F, and n /∈ I whenever

In = 0. Since adjacent nonzero arrows in a complex cannot be iso(morphisms),

the interval complexes are in bijective correspondence with the intervals I ⊆ Z of

cardinality at most two. We will often omit the bullet postscript when the context

allows. We denote by J [n] = {n} ⊆ Z the intervals of cardinality one. For example,

the complex J [1] = J [1]• is the diagram of vector spaces

· · · 0 F 0 0 · · ·
n = 0 n = 1 n = 2 n = 3

The indecomposable complex J [n] is simple. We denote by K[n] = [n, n + 1] ⊆ Z

the intervals of cardinality two. For example, the complex K[1] = K[1]• is the

diagram of vector spaces

· · · 0 F F 0 · · ·
n = 0 n = 1 n = 2 n = 3

1

The indecomposable complex K[n] has exactly one nonzero proper subobject

J [n] ↪→ K[n]. For example, the inclusion of complexes J [1] ↪→ K[1] is the commu-

tative ladder diagram

· · · 0 F 0 0 · · ·

· · · 0 F F 0 · · ·

n = 0 n = 1 n = 3 n = 4

1

1
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We now return to the the Categorical Structural Theorem 3.2.6. A filtered com-

plex is a diagram in the category C of complexes

· · · Vp−1 • Vp • Vp+1 • · · · .

We will say a filtered complex is basic if its colimit V• is isomorphic to an interval

complex. The first statement of Proposition 3.3.5 tells us that the category C of

complexes is linear and Abelian. Then Lemma 3.3.2 tells us that the category of

filtered complexes is Krull-Schmidt. The second statement of Proposition 3.3.5

classifies the indecomposable filtered complexes, completing the proof of:

Theorem 1.6. (Categorical Structural Theorem) The category of filtered complexes

is Krull-Schmidt. A filtered complex is indecomposable iff it is basic.

The basic filtered complexes are easily classified since we know all proper subob-

jects of interval complexes, namely 0 ↪→ J [n], 0 ↪→ K[n], and J [n] ↪→ K[n]. Details

and examples of basic filtered complexes appear in Section 3.5.

3.4 Categorical Frameworks for Persistent Homology

3.4.1 Standard Framework using Persistence Vector Spaces

The structural theorem for the category of tempered persistence vector spaces, The-

orem 3.3.3, is the foundation for the standard framework for persistent homology.

For each integer n, the homology of degree n is a functor Hn : C → V from the

category C of complexes to the category V of vector spaces. An object C in C is a

diagram of vector spaces

· · · Vn−1 Vn Vn+1 · · ·
∂n ∂n+1
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where ∂n◦∂n+1 = 0. Then im ∂n+1 ↪→ ker ∂n is a subobject inclusion of vector spaces,

and the corresponding quotient vector space is the homology

Hn(C) = ker ∂n/im ∂n+1.

More generally, the homology functor Hn takes a diagram in C to a diagram in V .

Denote by F the category of filtered complexes. An object F in F is a diagram

of complexes

· · · Vp−1 • Vp • Vp+1 • · · · ,

which is tempered and bounded below, and which has monic arrows. Denote by

P the category of tempered persistence vector spaces. The homology functor Hn

takes the the diagram F to the diagram of vector spaces

· · · Hn(p−1V •) Hn(pV •) Hn(p+1V •) · · · ,

which is tempered and bounded below, but which need not have monic arrows in

general. An object F in F then goes to an object Pn(F ) in P . Similarly a morphism

in F , which is a commutative ladder diagram of complexes, goes to a morphism in

P , which is a commutative ladder diagram of vector spaces. The resulting functor

Pn : F → P is the persistent homology of degree n.

The standard framework for studying the persistent homology functors Pn :

F → P is based on the structural theorem for the category P , Theorem 3.3.3. It suf-

fices to work with an appropriate Krull-Schmidt subcategory of the Krull-Schmidt

category P . A filtered complex F is studied by decomposing the persistence vector

space Pn(F ) as a sum of indecomposables. Since the diagram Pn(F ) is bounded be-

low, all of its indecomposables are bounded below. The persistence vector spaces
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that are bounded below comprise the a full Abelian subcategory of P , which we

will denote by imPn. Despite the notation, the category imPn does not depend on

n; it is always the same subcategory of P . The isomorphism class of an indecom-

posables in the Krull-Schmidt category imPn is described by the familar barcode.

An interval I ⊆ Z will be called a barcode if it is bounded below. A barcode persis-

tence vector space is a persistence vector space •I corresponding to a barcode I ⊆ Z.

Theorem 3.4.1. The persistent homology functor Pn : F → P factors as

F → imPn → P .

The category imPn is Krull-Schmidt. An object in imPn is indecomposable iff it is isomor-

phic to a barcode persistence vector space.

We can now express the standard framework for persistent homology in terms

of the functor F → imPn which takes a filtered complex to a persistence vector

space in imPn. The Krull-Schmidt property of imPn then allows decomposition as

a sum of indecomposables. Each indecomposable in imPn is a barcode persistence

vector space, which is specified up to isomorphism by its barcode I ⊆ Z. An object

in imPn is determined up to isomorphism by its set of barcodes.

3.4.2 Alternate Framework using Quotient Categories

The structural theorem for the category of filtered complexes, Theorem 3.2.6, is the

foundation for an alternate framework for persistent homology.

We will work with an appropriate Krull-Schmidt quotient category of the Krull-

Schmidt category F . Recall in general [Mac71] that an object of a quotient category

of F is an object of F , and a morphism is an equivalence class of morphisms of F .
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Our quotient category coimPn is defined via the following equivalence relation

(congruence) on morphisms: two morphisms f and f ′ in F are equivalent iff the

morphisms Pn(f) and Pn(f ′) in P are equal. Note that the category coimPn now

does depend on the integer n; each coimPn is a different quotient category of F .

Example 3.4.2. We recall the filtered simplicial complex of Example 3.2.3:

a

b

a

b

a c

b

a c

b

a c

b

a c

b

p ≤ 0 p = 1 p = 2 p = 3 p = 4 p = 5 p ≥ 6

Figure 3.7: Repeat of Filtered Simplicial Complex Number 1

We first consider the subobject:

a

b

a

b

a c

b

a c

b

a c

b

a c

b

p ≤ 0 p = 1 p = 2 p = 3 p = 4 p = 5 p ≥ 6

Figure 3.8: Filtered Simplicial Complex Number 2

In F , this is a proper nonzero subobject. In the quotient category coimP0, the sub-

object inclusion becomes an isomorphism between nonzero objects. In the quotient

category coimP1, this becomes an a proper zero subobject.

Now consider another subobject:

a c

b

a c

b

p ≤ 0 p = 1 p = 2 p = 3 p = 4 p = 5 p ≥ 6

Figure 3.9: Filtered Simplicial Complex Number 3

In F , this is a proper nonzero subobject. In the quotient category coimP0, this

remains a proper nonzero subobject. In the quotient category coimP1, the inclusion
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morphism becomes an isomorphism between nonzero objects.

We recall that a quotient of a Krull-Schmidt category is Krull-Schmidt in gen-

eral. This is because an indecomposable in F becomes either a zero object or an

indecomposable with a local endomorphism ring in the quotient category (see e.g.

[Liu10] p. 431). The classification of indecomposables in the quotient category

coimPn is now easily obtained from Theorem 3.2.6. This is independent of the

well-known classification of indecomposables in the category of persistence vec-

tor spaces (Theorem 3.3.3). Using the classification of indecomposables in each

of the Krull-Schmidt categories coimPn and imPn, it is now easy to verify that

the functor coimPn → imPn is full, faithful, and essentially surjective. Recalling

[Mac71, Awo10] that a functor satisfying these conditions is an equivalence of cat-

egories, we have:

Theorem 3.4.3. The persistent homology functor Pn : F → P factors as

F → coimPn → imPn → P ,

where the functor coimPn → imPn is an equivalence of categories.

The isomorphism class of an indecomposable in the Krull-Schmidt category coimPn

can be specified by In, where the integer n is the degree of the homology, and I ⊆ Z

is a barcode specifying the isomorphism class of the corresponding indecompos-

able in imPn. The example in Section 3.5 will show how the barcode I can be

understood directly in terms of the indecomposable filtered complex, without ref-

erence to homology.

We can now express the alternate framework for persistent homology in terms

of the functor F → coimPn which takes a filtered complex in F to the same filtered
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complex viewed as an object in coimPn. The Krull-Schmidt property of coimPn

then allows decomposition as a sum of indecomposables in coimPn. Each inde-

composable is specified up to isomorphism by In. An object in coimPn is deter-

mined up to isomorphism by the collection of of intervals In ⊆ Z indexing its

decomposition. This framework obviates the need for auxiliary objects such as

persistence vector spaces, while providing exactly the same information about fil-

tered complexes as the standard framework.

3.5 Proving Structural Equivalence

3.5.1 Forward Structural Equivalence

We now consider in more detail matrix representations of a filtered complex and

its automorphisms. The first step is to associate to a filtered complex a finite-

dimensional vector space with an appropriately adapted basis. A filtered complex

is a diagram of complexes indexed by the integer level p, displayed below together

with its colimit:

· · · V−1 • V0 • V1 • V2 • V3 • · · · V•

colim

A filtered complex becomes a “lattice” diagram of finite-dimensional vector spaces:
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...
...

...
...

...
...

· · · V−1 2 V0 2 V1 2 V2 2 V3 2 · · · V2

· · · V−1 1 V0 1 V1 1 V2 1 V3 1 · · · V1

· · · V−1 0 V0 0 V1 0 V2 0 V3 0 · · · V0

· · · V−1 −1 V0 −1 V1 −1 V2 −1 V3 −1 · · · V−1

...
...

...
...

...
...

colim

∂2

∂1

∂0

In the colimit complex, the composition ∂n−1 ◦∂n : Vn → Vn−2 is zero for all n. Since

the diagram is tempered, ∂n−1 ◦ ∂n is an isomorphism for all but finitely many n.

It follows that the complex is bounded, meaning that the vector space Vn is zero-

dimensional for all but finitely many n. The direct sum V = ⊕n∈Z Vn is then a

finite-dimensional vector space associated to the filtered complex. A vector v ∈ V

is said to have pure degree iff v ∈ Vn ⊆ V for some integer n. The integer n is then

called the degree of the pure degree vector v, and is encoded by a postscript vn.

The (filtration) level of a degree n vector vn ∈ V is the smallest integer p such that

vn ∈ Vp n ⊆ Vn. The level of the degree n vector vn is encoded by a prescript vp n .

An adapted basis of a filtered complex is a basis of the vector space V satisfying the

three conditions:

• Every basis element has pure degree.

• For each n and p, the vector space Vp n is spanned by the basis vectors with

degree equal to n and level less than or equal to p.
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• The basis elements are ordered so that degree is nondecreasing, and within

each degree the level is nondecreasing.

A block-diagonal triangular matrixB transforms an adapted basis to a new adapted

basis, representing an automorphism of the filtered complex. Here we assume that

the block structure of the matrix is compatible with degrees of the basis elements.

The colimit boundary ∂ = ⊕n∈Z ∂n of a filtered complex is a linear endomorphism

∂ : V → V . The colimit boundary ∂ is represented by a matrix D relative to an

adapted basis. The matrix representative D is block-superdiagonal because ∂ is

homogeneous of degree −1, and D2 = 0 because ∂2 = 0. If additionally the matrix

representative is almost-Jordan, we will say the adapted basis is special. The Matrix

Structural Theorem 3.2.4 yields:

Proposition 3.5.1. A filtered complex admits a special adapted basis.

Proof. Choose an adapted basis. Let D be the block-superdiagonal differential ma-

trix representing ∂ relative to the adapted basis. Theorem 3.2.4 provides a block-

diagonal triangular matrixB such thatD = B−1DB is almost-Jordan. So the matrix

B transforms the original adapted basis to a special adapted basis.

Corollary 3.5.2. A filtered complex admits a finite decomposition as sum of basic filtered

complexes.

Proof. Choose a special adapated basis, and denote byD the corresponding almost-

Jordan block-superdiagonal differential matrix representative. Let P be a permuta-

tion matrix such that the matrix P−1DP is Jordan. Each Jordan block of this matrix

represents a basic subobject of the filtered complex. The decomposition into Jor-

64



dan blocks represents the decomposition of the filtered complex as a direct sum of

basic filtered complexes.

To verify the Krull-Schmidt property, we will also need:

Lemma 3.5.3. A basic filtered complex has local endomorphism ring.

Proof. We first show that the colimit complex of a basic filtered complex has local

endomorphism ring. The colimit complex is isomorphic to an interval complex.

An interval complex is an indecomposable in the linear Abelian category of com-

plexes, so it has local endomorphism ring by Atiyah’s Criterion 2.1.13. (Or less

abstractly, it is easy to check that the endomorphism ring of an interval complex is

isomorphic to the field F.)

The proof is completed by checking that that the endomorphism ring of a ba-

sic filtered complex maps isomorphically to the endomorphism ring of its colimit

interval complex. In general, the endomorphism ring of a filtered object maps

injectively to the endomorphism ring of its colimit. We need to show that the endo-

morphism ring of a basic filtered complex maps surjectively to the endomorphism

ring of its colimit. It suffices to show that an endomorphism of an interval com-

plex restricts to an endomorphism of any subobject. There are two types of interval

complexes to consider. If the interval complex is isomorphic to J [n], then the sub-

objects are 0 and J [n], and any endomorphism restricts. If the interval complex

is isomorphic to K[n], then the subobjects are 0, J [n], and K[n], and any endmor-

phism restricts.

Assembling the pieces proves the main result of this section:
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Proposition 1.7. (Forward Structural Equivalence) The Matrix Structural Theorem

implies the Categorical Structural Theorem.

Proof. We first prove that a filtered complex is indecomposable iff it is basic. A

basic filtered complex has a local endomorphism ring by Lemma 3.5.3, so it is in-

decomposable by Lemma 2.1.11. An indecomposable filtered complex is a finite

direct sum of basic filtered complexes by Corollary 3.5.2. The direct sum cannot

have more than one summand, because that would contradict the indecomposabil-

ity. So an indecomposable filtered complex is basic.

Now it remains to check the two conditions of Definition 2.1.12. Since a ba-

sic filtered complex is indecomposable, Corollary 3.5.2 asserts that every filtered

complex admits a finite decomposition as a sum of indecomposables. Since an in-

decomposable filtered complex is basic, Lemma 3.5.3 asserts that every indecom-

posable has a local endomorphism ring.

Example 3.5.4. Let F be the filtered complex of Example 3.2.5. The initial adapted

basis consists of appropriately ordered simplices: a1 0, b1 0, c3 0, ab2 1, bc4 1, ac5 1, abc6 2.

The block-superdiagonal differential matrixD represents the colimit boundary op-

erator relative to the initial adapted basis.

The triangular block-diagonal matrix B represents an automorphism of the fil-

tered complex. This automorphism takes the initial adapted basis to the trans-

formed adapted basis a1 0, b1 0, c3 0, ab2 1, bc4 1, ac5 1, abc6 2. This transformed adapted

basis is special, because the block-superdiagonal differential matrix representative

D = B−1DB is almost-Jordan:
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D =

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0





a1 0 b1 0 c3 0 ab2 1 bc4 1 ac5 1 abc6 2

a1 0

b1 0
c3 0

ab2 1
bc4 1
ac5 1

abc6 2

We have retained the shading denoting the super-diagonal blocks, and we have

also boldfaced the nonzero entries and the diagonal entries of zero columns. An

almost-Jordan differential matrix P−1DP is Jordan iff the matrix DP , which is re-

lated to D by a permutation of columns, has each boldfaced 1 immediately follow-

ing the boldfaced 0 in the same row. Permuting columns 3 and 4 suffices for this

example:

P =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





a1 0 b1 0 ab2 1 c3 0 bc4 1 ac5 1 abc6 2

a1 0

b1 0
c3 0

ab2 1
bc4 1
ac5 1

abc6 2

produces the Jordan matrix

P−1DP =

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0





a1 0 b1 0 ab2 1 c3 0 bc4 1 ac5 1 abc6 2

a1 0

b1 0
ab2 1
c3 0

bc4 1
ac5 1

abc6 2

.

The decomposition of the Jordan matrix into its Jordan blocks represents the de-

composition of the filtered complex into indecomposable/basic summands. We

now list the indecomposable summands, denoting by 〈v〉 the linear span of a vec-

tor v ∈ V :
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• The Jordan block matrix 0

[ ]a1 0

a1 0
represents the filtered complex

...
...

...
...

...
...

...

· · · 0 0 0 0 0 0 · · · 0

· · · 0 〈 a1 0〉 〈 a1 0〉 〈 a1 0〉 〈 a1 0〉 〈 a1 0〉 · · · 〈 a1 0〉.

· · · 0 0 0 0 0 0 · · · 0

...
...

...
...

...
...

...

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 colim

This filtered complex is basic because in F it is isomorphic to the filtered

complex

· · · 0 J [0] J [0] J [0] J [0] J [0] · · · J [0],

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 colim

which has the interval complex J [0] as colimit. The quotient functor F →

coimP0 takes the filtered complex to an indecomposable in the isomorphism

class [1,∞)0. This corresponds under the equivalence coimP0 → imP0 to an

indecomposable in the isomorphism class of the barcode persistence vector

space [1,∞),

· · · 0 Q Q Q Q Q · · · .

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

For any n 6= 0, the quotient functor F → coimPn takes the filtered complex

to a zero object.

• The Jordan block matrix 0 1
0 0

[ ]b1 0 ab2 1

b1 0
ab2 1

represents the filtered complex
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...
...

...
...

...
...

...

· · · 0 0 0 0 0 0 · · · 0

· · · 0 0 〈 ab2 1〉 〈 ab2 1〉 〈 ab2 1〉 〈 ab2 1〉 · · · 〈 ab2 1〉

· · · 0 〈 b1 0〉 〈 b1 0〉 〈 b1 0〉 〈 b1 0〉 〈 b1 0〉 · · · 〈 b1 0〉

· · · 0 0 0 0 0 0 · · · 0

...
...

...
...

...
...

...

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 colim

This filtered complex is basic because in F it is isomorphic to the filtered

complex

· · · 0 J [0] K[0] K[0] K[0] K[0] · · · K[0],

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 colim

which has the interval complex K[0] as colimit. The quotient functor F →

coimP0 takes the filtered complex to an indecomposable in the isomorphism

class [1, 2)0. This corresponds under the equivalence coimP0 → imP0 to an

indecomposable in the isomorphism class of the barcode persistence vector

space [1, 2),

· · · 0 Q 0 0 0 0 · · · .

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

For any n 6= 0, the quotient functor F → coimPn takes the filtered complex

to a zero object.

• The Jordan block matrix 0 1
0 0

[ ]c3 0 bc4 1

c3 0

bc4 1

represents the filtered complex
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...
...

...
...

...
...

...

· · · 0 0 0 0 0 0 · · · 0

· · · 0 0 0 〈 bc4 1〉 〈 bc4 1〉 〈 bc4 1〉 · · · 〈 bc4 1〉

· · · 0 0 〈 c3 0〉 〈 c3 0〉 〈 c3 0〉 〈 c3 0〉 · · · 〈 c3 0〉

· · · 0 0 0 0 0 0 · · · 0

...
...

...
...

...
...

...

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 colim

This filtered complex is basic because in F it is isomorphic to the filtered

complex

· · · 0 0 J [0] K[0] K[0] K[0] · · · K[0]

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 colim

which has the interval complex K[0] as colimit. The quotient functor F →

coimP0 takes the filtered complex to an indecomposable in the isomorphism

class [3, 4)0. This corresponds under the equivalence coimP0 → imP0 to an

indecomposable in the isomorphism class of the barcode persistence vector

space [3, 4),

· · · 0 0 Q 0 0 0 · · · .

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

For any n 6= 0, the quotient functor F → coimPn takes the filtered complex

to a zero object.

• The Jordan block matrix 0 1
0 0

[ ]ac5 1 abc6 2

ac5 1

abc6 2

represents the filtered complex
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...
...

...
...

...
...

...

· · · 0 0 0 0 0 0 · · · 0

· · · 0 0 0 0 0 〈 abc6 2〉 · · · 〈 abc6 2〉

· · · 0 0 0 0 〈 ac5 1〉 〈 ac5 1〉 · · · 〈 ac5 1〉

· · · 0 0 0 0 0 0 · · · 0

...
...

...
...

...
...

...

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 colim

This filtered complex is basic because in F it is isomorphic to the filtered

complex

· · · 0 0 0 0 J [1] K[1] · · · K[1]

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 colim

which has the interval complex K[1∗] as colimit. The quotient functor F →

coimP1 takes the filtered complex to an indecomposable in the isomorphism

class [5, 6)1. This corresponds under the equivalence coimP1 → imP1 to an

indecomposable in the isomorphism class of the barcode persistence vector

space [5, 6),

· · · 0 0 0 0 Q 0 · · ·

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

For any n 6= 1, the quotient functor F → coimPn takes the filtered complex

to a zero object.

This completes the decomposition of the filtered complex F in the category F . As

an object in the quotient category coimP0, the filtered complex F is isomorphic to
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[0,∞)0 ⊕ [1, 2)0 ⊕ [3, 4)0. As an object in the quotient category coimP1, the filtered

complex F is isomorphic to [5, 6)1. For any other value of n, the filtered complex F

is a zero object in the quotient category coimPn.

3.5.2 Reverse Structural Equivalence

Special adapted bases help to intermediate between the Matrix Structural Theorem

and Categorical Structural Theorem. In Proposition 3.5.1, we established the exis-

tence of a special adapted basis using the Matrix Structural Theorem 3.2.4. Now

in the reverse direction, we establish the existence of a special adapted basis using

the Categorical Structural Theorem 3.2.6:

Proposition 3.5.5. A filtered complex admits a special adapted basis.

Proof. The Categorical Structural Theorem decomposes the filtered complex as a

finite direct sum of indecomposables. Each indecomposable summand is a basic

filtered complex, so it admits a special adapted basis. With appropriate ordering,

the union over the summands of these basis elements is a special adapted basis for

the direct sum filtered complex.

An automorphism of a filtered complex transforms an adapted basis to another

adapted basis. The change of basis is represented by a matrix B, which is block-

diagonal because an automorphism preserves the degree of basis elements. But the

matrixB need not be triangular in general. We call a filtered complex nondegenerate

if dim Vp+1 n ≤ 1 + dim Vp n for any p and any n.

Lemma 3.5.6. If a filtered complex is nondegenerate, then any change of adapated basis is

represented by a triangular matrix B.
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Proof. An automorphism takes a basis element of degree n and level p to a linear

combination of basis elements of degree n and level at most p. A filtered complex

is nondegenerate iff an adapted basis contains no pair of elements with the same

degree and same level. In this case the linear combination does not contain any

basis elements that appear later in the ordering of the basis. The matrix B is then

triangular, since it has no nonzero entries below the diagonal.

We will construct nondegenerate filtered complexes by using the upper-left sub-

matrices of a differential matrix. We illustrate submatrices with an example:

Example 3.5.7. The upper-left submatrices are indicated below for a block-superdiagonal

differential matrix D : Q7 → Q7.

D =

0 0 0 −1 0 −1 0
0 0 0 1 −1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 −1
0 0 0 0 0 0 0




Note that for each integer 0 < p < 7, the upper-left submatrix Dp : Qp → Qp is

itself a block-superdiagonal differential matrix. We remark that the matrix D had

appeared previously in Example 3.2.5, representing the degenerate (not nondegen-

erate) filtered complex of Example 3.2.3.

Lemma 3.5.8. Any block-superdiagonal differential matrixD represents the colimit bound-

ary of some nondegenerate filtered complex.

Proof. Let D : Fm → Fm be a block-superdiagonal differential matrix. We construct

a filtered complex
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· · · V−1 • V0 • V1 • V2 • V3 • · · · V•

colim

by specifying for each integer p the complex Vp • at level p:

• For p ≤ 0, the complex is the zero complex.

• For 1 < p < m, the complex is specified by the block-superdiagonal differen-

tial submatrix Dp : Fp → Fp.

• For m ≤ p, the complex is specified by the initial block-superdiagonal differ-

ential matrix D : Fm → Fm.

The arrows are the subobject inclusions Vp • ↪→ Vp+1 • . Then the diagram is a fil-

tered complex since the zero complex is a limit and the complex D : Fm → Fm is a

colimit. It only remains to observe that the filtered complex is nondegenerate, and

that the matrix D represents its colimit boundary.

Note that the block structure of the differential matrix D is important in the pre-

ceding proof. If a differential matrix does not have block-superdiagonal structure,

then an upper-left submatrix need not be a differential matrix in general.

Now we have assembled the ingredients to prove:

Proposition 1.8. (Reverse Structural Equivalence) The Categorical Structural The-

orem implies the Matrix Structural Theorem.

Proof. Let D be a block-superdiagonal differential matrix. Lemma 3.5.8 lets us

choose a nondegenerate filtered complex that is represented by D. Proposition

3.5.5 lets us make a change of basis to a special adapted basis. The block-diagonal
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matrix B representing the basis change is triangular by Lemma 3.5.6. Finally,

the block-superdiagonal differential D = B−1DB is almost-Jordan because the

adapted basis is special.

3.6 Bruhat Uniqueness Lemma

Here we establish the uniqueness of the persistence canonical form D appearing

in the Matrix Structural Theorem 3.2.4, as well as in the ungraded version Theo-

rem 3.2.2. Our result generalizes the uniqueness statement for the usual Bruhat

factorization of an invertible matrix [JA95, Gec03].

It is convenient to make the following definitions. We call an (upper) triangular

matrix U unitriangular if it is unipotent, meaning that each diagonal entry is 1. We

call a matrix M quasi-monomial if each row has at most one nonzero entry and each

column has at most one nonzero entry. We remark that a unitriangular matrix

is always square, but a quasi-monomial matrix need not be square. The key to

proving uniqueness is:

Lemma 3.6.1. Suppose M1 U = V M2, where M1 and M2 are quasi-monomial and U and

V are unitriangular. Then M2 = M1.

In the following proof, the term row-pivot denotes a matrix entry that is the left-

most nonzero entry in its row, and column-pivot denotes a matrix entry that is the

bottommost nonzero entry in its column.

Proof. The first half of the proof consists of showing that every nonzero entry of

M2 is also an entry of M1. A nonzero entry of the quasi-monomial matrix M2 is

a column-pivot. Similarly a nonzero entry of the quasi-monomial matrix M1 is a
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row-pivot. It now suffices to show that a column-pivot of M2 is a row-pivot of M1.

Since V is unitriangular, VM2 has the same column-pivots asM2. Similarly since U

is unitriangular, M1U has the same row-pivots as M1. It now suffices to prove that

a column-pivot of S = VM2 is a row-pivot of S = M1U . Suppose to the contrary

that some column-pivot of S is not a row-pivot of S. Let x be the leftmost such

column-pivot. Since x is not a row-pivot, there exists a row-pivot y to the left of x

in the same row. If y were a column-pivot of S = VM2, then it would be a column-

pivot of M2. But the quasi-monomial matrix M2 cannot have two nonzero entries y

and x in the same row. So y is not a column-pivot of S, and there exists a column-

pivot z below y in the same column. If z were a row-pivot of S = UM1, then it

would be a row-pivot of M1. But the quasi-monomial matrix M1 cannot have two

nonzero entries z and y in the same column. So z is a column-pivot of S that is

not a row-pivot of S, and z is to the left of (and below) x. This is a contradiction,

because x is the leftmost such column-pivot.

The second half of the proof consists of showing that every nonzero entry ofM1

is also an entry of M2. This is analogous to the first half, and we omit the details.

The two matrices then have the same nonzero entries, so they must also have the

same zero entries. Since all the entries of the two matrices are the same, we have

proved M2 = M1.

Recall that a matrix M is Boolean if every non-zero entry is 1. An almost-Jordan

differential matrix D is Boolean and quasi-monomial.

Proposition 3.6.2. Suppose P1A = BP2 where P1 and P2 are Boolean quasi-monomial

and A and B are invertible triangular. Then P2 = P1.
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Proof. Factor A = T1U as the product of an invertible diagonal matrix T1 and a

unitriangular matrix U . Factor B = V T2 as the product of a unitriangular matrix

V and an invertible diagonal matrix T2. Then (P1T1)U = V (T2P2), with (P1T1)

and (T2P2) quasi-monomial. Lemma 3.6.1 then gives the P1T1 = T2P2. Since the

quasi-monomial matrices P1 and P2 are Boolean, the conclusion follows.

We remark that a permutation matrix P is also Boolean and quasi-monomial, so

Proposition 3.6.2 generalizes the standard uniqueness result for Bruhat factoriza-

tion of an invertible matrix [JA95, Gec03].

The uniqueness of the persistence canonical formD appearing in Theorem 3.2.2

and in the Matrix Structural Theorem 3.2.4 now follows easily:

Corollary 3.6.3. Suppose D is a differential matrix and B1 and B2 are invertible tri-

angular matrices. If both differential matrices D1 = B−1
1 DB1 and D2 = B−1

2 DB2 are

almost-Jordan, then D2 = D1.

Proof. D1(B−1
1 B2) = (B−1

1 B2)D2, and the result follows from Proposition 3.6.2.

3.7 Constructively Proving the Matrix Structural The-
orem

3.7.1 Linear Algebra of Reduction

In this section we discuss column-reduction of a matrixM : Fm → Fn, including its

application to describing the kernel and image of the matrix. Column-reduction

of a differential matrix D is a standard tool in the computation of persistent ho-

mology, where it is usually just called reduction [HE02, ZC05b, ZC08, DCS06]. We

prefer the more precise terminology in order to maintain the distinction with row-
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reduction, since both are used for Bruhat factorization [JA95, Gec03, Lus].

As in Section 3.6, the term column-pivot denotes a matrix entry that is the bot-

tommost nonzero entry in its column. A matrix R is said to be column-reduced if

each row has at most one column-pivot.

Definition 3.7.1. A column-reduction of a matrix M is an invertible triangular ma-

trix V such that R = MV is column-reduced.

A column-reduction V exists for any matrixM , but is not unique in general. Column-

reduction algorithms used for persistent homology [HE02, ZC05b, ZC08, VdS11]

usually prioritize computational efficiency. For our computational examples, we

will use a column-reduction algorithm that is popular for Bruhat factorization

[JA95, Gec03]. This algorithm is easy to implement, but is not very efficient com-

putationally. The algorithm starts at the leftmost column of M and proceeds right-

ward by successive columns as follows:

• If the current column is zero, do nothing.

• If the current column is nonzero, add an appropriate multiple of the current

column to each column to the right in order to zero the entries to the right of

the column-pivot (in the same row).

Stop if the current column is the rightmost column, otherwise proceed to the col-

umn immediately to the right and repeat. By design, the resulting matrix R has

the property that any column-pivot has only zeros to the right of it (in the same

row). So a row of R cannot contain more than one column-pivot, implying that

R is column-reduced. The invertible triangular column-reduction matrix V is con-
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structed by performing the same column operations on the identity matrix I , where

I has same number of columns as M .

We digress briefly to discuss some linear-algebraic properties of column-reduction.

A column-reduction easily yields a basis for the kernel of a matrix as well as a ba-

sis for the image. By contrast, Gaussian elimination easily yields a basis for the

image a matrix, but requires additional back-substitution to produce a basis for

the kernel. Column-reduction algorithms are therefore a convenient alternative to

Gaussian elimination for matrix computations in general, and this fact seems to be

underappreciated. We use a variant of the usual adapted basis for a filtered vector

space, disregarding the ordering of basis elements. We’ll say that a basis of a finite-

dimensional vector space X is almost-adapted to a subspace Y ⊆ X if Y is spanned

by the set of basis elements that are contained in Y . Proposition 3.7.1 yields:

Corollary 3.7.2. Let V : Fm → Fm be a column-reduction of a matrix M : Fm → Fn.

Then:

1. The nonzero columns of the column-reduced matrix R = MV are a basis of imM .

2. The columns of the invertible triangular matrix V are a basis of Fm, and this basis is

almost-adapted to kerM .

Proof.

1. The nonzero columns ofR span imM . The nonzero columns ofR are linearly

independent because R is column-reduced.

2. The columns of V are a basis of Fm because V is invertible. This basis is
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almost-adapted to kerM because the nonzero columns of R = MV are lin-

early independent.

Example 3.7.3. We compute in detail a column-reduction of the matrix M : Q4 →

Q3, which is presented below with a column augmentation by the identity matrix

I .

M
I

=

1 −2 0 −8
2 −4 6 2
1 −2 2 −2
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




7→

1 0 −2−6
2 0 2 6
1 0 0 0
1 2 −2 2
0 1 0 0
0 0 1 0
0 0 0 1




7→

1 0 −2 0
2 0 2 0
1 0 0 0
1 2 −2 8
0 1 0 0
0 0 1 −3
0 0 0 1




= R

V

The result of the computation is a factorization R = MV , where R is column-

reduced and V is invertible triangular (and unipotent). We describe each step of

the computation:

1. The first column of M is nonzero, so it has a column-pivot. At the next pro-

cessing step, boldface the column pivot for clarity, and add an appropriate

multiple of the first column to each column to the right in order to zero the

entries to the right of the column-pivot (in the same row).

2. At this point the second column is zero, so requires no processing step.

3. At this point the third column is nonzero, so it has a column-pivot. At the

next processing step, boldface the column pivot, and add an appropriate

multiple of the third column to each column to the right in order to zero

the entries to the right of the column-pivot (in the same row).
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4. At this point the fourth column is zero, so requires no processing step.

The columns of V are a basis of Q4 that is amost-adapted to kerM . Columns 2 and

4 of V are the columns corresponding to zero columns of R, so they are a basis of

kerM . Columns 1 and 3 of R are the nonzero columns, so they are a basis of imM .

3.7.2 Matrix Structural Theorem via Reduction

The standard algorithm of persistent homology [HE02, ZC05b, ZC08] starts with a

differential matrix D and constructs a matrix B satisfying the conditions of:

Theorem 1.2. (Ungraded Matrix Structural Theorem) Any differential matrix D

factors as D = BDB−1 where D is an almost-Jordan differential matrix and B is a

triangular matrix.

The matrix formulation of the standard algorithm constructs a matrix B = V̂ from

a column-reduction V of a differential matrix D, as discussed in [VdS11, JDB17]

for F = Z/2Z. Since R = DV is column-reduced, there exists at most one nonzero

column of R that has its column-pivot in row k. Here 1 ≤ k ≤ m where m is the

number of rows of the square matrixD. V̂ is constucted one column at a time using

the following rule:

• If there exists a nonzero column of R that has its column-pivot in row k, then

column k of V̂ is equal to this column of R.

• If there does not exist a nonzero column ofR that has its column-pivot in row

k, then column k of V̂ is equal to column k of V .

The matrix V̂ is invertible triangular, because each column is nonzero and has its

column-pivot on the diagonal.
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We will now prove that B = V̂ satisfies the conditions of Theorem 3.2.2. The

key is to recognize when a differential matrix D : Fm → Fm is almost-Jordan. The

columns of any invertible matrixG : Fm → Fm comprise a basis of Fm. WhenG = I

is the identity matrix, we have:

Lemma 3.7.4. Let D be a differential matrix, and let I be the identity matrix of the same

size. The differential matrix I−1DI = D is almost-Jordan iff the following two conditions

hold:

1. Every nonzero column of DI = D is equal to some column of I .

2. The nonzero columns of DI = D are distinct (meaning no two are equal).

Proof. Suppose the differential matrix D is almost-Jordan. Then for some permu-

tation P the differential matrix P−1DP is Jordan. Each of the two conditions holds

for a Jordan differential matrix. Each of the two conditions is preserved by conju-

gation with a permutation, so each of the two conditions holds for the differential

matrix D.

Suppose the two conditions hold. Any permutation of the columns of D is

expressed as the matrix productDP where P is the associated permutation matrix.

It is possible to choose P so that any column ofDP that is not in kerD immediately

follows the column that is its image under D. Then the differential matrix P−1DP

is Jordan, so D is almost-Jordan.

Now we can recognize basis changes that make a differential matrix almost-Jordan:

Corollary 3.7.5. Let D be a differential matrix, and let G be an invertible matrix of the

same size. The differential matrixG−1DG is almost-Jordan iff the following two conditions
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hold:

1. Every nonzero column of DG is equal to some column of G.

2. The nonzero columns of DG are distinct.

We can now give a constructive proof of Theorem 3.2.2:

Proof. Let B = V̂ be an invertible triangular matrix constructed from the differ-

ential matrix D by the standard algorithm. A column of B = V̂ is either equal to

the corresponding column of V or to some nonzero column of R = DV . Then a

column of D V̂ is either equal to the corresponding column of DV = R or to some

column of DR = D2 V = 0. So a nonzero column of D V̂ is equal to the corre-

sponding column of R. We can use this fact to verify two conditions of Corollary

3.7.5:

1. We know that a nonzero column of DV̂ is equal to the corresponding column

of R. Since R is column-reduced, the standard algorithm ensures that every

nonzero column of R is equal to some column of V̂ . So any nonzero column

of DV̂ is equal to some column of V̂ .

2. We know that a nonzero column of DV̂ is equal to the corresponding column

of R. The nonzero columns of R are distinct since R is column-reduced. So

the nonzero columns of DV̂ are distinct.

Note that an invertible triangular matrix V̂ produced by the standard algorithm

is not normalized in general. But it is easy to construct a diagonal matrix T such
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that the invertible diagonal matrix V̂ T is normalized. This will be illustrated in the

example at the end of the section.

We now consider the graded case:

Theorem 1.4. (Matrix Structural Theorem) Any block-superdiagonal differential

matrix D factors as D = BDB−1 where D is a block-superdiagonal almost-Jordan

differential matrix and B is a block-diagonal triangular matrix.

Proof. Let D be a block-superdiagonal differential matrix D. Then the invertible

triangular column-reduction marix V produced by a reduction algorithm, such

as [HE02, ZC05b, ZC08] or our Subsection 3.7.1, is block-diagonal. If V is block-

diagonal, then so is the invertible triangular matrix B = V̂ constructed by the

standard algorithm from V and R = DV .

The following example of a standard algorithm computation illustrates both

block-structure and normalization.

Example 3.7.6. We work with block-superdiagonal differential D : Q7 → Q7 of

Example 3.2.5, which is presented below with a column augmentation by the iden-

tity matrix I . The identity matrix is block-diagonal with respect to the grading

structure inherited from D. We first compute a column-reduction of D.
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D
I

=

0 0 0 −1 0 −1 0
0 0 0 1 −1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





7→ · · · 7→

0 0 0 −1−1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 −1
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 −1 0
0 0 0 0 1 −1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





= R
V

The result of the computation is a factorization R = DV , where R is column-

reduced and V is invertible triangular (and unipotent). The intervening steps are

omitted for brevity.

Next we use the standard algorithm to construct V̂ as a modification of V . Each

nonzero column of R replaces the column of V that has its column-pivot in the

same row. V̂ inherits the block-diagonal structure of V :

V =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 −1 0
0 0 0 0 1 −1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




7→ · · · 7→

1 −1−1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1




= V̂

We list the columns of V̂ that are equal to columns of R:

• Column 2 of V̂ is equal to column 4 of R.

• Column 3 of V̂ is equal to column 5 of R.

• Column 6 of V̂ is equal to colum 7 of R.
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Each of the remaining columns of V̂ is equal to the corresponding column of V .

Now by Corollary 3.7.5, the block-superdiagonal differential matrix D = V̂ −1D V̂

is almost-Jordan:

D =

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0




The invertible triangular matrix V̂ is not normalized: column 6 of V̂ corre-

sponds to a zero column of D, but its diagonal entry is not equal to 1. We can

normalize by scalar multiplication of the appropriate columns. Let T be the diag-

onal matrix with 1 in the first five diagonal entries and −1 in the last two. Then

the invertible triangular matrix B = V̂ T is normalized, and this is the matrix that

appears in Example 3.2.5. Note that B−1DB = D = V̂ −1D V̂ by Corollary 3.6.3.
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Chapter 4

An Isometry Theorem for
Generalized Persistence Modules

This chapter is based on a collaboration David C. Meyer [MM17a].

4.1 Motivation

4.1.1 Algebraic Stability

The main result of this chapter is an algebraic stability theorem. This is a particu-

lar kind of hard stability theorem (section 2.4) in which one endows a collection

of generalized persistence modules with two metric structures—for us, interleav-

ing and bottleneck—and an automorphism on the collection that is then shown

to be a contraction or isometry between the space with the two different metrics

equipped. Algebraic stability theorems such as this are common ([Les11], [BL16],

[BL13], [CZ09]). It is worth noting that in the literature the term ‘interleaving’ is

broader, while in this document it will consistently refer to the interleaving metric

proposed by Bubenik, de Silva, and Scott [BdS13] as this metric is the most gen-

eral and categorical in nature. The interleaving metric is well defined on any poset

P , and when P = (0,∞), this definition reduces to the interleaving metric that is

often used elsewhere [BL13].
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4.1.2 Connection to Finite-dimensional Algebras

This chapter concerns algebraic stability studied using techniques from the rep-

resentation theory of algebras. As seen in section 2.3.3, any persistence module

arising from data is a representation of a finite totally ordered set after discretizing

the R-indexed persistence module.

There are two issues to point out when discretizing. First, a finite data set D

gives rise to not only a generalized persistence module, but also to its algebra.

Two persistence modules may not be able to be compared simply because they are

not modules over the same algebra. Second, information about the width of the

interval [εi, εi+1) in relevant to the analysis, but seems to be lost by discretizing and

indexing by {1, . . . , n}. Both of these issues are addressed in the following chapter.

While one-dimensional persistence modules will always discretize to a gener-

alized persistence module for a finite totally ordered set, representations of many

other infinite families of finite posets also have a physical interpretation in the lit-

erature (see [BL16], [CZ09], [EH14]). For example, multi-dimensional persistence

modules (see [CZ09]) will discretize in an analagous fashion to representations

of a different family of finite posets. This is relevant because of the categorical

equivalence between the generalized persistence modules for a finite poset P with

values in K-mod, and the module category of the finite-dimensional K-algebra

A(P ), the poset (or incidence) algebra of P . The module theory (representation

theory) of such algebras has been widely studied (see, for example [ACMT05],

[Bac72], [Cib89], [Fei76], [Kle75], [BdlPS11], [Lou75], [Naz81], [Yuz81], [IK17], and

many others). Thus, by passing to the jump discontinuities of a filtration of simpli-
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cal complexes one may apply techniques from the representation theory of finite-

dimensional algebras.

This perspective, however, suggests the need for caution. While it is well-

known that the set of isomorphism classes of indecomposable modules for the

algebra A(Pn) (i.e., Rep(An)) is finite, we have seen that this situation is far from

typical.

Because of this, studying arbitrary generalized persistence modules in complete

generality is hopeless. Indeed, if a possibly infinite poset discretizes to a finite

poset P , and the module category for A(P ) is undecidable, the same holds for gen-

eralized persistence modules for the original poset. Moreover, our intuition from

persistent homology tells us that indecomposable modules should come with a

notion of widths which can be measured, in order to decide whether they should

be kept or interpreted as noise. In order to reconcile these two issues, we pass

from the full category of all A(P )-modules, to a more manageable full subcategory

where we can make sense of what it means for indecomposable modules to be

”wide.” This suggests the following template for a representation-theoretic alge-

braic stability theorem:

Let P be a finite poset of some prescribed type, and let K be a field. Choose a full

subcategory C ⊆ A(P )-mod, and let D and DB be two metrics on C where;

(i.) D is the interleaving distance of [BdS13] restricted to C, and

(ii.) DB is a bottleneck metric on C which incorporates some algebraic informa-

tion.

Prove that (C, D)
Id−→ (C, DB) is an isometry.
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In addition, the class of posets covered should contain all the posets Pn, n ∈ N.

In addition, the category C should reduce to the full module category when P =

Pn. When this is the case, the theorem should be a discrete version of the classical

isometry theorem [BL13]. If possible, elements of C should have a nice physical

description.

4.2 A Particular Class of Posets

In this section we confine our discussion to a certain class of finite posets. Though

easy to describe, most such posets are of wild representation type (see the discus-

sion in Subsection 2.7.1). We will restrict to C, the full subcategory ofA(P )-modules

which are isomorphic to a direct sum of convex modules.

Let P be a finite poset such that:

1. P has a unique minimal element m,

2. for every maximal element Mi ∈ P , the interval [m,Mi] is totally ordered,

and

3. [m,Mi] ∩ [m,Mj] = {m} for all i 6= j.

As a technical convenience, we sometimes also assume

4. there exists an i0 with
∣∣[m,Mi0 ]

∣∣ > ∣∣[m,Mi]
∣∣, for all i 6= i0.

That is, P is a tree which branches only at the its unique minimal element and has

one totally ordered segment longer than the others.
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Definition 4.2.1. If P satisfies conditions (1), (2), (3), we say P is an n-Vee, where

n denotes the number of maximal elements in P . If, in addition, P satisfies (4) we

say that P is an asymmetric n-Vee.

Clearly, a 1-Vee is exactly a finite totally ordered set. It is easy to see that every

1-Vee is an asymmetric. We will prove our isometry theorem for n-Vees.

Remark 5. The convex modules for n-Vees have some nice properties. Note that if

P is any finite poset, then, the following two statements are equivalent:

(i) P has a unique minimal element m and every maximal interval in P , [m,Mi]

is totally ordered.

(ii) the support of every convex module has a unique minimal element.

That is to say, finite posets satisfying only properties (1) and (2) in the definition for

n-Vees are precisely those posets for which the support of a convex module always

has a unique minimal element. The proof is easy, but we include it.

Proof. First, if P is as above, from the characterization of convex modules in Sub-

section 2.7 it is clear that the support of each convex module has a unique minimal

element. On the other hand, for a contradiction suppose P satisfies (ii), but not

(i). Let S ⊆ P denote the support of a potential convex module. If P has at least

two minimals, then set S= P . Thus it must be the case that P has a unique min-

imal m. If there is a maximal interval [m,Mj] contained in P with [m,Mj] not

totally ordered. Then, there exist x, y ∈ [m,Mj] with x, y not comparable. But then

S = [x,Mj] ∪ [y,Mj] is the support of a convex module contradicting (ii).
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We will now establish some properties of the collection of translations of an

asymmetric n-Vee. Much (but not all) carries over to (general) n-Vees (see the end

of the proof of Theorem 4.5.6).

Lemma 4.2.2. Let P be an asymmetric n-Vee, and let (a, b) be any weights. Let d = da,b

denote the weighted graph metric on the Hasse quiver of P+ corresponding to (a, b). Then,

(i) For each ε ∈ {h(Λ) : Λ ∈ T (P )}, the set {Γ ∈ T (P ) : h(Γ) = ε} has a unique

maximal element Λε.

(ii) The set {Λε} is totally ordered, and Λε ≤ Λδ if and only if ε ≤ δ.

(iii) If Λ,Γ ∈ T (P ) with h(Λ), h(Γ) ≤ ε then there exists a Λδ with Λ,Γ ≤ Λδ, and

h(Λδ) = δ = max{h(Λ), h(Γ)}.

Proof. Let P be as above. First, say n > 1, then P =
⋃

[m,Mi], with [m,Mi0 ] of

maximal cardinality. Let Ti = |[m,Mi]| − 1, so by hypothesis, Ti0 > Ti for all

i 6= i0. Let T = max{Ti : i 6= i0} (note that if P was not asymmetric T = Ti0). Let

ε ∈ {h(Λ) : Λ ∈ T (P )} and suppose h(Λ) = ε. If Λm > m, then ε ≥ aT + b, since;

if Λm =∞, then h(Λ) = aTi0 + b,

if Λm ∈ (m,Mi0 ], then h(Λ) ≥ aT + b, and

if Λm ∈ (m,Mi], i 6= i0, then h(Λ) = aTi0 + b.

Therefore, if ε < aT + b, Λm = m. Then, Λ ≤ Λε, where

Λε(x) =

{
m, if x = m

max{y ∈ (m,Mi] ∪ {∞} : d(x, y) ≤ ε}, if x ∈ (m,Mi]

On the other hand, if aTi0 +b > ε ≥ aT+b, then Λm ∈ [m,Mi0 ], and Λ((m,Mi]) =∞

for i 6= i0. In this case, Λ ≤ Λε, where
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Λε(x) =

{
∞, x ∈ (m,Mi], i 6= i0

max{y ∈ (m,Mi0 ] ∪ {∞} : d(x, y) ≤ ε}, if x ∈ [m,Mi0 ]

Lastly, if ε = aTi0 + b, then Λ ≤ Λε, where Λε(x) =∞, for all x.

Note that the formulae above are well defined, since [m,Mi] ∩ [m,Mj] = {m}

for all i 6= j. Now, suppose that n = 1. Then Λ ≤ Λε, where Λε(x) = max{y ≥ x :

d(x, y) ≤ ε} for any ε. This proves (i). The expressions for Λε show that (ii) holds.

Now let Λ,Γ ∈ T (P ) with h(Λ), h(Γ) ≤ ε, and suppose max{h(Λ), h(Γ)} = δ.

Without loss of generality, say h(Λ) = δ, h(Γ) ≤ δ. Then, Λ ≤ Λδ and Γ ≤ Λh(Γ) ≤

Λδ, by (i), (ii) as required.

The important observation is that although T (P ) is not totally ordered, (for

n > 1) it is directed in such a way that one may pass to a larger translation without

increasing the height. In contrast, for an arbitrary finite poset P , T (P ) will still

be a directed set (because we suspended at infinity). It may be the case, however,

that for all Λ0 with Λ,Γ ≤ Λ0, h(Λ0) > κ > max{h(Λ), h(Γ)}. That is to say, one

may have to pay a price when passing to any larger common translation. Lemma

4.2.2 shows that this does not happen for asymmetric n-Vees. We are now ready to

define the width of a convex module.

Lemma 4.2.3. Let P be an asymmetric n-Vee, and let (a, b) be a weight. Then for all I

convex, the following are equal;

(i) W (I) = W1(I) = min{ε : ∃Λ,Γ ∈ T (P ), h(Λ), h(Γ) ≤ ε, and Hom(I, IΛΓ) = 0}

(ii) W2(I) = min{ε : ∃Λ ∈ T (P ), h(Λ) ≤ ε, and Hom(I, IΛ2) = 0}.

(iii) W3(I) = min{ε : ∃Λε ∈ T (P )with Hom(I, IΛε
2) = 0}.
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Before proving Lemma 4.2.3, we note that for any I convex and for any θ ∈

T (P ),

Hom(I, Iθ) 6= 0 ⇐⇒ ∃x ∈ Supp(I), θx ∈ Supp(I) ⇐⇒ θx′ ∈ Supp(I), for x′ minimal in Supp(I).

This follows from general properties of module homomorphisms, and the ob-

servation in Remark 5 that convex modules for n-Vees have unique minimal ele-

ments. (See the Section 4.3 for a detailed analysis of homomorphisms and transla-

tions)

Using this fact, we see that if Λ ≤ Γ and Hom(I, IΛ) = 0, then Hom(I, IΓ) = 0.

Thus this condition defining W produces an interval in {h(Λ) : Λ ∈ T (P )}. We

will now prove Lemma 4.2.3.

Proof. Let Λ,Γ ∈ T (P ) with h(Λ), h(Γ) ≤ ε, and suppose Hom(I, IΛΓ) = 0, and

δ = max{h(Λ), h(Γ)}. Then, by Lemma 4.2.2, there exists Λδ, with h(Λδ) = δ and

Λ,Γ ≤ Λδ. Then ΛΓ ≤ Λδ
2 so Hom(I, IΛδ

2) = 0, so W3(I) ≤ W2(I) ≤ W (I). But

S ⊆ T =⇒ inf(S) ≥ inf(T ), thus W3(I) ≥ W2(I) ≥ W (I), so all are equal. With

this equivalence established, we define the width of a convex module.

Definition 4.2.4. Let P be an asymmetric n-Vee and let (a, b) be a weight. Let I be

convex. Then,

W (I) = W1(I) = min{ε : ∃Λ,Γ ∈ T (P ), h(Λ), h(Γ) ≤ ε, and Hom(I, IΛΓ) = 0}.

While this definition of the width of a module is formulated algebraically, and

is natural considering the structure of T (P ), it is not without complication. Intu-

itively 1
2
|Supp(I)| (or perhaps d1

2
|Supp(I)|e) is a first approximation of W (I). In-

deed, this is the discrete analogue of the width used in the classical isometry the-
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orem [BL13], as their work corresponds to translations that are exactly constant

shifts. This discrete analogue of this is the choice of weights (a, b) = (1, 1) on a

1-Vee. For an n-Vee, however, modules with smaller support may happen to have

large widths or the opposite. For example, if P is a 2-Vee and I is the simple convex

module supported at m, then W (I) = aT + b. In contrast, if x ∈ (m,Mi) and J is

the convex module supported at x,W (J) = a. Moreover, any convex module sup-

ported at Mi for some i necessarily has width greater or equal to b. This is relevant,

as no relation between a and b is specified.

The following Proposition will prove useful in Section 4.4 when we produce

an explicit matching for 1-Vees. This result is an analogue of the corresponding

statement in [BL13].

Proposition 4.2.5. Let P be an asymmetric n-Vee, let A =
⊕

iAi, C =
⊕

j Cj be in

C. For any module M , let B(M) denote the barcode of M viewed as a multiset, and let

Λ ∈ T (P ). Then,

(i) If A
f
↪−→ C is an injection, then for all d ∈ P , the set

|{i : [−, d] is a maximal totally ordered subset of Supp(Ai)}| ≤

|{j : [−, d] is a maximal totally ordered subset of Supp(Cj)}|, and

(ii) If A g−→ C is a surjection, then for all b ∈ P ,

|{j : [b,−] is a maximal totally ordered subset of Supp(Cj)}| ≤

|{i : [b,−] is a maximal totally ordered subset of Supp(Ai)}|.
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(iii) If A and C are (Λ,Λ)-interleaved, and A φ−→ CΛ is one of the homomorphisms, then

for all I in B(ker(φ)), W (I) ≤ h(Λ).

(iv) If A and C are (Λ,Λ)-interleaved, and A φ−→ CΛ is one of the homomorphisms, then

for all J in B(cok(φ)), W (J) ≤ h(Λ).

Before proving the Proposition 4.2.5, we state a Lemma.

Lemma 4.2.6. Let P be an asymmetric n-Vee, say P =
⋃

[m,Mi], with [m,Mi] totally

ordered. Let mi = min(m,Mi], and let Ij be the left ideal in A(P ) generated by {mi : i 6=

j}. Then,

(i) For any M convex,

M/IjM is

{
0, if Supp(M) ∩ [m,Mj] = φ

the convex module with support given by Supp(M) ∩ [m,Mj] otherwise.

(ii) For A,B ∈ C, If f is a homomorphism A
f−→ B/IjB, then f factors through A/IjA.

Proof. (i) obvious. Statement (ii) is clear, since for f : A→ B/IjB, w ∈ Ij , f(w ·a) =

w · f(a) = 0.

Note that if n = 1, the left ideal Ii is identically zero, but the above is still true.

We now prove Proposition 4.2.5.

Proof. Let A,C be as above. For all i, let Ai = A(P )xi, xi ∈ Supp(Ai), and let [xi, Xi]

be a maximal connected totally ordered subset of Supp(Ai) (We do not suppose

xi = m). Similarly, let yj be such that Cj = A(P )yj . For i, j let f ij : Ai → Cj .

Now suppose A f−→ C is an injection. Fix i0 and [xi0 , Xi0 ] be maximal contained in

Supp(Ai0). Since f i0 = (f i0j ) : Ai0 →
⊕

j Cj is an inclusion, for any t ∈ [xi0 , Xi0 ],

there exists j(t) with f i0j(t) 6= 0. Since f i0j(t) is a homomorphism, f i0j(t) 6= 0 =⇒
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f i0j(t)(xi0) 6= 0, and it is not that case that there exists ` > Xi0 , with ` ∈Supp(Cj0). Set

j0 = j(Xi0). Therefore,

{j : [xi0 , Xi0 ] ⊆ Supp(Cj) and for all `, ` > Xi0 =⇒ ` /∈ Supp(Cj)} 6= φ.

Now, for d ∈ P , let

j(d) = {j : [−, d] ⊆ Supp(Cj), ` /∈ Supp(Cj) for ` > d}, and

i(d) = {i : [−, d] ⊆ Supp(Ai), ` /∈ Supp(AI) for ` > d}.

Clearly, i(d) 6= φ =⇒ j(d) 6= φ. Now, let d ∈ P , d 6= m with i(d) 6= φ. Say

d ∈ (m,Mk]. Then,

⊕
i∈i(d)

Ai/IkAi ↪→
⊕
j∈j(d′)
d′≤d

Cj/IkCj ↪→ C/IkC =⇒

⊕
i∈i(d)

(Ai/IkA)(d) ↪→
⊕
j∈j(d′)
d′≤d

(Cj/IkCj)(d) =
⊕
j∈j(d)

(Cj/IkCj)(d)

where the above inclusions are induced from f and the inclusion of a submodule

into a larger module respectively. Thus, |i(d)| ≤ |j(d)|. If d = m, then,

⊕
i∈i(m)

Ai ↪→
⊕
j∈j(m)

Cj ↪→ C =⇒
⊕
i∈i(m)

Ai(m) ↪→
⊕
j∈j(m)

Cj(m) ↪→ C(m),

so |i(m)| ≤ |j(m)|. This proves (i). The proof of (ii) is similar, though one inducts on

the the cardinality of S = {b : [b,−] is a maximal totally ordered subset of Ai for some Ai}.

Now we prove (iii). For a contradiction, suppose there exists an I ∈ B(ker(φ))

with Hom(I, IΛ2) 6= 0. But then the diagram below commutes.

I IΛ2

⊕
j

Cj

φ|I ψΛ
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Thus, ψΛφ(I) 6= 0, a contradiction. This proves (iii).

Now let J ∈ B(cok(φ)). For a contradiction, suppose W (J) > h(Λ). But then

there exists [x,X] a maximal subinterval in Supp(J) with Λ2x ≤ X . Let {bx +

im(φ), ...bX + im(φ)} be the corresponding basis elements for J . But then there

exists j such that

1. [x,X] ⊆Supp(CjΛ), and

2. CjΛ(y) /∈ im(φ), for x ≤ y ≤ X .

Then, Λx,ΛX ∈Supp(Cj) =⇒ Λ2Λx = ΛΛ2x ≤ ΛX which is in the support of

Cj . Therefore W (Cj) ≥ h(Λ). But then, the following diagram commutes.

Cj(Λx) (CjΛ
2)(Λx) = (CjΛ)(Λ2x)

JΛ(Λx)

But then (CjΛ
2)(Λx) ∈ im(φΛ)(Λx), a contradiction. This proves (iv) and finishes

the proof.

The Example below shows that (i), (ii) in the Proposition 4.2.5 cannot be ex-

tended from maximal totally ordered intervals to convex subsets.

Example 4.2.7. Consider the 2-Vee [m,M1] ∪ [m,M2], where m < x < M1 and

m < y < z < M2. Let C1 be the convex module supported on {m,x,M1}, and C2

be the convex module supported on {m, y, z,M2}. Say C1 has basis {em, ex, eM1}

and C2 has basis {fm, fy, fz, fM2}. Then the submodule of C1⊕C2 with basis {em +

fm, ex, eM1 , fy, fz, fM2} is isomorphic to the convex module with full support. Thus,

let A1 be the convex module with full support. Then, A1 ↪→ C1⊕C2, and while one
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can make the claim in the Proposition for each maximal totally ordered subset of

the support of A1 separately, one cannot do so simultaneously.

In the next section we study homomorphisms and translations and their prop-

erties in C.

4.3 Homomorphisms and Translations

In this section we investigate the relationship between homomorphisms and trans-

lations in the category C. In the interest of generality, we will relax our hypotheses

on the poset P . In this section, unless otherwise specified, P is any finite poset.

The functions defined in Definitions 4.3.1, 4.3.2 are analogues of functions used by

Bauer and Lesnick [BL13]. In this context, however, they fail to preserve W , and

may annihilate a convex module.

Note that if S ⊆ P is non-empty and interval convex, then it canonically deter-

mines the isomorphism class of an element of C under the identification;

S →
⊕

Mi, where Supp(Mi) is the ith connected component of S.

We use this in the definition below.

Definition 4.3.1. Let P be any finite poset and M be convex. Say Supp(M) =⋃
i

[ai, bi], where [ai, bi] are maximal intervals in Supp(M), and let Γ ∈ T (P ). Then,

M+Γ is the element of C given by Supp(M+Γ) = S =
⋃
i

[Γai, bi].

That is, M+Γ is the direct sum determined by S =
⋃
i

[Γai, bi]. (Note that if Γai �

bi, then [Γai, bi] is empty.) One easily checks that,

(i) If P is an n-Vee, M+Γ is convex, or 0, and
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(ii) For a general poset P , M+Γ is a submodule of M .

Moreover, for i ∈ P ,

M+Γ(i) =
∑
x

im(M(x ≤ Γx ≤ i)) = im(M(x0 ≤ Γx0 ≤ i)) for any x0 ≤ Γx0 ≤ i.

That is, θ = θi ∈M+Γ(i) =⇒ θ ∈ im(M(x0 ≤ Γx0 ≤ i)) for any x0 ≤ Γx0 ≤ i. Now,

for M ∈ C arbitrary, set

M+Γ =
⊕
t

M+Γ
t , where M =

⊕
t

Mt.

If P has the property that for all i ∈ P , (−∞, i] is totally ordered, one can still

find x = x(i) such that M+Γ(i) = im(M(x ≤ Γx ≤ i)) is still valid. Thus, in

particular, the result holds for as n-Vee. Note that if (−∞, i] is not totally ordered,

then M+Γ(i) =
∑

x im(M(x ≤ Γx ≤ i)). When P is an n-Vee, we now make a dual

definition.

Definition 4.3.2. Let P be an n-Vee and letM be a convex module. Say Supp(M) =⋃
i

[x,Xi] where each x ≤ Xi ≤ Mi. (Recall that since P is an n-Vee, the support of

each convex module has a minimal element. So Xi 6= x for more than one i implies

x = m.) Let Γ ∈ T (P ). Then, M−Γ is the convex modules with

Supp(M−Γ) equal to
⋃
i

[x,X
N(i)
i ], where X

N(i)
i = max {y : Γy ≤ Xi, y ≥ x}.

Note that if no such XN(i)
i exists, M−Γ = 0

One easily checks that,

(i) If M is convex, M−Γ is either identically zero or convex, and
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(ii) M−Γ is a quotient of M .

Because of (i) we may extend our definition from Σ to C. For M ∈ C, set

M−Γ =
⊕
t

Mt
−Γ, where M =

⊕
t

Mt.

Notice that the assignment M → M+Γ moves the left endpoints of the sup-

port of a module to the right, while M → M−Γ moves the right endpoints of the

support to the left. A physical characterization of M−Γ is possible, but will prove

unecessary for our purposes.

We now prove a useful proposition.

Proposition 4.3.3. Let P be an n-Vee, and let I,M ∈ C. Let (φ, ψ) be a (Λ,Λ)-interleaving

betweem I and M . Say φ : I →MΛ. Then,

(i) I−Λ2 is a quotient of both I and im(φ), and

(ii) M+Λ2
Λ is a submodule of both MΛ and im(φ).

Proof. First, by the comments above, I−Λ2 is a quotient of I . Now, since I and M

are (Λ,Λ)-interleaved, ψΛ ◦ φ = (I → IΛ2). Therefore,

(ψΛ)(im(φ)) = I−Λ2

,

and hence I−Λ2 is a homomorphic image, and hence a quotient of im(φ). This

proves (i).

We now prove (ii). First, already M+Γ is a submodule of M . Moreover, C ≤ D

implies τ , Cτ ≤ Dτ , for any τ ∈ T (P ). Hence, M+Λ2
Λ is a submodule of MΛ. It re-

mains to show that M+Λ2
Λ is a submodule of im(φ). Let i ∈ P , i ∈ Supp((M+Λ2

)Λ).
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Then, as vector spaces,

((M+Λ2

)Λ)(i) ⊂ (im(φ))(i)⊕K (coker(φ))(i).

Let θi ∈ ((M+Λ2
)Λ)(i). Note that θi = θ′Λi. At the i level, θi = ai + bi with

ai ∈ (im(φ))(i) and bi ∈ (coker(φ))(i). Then,

θi ∈ im((M(x ≤ Λ2x ≤ Λi))) =⇒

θ′Λi = M(x ≤ Λ2x ≤ Λi)(ax + bx), ax ∈ im(φ), bx ∈ coker(φ) =⇒

M(x ≤ Λ2x ≤ Λi)(ax) = ai + αi, with αi ∈ im(φ), and

M(x ≤ Λ2x ≤ Λi)(bx) = −αi + bi.

But, by Proposition 4.2.5, W (coker(φ)) < h(Λ), thus −αi + bi = 0, and therefore

αi = bi = 0. Hence, θi was fully contained in (im(φ))(i).

Thus,

im((M(x ≤ Λ2x ≤ Λi))) ⊂ (im(φ))(i) for all i, hence

((M+Λ2

)Λ(i) ⊂ (im(φ)))(i) for all i.

Therefore,

(M+Λ2

)Λ ≤ im(φ).

This proves (ii).

We will now consider the action of T (P ) on C ∪ {0}. We first point out that, in

general, the monoid T (P ) need not act on Σ ∪ {0}.
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Example 4.3.4. Let P be the diamond poset: 1 ≤ 2, 3 ≤ 4, and let Λ be the trans-

lation Λ1 = 1,Λ2 = 4,Λ3 = 4,Λ4 = ∞,Λ∞ = ∞. Let J be the convex mod-

ule with support equal to {2, 3, 4}. Then, JΛ ∼= S ⊕ T , where S is the simple

supported on {2}, and T is the simple supported on {3}. Alternatively, let P

be the poset 1, 2 ≤ 3, with 1, 2 not comparable (i.e., just the upper part of the

diamond). Let J be the convex module with full support, and Λ be given by

Λ1 = 1,Λ2 = 2,Λ3 = ∞,Λ∞ = ∞. Then, JΛ is again a direct sum of two con-

vex modules.

Example 4.3.4 shows that the action of T (P ) on C ∪ {0} need not restrict to

Σ ∪ {0}. In Lemma 4.3.6 we will see that when P is an n-Vee, however, the action

does restrict. First, a quick observation.

Lemma 4.3.5. Let P be any poset with a unique minimal element m, and suppose Λ ∈

T (P ) with Λm = m. Then for all convex J with m ∈ Supp(J), JΛ is convex.

Proof. Let P be as above, M be convex, with m ∈ Supp(M). Let Λ be a translation

with Λm = m. Clearly MΛ is thin. Let t1, t2 be in the support of MΛ, and suppose

t1 ≤ t ≤ t2. Then, Λt1,Λt2 ∈ Supp(M) =⇒ [Λt1,Λt2] ⊆Supp(M), since M is

convex. Since Λt ∈ [Λt1,Λt2], t is in the support of M , so [t1, t2] ⊆ Supp(MΛ). Now,

since Λm = m, m ≤ x for all x, Supp(MΛ) is connected.

Lemma 4.3.6. Let P be an n-Vee, I a convex module and Λ ∈ T (P ). Then, IΛ is either

the zero module or convex.

Proof. First, from the proof of Lemma 4.3.5, if non-zero IΛ is in C. We now proceed

in cases. First, suppose m ∈ Supp(I). If Λm = m, then m is in the support of IΛ,
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so IΛ is convex. On the other hand, if Λm ∈ (m,Mi], then for all j 6= i, (m,Mj]∩

Supp(IΛ) = φ. But then Supp(IΛ) ⊆ [m,Mi], hence it is convex or zero, since it is

interval convex. If m /∈ Supp(I), then I is supported in (m,Mj] for some j and the

result follows.

We will now work towards the characterization of homomorphism between

convex modules when P is an n-Vee. In the interest of generality, we begin with

an arbitrary finite poset P .

Definition 4.3.7. Let I,M be convex. Let {ex : x ∈ Supp(I)}, {fx : x ∈ Supp(M)}

be K-bases for I,M respectively. Consider the linear function ΦI,M , defined by

ΦI,M(ey) =

{
fy, if y ∈ Supp(I) ∩ Supp(M)

0 otherwise.

By inspection, ΦI,M is a non-zero module homomorphism if and only if Supp(I)∩

Supp(M) satisfies,

(i) Supp(I) ∩ Supp(M) 6= φ

(ii) x ∈ Supp(I)∩ Supp(M), y ≥ x, y ∈ Supp(M) =⇒ y ∈ Supp(I), and

(iii) x ∈ Supp(I)∩ Supp(M), y ≤ x, y ∈ Supp(I) =⇒ y ∈ Supp(M).

Note that even when it is not a module homomorphsim, ΦI,M can be viewed

as the linear extension of χ(Supp(I) ∩ Supp(M)), the characteristic function on the

intersection of the supports of I and M .

The following two lemmas will allow us to conclude that when P is an n-Vee,

up to a K-scalar, this is the only possible module homomorphisms from I to M .
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Lemma 4.3.8. Let P be any finite poset, and let I,M be convex. Let S ⊆ Supp(I) ∩

Supp(M), with S nonempty. Suppose that there exists an N ∈ C with Supp(N) = S.

Then, N is isomorphic to the image of a non-zero module homomorphsim from I to M if

and only if

(a) for all x ∈ S, if y ∈ Supp(I) with y ≤ x, then y ∈ S, and

(b) for all x ∈ S, if y ∈ Supp(M) with y ≥ x, then y ∈ S.

Proof. S corresponds to the support of a non-zero quotient module of I if and only

if S satisfies (a). Similarly, S corresponds to a non-zero submodule of M if and

only if S satisfies (b). Since any homomorphism can be factored into an injection

after a surjection, the result follows.

Lemma 4.3.9. Let P be an n-Vee. Let I,M be convex modules. Then, Hom(I,M) ∼= K or

0 (as a vector space)

Proof. First, let P be any finite poset, and I,M be convex. Suppose that g is any

non-zero homomorpism from I to M . Then, by Lemma 4.3.8, im(g) = I/ker(g)

has support equal to S ⊆ Supp(I) ∩ Supp(M) satisfying (a), (b) from Lemma 4.3.8.

We will show that any such S is a union of connected components of Supp(I) ∩

Supp(M). Since g is non-zero, S is non-empty. Now, let s ∈ S and suppose that

y ∈ Supp(I) ∩ Supp(M) with y ≥ s. Then, by (b), y ∈ S. Similarly, if y ∈ Supp(I) ∩

Supp(M) with y ≤ s, then by (a), y ∈ S. Therefore S contains the connected

component of s in Supp(I) ∩ Supp(M). The result follows.

Now, if P is an n-Vee, Supp(I) ∩ Supp(M) is connected, so S must be the full

intersection. As above, let {ex : x ∈ Supp(I)}, {fx : x ∈ Supp(M)} be K bases for

I,M respectively.
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Then,

g(ez) =

{
czfz, if z ∈ Supp(I) ∩ Supp(M), cz ∈ K
0 otherwise,

where Supp(I), Supp(M) satisfy conditions (i), (ii) and (iii) from below Definition

4.3.7. Clearly, every non-zero quotient of I must have support containing the min-

imal element t of Supp(I). Then, since I,M are convex,

g(I(t ≤ y))et = gey = M(t ≤ y)get = M(t ≤ y)ctft = ctfy = cyfy.

Therefore, g = ctΦI,M . Of course, if g is identically zero, g is still in the span of

ΦI,M .

We now investigate the action of T (P ) on Hom(I,M), when I,M are convex.

From the observation in the proof of Lemma 4.3.9, we see that for P arbitrary,

Hom(I,M) will have dimension equal to the number of connected components of

Supp(I) ∩ Supp(M). Still, for a fixed translation Λ ∈ T (P ), Hom(IΛ,MΛ) may be

trivial (even when IΛ,MΛ are non-zero). We now state a condition which ensures

that Hom(I,M) · Λ 6= 0. This can be done more generally, but we state the result

only for P an n-Vee.

Lemma 4.3.10. Let P be an n-Vee, and let I,M be convex. Let Λ ∈ T (P ). Say Hom(I,M)

6= 0 and there exists t with Λt ∈ Supp(I) ∩ Supp(M). Then Hom(IΛ,MΛ) 6= 0.

Proof. Since Λt ∈ Supp(I) ∩ Supp(M), IΛ and MΛ are not zero. Also, by Lemma

4.3.9, Supp(I) and Supp(M) satisfy the conditions (i), (ii) and (iii) from below

Definiton 4.3.7. Since IΛ,MΛ are convex, it is enough to show that the above

still holds for Supp(IΛ) and Supp(MΛ). Again, t ∈ Supp(IΛ) ∩ Supp(MΛ), hence

the intersection is nonempty. Now let z ∈ Supp(IΛ) ∩ Supp(MΛ), with w ∈
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Supp(MΛ), w ≥ z. Then, Λz ∈ Supp(I) ∩ Supp(M),Λw ∈ Supp(M), and Λw ≥ Λz.

Therefore, Λz ∈ Supp(I), so z ∈ Supp(IΛ). The last requirement is proved simi-

larly.

Note that conditions (ii) and (iii) are clearly inherited from I,M . The authors

point out that the hypothesis above that the intersection of supports coincides with

the image of the translation is required even on a totally ordered set (see Example

4.3.11 below).

Example 4.3.11. Let P be the totally ordered set {1, 2, 3, 4, 5, 6} with its standard

ordering, and let Λ be defined by Λ1 = 2,Λ2 = 3,Λ3 = 3,Λ4 = 5,Λ5 = 6,Λ6 = 6.

Let I and M be the convex modules supported on {4, 5, 6} and {3, 4} respectively.

Note that Hom(I,M) 6=, IΛ and MΛ are supported on {4, 5} and {2, 3} respec-

tively. Clearly, the supports of IΛ and MΛ are disjoint, so Hom(IΛ,MΛ) = 0.

Remark 6. Let P be an n-Vee, Λ ∈ T (P ) and say I is convex. We write ΦΛ
I for

ΦI,IΛ, as IΛ is either zero or convex. For I ∈ C, we write ΦΛ
I for the canonical

homomorphism as well, since it is necessarily diagonal. (Of course, as mentioned

above, even if IΛ is not trivial, it may be the case that ΦΛ
I is identically zero.)

We can now show that when P is an n-Vee the collection of interleavings be-

tween two elements of C will have the structure of an affine variety (not necessarily

irreducible). Though the result still holds for more general posets, our proof is an

application of the results of this section. Some examples are provided in Section

4.6

Proposition 4.3.12. Let P be an n-Vee and let I =
⊕

Is,M =
⊕

Mt be two elements of
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C. Let Λ,Γ ∈ T (P ). Then the collection of (Λ,Γ)-interleavings between I and M has the

structure of an affine variety.

Indeed, as stated above the result holds for any finite poset, though when P is

an n-Vee the variety has a simpler description. We sketch the proof. Let P, I,M,Λ

be as above, and let φ, ψ be any interleaving between I and M . Thus, we obtain

the commutative triangles below.

I IΓΛ IΓ

MΛ M MΛΓ

ΦΓΛ
I

φ ψΛ

ψ

ΦΛΓ
M

φΓ

Therefore, as matrices of module homomorphisms;

[ψtsΛ] · [φst ] = [ΦΓΛ
Is ], and [φstΓ] · [ψts] = [ΦΛΓ

Mt
]

where φ, ψ decompose into their component homomorphisms φst : Is → MtΛ and

ψts : Mt → IsΓ respectively. By Lemma 4.3.9, φst , ψts are in the span of ΦIs,MtΛ and

ΦMt,IsΓ respectively. Hence, if Hom(Is,MtΛ) is not identically zero, φst = λstΦIs,MtΛ,

where λst ∈ K, with a similar result holding for ψts. In addition, (λΦA,B)Λ0 =

λ(ΦAΛ0,BΛ0) for all scalars λ, translations Λ0, and all A,B convex.

Therefore, the interleavings between I and M correspond to the algebraic set

given by values of λst , µts satisfying all quadratic relations obtained by evaluating

the matrix equations above at all elements of P .

More precisely, first suppose Hom(Is,MtΛ),Hom(Mt, IsΛ) = 0 for all s, t. In this

case, the variety of interleavings V Λ,Γ(I,M) is given by

V Λ,Γ(I,M) =

{
the zero variety, if W (Is),W (Mt) ≤ max{h(Λ), h(Γ)} for all s, t

the empty variety, otherwise.
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The above cases correspond to whether or not setting all morphisms identically

equal to zero corresponds to an admissible interleaving between I and M . On the

other hand, suppose some of the relevant spaces of homomorphisms above are

non-zero. Then, let rst , qts be given by

rst = λst · dimK(Hom(Is,MtΛ)), and qts = µts · dimK(Hom(Mt, IsΛ)).

Also, let

r̄st = rst · dimK(Hom(IsΛ,MtΛ
2)), and q̄ts = qts · dimK(Hom(MtΛ, IsΛ

2)).

Let R denote the |T | × |S| matrix R = [rstΦIs,MtΛ]. Similarly, let Q denote the

|S| × |T |matrix Q = [qtsΦMt,IsΛ]. Also, set R̄ = [r̄stΦIsΛ,MtΛ2 ], Q̄ = [q̄tsΦMtΛ,IsΛ2 ].

Then, since φst = λstΦIs,MtΛ, and ψts = µtsΦMt,IsΛ, the homomorphisms φ, and ψ

correspond to an interleaving if and only if the equations below are satisfied, when

evaluated at all elements of the poset P .

Q̄ ·R = [q̄tsΦMtΛ,IsΛ2 ] · [rstΦIs,MtΛ] = [ΦΓΛ
Is ], R̄ ·Q = [r̄stΦIsΛ,MtΛ2 ] · [qtsΦMtΛ,IsΛ2 ] = [ΦΛΓ

Mt
](4.1)

Therefore, in this situation V Λ,Γ(I,M) is the affine algebraic set with coordinate

ring given by K[{λst : Hom(Is,MtΛ) 6= 0}, {µts : Hom(Mt, IsΓ) 6= 0}] modulo the

ideal given by all identities from (1). For some computations, see Examples 4.6.1,

4.6.2.

When P is not an n-Vee (or at least a tree branching only at a unique minimal el-

ement), the collection of interleavings still admits the structure of a variety, though

the description is more cumbersome.
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Remark 7. Using Proposition 4.3.12, we may visualize the interleaving distance

between two elements of C as follows. Let (a, b) be any weight, and let I,M ∈

C. For each ε ∈ {h(Λ)}, let Vε(I,M) denote the variety of (Λε,Λε)-interleavings

between I and M . Then,

D(I,M) = min{ε : the variety V Λε,Λε(I,M) is non-empty}.

For some computations see Example 4.6.3.

We now observe that our width gives rise to a bottleneck metric when P is an

n-Vee. For this W must be compatible with the interleaving distance in the sense

of Section 2.6.

Proposition 4.3.13. Let P be an n-Vee, and let (a, b) be weights. Let D = D(da,b) be the

interleaving distance, and W be the width function. Then, for I,M convex,

|W (I)−W (J)| ≤ D(I, J).

The proof, which proceeds in cases, is omitted. Since W and D are compatible

on Σ, we obtain a bottleneck metric on the category C (see Section 2.6). Let DB de-

note this bottleneck metric. In the next section we will prove an isometry theorem

for 1-Vees.

4.4 Isometry Theorem for Finite Totally Ordered Sets

We now prove the isometry theorem for finite totally ordered sets. We will fix

notation in this section for our poset. Let P = {m < m1 < m2 < ... < n =

M1} = [m,n] be totally ordered (a 1-Vee), and fix any weight (a, b). Note that, in
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this section only, n does not correspond to the number of maximal elements in P .

We begin with some preliminary observations.

Lemma 4.4.1. Let P = {m < m1 < m2 < ... < n = M1} = [m,n], and suppose Λ be a

power of a maximal translation with given height. Then,

(i) im(Λ) ∩ P = [Λ(m), n].

(ii) If i ∈ [Λ(m), n), then Λ−1(i) is a singleton.

(iii) Λi = Λj ∈ P =⇒ i = j or Λi = Λj = n.

The result follows from the form of the maximal translation Λ (see the proof of

Lemma 4.2.2). Note that the power of a maximal translation need not be maximal.

Moreover, h(Λ2) need not be 2h(Λ). The following Lemma follows from our char-

acterization of the homomorphisms between convex modules in the last section

(see Lemma 4.3.9).

Lemma 4.4.2. If I, J are convex modules for P = {m < m1 < m2 < ... < n =

M1} = [m,n], then Hom(I, J) 6= 0 if and only if the endpoints of Supp(I) = [x,X] and

Supp(J) = [y, Y ] satisfy

y ≤ x ≤ Y ≤ X.

As previously mentioned, any homomorphism is a scalar in K times ΦI,J (see

Definition 4.3.7).

Lemma 4.4.3. Let P be as above, and suppose Λ = Λε is a maximal translation. Let A and

B be convex, and suppose AΛ, BΛ 6= 0 and Hom(A,B) 6= 0. Then Hom(AΛ, BΛ) 6= 0.
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Proof. Let s ∈Supp(A) ∩ Supp(B). If s ∈ im(Λ) we are done by Lemma 4.3.10.

Otherwise, [x, Y ]∩ im(Λ) is empty, where Supp(A) = [x,X], Supp(B) = [y, Y ] with

y ≤ x ≤ Y ≤ X as in Lemma 4.4.2. But then, by Lemma 4.4.1, [y, Y ] is disjoint from

the image of Λ, therefore, BΛ = 0, a contradiction.

Lastly, the following is an easy consequences of the results of the previous sec-

tion (see Definitions 4.3.1, 4.3.2).

Lemma 4.4.4. Let P be totally ordered. Then the following are equivalent:

(i) Hom(J, JΛ2) 6= 0

(ii) there is an x ∈ Supp(J) with Λ2x ∈ Supp(J)

(iii) J+Λ2 6= 0

(iv) (J+Λ2
)Λ 6= 0

(v) J−Λ2 6= 0.

We are now ready to prove that every interleaving induces a matching of bar-

codes when P is a 1-Vee. This is very much an algebraic reformulation of the re-

sults of Bauer and Lesnick in [BL13] applied to our framework. We will make use

of their canonical matchings of barcodes induced by injective or surjective module

homomorphisms.

Definition 4.4.5. (see Section 4 in [BL13]) Let P be totally ordered, and let I =⊕
s∈S

Is,M =
⊕
t∈T

Mt be in C. Let f be a module homomorphism from I
f−→M . Then,

(i) if f is surjective, let Θ(f) from B(M) to B(I) be the canonical matching of

barcodes.
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(ii) if f is injective, let Θ(f) from B(I) to B(M) be the canonical matching of

barcodes.

Recall from [BL13], Θ is categorical on injections or surjections. That is, f = g◦h,

f, g, h surjections implies Θ(f) = Θ(h)◦Θ(g). And dually, f = g◦h, f, g, h injections

implies Θ(f) = Θ(g) ◦Θ(h).

The authors wish to emphasize that the above statements holds for any per-

missable enumeration on each barcode. That is to say, for each module M , all

isomorphic elements of the barcode B(M) may be enumerated arbitrarily. This

enumeration is then fixed. In one instance, it will be convenient (though not nec-

essary) to choose explicitly an enumeration for a particular barcode.

We now establish some additional properties of convex modules for 1-Vees.

Lemma 4.4.6. Let P = [m,n] be a 1-Vee, Λ a maximal translation on P . Let Σ be the set

of isomophism classes of convex modues. Let F,G be the functions

F,G : Σ→ Σ ∪ {0}

where F (σ) = σ−Λ2 and G(σ) = σ+Λ2
Λ.

Let Σ0 = {σ : W (σ) > h(Λ)}, and Σ̄ be Σ0∩{σ ∈ Σ : Supp(σ) = [x,X], with Λ2x = n}.

(i) F (Σ0) ⊂ Σ, and F is one-to-one on Σ0.

(ii) G(Σ0) ⊂ Σ, and G is one-to-one on Σ0 − Σ̄. Also, G(Σ̄) = {σnΛ}, where σn is the

convex module with support [n].

Proof. We will show that if σ1, σ2 ∈ Σ0 withF (σ1) ∼= F (σ2), then σ1
∼= σ2. Since

convex modules are characterized by their supports, say F (σ1), F (σ2) have shared
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support [x,X ′]. ThenX ′ is maximal such that Λ2X ′ ≤ X1 and also such that Λ2X ′ ≤

X2where σ1, σ2 have support given by [x,X1], and [x,X2] respectively. But then by

Lemma 4.4.1, X1 = X2, so σ1
∼= σ2. This proves (i).

For (ii), we’ll prove the contrapositive. Suppose σ1, σ2 ∈ Σ0 − Σ̄ have supports

given by [x1, X1], [x2, X2] respectively. Suppose Λ2x1 < Λ2x2 ≤ n, then by Lemma

4.4.1, Λx1 < Λx2. Then, again by Lemma 4.4.1, G(σ1) = [Λx1, ·], G(σ2) = [Λx2, ·],

which are distinct. On the other hand, if x1 = x2, X1 < X2 ≤ n, then σΛ2

1 , σΛ2

2

have supports given by [Λ2x1, X1], [Λ2x1, X2] respectively. But then, since only X2

is possibly equal to n, the right endpoint of the support of G(σ2) is strictly larger

than the right endpoint of the support of G(σ1).

Clearly, if σ ∈ Σ̄, the support of σ is [x, n], with Λ2x = n. Then, by inspection,

G(σ) = σnΛ. Moreover, it is clear from the proof that G−1(σnΛ) ⊆ Σ̄.

Proposition 4.4.7. Let P be totally ordered and let C be the full subcategory of A(P )-

modules consisting of direct sums of convex modules. Let (a, b) ∈ N × N be a weight and

let D denote interleaving distance (corresponding to the weight (a, b)) restricted to C.

Let W (M) = min{ε : Hom(M,MΓΛ) = 0,Γ,Λ ∈ T (P), h(Γ), h(Λ) ≤ ε}, and let DB

be the bottleneck distance on C corresponding to the interleaving distance and W . Then,

the identity is an isometry from

(C, D)
Id−→ (C, DB).

This corresponds to the case that P is a 1-Vee in Theorem 4.5.6. The result

follows from Theorem 4.4.8. We will proceed in the same fashion as [BL13]. Before

continuing, we point out that Theorem 4.4.8 (and later Theorem 4.5.6) do not say

that every interleaving is diagonal (see Examples 4.6.1, 4.6.2). Instead, they simply
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constrain the isomorphism classes of modules which admit an interleaving.

Theorem 4.4.8. Let P be totally ordered (P is a 1-Vee) and let I =
⊕
s∈S

Is,M =
⊕
t∈T

Mt

be in C. Let Λ = Λε ∈ T (P ) be maximal with h(Λ) = ε. Suppose there exists a (Λ,Λ)-

interleaving between I and M . Then there exists a h(Λ) matching from B(I) to B(M).

The proof of the Theorem will consist of three parts.

1. If W (Is) > h(Λ), then Is is matched.

2. If W (Mt) > h(Λ), then Mt is matched.

3. If Is andMt are matched (independent ofW ), then there is a (Λ,Λ)-interleaving

between Is and Mt.

Our matching is a slight modification of the matching in [BL13]. It is given by

the following composition (see Definition 4.4.5)

B(I)
Θ(ρ)−1

−−−−→ B(im(φ))
Θ(ι)−−→ B(MΛ)

B(M,MΛ)−−−−−−→ B(M),

where ι is the inclusion from im(φ) into MΛ, ρ is the surjection from I to im(φ),

and B(M,MΛ) is the natural inclusion of barcodes induced from MΛ to M given

by B(M,MΛ)(MtΛ) = Mt.

Note that in [BL13], it was only necessary to take the matching as far asB(MΛ).

There, that was justified since the assignment which we callB(M,MΛ) was a bijec-

tion between barcodes which preserved W . In the present context neither of these

properties hold. Specifically, |B(MΛ)| may be strictly smaller than |B(M)|. More-

over, either of W (Mt),W (MtΛ) may be strictly larger than the other. The detailed
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schematic below displays all relevant convex modules. This will be useful in the

proof.

ΛW ≤ X
maximal

Λw ≥ x
minimal

Λ2X0 = X
maximal

≤

≤
Λz = y0

ΛY ≤ Z
maximal

Λy ≥ z
minimal

IsΛ Is I−Λ2

s

Qs,t

M+Λ2

t Λ MtΛ Mt

w

W

x

X

x

X0

x

Y

y0

Y

y

Y

z

Z

We now prove Theorem 4.4.8.

Proof. First, say Is ∈ B(I) with W (Is) > h(Λ). Then, by Lemma 4.4.4, Is−Λ2 6= 0.

Additionally, by Proposition 4.3.3, and since induced matchings are categorical for

surjections, we obtain the commutative triangle of barcodes below.

I imφ

I−Λ2

B(I) B(imφ)

B(I−Λ2

)

But the induced matchingB(I−Λ2
)→ B(I) sends I−Λ2

s
Θ−→ Is up to isomorphism,

therefore Is is matched with an element of B(im(φ)). That is, Is ∈ im(Θ(ρ)). But

then, since Θ(ι) and B(ΦΛ
M) are injections of barcodes, Is is matched with some

Mt ∈ B(M). This establishes (1).
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Next, supposeMt ∈ B(M) withW (Mt) > h(Λ). Then, by Lemma 4.4.4,M+Λ2

t Λ 6=

0. Moreover, by Proposition 4.3.3, and since induced matchings are categorical for

injections, we obtain a commutative diagram of barcodes for any choice of ad-

missible emumeration. It is convenient to specify a particular enumeration for

B(M+Λ2
Λ). This is done as follows;

• For σ ∈ B(M+Λ2
Λ), σ � σnΛ (see Lemma 4.4.6), there is no restriction on the

enumeration restricted to {σ}.

• For σ ∈ B(M+Λ2
Λ), σ ∼= σnΛ, enumerate {σ}, by σ1 = G(τ1) ≤ G(τ2) = σ2 if

and only if τ1 ≤ τ2.

With this choice of enumeration, we obtain the commutative diagram below.

im(φ) MΛ

M+Λ2

Λ

B(im(φ)) B(MΛ)

B(M+Λ2

Λ)

B(M)

Since B(ρ) is an injection of barcodes, this proves (2).

We now prove (3). First, note that if Is andMt are matched with h(Is), h(Mt) ≤ ε,

then setting φ, ψ both equal to zero, we obtain a (Λ,Λ)-interleaving between Is and

Mt. Therefore, let

S ′ = {s : h(Is) > ε}, and T ′ = {t : h(Mt) > ε}.

We will write Is l Mt when Is and Mt are matched. It remains to show that if

Is lMt, then there is a (Λ,Λ)-interleaving between Is and Mt when,

(a) s ∈ S ′, t /∈ T ′,

(b) s /∈ S ′, t ∈ T ′, or
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(c) s ∈ S ′, t ∈ T ′

Note that because of the asymmetry associated with the matching, the cases

(b.) and (c.) are not identical. Let the supports of Is, IsΛ,Mt and MtΛ be given by

[w,W ], [x,X], [y, Y ], and [z, Z] respectively. When s ∈ S ′, let X0 be maximal such

that Λ2X0 ≤ X . That is, I−Λ2

s has support given by [x,X0]. Similarly, when t ∈ T ′,

let y0 = Λz, so then M+Λ2

t Λ has support given by [y0, Y ]. Note that if z /∈ im(Λ), we

have that Λz < Λ2y and y = m.

Proceeding as in [BL13], by Proposition 4.2.5, if Is l Mt, then we have the rela-

tions

y ≤ x ≤ Y ≤ X.

Hence, there is a non-zero homomorphism from Is →MtΛ. Therefore, set ΦIs,MtΛ =

χ([x, Y ]) = φ′. This will be one of our interleaving morphisms. We next define our

second interleaving morphism. We must show that if one of (a), (b), or (c) is satis-

fied, we have the relations,

w ≤ z ≤ W ≤ Z.

By inspection, it suffices to show the following statements:

(i) If t ∈ T ′, then w ≤ z.

(ii) If s ∈ S ′, then z ≤ W and W ≤ Z.

(iii) If s ∈ S ′ and t 6∈ T ′, then w ≤ z.

(iv) If s 6∈ S ′ and t ∈ T ′, then z ≤ W and W ≤ Z.

We now prove (i) through (iv). First, if t ∈ T ′, then Λz = y0. Also, w is minimal

such that Λw ≥ x. As x ≤ y0, x ≤ Λz, and so w ≤ z by minimality. This proves (i).
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Next, say s ∈ S ′. Then, z ≤ Λy by definition. Also, since x ≤ y we have that

Λy ≤ Λx. As W is maximal such that ΛW ≤ X , and s ∈ S ′, we have Λ2x ≤ X .

Therefore, Λx ≤ W . Since Λ(Λx) ≤ X , Λx ≤ W . Therefore z ≤ Λy ≤ Λx ≤

W as required. Continuing, since s ∈ S ′, X0 is maximal such that Λ2X0 = X . By the

maximality of W , ΛX0 = W . But then we have W = ΛX0 ≤ ΛY ≤ Z, since im(φ)

includes into I−Λ2 . This proves (ii).

Now, suppose s ∈ S ′, t 6∈ T ′. If x ≥ Λm, then Λw = x, and so Λ3w = Λ2x ≤ X ,

since s ∈ S ′. But then, W ≥ Λ2w. Hence, since t 6∈ T ′, we have Λ2w ≤ W ≤

Z < Λ2z. The result follows from monoticity. On the other hand, if x < Λm, then

w = m, so w ≤ z. Thus we have shown (iii).

Lastly, say s /∈ S ′, t ∈ T ′. We must establish z ≤ W and W ≤ Z. First, since

t ∈ T ′, we have that Λz = y0 ≤ Y ≤ X . Since W is maximal with ΛW ≤ X ,

it follows that z ≤ W . Next, note that if t ∈ T ′, then ΛW = X , since ΛW 6=

X =⇒ X /∈ im(Λ). Then Λ2z = Λ(Λz) ≤ Z, so Y ≥ Λz. Therefore X is in

im(Λ) so it must be the case that ΛW = X . But then since s 6∈ S ′, t ∈ T ′, we have

ΛW = X < Λ2x ≤ Λ2y0 = Λ3z ≤ ΛZ. Therefore, ΛW 6= n, so by monoticity W < Z

as required. This proves (iv).

Thus, we have shown that if s ∈ S ′ or t ∈ T ′,

w ≤ z ≤ W ≤ Z.

Therefore, set ΦMt,IsΛ = χ([z,W ]) = ψ′. This will be our second interleaving

morphism. It now remains only to show that

ψ′Λ ◦ φ′ = ΦΛ2

Is , and φ′Λ ◦ ψ′ = ΦΛ2

Mt
.
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Thus, we have;

φ′Λ = χ([x, Y ])Λ = χ([w, Y ∗]), and ψ′Λ = χ([z,W ])Λ = χ([y,W ∗]), where

Y ∗ is maximal such that ΛY ∗ ≤ Y , and W ∗ is the maximal with ΛW ∗ ≤ W .

We now proceed to establish the required commutativity conditions. First, say

s ∈ S ′. We will show that ψ′Λ ◦ φ′ = ΦIs,IsΛ2 = χ([x,W ∗]). Note that, by definition,

ψ′Λ ◦ φ′ is a composition of module homomorphisms, and, hence, a module ho-

momorphism. Therefore, by Lemma 4.3.9, we need only show that the linear map

χ([x,W ∗]) is non-zero at any vertex. To do this, we will establish that x ≤ W ∗ (that

is, χ([x,W ∗]) is non-zero at x). But, s ∈ S ′ =⇒ Λ2x ≤ X . As W ∗ is maximal with

Λ2W ∗ = X , the inequality follows. Now say s /∈ S ′. Then, ψ′Λ ◦ φ′ = 0 as required.

We now show the commutativity of the other triangle. First, suppose that t ∈

T ′. As above, we will show that φ′Λ ◦ ψ′ = ΦMt,MtΛ2 = χ([z, Y ∗]). Again, we need

only demonstrate that z ≤ Y ∗. But t ∈ T ′ =⇒ Λ2z ≤ Z. SInce Y ∗ is maximal with

Λ2Y ∗ = Z, the result follows. Again, if t /∈ T ′, the result is trivial.

Therefore, if Is l Mt, then there is a (Λ,Λ)-interleaving between Is and Mt as

required. This proves (3) and finishes the proof of the theorem.

In the next section we will use Theorem 4.4.8 to prove our main result.

4.5 Proof of Main Results

Before proving the main results, we establish some useful facts. This first result

will allow us to make a ”half matching.”

Lemma 4.5.1. Let S, T be sets with S finite, let x : S → P(T ) be a function such that for

120



all φ 6= S0 ⊆ S, ∣∣∣ ⋃
s∈S0

x(s)
∣∣∣ ≥ |S0|.

Then, there exists a function F : S → T such that F is an injection, and for all

s, F (s) ∈ x(s).

Proof. We prove the result by induction on |S|. If |S| = 1, the result is trivial. Now

say |S| > 1 and the result holds for all sets with smaller cardinality. First, suppose

there exists a non-empty subset S0 ⊆ S such that

∣∣∣ ⋃
s∈S0

x(s)
∣∣∣ = |S0|.

Let S0 be a minimal non-empty subset of S where equality holds. We will show

that we can define an injection f from S0 to T with f(s) ∈ x(s). Pick s0 ∈ S0,

t0 ∈ x(s0) and set f(s0) = t0. If S0 = {s0} we are done, so assume S0 6= {s0}.

Then, let x̄ : S0 − {s0} → P(T ), be defined by x̄(s) = x(s) − {t0}. Now let S ′ be a

non-empty subset of S0 − {s0}. Then,∣∣∣ ⋃
s∈S′

x̄(s)
∣∣∣ =

∣∣∣ ⋃
s∈S′

x(s)− {t0}
∣∣∣ =

∣∣∣( ⋃
s∈S′

x(s)
)
− {t0}

∣∣∣ ≥ |S ′|+ 1− 1 = |S ′|,

by the minimality of S0. Thus, by induction, there exists a one-to-one function

f : S0 − {s0} → T such that f(s) ∈ x̄(s). Clearly, f can be extended to an injection

on all of S0 . If S0 = S, set f = F and we are done. Otherwise, define

x̄ : S − S0 → P(T ) be defined by x̄(s) = x(s)− {f(σ) : σ ∈ S0}.

Now, let s̄1, s̄2, ...s̄x ∈ S − S0. Clearly, for all i, x(s̄i) = x̄(s̄i) ∪ Ti for some set

Ti ⊆ {f(σ) : σ ∈ S0}. Note that

∣∣∣⋃
i≤k

x̄(s̄i)
∣∣∣ < k =⇒

∣∣∣ ⋃
s∈S0

x(s) ∪ x(s̄1) ∪ x(s̄2) ∪ ... ∪ x(s̄k)
∣∣∣ < |S0|+ k,
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a contradiction. Thus, by induction, there is an injection f̄ : S − S0 → T with

f̄(s) ∈ x̄(s). By construction F = f ∪ f̄ is the desired function from all of S to T .

On the other hand, if S has the property that for all S0 ⊆ S, S0 6= φ,

∣∣∣ ⋃
s∈S0

x(s)
∣∣∣ > |S0|,

pick s1 ∈ S, t1 ∈ x(s1) and set f(s1) = t1. Again, let

x̄ : S − {s1} → P(T ) be defined by x̄(s) = x(s)− {t1}.

Then, for S0 ⊆ S − {s1},

∣∣∣ ⋃
s∈S0

x̄(s)
∣∣∣ =

∣∣∣ ⋃
s∈S0

x(s)− {t1}
∣∣∣ ≥ |S0|+ 1− 1 = |S0|.

Since |S − {s1}| < |S|, the result holds by induction.

Example 4.5.2. S = {1, 2, 3, 4, 5}, T = {a, b, c, d, e} the function x given by

1→ {a, b, d}, 2→ {b, c, e}, 3→ {a, c, d}, 4→ {d}, 5→ {e}.

A matching is constructed by setting f(4) = d, and f(5) = e. Then, one can choose

any bijection from f̄ : {1, 2, 3} → {a, b, c}. We glue f and f̄ to obtain an injection F

from S to T .

Next we make a simple observation about interleavings.

Lemma 4.5.3. Let P be any poset, Λ,Γ ∈ T (P ). Let A,B,C,D be any A(P )-modules

with φ, ψ a (Λ,Γ)-interleaving between A⊕ B and C ⊕D. Then, if Hom(A,DΛ) = 0 =

Hom(C,BΓ), then A,C are (Λ,Γ)-interleaved and B,D are (Λ,Γ)-interleaved.
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Proof. Note that we do not assume any modules are in the category C. For brevity,

let fA, fB denote the canonical homomorphism from A → AΓΛ and B → BΓΛ

respectively. Similarly, let gC , gD denote C → CΛΓ and D → DΛΓ respectively. By

decomposing φ, ψ into their component homomorphisms, we have;[
fA 0
0 fB

]
=

[
ψCAΛ ψDAΛ

0 ψDBΛ

] [
φAC φBC
0 φBD

]
=

[
ψCAΛφAC ψCAΛφBC + ψDAΛφBD

0 ψDBΛφBD

]
,[

gC 0
0 gD

]
=

[
φACΓ φBCΓ

0 φBDΓ

] [
ψCA ψDA
0 ψDB

]
=

[
φACΓψCA φACΓψDA + φBCΓψDB

0 φBDΓψDB

]
.

Thus, by inspection, if we set φBC , ψ
D
A = 0, the required condition will still be

satisfied.

We point out that this does not say that the interleaving was initially diagonal

(see Example 4.6.2).

Corollary 4.5.4. Let P be a finite poset with a unique minimal element m. Let X, Y ∈ C,

and Λ be a translation. Suppose X =
⊕

sXs, and Y =
⊕

t Yt are (Λ,Λ)-interleaved, and

Λm = m. Let Sm = {s ∈ S : Xs(m) 6= 0}, Tm = {t ∈ T : Yt(m) 6= 0}. Then,

⊕
s∈Sm

Xs,
⊕
t∈Tm

Yt are (Λ,Λ)-interleaved, and
⊕
s/∈Sm

Xs,
⊕
t/∈Tm

Yt are (Λ,Λ)-interleaved.

Proof. This follows easily from Lemma 4.5.3.

Proposition 4.5.5. Let P be an n-Vee. Let I =
⊕
s∈S

Is,M =
⊕
t∈T

Mt be in C. Suppose for

all s, t, Is and Mt are supported at m. Let Λ ∈ T (P ) with Λm = m. Suppose there exists

a (Λ,Λ)-interleaving between I and M . Then there exists a h(Λ) matching (in the sense of

Theorem 4.4.8) from B(I) to B(M).
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Proof. First, we show that |B(I)| = |B(M)|. Since m is fixed by Λ, the commutativ-

ity of the diagram below shows that |B(I)| = rank(f) ≤ dim(M(m)) = |B(M)|.

(
⊕
s∈S

Is)(m) (
⊕
s∈S

IsΛ
2)(m) = (

⊕
s∈S

Is)(m)

(
⊕
t∈T

MtΛ)(m) = (
⊕
t∈T

Mt)(m)

φ ψΛ=ψ

Thus, by symmetry |B(I)| = |B(M)|. Now, let s ∈ S. Since Is → IsΛ
2 is

nonzero, its image is in the image of ψΛφ|I . Thus in particular, there exists a t ∈ T

with ψtsΛφst 6= 0. That is, Hom(MtΛ, IsΛ
2)◦Hom(Is,MtΛ) 6= 0. But by Lemma 4.3.10

then Hom(IsΛ,MtΛ
2) is also not equal to zero. So, Hom(Mt, IsΛ

2), Hom(IsΛ,MtΛ
2)

are both nonzero, hence their composition is nonzero since it is defined at m. But

then, up to a scalar, it is the composition Mt → MtΛ
2, since Hom(Mt,MtΛ

2) = K

by Lemma 4.3.9. Thus, there is a (Λ,Λ)-interleaving between Is and Mt. We have

shown that whenever ψtsΛφst is nonzero, there is a (Λ,Λ)-interleaving between Is

and Mt.

Now for s ∈ S, let x(s) = {t ∈ T : ψtsΛφ
s
t 6= 0}. Let S0 ⊆ S. Then, the diagram

below commutes ⊕
s∈S0

Is
⊕
s∈S0

IsΛ
2

⊕
t∈x(s)

some s∈S0

Mt

Hence, by evaluation atm, |S0| = rank
{

(
⊕
s∈S0

Is)(m)→ (
⊕
s∈S0

IsΛ
2)(m)

}
≤ | ⋃

s∈S0

x(s)|.

Then, by Lemma 4.5.1, there is an injection f from S to T with f(s) ∈ x(s) for all s.

The result follows since |S| = |T | and t ∈ x(s) implies there is a (Λ,Λ)-interleaving

between Is and Mt.
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We are now ready to prove our main results.

Theorem 4.5.6. Let P be an n-Vee and let C be the full subcategory of A(P )-modules

consisting of direct sums of convex modules. Let (a, b) ∈ N × N be a weight and let D

denote interleaving distance (corresponding to the weight (a, b)) restricted to C.

Let W (M) = min{ε : Hom(M,MΓΛ) = 0,Γ,Λ ∈ T (P), h(Γ), h(Λ) ≤ ε}, and let DB

be the bottleneck distance on C corresponding to the interleaving distance and W . Then,

the identity is an isometry from

(C, D)
Id−→ (C, DB).

Proof. First, let P be an asymmetric n-Vee, P =
⋃

[n,Mi] with |[m,Mi0 ]| > |[m,Mi]|

for i 6= i0, and fix the weight (a, b). We will prove that any (Λ1,Γ1)-interleaving

between I,M ∈ C produces an ε-matching for ε = max {h(Λ1), h(Γ1)}. Once this

is established, DB ≤ D. For the other inequality, note that an ε-matching yields

(after inserting appropriate zero homomorphisms) a diagonal interleaving, thus

D ≤ DB, and hence equality.

Let I =
⊕
s∈S

Is,M =
⊕
t∈T

Mt be in C. If V is a partition of P , for v ∈ V , let

Sv = {s ∈ S : the minimal element of Supp(Is) is in v}.

Similarly, define Tv. Now, suppose there is a (Λ1,Γ1)-interleaving between I

andM . Then, by Lemma 4.2.2, there exists Λ = Λε maximal, where ε = max {h(Λ1), h(Γ1)}.

By [BdS13] since Λ1,Γ1 ≤ Λ, there exists a (Λ,Λ)-interleaving between I and M .

First, if ε < aT + b, then Λm = m. In this case, consider the partition V of P

given by

V = {(m,Mi]} ∪ {{m}}, and set Sm = S{m}, Si = S(m,Mi].
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Similarly, set Tm = T{m} and Ti = T(m,Mi]. Since Λm = m, for all M convex,

• Supp(M) ⊆ (m,Mi],MΛ 6= 0 =⇒ Supp MΛ ⊆ (m,Mi], and

• m ∈ Supp(M) =⇒ m ∈ Supp(MΛ).

Therefore, if s ∈ Sm, t ∈ Ti, then Hom(Is,MtΛ) = 0. Similarly, if t ∈ Tm, s ∈ Si,

then Hom(Mt, IsΛ) = 0. Then, by Lemma 4.5.3, we may diagonalize, obtaining

(Λ,Λ)-interleavings between

⊕
s∈Sm

Is and
⊕
t∈Tm

Mt, and also between
⊕
s/∈Sm

Is and
⊕
t/∈Tm

Mt.

We now diagonalize further. Again, since Λm = m, for each i 6= j, s ∈ Si, t ∈

Tj =⇒ Hom(Is,MtΛ) = 0 as well as the symmetric condition. Thereofore, by

applying Lemma 4.5.3 repeatedly, we obtain interleavings between

⊕
s∈Sv

Is and
⊕
t∈Tv

Mt for all v ∈ V .

Hence, by Proposition 4.5.5, we get a matching between the elements of the bar-

codes supported at m. Also, for each i, Λ|(m,Mi] is a maximal translation on a totally

oriented set. Therefore, for each i we acquire a matching between those elements

of the barcode in Si and Ti by Theorem 4.4.8. Thus, an ε-matching is produced

piecewise.

Now, suppose ε = h(Λ) ≥ aT + b. Then, for all convex modules M , MΛ is iden-

tically 0, or is a convex module supported in [m,Mi0 ]. Then, MΛ = MΛ/Ii0MΛ,

thus any homomorphism from N →MΛ factors through N/Ii0N .

Consider the partition

V = {[m,Mi0 ]} ∪ {(m,Mi] : i 6= i0}, and set Si = S(m,Mi], Sm = S[m,Mi0
].
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Similarly, define Tm, Ti. Then, for s ∈ Sm, t ∈ Ti, Hom(Is,MtΛ) = 0, since

MtΛ = 0. Since the symmetric condition holds as well, again by Lemma 4.5.3 we

obtain an interleaving between

⊕
s∈Sm

Is and
⊕
t∈Tm

Mt, and between
⊕
s/∈Sm

Is and
⊕
t/∈Tm

Mt respectively.

Since the latter interleaving corresponds to convex modules N with W (N) ≤ ε, it

suffices to match only convex modules with indices in Sm and Tm.

However, the morphisms

⊕
s∈Sm

Is
φ−→
⊕
t∈Tm

MtΛ, and
⊕
t∈Tm

Mt
ψ−→
⊕
s∈Sm

IsΛ

factor through
⊕
s∈Sm

(Is/Ii0Is) and
⊕
t∈Tm

(Mt/Ii0Mt) respectively. Thus since Λ|[m,Mi0
]

is maximal, again the result follows from Theorem 4.4.8.

If P is an n-Vee but is not asymmetric, then we may not use Lemmas 4.2.2, and

4.2.3 explicitly. It is still the case, however, that for ε ∈ {h(Γ) : Γ ∈ T (P )}, with

ε < aT + b, the set {Λ : h(Λ) = ε} has a unique maximal element. Moreover, the set

{Λε : ε < aT + b} is still totally ordered. Thus, if I , M are (Λ,Γ)-interleaved with

max{h(Λ), h(Γ)} < aT + b the proof above still goes through. On the other hand,

when P is not asymmetric, for all convex modules σ, W (σ) ≤ aT + b = aTi0 + b.

Therefore, though there is not a unique translation with height corresponding to

this value, interleavings of this height always produce empty matchings.

4.6 Examples

We conclude with some examples. First, in Example 4.6.1, we decompose an in-

terleaving as in the proof of Theorem 4.5.6. We also compute the varieties (see
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Proposition 4.3.12) corresponding to two interleavings. Along the way, we con-

struct some non-diagonal interleavings. In this section, if M is convex with sup-

port given by S, we write M ∼ S.

Example 4.6.1. Let P be the 2-Vee, P = [m,x3] ∪ [m, y6] and let (a, b) be a weight.

Let Λ = Λa. Consider the following convex modules.

m

y1

y2

x1

x2

A = [m,x2] ∪ [m, y2]

m

y1x1

x2

B = [m,x2] ∪ [m, y1]

m

y1

y2

x1

x2

C = [m,x2] ∪ [m, y2]

m

y1

y2

x1

D = [m,x1] ∪ [m, y2]

y3

y4

y5

X = [y3, y5]

y3

y4

y5

Y = [y3, y5]

y4

y5

Z = [y4, y5]

Let I = A ⊕ B ⊕ X and M = C ⊕ D ⊕ Y ⊕ Z. We will decompose an arbi-

trary (Λ,Λ)-interleaving between I and M as in the proof of Theorem 4.5.6. Then,

we will calculate the varieties (see Remark 4.3.12) corresponding to the ”factored”

interleavings the decomposition produces on the appropriate partition of the bar-

codes B(I) and B(M).

First, let φ′, ψ′ be any (Λ,Λ)-interleaving between I and M . By Lemma 4.5.3,

since Λm = m, there exist

• a (Λ,Λ)-interleaving between A⊕B and C ⊕D, and

• a (Λ,Λ)-interleaving between X and Y ⊕ Z.

We treat these separately, referring to each in turn as φ, ψ. First, we factor each φ, ψ
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into their corresponding summands, adopting the previous notation. For example

φXY : X → Y Λ. Since I,M ∈ C, we know that

φXY = λΦX,Y Λ, and φXY Λ = λΦXΛ,Y Λ2 .

Of course, all other similar identities hold as well. We first concentrate on the

modules supported in (m,My]. Thus, we have the diagrams below.

ΦΛ2

X

φ ψΛ

ΦΛ2

Y⊕Z

ψ φΛ

X XΛ2

(Y ⊕ Z)Λ

Y ⊕ Z (Y ⊕ Z)Λ2

XΛ

Therefore, we have the matrices of module homorphisms

φ =

[
φXY = αΦX,Y Λ

φXZ = βΦX,ZΛ

]
and ψ =

[
ψYX = λΦY,XΛ ψZX = µΦZ,XΛ

]
Since φ, ψ is a (Λa,Λa)-interleaving between X and Y ⊕ Z equations (2) and (3)

below must hold. First,

ΦΛ2

X =
[
ΦΛ2

X

]
=
[
(ψYXΛ)φXY + (ψZXΛ)φXZ

]
=
[
(λα + µβ)ΦΛ2

X

]
. (4.2)

And then,

ΦΛ2

Y⊕Z =

[
ΦΛ2

Y 0

0 ΦΛ2

Z

]
=

[
αλΦY,Y Λ2 αµΦZ,Y Λ2

βλΦY,ZΛ2 βµΦZ,ZΛ2

]
. (4.3)

Note that the above equations define the variety V Λ,Λ(X, Y ⊕ Z), because in the

notation of Proposition 4.3.12, no variables are deleted between R and R̄, and Q

and Q̄ respectively. For computational purposes, it is convenient to arrange the

relevant convex modules side by side:
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y5

y4

y3

y2

y1

X Y Z

XΛ Y Λ ZΛ

XΛ2 Y Λ2 ZΛ2

Notice that evaluating (2) at all elements of P we have

(
ΦΛ2

X

)
(y3) =

[
1
]

and
(

ΦΛ2

X

)
(i) =

[
0
]

for any i 6= y3.

Similarly, evaluating (3) we have

(
ΦΛ2

Y⊕Z

)
(y3) =

[
1 0
0 0

]
and

(
ΦΛ2

Y⊕Z

)
(i) =

[
0 0
0 0

]
for i 6= y3.

Therefore, we get the following system of equations:

λα + µβ = 1, αλ = 1, βλ = 0.

Thus, V Λ,Λ(X, Y ⊕Z) is the affine variety with coordinate ringK[λ, µ, α, β] mod-

ulo the ideal 〈λα + µβ − 1, αλ− 1, λβ〉 (see Proposition 4.3.12).

This corresponds to one choice of parameter in K∗ and one in K.

Next consider the modules supported atm. We now compute the variety V Λ,Λ(A⊕

B,C ⊕D). Again, we must have the commutative triangles below.

ΦΛ2

A⊕B

φ ψΛ

ΦΛ2

C⊕D

ψ φΛ

A⊕B (A⊕B)Λ2

(C ⊕D)Λ

C ⊕D (C ⊕D)Λ2

(A⊕B)Λ
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Decomposing φ, ψ we have,

φ =

[
φAC = eΦA,CΛ φBC = fΦB,CΛ

φAD = gΦA,DΛ φBD = hΦB,DΛ

]
and ψ =

[
ψCA = iΦC,AΛ ψDA = jΦD,AΛ

ψCB = kΦC,BΛ ψDB = lΦD,BΛ

]
.

Since φ, ψ is a (Λ,Λ)-interleaving between A⊕B and C ⊕D (and since no vari-

ables are eliminated from Q to Q̄) we have,

ΦΛ2

A⊕B =

[
ΦΛ2

A 0

0 ΦΛ2

B

]
=

[
(ei+ gj)ΦA,AΛ2 (fi+ hj)ΦB,AΛ2

(ek + gl)ΦA,BΛ2 (fk + hl)ΦB,BΛ2

]
Evaluating everything at m, we obtain

[
ei+ gj fi+ hj
ek + gl fk + hl

]
=

[
1 0
0 1

]
.

Since evaluation at any other element of the poset makes all equations trivial, this

identity (along with the redundant one obtained from ΦΛ2

C⊕D) is the only necessary

condition. Therefore, the space of (Λ,Λ)-interleavings between A ⊕ B and C ⊕D,

V Λ,Λ(A⊕B,C⊕D) is Gl2(K), the variety of invertible 2× 2 matrices. In particular,

many interleavings between A⊕B and C⊕D are as far from diagonal as possible.

By choosing a point in each variety separately, we obtain an interleaving be-

tween I and M . Note that although we produced many interleavings, we did not

classify the (Λ,Λ)-interleavings between I and M . This is clear, as we passed from

our original φ′, ψ′ to a pair of separate interleavings on a partition of each barcode.

In the next example we compute the full variety of interleavings between two ele-

ments of C.

Example 4.6.2. Let P be again be the 2-Vee, P = [m,x3] ∪ [m, y6]. Let (a, b) be a

weight, and set Λ = Λ2a.
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m

y1

y2

y3

y4

y5

A,C = [m, y5]

m

y1

y2

y3

AΛ, CΛ = [m, y3]

m

y1

AΛ2, CΛ2 = [m, y1]

y1

y2

y3

y4

y5

B,D = [y1, y5]

y1

y2

y3

BΛ, DΛ = [y1, y3]

y1

BΛ2, DΛ2 = [y1]

Let I = A⊕B andM = C⊕D, and let Λ = Λ2a. We will calculateV Λ,Λ(I,M), the

variety corresponding to all (Λ,Λ)-interleavings between I andM (see Proposition

4.3.12). First, consider an arbitrary such interleaving, φ, ψ. Of course, as always

this yields the standard commutative triangles. Since Λm = m, there exist no non-

zero morphisms fromA into any module not containing the minimalm. Moreover,

m ∈ Supp(σΛ) if and only if m ∈ Supp(σ). Hence, using our standard notation, it

must be the case that φAD and ψCB are identically zeros. Then, as matrices of module

homomorphisms, we have

φ =

[
φAC φBC
0 φBD

]
=

[
λΦA

CΛ ρΦB
CΛ

0 µΦB
DΛ

]
and ψ =

[
ψCA ψDA
0 ψDB

]
=

[
αΦC

AΛ γΦD
AΛ

0 βΦD
BΛ

]

Since φ and ψ constitute a (Λ,Λ)-interleaving, we obtain equations (4) and (5)

below.

ΦΛ2

I = ΦΛ2

A⊕B =

[
ΦΛ2

A 0

0 ΦΛ2

B

]
=

[
αλΦA,AΛ2 (αρ+ γµ)ΦB,AΛ2

0 βµΦB,BΛ2

]
(4.4)

ΦΛ2

M = ΦΛ2

C⊕D =

[
ΦΛ2

C 0

0 ΦΛ2

D

]
=

[
λαΦC,CΛ2 (λγ + ρβ)ΦD,CΛ2

0 µβΦD,DΛ2

]
(4.5)

Evaluating (4), we see that
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(
ΦΛ2

I

)
(m) =

[
1 0
0 0

]
,
(

ΦΛ2

I

)
(y1) =

[
1 0
0 1

]
, and

(
ΦΛ2

I

)
(x) =

[
0 0
0 0

]
for x 6= m, y1

From the evaluation at y1, we get the restrictions:

αλ = 1, βµ = 1, αρ+ γµ = 0,

the last of which only appears because ΦB,AΛ2 6= 0.

When evaluating at m, we obtain the redundant constraint αλ = 1. Since every

homomorphism in (4) has support contained in [m, y1], so there are no further

restrictions from (4).

By inspection, evaluating (5) obtains no new conditions, since

αρ+ γµ = 0 ⇐⇒ ρ = −λγµ ⇐⇒ λγ + ρβ = 0.

Therefore, V Λ,Λ(I,M) is the affine variety with coordinate ring K[λ, µ, ρ, α, β, γ]

modulo the ideal 〈λα− 1, µβ − 1, αρ+ γµ〉.

Thus, the interleavings are parametrized by two elements of K∗ and one ele-

ment of K.

We point out that in both Examples 4.6.1 and 4.6.2 there were additional degrees

of freedom for interleavings not seen when one passes to a matching. In Example

4.6.3 we realize the interleaving distance as the minimum height of a translation

with non-empty variety.

Example 4.6.3. Let P be the 1-Vee P = [m,x3], and let (a, b) be a weight, with a < b.

Consider the convex modules
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m

y1

y2

A ∼ [m, y2]

m

[m]

m

y1

B ∼ [m, y1]

We will calculate the variety V Λ,Λ(I,M) for various choices of translations. We

will use these calculations to point out the interleaving distance as in Remark 7.

Whatever translations we consider, we always set

φ =
[
φAB = αΦA,BΛ

]
and ψ =

[
ψBA = βΦB,AΛ.

]
First, let Λ = Λ0, the identity translation. We can see that there is no (Λ0,Λ0)-

interleaving between A and B, since ΦΛ2

A 6= 0 but Hom(B,AΛ) = 0. The variety of

(Λ0,Λ0)-interleavings therefore, must be the empty variety. We recover this via the

equation,

[ΦΛ2

A ] = Q̄ ·R = [0] · [αΦA,BΛ]

(using the notation of Proposition 4.3.12) which has no solution, say when eval-

uated at m. Thus, for Λ = Γ = Λ0, the variety V Λ,Γ(I,M) is empty, as required

.

Now, say Λ = Λa. Since a < b, Λa is the next largest maximal translations. Then,

AΛ ∼= B and BΛ ∼= C. Moreover, Hom(A,BΛ),Hom(B,AΛ) ∼= K. The space of

interleavings are defined by the equations

[
ΦΛ2

A

]
= Q̄ ·R =

[
αβ(ΦBΛ,AΛ2 · ΦA,BΛ)

]
,
[
ΦΛ2

B

]
= R̄ ·Q =

[
0 · β(ΦAΛ,BΛ2 · ΦB,AΛ)

]
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Note that the variable α is absent from R̄, since Hom(AΛ, BΛ2) = 0. The first

equation yields αβ = 1 by evaluating at m, and the second equation is consistent

and trivially satisfied since ΦΛ2

B = 0.

Therefore, the space of (Λa,Λa)-interleavings corresponds to the affine variety

with coordinate ring K[α, β] modulo the ideal 〈αβ − 1〉. This corresponds to a

choice of one parameter in K∗. Also, since ε = a corresponds to the first non-zero

variety, we can see that D(A,B) = a.

Now suppose that Λ = Γ = Λ2a. Then,AΛ ∼= C andBΛ ∼= 0. Also, Hom(A,BΛ) =

0 and Hom(B,AΛ) ∼= K.

The space of interleavings are defined by the equations

[
ΦΛ2

A

]
= Q̄ ·R =

[
0 · 0(ΦBΛ,AΛ2 · ΦA,BΛ)

]
,
[
ΦΛ2

B

]
= R̄ ·Q =

[
0 · β(ΦAΛ,BΛ2 · ΦB,AΛ)

]
.

Since ΦΛ2

A ,Φ
Λ2

B are both identically zero, any value of β satisfies the above equa-

tions. Therefore, in this case V Λ,Γ(A,B) corresponds to the affine variety with co-

ordinate ring K[β]. Of course, this corresponds to a choice of one parameter in

K.

On the other hand, when Λ = Γ = Λl for l ≥ 3a, AΛ = BΛ = 0. In this case,

the only interleaving between A and B is φ = ψ = 0. That is to say, tfor such

translations, V Λ,Γ(A,B) is the 0 variety.

Putting it all together, we obtain the curve below with values in the category

of affine varieties. Only the jump discontinuities are labeled. In a slight abuse of

notation, we write the coordinate rings instead of their corresponding varieties.
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ε ∈ [0, 1) ε ∈ [1, 2) ε ∈ [2, 3) ε ∈ [3,∞)
∅ K∗ K 0 . . .

Remark 8. In [MM17b] we investigate the non-democratic choice of weights on a

finite totally ordered set. Here we will show that from the perspective of topo-

logical data analysis, both potential problems associated with discretizing one-

dimensional persistence modules can be overcome. Moreover, we recover the

(classical) interleaving distance as a limit of discrete distances. In future work,

we will study the geometric formulation of interleaving distances (see Remark 7

and Example 4.6.3).
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Chapter 5

The Interleaving Distance as a Limit

This chapter is based on a collaboration with David C. Meyer [MM17b].

5.1 Motivation

This chapter is rooted in the framework of the previous chapter, but we focus our

attention on the two issues that arose with that analysis.

1. How do we go about comparing the persistence modules generated by two

different data sets if they are modules over entirely different algebras af-

ter discretization (equivalently, if they are representations over different An

quivers)?

2. How do we preserve information about the distances between discretized

scale values, rather than discretizing to a set {1, . . . , n} in which all changes

in the original simplicial complex are treated as being separated by scale dis-

tances of 1?
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5.2 Restriction and Inflation

In this section we discuss restricting and inflating the module category for A(P ).

We first make a preliminary observation. It is easy to see that for every m ∈ R and

for every n, there is a one-to-one correspondence between the sets

{(Pn, {ai}, b) : ({ai}, b) are weights for Pn} Tm←→ {(X, b) : X ⊆ R, |X| = n, min(X) = m}

Specifically, Tm sends the tuple

(
Pn, {ai}, b

) Tm−→
(
{m,m+ a1,m+ a1 + a2, ...m+

n−1∑
i=1

ai}, b
)

Clearly, this assignment is invertible. That is to say, once a left endpoint is

fixed, the triple (Pn, {ai}, b) conveys the same information as the set {m +
k∑
i=1

ai}

plus the choice of b. This is useful, as we may assume that our poset is given

by the order type of the finite subset X = {x1 < x2 < ... < xn} with weights

given by ai = xi+1 − xi for i ≤ n − 1 and b. Of course, the latter has a physical

interpretation in context of the real line. In what follows, the points in X will

include the jump discontinuities of the Vietoris-Rips complex of a data set. When

a generalized persistence module comes from the Vietoris-Rips complex of a data

set and X is a superset of the jump discontinuities of the complex, we will say that

Tm
−1(X) is the natural choice of weights on the corresponding Pn, for n = |X|. When

this is the case, we will write PX for Pn (with this choice of weights).

Definition 5.2.1. Let P be any poset, and let X ⊆ P . Suppose I is a generalized

persistence module for P with values in the category D. Let IX be defined by the

formulae;
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• IX(x) = I(x) ∈ D, for all x ∈ X , and

• IX(x1 ≤ x2) = I(x1 ≤ x2) ∈ HomD(I(x1), I(x2)) for all x1 ≤ x2, x1, x2 ∈ X.

Then IX is a generalized persistence module for X (with restricted ordering)

with values in the category D. Moreover, it is clear that by restricting morphsims

between generalized persistence modules in the obvious way we obtain a functor

from DP → DX . Of particular interest will be the case when P = R, and X ⊆ P is

a finite subset. When this is the case, we write δX for the functor

δX : DR → DX .

We now discuss from inflating from A(PX)-mod to A(PY )-mod, when X, Y are

finite subsets of Rwith X ⊆ Y . First, we work with translations.

Definition 5.2.2. Let X, Y be finite subsets of R, with X ⊆ Y . Let Λ ∈ T (PX). Let

Λ̄ be given by

Λ̄(y) =

{
max

{
y, max{Λx : x ∈ X, x ≤ y}

}
, if there exists x ∈ X, x ≤ y

y , otherwise.

Of course there is an assignment Λ → Λ̄ on T (P ) for every X, Y with X ⊆ Y .

When the context is clear, we supress the arguments X, Y . The following lemma

shows that Λ̄ is a translation on PY of the same height as Λ.

Lemma 5.2.3. Let X, Y be finite subsets of R, with X ⊆ Y . If Λ ∈ T (Px), then Λ̄ ∈

T (PY ) and h(Λ̄) = h(Λ). Moreover, Λ̄|X = Λ.

Proof. First, by inspection, for all y ∈ Y , Λ̄y ≥ y. It is also easy to see that Λ̄ restricts

to Λ on X as a function. Since its height is attained on X , h(Λ̄) = h(Λ). Now, let

t1, t2 ∈ Y , with t1 ≤ t2. We must show that Λ̄t1 ≤ Λ̄t2. Note that

max{Λx : x ∈ X, x ≤ y} = Λxy, where xy = max{x ∈ X, x ≤ y}.
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When they exist, let x1, x2 be maximal elements of X less than or equal to t1, t2

respectively.

First, suppose t1 ∈ X , t2 /∈ X . Then,

t1 ≤ x2, so Λ̄t1 = Λt1 ≤ Λx2 = Λ̄t2.

On the other hand, say t1 /∈ X, t2 ∈ X . If Λ̄t1 = t1, then Λ̄t1 = t1 ≤ t2 ≤ Λt2 =

Λ̄t2. Otherwise, Λ̄t1 = Λx1. Then, x1 ≤ t1 ≤ t2, so Λx1 ≤ Λt2 and Λ̄t1 = Λx1 ≤ Λt2 =

Λ̄t2. The remaining cases are handled similarly.

We now include the category A(PX)-mod inside A(PY )-mod when X ⊆ Y and

X, Y are finite subsets of R.

Definition 5.2.4. Let X, Y be finite subsets of R, with X ⊆ Y . Let I ∈ A(PX)-mod.

Define j(X, Y )I by the formulae;

j(X, Y )I(y) =

{
I(xy), xy maximal in X, xy ≤ y, or

0, if no such xy exists.
(5.1)

j(X, Y )I(y1 ≤ y2) =

{
I(x1 ≤ x2), where xi is maximal in X, xi ≤ yi, or

0, if either of the above do not exist.
(5.2)

It is clear that Equations (5.1), (5.2) define a module for the algebra A(PY ). Note

that if I is a convex module for PX , I ∼ [a, b], then j(X, Y )I ∼ [a, by], where by is

maximal in Y ∩ [b, b+1), where b+1 is the successor of b in X . That is to say, the

right endpoint of the support of I may move to the right. We now discuss how

morphisms in A(PX)-mod can be extended to the image of j(X, Y ).
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Definition 5.2.5. Let X, Y be finite subsets of R, with X ⊆ Y . Let I,M be modules

for A(PX), and let α ∈ Hom(I,M). Let j(X, Y )α be defined by the formula

j(X, Y )α(y) =

{
α(xy), where xy is maximal with xy ∈ X, xy ≤ y, or

the zero homomorphism, if no such element exists.

Then, j(X, Y )α defines anA(PY )-module homomorphism from j(X, Y )I to j(X, Y )M .

The proof follows from the commutativity of the diagrams below.

I(x1) M(x1) j(I(y1)) j(M(y1))

I(x2) M(x2) j(I(y2)) j(M(y2))

α(x1)

I(x1≤x2)

α(x2)

M(x1≤x2)

j(α(y1))

j(I(y1≤y2))
j(α(y2))

j(M(y1≤y2))
j

We are now ready to compare different one-dimensional persistence modules.

Let D1, D2, ..., Dn be finite data sets in some metric space. Let Li be the set of

jump discontinuities of the Vietoris-Rips complex of Di, and let L = L1 ∪ L2 ∪

... ∪ Ln. Let ∆(D1, D2, ..., Dn) be the collection of all finite supersets of L. Clearly

L is a directed set under the partial ordering given by containment. Note that

for all i the one-dimensional persistence modules coming from the data set Di

admits the structure of an A(PX)-module for any X in ∆(D1, D2, ..., Dn). Thus,

we may compare discretized persistence modules which are a priori modules for

different poset algebras. Since clearly any finite set of one-dimensional persistence

modules can be compared in this way, from this point forward we write ∆(D) for

∆(D1, D2, ..., Dn).

Proposition 5.2.6. Let I be a one-dimensional persistence module that comes from data.

Say D1, . . . , Dn are such that the jump discontinuities of the Vietoris-Rips complex of I
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are contained in the corresponding set L. Let X, Y ∈ ∆(D), with X ⊆ Y . Then, j(X, Y )

is a fully-faithful functor from A(PX)-mod to its image in A(PY )-mod. Moreover, j(X, Y )

commutes with δX , δY in the sense that (j(X, Y ) ◦ δX)I = δY I .

Proof. One easily checks that j(X, Y )(β ◦ α) = j(X, Y )β ◦ j(X, Y )α. Now say

X, Y ∈ ∆(D), where I is as above. We will show the commutativity of the tri-

angle below.

I

δXI δY I

δX δY

j(X,Y )

First, say I is convex, with I ∼ [t, T ). Let y ∈ Y ∩ [t, T ). Then, since t ∈ X ∩ Y ,

there exists x ∈ X with x ≤ y. Thus, let xy be maximal in X , with xy ≤ y. Since

I is convex, it is enough to show that j(X, Y )δXI(y) = δY I(y) = K. As y ∈ [t, T ),

t ≤ xy ≤ y < T , so j(X, Y )δXI(y) = δXI(xy) = I(xy) = K. Similarly, δY I(y) =

I(y) = K as required, so the result holds for I convex. The general case follows

since all the above functors distribute through direct sums. J(X, Y ) is fully faithful

by the characterization of homomorphisms between convex modules and since

j(X, Y ) is one-to-one on isomorphism classes of objects.

Moreover, the following lemma shows that j(X, Y ) is compatible with the as-

signment Λ→ Λ̄ (for X, Y ).

Lemma 5.2.7. Let X, Y be finite subsets of R, with X ⊆ Y . Let Λ ∈ T (PX), and let I,M

be A(PX)-modules. Suppose α ∈ Hom(I,M). Then,

(i.) j(X, Y )(IΛ) = (j(X, Y )I)Λ̄, and

(ii.) j(X, Y )(αΛ) = (j(X, Y )α)Λ̄.

142



Proof. Let y ∈ Y , zy the maximal element of X such that zy ≤ y.

Then (j(X, Y )I)Λ̄(y) = (j(X, Y )I)Λ(zy) = I(Λ(zy)) = (IΛ)(zy) = j(X, Y )(IΛ)(y).

Similarly, j(X, Y )αΛ̄(y) = j(X, Y )αΛ(zy) = αΛ(zy) = (αΛ)(zy) = j(X, Y )(αΛ)(y).

The results in this section are used in the next section where we prove our alge-

braic stability theorems.

5.3 The Shift Isometry Theorem

In this section we show that an interleaving need not produce on induced matching

of the same height. Since the existence of such a matching is the key step in the

proof of an isometry theorem, this provides an obstruction to proving an isometry

theorem for A(Pn)-mod. We then prove a (shifted) isometry theorem by enlarging

the category A(Pn)-mod. We begin with an example illustrating the failure of the

”matching theorem.” For a lengthier discussion, see Subsection 5.5.

Example 5.3.1. Let P = P6 = {x1 < ... < x6} with weights a1, a3, a4 = 1 and

a2, a5 = 2. Let Λ = Λ2 and consider the convex modules with supports depicted

below.
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x6

x5

x4

x3

x2

x1

A

AΛ

AΛ2

C

CΛ

D

DΛim(φ)

Let φ = ΦA,DΛ and ψ = ΦD,AΛ. It is immediate that φ, ψ correspond to a (Λ2,Λ2)-

interleaving. However, the induced matching pairs A l C which are not (Λ2,Λ2)-

interleaved as ΦC,AΛ = 0. Thus, the induced matching corresponding to ψ does not

generate a matching of the correct height. We can cause both induced matchings

to fail by taking I = A⊕ (C ⊕D) and M = (C ⊕D)⊕ A to be (Λ2,Λ2)-interleaved

by morphisms φ′ = φ⊕ ψ and ψ′ = ψ ⊕ φ.

It is important to note that this does not say that the interleaving distance be-

tween A,C ⊕ D is not the bottleneck distance. In fact, they are the same. This

simply says that the only known algorithm for producing a matching with the

same height as the interleaving fails in this situation.

We now work towards the proof of the shift isometry theorem. First we show

that we enlarge the category, the functor j is a contraction.

Proposition 5.3.2. For X, Y finite subsets of R, X ⊆ Y , the functor j(X, Y ) is a con-

traction from A(PX)-mod equipped with DX to its image in A(PY )-mod equipped with

DY .
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Proof. Let I,M ∈ A(PX)-mod. Suppose I,M are (Λε,Λε)-interleaved in PX . It

suffices to show that j(X, Y )I and j(X, Y )M are (Γ,Γ)-interleaved in PY with

h(Γ) ≤ ε. By Lemma 5.2.7, j = j(X, Y ) gives the following progression of dia-

grams.

ΦI,IΛ2

φ ψΛ

j(X,Y )(ΦI,IΛ2)

j(X,Y )(φ) (j(X,Y )ψ)Λ̄
j

I IΛ2

MΛ

j(X,Y )I (j(X,Y )I)(Λ̄)2

(j(X,Y )M)Λ̄

The result is now obtained by letting Γ = Λ̄ε and noting that h(Λ̄) = ε by Lemma

5.2.3.

We will now construct a particular refinement of X . This will give rise to the

appropriate enlarged module category. LetX ⊆ R be finite. Let Y = X∪{x−ε : x ∈

X, ε ∈ N1} where N1 denotes the set of all distances between points in X . Order

the finite set Y = {y1 > y2 > . . . > yn} by greatest to least on the real number line.

Let

Z1 = Y ∪ {zy1 − ε : for all ε ∈ N1, with zy1 maximal in Y such that zy1 < y1}.

Next, let

Z2 = Z1 ∪ {zy2 − ε : for all ε ∈ N1, with zy2 maximal in Z1 such that zy2 < y2}.

For the i-th step in the process, let

Zi+1 = Zi∪{zyi+1
−ε : for all ε ∈ N1, with zy1+1 maximal in Zi such that zyi+1

< yi+1}.

Since Y is finite, the process terminates after n steps. Let Sh(X) be the set Zn. We

will call Sh(X) the shift refinement of the set X .
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Lemma 5.3.3. LetX be a finite subset ofR. For q ∈ Sh(X), let q+1, q−1 denote subsequent

and previous elements in Sh(X) respectively, where applicable. Then, Sh(X) has the

property that for every x ∈ X and ε ∈ N1, (x− ε)−1− ε ∈ Sh(X). Equivalently, for every

q ∈ Y and ε ∈ N1, q−1 − ε is in Sh(X).

Proof. Let q ∈ Y , ε ∈ N1. For any 1 ≤ i ≤ n and k ≥ i − 1, by construction the

maximal element of Zk strictly less than yi is in fact precisely y−1
i ∈ Sh(X). Hence,

q = yi for some 1 ≤ i ≤ n, and so q−1 − ε ∈ Sh(X).

We are now ready to prove our main result.

Theorem 5.3.4 (Shift Isometry Theorem). Let X1 ⊆ R be finite and Sh(X1) be its

shift refinement. Let PX1 and PSh(X1) be the corresponding totally ordered sets. Let

C be the full subcategory of A(PSh(X1))-mod given by C = im(j(X1, Sh(X1))) and let

DSh(X1), DSh(X1)
B be the interleaving metric and bottleneck metric respectively. Let j =

j(X1, Sh(X1)), and Id denote the identity. Then, the horizontal arrow is an isometry and

the diagonal arrows are contractions.

j j

Id

(A(PX)-mod, DX)

(C, DSh(X)) (C, DSh(X)
B )

Proof. Let X ⊆ R be finite and Sh(X) be its shift refinement. Let C be the sub-

category given by im(j(X,Sh(X))). First, by Proposition 5.3.2 the functor j =

j(X,Sh(X)) is a contraction from

(A(PX)-mod, DX)→ (C, DSh(X)).
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Thus, it suffices to show that the identity is an isometry from

(C, DSh(X))→ (C, DSh(X)
B ).

Let I,M ∈ im(j(X,Sh(X))). Since an ε-matching immediately produces a di-

agonal interleaving of the same height, D ≤ DB. To show the other inequality, we

will prove that for any (Λ,Λ)-interleaving φ, ψ, the induced matching of the trian-

gle beginning at I is a h(Λ)-matching. The proof of this inequality will consist of

the following three parts.

1. If W (Is) > h(Λ), then Is is matched.

2. If W (Mt) > h(Λ), then Mt is matched.

3. If Is and Mt are matched with each other (independent of their W values),

then there is a (Λ,Λ)-interleaving between Is and Mt.

The proof of (1), (2) proceed as in Theorem 2 [MM17a] with an additional con-

sideration. Specifically, in the present situation it is possible for non-isomorphic

convex modules inB(I) to be matched with isomorphic convex modules inB(I−Λ2
).

Thus, we will choose a particular enumeration of each multisubset I−Λ2

[x,−] of Σ[x,−]

(see Section 4.4). If σ−Λ2

1
∼= σ−Λ2

2 in I−Λ2

[x,−], then we set σ−Λ2

1 < σ−Λ2

2 if σ1 < σ2 in I[x,−].

This was not a concern in [MM17a], since for the democratic choice of weights

σ1
∼= σ2 if and only if σ−Λ2

1
∼= σ−Λ2

2 . In our present situation, the above choice of

enumeration ensures commutativity of the appropriate triangle for (1). The proof

of (2) is similar. Note that the arguments for (1), (2) do not require any special

properties of the poset PSh(X).
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We will now prove (3). We show that if Is and Mt are matched by the induce

matching, then they are (Λε,Λε)-interleaved. Let Is ∼ [u, U ], IsΛε ∼ [w,W ], Mt ∼

[z, Z], and MtΛε ∼ [v, V ].

If W (I),W (M) ≤ ε, then I and M are immediately (Λε,Λε)-interleaved by

φ, ψ = 0. Assume that W (I) > ε or W (M) > ε. Then, s ∈ S ′ or t ∈ T ′ using

the notation in Theorem 2 [MM17a]. We will show that the following morphisms

constitute a (Λε,Λε)-interleaving of Is and Mt. Let φ′ = ΦIs,MtΛ by the linearization

of χ([u, V ]), and similarly ψ′ = ΦMt,IsΛ. Proceeding as in [MM17a] we will show

that

w ≤ z ≤ W ≤ Z

whenever s ∈ S ′ or t ∈ T ′. It is enough to show that the following four statements

hold.

(i.) If t ∈ T ′, then w ≤ z.

(ii.) If s ∈ S ′, then z ≤ W and W ≤ Z.

(iii.) If s ∈ S ′ and t 6∈ T ′, then w ≤ z.

(iv.) If s 6∈ S ′ and t ∈ T ′, then z ≤ W and W ≤ Z.

We now prove (i.) through (iv.). First, if t ∈ T ′, we may define v0 to be the

lower endpoint of M+Λ2

t Λ, equivalently the minimal vertex such that Λv0 ≥ Λ2z.

As Λ(Λz) ≥ Λ2z, by minimality v0 ≤ Λz. Furthermore, w is minimal such that

Λw ≥ u. Now, as u ≤ v0 (by properties of induced matchings) and v0 ≤ Λz (by

above), u ≤ Λz and so minimality of w guarantees that w ≤ z. This proves (i.).

148



For (ii.), note that by hypothesis v is minimal such that Λv ≥ z. By properties of

induced matchings v ≤ u, and so Λv ≤ Λu. Combining these inequalities, z ≤ Λu.

Then, s ∈ S ′ guarantees that Λ2u ≤ U . Since W is maximal such that ΛW ≤ U ,

we have that Λu ≤ W . Combining this with the above inequality, it follows that

z ≤ W . To prove the second inequality in (ii.), we first claim that W = ΛU0, where

U0 is the maximal element such that Λ2(U0) ≤ U . Once this is established, since

ΛV ≤ Z and U0 ≤ V by the properties of induced matchings, we will have that

W = ΛU0 ≤ ΛV ≤ Z.

Thus, we need only verify that W = ΛU0. By definition, ΛU0 ≤ W . To show the op-

posite inequality we will first show that W ∈ Im Λ. Since [u, U ] ∈ im(j(X,Sh(X))),

it is immediate that U+1 ∈ X , and so U+1−ε ∈ Y . Note that since the distance from

U+1 − ε to U+1 is precisely ε, we must have W ≤ (U+1 − ε)−1. Furthermore, maxi-

mality of W ensures that ΛW+1 > U , so W+1 ≥ U+1 − ε, so W ≥ (U+1 − ε)−1. This

verifies thatW = (U+1−ε)−1. By Lemma 5.3.3,W−ε ∈ Sh(X). Since Λ(W−ε) = W ,

we have that W is in the image of Λ, as desired. Hence, as Λ2(W − ε) = ΛW ≤ U ,

it must be that U0 ≥ W − ε, and so ΛU0 ≥ W . Thus, W = ΛU0 as required. This

completes the proof of (ii.).

We will now prove (iii.). First, IΛε = [w,W ], where w = u − ε, and so Λw = u.

Since s ∈ S ′ we know Λ2u ≤ U , and so Λ(Λ2w) ≤ u. By the maximality of W under

the condition ΛW ≤ U , we have that Λ2w ≤ W . Finally, using (ii.) and the fact

that t 6∈ T ′ guarantees that Λ2z > Z, we have that Λ2w ≤ W ≤ Z < Λ2z, so by

monotonicity w < z. This proves (iii.).

For (iv.), one can check that ΛW ≤ U < Λ2u ≤ Λ2v0 = Λ3z ≤ ΛZ, so by
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monoticity W < Z.

Thus, we have shown that ψ′ = ΦMt,IsΛ 6= 0. To finish, by Corollary 5.4.2 in the

next section, φ′, ψ′ comprise a (Λε,Λε)-interleaving between Is and Mt, completing

the proof of (3). This finishes the proof of Theorem 5.3.4. Note that the requirement

that we work in Sh(X) only appears in the latter half of (ii.) and in (iii.).

5.4 Interleaving Distance as a Limit

We will now use the results from the last section to recover the classical interleav-

ing distance as a limit.

Lemma 5.4.1. Let I,M be convex modules for A(PX) (with its natural metric d) and say

I ∼ [u, U ] and M ∼ [z, Z]. Then,

D(I,M) ≤ min{max{W (I),W (M)},max{d(u, z), d(U+1, Z+1)}}.

Proof. Let γ denote the quantity on the right hand side above. If γ = max{W (I),W (M)},

the result is obvious, since φ, ψ = 0 constitute a (Λγ,Λγ)-interleaving between I and

M .

On the other hand, suppose γ < max{W (I),W (M)}. Let Λ = Λδ and let φ =

ΦI,MΛ and ψ = ΦM,IΛ. Let IΛ ∼ [w,W ] and MΛ ∼ [v, V ]. By choice of γ, it is

immediate that v ≤ u and V ≤ U . We will show that u ≤ V . Similarly, we know

that w ≤ z andW ≤ Z both hold, and will show that z ≤ W . We will then establish

the commutativity of both interleaving triangles.

By assumption, at least one of I,M has width strictly larger than γ. Suppose

that W (I) > δ. First, we’ll show u ≤ V , which means that ΦI,MΛ is non-zero. Since

d(Z+1, U+1) ≤ γ and W (I) > γ, it must be that Λ2u < U+1, and so d(Λu, U+1) > γ.
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This says that Λu < Z+1, i.e., Λu ≤ Z. By maximality of V , u ≤ V . Hence,

φ = ΦI,MΛ, the linearization of χ([u, V ]) is not identically zero.

We next show that ΦM,IΛ is non-zero. If W (M) > γ, we are done by symmetry.

Thus, assume W (M) ≤ γ, and W (I) > γ. Since d(u, z) ≤ δ we have that z ≤ Λu.

As W (I) > δ, it must be that Λ2u ≤ U , so by maximality of W , Λu ≤ W . Hence,

combining inequalities we have z ≤ W , and so ψ = ΦM,IΛ 6= 0.

Thus we have shown that when γ < max{W (I),W (M)}, φ, ψ are both non-zero.

It remains to show that φ, ψ give commutative interleaving triangles.

Suppose that W (I) > γ. To show that the triangle beginning with I commutes

we need only show that ψΛ ◦ φ 6= 0. By inspection, (ψΛ ◦ φ)(u) 6= 0 as required.

By symmetry, ifW (M) > γ, we are done. Thus, we need only show the commu-

tativity of the other triangle when W (M) ≤ γ. However, since Hom(M,MΛ2) = 0,

φΛ ◦ ψ = 0 as required.

Hence, φ, ψ are a (Λγ,Λγ)-interleaving between I and M , so D(I,M) ≤ γ.

Corollary 5.4.2. Let Λ be a maximal translation of height h(Λ). Let I,M be convex

modules for A(PX). Say I ∼ [u, U ] and M ∼ [z, Z]. If ΦI,MΛ and ΦM,IΛ are both non-

zero, then I,M are (Λ,Λ)-interleaved.

Proof. Let ΦI,MΛ and ΦM,IΛ are both non-zero only if h(Λ) ≥ max{d(u, z), d(U+1, Z+1)} ≥

γ. By Lemma 5.4.1, γ ≥ D(I,M), hence I,M are (Λγ,Λγ)-interleaved, and so they

are also (Λ,Λ)-interleaved as h(Λ) ≥ γ.

The next Proposition also follows from Lemma 5.4.1.

Proposition 5.4.3. Let X ⊆ R be finite, I,M be indecomposables in A(PX)-mod with

151



I ∼ [u, U ], M ∼ [z, Z]. Then,

D(I,M) = min{max{W (I),W (M)},max{d(u, z), d(U+1, Z+1)}}.

Proof. By Lemma 5.4.1, we need only show that D(I,M) ≥ γ. Let ε = D(I,M) and

let Λ = Λε. If φ, ψ = 0 is a (Λ,Λ)-interleaving between I and M it must be that

h(Λ) ≥ max{W (I),W (M)}, and so D(I,M) ≥ γ.

Otherwise, it must be that, without loss of generality, ΦI,IΛ2 6= 0. Hence, to have

a commutative triangle beginning at I , it must be that φ, ψ are both non-zero. But,

Hom(I,MΛ) and Hom(M, IΛ) are both non-zero only if h(Λ) ≥ max{d(u, z), d(U+1, Z+1)},

and so D(I,M) ≥ γ.

We now connect our work to persistent homology. Again, let D1, D2, ...Dn be

finite data sets in some metric space, and let L ⊆ R be the corresponding union

of the jump discontinuities of their Vietoris-Rips complexes. Let X ∈ ∆(D), and

let DX denote the corresponding interleaving metric and on the category A(PX)-

mod. Similarly, letWX denote the width of a convexA(PX)-module. We now work

towards the proof of the following theorem:

Theorem 5.4.4. Let I,M be persistence modules (for R ) whose endpoints lie in L. Then,

lim
X∈∆(D)

(
DX(δXI, δXM)

)
= D(I,M).

This will show that the classical interleaving distance can be recovered as the

limit over the directed set ∆(X). If I is a one-dimensional persistence module

coming from data, we say that I has endpoints in L if the jump discontinuities of

the Vietoris-Rips complex of I are contained in L.
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Lemma 5.4.5. Let σ be any convex one-dimensional persistence module (for R) whose

endpoints are contained in L, say σ ∼ [r, R). Then,

lim
X∈∆(D1,D2)

(
WX(δXσ)

)
= W (σ) =

R− r
2

.

Proof. Let ε > 0 ∈ R. Let Y = Y (ε) be any element of ∆(D) such that

(i.) the max(Y ) > max(L), and

(ii.) the difference between consecutive elements of Y ∩ [m,M + ε] is less than 1
2
ε.

Note that any superset of Y necessarily satisfies (i.), (ii.) as well. Let X ′ ∈ ∆(D)

with X ′ > Y . Then,

WX′(δX
′
σ) = min

{{
max

{
x− r, R− x

}
: x ∈ X ′ ∩ [r, R)

}
.

Since R−r
2

must be within 1
2
ε of some x, clearly

∣∣WX′(δX
′
σ))−W (σ)

∣∣ < ε as required.

We point out that condition (i.) above removes the consideration of the weight

”b” from the discussion. Next we will show that if σ, τ are convex one-dimensional

persistence modules (for R) then their interleaving distance can be recovered as a

discrete limit as well. This establishes Theorem 5.4.4 for convex modules.

Lemma 5.4.6. Let σ, τ be any convex one-dimensional persistence modules whose end-

points are contained in L. Say σ ∼ [r, R), τ ∼ [s, S). Then,

lim
X∈∆(D)

(
DX(δXσ, δXτ)

)
= D(σ, τ).
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Proof. Proceeding as in the proof of Lemma 5.4.6, let ε be positive and set Y =

Y (ε) ∈ ∆(D). Let X ′ ∈ ∆(D) with X ′ > Y . Then, by Proposition 5.4.3,

DX′(δX
′
σ, δX

′
τ) = min

{
max{WX′(δX

′
σ),WX′(δX

′
τ)}, max{|r − s|, |R− S|}

}
.

Clearly, this is within ε of

D(σ, τ) = min
{

max{W (σ),W (τ)}, max{|r − s|, |R− S|}
}
,

by Lemma 5.4.5. The result follows.

Now that we have established Lemmas 5.4.5, 5.4.6, we are ready to prove The-

orem 5.4.4

Proof. Let I,M be one-dimensional persistence modules whose endpoints lie in L.

Let γ > 0, and let ε be such that

ε− 1

2
γ < D(I,M) ≤ ε

Let Y ∈ ∆(D) be such that

(i.) max(Y ) > max(L), and

(ii.) yi+1 − yi < 1
8
γ, for yi ∈ Y ∩ [m,M + 1

4
δ]

Let X ′ ∈ ∆(D), with X ′ ⊇ Y . We will show that

D(I,M)− δ < DX′(δX
′
I, δX

′
M) ≤ D(I,M) ≤ D(I,M) + γ

First, let δX′σ ∈ B(δX
′
I) ∪ B(δX

′
M), and say WX′(δX

′
σ) > ε + 1

2
γ. Since ε ≥

D(I,M), there exists a (Λε,Λε)-interleaving between I and M . But then, by the
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isometry theorem of Bauer and Lesnick ([BL13]), there is an ε-matching between

B(I) and B(M). But then, we have that

W (σ) +
1

2
γ > WX′(δX

′
σ) > ε+

1

2
γ, so W (σ) > ε.

Therefore σ is matched with some τ in the opposite barcode. So by hypothesis,

D(σ, τ) = min
{

max{W (σ),W (τ)}, max{|r − s|, |R− S|}
}

where σ ∼ [r, R) and τ ∼ [s, S).

But,

max
{
WX′(δX

′
σ),WX′(δX

′
τ)
}
≤ max

{
W (σ) +

1

2
γ,W (τ) +

1

2
γ
}

=

max
{
W (σ),W (τ)

}
+

1

2
γ.

Therefore,

DX′(δX
′
σ, δX

′
τ) ≤ D(σ, τ) +

1

4
γ ≤ ε+

1

2
γ < D(I,M) + γ.

So, the assignment δX′σ l δX′τ ⇐⇒ σ l τ defines a diagonal interleaving

(a matching) between δX
′
I and δX

′
M of height ε + 1

2
γ. Thus, DX(δX

′
I, δX

′
M) ≤

D(I,M) + γ as required.

Now, if DX′(δX
′
I, δX

′
M) ≥ D(I,M) − γ we are done. Thus for a contradiction

suppose that DX′(δX
′
I, δX

′
M) < D(I,M) − γ. Then, there exists a weight ε for X ′

with ε < D(I,M) − γ and there exists a (ΛX′
ε ,Λ

X′
ε )-interleaving between δX

′
I and

δX
′
M , where ΛX′

ε is the maximal translation of height ε for PX′ . Then, by Theorem

5.3.4 there is an ε-matching between B(j(X ′, Z)δX
′
I) and B(j(X ′, Z)δX

′
M) for Z =

Sh(X ′). By Proposition 5.2.6,

j(X ′, Z)δXI = δZI and j(X ′, Z)δXM = δZM.
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Thus, there is an ε-matching between B(δZI) and B(δZM). Now, say W (σ) >

ε+ 1
2
γ. Then,

WZ(δZσ) ≥ W (σ) > ε+
1

2
γ > ε.

Therefore, σZ l τZ for some element δZτ of the opposite barcode, with

DZ(σZ , τZ) ≤ ε < D(I,M)− γ.

Therefore, define the matching σ l τ ⇐⇒ σZ l τZ . But then,

D(σ, τ) ≤ DZ(σZ , τZ) +
1

2
γ ≤ ε+

1

2
γ < D(I,M)− 1

2
γ.

This matching shows that

D(I,M) ≤ ε+
1

2
γ < D(I,M)− 1

2
γ.

As this is clearly a contradiction, so it must be the case that DX′(δX
′
I, δX

′
M) ≥

D(I,M)− γ as required. The result is proven.

5.5 Regularity

As we have seen, the poset Pn with arbitrary choice of weights has the property

that an interleaving between two modules need not produce an induced matching

of barcodes of the same height (see Example 5.3.1). While this does not necessarily

mean that the isometry theorem is false in this context, it is clearly an obstruction

to its proof. In this section, we show that when we identify (Pn, {ai}, b) with PX ,

X ⊆ R, unless X satisfies certain regularity conditions there will always exist in-

terleavings whose induced matchings do not have the same height. One would

not expect such regularity for a poset PX which comes from real world data.
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In what follows, it is convenient to work with maximal translations. We will

define what it means for a poset to be regular after examining some conditions on

maximal translations.

Let xi < xl in X , and let Λ = Λ(xl−xi). Suppose that

(a) xl+1 < Λ(xi+1),

(b) Λ(xl+1) < Λ2(xi+1), and

(c) Λ(xi−1) > xi−1.

Then, one can produce an interleaving whose induced matching has strictly larger

height. If X is identically the set of jump discontinuities of a data set, one would

expect the the existence of some xi < xl satisfying the above.

On the other hand, if X avoids conditions (a) or (b) for all xi < xl we say that

X will be regular. Property (c) is a purely technical condition that will not be com-

mented on further. Roughly speaking, a regular set has a periodicity associated

both with its elements and the spaces between its elements. We now define reg-

ularity. After the definition, we connect regularity to the absence of a maximal

translation of the form above.

Definition 5.5.1. Let X be a finite subset of R, and let xi ∈ X = {x1 < x2 < ... <

xn}. Then, X is regular at xi if for all xl > xi, either

(i.) xl+2 − xl > xi+1 − xi, or

(ii.) xl+2 − xl ≤ xi+1 − xi, and xk+1 > xl+t + xl − xi, where t be maximal such that

xl+t − xl ≤ xi+1 − xi, and Λ(xl−xi)(xl+1) = xk.
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We say that the set X is regular if X is regular at every xi ∈ X .

We now explain regularity at xi. Let ε = xl − xi and Λ = Λε, and note that

Λ(xi) = xl and Λ(xl+1) = xk. In addition, by the choice of t it is always the case that

Λ(xi+1) = xl+t. Clearly, if xi is regular and xi < xl, exactly one of (i.), (ii.) hold.

First, if (i.) holds at xl the spacing of points in the poset X is uniform in the

sense that the length of the edge from xi to xi+1 is surpassed by the sum of the two

consecutive edges xl to xl+2. In terms of the translation Λ, property (i.) says that

0 ≤ t < 2 or Λ(xi+1) ≤ xl+1. This is the negation of (a) above. On the other hand,

if (ii.) holds at xl, the ”hole” in X given by the edge from xi to xi+1 is periodic.

Specifically, there are no vertices inX contained in the real interval (xl+1+ε, xl+t+ε]

(see the figure below). In terms of the translation Λ, property (ii.) corresponds to

the statement that Λ(xl+1) = Λ(xl+t). Of course, this is the negation of (b) above.

Λ(xi) = xl
Λ(xi+1) = xl+t

Λ(xl+1) = xk
Λ(xl+t) = xk

xi xi+1 xl xl+1 xl+t

xl+1 + ε xl+t + ε

xk xk+1. . . . . . . . .

|xi+1 − xi|
|xl+t − xl+1||xl+t − xl|≥

Of course, if X is regular, it is regular at every xi. Of particular interest is the

case in which xi+1 − xi is large. Then, for all xl with xi < xl where (i.) is satisfied,

the sum of the two edges after xl must be long. Thus, since xi+1 − xi is large, the

distances xl+2−xl+1, xl+1−xl taken together must also be large. Alternatively, if (ii.)

is satisfied then a hole close to the size of xi+1 − xi must be repeated at a distance

of exactly ε away from xl+1. Since the distance xi+1 − xi is large, this says that

158



large holes must be repeated regularly. We emphasize that the above statements

must hold for all xi ∈ X if X is regular. Alternatively, if X fails to be regular

(with an addition technical condition), then there always exist interleavings whose

corresponding induced matchings have strictly larger heights.

Proposition 5.5.2. If X is not regular at some xi < xl where xi−1 is not fixed by Λ(xl−xi),

then there exists an interleaving whose induced matching has strictly larger height (see

Example 5.3.1).

Proof. By the above remarks, let xi < xl be such that the translation Λ = Λ(xl−xi)

has the properties xl+1 < Λ(xi+1), Λ(xl+1) < Λ(xl+t) and xi−1 is not fixed by Λ.

Let ε = xl − xi, and let Λ = Λε. Consider the following convex modules, A ∼

[xi,Λ(xl+1)], C ∼ [xi, xl], and D ∼ [xl, xl+t′ ], where 1 ≤ t′ < t is maximal such that

Λ(xl+t′) = Λ(xl+1). Note that the vertex xl+t′ is also the upper endpoint of AΛ.

We then define the (Λε,Λε)-interleaving between A and C ⊕D by the diagonal

morphisms φ = ΦA,DΛ, ψ = ΦD,AΛ. One easily checks that this is indeed an inter-

leaving. However, the induced matching corresponding to the triangle beginning

at φ matches A with C. Clearly A and C are not (Λ,Λ)-interleaved, as W (A) > ε

but ΦC,AΛ = 0. Proceeding as in Example 5.3.1 by setting I = A ⊕ (C ⊕ D),M =

(C ⊕ D) ⊕ A with φ′ = φ ⊕ ψ and ψ′ = ψ ⊕ φ we produce an interleaving where

both induced matchings have strictly larger height.
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Λ(xl+1)

...

xl+t′

...

xl+1

xl

...

xi+1

xi

xi−1

A

AΛ

AΛ2 im(φ)

C

CΛ

D

DΛ

This analysis shows that proof of the ”matching theorem” is likely to fail for the

poset PX . Therefore, it is necessity (at this point) to enlarge the category to obtain

an isometry on A(PX)-mod in the sense of Theorem 5.3.4.
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