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ABSTRACT	

     Protein secondary structure, backbone torsion angle and other secondary structure 

features can provide useful information for protein 3D structure prediction and protein 

functions. Deep learning offers a new opportunity to significantly improve prediction 

accuracy. In this dissertation, several new deep neural network architectures are proposed 

for protein secondary structure prediction: deep inception-inside-inception (Deep3I) 

networks and deep neighbor residual (DeepNRN) networks for secondary structure 

prediction; deep residual inception networks (DeepRIN) for backbone torsion angle 

prediction; deep dense inception networks (DeepDIN) for beta turn prediction; deep 

inception capsule networks (DeepICN) for gamma turn prediction.  Every tool was then 

implemented as a standalone tool integrated into MUFold package and freely available to 

research community. A webserver called MUFold-SS-Angle is also developed for protein 

property prediction.  

     The input feature to those deep neural networks is a carefully designed feature matrix 

corresponding to the primary amino acid sequence of a protein, which consists of a rich set 

of information derived from individual amino acid, as well as the context of the protein 

sequence. Specifically, the feature matrix is a composition of physio-chemical properties 

of amino acids, PSI-BLAST profile, HHBlits profile and/or predicted shape string. The 

deep architecture enables effective processing of local and global interactions between 

amino acids in making accurate prediction. In extensive experiments on multiple datasets, 

the proposed deep neural architectures outperformed the best existing methods and other 

deep neural networks significantly:  The proposed DeepNRN achieved highest Q8 75.33, 
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72.9, 70.8 on CASP 10, 11, 12 higher than previous state-of-the-art DeepCNF-SS with 

71.8, 72.3, and 69.76. The proposed MUFold-SS (Deep3I) achieved highest Q8 76.47, 

74.51, 72.1 on CASP 10, 11, 12. Compared to the recently released state-of-the-art tool, 

SPIDER3, DeepRIN reduced the Psi angle prediction error by more than 5 degrees and the 

Phi angle prediction error by more than 2 degrees on average. DeepDIN outperformed 

significantly BetaTPred3 in both two-class and nine-class beta turn prediction on 

benchmark BT426 and BT6376. DeepICN is the first application of using capsule network 

to biological sequence analysis and outperformed all previous gamma-turn predictors on 

benchmark GT320. 
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CHAPTER	1 INTRODUCTION	

1.1 Protein	Sequence,	Structure	and	Function	

     Protein sequence, or called primary structure of protein, is a sequence of amino acid 

residues, pair of which is connected by peptide bonds (Sanger and Thompson, 1953). Each 

amino acid can be one of the twenty different amino acid residues. 

     Protein secondary structures can be alpha helix, beta sheet, and coil (Pauling and Corey, 

1951). The secondary structure of a protein can provide constraints to the protein sequence. 

Due to hydrophobic forces and side chain interactions between amino acids, protein 

sequence will fold into stable tertiary structure (Dill, 1990). Two or more tertiary structures 

will bind together to form the protein quaternary structure. 

     Previous research work has found that protein structures can determine the protein 

function (Kendrew et al., 1960; Bjorkman and Parham, 1990). Proteins functions can be 

enzymatic catalysis, transport and storage, coordinated motion, mechanical support, 

immune protection, generation and transmission of nerve impulses, and control of growth 

and differentiation (Laskowski et al., 2003). To understand better what protein functions 

are, it is important to discovery the protein tertiary structure. 

     Currently, scientists applied physical methods to determine the protein tertiary structure 

by using X-ray Crystallography (Bragg, 1975) and Nuclear Magnet Resonance (NMR) 

spectroscopy (Wuthrich, 1986). So far, the number of discovered protein structure are 

around 125,000 by the year of 2017 according to the statistics in the Protein Data Bank 

(PDB) (Berman et al., 1999). However, there are still millions of protein sequences, whose 
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structure remains unknown and it is time-consuming and labor-intensive to use the 

abovementioned physical methods to discover the protein tertiary structure. 

     Early researchers found that the protein sequence can dictate a tertiary structure (Sanger 

and Thompson, 1953; Anfinsen, 1973), which has founded a heated research area: 

predicting a protein tertiary structure from its sequence in computational or structural 

biology. On one hand, predicting protein tertiary structure from its sequence can save time 

and labor; on the other hand, it provides imperative and useful information to medical 

sciences such as drug design (Jacobson and Sali, 2004). 

1.2 Protein	Secondary	Structure	Prediction	

     The way in which protein secondary structure elements are permutated and packed 

(Murzin et al., 1995; Dai and Zhou, 2011) has a large effect on how the protein folds. If 

the protein secondary structure can be predicted accurately, it can provide useful 

constraints for 3D protein structure prediction. The protein secondary structure can also 

help identify protein function domains and may guide the rational design of site-specific 

mutation experiments (Drozdetskiy et al., 2015). Thus, accurate protein secondary 

structure prediction would have a major impact on the protein 3D structure prediction 

(Zhou and Troyanskaya, 2014; Fischer and Eisenberg, 1996; Skolnick et al., 2004; Rohl  

et al., 2004; Wu et al., 2007), solvent accessibility prediction (Fauchere et al., 1988; 

Ahmad et al., 2003; Adamczak et al., 2004), and protein disorder prediction (Heffernan et 

al., 2015; Schlessinger and Rost, 2005). The protein secondary structure is also useful in 

protein sequence alignment (Radivojac et al., 2007; Zhou and Zhou, 2005) and protein 

function prediction (Deng and Cheng, 2011; Godzik et al., 2007). The prediction of a 
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protein secondary structure is often evaluated by the accuracy of the three-class 

classification, i.e., helix (H), strand (E) and coil (C), which is called Q3 accuracy. In the 

1980s, the Q3 accuracy of prediction software was below 60% due to a lack of input 

features. In the 1990s, the Q3 accuracy increased to over 70% by using the protein 

evolutionary information in the form of position-specific score matrices. Recently, 

significant improvement was achieved in Q3 accuracy by applying deep neural networks. 

Overall, the reported Q3 accuracy went from 69.7% by PHD server (Rost and Sander, 

1993), (as well as 76.5% by PSIPRED (Jones, 1999) and 80% by structural property 

prediction with integrated neural network (SPINE) (Taherzadeh et al., 2016)) to 82% by 

structural property prediction with the integrated deep neural network (SPIDER2) (Dor and 

Zhou, 2007). The Q8 accuracy is another evaluation metric to evaluate the accuracy of 

eight-class classification: 310-helix (G), a-helix (H), p-helix (I), b-strand (E), b-bridge (B), 

b-turn (T), bend (S) and loop or irregular (L) (Murzin et al., 1995; Wang et al., 2016). Q8 

accuracy has always been lower than Q3 accuracy. Again, in recent years, significant 

improvement was achieved on Q8 accuracy by deep neural networks. For example, Wang 

et al. (2016) applied a deep convolutional neural network (CNN) with a conditional random 

field for secondary structure prediction. They achieved 68.3% Q8 accuracy and 82.3% Q3 

accuracy per amino acid on the benchmark CB513 data set. Li and Yu (2016) used a multi-

scale convolutional layer followed by three-stacked bidirectional recurrent layers to 

achieve 69.7% Q8 accuracy on the same test data set. Busia and Jaitly (2017) used CNN 

and next-step conditioning to achieve 71.4% Q8 accuracy on the same test data set. 

Heffernan et al. (2017) applied long short-term memory bidirectional recurrent neural 
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networks (LSTM-bRNN) and achieved 84% Q3 accuracy on the data set used in their 

previous studies (Heffernan et al., 2015). 

     There are some limitations in the earlier methods; for example, they cannot effectively 

account for non-local interactions between residues that are close in 3D structural space 

but far from each other in their sequence position (Heffernan et al., 2017). Many existing 

techniques rely on sliding windows of sizes 10–20 amino acids to capture some “short to 

intermediate” non-local interactions (Rost and Sander, 1993; Jones, 1999). The recent 

deep-learning methods for protein secondary structure prediction have some significant 

advantages over previous methods. For example, the most recent work in (Heffernan et al., 

2017) uses the LSTM-bRNN network and iterative training. The RNN can capture the 

long-range interactions without using a window, as traditional machine learning methods 

do (Rost and Sander, 1993; Jones, 1999). Busia and Jaitly (2017), and Li and Yu (2016) 

used a multi-scale convolutional layer and a residue network to capture interactions in 

different ranges. The current deep-learning methods/tools introduced different deep 

architectural innovations, including Residual network (He et al., 2016; He et al., 2016; 

Zhang et al., 2017), DenseNet (Huang et al., 2016), Inception network (Szegedy et al., 

2016; Szegedy et al., 2016), Batch Normalization (Ioffe and Szegedy, 2015), dropout and 

weight constraining (Srivastava et al., 2014), etc. 

1.3 Protein	Backbone	Torsion	Angle	Prediction	

     Predicting a protein structure accurately from its amino acid sequence information alone 

has remained difficult for half a century (Gibson and Scheraga, 1967; Dill and Caccallum, 

2012; Zhou et al., 2010). One approach of helping predict a protein structure is to predict 
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its backbone torsion angles (Psi and Phi). The backbone structure of a protein can be 

determined by its torsion angles (see Figure 1.1 for illustration of what Psi Phi angles are). 

Given an amino acid sequence, a number of machine-learning methods have been applied 

to predict the real-value torsion angles for each residue. The prediction accuracies have 

improved gradually over the years (Dor and Zhou, 2007, Xue et al., 2008, Faraggi et al., 

2009) and are approaching the ones estimated from NMR chemical shifts (Faraggi et al., 

2009). It has been demonstrated that the predicted torsion angles are useful to improve ab 

initio structure prediction (Faraggi et al., 2009, Simons et al., 1999), sequence alignment 

(Huang and Bystroff., 2005), secondary structure prediction (Mooney et al., 2006; Wood 

and Hirst, 2005), and template-based tertiary structure prediction and fold recognition 

(Yang et al., 2011; Karchin et al., 2003, Zhang et al., 2008). 

 

Figure 1-1 an illustration of what Psi-Phi angles are 

     Existing torsion angle prediction methods formulate the problem slightly differently. 

Some convert torsion angles to discrete classes (Kuang et al., 2004; Kang et al., 1993), 
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while others treat them as continuous values (Dor and Zhou, 2007; Xue et al., 2008; Wood 

and Hirst, 2005; Lyons et al., 2014). Various machine-learning methods, especially deep 

neural networks in recent years, have been applied to this prediction problem.  In (Li et al., 

2017), a deep recurrent restricted Boltzmann machine (DreRBM) was developed to achieve 

comparable results to SPIDER2 (Yang et al., 2016), a well-known software tool. SPIDER3 

(Heffernan et al., 2017), a recently released tool that improved over SPIDER2, applied 

long-short term memory (Hochreiter and Schmidhuber, 1997) bidirectional recurrent 

neural networks (LSTM-biRNN) (Mikolov and Zweig, 2012) to achieve 5% to 10% 

reduction in the mean absolute error for Psi and Phi angle predictions, respectively, over 

SPIDER2.  

1.4 Protein	Beta	Turn	Prediction	

     By definition, a beta-turn contains four consecutive residues (denoted by i, i+1, i+2, 

i+3) if the distance between the 𝐶𝛼 atom of residue i and the 𝐶𝛼 atom of residue i+3 is 

less than 7 Å and if the central two residues are not helical (Lewis et al., 1973) (see Figure 

1-2, an illustration of what a beta-turn is). There are nine types of beta-turns, which are 

classified based on the dihedral angles of central residues in a turn as shown in Table 1.1, 

can be assigned by using the PROMOTIF software (Hutchinson and Thornton, 1994). 

Beta-turns play an important role in mediating interaction between peptide ligands and 

their receptors (Li et al., 1999). In protein design, loop segments and hairpins can be 

formed by introducing beta-turns in proteins and peptides (Ramirez-Alvarado et al., 1997). 

Hence, it is important to predict beta-turns from a protein sequence (Kaur et al., 2002). 

Table 1.1 Nine types of beta-turns and their dihedral angles of central residues in degrees (The locations 
of Phi1, Psi1, Phi2 and Psi2 are also illustrated in Figure 1) 
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Turn Type  Phi1 Psi1 Phi2 Psi2 

I  -60 -30 -90 0 
I  60 30 90 0 
II  -60 120 80 0 
II’  60 -120 -80 0 
IV  -61 10 -53 17 

VIII  -60 -30 -120 120 
VIb  -135 135 -75 160 
VIa1  -60 120 -90 0 
VIa2  -120 120 -60 0 

 

 
Figure 1-2 An illustration of what a beta-turn is. C, O, N, and H, represent carbon, oxygen, nitrogen and 
hydrogen atoms, respectively. R represents side chain. The dashed line represents the hydrogen bond.   

1.5 Protein	Gamma	Turn	Prediction	

          Gamma-turns are the second most commonly found turns (the first is beta-turns) in 

proteins. By definition, a gamma-turn contains three consecutive residues (denoted by i, 

i+1, i+2) and a hydrogen bond between the backbone 𝐶𝑂$ and the backbone 𝑁𝐻$'( (see 

Figure 1-3). There are two types of gamma-turns: classic and inverse (Bystrov et al., 1969). 

According to (Guruprasad and Rajkumar, 2000), gamma-turns account for 3.4% of total 

amino acids in proteins. Gamma-turns can be assigned based on protein 3D structures by 

using Promotif software (Hutchinson and Thornton, 1994). There are two types of gamma-

turn prediction problems: (1) gamma-turn/non-gamma-turn prediction (Guruprasad et al., 

2003; Kaur and Raghava, 2002; Pham et al., 2005), and (2) gamma-turn type prediction 

(Chou, 1997; Chou and Blinn 1999; Jahandideh et al., 2007).  



8 
 

 
Figure-1-3 An illustration of gamma-turns. Red circles represent oxygen; grey circles represent carbon; 
and blue circles represent nitrogen. 

1.6 Contributions	

(1) A new very deep learning network architecture, Deep3I, was proposed to 

effectively process both local and global interactions between amino acids in 

making accurate secondary structure prediction and Psi-Phi angle prediction. 

Extensive experimental results show that the new method outperforms the best 

existing methods and other deep neural networks significantly. An open-source tool 

Deep3I-SS was implemented based on the new method. This tool can predict the 

protein secondary structure and the Psi-Phi angles fast and accurately. 

(2) DeepNRN, a new deep-learning network with new architecture, is proposed for 

protein secondary structure prediction; and experimental results on the CB513, 

CASP10, CASP11, CASP12 benchmark data sets show that DeepNRN 

outperforms existing methods and obtains the best results on multiple data sets. 

(3) A new deep neural network architecture, DeepRIN, is proposed to effectively 

capture and process both local and global interactions between amino acids in a 

protein sequence. Extensive experiments using popular benchmark datasets were 

conducted to demonstrate that DeepRIN outperformed the best existing tools 
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significantly. A software tool based on DeepRIN is made available to the research 

community for download. 

(4) A new deep dense inception network (DeepDIN) is proposed for beta-turn 

prediction, which takes advantages of the state-of-the-art deep neural network 

design of DenseNet and Inception network. A test on a recent BT6376 benchmark 

shows that the DeepDIN outperformed the previous best BetaTPred3 significantly 

in both the overall prediction accuracy and the nine-type beta-turn classification. A 

tool, called MUFold-BetaTurn, was developed, which is the first beta-turn 

prediction tool utilizing deep neural networks. 

(5) A deep inception capsule network for gamma-turn prediction. Its performance on 

the gamma-turn benchmark GT320 achieved an MCC of 0.45, which significantly 

outperformed the previous best method with an MCC of 0.38. This is the first 

gamma-turn prediction method utilizing deep neural networks. Also, to our 

knowledge, it is the first published bioinformatics application utilizing capsule 

network, which will provide a useful example for the community. 

1.7 Outline	of	the	Dissertation 	

The dissertation is arranged as followed: 

     Chapter 1 describes the introduction  

     Chapter 2 describes the background and related work of protein secondary structure 

prediction and backbone torsion angle prediction. 

     Chapter 3 describes the deep inception-inside-inception network (Deep3I) to predict the 

protein secondary structure. The Deep3I is consists of hierarchical layers of Inception 
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networks (Szegedy et al., 2017). The stacked inception blocks effectively capture the long- 

range residue interactions. The proposed Deep3I network outperforms previous best 

predictors such as DeepCNF-SS in three-state and eight-state. A secondary structure 

prediction tool was made using this network and is freely available for research community 

to use. 

     Chapter 4 describes the deep near neighbor residual network (DeepNRN) to predict the 

protein secondary structure. It modifies the residual network (He et al., 2016), which was 

originally used for image classification, and then applies to protein structure prediction 

problem. The modified residual network can also alleviate the gradient vanishing problem 

and but also propagate the features into deep layers of network. 

     Chapter 5 describes the deep inception residual network (DeepIRN) and applies it to 

protein Psi-Phi angle prediction. This method significantly outperforms current state-of-art 

tool SPIDER3 in public benchmarks and recently released PDB data sets. DeepIRN 

combines inception and residual network and take advantages of both networks. 

     Chapter 6 describes the deep dense inception network (DeepDIN) and applies it to 

protein beta-turn prediction. This method significantly outperforms current state-of-art tool 

BetaTPred3 in public benchmarks BT426 and BT6376. DeepDIN combines inception and 

dense network and take advantages of both networks. 

     Chapter 7 describes the deep inception capsule network (DeepICN) and applies it to 

protein gamma-turn prediction. This method significantly outperforms previous predictors 

on public benchmarks GT320. DeepICN combines inception and capsule network and take 

advantages of both networks. Some other capsule features were explored and tested. 

     Chapter 8 summarizes the achievements and major contributions. 
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CHAPTER	2 RELATED	WORK	AND	BACKGROUND	

2.1 Protein	Secondary	Structure	Prediction	

     Protein secondary structure prediction has been a very active research area in the past 

30 years. A small improvement of its accuracy can have a significant impact on many 

related research problems and software tools. 

     Various machine learning methods, including different neural networks, have been used 

by previous protein secondary structure predictors. Over the years, the reported Q3 

accuracy on benchmark datasets went from 69.7% by the PHD server (Rost and Sander, 

1993) in 1993, to 76.5% by PSIPRED (Jones 1999), to 80% by structural property 

prediction with integrated neural networks (SPINE) (Dor and Zhou, 2007), to 79-80% by 

SSPro using bidirectional recurrent neural networks (Cheng et al., 2005), and to 82% by 

structural property prediction with integrated deep neural network (SPIDER2) (Heffernan 

et al, 2015). The previous predictors can be classified into two categories: template based, 

which is using the template information and template free., which is using only profile 

information. In terms of method, they can be classified into two categories: machine 

learning or deep learning. 

     Some well-known secondary structure predictors are PHD server (Rost and Snader, 

1993), PSIPRED (Jones, 1999), SSPro (Cheng et al., 2005) to name a few, which utilizing 

two-layer traditional neural network and sliding window to preprocess the input. Until 

recently the DeepCNF-SS (Wang et al., 2016) server is the first method using deep 

convolutional neural fields for secondary structure prediction. Some popular predictors are 

reviewed in detail as followed: 
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     PSIPRED (Jones, 1999), one of the most cited and/or used secondary structure predictor 

in the Bioinformatics community, represents the traditional machine learning template-free 

categority of secondary structure prediction. It consists of three states: 1) sequence profile 

generation 2) prediction of initial secondary structure and 3) fine-tune/filter of the predicted 

structure using Struct2Struct, network. For the profile, it is often generated by PSI-BLAST 

(Altschul et al., 1997). The profile then is used to extract the position-specific scoring 

matrix (PSSM) and the matrix is used as input for the neural network. PSIPRED applied a 

sliding window of size 15 on the sequence length dimension of PSSM to get chunks of 

input data to train the network. The output from the first network is then fed into a second 

network (Struct2Struct) to make a final 3-state prediction. The application of Struct2Struct 

is to fine-tune the prediction from first network. There could be some prediction violate 

the consecutive patterns of a protein secondary structure sequence. (For example, an alpha 

helix should consist of at least three consecutive amino acids). The overall performance of 

PSIPRED achieved average Q3 score 78%. 

     Porter (Mirabello and Pollastri, 2013) server applied two cascaded bidirectional 

recurrent neural networks: one for prediction and the other act as Struct2Struct network. 

The Porter was trained using five-fold cross validation on 7522 non-redundant protein 

sequences with less than 25 percent sequence identity and a high-resolution of 2218 

proteins. The Q3 accuracy achieved 82%.  

     Template-based C8-SeCOndaRy Structure PredictION (SCORPION) (Yaseen and Li, 

2014) server falls into the template-based method for secondary structure prediction. It 

applied three separate neural networks: first for prediction, second for structure filter, and 

third for refinement using PSSM and modified SS scores. Their innovation is to use 
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statistical context-based scores as well as the structural information as encoded features to 

train neural networks to achieve the improvement on secondary structure up to Q3 82.7%. 

     SPIDER2 (Heffernan et al., 2015) falls into the template-free, deep learning category. 

It applied deep neural networks and used an iterative training to improve the secondary 

structure. SPIDER2’s input features contain the predicted backbone torsion angle, 

predicted secondary structure and predicted solvent accessibility. The predicted features 

are reused to train the deep neural network for three times, iteratively. SPIDER2 achieved 

Q3 81.2% on the independent test set containg 1199 high-resolution proteins. 

     The current state-of-the-art DeepCNF-SS (Wang et al., 2016) is the first method using 

deep convolutional neural fields for secondary structure prediction. The DeepCNF model 

contains two modules: 1) the Conditional Random Fields (CRF) module consisting of the 

top layer and the label layer; 2) the deep convolutional neural network (DCNN) module 

covering the input to the top layer. Experimental results show that the DeepCNF can obtain 

about 84% Q3 accuracy. 

     In recent years, significant improvement has also been achieved on Q8 accuracy by deep 

neural networks. In (Wang et al., 2016), deep convolutional neural networks integrated 

with a conditional random field was proposed and achieved 68.3% Q8 accuracy and 82.3% 

Q3 accuracy on the benchmark CB513 dataset. In (Li and Yu, 2016), a deep neural network 

with multi-scale convolutional layers followed by three stacked bidirectional recurrent 

layers was proposed and reached 69.7% Q8 accuracy on the same test dataset. In (Busia 

and Jaitly, 2017), deep convolutional neural networks with next-step conditioning 

technique were proposed and obtained 71.4% Q8 accuracy. In (Heffernan et al., 2017), 

long short-term memory bidirectional recurrent neural networks (LSTM-bRNN) were 
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applied to this problem and a tool named SPIDER3 was developed, achieving 84% Q3 

accuracy and a reduction of 5% and 10% in the mean absolute error for Psi-Phi angle 

prediction on the dataset used in their previous studies (Heffernan et al., 2015). These 

successes encouraged us to explore more advanced deep-learning architectures. The 

current work improves upon the previous methods through the development and 

application of new neural network architectures, including Residual networks (He et al., 

2016), Inception networks (Szegedy et al., 2017), and Batch Normalization (Ioffe and 

Szegedy, 2015). Other than the prediction accuracy, secondary structure prediction 

provides an ideal testbed for exploring and testing these state-of-the-art deep learning 

methods. 

     In the earlier predictors, they rely on sliding window and neural network to predict 

secondary structure. This way of processing the input has some limitations because it does 

not take into consider the far range residue interactions. Also, the sliding window can only 

cover a fix number of amino acids. In this dissertation, the whole protein sequence is taken 

into consider and feed into the deep neural network. The design of our network uses of the 

state-of-the-art deep neural networks, i.e. Inception Network (Szegedy et al., 2017) and 

ResNet (He et al., 2016), which has shown successful results in image classification 

applications. The ability of those deep neural networks can effectively extract high level 

features from protein sequences.  

2.2 Protein	Backbone	Torsion	Angle	Prediction	

     Traditional neural networks have been applied to torsion angle prediction for a long 

time. They typically used windows of neighboring amino acid residues to capture 
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relationship between residues within a short range (Yang et al., 2016; Wu and Zhang, 

2008). The ability of capturing the interactions between residues is limited by a small, fixed 

window size. Long-range, non-local residue relationships are not captured and used in 

these prediction methods. With the development of deep learning, deep neural networks 

are capable of capturing and using long-range information in prediction. For example, 

SPIDER3 used LSTM-biRNN to capture both short and long-range residue information 

effectively. In addition to deep recurrent networks, deep convolutional neural networks 

(DCNN) has been applied in a large number of challenging machine learning tasks, such 

as image recognition (Krizhevsky et al., 2017; Pfister et al., 2015; Lawrence et al., 1997), 

automatic machine translation (Collobert and Weston, 2008), text generation (Vinyals et 

al., 2015), and achieved great success. 

     Several predictors can be classified into two categories: machine learning and deep 

learning for protein backbone torsion angle prediction: 

     ANGLOR (Wu and Zhang, 2008) server falls into machine learning categories. It 

applied neural network and support vector machines (SVM) for Psi-Phi angle prediction. 

The profiles of the input protein sequence are generated by PSI-BLAST. A sliding window 

of size 21 is applied to preprocess the input. In ANGLOR server, the Psi and Phi angles 

are predicted separately, Phi is predicted using neural network and Psi is predicted using 

SVM. The ANGLOR achieved mean absolute errors (MAE) of Psi-Phi angles: 46 and 28 

degrees. 

     SPIDER2 (Heffernan et al., 2015) falls into deep learning categories of backbone 

torsion angle prediction. It applied deep neural networks and used an iterative training to 

improve the secondary structure. SPIDER2’s input features contain the predicted backbone 
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torsion angle, predicted secondary structure and predicted solvent accessibility. The 

predicted features are reused to train the deep neural network for three times, iteratively. 

SPIDER2 achieved MAE of 30 and 19 degrees on Psi-Phi angles. 

     SPIDER3 (Heffernan et al., 2017) applied bidirectional recurrent neural networks 

(biRNN) for improving prediction of protein backbone angles. SPIDER3’s input features 

contain the predicted backbone torsion angle, predicted secondary structure and predicted 

solvent accessibility. The predicted features are reused to train the biRNN for four times, 

iteratively. SPIDER3 achieved MAE of 10 and 5 degrees reduction on Psi-Phi angles 

compared to SPIDER2. 

     In the earlier predictors, they rely on sliding window and neural network to predict 

backbone torsion angle. This way of processing the input has some limitations because it 

does not take into consider the far range residue interactions. Also, the sliding window can 

only cover a fix number of amino acids. Also, early predictors rely on PSIPRED to get the 

predicted three state secondary structure for the input feature of torsion angle prediction. 

In our proposed method, our network can effectively predict eight state secondary structure 

by itself, which can be again used as input feature for torsion angle prediction. The early 

method like ANGLOR server predict Psi and Phi separately using two different system, 

which have some drawback because Psi and Phi angle comes in pairs and may have 

interactions with each other. The prediction may be improved if both angles can be 

predicted in pairs together. 

     Recently, many advanced deep-learning architectures, such as VGG (Pfister et al, 

2015), Inception (Szegedy et al., 2017), Xception (Chollet, 2016), ResNet (He et al., 2016), 

DenseNet (Huang et al., 2016), have emerged in recent years with improved performance 
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over previous methods in various applications. Inspired by these cutting-edge architectures, 

in this dissertation, a new deep residual inception network architecture, called DeepRIN, 

is proposed for the prediction of torsion angles. The input to DeepRIN is a carefully 

designed feature matrix representing the primary sequence of a protein, which consists of 

a rich set of information for individual amino acid and the context of the protein sequence. 

DeepRIN is designed based on the ideas of inception networks and residual networks and 

predicts sine and cosine values of Psi and Phi angles to remove periodicity, which can then 

be converted back to angle values. Our design is utilizing the state-of-the-art deep neural 

networks i.e. Inception Network (Szegedy et al., 2017) and ResNet (He et al., 2016), which 

has shown successful results in image classification applications. The ability of those deep 

neural networks can effectively extract high level features from protein sequences. Also 

compared with early predictors, the proposed DeepRIN takes whole protein sequence as 

input and used to train the neural network for angle prediction. In this way, the long range 

of amino acid interaction will be considered, and the high-level features will be able to be 

extracted.  

2.3 Protein	Beta-turn	Prediction	

     The early predictors (Hutchinson and Thornton, 1994; Chou and Fasman 1974; Chou 

and Fasman, 1979) used statistical information derived from protein tertiary structures to 

predict beta-turns. The statistical methods were based on the positional frequencies of 

amino acid residues. Zhang and Chou (1997) further observed the pairing of first and the 

fourth residues, and of the second and the third residues, which plays an important role in 

beta-turn formation. They proposed the 1-4 and 2-3 correlation model to predict beta-turns 



18 
 

(Zhang and Chou, 1997). Later, Chou’s team applied a sequence coupled approach based 

on the first-order Markov chain to further improve their prediction model (Chou, 1997). 

Kaur and Raghava (2002) developed a web server, called BetaTPred, which implemented 

this model and achieved a maximum (Matthew Correlation Coefficient) MCC of 0.26 in 

beta-turn prediction. 

McGregor et al. (1989) used neural networks to predict beta-turns, which is the first 

machine learning approach for beta-turn prediction, and they achieved an MCC of 0.20. 

Shepherd et al. (1999) developed BTPred using secondary structure information as input 

and achieved MCC of 0.34. Kim (2004) applied a K-nearest neighbor method for beta-turn 

prediction and improved MCC to 0.40. Fuchs and Alix (2005) further improved the MCC 

to 0.42 by incorporating multiple features such as propensities, secondary structure and 

position specific scoring matrix (PSSM). Kaur and Raghava (2004) developed the 

BetaTPred2 server, which used a two-layer neural network with an MCC of up to 0.43. 

Kirschner and Frishman (2008) developed MOLEBRNN using a novel bidirectional 

recurrent neural network, with an MCC of up to 0.45. Hu and Li (2008) used support vector 

machine (SVM) and incorporated features such as increment of diversity, position 

conservation scoring function and secondary structure to raise the MCC up to 0.47. Zheng 

and Kurgan (2008) used the predicted secondary structure from PSIPRED (Jones 1999), 

JNET (Cole et al., 2008), TRANSEEC (Montgomerie et al., 2006), and PROTEUS2 

(Montgomerie et al., 2008) to improve the performance. Kountouris and Hirst (2010) used 

predicted dihedral angles along with PSSM and predicted secondary structures to achieve 

MCC of 0.49. Petersen et al. (2010) developed the NetTurnP server with an MCC of 0.50 

by using independent four models for predicting four positions in a beta-turn. Singh et al. 
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(2015) developed the BetaTPred3 server to achieve MCC of 0.51 using a random forest 

method. 

The above-mentioned machine-learning methods achieved some successful results in beta-

turn prediction. However, there is large room for improvement, particularly in predicting 

nine types of beta-turns. Most of these previous methods relied on a sliding window of 4-

10 amino acid residues to capture short interactions. Also, previous neural networks with 

one or two layers (shallow neural networks) could not extract high-level features from input 

datasets. So far, no deep neural networks have been applied to beta-turn prediction. Deep 

neural networks can learn representations of data with multiple levels of abstraction 

(LeCun et al., 2015), which provides a new opportunity to this old research problem. 

2.4 Protein	Gamma-turn	Prediction	

     The previous methods can be roughly classified into two categories: statistical methods 

and machine-learning methods. Early predictors (Alkorta et al., 1994; Kaur and Raghava, 

2002; Guruprasad et al, 2003) built statistical model and machine-learning method to 

predict gamma-turns. For example, Garnier et al (1978), Gibrat et al (1987), and Chou 

(1997) applied statistical models while Pham et al. (2005) employed support vector 

machine (SVM). The gamma-turn prediction has improved gradually, and the 

improvement comes from both methods and features used. Chou and Blinn (1997) applied 

a residue-coupled model and achieved prediction MCC 0.08. Kaur and Raghava (2003) 

used multiple sequence alignments as the feature input and achieved MCC 0.17. Hu and Li 

(2008) applied SVM and achieved MCC 0.18. Zhu et al. (2012) used shape string and 

position specific scoring matrix (PSSM) from PSIBLAST as inputs and achieved MCC 
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0.38, which had the best performance prior to this study. The machine-learning methods 

outperformed statistical methods greatly. However, the gamma-turns prediction 

performance is still quite low due to several reasons: (1) the dataset is very imbalanced, 

with about 30:1 of non-gamma-turns and gamma-turns; (2) gamma-turns are relatively rare 

in proteins, yielding a small training sample size; (3) previous machine-learning methods 

have not fully exploited the relevant features of gamma-turns. The deep-learning 

framework may provide a more powerful approach for protein sequence analysis and 

prediction problems. (Fang et al., 2017; Fang et al., 2018; Fang et al., 2018; Wang et al., 

2017) than previous machine-learning techniques. 

2.5 Deep	Neural	Network	

     Compared with traditional neural networks, deep neural networks usually have many 

layers. In deep neural networks, each layer of nodes can extract a distinct set of features 

from its previous layer’s activation output. The deeper of the network, the more complex 

and higher level feature the nodes will recognize. The deeper layer can aggregate and 

recombine features from shallow previous layers. The deeper layer can learn/extract higher 

level features from shallow layer. This hierarchy of increasing complexity and feature 

abstraction makes deep neural network can handle very large dataset. 

     Deep neural networks usually have stacked neural networks, which means the networks 

can have several layers. Each layer has many nodes and a node is the place where multiply 

the inputs with weights and added by biases. 
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2.6 Convolutional	Neural	Network	

     Convolutional Neural Networks (CNNs) are within category of Neural Networks. 

CNNs are effectively used and have shown successful results in image recognition and 

classification (Razavian et al., 2014; Ciregan et al., 2012; Krizhevsky et al., 2012). CNNs 

have also been used in recognizing faces (Parkhi et al., 2015), objects (Ren et al., 2015) 

and traffic signs (Stallkamp et al., 2011). CNNs are very important for many machine 

learning applications today.  

     Several new deep CNNs have been proposed recently which are all improvement based 

on the LeNet (LeCun et al., 1998).  

In CNNs, several important terminologies are used and defined as followed: 

• Channel: is used to describe a certain component of an image. Usually, an image 

taken from a standard digital camera consists of red, green, and blue channels. Each 

channel contains pixel values ranging from 0 to 255. 

• Grayscale: is used to describe a one channel image. The value of each pixel of a 

grayscale image is ranging from 0 to 255, where 0 is black and 255 is white. 

• Depth: is the number of filters used to perform the convolution operation. For 

example Conv(3) means using three distinct filters to perform convolution on the 

input image. 

• Stride: is the number of pixels that filter matrix is slid over the input image. For 

example, when the stride is 2, two pixels will be skipped at a time when the 

convolution filter is slid around. 
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• Padding: Usually zeros are padded to the input matrix around the board so that the 

convolution filter can be applied to the border of the input matrix so that the output 

has the same length as the original input. This is often used in full convolution. 

     The Convolution operation from CNNs can effectively extract features from input 

images. It can extract/learn the spatial relationship between pixels using small convolution 

kernels. The convolution between two function f and g can be defined as followed: 

(𝑓 ∗ 𝑔)(𝑡) = 0 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
'4
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2.7 Residual	Neural	Network	(ResNet)	

     Residual neural network (ResNet) was first proposed by He et al (2016). Their networks 

won the first place in ImageNet (Deng et al., 2009) competition. The powerfulness and 

robustness of ResNets has been applied to various image recognition tasks (He et al., 2016), 

speech recognition (Xiong et al., 2017). 

     The ResNet was proposed to tackle the degradation problem that many deep neural 

networks suffer from. 

Degradation problem: when the network depth is increasing, the accuracy gets saturated 

and then degrades rapidly. Such kind of degradation is not caused by overfitting, so simply 

adding more layers to a deep model will not solve the problem but on the contrary causing 

higher training error. 

     He et al (2016) proposed residual block to tackle the degradation problem. The shortcut 

connection from the input to output can effectively solve the vanishing/ exploding 

gradients problem. Inspired by ResNet, other variations of ResNet has been proposed: 
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Wide Residual Network (Zagoruyko and Komodakis, 2016), ResNet in ResNet (Targ et 

al., 2016), Weighted ResNet (Shen et al., 2016). 

2.8 ReLU,	Batch	Normalization	and	Fully	Connected	Layer	

     Rectified Linear Unit (ReLU) (Nair and Hinton, 2010) has been used after Convolution 

operation. The ReLU activation function is used to replace all negative values in the feature 

map by zero. The purpose of applying ReLU activation after the convolution operation is 

to introduce the non-linearity. In different applications, tanh or sigmoid activation 

functions are also used. The ReLU activation function is defined as followed: 

𝑓(𝑥) = max	(0, 𝑥) 

where x is the input to a neuron. Figure 2-1 shows a plot of ReLU function. 

 

Figure 2-1 a ReLU activation function plot. 
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     Fully connected layer is usually used in the output layer with Sofmax as the activation 

function. A fully connect layer means every neuron in the previous layer is fully connected 

with every neuron in the next layer. The output of CNNs are high-level features extracted 

from input data. Those features can then be fed into fully connect layer for performing the 

classification task.  

     Since the Softmax is used as activation function, the output probabilities from the fully 

connected layer sums to 1. Softmax activation function is defined as followed: 

𝜎(𝑧)? = 𝑒AB
∑ 𝑒ADE
FGH

I , 𝑓𝑜𝑟	𝑗 = 1,… , 𝐾 

Figure 2-2 shows a fully connected network: 

 

Figure 2-2 a fully connected network.  

     Batch Normalization is proposed by Ioffe and Szegedy (2015). It helps deep network to 

train fast and overall have higher accuracy. The potential training time is shortened. The 

mechanism behind normalization is that it shifts input to zero-mean and unit variance so 

that features have the same scale. When deep neural networks are trained, the weights and 

parameters are adjusted which may cause the data too large or small again. The batch 

normalization technique can normalize the data in each batch to solve the problem. 
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2.9 Dense	Network	

     Residual networks (He et al., 2016) add skip-connection so that the feature maps from 

earlier layer can be bypassed into deep layers. To further improve the information flow 

between layers, Huang et al., (2016) proposed a different connectivity pattern: apply direct 

connections from any layer to all the subsequent layers in a fully connected fashion. 

Consequently, the 𝑙-th layer receives the feature-maps of all preceding layers, 𝑥Q, … , 𝑥R5H 

as input: 𝑥R = 𝐻R([𝑥Q, 𝑥H,… , 𝑥R5H]) where [𝑥Q, 𝑥H,… , 𝑥R5H] are the concatenation of the 

feature-maps produced in layers 0, …, l-1. 

2.10 Capsule	Network	

     Capsule Network (Sabour et al., 2017) is using capsule which is a group of neurons 

whose outputs represent different properties of the same entity. A capsule is a group of 

neurons that not only capsule the likelihood but also the parameters of the specific feature. 

Compared with a neuron, which outputs a value, a capsule 𝑣 can output a vector. Each 

dimension of 𝑣 represents the characteristics of patterns and the norm of 𝑣 represents the 

existence. 

     In the capsule network, squashing activation function (Sabour et al., 2017) was applied 

in the computation between the primary capsule layer and the turn capsule layer as follows: 

𝑣? =
V𝑠?V

1 + V𝑠?V
(
𝑠?
V𝑠?V

	 

where 𝑣? is the vector output of capsule j and 𝑠? is its total output. 

The dynamic routing algorithm (Sabour et al., 2017) is as follows: 
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Routing Algorithm: 

Routing (𝑢Z|\] , 𝑟, 𝑙) 

     For all capsule i in layer l and capsule j in layer (l+1):𝑏$,? ← 0 

     For r iteration do 

          For all capsule i in layer l:𝑐$ ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏$) 

          For all capsule j in layer (𝑙 + 1): 𝒔𝒋 ← ∑ 𝑐$?𝒖g𝒋|𝒊$  

          For all capsule j in layer (𝑙 + 1): 𝒗𝒋 ← 𝑠𝑞𝑢𝑎𝑠ℎ(𝒔𝒋) 

          For all capsule i in layer l and capsule j in layer (𝑙 + 1):𝑏$? ← 𝑏$? + 𝑢l?|$ ∙ 𝒗𝒋  
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CHAPTER	3 	NEW	DEEP	INCEPTION-INSIDE-INCEPTION	

NETWORKS	FOR	PROTEIN	SECONDARY	STRUCTURE	

PREDICTION	

3.1 Problem	Formulation	

     Protein secondary structure prediction is that given the amino acid sequence, also called 

primary sequence, of a protein, predict the secondary structure type of each amino acid. In 

three-class classification, the secondary structure type is one out of three, helix (H), strand 

(E) and coil (C). In eight-class classification, the secondary structure type is one out of 

eight: (G, H, I, E, B, T, S, L). 

     To make accurate prediction, it is important to provide useful input features to machine 

learning methods.  In our method, we carefully design a feature matrix corresponding to 

the primary amino acid sequence of a protein, which consists of a rich set of information 

derived from individual amino acid, as well as the context of the protein sequence.      

     Specifically, the feature matrix is a composition of physio-chemical properties of amino 

acids, PSI-BLAST profile, and HHBlits profile. Figure 3.1 shows an example of the 

physio-chemical feature vector. Each amino acid in the protein sequence is represented as 

a vector of 8 real numbers ranging from -1 to 1. The vector consists of the seven physio-

chemical properties as in (Frauchere et al., 1988) plus a number of value 0 or 1 representing 

the existence of an amino acid at this position as an input (called NoSeq label). The reason 

of adding the NoSeq label is because the proposed deep neural networks are designed to 

take a fixed size input, such as a sequence of length 700 in our experiment. Then, to run a 

protein sequence shorter than 700 through the network, the protein sequence will be padded 
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at the end with 0 values and the NoSeq label is set to 1. For example, if the length of a 

protein is 500, then the first 500 rows have NoSeq label set to 0, and the last 200 rows have 

0 values in the first 7 columns and 1 in the last column. 

     The second set of useful features comes from the protein profiles generated using PSI-

BLAST (Altschul et al., 1997). In our experiments, the PSI-BLAST software parameters 

were set to (evalue: 0.001; num_iterations: 3; db: UniRef50) to generate PSSM, which was 

then transformed by the sigmoid function into the range (0, 1). Each amino acid in the 

protein sequence is represented as a vector of 21 real numbers ranging from 0 to 1, 

representing the 20 amino acids PSSM value plus a NoSeq label in the last column.  The 

feature vectors of the first 5 amino acids are shown. The third through nineteenth columns 

are omitted. 

     The third set of useful features comes from the protein profiles generated using HHBlits 

(Remmert et al., 2012).  In our experiments, the HHBlits software used database 

uniprot20_2013_03, which can be downloaded from 

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/. Again, the 

profile values were transformed by the sigmoid function into the range (0, 1). Each amino 

acid in the protein sequence is represented as a vector of 31-real numbers, of which 30 

from amino acids HHM Profile values and 1 NoSeq label in the last column. 

      The three sets of features can be combined into one feature vector of length 58 for each 

amino acid as input to our proposed deep neural networks.  For the deep neural networks 

that take fixed size input, e.g., sequence of length 700, the input feature matrix would be 

of size 700 by 58. If a protein is shorter than 700, the input matrix would be padded with 
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NoSeq rows at the end to make it full size. If a protein is longer than 700, it would be split 

into segments <700. 

     For our new deep neural networks, the predicted secondary structure output of a protein 

sequence is represented as a fixed size matrix, such as a 700 by 9 matrix for 8-state labels 

plus 1 NoSeq label) matrix or a 700 by 4 matrix for 3-state labels plus 1 NoSeq label. One 

of the first 8 columns have a value 1 (one hot encoding of the target class), while the others 

are 0. 

      

3.2 New	deep	inception	networks	for	protein	secondary	structure	

prediction	

In this section, a new deep inception network architecture is proposed for protein secondary 

structure and Psi-Phi angle prediction. The architecture consists of a sequence of inception 

modules followed by a number of convolution and fully connected dense layers. 

     Figure 3.1 shows the basic Inception module (Szegedy et al., 2016). The inception 

model was used for image recognition and achieved the state-of-the-art performance. It 

consists of multiple convolution operations (usually with different convolutional window 

sizes) in parallel and concatenates the resulting feature maps before going into next layer. 

Usually, different convolutional window sizes can be 1x1, 3x3, 5x5, 7x7 along with a 3x3 

max pooling (see Supporting Information). The 1x1 convolution is used to reduce the 

feature map dimensionality and the max pooling is used for extracting image region 

features. In our protein secondary structure prediction experiment, the max pooling is not 

suitable because the sequence length will change and hence it was not applied in our study. 
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The inception module consists of several parallel convolutional networks that can extract 

diverse features from input. In this work, an inception network is applied to extract both 

local and nonlocal interactions between amino acids and a hierarchical layer of 

convolutions with small spatial filters is used to be computationally efficient. By stacking 

convolution operations on top of one another, the network has more ability to extract  

nonlocal interaction of residues. 

 

 

Figure 3-1 An Inception module. The red square “Conv(1)” stands for convolution operation using window 
size 1 and the number of filters is 100. The green square “Conv(3)” stands for convolution operation using 
window size 3 and the number of filters is 100. The yellow square “Concatenate” stands for feature 
concatenation. 

      A deep Inception network consists of a sequence of Inception modules. Figure 3.2 

shows a network with three Inception modules followed by a convolutional layer and two 

dense layers. A dense layer is a fully connected neural network layer. The input of the 

network is the feature matrix for a protein sequence, such as a matrix of size 700 by 58, 

and the output is the target label matrix. Different numbers of Inception modules were tried 
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in our experiments to find appropriate values for our prediction tasks. The deep neural 

networks were implemented, trained, and experimented using TensorFlow (Abadi et al., 

2016) and Keras (Chollet, 2015; https://github.com/fchollet/keras). 

 
Figure 3-2 A deep Inception network consisting of three Inception modules, followed by one convolution 

and two fully-connected dense layers. 

 

3.3 New	deep	inception-inside-inception	networks	for	protein	

secondary	structure	prediction	(Deep3I)	

     In this section, a new deep Inception-Inside-Inception network architecture (Deep3I) is 

presented. The architecture extends deep Inception networks through nested Inception 

modules. 

     Figure 3.3 shows a deep Inception-Inside-Inception network (Deep3I) consisting of two 

Deep3I blocks, followed by a convolutional layer and two dense layers. A Deep3I block is 

constituted by a recursive construction of an Inception model inside another Inception 

module. Stacked Inception modules could extract non-local interactions of residues over a 
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diverse range in a more effective way. Adding more Deep3I blocks is possible but requires 

more memory. 

 
Figure 3-3 A deep Inception-Inside-Inception (Deep3I) network that consists of two Deep3I blocks. Each 

Deep3I block is a nested Inception network self. This network was used to generate the experimental results 
reported in this paper. 

     Each convolution layer, such as ‘Conv (3)’ in Figure 3.3, consists of four operations in 

sequential order: 1) A one- dimensional convolution operation using the kernel size of 

three; 2) The Batch normalization technique (Ioffe and Szegedy, 2015) for speeding up the 

training process and acting as a regularizer; 3) The activation operation, ReLU (Radford et 

al., 2015); and 4) The Dropout operation (Srivastava et al., 2014) to prevent the neural 

network from overfitting by randomly dropping neurons during the deep network training 

process so that the network can avoid co-adapting.  

      Deep3I networks were implemented, trained, and experimented using Tensorflow and 

Keras. In our experiments, a large number of network parameters and training parameters 

were tried. For the results reported, the dropout rate was set at 0.4. During training, the 

learning rate scheduler from Keras was used to control the learning rate. The initial learning 
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rate was 0.0005, and after every 40 epochs, the learning rate dropped as shown by the 

following formulas: 	𝑙𝑟𝑎𝑡𝑒 = 0.0005 ∗ 𝑝𝑜𝑤(0.8, 𝑓𝑙𝑜𝑜𝑟(𝑒𝑝𝑜𝑐ℎ + 1)/40). An early stopping 

mechanism from Keras was used to stop the network training when the monitored 

validation quantity (such as validation loss and/or validation accuracy) stopped improving. 

The “patience” (number of epochs with no improvement after which training was stopped) 

was set as a number from 5 to 8. TensorBoard from Keras was used to visualize dynamic 

graphs of the training and validation metrics. 

     The new Deep3I networks are different from existing deep neural networks. The 

networks in (Li and Yu, 2016; Busia and Jaitly, 2017) consist of residual blocks and a 

multi-scale layer containing convolutional layers with convolution window sizes of 3, 7, 

and 9 to discover the protein local and global context. Although Deep3I uses convolution 

window size of 1 or 3, through stacked deep convolution blocks, the network can represent 

both local and global context well, while maintains efficient computation. 

3.4 Experimental	Results	

     In this section, extensive experimental results of the proposed deep neural networks on 

multiple commonly used datasets and performance comparison with existing methods are 

presented. 

The following five publically available datasets were used in our experiments: 

1) CullPDB dataset. CulPDB (Wang and Dunbrack, 2003) was downloaded on 15 June 

2017 with 30% sequence identity cutoff, resolution cutoff 3.0Å and R-factor cutoff 0.25. 

The raw CullPDB dataset contains 10,423 protein sequences. All sequences with length 

shorter than 50 or longer than 700 were filtered out, which left the remaining 9972 
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protein sequences. CD-HIT (Fu et al., 2012) was then used to remove similar sequences 

between CullPDB and CASP10, CASP11 and CSAP12 datasets. After that, there were 

9589 proteins left. Among them, 8 protein sequences were ignored because they are too 

short to generate PSI-BLAST profile. For the final 9581 proteins, 9000 were randomly 

selected as the training set and the rest 581 as the validation set. 

2) JPRED (Drozdetskiy et al., 2015) dataset. All proteins from the JPRED dataset belong 

to different super-families, which gives the experimental result a more objective 

evaluation. 

3) CASP datasets. CASP10, CASP11 and CASP12 datasets were downloaded from the 

official CASP website http://predictioncenter.org. The Critical Assessment of protein 

Structure Prediction, or CASP, is a bi-annual worldwide experiment for protein structure 

prediction since 1994. The CASP datasets have been widely used in the bioinformatics 

community. To get the secondary structure labels of the proteins, the DSSP program 

(Kabsch and Sander, 1983) was used. Some of the PDB files (including T0675, T0677 

and T0754) could not generate the DSSP result; so, they were discarded. Some protein 

sequences (including T0709, T0711, T0816 and T0820) are too short and PSI-BLAST 

could not generate profiles; so, they were also removed. Finally, 98 out of 103 in 

CASP10, 83 out of 85 in CASP11 and 40 out of 40 in CASP12 were used as our CASP 

dataset.  

4) CB513 benchmark (Zhou and Troyanskaya, 2014). This benchmark has been widely 

used for testing and comparing the performance of secondary structure predictors. 

5) Most recently PDB (Protein Data Bank). Because training data used in different tools 

are not same, it is important to use PDB files that have not been seen by any previous 
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predictors (including ours) to objectively evaluate the performance. For this purpose, 

the most recently published protein PDB files dated from July 1, 2017 to August 15, 

2017 were downloaded. This set contains 614 proteins, each of which share <30% 

sequence identity. Then, 385 proteins with a length between 50 and 700 were kept. To 

perform a more objective test, each of the 385 proteins was searched against CullPDB 

using BLAST and was classified into two categories: 1) easy cases where e-value is less 

than or equal to 0.5; and 2) hard cases which can have no hit or e-value higher than 0.5. 

After the classification, there are 270 easy cases and 115 hard cases. 

In our experiments, the Deep3I configuration as shown in Fig. 3.3 was used to generate 

the results reported in this article. In most cases, the CullPDB dataset was used to train 

various deep neural networks, while the other datasets were only used in testing and 

performance comparison with other methods and existing results. 

3.4.1 PSI-BLAST	vs.	DELTA-BLAST	

     When generating the sequence profiles, most researchers (Zhou and Troyanskaya, 2014; 

Wang et al., 2016; Li and Yu, 2016; Busia and Jaitly, 2017) chose PSI-BLAST (Altschul 

et al., 1997), which can reliably generate a good protein sequence profiles. Besides PSI-

BLAST, other profile search tools are available, such as CS-BLAST (Biegert and Soding, 

2009), DELTA_BLAST (Boratyn et al., 2012), PHI-BLAST (Zhang et al.,1998), etc. In 

this work, the performance between two popular tools were compared: PSI-BLAST vs. 

DELTA-BLAST on the JPRED dataset to decide which tool to use to generate the input 

feature vectors for the new Deep3I network. For the PSI-BLAST experiment: both training 

and test data profiles were generated by setting the e-value at 0.001, num_iterations at 3 
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and db is UniRef50. The JPRED dataset itself contains a training set of 1348 protein 

sequences and a test set of 149 protein sequences. The JPRED training dataset was used to 

train the Deep3I network and the JPRED test dataset was used to report the prediction Q3. 

The Deep3I network were trained five times from random initial weights, and the average 

Q3 accuracy and standard deviation are reported in Table 3.1. The same procedure was 

used for DELTA-BLAST with its default search database (2017/4/1, with a size of 8.7GB). 

The comparison of their results is shown in Table 3.1. Even though the average profile 

generation time of DELTA-BLAST is faster than PSI-BLAST, the Q3 accuracy of Deep3I 

using DELTA-BLAST is not as high as using PSI-BLAST. Hence, PSI-BLAST was 

chosen to generate profiles in the rest of our experiments. 

Table 3.1 Comparison of the profile generation execution time and Deep3I Q3 accuracy using PSI-BLAST 
and DELTA-BLAST 

Tool avg. profile generation time (minutes) Q3 accuracy % 

PSI-BLAST* 16.8(+/-10.14) 84.21(+/-0.49)  

DELTA-BLAST 7.56(+/-3.96)  83.63(+/-0.31)  
*Database for PSI-BLAST search was UniRef50 download on 2017/4/12, 8.7GB. 

 

3.4.2 Deep3I	vs.	the	Best	Existing	Methods	

     Many previous researchers (Busia et al., 2017; Li and Yu, 2016; Wang et al., 2016) 

benchmarked their tools or methods using the dataset CB513 (Zhou and Troyaskaya, 

2014). For a fair comparison, the same CullPDB dataset was used to train and test the 

MUFOLD-SS in the same way as for existing methods reported in previous publications. 

     Table 3.2 shows the performance comparison between Deep3I and four of the best 

existing methods (SSPro, DeepCNF-SS, DCRNN, and DCNN) in terms of the Q8 
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prediction accuracy on the CB513 dataset. All these methods were compared under the 

condition of the same input and features. In this case, only the protein sequence and PSI-

BLAST profiles were provided. No additional technique like the next-step condition 

proposed in (Busia et al., 2017) was involved. SSPro was run without using template 

information. The result shows Deep3I obtained the highest accuracy. 

Table 3.2 Q8 accuracy (%) comparison between MUFOLD-SS and existing state-of-the-art methods using 
the same sequence and profile of benchmark CB513. 

Tool CB513 
SSPro (Cheng et al., 2005) 63.5* 
DeepCNF-SS (Wang et al., 2016) 68.3* 
DCRNN (Li and Yu, 2016) 69.7* 
DCNN (Busia et al., 2017) 70.0**  
MUFOLD-SS 70.63 
*Results reported by (Wang et al., 2016) 
**Results reported by (Busia et al., 2017)  
 

     Tables 3.3 and 3.4 show the performance comparison between MUFold-SS and the best 

existing methods (SSPro, PSIPRED, DeepCNF-SS) in terms of the Q3 prediction accuracy 

on the CASP datasets. PSIPRED could not predict 8-class classification, and thus do not 

have result on Q8 accuracy. 

Table 3.3 Q3 accuracy (%) comparison between MUFOLD-SS and other state-of-the-art methods on CASP 
datasets. 

 CASP10 P value CASP11 P value CASP12 P value 
PSIPRED 0.8390(±0.0731) 6.829e-5 0.8262(±0.0648) 0.0298 0.8051(±0.0905) 0.446 
SSpro 0.7882(±0.0744) 3.315e-20 0.7826(±0.0632) 1.195e-14 0.7577(±0.0913) 2.169e-8 
DeepCNF-SS 0.8386(±0.0657) 8.293e-7 0.8286(±0.0604) 0.0774 0.8131(±0.0771) 0.213 
MUFOLD-SS 0.8598(±0.0683) - 0.8359(±0.0711) - 0.8059(±0.0933) - 
P values indicates the significance of the difference between MUFOLD-SS and PSIPRED/SSpro/DeepCNF-
SS 
 
Table 3.4 Q8 accuracy (%) comparison between Deep3I and other state-of-the-art methods on CASP 
datasets. 

 CASP10 P value CASP11 P value CASP12 P value 
SSpro 0.6703(±0.0951) 1.347e-24 0.6651(±0.0820) 2.022e-21 0.6348(±0.1180) 1.584e-9 
DeepCNF-SS 0.7403(±0.0933) 1.713e-8 0.7325(±0.0897) 0.133 0.7009(±0.1088) 0.334 
MUFOLD-SS 0.7710(±0.0985) - 0.7392(±0.1008) - 0.7048(±0.1163) - 
P values indicates the significance of the difference between MUFOLD-SS and SSpro/DeepCNF-SS 
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     For all methods, their prediction accuracies on the CASP10 and CASP11 datasets are 

generally higher than their accuracies on the CASP12 dataset. This is because CASP12 

contains more hard cases and the profiles generated are not as good as for those in CASP10 

and CSAP11 datasets. Furthermore, MUFOLD-SS outperformed SSPro with template in 

in all cases, even though SSPro used the template information from similar proteins, 

whereas MUFOLD-SS did not. 

 

3.4.3 Effects	of	Hyper-Parameters	of	Deep3I	

     Tables 3.5 and 3.6 show the Q3 and Q8 accuracy comparison between MUFOLD-SS 

with 1 or 2 blocks and the proposed Deep Inception Networks with 1 to 4 inception 

modules. The results of Deep Inception Networks with different number of modules are 

similar, whereas MUFOLD-SS with two blocks is slightly better than that with one block. 

Both Deep3I networks performed better than Deep inception networks. The reason may be 

that the ability of inception network in capturing nonlocal interaction between residues is 

not as good as MUFOLD-SS. MUFOLD-SS consists of integrated hierarchical inception 

modules, which gives more ability to extract high level features, that is, nonlocal 

interactions of residues. 

 

Table 3.5 Q3 accuracy (%) comparison between MUFOLD-SS with different number of blocks and Deep 
Inception Networks with different number of modules.  

 # of modules CASP10 CASP11 CASP12 
Deep Inception 1 86.05 84.13 82.48 

2 86.12 84.31 82.80 
3 86.03 84.29 82.69 
4 86.02 84.44 82.67 

Deep3I  1 86.51 84.56 82.94 
2 86.49 85.20 83.36 
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Table 3.6 Q8 accuracy (%) comparison between Deep3I with different number of blocks and Deep 
Inception Networks with different number of modules. 

 # of modules CASP10 CASP11 CASP12 
Deep Inception 1 75.41 73.12 71.22 

2 75.70 73.26 71.55 
3 75.14 73.33 71.31 

 4 75.23 73.37 71.42 
Deep3I 1 76.03 73.74 71.54 
 2 76.47 74.51 72.1 
 

3.4.4 Results	Using	Most	Recently	Released	PDB	Files	

     The purpose of this test was to conduct a real-world testing, just like CASP, by using 

the most recently published PDB protein files dated from July 1, 2017 to August 15, 2017. 

These PDB files had not been viewed by any previous predictors. As mentioned before, 

the most recently released PDB proteins were classified into two categories: the 270 easy 

cases and 115 hard cases. 

     MUFOLD-SS is compared with the best available tools in this field, including 

PSIPRED, SSPro, and the newly developed SPIDER3 on this set of data. Some protein 

files in this dataset has special amino acid like ‘B’, which causes SPIDER3 prediction 

failure. To make a fair comparison, proteins containing those special cases were excluded 

(20 hard cases and 44 easy cases in total) and the remaining proteins were used as test cases 

to compare the four tools. Again, MUFOLD-SS was trained using the CullPDB dataset and 

tested on the new dataset. 

      Table 3.7 shows the performance comparison of the 4 tools. Again, Deep3I 

outperformed the other state-of-the-art tools in both easy and hard cases. Different from 
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traditional neural networks that use a sliding window of neighbor residues to scan over a 

protein sequence in making prediction, MUFOLD-SS takes the entire protein sequence (up 

to 700 amino acids) as the input and processes local and global interactions simultaneously. 

It is remarkable that MUFOLD-SS can outperform SPIDER3 in both easy and hard cases. 

Another advantage of MUFOLD-SS is that it can generate prediction for 3-class and 8-

class classification at the same time, while some other tools like PSIPRED and SPIDER3 

can predict only 3-class or 8-class classification. Last but not the least, MUFOLD-SS can 

even outperform SSPro with template in hard cases. (For hard cases, SSPro with template 

get 81.88% in Q3 and 71.8% in Q8.)    

Table 3.7 Q3 (%) and Q8 (%) compared with MUFOLD-SS and other state-of-the-art tools using recently 
PDB. 

 Easy case Hard case  
 Q3 Q8 Q3 Q8 
PSIPRED 82.55 N/A 80.76 N/A 
SSPro 78.76 66.53 76.01 63.14 
SPIDER3 86.23 N/A 82.64 N/A 
MUFOLD-SS 88.20 78.65 83.37 72.84 
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CHAPTER	4 	A	NEW	DEEP	NEIGHBOR	RESIDUAL	

NETWORK	FOR	PROTEIN	SECONDARY	STRUCTURE	

PREDICTION	

4.1 DeepNRN	–	Deep	Neighbor-Residual	Network	

     In this section, the proposed DeepNRN method is presented. Subsection 4.1.1 presents 

its building block and network architecture. Subsection 4.1.2 describes some details in 

training the network. Subsection 4.1.3 describes the input features to the network model. 

Subsection 4.1.4 discusses the effect of applying different Struct2Struct networks and 

different numbers of iterative training to fine-tune the network result. 

4.1.1 DeepNRN	Architecture	

      Figure 4.1 shows the basic building block of DeepNRN, the neighbor residual unit, 

which consists of a sequence of convolutions and concatenations with two shortcuts, and 

the number of filters (feature planes) is 100. Since the convolutions with large spatial filters 

are computationally expensive, we use a hierarchical layer of convolutions with small 

spatial filters. A detailed explanation of factorization into smaller convolutions can be 

found in (Szegedy et al., 2016) and (Szegedy et al., 2016). Besides that, residual shortcut 

lines (He et al., 2016; He et al., 2016; Zhang et al., 2017; Huang et al., 2016) are used so 

that the flow of information from a predecessor can be passed to the successor layers. The 

reason behind this is discussed in (He et al., 2016) and (He et al., 2016) as deep network 

architecture may cause the vanishing-gradient problem. The neighbor-residual design is 

different from denseNet in (Huang et al., 2016) in that the latter network with L layers can 
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have as many as 𝐿(𝐿 + 1)/2 direct connections, which may lead to an explosion of feature-

maps and consume large computational resources. Our network connection design is not 

as dense as denseNet but still preserves the long distance of four (far neighbor) and short 

distance of two (near neighbor) connections. This design can also alleviate the vanishing-

gradient problem for deep neural networks and reduce the burden of propagating large 

feature-maps to the deeper layer comparing with the network flow of denseNet. 

Figure 4-1 The basic building block of DeepNRN, i.e., neighbour-residual unit. The square “Conv3” 
stands for convolution operation using a window size 3, while the square “Concatenate” stands for feature 

concatenation. 
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      Figure 4.2 shows a neighbor-residual block that consists of five neighbor-residual units 

strung together. The output of one neighbor-residual unit is the input to the next neighbor-

residual unit. 

Figure 4-2 Neighbour-residual block has stacks of neighbor-residual units. 

     Figure 4.3 shows the overall DeepNRN architecture that consists of three neighbor-

residual blocks with size-3 convolutions in between, followed by one size 11 convolution 

layer, and two dense fully-connected layers. Before each neighbor-residual block, the size-

3 convolutional layer acts as a transition. The input of the network is the sequence and 

profiles. The output is the predicted secondary structure labels. We explored many other 

ways of placing residual shortcuts between neighbor-residual blocks, and different 

numbers of neighbor-residual blocks. Empirically, the architecture shown in Figure 4.3 

works the best. 

 

 

 

 

Figure 4-3 Deep neighbor-residual network (DeepNRN) architecture. 

 



44 
 

4.1.2 Batch	Normalization	and	Dropout	

     The TensorFlow 1.0 version (Abadi et al., 2016) and the Keras 2.0 version (Chollet, 

2015) of machine learning environments were used for training the DeepNRN networks. 

To speed up the training, batch normalization (Ioffe and Szegedy, 2015) was applied after 

convolutions, which also acted as a regularizer. The rectified linear unit (ReLU) (Zeiler et 

al., 2013), as the activation function, was used after batch normalization. To reduce 

network overfitting, dropout (Srivastava et al., 2014) was added after the activation layer. 

Several dropout ratios, ranging from 0.3 to 0.8, were tested in our experiments and the 

value 0.4 was used in our final experiments. Adam optimization (Kingma and Ba, 2014) 

was used to train the networks. The learning rate scheduler from Keras was used to control 

the learning rate. The validation loss was monitored and used to early-stop the training 

process to avoid overfitting. The early-stopping “patience” (i.e., the number of epochs with 

no improvement after which training was stopped) was set between 8 to 12 in experiments, 

case by case. The experiments were performed on an Alienware Area desktop computer 

with a Titan-X GPU card equipped. 

4.1.3 Input	Features	

     The input features to DeepNRN consists of a protein sequence and its profiles generated 

by PSI-BLAST (Altschul et al., 1997) and HHBlits (Remmert et al., 2012), respectively. 

One-hot vector encoding was used to represent protein sequences. To be consistent with 

the position specific scoring matrix (PSSM) results were generated by PSI-BLAST, which 

contains only 20 different kinds of amino acids, some special cases were handled as 

followed: Amino acid ‘X’ is treated like amino acid ‘A’; ‘B’ is like ‘N’; and ‘Z’ is like ‘Q’. 



45 
 

The input length of the amino acid sequence was fixed at 700. If a protein sequence is 

shorter than 700, a ‘NoSeq’ label is padded to the end of the sequence, which means no 

amino acid is there. If a protein sequence is longer than 700, it is broken into segments 

shorter than 700. In the implementation, a protein sequence is represented as a 700-by-21 

(20 amino acids + NoSeq label) array. Next, protein profiles were generated using PSI-

BLAST (Altschul et al., 1997) and HHBlits (Remmert et al., 2012), respectively, like the 

previous work in (Wang et al., 2016; Heffernan et al., 2017). The PSI-BLAST tool 

parameters were set to (evalue 0.001, num_iterations 3, and db UniRef50) to generate 

PSSM. PSSM values were then converted to the range (0, 1) through the Sigmoid function. 

The PSI-BLAST profile information is represented as a 700-by-21 array. The HHBlits tool 

parameters are set to (d uniprot20_2013_03, maxres 40 000, Z 0) to generate HHM profiles. 

The HHM files are represented as a 700-by-30 array and the information retrieved from 

HHM is processed the same as in (Heffernan et al., 2017): Convert ‘*’ to 0 and other non-

‘*’ value to 𝑓(𝑥) = 2	
xy
z{{{. By combining the three arrays together. The final input to 

DeepNRN is a 700-by-72 array. 

4.1.4 Struct2Struct	Network	and	Iterative	Fine-tuning	

     The Struct2Struct network proposed by (Rost and Sander., 1993) was added after the 

DeepNRN network to fine-tune the predicted results and take into consideration the 

consecutive patterns. For example: a-helix should consist of at least 3 consecutive patterns. 

The predicted secondary structure from DeepNRN may violate such a pattern, i.e. not 

protein-like. The initial testing predicted that secondary structures are fine-tuned and more 

protein-like after passing through the Struct2Struct network. 
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     Heffernan et al. (2017) employed an iterative learning process in their protein secondary 

structure prediction. We adopted a similar approach, but only on the fine-tuning part, i.e., 

we iteratively fine-tuned the Struct2Struct network. One of the inputs to the Struct2Struct 

network is the output from a previous DeepNRN prediction, i.e., the predicted probability 

of each class from the last Softmax layer, and another input to the Struct2Struct network is 

the physico-chemical properties (PP) of amino acids (Heffernan et al., 2017). The output 

of the Struct2Struct network is again the secondary structure labels. This fine-tuning 

process can be iteratively repeated, which takes the predicted output from the Struct2Struct 

network and feeds it back into the network as its input. 

     The existing Struct2Struct network described in (Rost and Sander, 1993) used single-

layer neural networks. In our work, different size convolution kernels were tested and, in 

the end, size 21 was chosen based on the fine-tuning performance. The Struct2Struct 

network may not improve the prediction accuracy much, but it can make the prediction 

more protein like and increase prediction accuracy of some small classes, such as B, G, S, 

T. 

     In summary, the proposed DeepNRN method is different from existing methods. The 

DeepNRN architecture differs from Busia’s (Busia and Jaitly, 2017) and Li’s (Li and Yu, 

2016) architecture in that (Li and Yu, 2016) used residual blocks and multi-scale layer 

containing CNN layers with convolution window sizes of 3, 7, and 9 to discover protein 

local and global context. In contrast, DeepNRN consists of stacked CNN layers with a 

convolution window size 3 only. When deep convolution blocks are stacked, they can 

capture both short- and long-range sequence information. DeepNRN is also different from 

Heffernan’s network (Heffernan et al., 2017), where the latter applied long short-term 
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memory (LSTM) (Sak et al., 2014) and a bidirectional neural network (BiNN) to perform 

the global context extraction. Furthermore, the key advantage of DeepNRN, the near and 

far neighbor residual connections, can reduce the vanishing-gradient problem in deep 

networks and strengthen the feature propagation. The Struct2Struct network was added 

after the DeepNRN network because fine-tuning makes the prediction results more protein-

like. 

4.2 Experimental	Results	

     In our experiments, three public data sets were used: (1) the CullPDB (Wang and 

Dunbrack, 2003) preprocessed data set from (Li and Yu, 2016) and (Busia and Jaitly, 

2017); (2) the CB513 benchmark in (Li and Yu, 2016) and (Busia and Jaitly, 2017); (3) 

CASP10, CASP11 and CASP12 data sets (http://predictioncenter.org/). The CullPDB data 

set was used to train the deep networks, while the other data sets were used for testing and 

comparison with other state-of-the-art tools. Please note that the CullPDB data set from 

(Zhou and Troyanskaya, 2014) was constructed before January 2014 and any two proteins 

in this set share less than 25% sequence identity with each other. Originally, this CullPDB 

had 6128 proteins. We used the filtered CullPDB data set, in which the sequence identity 

with the CB513 test data is less than 25%. The filtered CullPDB data set contains 5534 

protein sequences, and 5278 of them were randomly selected to form the training set and 

the remaining 256 sequences form the validation set. 

     As in (Li and Yu, 2016) and (Busia and Jaitly, 2017), the Q3 and Q8 accuracies were 

used as the performance metrics in evaluation. The Q3 or Q8 accuracy measures the 

percentage of residues being correctly predicted among three-state or eight-state protein 
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secondary structure classes. In addition, the Matthew correlation coefficient (Matthews, 

1975) was used, as it provides a more balanced measurement of classification quality. 

4.2.1 Performance	Comparison	of	DeepNRN	with	Other	State-of-the-art	Tools	

Based	on	the	CB513	Data	set	

     In our experiments, two widely used state-of-the-art tools, SCRATCH_1D (SSPro ab 

initio) (Cheng et al., 2005), (Magnan et al., 2014) and Psipred (Jones, 1999) were used to 

compare their performance with that of DeepNRN on the data set CB513. For a fair 

comparison, the same PSI-BLAST data base (a smaller version of UniRef50 included in 

the SSPro package) was used by all three methods. SSPro contains the legacy Blast 2.2.26 

for profile searches. Since Psipred does not contain PSI-BLAST, the legacy Blast 2.2.26 

was installed for it. The new Blast+ package 2.6.0+ was used in our DeepNRN system. 

     Table 4.1 shows the Q3 and Q8 results of all three methods. The new DeepNRN method 

outperforms the other two methods by a large margin. 

Table 4.1 Performance comparison of DeepNRN, SSPro, and PSIPRED on Q3 and Q8 accuracy on the 
CB513 data set. 

 Q3 (%) Q8 (%) 

SSPro  78.6 66.5 

Psipred 79.2 N/A 

DeepNRN 83.7 71.1 
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4.2.2 Performance	Comparison	of	DeepNRN	with	Other	State-of-the-art	Tools	

Based	on	Four	Widely	Used	Data	sets	

     In this set of experiments, the results of DeepNRN were compared with published 

results of other state-of-the-art methods in (Zhou and Troyanskaya, 2014) and (Wang et 

al., 2016) on CB513, as well as three data sets from the world-wide contest of protein 

structure prediction, i.e., the Critical Assessment of Protein Structure Prediction (CASP). 

To prepare the data sets, we downloaded the PDB files from the official CASP website 

http://prediction-center.org/. Note that some of the PDB files provided do not have 

corresponding FASTA files. For example, T0644.fasta contains 166 amino acids; however, 

T0644.pdb contains only 141 amino acids. To be consistent, protein sequences were 

extracted from PDB; then, the DSSP program (Touw et al., 2015; Kabsch and Sander, 

1983) was used to retrieve the ground truth secondary structure for those extracted 

sequences. Some of the PDB files, including T0675, T0677 and T0754, could not generate 

the DSSP output; so, they were discarded. Some protein sequences, including T0709, 

T0711, T0816 and T0820, were too short to have any PSI-BLAST hit; so, they were 

removed as well. Overall, the proteins used in the experiments were CASP10 (98 out of 

103), CASP11 (83 out of 85) and CASP 12 (40 out of 40). 

     Tables 4.2 and 4.3 show the Q3 and Q8 accuracy results, respectively, of various 

methods. Bold-face numbers in each column represent the best result on a particular data 

set, and ‘-’ denotes that no result was available. The results show that DeepNRN is 

significantly better than previous methods in all cases, except for Q3 on CASP11, where 

DeepCNF-SS is slightly better. 

Table 4.2 Q3 (%) accuracy results of various prediction methods on four data sets. 
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 CB513 CASP10 CASP11 CASP12 

SSPro* 78.5 78.5 78.6 76.0** 

SPINE-X* 78.9 80.7 79.3 - 

PSIPRED* 79.2 81.2 80.7 80.3** 

JPRED* 81.7 81.6 80.4 - 

RaptorX-SS8* 78.3 78.9 79.1 - 

DeepCNF-SS* 82.3 84.4 84.7 - 

DeepNRN** 83.7 85.6 83.6 81.6 

  *Results reported in (Wang et al., 2016). 
  ** Our experimental results. 
 

Table 4.3 Q8 (%) accuracy results of various prediction methods on four data sets. 

 CB513 CASP10 CASP11 CASP12 

SSPro* 63.5 64.9 65.6 63.1** 

RaptorX-SS8* 64.9 64.8 65.1 - 

DeepCNF-SS* 68.3 71.8 72.3 - 

DeepNRN** 71.1 75.33 72.9 70.8 

  * Results reported in (Wang et al., 2016). 
  ** Our experimental results. 
 

4.2.3 Effect	of	Convolution	Window	Size	in	Struct2Struct	Network	and	

Iterative	Refinement	

     The Struct2Struct network was implemented as a convolutional layer, and different 

convolutional window sizes were tried to find out its effect on the results. Figures 4.4 and 

4.5 show the effects of different convolutional window sizes and iterative refinement using 

repeated Struct2Struct networks on Q8 and Q3 accuracies, respectively. As shown in Fig. 
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4.4(a) and 4.5(a), the general trend is that the accuracies decrease slightly as the number of 

iterations increases, and a large window size leads to lower accuracy. Occasionally, the 

accuracy could increase slightly, as in the case of window size 21 after one iteration of 

fine-tuning on Q8. More iterations may not necessarily increase the fine-tuning results, but 

the accuracy will drop. The reason may lie in too much iterative training causing the 

network to become over-trained, and causing the performance to drop. The convolutional 

window size is a way of considering near-intermediate interactions of residues. From the 

experiment results, a window size was chosen between 15 and 21, which is reasonable, on 

a case by case basis, depending on the problem. If the window was too small, not enough 

neighboring residues could cover and the purpose of Struct2Struct was to take into 

consideration the consecutive neighboring residues. 

     Figures 4.4(b) and 4.5(b) compare the confusion matrices of the prediction results of 

DeepNRN alone vs. an additional Strut2Struct network layer of window-size 21. Although 

the added Struct2Struct network did not significantly change Q3 and Q8 accuracy, more 

instances of the smaller classes, including B, G, S and T, were correctly predicted for Q8. 
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(A) 

 

(B) 

Figure 4-4 (a) Effect on Q8 of iterative refinement by applying the Struct2Struct network repeatedly. (b) 
Left table shows the confusion matrix of the prediction result of DeepNRN, and the right table shows the 

prediction result of adding one Strut2Struct network layer of window-size 21. 

 

 

 

 

 

 

 

 

 

(A) 
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(B) 

Figure 4-5 (a) Effect on Q3 of iterative refinement by repeatedly applying Struct2Struct network. (b) Left 
table shows the confusion matrix of the prediction result of DeepNRN, and the right table shows the 

prediction result of adding one Struct2Struct network layer of window-size 21. 

 

4.2.4 Exploration	of	other	Network	Configurations	of	DeepNRN	

     Other configurations of DeepNRN design were explored, and the performance was 

tested and compared in Table 4.4. As the experiment results show, the neighbor shortcuts 

played a very important role in propagating a large feature map to deep layers of networks 

because without them, the performance dropped. The far-neighbor shortcuts were also very 

important as shown in Table IV; without them, the performance dropped significantly. 

Also, adding more NRN blocks was possible but consumed more computational resources, 

e.g., GPU memory. 

Table 4.4 Other Network Configuration of DeepNRN and Performance 
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CB513 

Without near neighbor shortcuts 70.8 
Without far neighbor shortcuts 62.7 
1 NRN Block 70.4 
2 NRN Blocks 70.7 
DeepNRN 71.1 
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CHAPTER	5 PROTEIN	BACKBONE	TORSION	ANGLES	

PREDICTION	USING	DEEP	RESIDUAL	INCEPTION	

NETWORKS		

5.1 Problem	formulation	

     For a given amino acid sequence of a protein, the goal is to predict the backbone torsion 

angles (Psi and Phi) of each residue. Psi is the N(i), Ca(i), C(i), N(i+1) torsion angle for 

residue i and Phi is the C(i-1), N(i), Ca(i), C(i) torsion angle for residue i (see Figure 1.1). 

The ranges of Psi-Phi angle are between -180 to 180 degrees. It is important to feed the 

deep neural networks with useful inputs in order to make accurate prediction. In the 

proposed method, the input is designed to include as much useful information that can be 

obtained or generated based on the amino acid sequence. Specifically, the input features 

consist of physico-chemical properties of amino acids, PSI-BLAST profile, HHBlits 

profile, and predicted secondary structures. Figure 5.1 shows an example of the physico-

chemical feature vector. Each amino acid in the protein sequence is represented as a vector 

of 8 real numbers ranging from -1 to 1. The vector consists of the seven physico-chemical 

properties as in (Fauchere et al., 2009) plus a number 0 or 1 representing the existence of 

an amino acid at this position as an input (called NoSeq label). The reason of adding the 

NoSeq label is because the proposed deep neural networks are designed to take a fixed size 

input, such as a sequence of length 700 residues in our experiment. Then, to run a protein 

sequence shorter than 700 through the network, the protein sequence will be padded at the 

end with 0 values and the NoSeq label is set to 1. For example, if the length of a protein is 

500, then the first 500 rows are similar to the example in Figure 5.1 with NoSeq label set 
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to 0 and the last 200 rows have 0 values in the first 7 columns and 1 in the last column. If 

the protein is longer than 700 residues, it can be split into multiple segments, each shorter 

than 700 residues. 

 

 

 

 

 

Figure 5-1 An example of the physico-chemical feature vector of a protein sequence. Each amino acid in 
the protein sequence is represented as a vector of 8 real numbers ranging from -1 to 1. The feature vectors 

of the first 5 amino acids are shown. 

     The second set of features comes from the protein profiles generated using PSI-BLAST 

(Altschul et al., 1999). In our experiments, the PSI-BLAST parameters were set to (evalue: 

0.001; num_iterations: 3; db: UniRef50) to generate PSSM, which was then transformed 

by the sigmoid function S(x) = 1	/(1 + e5~)  into the range (0, 1). Figure 5.2 shows an 

example of the PSI-BLAST profile. Each amino acid in the protein sequence is represented 

as a vector of 21 real values ranging from 0 to 1, representing the 20 amino acids PSSM 

values plus a NoSeq label in the last column.   

     The third set of features comes from the protein profiles generated using HHBlits 

(Remmert et al., 2011).  In our experiments, the HHBlits software used database 

uniprot20_2013_03, which can be downloaded from 

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/. Again, the 

profile values were transformed by the sigmoid function into the range (0, 1). Figure 5.3 

shows an example of the HHBlits profile. Each amino acid in the protein sequence is 
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represented as a vector of 31 real numbers, of which 30 from amino acids HHM profile 

values and 1 NoSeq label in the last column. 

     The fourth set of features comes from the predicted eight-class secondary structures by 

DeepRIN itself. In our experiment, DeepRIN first takes the above-mentioned three sets of 

features as input to predict the eight-class secondary structure features. The prediction 

result is used as the fourth set of features for Psi-Phi angle prediction. The secondary 

structure prediction result is a vector of nine numbers, of which the first eight are the 

probabilities of the eight secondary structure classes and the last one is the NoSeq label. 

 

 

 

 

 

 

Figure 5-2 An example of the PSI-BLAST profile of a protein sequence. Each amino acid in the protein 
sequence is represented as a vector of 21 real numbers ranging from 0 to 1. The feature vectors of the first 

5 amino acids are shown. The third through the 19th columns are omitted. 

 

 

 

 

 

 

 

 

 

Figure 5-3 An example of the HHBlits profile of a protein sequence. Each amino acid in the protein 
sequence is represented by a vector of 31 real values ranging from 0 to 1. The feature vectors of the first 5 

amino acids are shown. 
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     The four sets of features are combine into one feature vector of length 66 for each amino 

acid as the input to our proposed deep neural networks.  For the deep neural networks that 

take the fixed-size input, the input feature matrix would be of size 700 by 66.  

     The new deep neural network will not predict Psi-Phi angle values directly. Instead, the 

outputs for each amino acid positon are sin(𝜙), cos(𝜙), sin(𝜑), and cos(𝜑), in order to 

remove the effect of angle’s periodicity. The predicted angles can be calculated by using 

the sine and cosine predictions via equation 𝛼 = 𝑡𝑎𝑛5H[𝑠𝑖𝑛 𝛼 / 𝑐𝑜𝑠 𝛼].  

5.2 New	Deep	Residual	Inception	Networks	(DeepRIN)	for	Torsion	

Angle	Prediction	

     In this section, a new deep inception residual network architecture is proposed for 

protein torsion angle prediction. The architecture consists of stringed inception modules 

and shortcut lines followed by some convolution and fully connected dense layers.  Figure 

5.4 shows the basic residual inception module of DeepRIN, which is designed based on 

InceptionNet (Szegedy et al., 2017) and ResNet (He et al., 2016). The residual inception 

module consists of two stacked inception modules to extract diverse features from the 

input. Convolutions with small windows are used to make the networks computationally 

efficient. The shortcut through Conv1 is designed to propagate feature maps into deeper 

layers of the network to address the vanishing-gradient problem. 
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Figure 5-4 A residual-inception module of DeepRIN. The green rhombus “Conv(1)” denotes a convolution 
operation using window size 1 and the number of filters is 100. The orange square “Conv(3)” denotes a 
convolution operation using window size 3 and the number of filers is 100. The blue oval “Concatenate” 

denotes feature concatenation. 

     Figure 5.5 shows two DeepRIN networks with two residual inception modules followed 

by a convolutional layer and two dense layers. The first one predicts 8-class secondary 

structure and the second one predicts torsion angles. The input of the first network is a 

700x58 feature matrix of the given protein sequence of length 700, whereas the input of 

the second network is a 700x66 feature matrix of the given protein sequence. Different 

numbers of residual inception modules were tried and compared in our experiments to find 

optimal values for our prediction tasks. The deep neural networks were implemented, 

trained, and experimented using TensorFlow (Abadi et al., 2016) and Keras (Chollet, 

2015). 
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Figure 5-5 Architecture of the proposed deep residual inception network architecture (DeepRIN). 

     Each convolution layer, such as ‘Conv (3)’ in Figure 5.5, consists of four operations in 

the following sequential order: 1) A one-dimensional convolution operation using the 

kernel size of three; 2) the batch normalization technique (Ioffe and Szegedy, 2015) for 

speeding up the training process and acting as a regularizer; 3) the activation operation, 

ReLU (Radford et al., 2015), for nonlinear transformation; and 4) the dropout operation 

(Srivastava et al., 2014) to prevent the neural network from overfitting by randomly 

dropping connections during the deep network training process so that the network can 

avoid coadapting. 

      In our experiments, a large number of network parameters and training parameters were 

tried. For the experimental results reported in the next section, the dropout rate was set at 

0.4. During training, the learning rate scheduler from Keras was used to control the learning 

rate. The initial learning rate was 0.0005, and after every 40 epochs, the learning rate 

dropped as shown by the following formulas:	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒 = 0.001 ∗
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𝑝𝑜𝑤	(0.8, 𝑓𝑙𝑜𝑜𝑟(𝑒𝑝𝑜𝑐ℎ + 1)/40). An early stopping mechanism from Keras was used to 

stop training when the monitored validation performance (such as validation loss and/or 

validation accuracy) stopped improving. The “patience” (number of epochs with no 

improvement after which the training was stopped) was set between 5 and 8. The activation 

function used for the last layer is tanh, as the predicted sine and cosine value should be 

within the range [-1,1]. 

     The new DeepRIN networks are different from existing deep neural networks. The 

networks in (Heffernan et al., 2017) consisted of stacked RNN and iterative training, while 

in DeepRIN, a stacked inception module and residual shortcuts were used to capture both 

local and global interactions between residues efficiently. Also, DeepRIN is different from 

DReRBM and DRNN in (Li et al., 2017) because they used a sliding window to create 

input to deep neural networks, which is unable to capture long-range interactions between 

amino acids. In DeepRIN, the input is the entire protein sequence. 

     At a convolutional layer, the previous layer’s feature maps are convolved with learnable 

kernels and go through the activation function to generate the output feature map. The 

convolution operation can be expressed in the following formulas: 

𝒙?R = 𝑓(� 𝒙$R5H ∗ 𝒌$?R + 𝑏?R
$∈�B

) 

where 𝑀? represents a selection of input maps, b is bias, k is kernel, and x is feature maps. 

     The cross-entropy loss function used during the training is defined as following: 

𝐿𝑜𝑠𝑠(𝑤) =
1
𝑁�𝐻(𝑝� − 𝑞�)

�

�GH
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= −
1
𝑁�

(𝑦�𝑙𝑜𝑔𝑦�� + (1 − 𝑦�)log	(1 − 𝑦��))
�

�GH

 

where 𝑦�� = 1/(1 + 𝑒5�∗��), N is the total number of samples, w is the vector of weights, 

the true probability p represents the percentage of the true labels, the given distribution q 

is the predicted value of the current model, and x is the input vector. 

5.3 Experimental	Results	

     This section presents experimental results of the proposed deep neural networks on 

multiple benchmarks in comparison with the best existing methods. The following four 

publically available datasets were used in our experiments: 

1) CullPDB dataset. CullPDB (Wang and Dunbrack, 2006) was downloaded on 15 

June 2017 with 30% sequence identity cutoff, resolution cutoff 3.0Å and R-factor 

cutoff 0.25. The raw CullPDB dataset contains 10,423 protein sequences. All 

sequences with length shorter than 50 or longer than 700 were filtered out, which 

left the remaining 9972 protein sequences. CD-HIT (Li and Godzik, 2006) was then 

used to remove similar sequences between CullPDB and CASP10, CASP11 and 

CASP12 datasets. After that, there were 9589 proteins left. Among them, 8 protein 

sequences were ignored because they are too short to generate PSI-BLAST profiles. 

For the final 9581 proteins, 9000 were randomly selected as the training set and the 

rest 581 as the validation set. 

2) CASP datasets. CASP10, CASP11 and CASP12 datasets were downloaded from 

the official CASP website http://predictioncenter.org. The Critical Assessment of 

protein Structure Prediction, or CASP, is a bi-annual worldwide experiment for 
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protein structure prediction since 1994. The CASP datasets have been widely used 

in the bioinformatics community. To get the secondary structure labels of the 

proteins, the DSSP program (Kabsch and Sander, 1983) was used. Some of the 

PDB files (including T0675, T0677 and T0754) could not generate the DSSP 

results, and hence they were discarded. Some protein sequences (including T0709, 

T0711, T0816 and T0820) are too short and PSI-BLAST could not generate profiles 

so that they were also removed. Finally, 98 out of 103 in CASP10, 83 out of 85 in 

CASP11 and 40 out of 40 in CASP12 were used as our CASP dataset.  

3) Recently released PDB proteins. Because different tools used different training 

data, it is important to use PDB (Protein Data Bank) files that have not been seen 

by any previous predictors (including ours) to objectively compare their 

performance. For this purpose, recently published protein PDB files dated from 

2017-7-1 to 2017-8-15 were downloaded. This set contains 614 proteins, each of 

which share less than 30% sequence identity. Then, 385 proteins with a length 

between 50 and 700 were kept. To perform a more objective test, each of the 385 

proteins was searched against CullPDB using BLAST and was classified into two 

categories: 1) easy cases where e-value is less than or equal to 0.5; and 2) hard cases 

which have no hit or e-value higher than 0.5. After the classification, there are 270 

easy cases and 115 hard cases.  

4) SPIDER3’s training and test datasets. These datasets are available from 

http://sparks-lab.org/server/SPIDER3/. The training data was used to train our 

model, and the test set performance was reported and compared with SPIDER3. In 

this experiment, only the sequences with length less than 700 residues were 
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retained. In total 4532 out of 4590 training cases were used to train our DeepRIN 

model, and 1174 out of 1199 test cases were used to benchmark SPIDER3 and 

DeepRIN. 

     In our experiment, the DeepRIN configuration shown in Figure 6 was used to generate 

the results reported in this paper. The DeepRIN networks consisted of two inception blocks 

and short-cut connected by residual network. We tried some different hyper-parameters, 

such as different numbers of inception blocks (ranging from 1 to 5), in our experiments. 

The configuration in Figure 5.5 worked well in general and used in the final networks. 

     In most cases, the CullPDB dataset was used to train various deep neural networks, 

while the other datasets were only used in testing and performance comparison of different 

methods and with results in the literature. 

     The Psi-Phi angle prediction was evaluated by the mean absolute error (MAE) between 

the truth angle (𝐴$����)	and the predicted angle (𝐴$
����) for each residue i. To remove the 

periodicity in angles, the error in prediction of residue i is defined as the smaller value of 

𝑑$	and 360–𝑑$, where 𝑑$ = �𝐴$
���� − 𝐴$�����. In addition, Peasron Correlation Coefficient 

was also used to evaluate the predicted Psi-Phi angles. 

     Table 5.1 compares the prediction results of DeepRIN and the best methods published 

in (Li et al., 2017) using the same test dataset. In (Li et al., 2017), Li et al. proposed 

DReRBM, which is a deep recurrent restricted Boltzmann machine (Nair and Hinton, 

2010) and DRNN, which is a deep recurrent neural network (Mikolov et al., 2010) to 

predict backbone torsion angle. SPIDER2 and SPIDER3 are two well-known tools 

representing the state-of-the-art. The testset contains 11 free modeling targets selected from 

CASP12 as described in (Li et al., 2017). The results show that DeepRIN outperformed all 
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existing methods significantly, reducing the Psi MAE by over 2.6 degree over the second 

best, DReRBM, and the Phi MAE by nearly 1 degree over the second best, SPIDER3. 

Table 5.1 Comparison of mean absolute errors (MAE) of Psi-Phi angle prediction between DeepRIN and 
best existing predictors using the test sets from (Li et al., 2017) 

  Psi MAE Phi MAE 
DReRBM (Li et al., 2017) *  35.99 22.47 

DRNN (Li et al., 2017) *  37.54 22.38 
SPIDER2*  37.67 22.61 
SPIDER3  39.06 21.24 
DeepRIN  33.34 20.30 

*Published results in (Li et al., 2017) 

     Table 5.2 compares the results of DeepRIN, SPIDER2 and SPIDER3 on three datasets, 

CASP10, CASP11 and CASP12. Again, DeepRIN outperformed SPIDER2 and SPIDER3 

in all cases. The improvements are significant, reducing Psi angle prediction error by more 

than 5 degrees and Phi angle prediction error by more than 1.5 degrees. The improvement 

on the CASP12 dataset is slightly less than those on CASP10 and CASP11 datasets, which 

may be because targets in CASP12 are harder targets and PSI-BLAST or HHblits did not 

generate good profiles for them. 

Table 5.2 Comparison of mean absolute errors (MAE) and Pearson Correlation Coefficient (PCC) of Psi-
Phi angle prediction between DeepRIN, SPIDER2 and SPIDER3 using the CASP10, 11 and 12 datasets. 
The PCC is written in parentheses. Bold-font numbers in each column represent the best result on a 
particular dataset. 

  Angle CASP10 CASP11 CASP12 
SPIDER2  Psi 49.18 (0.693) 48.13 (0.699) 50.59 (0.688) 

 Phi 25.83 (0.766) 26.06 (0.756) 26.85 (0.758) 
SPIDER3  Psi 31.17 (0.824) 33.05 (0.805) 35.67 (0.783) 

  Phi 20.41 (0.831) 21.38 (0.815) 21.12 (0.809) 
DeepRIN  Psi 25.79 (0.861) 27.96 (0.841) 31.39 (0.813) 

 Phi 17.39 (0.874) 18.97 (0.853) 20.21 (0.838) 
 

     Figure 5.6 shows the average Psi-Phi angle prediction errors (MAEs) of DeepRIN for 

protein targets in the CASP12 dataset across eight types of secondary structures, which are 

310-helix (G), a-helix (H), p-helix (I), b-strand (E), b-bridge (B), b-turn (T), bend (S) and 

loop or irregular (L). The result shows that for H (Helix), Psi-Phi angle prediction errors 
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are the lowest, yet the errors for T (Turn), S (Bend) and C (Loop Region) are the highest. 

There is no “I” region in the targets. 

     Figure 5.7 shows the detailed Psi-Phi angle prediction results of two proteins in 

CASP12: T0860 and T0861. Predicted angle value, true angle value, and absolute error are 

plotted for each amino acid position, with its true secondary structure type labelled. T0860 

is an example of hard cases with higher prediction errors, whereas T0861 is an example of 

accurate prediction. The H (helix) regions generally have lower prediction errors, whereas 

the C (coil) regions usually are harder to predict. 

     As shown in Figures 5.6 and 5.7, loop regions (T, S, C) generally have large prediction 

errors. The H (Helix) regions and strand (E) regions can be predicted accurately. 

Sometimes, Psi angles in beta sheets were predicted 180-degree reversely. For Phi angles, 

the predictions are relatively better in helix and beta sheet regions. T0861 was predicted 

quite well except for some turn and loop regions. An observation is that when the Psi-Phi 

angles were predicted relatively well, the variance of the predicted Psi-Phi angles were 

relatively large, as it captured the diversity of different angles. When the Psi-Phi angles 

were not predicted accurately, the predicted angles had smaller variations.  

     Table 5.3 compares the results of DeepRIN, SPIDER2 and SPIDER3 on the recently 

released PDB dataset. On both the easy target subset and the hard target subset, DeepRIN 

outperformed both SPIDER2 and SPIDER3 significantly. These results provide an 

objective assessment because no predictors used these recently released PDB proteins in 

their training or development. 
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Table 5.3 Comparison of mean absolute errors (MAE) and Pearson Correlation Coefficient (PCC) of Psi-
Phi angle prediction between DeepRIN and SPIDER2 and SPIDER3 using the recently released PDB 
dataset. The PCC is shown in parentheses. 

  Angle Recent PDB easy cases 
(226) 

Recent PDB hard cases (94) 

SPIDER2  Psi 28.13 (0.849) 33.42 (0.808) 
 Phi 18.46 (0.850) 20.24 (0.830) 

SPIDER3  Psi 24.93 (0.867) 29.53 (0.827) 
  Phi 17.49 (0.861) 19.35 (0.838) 

DeepRIN  Psi 22.67 (0.882) 28.94 (0.834) 
 Phi 15.98 (0.881) 18.67 (0.850) 

 

     Table 5.4 compares the performances of DeepRIN and SPIDER3 using SPIDER3’s 

training data. DeepRIN was trained using SPIDER3’s training data (sequences length less 

than 700) with 4532 out of 4590 proteins in total. DeepRIN used less training data than 

SPIDER3. This experiment was designed to compare the two different deep neural network 

methods. After training, both methods were run on six different test datasets (including 

SPIDER3’s test sets (sequences length less than 700, 1174 out of 1199 test proteins in total) 

and the results are shown in Table 4.4. Across all test datasets, DeepRIN outperformed 

SPIDER3. 
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Figure 5-6 Average Psi-Phi angles prediction error (MAEs) for each of the eight types of secondary 
structure on the CASP12 dataset by DeepRIN. 
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Figure 5-7 Psi-Phi angle prediction results of two proteins in CASP12, T0860 (top) and T0861 (bottom). 
Predicted angle value, true angle value, and absolute error are plotted for each amino acid position, which 

is labelled by its true secondary structure type. The low blue bars, which denote the error between 
predicted angles and truth angels. 
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Table 5.4 Comparison of mean absolute errors (MAE) of Psi-Phi angle prediction between DeepRIN and 
SPIDER3 using the same training dataset (SPIDER’s training set) and the same test dataset. 

  Angle CASP10 
(98 out of 

103) 

CASP11 
(83 out of 

85) 

CASP12 
(40 out of 

40) 

SPIDER3’s test 
set (1174 out of 

1199) 

Recent PDB 
easy cases (226) 

Recent PDB hard 
cases (94) 

 

SPIDER3  Psi 31.17 33.05 35.67 27.33 24.93 29.53  
  Phi 20.41 21.38 21.12 18.73 17.49 19.35  

DeepRIN  Psi 25.64 28.27 30.93 22.74 23.25 28.78  
 Phi 17.22 18.99 19.72 16.40 16.04 18.01  

*T0675, T0677 and T0754 could not generate DSSP results. T0709, T07111, T0816 and T0820 are 
too short and PSI-BLAST did not have a hit. The SPIDER3’s training set (sequences with length 
less than 700) 4532 out of 4590 proteins in total were used to train our model and the SPIDER3’s 
test set (sequences with length less than 700) 1174 out of 1199 proteins in total were used for 
testing on both tools.  
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CHAPTER	6 PROTEIN	BETA	TURN	PREDICTION	USING	

DEEP	DENSE	INCETPION	NETWORKS		

6.1 Methods	and	Materials	

6.1.1 Preliminaries	and	Problem	Formulation	

To make an accurate prediction, it is important to provide useful input features to machine 

learning models.  In our method, we carefully designed feature matrices corresponding to 

the primary amino acid sequence of a protein. Specifically, there are four features involved: 

physicochemical feature, HHBlits profile, predicted eight state secondary structure from 

MUFold-SS (Fang et al., 2018) and predicted shape string from Frag1D (Zhou et al., 2009). 

     The first set of features used is called physico-chemical features, which describe 

hydrophobic, steric, and electric properties of amino acids and provide useful information 

for protein sequence analysis and prediction. By using physico-chemical features, the 

protein sequences are represented as an informative dense matrix. The physico-chemical 

feature matrix consists of the sever physico-chemical properties as in (Heffernan et al., 

2017) plus a number 0 or 1 representing the existence of an amino acid at this position as 

an input (called NoSeq label). The reason of adding the NoSeq label is because the 

proposed deep neural networks are designed to take a fixed size input, such as a sequence 

of length 700 residues in our experiment. To run a protein sequence shorter than 700 

through the network, the protein sequence will be padded at the end with 0 values and the 

NoSeq label is set to 1. If the protein is longer than 700 residues, it can be split into multiple 

segments, each shorter than 700 residues. Hence, a protein sequence will be represented as 

a 700-by-8 matrix, which is the first input feature for DeepDIN. 
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     The second set of useful features comes from the protein profiles generated using 

HHBlits (Remmert et al., 2012).  In our experiments, the HHBlits software used the 

database uniprot20_2013_03, which can be downloaded from 

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/. The profile 

values were transformed by the sigmoid function into the range (0, 1). Each amino acid in 

the protein sequence is represented as a vector of 31 real numbers, of which 30 from amino 

acids HHBlits profile values and 1 NoSeq label in the last column. The HHBlits, the names 

of the parameters are amino acids and some transition probabilities: “A, C, D, E, F, G, H, 

I, K, L, M, N, P, Q, R, S, T, V, W, Y, M->M, M->I, M->D, I->M, I->I, D->M, D->D, Neff, 

Neff_I, and Neff_D”. HHBlits generates profiles which is more sensitive than PSI-BLAST 

profile and provides useful evolutionary features for protein sequence. Hence, a HHBlits 

profile will be represented as a 700-by-30 matrix, which is the second input feature for 

DeepDIN.  

     The third set of useful features, predicted shape string, comes from Frag1D (Zhou et al., 

2009). For each protein sequence, the Frag1D can generate useful predicted protein 1D 

structure features: the classical three-state secondary structure, three- and eight-state shape 

string. Classical three state secondary structure contains H (helix), S (sheet), and R (random 

loop). Eight state shape string label contains R (polyproline type alpha structure), S (beta 

sheet), U, V (bridging regions), A (alpha helices), K (310 helices), G (almost entirely 

glycine), and T (turns). The prediction of protein secondary structure has been used as an 

important feature for protein structure prediction. However, for an average of 40% of all 

residues in loop regions, the classical secondary structure does not carry useful structure 

information. One the other hand, the protein structure can be described by pairs of psi phi 
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torsion angles. Ison et el. (2005) proposed Shape Strings, which can accurately describe a 

1D string of symbols representing the protein backbone psi phi torsion angles. The shape 

strings can describe the conformations of residues in regular secondary structure elements, 

e.g. shape ‘A’ corresponds to alpha helix and shape ‘S’ corresponds to beta sheets. Besides, 

shape strings classify the random loop regions into several states that can contain much 

more conformation information, which is particularly useful for gamma-turn prediction 

problem. For the Frag1D predicted result, each amino acid in the protein sequence is 

represented as a vector of 15 numbers, of which 3 from the classical three-state secondary 

structure, 3 from the three-state shape string, 8 from the eight-state shape string and 1 

NoSeq label in the last column. The predicted classical three-state secondary structure 

feature is represented as one-hot encoding as followed: helix: (1,0,0), strand: (0,1,0), and 

loop: (0,0,1). The same rule applies to three- and eight-state shape string features. Hence, 

a Frag1D result will be represented as a 700-by-15 matrix, which is the third input feature 

for DeepDIN. 

     The fourth set of useful features comes from our previous designed secondary structure 

prediction tool: MUFold-SS (Fang et al., 2018). MUFold-SS achieved state-of-the-art 

performance in eight state secondary structure prediction and it should provide useful 

features in beta-turn prediction tasks. The eight-state secondary structure are: H (alpha 

helix), B (beta bridge), E (extended strand), G (3-helix), I (5 helix), T (hydrogen bonded 

turn), and S (bend). Hence, an eight-state predicted secondary structure will be represented 

as a 700-by-8 matrix, which is the fourth input feature for DeepDIN. 
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     Protein beta-turn prediction is a classification problem. To be specific, it can be 

formulated as residue-level prediction or turn-level prediction as first proposed by (Singh 

et al., 2015). 

Residue-level prediction: To predict each amino acid is a turn or non-turn. The class label 

is either turn or non-turn. Here, the predicted output is a 700-by-3 matrix, where ‘700’ is 

the sequence length 700 and ‘3’ stands for two-state labels plus 1 NoSeq label.  

Turn-level prediction: At the turn-level, a sliding window of four residues was used to 

generate the turn-level data sets. And the overall predicted beta-turn output of a protein 

sequence is represented as a fixed-size matrix, with a (700-4+1) dimension by 3 for two-

state labels plus 1 NoSeq label matrix. For nine-class classification problem, the label is: 

turn of the specific type or others. 

     The evaluation metric for beta-turn prediction typically uses MCC more often than 

accuracy, since the accuracy only considers the true positive and false positive without the 

true negative and false negative, and non-beta-turns (negative data) dominate the data. 

MCC can be calculated as follows: 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

�(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 1) 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives and FN is the number of false negatives. 

6.1.2 New	Deep	Dense	Inception	Networks	for	Protein	Beta-turn	Prediction	

(DeepDIN)	

In this section, a new deep dense inception network architecture (DeepDIN) is presented. 

The architecture makes use of deep inception (Szegedy et al., 2017) networks and dense 
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network (Huang et al., 2017). Figure 6-1 (A) presents our proposed network design. It 

shows the beta-turn prediction:  

1. Given a protein sequence, the system will generate four features: physico-chemical 

feature, profile features from HHBlits, predicted shape string (using Frag1D) and 

predicted eight-state secondary structure (using MUFold-SS).  

2. The convolutional layer will then perform convolution operation on each feature to 

get the coevolved feature map.  

3. Concatenate four convolved feature maps along feature dimension. 

4. Feed the concatenated feature map into stringed dense inception blocks (See Figure 

2 (B) for illustration). In between there is a convolutional layer acting as transition 

layer. 

5. Predict beta-turn (either turn or non-turn) in the last dense layer which uses Softmax 

as activation function. 

Figure 6-1 (B) shows details of a dense inception block. It consists of four small version of 

inception blocks and each inception block is fully connected with other inception blocks. 

In other words, a dense inception module is constituted by connecting each inception layer 

to every other inception layer in a feed-forward fashion. The design of dense inception 

modules can extract non-local interactions of residues over a diverse range in a more 

effective way. Adding more dense inception blocks is possible but requires more memory.  

Each convolution layer, such as ‘Conv (3)’ in Figure 6-1, consists of four operations 

sequentially: 1) A one-dimensional convolution operation using the kernel size of three; 2) 

the Batch normalization technique (Ioffe and Szegedy, 2015) for speeding up the training 

process and acting as a regularizer; 3) the activation operation, ReLU (Radford et al., 
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2015); and 4) the dropout operation (Srivastava et al., 2014) to prevent the neural network 

from overfitting by randomly dropping neurons during the deep network training process 

so that the network can avoid or reduce co-adapting. DeepDIN was implemented, trained, 

and tested using TensorFlow and Keras. In our experiments, a large number of network 

parameters and training parameters were tried. For the results reported, the dropout rate 

was set at 0.4. The optimizer used during training is Adam (Kingma and Ba, 2014), which 

can control the learning rate dynamically for network weight updates. There are nine class 

beta-turn classification and the observations for a certain class can be as many as 40,000 

or as little as 100. In different classification tasks, the batch size varies from 50-200. The 

Max epochs is set up to 100. The training time varies from 2 hours up to 5 hours depending 

on the data size when training different classification models. 

     In our previous study (Fang et al, 2018; Fang et al., 2017; Fang et al., 2018) and (Wang 

et al., 2017) have successfully applied the stacked convolutional neural network (CNN), 

inception (Szegedy et al., 2017) module, deep residual (He et al., 2016) module to protein 

sequence analysis and prediction problems. Inspired by our previous work, here we 

propose a new deep neural network architecture called: dense inception network 

(DeepDIN) for beta-turn prediction. 

 

(A) 
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(B) 

Figure 6-1 (A) shows the overall proposed model for beta-turn prediction. (B) shows the details of a dense 
inception module that consists of four inception modules, each of which is fully connected in a feed forward 

fashion. 

6.1.3 Apply	Transfer	Learning	and	Balanced	Learning	to	DeepDIN	to	Handle	

Imbalanced	Dataset	

It is often unsuitable for tackling the problem of small sample sizes for deep learning. In 

this work, in order to enable the deep neural networks to handle small classes, the following 

deep learning strategies were used to address the small classes classification problem. 

     Balanced learning: Many previous researchers have studied the problem of imbalanced 

data learning and proposed ways of balancing the data set by using either over-sampling 

like SMOTE (Han et al., 2015) or under-sampling like Tomek Links (Tomek, 1976). The 

beta-turn data is highly unbalanced, and this would cause the deep neural network like 

DeepDIN prone to predict everything as the negative class. In this experiment, the protein 

beta-turns as positive data are not very large, any up-sampling or down-sampling may 

cause loss of useful information.  Rather than re-sampling the training data points, a 

balanced learning approach was adapted to handle the problem. The weighted cross entropy 

was used as the loss function, which is defined as the following functions: 
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∀𝑖 ∈ [0,𝑁),𝐻(𝑖) = −�𝑦$,R ∗ 𝑙𝑜𝑔𝑦l$,R
$

 (2) 

𝐻 =	�𝑊 ∗ 𝑦$ ∗ 𝐻(𝑖)
¡

	 (3) 

where l is the number of classes; 𝑊 = (𝑤H, 𝑤(,… , 𝑤R) is the weight for each class; N is the 

total number of data points; 𝑦$ is the one-hot ground truth label; 𝑦\g  is the predicted 

probability distribution of a data point; H(i) is the cross-entropy loss of one data; and H is 

the weighted cross-entropy. The weighted cross entropy as the loss function was able to 

address the issue caused by the small sample size by re-scaling the prediction of each class 

by its weight. In this implementation, the class weights were calculated using training data 

and assigned using the Scikit-learn (Pedregosa et al., 2011) toolbox. The balanced class 

weights are given by 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠/(𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ 𝑏𝑖𝑛𝑐𝑜𝑢𝑛𝑡(𝑦)), where y is array of original 

class labels per sample, “bincount” is a built-in function from Scikit-learn toolbox to 

calculate the number of bins.   

     Transfer Learning: We applied transfer learning to handle the limited number of beta-

turn data used in the training set. The idea of transfer learning originally came from the 

image classification problem (Raina et al., 2007). This technique was proposed to handle 

the insufficient size of a data set that can be used to train the deep neural network. In our 

study, since there are nine classes of beta-turns, and especially those in VIa1, VIa2, and 

VIb contains a few hundred of data points, the amount of data belonging to each class may 

not produce a model with the ability to extract features and being generalized well. To 

solve this problem, the pre-trained weights from DeepDIN used to classify two-class beta-

turns was loaded into each separate nine-class classification model as initial weight. In 
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particular, the pre-trained model here is the beta-turn model used to classify the two-class 

beta-turn problem. Since that model has “observed” some generic features of what a beta-

turn is, it should be useful to many specific nine-class beta-turn classification tasks. Then 

for training each individual class model, the specific subset of the training set for each 

individual class was fed into and the overall network weights were fine-tuned. The weights 

of the pre-trained networks were fine-tuned by continuing the backpropagation. It is 

possible to fix the earlier layer of the deep networks due to the overfitting issue and only 

fine-tune the high-level portion of the network. After the trials, the overall network was 

fine-tuned without freezing the lower level features. 

     For the learning rates during the transfer learning, a smaller learning rate (0.005) and 

batch size (10) were used to train the network and fine-tune the network weights in the 

fine-tuning. The reason is that the pre-trained network weights are relative good, a slower 

and smaller learning rate will not distort them too quickly and too much before it converges. 

6.1.4 Benchmark	datasets	

The following two publically available benchmark data sets were used in our experiments: 

BT426 (Guruprasad and Rajkumar, 2000) is a data set commonly used for benchmarking 

beta-turn prediction methods. BT426 contains 426 protein chains in total with 25 

percentage sequence identity cutoffs, and resolution better than 2.0 Å. This benchmark was 

used to compare the performance of many previous predictors, such as BetaTPred3 (Singh 

et al., 2015) and NetTurnP (Petersen et al., 2010). In this work, five-fold cross-validation 

experiments on BT426 were performed and results were compared against other predictors. 
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BT6376 (Singh et al., 2015) is a public benchmark containing 6376 non-homologous 

protein chains. No two protein chains have more than 30% sequence identity. The 

structures of these proteins were determined by X-ray crystallography at 2.0 Å resolution 

or better. Each chain contains at least one beta-turn. The beta-turn labels were assigned by 

PROMOTIF (Hutchinson and Thornton, 1996) program. This benchmark provides data 

sets for both two-class beta-turn classification and nine-class beta-turn classification. For 

the nine-class beta-turn labels were annotated by using PROMOTIF, too.  

6.2 Results	and	Discussion	

In this section, extensive experimental results of the proposed deep neural networks on the 

benchmark data sets and performance comparison with existing methods are presented. To 

evaluate the performance of our tool, a five-fold cross validation technique was used on all 

data sets.  

6.2.1 How	Feature	Affects	the	DeepDIN	Performance	

Since we used four features for our proposed DeepDIN architecture, it is important to 

quantitatively determine how much improvement the proposed DeepDIN can make by 

using single, some, or all of the features (See Table 6.2). We used TypeI beta-turns for 

experiments. This dataset has 6039 proteins containing total of 42,393 TypeI beta-turns. In 

each experiment, a five-fold cross-validation was performed. The running time for each 

experiment is about 3-4 hours.   

     It can be found that the predicted shape string feature either used alone or used in 

combined with other features can highly improve the prediction performance. However, it 
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suffers from high variance compared with other features. Using predicted shape string can 

improve the prediction but the performance is not as stable as using other features.  

     Another observation is that some combined features have better prediction results than 

those features used alone, which means features in-between can have some complementary 

affect. For instance, when the predicted shape string is combined with the predicted 

secondary structure as input, the prediction performance is much better than just using 

predicted shape string. Although both features are related to protein secondary structure, 

they may capture different aspect of features for a protein. Shape string combined with 

secondary structure can achieve better results than shape string combined with 

physicochemical feature. 

     From Table 6.1, it shows that if all four features were used, the prediction result is much 

better and stable. We used all four features together in the other experiments. 

Table 6.1 Different feature combinations will affect prediction performance  

physicochemical SS8 Shape string HHBlits profile MCC 

x    0.183(±0.013) 
 x   0.311(±0.018) 
  x  0.364(±0.058) 
   x 0.321(±0.014) 

x x   0.401(±0.002) 
x  x  0.391(±0.052) 
x   x 0.365(±0.011) 
 x x  0.423(±0.031) 
 x  x 0.357(±0.014) 
  x x 0.422(±0.042) 

x x x  0.472(±0.040) 
x  x x 0.454(±0.051) 
x x  x 0.455(±0.037) 
 x x x 0.446(±0.035) 

x x x x 0.462(±0.027) 
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6.2.2 Residue-Level	and	Turn-Level	Two-Class	Prediction	on	BT426	

Table 6.2 Residue-Level Prediction on BT426 

Predictor MCC 

BTPRED (Shepherd et al., 1999) 0.35 
BetaTPred2 (Kaur and Raghava, 2002, 2004) 0.43 

Hu and Li (2008) 0.47 
NetTurnP (Petersen et al., 2010) 0.50 

BetaTPred3-Tweak (Singh et al., 2015) 0.50 
BetaTPred3-7Fold (Singh et al., 2015) 0.51 

BetaTPred3 (Singh et al., 2015) 0.51 
DeepDIN 0.647(±0.016) 

 
Table 6.3 Turn-level Prediction on BT426 

Features MCC 

BetaTPred3 (Singh et al., 2015) 0.43 

DeepDIN 0.550(±0.019) 

 

     Table 6.2 and 6.3 shows experiment results of comparing DeepDIN with existing 

methods at residue-level and turn-level on benchmark BT426. At both residue-level or 

turn-level, the DeepDIN outperformed all existing methods. In (Singh et al., 2015), they 

proposed a “turn-level prediction formulation”, which predicts the complete beta-turn 

rather than focusing on the residues in a beta-turn.  

     It is worth mentioning that in (Tang et al., 2011). They reported their turn-level MCC 

around 0.66 on benchmark BT426. Actually, they preprocessed the dataset in a way that 

the negative (non-turn) samples was randomly selected when the ratio of positive to 

negative as 1:3 (Tang et al., 2011). In real world scenario, it is not possible to sample the 

data this way. Our system can handle the original BT426 dataset (the ratio of positive to 
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negative as high as 1:9). Also, results comparison should be under same condition. In (Tang 

et al., 2011), they compared their results using the preprocessed dataset with other 

predictors using original BT426 dataset, which is not fair and objective comparison. 

6.2.3 Turn-level	Nine-Class	Prediction	on	BT6376	

     Table 6.4 show a list of class sizes information on the concrete sample and class sizes. 

The purpose of this table is to give reader information on how small the positive turn 

samples among all samples in each class. As one can see, for each beta-turn class, the 

dataset is very imbalanced, as non-turn occupy majority of the data samples. 

     Table 6.5 shows the nine-class beta-turn prediction results. The average MCC results of 

DeepDIN for large class beta-turns such as I, I’, II, II’, IV, outperformed BetaTPred3 at 

least seven percentage points, which is a significant improvement. For some small classes 

such as VIa1, VIb the improvement is about three percentage points. DeepDIN performs 

not as good as BetaTPred3 in small classes such as VIa2 in average MCC, particularly 

because of the small amount of training data points available. Generally speaking, deep 

neural networks are always biased to predicted negative classes if a very small amount of 

imbalanced observations are given. However, by applying balanced learning and transfer 

learning, this issue can be alleviated or overcome.  

     Since the beta-turn dataset is very imbalanced, during training, different class weights 

were calculated using the Scikit-learn (Pedregosa et al., 2011) toolbox and then assigned 

to the loss function during the model training process. The experiments were performed on 

an Alienware Area-51 desktop computer equipped with Nvidia Titan-X GPU (11 GB 

memory). A five-fold cross-validation evaluation was performed on each of nine-class 
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beta-turn classification tasks. The average experiment time ranges from 2 to 4 hours due to 

the different amount of observations for each class. 

 Table 6-4   Nine-class beta-turn and non-turn class sizes in BT6376 

Beta-turn types # of proteins # of turns # of non-turns  turns / non-turns 

Type I  6039 42,393 1,366,911 0.031 
Type I’ 2786 4353 747,596 0.005 
Type II  4750 13,559 1,183,457 0.011 
Type II’  1995 2643 545,300 0.004 
Type IV 5950 38,201 1,360,907 0.028 

Type VIa1 600 654 182,122 0.003 
Type VIa2  177 188 56,761 0.003 
Type VIb  914 1082 263,099 0.004 
Type VIII  4257 10,111 1,114,707 0.009 

 

Table 6.5 Nine-class beta-turn during balance learning, the performance was evaluated at turn-level on 
BT6376 

Beta-turn types  BetaTPred3 average MCC DeepDIN Average MCC 

Type I  0.30 0.462(±0.027) 
Type I’  0.45 0.645(±0.057) 
Type II  0.35 0.569(±0.050) 
Type II’ 0.33 0.564(±0.061) 
Type IV  0.20 0.292(±0.016) 

Type VIa1  0.33 0.395(±0.023) 
Type VIa2  0.25 0.262(±0.121) 
Type VIb  0.35 0.465(±0.023) 
Type VIII  0.17 0.234(±0.015) 
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CHAPTER	7 PROTEIN	GAMMA	TURN	PREDICTION	USING	

DEEP	DENSE	INCETPION	NETWORKS		

7.1 Materials	and	Methods	

7.1.1 Problem	formulation	

     A protein gamma-turn prediction is a binary classification problem, which can be 

formulated as followed: given a primary sequence of a protein, a sliding window of k 

residues were used to predict the central residue turn or non-turn. For example, if k is 17, 

then each protein is subsequently sliced into fragments of 17 amino acids with a sliding 

window.  

     To make accurate prediction, it is important to provide useful input features to machine-

learning methods. We carefully designed a feature matrix corresponding to the primary 

amino acid sequence of a protein, which consists of a rich set of information derived from 

individual amino acid, as well as the context of the protein sequence. Specifically, the 

feature matrix is a composition of HHBlits profile (Remmert et al., 2012), and predicted 

protein shape string using Frag1D (Zhou et al., 2009).   

     The first set of useful features comes from the protein profiles generated using HHBlits 

(Remmert et al., 2012).  In our experiments, the HHBlits software used database 

uniprot20_2013_03, which can be downloaded from 

http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/. A HHBlits 

profile can reflect the evolutionary information of the protein sequence based on a search 

of the given protein sequence against a sequence database. The profile values were scaled 
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by the sigmoid function into the range (0, 1). Each amino acid in the protein sequence is 

represented as a vector of 31 real numbers, of which 30 from HHM Profile values and 1 

NoSeq label (representing a gap) in the last column. The HHBlits profile corresponds to 

amino acids and some transition probabilities, i.e., A, C, D, E, F, G, H, I, K, L, M, N, P, Q, 

R, S, T, V, W, Y, M->M, M->I, M->D, I->M, I->I, D->M, D->D, Neff, Neff_I, and 

Neff_D.  

     The second set of useful features, predicted shape string, comes from Frag1D (Zhou et 

al., 2009). For each protein sequence, Frag1D can generate useful predicted protein 1D 

structure features: classical three-state secondary structures, and three- and eight-state 

shape strings. Classical three-state secondary structures and three-state shape string labels 

both contain H (helix), S (sheet), and R (random loop), but they are based on different 

methods so that they have small differences. In this experiment, we used all the features 

from Frag1D.  Eight-state shape string labels contain R (polyproline type alpha structure), 

S (beta sheet), U/V (bridging regions), A (alpha helices), K (310 helices), G (almost entirely 

glycine), and T (turns). The classical prediction of three-state protein secondary structures 

has been used as an important feature for protein structure prediction, but it does not carry 

further structural information for the loop regions, which account for an average of 40% of 

all residues in proteins. Ison et el. (2005) proposed Shape Strings, which give a 1D string 

of symbols representing the distribution of protein backbone psi-phi torsion angles. The 

shape strings include the conformations of residues in regular secondary structure 

elements; in particular, shape ‘A’ corresponds to alpha helix and shape ‘S’ corresponds to 

beta strand. Besides, shape strings classify the random loop regions into several states that 

contain much more conformational information, which we found particularly useful for 
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gamma-turn prediction problem. For the Frag1D prediction result, each amino acid in the 

protein sequence is represented as a vector of 15 numbers, of which 3 from the classical 

three-state secondary structures, 3 from the three-state shape strings, 8 from the eight-state 

shape strings and 1 NoSeq label in the last column. The predicted classical three-state 

secondary structure feature is represented as one-hot encoding as followed: helix: (1,0,0), 

strand: (0,1,0), and loop: (0,0,1). The same rule applies to three- and eight-state shape string 

features. In this work, we also tried the traditional eight-state protein secondary structures. 

However, the prediction result was not as good as the one from the eight-state shape strings. 

This is probably because the traditional eight-state secondary structures contain much less 

structural information for the gamma-turn prediction problem. 

7.1.2 Model	Design	

     In this section, a new deep inception capsule network (DeepICN) is presented. Figure 

7-1 A shows the model design. The input features for DeepICN are HHBlits profiles and 

predicted shape strings. Since the distributions of HHBlits profiles and predicted shape 

strings are different, we applied convolutional filters separately on the two features, then 

concatenated them. The CNN is used to generate the convolved features. We first applied 

CNN to extract local low-level features from protein profiles and predicted shape strings 

features. This CNN layer will extract local features similar to a CNN used to extract “edge” 

features of objects in an image (Xie and Tu, 2015). 

     After the convoluted feature concatenation, the merged features are fed into the 

inception module (See Figure 7-1 B for details). The inception network (Szegedy et al., 

2017) was then applied to extract low-to-intermediate features for CapsuleNet. In (Sabour 
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et al., 2017), CapsuleNet was used for digital image classification and the primary capsule 

layers were placed after a convolutional layer. Their network design worked well for digital 

image recognition with the image dimension 28-by-28. Considering the complex features 

of protein HHblits profile and shape strings, it is reasonable to apply a deeper network to 

extract local to medium level features so that CapsuleNet can work well on top of those 

features and extract high-level features for gamma-turn classification. The purpose of 

setting up an inception block right after CNN is to extract intermediate-level features.  

 

(A) 

 

(B) 
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(C) 

Figure 7-1 (A) A deep inception capsule network design. The input features are HHBlits profile (17-by-30 
2D array) and predicted shape string using Frag1D (17-by-15 2D array). Each feature is convolved by a 
convolutional layer. Both convolved features then get concatenated. An inception block is followed to 
extract low to medium features. A primary capsule layer then extracts higher level features. The final turn 
capsule layer makes predictions. (B) An inception block. Inside this inception block: Red square Conv(1) 
stands for convolution operation with kernel size 1. Green square Conv(3) stands for convolution operation 
with kernel size 3. Yellow square stands for feature map concatenation. (C) Zoom-in between primary 
capsules and turn capsules. The primary capsule layer contains 32 channels of convolutional 8D capsules. 
The final layer turn capsule has two 16D capsules to represent two states of the predicted label: gamma-
turn or non-gamma-turn. The computation between those two layers is dynamic routing. 

     Each convolution layer, such as ‘Conv (3)’ in Figure 7-1 B, consists of four operations 

in sequential order: (1) a one-dimensional convolution operation using the kernel size of 

three; (2) the batch normalization technique (Ioffe and Szegedy, 2015) for speeding up the 

training process and acting as a regularizer; (3) the activation operation, ReLU (Radford et 

al., 2015); and (4) the dropout operation (Srivastava et al., 2014) to prevent the neural 

network from overfitting by randomly dropping neurons during the deep network training 

process so that the network can avoid co-adapting.  

     The capsule layers are placed after the inception module to extract high-level features 

or explore the spatial relationship among the local features that are extracted in the above-
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mentioned layers. The primary capsule layer (See Figure 7-1 C) is a convolutional capsule 

layer as described in (Sabour et al., 2017). It contains 32 channels of convolutional 8D 

capsules, with a 9 x 9 kernel and a stride of 2. The final layer (turn capsule) has two 16D 

capsules to represent two states of the predicted label: gamma-turn or non-gamma-turn. 

This layer receives the inputs from all the primary capsules output through the dynamic 

routing algorithm (Sabour et al., 2017), which is an effective way to implement the 

explaining away that is needed to segment highly overlapping objects (features). The 

squashing activation function (Sabour et al., 2017) was applied in the computation between 

the primary capsule layer and the turn capsule layer as follows: 

𝑣? =
V𝑠?V

1 + V𝑠?V
(
𝑠?
V𝑠?V

	 

where 𝑣? is the vector output of capsule j and 𝑠? is its total output. 

The dynamic routing algorithm (Sabour et al., 2017) is as follows: 

Routing Algorithm: 

Routing (𝑢Z|\] , 𝑟, 𝑙) 

     For all capsule i in layer l and capsule j in layer (l+1):𝑏$,? ← 0 

     For r iteration do 

          For all capsule i in layer l:𝑐$ ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏$) 

          For all capsule j in layer (𝑙 + 1): 𝒔𝒋 ← ∑ 𝑐$?𝒖g𝒋|𝒊$  

          For all capsule j in layer (𝑙 + 1): 𝒗𝒋 ← 𝑠𝑞𝑢𝑎𝑠ℎ(𝒔𝒋) 

          For all capsule i in layer l and capsule j in layer (𝑙 + 1):𝑏$? ← 𝑏$? + 𝑢l?|$ ∙ 𝒗𝒋  
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The evaluation matric for gamma-turn prediction more commonly uses Matthew 

Correlation Coefficient (MCC) than percentage accuracy since the accuracy only considers 

the true positives and false positives without the true negatives and false negatives. Another 

reason is that the gamma-turn dataset is very imbalanced, where MCC can evaluate how 

well the classifier performs on both positive and negative labels. MCC can be calculated 

from the confusion matrix as follows: 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

�(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives and FN is the number of false negatives. 

7.1.3 Model	Training	

     DeepICN was implemented, trained, and tested using TensorFlow and Keras. Different 

sets of hyper-parameters (dynamic routing iteration times, training data sample size, 

convolution kernel size, and sliding window size) of DeepICN were explored. An early 

stopping strategy was used when training the models and if the validation loss did not 

reduce in 10 epochs, the training process stopped. The Adam optimizer was used to 

dynamically change the learning rate during model training. All the experiments were 

performed on an Alienware Area-51 desktop equipped with a Nvidia Titan X GPU (11 GB 

graphic memory). 

7.1.4 Experiment	Dataset	

1) CullPDB (Wang and Dunbrack, 2003) was download on November 2, 2017. It 

originally contained 20,346 proteins with percentage cutoff 90% in sequence identity, 
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resolution cutoff 2.0 Å, and R-factor cutoff 0.25. This dataset was preprocessed and 

cleaned up by satisfying all the following conditions: with length less than 700 amino acids; 

with valid PSIBLAST profile, HHblits profile; with shape strings predicted by Frag1D 

(Zhou et al., 2009); and with gamma-turn labels retrieved by PROMOTIF (Hutchinson and 

Thornton, 1996). After this, 19,561 proteins remained and CD-Hit (Li and Godzik, 2006) 

with 30% sequence identity cutoff was applied on this dataset resulting in 10,007 proteins. 

We removed proteins with sequence identity more than 30% for an objective and strict test 

in terms of model generalization. This dataset was mainly used for deep neural network 

hyper-parameter tuning and the exploration of CapsuleNet configurations. It was also used 

to compare the proposed inception capsule model with other deep-learning models. For 

these purposes, a balanced dataset was built: all positive gamma-turn labels and an equal 

size of negative non-gamma-turn labels were selected to form a balanced dataset. 

2) The benchmark GT320 (Guruprasad and Rajkumar, 2000) is a common data set used 

for benchmarking gamma-turn prediction methods. GT320 contains 320 non-homologous 

protein chains in total with 25% sequence identity cutoffs, and resolution better than 2.0 Å 

resolution. This benchmark was used to compare the performance with previous predictors. 

Each chain contains at least one gamma-turn. The gamma-turns were assigned by 

PROMOTIF (Hutchinson and Thornton, 1996). In this work, five-fold cross-validation 

experiments on GT320 was performed and results were compared against other predictors. 
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7.2 Experimental	Results	

     In this section, extensive experimental results of the proposed deep CapsuleNets with 

different hyper-parameters were tuned and tested using CullPDB and five-fold cross-

validation results on GT320. The performance comparison with existing methods is 

presented. 

7.2.1 Hyper-parameter Tuning and Model Performance 

     Tables 7.1-4 show the exploration of the inception capsule network with different 

hyper-parameters. This set of experiments was to find out a better configuration of hyper-

parameters for the deep networks using the CullPDB dataset. Since this network involves 

many hyper-parameters, only the major ones were explored. Table 1 shows how the sliding 

window size affects the model performance. In this experiment, 1000 proteins were 

randomly selected to form the training set, 500 for the validation set and 500 for the test 

set. Each experiment was performed with five times of data randomization.  

     Table 7.1 shows how the sliding window size of input affects the deep capsule network 

performance. The larger the window size, the more training time it took for CapsuleNet. 

However, MCC may not grow as the window size increases. We chose the window size of 

17 amino acids based on its peak MCC performance in the experiments. The t-test p-values 

show that the window size 17 test MCC compared to other window sizes is statistically 

significant.  

     Table 7.2 shows the dropout rate’s effects on the performance of the deep capsule 

network. If a dropout was not used, the network had very high over-fitting. The dropout 

rate 0.4-0.5 is reasonable as it is a compromise between the training and test prediction 

performance. We chose dropout 0.5 in our study. The P-value between the dropout of 0.5 
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and any of others was insignificant. Although The dropout of 0.8 had the highest test 

average MCC, its standard deviation (±0.0249) is also high, and hence, we did not use it. 

Table 7.1 Effect of window size on MCC performance 

Window size Test average MCC Time (hr) P-value on MCC  

15 0.4458(±0.0107) 0.18(±0.11) 0.0115  
17 0.4645(±0.0062) 0.24(±0.15) -  
19 0.4442(±0.0049) 0.37(±0.18) 0.0010  
21 0.4548(±0.0055) 0.43(±0.20) 0.0499  
23 0.4227(±0.0076) 0.37(±0.23) 0.0001  
25 0.4369(±0.0076) 0.45(±0.25) 0.0005  

 

Table 7.2 Effect of dropout on MCC performance  

Dropout Train average MCC Test average MCC P-value on test MCC  

No 0.9974(±0.0015) 0.4439(±0.0101) 0.1236  
0.3 0.9857(±0.0154) 0.4454(±0.0049) 0.0843  
0.4 0.9010(±0.1457) 0.4515(±0.0047) 0.4294  
0.5 0.9377(±0.0598) 0.4558(±0.0092) -  
0.6 0.9159(±0.0688) 0.4525(±0.0111) 0.6647  
0.7 0.8371(±0.0920) 0.4604(±0.0063) 0.4318  
0.8 0.6072(±0.1033) 0.4646(±0.0249) 0.5228  

 

Table 7.3 Effect of training size on training time and MCC performance 

Training size Test average MCC Time (hr)  

500 0.4224(±0.0035) 0.23(±0.17)  
1000 0.4553(±0.0098) 0.87(±0.03)  
2000 0.4422(±0.0204) 1.59(±0.07)  
3000 0.4752(±0.0111) 2.38(±0.09)  
4000 0.4787(±0.0147) 3.13(±0.12)  
5000 0.4717(±0.0165) 3.91(±0.14)  

 

Table 7.4 Effect of dynamic routing on MCC performance 

dynamic routing 
times 

Test average MCC Time (hr) P-value on MCC  

1 0.4454(±0.0049) 0.44(±0.16) 0.4644  
2 0.4492(±0.0086) 0.31(±0.17) -  
3 0.4407(±0.0032) 0.37(±0.15) 0.1017  
4 0.4497(±0.0045) 0.32(±0.18) 0.9276  
5 0.4487(±0.0061) 0.41(±0.14) 0.9502  
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     Table 7.3 shows the effects of the training sample size on the deep capsule network 

training speed and performance. More training data increased and training time and the 

model performance. However, after 3000 samples, the MCC performance did not improve 

significantly with more training data. This is consistent with the observation in (Sabour et 

al., 2017) that CapsuleNet did not need a large dataset for training.  

     Table 7.4 shows the effect of number of dynamic routing on the performance. Dynamic 

routing is used in CapsuleNet similar to max-pooling in a CNN, but it is more effective 

than max-pooling in that it allows neurons in one layer to ignore all but the most active 

feature detector in a local pool in the previous layer. In this experiment, we fixed the other 

hyper-parameters searched in the above-mentioned experiments and studied how number 

of dynamic routing affected the performance. Considering the training time and the MCC 

performance, 2 routings are suitable, as more dynamic routing does not have significant 

improvement.  The training time did not show large variations as the number of dynamic 

routings increases. This may be because our experiments used early stopping. 

7.2.2 Prediction confidence: the capsule length 

     According to (Sabour et al., 2017), the capsule length indicates the probability that the 

entity represented by the capsule is present in the current input. In other words, the capsule 

length in the last layer can be used for prediction of gamma-turn and assessment of 

prediction confidence. The longer the turn capsule length is, the more confident the 

prediction of a turn capsule will be. Here, the capsule length in Turn Capsules can be used 

to show how confidence a gamma-turn is predicted. Specifically, a test set (with 5000 

proteins containing 19,594 data samples) was fed into the trained inception capsule 

network to get a capsule length vector. Then the capsule length vector that represents 
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positive capsules were kept. Since all the capsule length values fall into the range between 

0 and 1, they were grouped into bins with the width of 0.05, so that there are totally 20 

bins. The precision of each bin can be calculated to represent the prediction confidence. 

Figure 7-2 shows the fitting curve of precision (percentage of correctly predicted gamma-

turns, i.e., true positives in the bin) versus the capsule length. A nonlinear regression curve 

was used to fit all the points, yielding the following equation: 

𝑦 = 1.084𝑥( − 0.203𝑥 + 0.147 

where x is the capsule length and y is the precision. 

     The fitting-curve can be further used for prediction confidence assessment: given a 

capsule length, its prediction confidence can be estimated using the above equation. 

 

Figure 7-2 The fitting curve of precision (percentage of true positive in the bin) versus the capsule length. 
The green line is the fitting curve and the blue line (y=x^2) is for reference. 



98 
 

7.2.3 Proposed model performance compared with previous predictors 

     For comparing with other predictors, the public benchmark GT320 was used. Following 

the previous studies, a five-fold cross validation results were reported, as shown in Table 

7.5. This GT320 is an imbalanced dataset, but for objective evaluation, we did not sample 

any balanced data from training or testing, as done in previous studies. Table 7.5 shows 

that the proposed inception capsule network outperformed all the previous methods by a 

significant margin. 

Table 7.5 Performance comparison with previous predictors using GT320 benchmark.  

Methods MCC  

Our Approach 0.45  
Zhu et al., 2012 0.38  

Hu’s SVM  0.18  
SNNS 0.17  

GTSVM 0.12  
WEKA-logistic regression 0.12  

WEKA-naïve Bayes 0.11  

*The results of WAKA, SNNS were obtained from (Kaur and Raghava, 2002), the result of GTSVM was 
obtained from (Pham et al., 2005) and result of Hu’s SVM was from (Hu and Li, 2008). Zhu et al., (2012) is 
the previous best predictor result. 
 
7.2.4 Extend CapsuleNet for classic and inverse gamma-turn prediction  

     Many previous gamma-turn predictors only predict whether a turn is gamma-turn or not. 

Here, we also extended our deep inception capsule model for classic and inverse gamma-

turn prediction. The experiment dataset is still CullPDB, and inverse and classic labels 

were assigned using PROMOTIF (Hutchinson and Thornton, 1996). The same deep 

inception capsule network (shown in Figure 7-1 A) was applied except the last turn capsule 

layer now has three capsules to predict non-turn, inverse turn or classic turn as a three-class 

classification problem. The performance metric Q3 is used which is the accuracy of correct 

prediction for each class. The prediction results are shown in Table 6. Different numbers 

of proteins were used to build the training set. The validation and test set contain 500 
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proteins each. The CullPDB dataset contains 10,007 proteins which have 1383 classic 

turns, 17,800 inverse turns, and 2,439,018 non-turns in total.  This is a very imbalanced 

dataset. In this experiment, the balanced training set, validation set, and test set were 

generated as follows: The inverse turn samples were randomly drawn as much as classic 

turn sample size. For the non-turn samples, they were randomly drawn twice as much as 

classic turn sample size, i.e. the sum of inverse turn samples and classic turn samples.  The 

training loss and validation loss curves are shown in Figure 7-3. From the loss curve, it 

shows that after about 75 epochs, the model learning process was converging. Since the 

model hyper-parameters had been explored in the earlier experiments, during this 

experiment, we adopted similar values, i.e., the window size was chosen 17 amino acids, 

the filter size is 256, the convolution kernel size was chosen 3, the dynamic routing was 

chosen 3 iterations and dropout ratio was 0.3. 

 

Figure 7-3 Training loss and validation loss curve of deep inception capsule network for classic and inverse 
gamma-turn. 
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Table 7.6 Non-turn, inverse and classic turn prediction results.  

Training size Test average Q3 Time (hr) P-value  

5000 0.6839(±0.0053) 0.25(±0.20) -  
6000 0.6783(±0.0076) 0.38(±0.22) 0.2706  
7000 0.6864(±0.0124) 0.34(±0.16) 0.3057  

 

7.2.5 Visualization of the features learnt by capsules 

     In order to verify whether the extract high-level features learnt/extracted from the input 

data have the prediction power and are generalizable, t-SNE (Maaten and Hinton, 2008) 

was applied to visualize the input features and the capsule features for both the training 

data and the test data. Figure 7-4 (A) shows the t-SNE plot of the input features from the 

training data before the training. The input data has 45 features (i.e. 45 dimensions), and t-

SNE can project 45 dimensions onto two principal dimensions and visualize it. There was 

no clear cluster in the training data. Figure 7-4 (B) shows the t-SNE plot of the capsule 

features from the training data. The turn capsule contains 16 dimensions, and the t-SNE 

can similarly project the capsule features to two major principal features and visualize it. 

The clusters were obviously formed after the training. Figure 7-4 (C) and (D) show the t-

SNE plots for the input features and the capsule features of the test data. There was no clear 

cluster for the input features in the test data either. The capsule features still tend to be 

clustered together in the test data, although to less extent than the training data.  



101 
 

 

(A) 

 

(B) 



102 
 

 

(C) 

 

(D) 



103 
 

Figure 7-4 t-SNE plots of capsule network features. (A) and (B) are plots of the input features and the 
capsule features, respectively for training dataset (3000 proteins with 1516 turn samples). (C) and (D) are 
plots of the input features and the capsule features, respectively for the test dataset (500 proteins with 312 
turn samples). Red dots represent non-turns, green dots represent inverse turns and blue dots represent 
classic turns. 

 

      Figure 7-5 (A) shows the classic turn Weblogo and Figure 7-5 (B) shows the inverse 

turn Weblogo (Crooks et al., 2004). In the two plots, the y axis has the same height of 0.8 

bits. Both types of turns have some visible features and the classic turn Weblogo contains 

more information content than the inverse turn. 

 

(A) 

 

(B) 
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(C) 

Figure 7-5 (A) Classic turn Weblogo; (B) inverse turn Weblogo; and (C) Non-turn Weblogo 

7.2.6  Ablation study 

To discovery the important elements in our proposed network, an ablation study was 

performed by removing or replacing different components in the deep inception capsule 

network. In particular, we tested the performance of the proposed models without the 

capsule component, replacing the capsule component with CNN, or replacing inception 

component with CNN. These sets of experiments were performed using the same amount 

of data (3000 proteins for training, 500 proteins for validation, and 500 for test) and the 

same parameter setting: dropout ratio 0.5 and window size 17. From the ablation test result 

presented in Table 7.7, we found that the capsule component is the most effective 

component in our network, since the performance dropped significantly when removing or 

replacing the capsule component. The inception component also acts as an important 

component as it can effectively extract feature maps for capsule components compared to 

CNN. 
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Table 7.7 Ablation test.  

Model MCC  

Replace inception component with CNN 0.4544(±0.0106)  
Replace capsule component with CNN  0.4485(±0.0056)  

Without capsule component 0.4551(±0.0059)  
Proposed Design 0.4752(±0.0111)  

 

7.3 Conclusion	and	Discussion	

In this work, the latest deep-learning framework, CapsuleNet, was applied to protein 

gamma-turn prediction. Instead of applying capsule network directly, a new model called 

inception capsule network was proposed and has shown improved performance comparing 

to previous predictors. This work has several innovations.  

     First of all, this work is the first application of deep neural networks to protein gamma-

turn prediction. Compared to previous traditional machine-learning methods for protein 

gamma-turn prediction, this work uses a more sophisticated, yet efficient, deep-learning 

architecture, which outperforms previous methods. A software tool has been developed 

and it will provide the research community a powerful deep-learning prediction tool for 

gamma-turn prediction. The ablation test was performed, and the importance of capsule 

component was verified. 

     Second, this work is the earliest application of CapsuleNet to protein structure-related 

prediction, and possibly to any bioinformatics problems to our knowledge, as CapsuleNet 

was just published in 2017. Here, we proposed an inception capsule network for protein 

gamma-turn prediction and explored some unique characters of capsules. To explore the 

capsule length, we designed an experiment of grouping each capsule length into several 

bins and discovered the relationship between prediction precision and capsule length. A 
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nonlinear curve can be applied to fit the data and further used for estimating the prediction 

confidence. In addition, the network was extended to inverse turn and classical turn 

prediction. The inverse turn capsule and classical turn capsule were further explored by 

showing the t-SNE visualization of the learnt capsule features. Some interesting motifs 

were visualized by Weblogo. 

     Third, new features have been explored and applied to gamma-turn prediction. The 

features used for network training, namely HHBlits profiles and predicted shape string, 

contain high information content making deep learning very effective. The HHBlits 

profiles provide evolutionary information while shape strings provide complementary 

structural information for effectively predicting gamma turns.  

     Last but not least, previous gamma-turn resources are very limited and outdated. A few 

servers are not maintained, and no downloadable executable of gamma-turn is available. 

Here a free tool with source code utilizing deep learning and state-of-the-art CapsuleNet 

will be ready for researchers to use. 
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CHAPTER	8 SUMMARY	

     Protein secondary structure and super-secondary structure are providing useful features 

for protein tertiary structure prediction. Deep learning can lead to significant improvement 

to these problems.  In this dissertation, several novel deep neural networks were proposed 

for protein secondary structure and super-secondary structure prediction: 

     In the work of Deep Inception-Inside-Inception, a new deep neural network architecture 

Deep3I was proposed for protein secondary structure prediction and other protein structural 

feature prediction, such as Psi-Phi angle prediction. Extensive experimental results show 

that Deep3I obtained more accurate predictions than the best state-of-the-art methods and 

tools. The experiments were designed carefully, and the datasets used in training, e.g., the 

CullPDB dataset, were processed to remove any significantly similar sequences with the 

test sets using CD-HIT to avoid any bias. Compared to previous deep-learning methods for 

protein secondary structure prediction and Psi-Phi angle prediction, this work uses a more 

sophisticated, yet efficient, deep-learning architecture.  Deep3I utilizes hierarchical deep 

Inception blocks to effectively process local and non-local interactions of residues. An 

open source software has been developed based on Deep3I. It will provide the research 

community a powerful prediction tool for secondary structures and Psi-Phi angles. A URL 

for downloading the tool will be provided upon acceptance of publication. 

     In the work of Deep neighbor residual network: Compared with previous deep-learning 

methods for protein secondary structure prediction, the new method consists of two types 

of networks: a new deep neighbor residual network (DeepNRN) for predicting secondary 

structures and a Struct2Struct network for making the predictions more protein-like. 
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Extensive experimental results show the new method achieved better Q3 and Q8 prediction 

accuracies than existing state-of-the-art methods.  

     In the work of deep residual inception network, a new deep neural network architecture 

DeepRIN was proposed for protein Psi-Phi angle prediction. Extensive experimental 

results show that DeepRIN consistently generated more accurate predictions than the best 

state-of-the-art methods. The experiments were designed carefully, and the datasets used 

in training, e.g., the CullPDB dataset, were processed to remove any significantly similar 

sequences with the test sets using CD-HIT to avoid any bias. Compared to previous deep-

learning methods for Psi-Phi angle prediction, this work developed a more sophisticated, 

yet efficient, deep-learning architecture.  DeepRIN utilized hierarchical deep Inception 

blocks to effectively process local and non-local interactions between residues and the 

residual shortcuts help propagate high-level features into deep networks. A software tool 

has been developed based on DeepRIN and is made available to the research community 

for download at http://dslsrv8.cs.missouri.edu/~cf797/MUFoldAngle/.  

     In the work of deep dense inception network, a new a new deep neural network 

architecture DeepDIN was proposed for protein beta-turn prediction. Extensive 

experimental results show that DeepDIN obtained more accurate predictions than the best 

state-of-the-art methods and tools. Compared to previous machine-learning methods for 

protein beta-turn prediction, this work uses a more sophisticated, yet efficient, deep-

learning architecture. The proposed DeepDIN takes input of the entire protein sequence as 

the input feature, whereas all previous predictors rely on a fix-sized sliding window, which 

is more effective and efficient to extract long-range residue interactions. DeepDIN utilizes 

densely connected inception blocks to effectively process local and non-local interactions 
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of residues. Second, since the beta-turn dataset is very imbalanced (the ratio of positive 

samples over negative samples is about 1:9).  balanced learning and transfer learning were 

applied overcome the problem. It is worth mentioning that the transfer learning was 

originally applied to image recognition tasks, here we apply similar method to training 

models for small beta-turn classification tasks. The pre-trained base network is effective in 

learning some more general beta-turn features, then the transfer learning technique can 

transfer the base network to some more specific models that can classifying nine-class beta-

turns. This demonstrate some goods example of handling imbalance dataset in protein 

sequence analysis. Third, this work quantitatively discovered how different input features 

can affect the beta-turn prediction. For example, some good features such as shape string 

and HHBlits profile can improve beta-turn classification effectively. In the future work, 

the small beta-turn classes still have room for further improvement. Also, those features 

can be useful for other turn prediction problems, such as gamma-turn prediction (Pham et 

al., 2005). Last but not least, we have implemented a tool called MUFold-BetaTurn which 

utilizing the proposed DeepDIN achitecture for beta-turn prediction. This tool is ready for 

research community to use freely. 

     In this work of deep inception capsule network, the latest deep-learning framework, 

CapsuleNet, was applied to protein gamma-turn prediction. Instead of applying capsule 

network directly, a new model called inception capsule network was proposed and has 

shown improved performance comparing to previous predictors. This work has several 

innovations. First of all, this work is the first application of deep neural networks to protein 

gamma-turn prediction. Compared to previous traditional machine-learning methods for 

protein gamma-turn prediction, this work uses a more sophisticated, yet efficient, deep-
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learning architecture, which outperforms previous methods. A software tool has been 

developed and it will provide the research community a powerful deep-learning prediction 

tool for gamma-turn prediction. The ablation test was performed, and the importance of 

capsule component was verified. Second, this work is the earliest application of 

CapsuleNet to protein structure-related prediction, and possibly to any bioinformatics 

problems to our knowledge, as CapsuleNet was just published in 2017. Here, we proposed 

an inception capsule network for protein gamma-turn prediction and explored some unique 

characters of capsules. To explore the capsule length, we designed an experiment of 

grouping each capsule length into several bins and discovered the relationship between 

prediction precision and capsule length. A nonlinear curve can be applied to fit the data 

and further used for estimating the prediction confidence. In addition, the network was 

extended to inverse turn and classical turn prediction. The inverse turn capsule and classical 

turn capsule were further explored by showing the t-SNE visualization of the learnt capsule 

features. Some interesting motifs were visualized by Weblogo. Third, new features have 

been explored and applied to gamma-turn prediction. The features used for network 

training, namely HHBlits profiles and predicted shape string, contain high information 

content making deep learning very effective. The HHBlits profiles provide evolutionary 

information while shape strings provide complementary structural information for 

effectively predicting gamma turns. Last but not least, previous gamma-turn resources are 

very limited and outdated. A few servers are not maintained, and no downloadable 

executable of gamma-turn is available. Here a free tool with source code utilizing deep 

learning and state-of-the-art CapsuleNet will be ready for researchers to use. 
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     Last but not least, we built a web server called MUFold-SS-Angle that predicts protein 

secondary structure and backbone torsion angle from the protein sequence. This server 

employs MUFold-SS and MUFold-Angle, which are two standalone tools we recently 

developed to predict secondary structure and backbone torsion angles, respectively.  Both 

tools outperform other predictors/servers in both easy cases (proteins with similar 

sequences in PDB) or hard cases (proteins without detectable similarity in PDB) on 

extensive test cases.  

The major achievements and contributions are: 

1) A new very deep learning network architecture, Deep3I, was proposed to effectively 

process both local and global interactions between amino acids in making accurate 

secondary structure prediction and Psi-Phi angle prediction. Extensive experimental 

results show that the new method outperforms the best existing methods and other deep 

neural networks significantly. An open-source tool Deep3I-SS was implemented based 

on the new method. This tool can predict the protein secondary structure and the Psi-

Phi angles fast and accurately. 

2) DeepNRN, a new deep-learning network with new architecture, is proposed for protein 

secondary structure prediction; and experimental results on the CB513, CASP10, 

CASP11, CASP12 benchmark data sets show that DeepNRN outperforms existing 

methods and obtains the best results on multiple data sets. 

3) A new deep neural network architecture, DeepRIN, is proposed to effectively capture 

and process both local and global interactions between amino acids in a protein 

sequence. Extensive experiments using popular benchmark datasets were conducted to 

demonstrate that DeepRIN outperformed the best existing tools significantly. A 
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software tool based on DeepRIN is made available to the research community for 

download. 

4) A new deep neural network architecture, DeepDIN, is proposed to beta-turn 

classification problem. In addition, balanced learning and transfer learning techniques 

were applied overcome the problem of imbalanced dataset. Several new features were 

explored quantitatively for beta turn prediction effectively. 

5) A new deep neural network architecture, DeepICN, is proposed to gamma-turn 

classification problem. Also, capsule length, representing the confidence of prediction, 

was further explored. This is the first application of capsule networks to biological 

sequence analysis. 

6) A new web server, called MUFold-SS-Angle, is a combined web service of both 

MUFold-SS and MUFold-Angle tools and will provide the community a better usage 

of the software. 
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