
KOLAM: HUMAN COMPUTER INTERFACES FOR

VISUAL ANALYTICS IN BIG DATA IMAGERY

A Thesis Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

ANOOP HARIDAS

Dr. Kannappan Palaniappan, Thesis Supervisor

MAY 2018

The undersigned, appointed by the Dean of the Graduate School, have examined the

thesis dissertation entitled:

KOLAM: HUMAN COMPUTER INTERFACES FOR

VISUAL ANALYTICS IN BIG DATA IMAGERY

presented by Anoop Haridas,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their opinion,

it is worthy of acceptance.

Dr. Kannappan Palaniappan

Dr. Jeffrey Uhlmann

Dr. Youssef Saab

Dr. David Larsen

ACKNOWLEDGMENTS

To my Mother and Father, for their love, wisdom and support;

To my wife Vidhu, for her selfless love and understanding;

To Aaroop, for being a tough, wise and loving brother;

To my Guru, for his priceless blessings, love and encouragement;

To Dr. Palaniappan, for his mentorship, advice and support;

To Drs. Uhlmann, Saab and Larsen; for their advice and support;

To Rengarajan, Surya and all my other friends and colleagues;

To the University of Missouri, for supporting me through the years;

Thank you all, for helping in making this thesis a reality.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xiii

ABSTRACT . xv

CHAPTER

1 Introduction . 1

1.1 Summary of Novel Contributions . 1

1.2 Need for Visual Analytics . 2

1.3 Visual Analytics . 4

1.4 Visual Analytics: Building blocks and Challenges 6

1.5 The Visual Analytics Process . 11

1.6 Motivation For Interactive Visual Analytics 13

1.7 Extreme-Scale Visual Analytics . 14

1.8 Introduction to KOLAM . 18

1.9 Related Work and Success Stories . 20

1.9.1 Visualization . 20

1.9.2 Visualization and KDD Methods 22

1.10 Novel Contributions in KOLAM . 24

iii

1.11 Credits . 29

2 KOLAM 3.0 . 30

2.1 Synopsis of KOLAM 2.0 . 30

2.2 Motivation for KOLAM 3.0 . 31

2.3 KOLAM Multithreaded Synchronization Architecture 32

2.3.1 Multithreaded Cache Access and Management 33

2.3.2 Thread Synchronization and Load Balancing 37

2.3.3 Spatio-Temporal Data Characteristics 38

2.3.4 Spatial-Temporal Dual-Caching Tile Organization 41

2.4 Symbiosis between Visualization and KDD Technologies 45

2.4.1 Data Handling Characteristics . 47

2.4.2 Required Features of Visual Analytics and KDD Integration 49

2.5 Changes to the KOLAM User Interface . 50

2.5.1 Design choices for UI components 51

2.5.2 Changes to existing UI components 52

2.5.3 New UI Components . 54

2.5.4 Evolution of Design . 71

2.6 Porting, Version Control and Multi-platform Support 81

2.7 Scope of Research on KOLAM . 83

3 CASE STUDY 1: Object Tracking . 85

3.1 Motivation . 85

3.2 Introduction . 86

iv

3.3 KOLAM Interface for Visualization and Tracking 88

3.3.1 Visualization of Multiple Layers of Analytic Information 88

3.3.2 Visualizing Motion Imagery . 89

3.3.3 Tracking and Trajectory Visualization Subsystems 90

3.4 Tracking types in KOLAM 3.0 . 90

3.4.1 Track file formats supported by KOLAM 90

3.4.2 Automatic Tracking . 95

3.4.3 Manual Tracking . 98

3.4.4 Assisted Tracking . 103

3.5 Conclusions . 112

4 CASE STUDY 2: Trajectory Visualization and Editing 113

4.1 Introduction . 113

4.2 Trajectory Visualization in KOLAM . 114

4.2.1 Current Trajectory Visualization Features 114

4.2.2 Metadata Encoding for Trajectories 116

4.2.3 Challenges in Trajectory Representation 117

4.2.4 Trajectory Drawing in KOLAM 3.0 118

4.3 Interactive Trajectory Editing . 124

4.3.1 Connecting Automatic Tracking and User Intervention 125

4.3.2 Factors Governing Trajectory Editing in KOLAM 3.0 127

4.3.3 Trajectory Editing Operations . 129

4.4 Conclusions and Future Work . 141

v

5 CASE STUDY 3: Interactive Segmentation Relabeling for Histopathology
Applications . 149

5.1 Motivation . 149

5.2 Introduction . 152

5.3 Related Work . 157

5.4 KOLAM for Histopathology VisAnalysis 161

5.4.1 Big Data Out-of-Core Visualization 162

5.4.2 Support for Multiple WSIs and Metadata Types 163

5.4.3 WSI Pre-processing . 164

5.4.4 Interactive Region-of-Interest (ROI) Selection 165

5.4.5 Ground-Truth Creation and Relabeling 166

5.5 Conclusion . 171

6 Extension to Tiled Wall Displays . 176

6.1 Motivation . 176

6.2 Related Work . 177

6.3 Challenges and Solutions . 178

6.3.1 Example Setup Scenario . 180

6.3.2 Current System Limitations . 181

7 Evaluation of KOLAM . 182

7.1 Introduction . 182

7.2 Evolution of KOLAM based on Iterative Expert Feedback 183

7.3 Usability Testing . 187

7.4 Surveys . 188

vi

7.5 Evaluation Methodology . 188

7.5.1 Usability Metrics in the ISO/IEC 190

7.6 Experimental Procedure . 190

7.6.1 Goals . 191

7.6.2 Software . 192

7.6.3 Data . 194

7.6.4 Tasks . 195

7.6.5 Conducting the Experiment . 196

7.7 Experimental Outcome . 198

7.7.1 Raw Data . 198

7.7.2 Usability Metrics . 198

7.7.3 Results . 201

7.7.4 Findings . 202

7.8 Conclusions . 205

8 Conclusions and Future Work . 207

8.1 Summary of Conclusions . 207

8.2 Future Work . 210

A Manual for KOLAM . 213

A.1 Location of Manual for KOLAM . 213

BIBLIOGRAPHY . 214

VITA . 332

vii

LIST OF TABLES

Table Page

3.1 WAMI North Philadelphia, Pennsylvania dataset characteristics (Datasets

courtesy of PSS). 88

7.1 User testing data from five runs of the 1-Click Object Tracking operation for 5 users ‘A’,

‘B’, ‘C’, ‘D’ and ‘E’. Average times for each user have also been computed. 199

7.2 User testing data from five runs of the Trajectory Editing operation - MOVE points for 5

users ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Average times for each user have also been computed. . . 199

7.3 User testing data from five runs of the Segmentation Relabeling operation - CHANGE

labels for 5 users ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Average times for each user have also been

computed. 200

7.4 User satisfaction data from the post-experiment (SUS) questionnaire: 5 users ‘A’, ‘B’, ‘C’,

‘D’ and ‘E’. 200

viii

LIST OF FIGURES

Figure Page

1.1 Visual Analytics - Building blocks . 6

1.2 Visual Analytics - Operational stages . 11

1.3 KOLAM All Tools . 18

1.4 Multi-display visualization system examples: (a) SAGE and (b) JuxtaView. 21

1.5 Visual Analytics/KDD Systems . 23

1.6 KOLAM vs. Popular VA Systems . 24

2.1 Display and Reader threads in KOLAM 34

2.2 Trajectory Visualization - Automatic Tracking features 40

2.3 Temporal waveforms of animation playback modes 43

2.4 Layer Editor . 53

2.5 Colormap Editor . 54

2.6 Cache Glyph . 55

2.7 Kolam-Loop . 56

2.8 Temporal waveforms of animation playback modes showing example usage 57

2.9 Composite Data View in KOLAM - Example 1 58

2.10 Composite Data View in KOLAM - Example 2 59

ix

2.11 Composite Data View in KOLAM - Example 3 60

2.12 Kolam-Tracker . 62

2.13 Kolam-Preferences . 64

2.14 Kolam’s Display system including Overlays 65

2.15 Kolam-Capture . 67

2.16 ROI Selection . 68

2.17 Kolam-Pan+Zoom . 69

2.18 Kolam-Segmentation Loader . 70

2.19 Kolam-Loop Evolution: I . 74

2.20 Kolam-Loop Evolution: II . 75

2.21 Kolam-Loop Evolution: III . 75

2.22 Kolam-Loop Evolution: IV . 76

2.23 Kolam-Loop Evolution: V . 76

2.24 Kolam-Loop Evolution: VI . 77

2.25 Kolam-Loop Evolution: VII . 77

2.26 Kolam-Loop Evolution: VIII . 78

2.28 Kolam-Loop Evolution: X . 78

2.27 Kolam-Loop Evolution: IX . 79

2.29 Kolam-Loop Evolution: XI . 79

2.30 Kolam-Loop Evolution: XII . 80

2.31 Kolam-Loop Evolution: XIII . 80

3.1 Trajectory Visualization - Auto. Tracking features and drawing primitives . 92

3.2 Screen shot of a typical KOLAM flat file, for one time step on a trajectory. . 93

3.3 Screen shot of a typical KW-18 file, for ALL trajectories. 94

x

3.4 Automatic Tracking Diagram . 96

3.5 CSURF tracker usage - Step 1 . 99

3.6 CSURF tracker usage - Step 2 . 99

3.7 CSURF tracker usage - Step 3 . 100

3.8 LOFT tracker usage - Step 1 . 101

3.9 LOFT tracker usage - Step 2 . 101

3.10 LOFT tracker usage - Step 3 . 102

3.11 LOFT tracker usage - Step 4 . 102

3.12 Asynchronous tracker invocation and trajectory visualization 111

4.1 Trajectory data - Flat file format . 120

4.2 Trajectory data - kw-18 file format . 124

4.3 Track Editing - ADD . 133

4.4 Track Editing - DELETE . 138

4.5 Track Editing - SPLIT . 139

4.6 Track Editing - MOVE . 140

4.7 Track Editing - JOIN: Partial Overlap (Part 1) 142

4.8 Track Editing - JOIN: Partial Overlap (Part 2) 143

4.9 Track Editing - JOIN: Partial Overlap (Part 3) 144

4.10 Track Editing - JOIN: Partial Overlap (Part 4) 145

5.1 Histopathology Big Data . 152

5.2 Histopathology Image Overlays . 153

5.3 The M-Path Pipeline . 155

5.4 Multi-threaded image rendering engine . 162

xi

5.5 KOLAM and Classifier Training and Testing 166

5.6 Stroma versus Epithelium identification pipeline. 170

5.7 An example of interactive relabeling . 175

6.1 Multiple display visualization system examples 178

6.2 An illustration of KOLAM being used on a multi-monitor display. 180

xii

List of Algorithms

1 Spatio-temporal Caching Algorithm . 46

2 Spatio-temporal Caching Algorithm (continued) 47

3 Animation Algorithm . 48

4 Animation Algorithm: Inner ELSE Block 49

5 Target Tracking Algorithm . 91

6 Perform Automatic Tracking . 104

7 Perform Automatic Tracking: FOR Loop continued 105

8 Perform Visual Tracking . 106

9 Perform Visual Tracking: FOR Loop continued 107

10 Human In The Loop Tracking . 110

11 Trajectory Drawing Algorithm . 121

12 draw Trajectories Aux() . 122

13 draw Trajectories Aux(); Inner ELSE block and remainder 123

14 Perform Trajectory Editing . 126

15 Trajectory POINT ADD algorithm . 131

16 Trajectory POINT ADD algorithm: Inner ‘Else’ 132

xiii

17 Trajectory POINT DELETE algorithm . 134

18 Trajectory POINT DELETE algorithm: REMAINING CASES 135

19 Trajectory SPLIT algorithm . 136

20 Trajectory POINT MOVE algorithm . 137

21 Trajectory JOIN algorithm . 146

22 Trajectory JOIN algorithm: INNER WHILE 147

23 Segmentation Region Relabeling Algorithm 172

24 Change Label Color . 173

25 Load Image Partitions Labels Borders . 174

xiv

ABSTRACT

In the present day, we are faced with a deluge of disparate and dynamic information

from multiple heterogeneous sources. Among these are the big data imagery datasets that

are rapidly being generated via mature acquisition methods in the geospatial, surveillance

(specifically, Wide Area Motion Imagery or WAMI) and biomedical domains. The need to

interactively visualize these imagery datasets by using multiple types of views (as needed)

into the data is common to these domains. Furthermore, researchers in each domain have

additional needs: users of WAMI datasets also need to interactively track objects of interest

using algorithms of their choice, visualize the resulting object trajectories and interactively

edit these results as needed. While software tools that fulfill each of these requirements

individually are available and well-used at present, there is still a need for tools that can

combine the desired aspects of visualization, human computer interaction (HCI), data anal-

ysis, data management, and (geo-)spatial and temporal data processing into a single flexible

and extensible system.

KOLAM is an open, cross-platform, interoperable, scalable and extensible framework

for visualization and analysis that we have developed to fulfil the above needs. The novel

contributions in this thesis are the following: 1) Spatio-temporal caching for animating

both giga-pixel and Full Motion Video (FMV) imagery, 2) Human computer interfaces

purposefully designed to accommodate big data visualization, 3) Human-in-the-loop

interactive video object tracking - ground-truthing of moving objects in wide area im-

agery using algorithm assisted human-in-the-loop coupled tracking, 4) Coordinated visu-

alization using stacked layers, side-by-side layers/video sub-windows and embedded im-

agery, 5) Efficient one-click manual tracking, editing and data management of trajecto-

xv

ries, 6) Efficient labeling of image segmentation regions and passing these results to de-

sired modules, 7) Visualization of image processing results generated by non-interactive

operators using layers, 8) Extension of interactive imagery and trajectory visualization to

multi-monitor wall display environments, 9) Geospatial applications: Providing rapid

roam, zoom and hyper-jump spatial operations, interactive blending, colormap and his-

togram enhancement, spherical projection and terrain maps, 10) Biomedical applications:

Visualization and target tracking of cell motility in time-lapse cell imagery, collecting

ground-truth from experts on whole-slide imagery (WSI) for developing histopathology

analytic algorithms and computer-aided diagnosis for cancer grading, and easy-to-use tis-

sue annotation features.

xvi

Chapter 1

Introduction

1.1 Summary of Novel Contributions

Before beginning, the author would like to enumerate the novel contributions in this the-

sis, which are the following:

1) Spatio-temporal caching for animating both giga-pixel and Full Motion Video

(FMV) imagery,

2) Human computer interfaces purposefully designed to accommodate big data

visualization,

3) Human-in-the-loop interactive video object tracking - ground-truthing of moving

objects in wide area imagery using algorithm assisted human-in-the-loop coupled tracking,

4) Coordinated visualization using stacked layers, side-by-side layers/video sub-windows

and embedded imagery,

5) Efficient one-click manual tracking, editing and data management of trajecto-

1

ries,

6) Efficient labeling of image segmentation regions and passing these results to de-

sired modules,

7) Visualization of image processing results generated by non-interactive operators

using layers,

8) Extension of interactive imagery and trajectory visualization to multi-monitor wall

display environments,

9) Geospatial applications: Providing rapid roam, zoom and hyper-jump spatial op-

erations, interactive blending, colormap and histogram enhancement, spherical projection

and terrain maps,

10) Biomedical applications: Visualization and target tracking of cell motility in time-

lapse cell imagery, collecting ground-truth from experts on whole-slide imagery (WSI) for

developing histopathology analytic algorithms and computer-aided diagnosis for cancer

grading, and easy-to-use tissue annotation features.

These novel contributions are described in a little more detail in Section 1.10, and are

the topics of the remainder of this thesis.

1.2 Need for Visual Analytics

Data acquisition methods are rapidly maturing in the current time. The consequence of

this is the deluge of disparate, dynamic and at times conflicting information from multiple

sources that are ubiquitously heterogeneous. At the present time, the data collection rate far

outstrips the decision-making rate based on the data thus collected. The danger of getting

lost in data, which may be task-irrelevant, inappropriately processed or presented is ever

2

increasing. Why? Primarily because while information extracted from the data deluge has

enormous value, the raw data possesses no value on its own. A related important factor

involves the continuing crucial role played by the human component - the currently irre-

placeable cognitive capacity (comprising both the domain knowledge and instincts borne

of creativity and expertise) of human experts is growing very slowly, and is being over-

whelmed by the data deluge. Thus, the information overload problem that is currently

pervasive across industry and academia continues to result in wastage of time and money,

as well as lost scientific and industrial opportunities.

In a nutshell, the mission of visual analytics is to transparently (a) identify the agent

(who or what) which defines the relevance of information for a given task, (b) demarcate

what procedures are appropriate in a given complex decision-making process, (c) define

means to present the extracted information in a decision/task-oriented manner; which in

turn facilitates better understanding of the information by (d) reducing the cognitive bur-

den placed on human experts to manageable levels. Visual analytics has been defined as

’the science of analytical reasoning facilitated by interactive user interfaces’ [1]. Its gen-

esis is linked to the increased integration of the human in the knowledge discovery and

data mining components of information visualization through effective and efficient visu-

alization techniques, interaction capabilities and knowledge transfer. It currently combines

aspects of visualization, human computer interaction, data analysis, data management,

(geo-)spatial and temporal data processing and statistics [2]. The latter point is particu-

larly crucial. Researchers from all across the spectrum more often than not forget that: (a)

Over time, based on prevailing needs, processes will be put to the test under circumstances

which are entirely different from those they were originally intended for, (b) Despite the

continuing creation of increasingly powerful automated data analysis tools, completely and

3

efficiently analyzing and understanding the generated results at future times remains an un-

solved problem (due to said automated tools needing well-defined and understood problems

to be maximally effective), and (c) The fully automated tools, while being representative

of their creators’ knowledge, lack the ability to effectively communicate said knowledge,

especially beyond the boundaries of domain expertise.

1.3 Visual Analytics

Continuing our description, visual analytics allows for the visualization of the tasks of

transparently processing data and information, thereby providing the means to examine

the actual processes as well as the results. By enabling the rapid constructive evaluation,

correction and improvement of expert-designed processes and models, visual analytics can

accelerate the improvement of knowledge and decisions derived from the data deluge / in-

formation overload. This is achieved in the most productive manner by having humans

and machines work cooperatively using their respective, distinct capabilities and strengths

in tandem within a semi-automated analytical process, for which visualization serves as a

medium. In this manner, visual analytics enables its users to tackle massive, dynamic and

at times ambiguous data; and derive information and insight from it. It also enables the

detection of the expected and the discovery of the unexpected: by allowing decision mak-

ers to focus their full cognitive and perceptual capabilities on the analytical process, while

allowing them to apply advanced computational capabilities to augment the discovery pro-

cess [3]. Most importantly, it communicates the defensible and understandable assessments

it generates in an actionable manner [2].

Visual analytics can also be explained in terms of the overlapping problem domains

4

tackled by automatic analysis methods and visual analysis methods [4]. Automatic analy-

sis methods are the best candidates for the problem when (i) means for measurement and

comparison of candidate solution quality are readily available, and (ii) when the analysis

solution does not need to be dynamically adaptive. However, they fall short when they

get trapped in local optima, which might be completely unrelated to a globally optimum

solution. On the other hand, visual analysis methods leverage human domain knowledge,

creativity, intuition and decision making to solve problems efficiently by steering the anal-

ysis process, in a manner that either cannot be automated or will serve as input for future

development of automatic methods [3]. They also work well for problems that are not

well defined and for which the relationship between algorithm input and output is unclear.

However, they fall short when the data for solving the problem is too large in scope to be

fully captured by a human analyst. Additionally, involving human users is cost-intensive

and introduces unpredictability. Visual analytics aims to combine the best aspects of both

analysis types. In doing so, visual analytics attains several unique reasoning techniques

that enable rapid and insightful knowledge discovery; these include relationship discovery,

whole-part relationship, combination of confirmatory and exploratory interaction, multiple

data type support, temporal, spatial and linked views, outlier identification and groupings,

labeling and analytical reporting [2].

When utilized and prioritized correctly, visual analytics methodologies can serve as a

highly interdisciplinary collaboratory for visualization, data mining, data fusion and data

management, machine learning and statistics research. Domain experts are becoming in-

creasingly aware of the worth and usefulness of using visualization to interpret and com-

municate their information extraction activities and results. Unfortunately however, ad

hoc solutions which do not utilize state-of-the-art visualization capabilities, which do not

5

completely address the complexity of the problem at hand while also being incapable of

handling usage scenarios beyond the rigid confines of the original problem description;

continue to be used. Given the disparate disciplines they connect together, visual analytics

methodologies become even more essential in that they aid experts from different domains

communicate their findings amongst themselves effectively and productively. This is made

possible through the creation of highly effective and novel visual analytics tools.

1.4 Visual Analytics: Building blocks and Challenges

The building blocks of a visual analytics system come from multiple disciplines, as illus-

trated in Figure 1.1.

Figure 1.1: Building blocks of a visual analytics system.

The heart of the system is the visualization component, which can communicate the

data values and results of some analyses, as well as visually monitor processes in the other

6

constituent disciplines. The building blocks are briefly summarized below, and will be

explored in detail in the context of KOLAM throughout the rest of this thesis.

Visualization: Visualization research is classified into scientific visualization and in-

formation visualization. Scientific visualization involves visualizing 2D/3D data and repre-

senting the same as surfaces, volumes, flows etc. Research has been focused on improving

visualization efficiency to better support interactive exploration, a continuing problem due

to rapidly increasing data sizes. Focus has also been placed on techniques to automatically

derive the relevant visualization parameters both to aid the prior task as well as for user

usability effectiveness and efficiency. In the same vein, focus and context based interaction

techniques are also gaining importance. Information visualization is currently focused on

the development of visualization techniques for huge volumes of high-dimensional abstract

data without explicit spatial references. Besides the high dimensionality, several of the in-

dividual dimensions may be complex data types which do not trivially lend to traditional

2D/3D, plot and chart representations. Novel visualization techniques such as treemaps,

parallel coordinates and glyph/pixel based visual representations have been developed to

handle such data while also facilitating user interactivity and reducing display clutter. Pre-

processing techniques such as clustering methods or dimensional reduction may also be

applied to such data prior to visualization. Human Computer Interaction (HCI) forms a

vital component of the visualization system. The foundations of HCI principles are out-

lined in Ben Shneiderman’s seminal work [5], and have a huge body of other associated

literature.

Data management: There is a need for database systems capable of handling hetero-

geneous data, operations such as data cleansing, disparate data type and format integration,

intelligent data fusion, etc. The following challenges to the integrated exploration and

7

analysis of data need to considered at the outset: (a) Data source heterogeneity, (b) Multi-

ple data types, (c) Data streams, (d) Constraint-driven operation, and (e) Time consuming

minutiae. Classical data management effectively deals with large data by utilizing (a) the

relational model for data integration and exchange, and (b) the Structured Query Language

(SQL) which has been highly optimized and standardized for data access. Despite the ex-

tensive research advancements in both fields, the integration between visual analytics and

data management faces the following challenges: (a) Dynamic Responsiveness, (b) Rel-

ative lack of data handling standards in visual analytics, and (c) Longer data interaction

life-cycle for visual analytics. The challenges faced by visual analytics and data manage-

ment when the two are used together are: (a) Data Uncertainty, (b) Data Integration, (c)

Semantics Management, (d) Data and Result Integrity, (e) Time-Consuming Low level Ac-

tivities, (f) Interactive Large Database Visualization, and (g) Distribution and Collaboration

in Visual Analytics. These challenges are explored in detail at relevant points later on in

this thesis.

Data mining: This area encompasses the techniques utilizing automatic analysis al-

gorithms in order to extract the information of interest from (pre-processed) data. Said

techniques include: (a) Supervised learning - based on training data samples, deterministic

or probabilistic algorithms are employed to learn models for the classification/prediction

of unseen/real-world data, (b) Unsupervised learning - techniques including cluster analy-

sis, which extract structure from the data (using mutual similarity and outlier identification

measures) in the absence of a-priori knowledge, (c) Association rule mining - analysis of

the co-occurrence of data items, and (d) Dimensionality reduction. Common to all ap-

proaches is the non-trivial task of specifying a minimum number of guiding parameters: a

non-trivial task necessitating the inclusion of a human expert operator. Thus, it is important

8

to develop UIs needed for this task.

Spatio-temporal analysis: The analysis of data with references in both space and time,

this encompasses the characteristics of both spatial analysis (efficient representation, anal-

ysis and management of data via data structures, distance and similarity measure design)

and temporal analysis (identifying time-varying data patterns and correlations) while intro-

ducing unique challenges. These are: (a) Scale: patterns and features of interest need to be

searched for across multiple spatial and temporal scales, (b) Uncertainty: Spatio-temporal

data is often incomplete, interpolated, collected at different points in time and with differ-

ent underlying assumptions, and (c) Complex topological relationships between different

objects in space.

Perception and Cognition: This component comprises the decades of research done

in the fields of psychology, cognitive science and neuro-science, regarding the workings of

the human visual system in concert with the brain and how humans consequently visually

perceive and interpret information, in particular on the computer screen. Knowledge of

how humans think visually is crucial in UI design; taken together with HCI practices,

it can guide the design and implementation of perception-driven multi-modal interaction

mechanisms for the exploratory visualization of huge data spaces. It can also be used for

the design of usability evaluation methodologies of such systems.

Infrastructure: The concern here is the inter-linkage of all components of the visual

analytics system in a harmonious manner such that users can efficiently and effectively op-

erate the system. The challenges facing this objective are - (a) low level incompatibilities

of the different software infrastructures, and (b) the high interactivity requirement. HCI

system design principles [5] need to be taken into account with regards to the user interac-

tion components of the infrastructure. Proper software design and software re-usability are

9

key factors in application adaptability and short build times.

Evaluation: Evaluative methodologies are essential so that the efficiency, effectiveness

and user acceptance of new visual analytics techniques and models with customized human

computer interfaces may be assessed in a standardized manner for comparison and identi-

fication of potential problems. The evaluative process is a challenge however, due to - (a)

The exploratory nature of visual analytics, (b) The wide range of user experience, (c) Data

source diversity, and (d) The variance in the actual tasks. It is critical to create effective and

reproducible evaluation techniques.

Per Cook and Thomas [6] there are 5 categories of Grand Challenges faced by visual

analytics, which are as follows: (1) Analytical reasoning - This comprises the reasoning

frameworks by which users derive insights or perform knowledge discovery, in order to

support decision making. Said frameworks are fundamental to the application of specific

transformations, visual techniques or other operations on the data. (2) Visual representa-

tions and Interaction techniques - Which comprise all human computer interactive (HCI)

techniques and methods that facilitate visual data representation. (3) Data representations

and transformations - These define specific means of data representation, as well as op-

erations upon possibly noisy, incomplete or uncertain data. ’Representation’ refers to the

fundamental (at times non-intuitive) structure of data which facilitates transformations. (4)

Production, presentation and dissemination - this refers to User activity and interaction, ie.

their relationship to data and the roles they play. (5) Moving research into practice - this

refers to the practical applications of visual analytics methods and techniques.

10

1.5 The Visual Analytics Process

The visual analytics process (see Figure 1.2) tackles the problem of extracting knowledge

from data by leveraging human interaction to tightly couple relevant automatic and visual

analysis methods together.

Figure 1.2: Operational stages of a visual analytics system.

The first step of the process involves data transformation and pre-processing in order

to derive the different representations required for meaningful and efficient exploration.

These tasks include data cleaning, normalization, grouping and integration techniques. For

the second step, there is a choice between applying either automatic or visual analysis

methods first. In the former case, the data is appropriately mined in order to generate data

models. Subsequent interaction (the third step in this case, with feedback) with the data

via visualization (algorithm selection and/or parameter modification) is needed in order to

11

evaluate and refine these models. In the latter case, visual analysis methods are used to

generate the initial hypotheses, which automated analysis techniques are then used to con-

firm. Findings in the visualizations (either through zooming or by considering different data

views) can yield insightful information capable of guiding model building (the third step

in this case) in the automatic analysis phase. In both cases, iteratively alternating between

both analysis methods leads to continuous result refinement and verification (the final step

with feedback). Thus, the visual analytics process has three avenues for knowledge gener-

ation: visualization, automated analysis and the interaction between visualizations, models

and the human analysts.

A formal guide to visually exploring data was first given by Shneiderman [7] - ”Overview

first, zoom/filter, details on demand”, which describes how data is to be presented on

screen, and this represents one of the foundations of HCI techniques as they apply to visual

data exploration. However, given the greater dimensional extents of current big data (ultra-

high resolution, or gigapixel) datasets, more zooming out must be done in order to create

an overview visualization of the whole data. This in turn results in loss of visually descrip-

tive details, which in turn hinder the user from visually identifying regions of interest for

further zooming in for analysis. In conclusion, merely retrieving and displaying the data

becomes increasingly insufficient with increasing data size. Furthermore, increasing data

dimensionality and complexity necessitate that automatic analysis methods be applied both

before and after the use of the interactive visual representation of the data. The formal guide

must thus be extended as follows: ”Analyze, highlight important regions, zoom/filter,

analyze further, details on demand” [3].

12

1.6 Motivation For Interactive Visual Analytics

It has been found that given a particular task, human operators and computer programs each

have their unique strengths and weaknesses; this has been formalized by Shneiderman [5].

A summary of this is provided below. These opposing strengths and weaknesses strongly

suggest that a system capable of combining the strengths and ameliorating the weaknesses,

such as a carefully designed interactive visual analytics system, is highly desirable.

Human operators are generally better for the following situations: (i) Sensing low level

stimuli, (ii) Detecting stimuli in noisy background, (iii) Recognizing constant patterns in

varying situations, (iv) Sensing unusual and unexpected events, (v) Remembering prin-

ciples and strategies, (vi) Retrieving pertinent details without an a-priori connection, (vii)

Experience; adapting decisions to situation, (viii) Selecting alternatives if original approach

fails, (ix) Reasoning inductively: generalize from observations, (x) Acting in unantic-

ipated/novel situations, (xi) Applying principles to solve varied problems, (xii) Making

subjective evaluations, (xiii) Developing new solutions, (xiv) Focusing on important tasks

when overload occurs, and (xv) Adapting physical response to changes in situation.

On the other hand, machines/computer programs are generally better, when: (i) Sens-

ing stimuli outside human range, (ii) Counting/measuring physical quantities, (iii) Storing

quantities of coded information accurately, (iv) Monitoring (esp. infrequent) pre-specified

events, (v) Rapidly, consistently responding to input signals, (vi) Recalling quantities of

detailed information accurately, (vii) Processing quantitative data in pre-specified ways,

(viii) Reasoning deductively: inferring from a general principle, (ix) Performing repeti-

tive pre-programmed actions reliably, (x) Performing several activities simultaneously, (xi)

Maintaining operations under heavy information load, and (xii) Sustained maintenance of

performance.

13

1.7 Extreme-Scale Visual Analytics

Extreme-scale applications invariably combine high-performance computational hardware,

high-performance database systems and/or cloud services (for data management and stor-

age) and ubiquitous desktop hardware for human-computer interactivity. In addressing the

top challenges of the day, these applications both fulfil critical scientific and technical re-

quirements, but are also responsible for the dissemination of the solutions they create to the

wider community. The authorities of VA research have broadly identified ten challenges

which most prominently face the discipline and need solutions in the near term. They are

listed below.

(1) In situ Analysis: This type of analysis implies that as much VA as possible be per-

formed on the data while it still resides in memory. Performing analytics tasks in situ gains

importance due to the fact that performing data analytics beyond the petascale boundary is

expected to rapidly diminish the feasibility of the traditional approach of storing data on

disk for later analysis. It should be noted that prioritizing in situ analytics also prioritizes

the optimal design and implementation of interactive analytics, algorithms, memory, I/O,

workflow and threading tasks. These tasks continue to be tackled by the HPC community

at the current time.

(2) Interaction and UIs: The role of these factors continue to gain importance with the

growing problem of extreme-scale data, due to the fact that human cognitive capabilities

are remaining unchanged. The top challenges involving interaction and UIs are catego-

rized as follows: (a) In situ interactive analysis - Efficiently and effectively sharing cores

in the hardware execution units while ameliorating HCI resultant workflow disruptions; (b)

User-driven data reduction - having user data collection practices and analytical needs drive

the design of flexible data reduction mechanisms which will replace current compression

14

driven data reduction methods that are being rendered outdated at present; (c) Multilevel

hierarchical solutions to scalability - while multilevel solutions address scalability issues at

present, care needs to be given to the increasingly complex navigation of deepening hier-

archies corresponding to increasing data size; (d) Evidence and uncertainty representation

- Visualization is the crossroads where evidence synthesis and uncertainty quantification

meet, and humans then interpret these in a VA environment. How to continue doing so in

the face of still-growing extreme-scale data? (e) Heterogeneous-data fusion - Extracting

the optimum amount of semantics from extreme-scale data and interactively fusing it for

VA requires proper analysis of the interrelationships amonst heterogeneous data entities; (f)

Data summarization for interactive query - The increasing size of extreme-scale data is ren-

dering analysis of the entire data volume increasingly impractical and/or unnecessary. Data

summarization allows for data with specific features to be requested, and I/O components

must work well with the results of the same in order to enable interactive extreme-scale

data queries; (g) Analytics of temporally evolved features - Developing effective, com-

putationally practical VA techniques that exploit human cognitive abilities to track data

dynamics is the key challenge when dealing with extreme-scale time-varying data; (h) The

human bottleneck - Ways need to be found to circumvent the weakness of unchanging hu-

man cognitive capacity in the face of improving performance on all other fronts; (i) Design

and Engineering - Dissemination of standardized API and framework support for UI and

interaction development is needed; (j) Renaissance of wisdom in handling extreme-scale

VA problems.

(3) Visualization of Big-Data: This challenge comprises visualization techniques and

information display aspects of data presentation in VA. Abstract visualization, scalable data

projection, data dimensionality reduction, increasing display resolution and multi-monitor

15

wall displays are different approaches that have been developed to address the aforemen-

tioned challenge. However, the shortcomings of each of these approaches is becoming

increasingly apparent, implying that this challenge will remain unsolved for the foresee-

able future.

(4) Databases and Storage: Cloud services are currently capable of serving the exabyte

data demands of extreme-scale visual analytics database and storage implementations.

However, there exist a number of hardware and software concerns regarding cloud services,

which call into question their ability to scale with even greater data size demands. These

concerns are: (a) The unfavorable cost of cloud unit storage versus traditional secondary

storage unit cost, (b) That cloud network bandwidth still affect cloud database latency and

throughput unfavorably, and (c) failure of all cloud systems to fully support the ACID

(Atomicity, Consistency, Isolation, Durability) requirements of distributed databases.

(5) Algorithms: Traditional VA algorithms haven’t been designed with scalability as a

design consideration. Therefore, such algorithms are either too computationally expensive,

produce sufficiently human friendly output or assume that all required data will be readily

available in memory or local secondary storage. The best algorithms to be developed mov-

ing forward must address data-size and visual efficiency concerns, and must incorporate

novel visual representations and user interactability. Most importantly, highly adaptable

visualization output must be realized by creating novel HCI interfaces which integrate user

preferences with automatic learning in a versatile manner.

(6) Data Transport and Network infrastructure: Data movement is quickly becoming

the most expensive component in the VA pipeline, given the still falling costs of computing

power. Adding to the problem is the ever increasing demand for demand for data movement

driven by increasing geographic dispersion of ever-expanding data stores.

16

(7) Quantification of Uncertainty: Awareness of the source of uncertainty in the data is

crucial for decision making and risk analysis tasks. This fact is underscored in the present

day, when the ever increasing size of data implies that the uncertainty that needs to be dealt

with is also increasing; due to the fact that data subsampling must be increased in order to

satisfy the real time constraint when dealing with growing data sizes. Uncertainty visual-

ization and analysis will both have ever increasingly important roles to play in the future;

therefore, the development of algorithms to tackle incomplete data as well as treat it as

distributions must become a priority. Visualization has a key role to play by providing the

most intuitive possible views of the ever increasing uncertainty, thereby enabling risk com-

prehension and minimizing misleading result generation via proper parameter selection.

(8) Parallelism: Parallel processing is effective in enabling interactive analytics by

virtue of reducing the turnaround visual computing time. In order to fully exploit pervasive

parallelism, VA algorithms need to be designed with data models that take the shrinking

memory footprint per computing core into account. They also need to incorporate hybrid

parallelism models and perform a majority of their data-intensive operations out-of-core.

(9) Tools and User Involvement: Affordable libraries and tool frameworks are key to

rapid development of HPC VA applications. Finally, extreme-scale VA research and de-

velopment can only be fostered by constructive involvement from civilian government and

commercial vendor entities worldwide. These entities need to proactively influence hard-

ware manufacturers, academia for technology research, development and dissemination of

these achievements in usable forms to society at large.

17

Figure 1.3: An interactive visual analytics example in KOLAM, with a time-lapse image
dataset loaded and several pertinent tool interfaces for manipulating the view of the data or
obtaining certain types of results from the data being displayed.

1.8 Introduction to KOLAM

Exploratory data analysis involves the search and analysis of databases to find implicit

yet potentially useful information [3]. Unlike confirmatory analysis, exploratory analysis

provides no hypotheses about the data as initial starting points to work from to the ana-

lyst, thereby making it a difficult task at the onset [3]. The implication is that versatile

tools and understanding of domain knowledge are required in order to perform interactive

and (usually) undirected searches for structures and trends in the data [8]. In this context,

exploratory visualization and analytics tools are powerful methods to support multiple

data-streams and navigation through very large datasets. Such tools offer ways to miti-

gate the data deluge being faced by users and analysts and are useful for providing insight

18

into complex patterns in scientific, geospatial, satellite, and surveillance applications. KO-

LAM (K-tiles for Optimized muLtiresolution Access with coMpression, Figure 1.3) [9] is

a scalable and extensible framework for high-resolution, high throughput image data visu-

alization with applications in a variety of image analysis domains including WAMI [10].

It is platform and operating system independent and supports embedded datasets scalable

from hundreds of gigabytes to petabytes in size on architectures ranging from clusters to

netbooks. KOLAM uses a scalable data structure and cache management strategies to

support large datasets along with an extensive set of image processing and analysis fea-

tures. Novel Human-Computer Interfaces are realized in the form of robust animation and

novel tracking interfaces, which enable smooth animation of WAMI sequences and support

one-click per frame tracking of objects. KOLAM is capable of interfacing with differ-

ent tracking algorithms and visualizing the resulting trajectories that may be composed of

multiple segments. A feature-rich tracking interface enables simultaneous visualization

of multiple tracks, context-sensitive track operations, track archival and retrieval, moving

object ground truth generation, track editing and annotation. The need for user-driven mod-

els in the analysis of WAMI data to address challenging or unsolved problems in WAMI

exploitation include: automated search tools, a complementary visual analytics tool for

analysis, human-computer interaction that is capable of capturing user domain knowledge

to improve productivity and search tools applied to multitarget tracking results.

Furthermore, KOLAM has been extended to support rapid interactive labeling and

correction of automatic image classifier-based region labels of tissue micro-environment

Whole-Slide Imagery (WSIs) by pathologists. KOLAM’s extensible nature made visual-

ization of big-data histopathology imagery a straightforward task that involved few changes

to the existing architecture besides adding support for the requisite image file formats. Be-

19

sides annotating regions-of-interest (ROIs), KOLAM enables extraction of the correspond-

ing large polygonal image sub-regions for input into automatic segmentation algorithms,

single-click region label re-assignment and maintaining hierarchical image sub-regions.

Experience indicates that clinicians prefer simple-to-use interfaces that support rapid la-

beling of large image regions with minimal effort. The incorporation of easy-to-use tis-

sue annotation features in KOLAM makes it an attractive candidate for integration within

a multi-stage histopathology image analysis pipeline supporting assisted segmentation

and labeling to improve whole-slide imagery (WSI) analytics.

1.9 Related Work and Success Stories

1.9.1 Visualization

Gigapixel-sized imagery have become much more prevalent over the past decade in a vari-

ety of domains including medicine, space, satellite and defense. Consequently, the devel-

opment of tools for gigapixel-sized image visualization has been an active area of research.

A review of the most prominent literature allows for the rough classification of gigapixel

visualization into single display-oriented and multiple display-oriented systems. As an im-

portant example of a single display-based system, Kopf et al. created a system for creating,

processing and displaying ultra-high resolution images with high dynamic range and wide

angle fields of view [11]. Means for systematically annotating and rendering both audi-

tory and visual annotations in gigapixel imagery have also been devised [12]. Additionally,

work has been done towards rapid post-processing of gigapixel imagery utilizing an effi-

cient parallel programming methodology [13].

20

(a) (b)

Figure 1.4: Multi-display visualization system examples: (a) SAGE and (b) JuxtaView.

Based on the ability of the human visual system to rapidly identify patterns and dis-

cern differences, especially when the targeted data is extremely large, extensive research

has been performed regarding the visualization of high-resolution image planes on tiled

displays [14–24]. Architectures such as SAGE [16, 20, 25] (See Figure 1.4) and DIGI-

Vis [24]; and applications such as JuxtaView [17] (See Figure 1.4) and Giga-Stack [23]

seamlessly display a number of visualization applications over the entire tiled display. The

primary goal of such systems is to support application heterogeneity and scalability by

decoupling the graphics rendering and display processes from each other, and by utiliz-

ing high-bandwidth lambda networks to bridge them. Such ultra large-scale visualization

initiatives are currently being used with infrastructures such as the OptiPlanet Collabora-

tory [22]. This persistent, distributed visualization cyberinfrastructure connects a series of

OptIPortals [21,22], which are tiled displays that comprise the visual interfaces to OptIPut-

ers [14,21]. These global-scale computing systems seek to create a synergistic combination

between high-speed lambda networking, remote storage containing extremely large scien-

tific datasets, distributed processing, data mining and visualization.

21

1.9.2 Visualization and KDD Methods

There are currently a good number of large and mature software systems that represent a

successful marriage of visualization and Knowledge Discovery and Data-Mining (KDD)

methodologies into highly effective visual analytics systems. A selection of more promi-

nent examples is now provided.

In the field of BioInformatics, a prominent example is BioConductor [26], which pro-

vides tools for the analysis and comprehension of high-throughput genomic data. A suc-

cessful integration of visualization and KDD methods in the field of Climate Change is the

Paleoanalogs system [27], which can illustrate distribution of micro-fossil species across

the earth for the past several million years, as well as reconstruct the environmental fea-

tures of this entire time period. In the Manufacturing and Process industry, systems such

as Spotfire [28] help make sense of quality parameters, process trends and maintenance

events; and also perform anomaly detection and cause analysis. In the context of visualiza-

tion and KDD, popular statistical and mathematical tools include R, Matlab, Mathemat-

ica [29] and SAS [30]. In the same context, GraphViz [31]; and KNIME [32], Weka [33]

and RapidMiner [34] are examples of algorithmic tools and visual data mining tools. These

tools do not explicitly combine the visualization and KDD aspects; however, certain tools

do perform this combination. Examples include VizTree [35], Hierarchical Clustering Ex-

plorer [36] and BicOverlapper [37]. Figure 1.5 is a collective illustration of several of these

tools in action.

To summarize the achievements in this thesis at a glance, a matrix comparing the prob-

lems, challenges and solutions implemented within KOLAM; to the capabilities of popular

visual analytics systems, is illustrated in Figure 1.6.

22

(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j) (k)

Figure 1.5: Visual Analytics/KDD Systems: (a) Tableau, (b) Bioconductor, (c) Graphviz,
(d) PaleoAnalogs, (e) RapidMiner, (f) Bicoverlapper, (g) HCE, (h) TIBCO Spotfire, (i)
Weka, (j) Viztree and (k) KNIME. 23

Figure 1.6: A Functionality Comparison Matrix of KOLAM versus popular Visual Analyt-
ics Systems.

1.10 Novel Contributions in KOLAM

Following is the list of novel contributions made by the author in KOLAM towards this

thesis. The remainder of the thesis tackles these topics in detail.

1) Animation interface: Design and implementation of an (HCI customized for big

data visualization) player interface for image sequences and video files: Unlike ordinary

full-fledged video players which expose primitive functions, namely Play, Pause, Stop etc.

directly and conceal all other features in menu hierarchies, KOLAM gives direct access

to these ubiquitous sequence controls as well as data navigation controls (Step Forward,

24

Step Backward, Jump to Start, Jump to End), playlist handling, jump to arbitrary frame,

playback speed, variable frame step and sequence size; in one compact tool. Tool size

was minimized as well as made a discrete entity in order to a) minimize screen space taken

from actual display and b) allow to be moved with other tools to another display, if multiple

displays are available.

2) Spatio-temporal dual caching mechanism: For handling multiresolution image

sequences; KOLAM first caches temporally using a small buffer and out-of-core memory

management, then caches spatially using most-recently-viewed-by-user distance as Man-

hattan distance, in order to exploit user behavior to optimize data access. This mode of

time-lapse huge imagery sequence handling fits perfectly with the spatio-temporal data

handling techniques of visual analytics: when considering multi-resolution spatial data

handling and temporal data handling individually, each has its own unique challenges; and

spatio-temporal big data handling has both sets of challenges and brings unique challenges

of its own (ref. section 2.3.3). KOLAMs caching mechanism aims to tackle these chal-

lenges in an elegant and transparent manner (ref. section 2.3.4).

3) WAMI Applications: Driven by WAMI data needs, customized HCI interfaces for

interactive one-click multi-target tracking, versatile multi-object ground-truthing, one-click

tracker start and stop , assisted tracking by tight integration of visualization, tracker library

and expert analyst interaction, all together for a highly functional visual analytics system

for object tracking; and presentation of pertinent metadata like latitude-longitude informa-

tion.

4) Multiple trajectory dataset management, configurable trajectory visualization, tra-

jectory storage formats i.e. unstructured and semi-structured file formats for efficient trajec-

tory information storage and fast retrieval, animation of sequences in spherical projection

25

mode with simultaneous terrain display.

5) Trajectory filtering for efficient trajectory editing: Taking HCI design principles

in the context of WAMI and Biomedical data domains into consideration: reduction of

search space of user input interaction by assigning trajectories of interest to a selection

subset, in a feedback loop mechanism driven by user selection in the service of user focus

on one object or a small number of objects for accuracy. All required trajectory editing

operations via minimal user interaction for ease of use and efficient operation trajectory

create, add point(s), delete point(s), move point(s), split trajectories, join trajectories, sav-

ing of selected trajectory subset(s).

6) Full range of data visualization manipulation: Per-layer visibility toggling, inter-

actively move individual layer(s) up or down the visibility stack, per-layer transformation

or all-layer transformation; all from one interface. The interface fulfils the requirements of

HCI principles and meets the (input imagery) domain-specific needs.

7) Composite view creation: Applying HCI design principles and using features men-

tioned in (5) in conjunction with alpha blending, intensity thresholding, histogram manipu-

lation, mix of single image and image sequence, viewing multiple images/image sequences

either overlaid on top of each other or spread apart by user-defined offsets.

8) Loose and tight coupling of external programs: Such as trackers, filters, and seg-

mentation and classification modules: program input gathering within KOLAM, program

initialization, program execution control, and immediate display of results and program

feedback in KOLAM. All these operations again serve the visual analytics and HCI design

paradigm of KOLAM.

9) Region-Of-Interest information and extraction: Simple and versatile to use single

click-and-drag interface. Provides ROI box coordinates as well as box width and height

26

directly in overlay display. These values interactively update depending on zoom level.

ROI coordinate information can be passed to the Screen Capture module for precise user-

selected region screen capturing.

10) Screen Capturing and Movie Creation: Human-Computer Interfaces for full-

fledged screen capturing capability dedicated tool which works together with user display

manipulation to create customized captures. Capturing enabled for image sequences; cap-

ture from either whole sequence or user-specified subrange. Captures saved as individual

images, with coupling with mature movie-creation facilities of FFMpeg capable of directly

outputting a movie given a custom capture area and temporal range.

11) Biomedical applications: Human-Computer Interfaces for Single and Multi-stage

object tracking; visualize big data histopathology imagery, support most popular image

format libraries thus providing support for widest possible number of biomedical image

formats. Interactive one-click segmentation relabeling for ground truth generation for clas-

sifier training. Support for multiple labels which are cycled through via single mouse clicks.

Support for features to aid user operation such as segmentation class boundary toggle-able

display, all class boundary toggle-able display. Saving of intermediate result files per user

change. KOLAM can also maintain project file(s) for individual files, as well as higher-

level project files each of which manage multiple such projects. Such files are shareable

among users.

12) Extension to multi-monitor Wall Displays: KOLAM’s single display / moni-

tor paradigm needed to be extended to allow seamless image data display and interaction

across monitor arrays of any available arrangements. The largest such environment com-

prised a system of 40 wall mounted monitors, in an array configuration 8 monitors along

the length of the aggregate display area and 5 monitors along the height (ie. an 8 x 5 array).

27

The relevant Human-Computer Interface principles were taken into account when creating

these extensions.

13) Integration of mature analytics packages: Highly mature analytics libraries have

been implemented as packages under R and Python. Work is underway to provide seam-

less access to these 3rd party library and language implementations within KOLAM as

well as support for their output formats. These analytics capabilities can then be used in

conjunction with other functionalities within KOLAM.

14) Persistent Settings Management and Migration: All of KOLAMs widgets in-

volving user choice or value setting are persistently maintained across multiple usage ses-

sions by the same user. These settings can also be migrated to any number of users for any

of the supported platforms. This is highly powerful in that once a single user configures

KOLAM extensively for highly specialized usage; this whole customization can be fully

propagated for any other user on any other machine via a single file. Time of multiple

users is saved, and there is no danger of users creating a different group of settings thereby

ensuring the exact same operating environment can be set up with a single file selection for

users with different levels of usage expertise.

15) Persistent Data Usage Management and Migration: KOLAM persistently main-

tains the usage histories for multiple static and time-varying image datasets, as well as the

paths for input datasets and results of all tightly coupled modules such as object trackers

(trajectories), segmentation and classification (input file paths, project file paths, interme-

diate result paths) etc. All of this customized data usage history can be propagated to any

number of users for any of the supported platforms via a single migration file. Whats more,

any number of such full customizations can be saved and shared as needed.

28

1.11 Credits

The history of development on KOLAM 2.0 is documented in [38]. Anoop Haridas (the

author) has worked as the primary developer for KOLAM 3.0 for the past several years.

During this time, a highly extensive feature set comprising several tools and capabilities

were added. The details of these additions are presented in the following chapters. Initial

development guidance was provided by Joshua Fraser, who added support for a number of

image file formats and lent his expertise toward creation of the networking aspect of KO-

LAM’s multi-monitor display capability. He also performed initial deployment of KOLAM

3.0 for the Mac OS platform.

Addition of new features was only half the story: extensive testing of all possible ex-

ecution paths were carried out, which was crucial to the success of the multiple rounds of

refinement and re-testing. Dr. Palaniappan has been very gracious throughout the years

with testing of all developed features on the Mac OSX platform and providing extensive

feedback regarding corrections and improvements. The author would like to note the efforts

of all his colleagues in general, and Rengarajan Pelapur and Ilker Ersoy in particular; who

tested KOLAM 3.0 the most and provided the most constructive feedback with regards to

missing features, current feature loopholes, unhandled special cases and hard-to-track error

conditions.

29

Chapter 2

KOLAM 3.0

2.1 Synopsis of KOLAM 2.0

KOLAM 3.0 began its life as a ported version of the KOLAM 2.0 code base. The main fea-

tures of KOLAM 2.0 may be summarized as follows: (a) A multi-layer, static, extremely

large geo-spatial image data visualization tool, which handled image data of high spatial

and spectral resolution, (b) Multiple viewing modes (orthographic and spherical projec-

tions), (c) Terrain maps, (d) Edit some properties of individual layers: Use of Layer Ed-

itor and Color map Editor; Influenced by visualization needs of geo-spatial imagery, (e)

Rapid roam, zoom and hyper-jump spatial operations; (f) Interactive color and histogram

enhancement, and (g) Overview and cache glyph display tools for data navigation and

memory usage monitoring. Further details of KOLAM 2.0 are presented in [38] and [9].

30

2.2 Motivation for KOLAM 3.0

Beginning sometime in the 2007 - ’08 time period, the acquisition of huge volumes of

wide-area, high-throughput airborne video was initiated by multiple agencies. The im-

mediate need to track objects of interest across time within such imagery necessitated the

development of feature-based tracking algorithms applicable to this high-resolution wide

format video also known as wide-area motion imagery (WAMI). The development, test-

ing and refinement of such algorithms required a system that could easily visualize the re-

sults overlaid on the WAMI imagery in question, smoothly navigate through the time-lapse

imagery with the overlaid results, provide interfaces to initialize and terminate algorithm

execution, provide capabilities to inspect the results at custom zoom levels in manner that

allowed for visual determination of causes of algorithm abnormal behavior or failure when

working on the data under certain conditions (eg. objects that can be tracked in a straight-

forward fashion under optimum lighting and non-occluded conditions, fail to be correctly

tracked when the objects are warped, in shadow or are occluded to varying degrees by other

objects in the image), to edit the generated results as needed and a mechanism to generate

ground-truth on the data to evaluate tracker algorithm performance via various statistical

measures. The preferred algorithm development and testing environments such as MAT-

LAB and OCTAVE are general purpose development environments which are not uniquely

specialized in this context. That is, they do not provide the aforementioned facilities in

a single, easy-to-use package. The existing features in KOLAM 2.0 made it an attractive

target for feature addition and enhancement to provide the needed functionality; the end

result of this being the conception of KOLAM 3.0 in its initial state.

The dissemination of the capabilities of KOLAM 3.0 in both literature and presentation

formats ([39], [40]), coupled with software delivery and extended support in the form of

31

implementation of desired domain-specific features, made KOLAM 3.0 an attractive choice

for visual analytics platform to users outside the surveillance domain. At the forefront were

potential users from the biomedical research community, who have been generating huge

volumes of small to ultra-high resolution imagery via several microscopy imaging modal-

ities. These different types of imagery, both static and time-lapse, need to be interactively

visualized and require a number of analytical operations performed upon them. Modifying

KOLAM 3.0 to meet these new needs was a straightforward set of tasks due to its exten-

sible architecture. Indeed, it is important to note that KOLAM 3.0 can be used without

alterations by researchers and analysts from both the surveillance and biomedical domains.

The new features of KOLAM 3.0 have found application in cell motility tracking, cell cycle

analysis and cell lineage visualization in histology imagery, and tumor identification via the

visualization and relabeling of multi-level segmentation results for big-data histopathology

imagery.

2.3 KOLAM Multithreaded Synchronization Architecture

The reorganization of images into tiled multiresolution pyramids provides on-demand load-

ing of partial regions and scaled views of the whole dataset. Loading the image piecewise

as determined by the user’s interaction, effectively amortizes the expense of transferring

the entire dataset from secondary storage to primary and video memory. While the total

amortized cost may exceed that of loading the original image, it is this on-demand view-

dependent loading that provides an interactive experience for the user. Additionally, the

total amortized cost for a given session will still provide savings as the user rarely views

every tile contained in the dataset.

32

An efficient multiresolution temporally registered tile access mechanism is essential to

provide smooth interactivity for any user-driven view into the WAMI data volume. Deter-

mining the visibility of spatial-temporal tiles, load balancing I/O throughput, decompres-

sion, and memory management are key parameters to optimize to provide a truly interactive

experience for the user. A spatial-temporal dual-caching mechanism is proposed to effi-

ciently handle a time sequence of large pyramid (wide-area) imagery. This mechanism

was primarily designed and implemented by Joshua Fraser [39], with the author being the

supporting developer making additions and modifications to the system from 2010 onward.

2.3.1 Multithreaded Cache Access and Management

A tile is the smallest data element in the cache management system. As the user interac-

tively pans, zooms, and animates the view on to the data, tiles are loaded on-demand in

order to provide that view. When a tile is determined to be needed in order to fill the user-

requested view, a tile access cache-request is generated and queued. This request is handled

asynchronously by a separate thread in order to keep the user interface interactive and pre-

vent any I/O blocking that would occur as a result of fetching from secondary storage. To

achieve this asynchronous behavior two types of threads are used: one display thread for

user interaction and display, and multiple read threads to fulfill tile requests from disk. The

number of threads is variable and can be tuned for different systems. Thread cooperation is

shown in Figure 2.1. The work described in this sub-section was first done in [9] [41] [42],

with additions by the author from 2010 onward.

The display thread, Figure 2.1(b), is responsible for user interaction, determining which

tiles are necessary to provide the current view of the data, and drawing the view as tiles

become available (with or without display buffering). The display thread transforms the

33

Synchronized
Access

Request Queue

Display
Thread

Reader
Thread

Reader
Thread

Tile Cache

Tile Request

Tile

Tile Request

Tile

(a)

Determine
Next Tile

Tile in
Cache?

Get Cached
Tile

Draw Tile

Request
Queue

Request Tile Tile Cache

yes

no

(b)

Wait Tile Cache

Queue
Empty?

Get Request
Get

Candidate
Tile

Read
Compressed

Tile

Process &
Decompress

Tile
Check-In Tile

Request
Queue File

yes

no

(c)

Figure 2.1: (a) Multithreaded synchronization of display and reader (worker) threads in
KOLAM. (b) Display thread interactions with Request Queue and Tile Cache. (c) Reader
thread interactions with Request Queue and Tile Cache.

34

current view requirement to a set of tile requests. Mapping the current view to the underly-

ing data is dependent on position, scaling, and current time. The view is tracked in a global

coordinate system with respect to the finest resolution of the pyramid and sequence order

of the time-varying data. Uniquely identifying a tile in the system requires that each tile

first be associated with its temporal index (mapped from time to a file), and then spatially

within the pyramid structure.

When the current view is resident and the system load is light, KOLAM will predict

what will be needed in the near future and generate requests for this data in advance.

Preloading data is necessary to fulfill the user’s expectation of interactivity; failure to fill

the view in a timely fashion will cause portions of the view to remain blank or out-of-date.

Prefetching can occur temporally with respect to the time sequence, but also spatially by

pre-loading tiles surrounding the current view. Spatial prefetching attempts to predict tiles

that will soon be required to fill the view for the current position in time. Scheduling tiles to

be loaded immediately adjacent to the current view, but not yet resident, allows the system

to anticipate the view’s requirements and deliver needed data in time. Temporal prefetching

determines which frames of the sequence will be needed (and when) in order to ensure that

the associated pyramids are available in the frame buffer, and to issue requests for the tiles

that will be needed in the next time step.

Under heavy system load, the demands of the view may exceed the ability of threads

to deliver data. Compromises must be made to provide a seamless experience for the user.

Spatially, rather than allow blank regions or out-of-date data, a consistent view can still be

presented by progressively loading coarser tiles when the tiles at the current resolution are

not yet available for display. Temporally, rather than playing back the animation too slowly,

the system should attempt to fulfill the user’s expectations of interactivity by dropping

35

frames.

Reader threads (Figure 2.1(c)) provide asynchronous delivery of tiles to the tile cache.

Initially a reader thread is in a wait state. The thread waits on a POSIX condition until there

are tile requests in the queue. When the request queue is no longer empty, reader threads

are awakened to retrieve requests from the queue and service those requests. When the

thread has completed the task of delivering a tile to the tile cache, it either continues with

the next request in the queue or returns to the wait state if the request queue is empty.

Reader threads are responsible for fulfilling the three phases of a tile request: reading,

decompressing, and caching the tile in primary memory. The first phase of fulfilling a tile

request is to find memory within the cache to hold the result of the request. A centralized

cache contains the collection of all tiles currently resident and provides storage for new

tiles if the cache has not reached its predetermined maximum size. If the cache is currently

full, a candidate tile for replacement (removal) is chosen and checked out of the cache.

Checking out a tile transfers ownership of the tile’s memory to the thread and ensures that

the tile scheduled for deletion is unavailable to other threads. The replacement tile can no

longer be accessed by the display thread nor is it available to other reader threads until it is

again checked back into the tile cache.

Once cache memory for a tile has been determined, the read phase begins. A requested

tile is mapped from its spatial-temporal index first to a file in the sequence, and then to a

byte offset and size within the file using the tile dictionary. Using this size and offset, a

read system call is issued to the file to transfer the data from disk to memory. This system

call is intentionally a synchronous call which will block the current thread of execution–but

not other threads–until such time as the operating system can honor the request. The result

of this read is a compressed tile which is saved in to a thread-local buffer.

36

Once the compressed tile is available, the thread is then responsible for decompressing

the tile. The tile is decompressed from the thread read buffer in to cache memory. The result

of this decompression is a display-ready tile located in the central tile cache. Following

successful loading and decompression of a tile, the cache is notified of the presence of this

new tile. The check-in of this tile serves two purposes: transferring ownership of the tile’s

memory back to the system for use and notifying the display thread that new data is ready

for display.

2.3.2 Thread Synchronization and Load Balancing

Synchronization of threads occurs only when accessing two structures: the request queue

and the spatial cache. This synchronization ensures that access to these protected structures

is serialized amongst competing threads. Sychronization is provided by POSIX mutex and

conditions. This synchronization is shown in Figure 2.1(a). The work described in this

sub-section was first done in [9] [41] [42], with additions by the author from 2010 onward.

Coordination of tasks amongst the threads is provided by a workpile concurrent model.

Tasks (in this case tile requests) are placed in the first-in-first-out request queue by the

display thread. Threads retrieve requests from this queue in order to get tiles to deliver to

the tile cache.

As described in the description of the read phase, KOLAM uses synchronous blocking

reads when fetching compressed tile data. The purpose of blocking reads is towards load

balancing of I/O and processing. Blocking reads provide a yield point for the executing read

threads. When a read from disk is requested to the operating system, the thread will block

yielding execution to other threads until that transfer from disk is available. While one

thread is blocking on the read system call, other threads can utilize the CPU for processing

37

and decompression. The nature of KOLAM’s both I/O and CPU intesive demands is well

suited to this workpile model.

2.3.3 Spatio-Temporal Data Characteristics

As presented in section 1.4, the analysis of spatial data involves efficient data represen-

tation, analysis and management of data via data structures and distance and similarity

measure design. Likewise, the analysis of temporal data involves identifying time-varying

data patterns and correlations in the data. Now, analysis of data with both spatial and

temporal components (ie. spatio-temporal data) includes all the above challenges, while

adding unique challenges of its own. These were briefly summarized as: a) Scale: pat-

terns and features of interest need to be searched for across multiple spatial and temporal

scales, (b) Uncertainty: Spatio-temporal data is often incomplete, interpolated, collected at

different points in time and with different underlying assumptions, and (c) Dependencies

between observations, and complex topological relationships between different objects in

space. These aspects are examined in further detail below.

(a) Scale: It is possible for spatial and temporal data to exist at different scales. Taking

the dimension of time into account first: it is possible for the temporal dimension to include

single or multiple levels of scale; where the scale used is the granularity of time. Temporal

primitives can be aggregated into larger units, or split into smaller units. Most current vi-

sual analytics tools, KOLAM included, consider only a single level of temporal granularity,

ie. data is treated as sequences of simple (time-point, value) pairs. KOLAM does possess

the ability to set an arbitrary time step size within its animation system; nonetheless, this

feature has not been used in a continuously extended manner by any of KOLAM’s users

for their visual analytics tasks. Let us now consider the spatial dimension(s) of the data.

38

The scale of spatial analysis is determined by two factors; the size of the units used to

measure phenomena in the data, as well as the size of the units in which measurements are

aggregated in the data. Patterns and relationships which are meaningfully discerned at one

scale, may either be undetectable or exist as an opposite relationship at a different scale.

In order to perform analysis on phenomena of interest in the data, it is important that the

scale of analysis should match the scale of the phenomena in the data being analyzed. In

the case of the various usage scenarios of KOLAM, the analytics components ie. object

trackers, segmentation, classification analyze the data at its native resolution. However,

other analytics operations within KOLAM itself, such as layer overlaying, visibility tog-

gling, applying masks, setting transparencies, manipulating object trajectories, or editing

segmentation/classification label values can happen at non-native resolution scales; indeed,

at times analysts can exploit more than a single scale when performing these tasks. This is

in keeping with the fact that analysis scales should be chosen according to analysis goals.

Consider the example in Figure 2.2. Thus we conclude that, given the types of data being

analyzed, visual analytics tools such as KOLAM must support visual analyses at multiple

spatial scales at the least, if not providing full facilities for analyses across temporal scales.

KOLAM’s support for hierarchical multi-resolution (ie., multi-scale) data is explained in

detail further in this chapter.

(b) Uncertainty: Uncertainty in data, defined as the ’degree to which the lack of knowl-

edge about the amount of error is responsible for hesitancy in accepting results and ob-

servations without caution’ [43], may be considered as a composition of the following

data aspects: errors, imprecision, accuracy, noise, non-specificity, lineage and subjectivity.

Reasons for data uncertainty include problems with the data acquisition methods, problems

with data transmission, or the use of analytical processes which cause a loss of information.

39

(a) (b)

Figure 2.2: Visualization of multiple tracked objects and their trajectories in KOLAM using
different vector primitives. The images show unstabilized (without local registration) and
stabilized (locally registered) pairs of vehicle trajectories at different spatial scales. (a)
represents an analyst’s high-level view into the data and of all object trajectories for the
given time span in the currently observed area. (b) represents the area corresponding to the
bottom right of (a). At this spatial scale, the analyst may select and track individual objects
of interest, or manipulate the visualization of the displayed trajectories. The images display
results for a PSS WAMI dataset collected over Charlotte, NC.

A universal way to visually represent uncertain data does not exist. Nonetheless, visual an-

alytics systems need to communicate the uncertainty in the data to their users. This needs

to be done via either or both the analytical and visualization components.

(c) Inter-Observational Dependencies: The most fundamental aspect of spatio-temporal

data is that the constituent spatial and temporal aspects are inter-dependent. This fact both

constrains and defines how spatio-temporal data is processed and analyzed. In the spa-

tial domain, this results in spatial auto-correlation. The same applies to temporal auto-

correlation in the temporal domain. However, despite adding constraints (eg. for statistical

analyses, unsuitability of techniques which require inter-observation independence), spatial

and temporal dependencies also give rise to new information and possible data processing

operations. These include: (1) Interpolation and Extrapolation (useful for populating in-

complete data), (2) Spatial and Temporal inference, (3) Operations such as spatial and tem-

40

poral navigation, and (4) By using references to common locations via spatial overlay(s),

integration of different types of information from one or more sources cite book.

It must be noted that the effects of spatial and temporal auto-correlations are not ’straight-

cut’, and can be fraught with discontinuities and complexities. For example, in geo-spatial

and WAMI datasets, the various heterogeneities of the geographical space, as well as natu-

ral and artificial barriers play a role. In histopathological data space, factors such as staining

boundaries, tears in the tissue samples play a similar role. Additionally, every location has

a degree of uniqueness relative to other locations. Temporal dependence can be affected

by events involving radical or large-scale changes. Spatial and/or temporal proximity may

also be phenomenon dependent. The resulting effect is that it is impossible to account for

all the factors which affect spatial and temporal dependence, in the development of fully

automated analysis methods for the problem space at hand. Visual analytics systems such

as KOLAM play a crucial role in this gap, by leveraging the visualization component to in-

form the analyst about how and where spatial and/or temporal auto-correlations are being

modified by local conditions and thus to make the requisite adjustments to the analysis.

2.3.4 Spatial-Temporal Dual-Caching Tile Organization

Motion imagery requires coherent caching both spatially and temporally. To determine

temporal caching of tiles as the view varies in time requires knowledge of the next frame

in time which may not be immediately adjacent in the sequence. As an investigative tool,

simple sequential linear playback of the data may be insufficient for the demands of the

user. The playback sequence of frames may occur in a cyclic pattern as opposed to just

clamped from the beginning to the end of the sequence. Looping and rocking playback are

examples of this cyclical pattern. The user should also be able to play the animation both

41

forwards and in reverse at a specified frame rate. Additionally, the user may wish to stride

through the data in order to visualize long sequences more quickly by setting the step size.

Dual-caching [39] is used to accommodate a sequence of files for animation. The

first form of caching is at the temporal file level to organize temporal information and the

second form of caching is at the spatial level which is discussed subsequently. Each frame

in a sequence exists as a separate file. The cost of opening and parsing the file’s header

and generating the associated tile lookup tables requires that the results of this process be

cached for fast access to the tile data. Additionally, because the length of a sequence can

be very long, the entire sequence of file pointers and associated pyramid data structures

cannot all remain resident due to limited resources–both with respect to memory and also

the maximum number of open file handles imposed by the operating system. To manage

this two-tiered caching, a separate file buffer is maintained. This buffer is kept full based

on playback of time and the animation parameters set by the user. As the display updates

time, this file buffer is kept up-to-date. When one frame of the sequence is removed from

this buffer, a future frame is loaded from disk. At the time of this loading, no tile requests

are actually issued, the file is only opened and parsed to build the necessary structures

for accessing the tiles. As a file is paged out of the animation buffer, the tiles associated

with that file are marked for recycling. This recycling marks those tiles in the cache as

immediately available for reuse by future tile requests.

It is important to note that the order of images in the resident file buffer may not be

sequential or in increasing order [39]. Rather the buffer will reflect the parameters used for

playback of the animation. For example, the user may have chosen to loop a subset of the

entire animation for playback with a negative stride. The cyclic nature of playback (loop

and rock) and the need to skip frames (stride or frame dropping) in the sequence creates a

42

Frame

Time

Clamp

Loop

Rock

Figure 2.3: Sample ordering of frame sequences as a function of time showing three types
of user selected playback modes including rocking back and forth, continuous looping, and
play once.

non-linear sequence of frames needed for playback. In order to properly preload and buffer

frames of the sequence, the system must be able to properly predict those frames which

will be drawn in the future. Toward this goal, the sequence of past and future frames is

modeled as a function of time. For any given time, the system must be able to query what

frame would be drawn at that time. By monitoring latencies to fulfill a view, the system

can choose to load only the sequence of frames which can be successfully retrieved from

disk.

This ability to determine only what will actually be available for display as opposed

to what would be next without the unavoidable latencies allows the system to manage its

limited resources more effectively [39]. Accurately predicting which frame to load based

on playback speed and load time, the system can fill the caches without wasting precious

resources on frames that will be skipped.

The various modes of playback can be modeled using clamped, sawtooth, and triangle

functions as shown in Figure 2.3. These models are used both for preloading data as well

as maintaining a temporally coherent file cache. During the preloading phase, the system

examines the frame cache and requests tiles for the current view at the next time. The next

43

time is simply the span determined by the frame rate when the system is not under full load

and can reliably fulfill all data requests. When the system is under a full load, the next time

is the average current latency of successfully filling the view as determined by the display.

We now elaborate on the second form of caching at the spatial tile level [9] [41] [44]

[42]. Tiles in the cache are referenced to their associated temporal frame in the anima-

tion sequence. A number of approaches can be considered for the tile replacement or tile

paging strategy including random, minimum, First In First Out (FIFO), Not Recently Used

(NRU), Least Recently Used (LRU) and our proposed spatial multiresolution distance-

based (SMD) tile replacement or SMD tile paging. Among the most widely used operating

system level paging strategies for managing memory is LRU. Similarly, the LRU tile pag-

ing or replacement strategy chooses the oldest tile contained in the tile cache to be swapped

out for a new incoming tile. This approach is effective in that as the user zooms and pans

the image, recently drawn tiles are likely to be needed again in the near future. The ap-

proach predicts that the least recently accessed tile will be the best candidate for removal

from the tile cache.

While the LRU approach is effective, and has been implemented in KOLAM, it ignores

additional spatial information that can be used to improve upon the LRU tile replacement

algorithm. Although the user can make large disconnected jumps from one view to another

in the image, this is not the typical way in which users visualize and navigate large motion

imagery. Rather, users tend to pan around the image and zoom in and out in order to inspect

the data. The nature of this user interaction suggests that paging based on a tile’s distance

from the current view rather than age of tiles would be more effective. Our preferred SMD

tile paging strategy [9] [41] [44] [42] utilizes this spatial coherency to more efficiently

manage the paging of the tile cache. Our approach is to keep all the tiles closest to the

44

current view, and choose as replacement tiles those that are the furthest way in terms of

spatial distance. A simple L1 or Manhattan distance metric is used to update the distance

of each tile in cache with respect to the current view. The result of this distance-based

caching is a clustering of resident tiles nearest to the current view. When a new tile is

requested and the cache is full, then the tile with the greatest distance value is chosen for

replacement. Algorithm 1 describes the two-level caching system (first being the temporal

cache for the sequence of images, and second being the spatial cache for each image) that

enables KOLAM to interactively animate big data multi-resolution imagery. Algorithm 3

describes the handling of the different animation modes of KOLAM.

2.4 Symbiosis between Visualization and KDD Technolo-
gies

Knowledge Discovery and Data Mining (KDD) methods form the umbrella over the auto-

mated analysis methods that were discussed earlier on. While the strength of KDD method-

ologies lies in fully/semi-automated analysis of massive datasets, they tend to become black

boxes in the hands of end-users, at times producing results that do not lead to problem so-

lutions due to relevant expert knowledge being absent. On the other hand, visualization

methods find their strength in leveraging human background knowledge, creativity and in-

tuition to steer visual analysis, but fall short when the scale of the data becomes too large

to be captured by the human analyst [4]. Modern visual analytics systems such as KOLAM

seek to integrate the strengths of both and thus ameliorate their individual weaknesses. The

current implementation of KOLAM achieves this goal by incorporating both a tight and

loose coupling with object tracking programs, as well as segmentation and classification

45

Algorithm 1: Spatio-temporal Caching Algorithm
input : Sequence of images of dimensions I[w × h], KOLAM prior to loading the

sequence
output: KOLAM has loaded the image sequence with the temporal and spatial

caches properly initialized and populated. The display has been updated
with the first frame of the image sequence

1 while Image sequence has not finished loading do

2 bufSize← User Buffer Setting;
3 lookAhBufSize← bufSize;

4 // Buffer images around current frame into Temporal
cache

5 startF← currFrame− bufSize/2;
6 stopF← currFrame + bufSize/2;

7 for (i = startF; i < stopF; i ++) do

8 reqdImgList.append(clamped(i));
9 if i is not in imageBuf then

10 // Load tiles into image’s Spatial cache
11 tempImage← load(files[i]);
12 imageBuf[i]← tempImage;
13 end
14 end

15 // Update curr img after filling Temporal cache
16 image← imageBuf[i];

17 // Check Temporal cache for images no longer needed,
set these images as invalid

18 if imageBuf.count() > bufSize then
19 for (i = 0; i < imageBuf.count(); i ++) do
20 if !reqdImgList.contains(imageBuf[i].key) then
21 tempImage← imageBuf[i];
22 tempImage.setInvalid();
23 invdImgList.append(tempImage);
24 end
25 end
26 end
27 end

46

Algorithm 2: Spatio-temporal Caching Algorithm (continued)
1 while Image sequence has not finished loading do

2 // Code from previous listing

3 // Garbage collect invalidated images
4 for (i = 0; i < invdImgList.count(); i ++) do
5 cache.invalidate(invdImgList[i]);
6 delete invdImgList[i];
7 end
8 end

9 Return to KOLAM’s main UI Loop;

programs, along-with its interactive visualization system. In doing so, these integrations

accomplish multiple highly relevant tasks, including object tracking in Wide-Area Motion

Imagery (WAMI) datasets and interactive Segmentation, Relabeling and Classification in

big-data Histopathology datasets. Object tracking is explored in further detail in Chapters 3

and 4, while the roles played by segmentation, classification and relabeling for histopathol-

ogy imagery are explored in Chapter 5.

2.4.1 Data Handling Characteristics

The heterogeneity of data types, data formats and data characteristics, as well as the size

of the data, constitute major challenges to the operational implementations of systems in-

tegrating interactive visualization and KDD methodologies. The types of data which po-

tentially need to be handled include spatial (geo-spatial, WAMI, histopathology) data, data

from databases, data from sensors and video data. The integration of visualization and

KDD creates additional handling issues, which are: (a) Data acquired in real-time needs

suitable means of management, (b) At least a portion of the data will be of variable quality,

necessitating that knowledge about the data be as complete as possible, (c) Incomplete data

47

Algorithm 3: Animation Algorithm
Input : Image sequence I , task to load tiles from next level of the image pyramid.
Output: Updated view, with tiles loaded from either the lower or higher level of the

image pyramid, based on selected display mode.

1 UserAct = {Play, Stop, Pause, Step, ToStrt, ToEnd};
2 PlayMode = {Play, Loop,Rock,Blink};
3 PlayDir = {Forward,Backward};
4 PlayParam = {Fps, FpStep};
5 currAct← UserAct[1], currDir← PlayDir[0];
6 currMode← PlayMode[0], currfps← PlayParam[0];
7 currfpstep← PlayParam[1];

8 while User wishes to animate image sequence do
9 if layerList.active().numFrames() > 1 then

10 if User presses an Action button then
11 currAct← UserAct[UserP ick];
12 Update KolamLoop GUI(currAct);
13 end
14 if User changes Play mode then
15 currMode← PlayMode[UserP ick];
16 Update KolamLoop GUI(currMode);
17 end
18 if User changes Play direction then
19 currDir← PlayDir[UserP ick];
20 Update KolamLoop GUI(currDir);
21 end
22 if User changes Framerate then
23 PlayParam[0]← UserSetFps, currfps← PlayParam[0];
24 Update KolamLoop GUI(currfps);
25 end
26 if User changes Frames per Step then
27 PlayParam[1]← UserSetFpstep, currfpstep← PlayParam[1];
28 Update KolamLoop GUI(currfpstep);
29 end

30 S-T-C(currAct,currMode,currDir,currfps,currfpstep);
31 UpdateDisplay();
32 end
33 end

48

Algorithm 4: Animation Algorithm: Inner ELSE Block
1 // ‘Else’ corresponds to previous main inner ‘If’

2 else
3 if User wishes to load an image sequence then
4 newLayer← load(Layer(User picked sequence));
5 layerList.active← newLayer;
6 continue;
7 end
8 else if User makes a sequence layer Active then
9 layerList.active← layerList[UserP ick];

10 continue;
11 end
12 else
13 break;
14 end
15 end
16 // Main ‘While’ loop from previous listing ends here

17 Return to KOLAM’s main UI Loop;

requires knowledge of what data is missing, and ways to manage the missing data, and (d)

Data of different spatial scales needs to be transformed to be compatible with other data.

Details regarding KOLAM’s spatio-temporal data handling capabilities are covered in this

chapter, and other data handling issues are covered in Chapters 3, 4 and 5.

2.4.2 Required Features of Visual Analytics and KDD Integration

Given that the desired system should feature a (preferably tight, but loose also acceptable)

coupling between its visual analytics and KDD components, a fundamental challenge is

to organize and implement the functionality such that users can easily switch between the

visual analytics tools and the data sources. This kind of integration may be achieved via the

use of applicable APIs. Furthermore, generic visual analytics and KDD components which

49

can be customized according to varying needs will aid in enhancing system flexibility by

preventing the creation of isolated ad-hoc components. In KOLAM (implemented using

the Qt cross-platform API), these objectives are achieved by having a master display re-

gion upon which various tool interfaces may be positioned as desired. These tools provide

transparent access to KDD components such as object tracking programs and segmenta-

tion and classification programs. These programs take their inputs from the main display

area via user interaction, execute asynchronously and produce results which are visualized

immediately in the display area, often overlaid on the original data layers in one or more

overlays. Finally, for KDD methods to be usable with visual analytics, the following fea-

tures are preferred: (a) The methods be fast enough for efficient interaction, (b) Method

parameters should be representable and understandable via visual representations, and (c)

KDD parameters should be adjustable via visual controls.

2.5 Changes to the KOLAM User Interface

The addition of new functionality in response to needs described previously in this chapter

necessitated multiple additions and modifications to KOLAM’s UI. These may be broadly

classified as changes to existing UI components, and new UI components that were added

over time. The rest of this section is organized as follows. Subsection 2.5.1 addresses

the design choices considered for the UI components in general. Next, subsection 2.5.2

describes the changes made to the existing UI components in KOLAM toward this thesis.

Following this, subsection 2.5.3 provides an overview of the new UI components added to

KOLAM. Finally, subsection 2.5.4 provides a detailed description of the evolution of design

choices and implementations based on design methodologies and iterative user feedback

50

for a single new UI component: the KOLAM-Loop tool. The other new UI components in

KOLAM were conceived and evolved in a similar manner.

2.5.1 Design choices for UI components

The primary goal when designing each of the UI components is to fulfill all user require-

ments for accomplishing the specific task (eg. target tracking, ground truth generation and

segmentation relabeling). The secondary goals were as follows. Since visualization is the

primary purpose of KOLAM, each UI component was designed so as to maximize the

remaining visible area of the screen, by limiting the size of each component and arrang-

ing visible components at pre-determined areas around the display region. These design

choices help maximize the user focus on the image content being displayed on-screen and

minimize visual distractions. Additional goal, it is highly desirable that the KDD compo-

nents be implemented in a transparent, cross-platform manner in keeping with the cross-

platform nature of KOLAM’s implementation.

Users of the system may not all follow the exact same sequence of steps in order to

accomplish a given task: one group of users might follow the sequence of steps to the

letter without deviation, while another group might wish to repeat certain steps, or skip

certain steps altogether. This happens if such users might be more prone to error, or chang-

ing their minds about actions they have just performed, or might attempt to interact with

KOLAM with prior knowledge of a similar or unrelated tool they have used in the past.

KOLAM attempts to address the different types of user interaction as best as possible, via

a combination of methods. These include limiting options of interacting with the UI at

each step, unobtrusively guiding user choices for next actions that are beneficial for KO-

LAM’s continued stable operation by grabbing user attention towards preferred choices of

51

action instead of providing no feed-forward and making the user fall back on his / her prior

knowledge to determine what to do next.

2.5.2 Changes to existing UI components

The pre-existing UI components that underwent any and all types of modifications are

described below.

Layer Editor

The Layer Editor is KOLAM’s interface for managing the different visual properties of the

image and image sequence layers that have been loaded for visualization. KOLAM 3.0’s

Layer Editor is depicted in Figure 2.4. In addition to performing the Qt 3 to Qt 4 port of all

the features from KOLAM 2.0 [38], the author added the following features:

• Registration transformation; the ability to perform transformations upon individual

layers themselves, as opposed to the default mode of applying transformations to the

view. Translation and scaling transformations have been made available via numeri-

cal value input widgets to the user.

• Implementation of additional characteristics on the layer listing in the Layer Edi-

tor; specifically, the ability to move individual layers both forward and backward in

the layer stack, as well as per-layer widgets to interactively toggle individual layer

visibility.

• Alpha blending of multiple layers; distinct from the black transparency toggle which

has been ported from KOLAM 2.0.

52

• Improved presentation of active layer information, specifically handling Windows,

Linux and Mac OSX issues in a unified manner.

Figure 2.4: KOLAM’s Layer Editor.

Colormap Editor

KOLAM’s Color-map Editor (Figure 2.5) provides the interface to load, edit and save any

number of color lookup tables (LUTs), which may be applied to appropriate images. Be-

sides performing the Qt version porting from KOLAM 2.0, the author also performed re-

organization of the constituent widgets.

53

Figure 2.5: KOLAM’s Colormap Editor.

Cache Glyph

KOLAM’s Cache glyph is depicted in Figure 2.6. It provides up-to-date information about

the paging status of image tiles in all states of memory residency: tiles being read in,

tiles currently memory resident, tiles marked as old and scheduled for cleanup and so on.

The author was responsible for making the user interaction with the tool more natural,

correcting the navigation direction of panning, rotating and zooming, and providing the

position invariant heads-up numerical display of tile occupancy in memory. The numerical

display is an instance of KOLAM 3.0’s overlay drawing, further discussed in Section 2.5.3

(pg.64).

2.5.3 New UI Components

The components described below were added to KOLAM 3.0’s interface in order to ad-

dress the need for new features, arising first from WAMI needs, followed later by biomed-

ical imagery analysis needs. All components described here were wholly designed and

implemented by the author.

54

Figure 2.6: KOLAM’s Cache Glyph.

Kolam-Loop

KOLAM’s Loop tool provides the user with different types of access to KOLAM’s image

sequence playback capabilities. The tool is modeled in the form of the most popular video

playback interfaces, so that users are not burdened with learning delays even when using

the tool for the first time. In addition to the ubiquitous playback features, the tool allows

for interactive frame rate adjustment and provides access to multiple playback modes such

as forward and backward looping, rocking between the start and end of the image sequence

and blinking between two temporally adjacent images. The different parts of the tool are

depicted in Figure 2.7.

The various modes of playback may be modeled using clamped, sawtooth and triangle

55

Figure 2.7: KOLAM’s Loop Tool.

functions, as shown in Figure 2.8. These functions are used both for pre-loading data as

well as maintaining a temporally coherent file cache.

Kolam-Loop is the front-end to KOLAM 3.0’s image sequence animation system, which

extends the caching mechanism of KOLAM 2.0 to utilize a spatio-temporal dual-caching

strategy. This strategy utilizes caching at the temporal file level to organize temporal infor-

mation, and also caches at the spatial level. Operations such as file opening, header parsing

and tile lookup table generation are cached for fast tile data access, by maintaining a small

buffer of images that is constantly kept up-to-date as the user animates the image sequence.

A future image frame is loaded from disk whenever one frame of the sequence is removed

from the buffer. However, this loading only involves file opening and file header parsing in

order to gather the information necessary to build the required structures for tile access - no

tiles are actually loaded at this point. As the old file is paged out of the animation buffer,

its associated tiles are marked for recycling, which in turn marks those tiles in the cache

as available for reuse by future tile requests. KOLAM 3.0 predicts what frames will need

to be drawn at points in future time by monitoring the latencies to fulfill a view, thereby

loading only those frames which can be successfully retrieved from disk.

56

Figure 2.8: Sample ordering of frame sequences as a function of user interaction time
showing four different user selected playback modes.

KOLAM 3.0’s spatial caching strategy utilizes a spatial multiresolution distance-based

tile replacement mechanism [9] [41] [44] [42]. This scheme exploits the navigation behav-

ior of the typical user when examining an image: the user typically pans around and zooms

in and out of regions in the image with some spatial proximity. In other words, naviga-

tion involving large, disconnected jumps to different portions of the imagery only account

for the minority of typical user interaction; the user mainly pans and zooms in or out of

adjoining image regions. Rather than using age of residency in the cache (as done by the

classic OS LRU strategy), KOLAM uses distance from the current view as the yardstick to

determine whether or not a particular tile of the image must remain resident in cache. This

distance-based caching results in a clustering of resident tiles nearest to the current view.

57

KOLAM 3.0 allows for composition of multiple exploratory views of the data being

visualized; by combining the end results of several components such as the image sequence

animation system, multiple layer loading with per-layer visibility toggling, alpha blending

between layers and so on. One example of such a view for biomedical imagery is presented

in Figures 2.9 and 2.10. Another example of such a view for geospatial imagery is given in

Figure 2.11.

Figure 2.9: Composite views in KOLAM 3.0. Three image sequences have been loaded:
A grayscale RBC sequence, and corresponding colored mask and outline sequences. Here,
the mask sequence has been toggled OFF, allowing for visual animation of the cell outlines
overlaid on the moving RBCs.

Kolam-Tracker

KOLAM’s Tracker tool, seen in Figure 2.12, is the center of KOLAM’s capabilities with

regards to object tracking that provides facilities for tracker instantiation, ground truth gen-

eration, trajectory selection and editing. Taken together with all trajectory loading, saving

and appearance manipulation menu items and the drag-and-drop trajectory file loading ca-

pability, it defines the sum total of all tracking and trajectory handling capabilities within

KOLAM 3.0. The rich feature set in Kolam-Tracker was conceived and implemented in

58

Figure 2.10: Composite views in KOLAM 3.0. Refer Figure 2.9 for details. Here, the
cell outline sequence has been toggled OFF. The trajectory drawing seen in both figures is
further explored in Section 4.2.

several phases, both in order to address user needs as they arose, and as the logical contin-

uation/extension of features already implemented. This development process is described

here. The initial set of requirements that Kolam-Tracker addressed included:

• Interfacing with the automatic tracker algorithms LOFT [45] and CSURF [46]: the

user had to be able to supply initializations to the trackers in the form of one (CSURF)

or two (LOFT) bounding boxes. Kolam-Tracker serves as the front-end of this pro-

cess: it triggers KOLAM’s overlay drawing system to accept the user’s bounding box

annotations on the imagery in the display area, signals the recycling of the overlay

drawing object when input is complete, handles the writing out of bounding box ex-

tents along with information such as image data path and trajectory output path to

a parameter file for the trackers to use, and initiates the tracker programs. Finally,

Kolam-Tracker provides the interface to terminate executing tracker instance(s) and

feedback from the underlying operating system regarding whether tracker instance(s)

terminating without user intervention do so normally or otherwise.

• Generation of ground-truth in the form of centroids, lines and bounding boxes, for

59

Figure 2.11: Composite views in KOLAM 3.0. The sequence being visualized is the Blue
Marble Next Generation (BMNG) sequence of 1 image per month, for the year 2004. Each
of the 12 images has the following dimensions and raw size: 86400 x 43200 px, 11.2 GB.
A single cloud cover image has been applied as a static layer with alpha blending while the
underlying sequence is animated.

multiple objects over varying numbers of images within the loaded image sequence.

The multiple points or bounding boxes that were created in visual association with

single objects over several time steps were encapsulated as trajectories for the indi-

vidual objects.

• Setting of per-trajectory properties such as color and visibility, and global trajectory

properties such as thickness and trajectory set visibility. Other important properties

configurable by the user include whether the view of the display area should be cen-

tered on the current vertex/centroid of the current trajectory as the image sequence is

60

being played, whether the display of locally stabilized trajectories (when available)

should be toggled on or not, and whether or not direct, temporally non-sequential

navigation to a specific point on the current trajectory should be enabled or not.

• Providing feedback to the user regarding object selection for tracker input, object

creation for new trajectories, starting of tracker execution and type of tracker termi-

nation (normal, abort mid-execution or failed-to-start states), and file locations for

trajectories created. KOLAM 3.0 performed these functions via a text window cur-

rently located at the bottom of the ‘WAMI’ page of Kolam-Tracker.

Given Kolam-Tracker in its current form, this set of initially developed features comprise

the contents of the ‘WAMI’ and ‘Track Viz’ pages respectively.

Upon completion of KOLAM’s UI facilities for enabling automatic and manual track-

ing, the next goal was to develop additional features to support tightly-coupled assisted

tracking of objects, which is the ultimately desired object tracking type and UI to be de-

veloped within KOLAM. The Kolam-Tracker interface needs to support the tight, efficient

coupling of automatic tracker initialization with manual intervention and correction of tra-

jectories as necessary. The first step in this process was to develop an intuitive interface for

the editing of trajectories. KOLAM 3.0’s current trajectory editing system includes several

unary and binary trajectory operations, such as ‘ADD’, ‘DELETE’, ‘MOVE’ and ‘JOIN’.

The trajectory editing operations are accessible within the ‘Editing’ page of Kolam-Tracker,

and are described in detail in Chapter 4.

The final set of additions to Kolam-Tracker were implemented in response to perform

single and multi-stage object tracking in biomedical imagery. Examples of such trackers are

the MSC Tracker, which is a multi-stage tracking system used for muscle satellite imagery,

and the wound tracker for wound imagery. The set of supporting interfaces for these types

61

of trackers, while similar in some aspects to the features available under WAMI tracking,

were grouped separately under Kolam-Tracker’s ‘BioMed’ page. This was done so that

specific features required by biomedical researchers could be provided independent of the

WAMI functionality, and to avoid confusion and widget mis-use if all capabilities were to

be included on a single page.

Figure 2.12: KOLAM’s Tracker Tool.

Kolam-Preferences

Several of KOLAM 3.0’s tools (Tracker, Screen Capture etc.) allow for their specific prop-

erties to be modified and maintained locally. Furthermore, for preserving user customized

62

values in between different execution sessions of KOLAM, all desired values are written

out to OS-specific locations intended for maintaining persistent program settings (the Reg-

istry on Windows OSes, .ini files on Unix/Linux systems, and Library property list (.plist)

files on Mac OS systems).

However, despite each tool managing its own attributes in these two ways, certain prop-

erties either do not precisely fall into the attribute groups of these individual tools, or are

applicable to the functioning of multiple tools. These types of settings thus need to be

maintained one level above individual tool attributes. KOLAM 3.0 handles such proper-

ties by providing global-level access to them within the Kolam-Preferences tool. Depicted

in Figure 2.13, this tool currently manages the following categories of variables, with the

ability to support as many more categories as desired:

• Performance Tuning: This category currently includes various display settings (qual-

ity, update frequency, and pan-zoom properties), network synchronization frequency

settings for the multi-monitor display aspect of KOLAM, and general system set-

tings.

• Tracking Executable: Currently allows for configuration of multiple system paths

associated with trackers developed within certain environments, such as MATLAB

or OCTAVE.

• Tracking File Paths: Allows for setting of paths for tracker input parameters, trajec-

tory output location for the trackers, location for trajectory archival, and selecting the

trajectory database type.

63

Figure 2.13: KOLAM’s tool for user customization of several of KOLAM’s properties at
the global level.

Overlay Planes for Layer Annotation

Several of KOLAM 3.0’s tools from this point utilize the overlay drawing system that has

been implemented in KOLAM 3.0 for versatile layer annotation. The different features

of KOLAM 3.0 that make it a highly useful tool for multiple domain visualization and

analysis - trajectory visualization, annotation and editing, region-of-interest (ROI) selection

for position determination and screen capturing, histopathology segmentation relabeling

and so forth - which are discussed in the following chapters also rely on the overlay drawing

system as a fundamental component. Therefore, KOLAM 3.0’s overlay drawing system is

now described in detail, so as to provide proper context for all the tool and functionality

64

descriptions that follow. A visual depiction of the overlays among the other elements of

KOLAM 3.0’s display system is given in Figure 2.14.

Figure 2.14: Overlays in relation to single image and image sequence layers, with or with-
out embedded images, in KOLAM 3.0.

KOLAM 3.0’s overlay system is implemented as a set of customizable drawing planes,

positioned ‘on top’ of KOLAM 3.0’s layer drawing system. Overlay drawing is indepen-

dent of the type of the underlying data being displayed, meaning that they can be used

with both single image and image sequence layers without needing modifications specific

to either. Event management of user interactions appropriately separates the flow of input

requests into the Annotation Overlay and Data Layer event streams. This management is

customizable per overlay: for example, KOLAM’s manual ground truth handling overlay

responds to user events differently from the Region-Of-Interest (ROI) selection overlay.

Drawing on the overlays is a combination of Qt’s QPainter class functionality and

OpenGL commands. The QPainter instance enables vector drawing of primitives such as

points, lines and polygons, font support for text rendering, support for image rendering via

65

pixmaps and several other features. Qt allows OpenGL commands to be interleaved with

QPainter calls, thereby allowing for efficient handling and passing of geometry to the GPU

for rendering. KOLAM’s overlays can be created as needed and destroyed (recycled) when

no longer necessary; furthermore, their visibility may be toggled ‘ON’ or ‘OFF’ similar

to layers. This directly translates to KOLAM functionality such as “Turn all trajectories

ON or OFF” and so on. With this description of KOLAM 3.0’s overlay system, we now

continue with the description of the remaining tools newly created within KOLAM 3.0,

several of which also use the overlay functionality.

Screen Capturing

Kolam-Capture, KOLAM 3.0’s screen capturing tool, facilitates capture of whole window

content or a user-definable sub-region of the whole display window. Depicted in Figure

2.15, it is capable of extracting captures from single or multiple images. The sub-region

for capturing may currently be specified via KOLAM’s ROI facility (Figure 2.16). The tool

also permits dynamic setting of capture save location, along with capture file name and file

type specification.

Finally, Kolam-Capture is capable of generating movie files from image sequences.

This is made possible by interfacing with the industry standard FFMpeg library for video

playback and video file format conversion. The majority of video files generated from

KOLAM-playable image sequences have the requirement of being small in size while pre-

serving the highest possible quality. Kolam-Capture does this by encoding videos in the

mp4, H.264 format, with highest quality setting, as default. The provided interfaces allow

the user to interact with FFMpeg in a limited fashion, through the setting of the output

frame rate and setting of the movie save path. While Kolam-Capture allows for movie gen-

66

eration to be a ‘post-processing’ step, to be executed once image capturing is completed;

the author posits that the true power of the movie generation feature lies in its ability to

encode movies from pre-existing image sequences: in other words, creation of movie files

without loading the image sequence in KOLAM is possible. The pre-set high quality factor

with high video compression will potentially make this part of KOLAM indispensable to

users with the need to generate videos from image sequences on a frequent basis.

Figure 2.15: KOLAM’s Screen Capture and Movie Creator Tool.

67

ROI Selection

Figure 2.16: KOLAM’s Region-Of-Interest Selection feature. Note the coordinates of
both the top left and bottom right corners of the selected region, as well the ROI width
and height in the bottom right. These values interactively update as the user click-drags
and changes the selected ROI. Additional related functionality is provided via the context-
sensitive menu, which is also displayed here.

In serving its role as the result visualization and examination platform for the iterative

correction and refinement process of tracker development, KOLAM needed to provide one

simple and crucial feature to users: immediate access to the image/pixel dimensions of

objects of interest such as vehicles or cells. One example of how such information was

used was in determining appropriate sizes for sliding windows for the tracker algorithms.

Obtaining the object pixel dimensions was also vital when users needed to re-verify that

their algorithms had indeed acted upon the desired region of interest. KOLAM 3.0’s ROI

selection facility was developed in response to such needs. Over time, the ROI selection

feature was also interconnected with the main display and screen capturing modules to

allow for the fitting of the user-selected region to the display and allowing the user to

68

graphically determine sub-regions of the display for single or multiple image captures.

Figure 2.16 clearly depicts all available ROI Selection features: the bounding box enclosing

the region of interest may be redrawn any number of times by the user without exiting the

ROI selection mode, and includes useful information such as image coordinates of the top

left and bottom right corners of the ROI, and ROI width and height. The context menu

attached to the ROI provides one-click access to view zoom-in to the ROI, screen capture

coordinate specification, single and multiple ROI output to file, and options to alter the

coloring of each ROI element.

Pan and Zoom

Figure 2.17: KOLAM’s Pan and Zoom Tool.

KOLAM 3.0’s Pan-and-Zoom tool facilitates non-mouse based roam and zoom naviga-

tion of the display area. Additionally, the user may configure the step size and granularity

of the roam and zoom operations on-the-fly via Kolam-Preferences (Figure 2.13). Finally,

the tool allows the user to navigate to the different levels of the image pyramid, when multi-

resolution imagery is being displayed. The Pan-and-Zoom tool is also KOLAM 3.0’s first

tool with a scalable interface: when re-sized, all visual contents of the tool scale in order

to maintain the default view (Figure 2.17) as closely as possible. Achieving this level of

69

widget content ‘elasticity’ was made possible by customizing the components and layouts

of Pan-and-Zoom for maximum spatial flexibility, as well as overcoming an undocumented

loop-hole within the Qt API itself.

File Handling for Segmentation Relabeling

This tool (see Figure 2.18) is KOLAM’s interface for all file handling operations with

regards to visualization and interactive relabeling of single and multi-level segmentation

results. It also provides the interface for handling sequences of histopathology images as

image collections: results of label editing are saved in a single location and are accessible

via an extensible project file mechanism. Further details of the tool are presented along-

side the description of interactive segmentation relabeling for histopathology imagery in

Chapter 5.

Figure 2.18: KOLAM’s Segmentation Relabeling File and Project handling interface.

70

2.5.4 Evolution of Design

Here, the evolution of the KOLAM-Loop tool (from its initial conception to its final pro-

duction code form) is examined in detail. This is a representative example: all other new

UI components in KOLAM were designed and implemented in a similar manner; and pre-

existing UI components were enhanced and/or modified using the same set of steps. The

process is sequentially illustrated from Figure 2.19 to Figure 2.31. The first step is the for-

mulation of the Problem Statement, which states the need and the problems which must

be solved, in general terms. It has been broken down as follows:

• Given that the image dimensions are much greater than the screen dimensions (espe-

cially for big data imagery), how can the user visualize, interact and analyze the data

of interest in a useful way using KOLAM?

• Given that the temporal aspect of the data is represented as a sequence of big data

imagery, how can such data be temporally navigated in a useful way?

• If the user has points of interest to focus on, how can this be productively reconciled

with the temporal navigation of the data?

• If the user wants to follow point(s) of interest temporally, how does this affect the

design of the interface to be provided to the user?

• Would the user like to save Region(s) of Interest (ROIs) for later analysis?

• Would the user like to visualize and/or interact with multiple temporal sequences

simultaneously?

With the Problem Statement formally defined, the next step involves identifying the

Challenges in solving these problems. The challenges identified are now listed below:

71

• Is it possible to translate prior user experience with temporal image navigation soft-

ware (movie players) to provide an interface with familiar features and no additional

learning curve?

• Unlike movies, which are typically sequences containing a relatively smaller num-

ber of important frames amongst a larger number of relatively unimportant frames,

spatio-temporal data is a sequence of distinct frames: each of which is potentially

important data. Therefore, should additional (or different) interaction options be

provided for navigating and examining such data? If so, what are these?

• What are the interaction rules for data being animated versus data that is not being

animated?

• Given that the temporal dimension of data is represented as sequence of imagery,

how can such data be navigated temporally in a useful way?

• How can the interaction smoothness expectations of users be accommodated given

limited system hardware resources?

• Given temporal sequences of longer lengths, will users having time constraints expect

different means of navigating the data at rapid rates? If so, what are these?

Given both the problems and the challenges involved in solving them, we first system-

atically outlined a set of HCI principles for crafting an initial solution (set) to the same,

following which iterative user-feedback-driven refinement was guided by appropriate UI

Design Methods. Shneiderman et al. [5] provide a standard template for the former. The

different aspects of this template are as follows:

72

• Navigation of the Interface: In order to facilitate the most productive navigation

of the UI to accomplish the desired tasks, all task sequences must be standardized,

unique and descriptive headings must be used where applicable, and appropriate wid-

gets must be used whenever binary choices are involved.

• Facilitating Data Entry: Ensuring consistent and efficient data entry requires consis-

tency of data entry transactions, that input actions needed to be made by the user

be as close to the minimum as possible, minimizing the burden of interface-related

knowledge which the user is required to memorize, compatibility with the display of

the data, and flexibility of user control with regards to data entry.

• Display Organization: Factors playing a role in the best possible organization of the

display include: consistency of data display, making assimilation of information as

efficient as possible for the user, minimizing the number of display features and char-

acteristics that the user needs to remember in order to operate the display, keeping

the data display compatible with data entry, and allowing for flexible user control of

the data display.

• Determine Users’ Skill Levels: Based on skill levels, there can be 3 types of users:

novice / first time users, knowledgeable intermittent users, and expert frequent users.

• Golden Rules for Interface Design: These are generalized rules that are applicable

to all types of UI design and implementation, and are: Maintain consistency, Allow

for universal usability, Provide informative feedback, design dialogs to yield closure,

prevent errors, support internal locus of control, and reduce short-term memory load

on the users.

73

While seeking suitable candidates for the aforementioned Design Methods, an exten-

sive search was performed in the UI Design Method literature, following which the most

suitable candidates for the proposed iterative refinement to KOLAM and this thesis were

identified as Scenario-based Design [47] and Participatory Design [48] [49]. These are

further elaborated on below.

• Scenario-based Design: This design method first requires creating a narrative that

explores future use of a product from the user’s point of view, allowing the designer

to reason about its place in the real world application. The focus of the design is on

what technology enables rather on the technology itself. The design is written based

on the design team’s understanding of the target users.

• Participatory Design: The hallmark of this design method is the active user en-

gagement throughout the research and design process. The method includes flexible

modeling and creative toolkit and design workshops. The design process is inspired

and guided by the participants’ creative insights. Paired with design expertise, this

method supports the creative authority of designers to translate collaborations with

the users into design criteria, services and artifacts.

Figure 2.19: Evolution of the KOLAM-Loop User Interface Tool (I). Scenario-based design
was used to obtain the initial UI, with full-sized buttons, plain icons and standard functions.

74

Figure 2.20: Evolution of the KOLAM-Loop User Interface Tool (II). User feedback high-
lighted two problems: the UI was too large and obstructed KOLAM’s main display area
significantly. Also, the large buttons and the non-colored button icons were inhibiting user
retention of individual button functionality for future use. Both defects identified per [5].

Figure 2.21: Evolution of the KOLAM-Loop User Interface Tool (III). Participatory Design
and Prior Art research [5] were leveraged to discern avenues for improvement and change.

75

Figure 2.22: Evolution of the KOLAM-Loop User Interface Tool (IV). In response to Prior
Art research and P.D. feedback, the component layout shown was chosen. Also, smaller
buttons and colored icons for the buttons were decided upon. The choice of colored button
icons was per guidelines in [5].

Figure 2.23: Evolution of the KOLAM-Loop User Interface Tool (V). Scenario-based De-
sign reveals the user need to dynamically alter the playback rate of the sequence. Partici-
patory Design reveals the need to access individual sequence details in the event multiple
sequences are loaded for playback.

76

Figure 2.24: Evolution of the KOLAM-Loop User Interface Tool (VI). In response to the
S.D. need of users to alter playback rate, and the P.D. need of users to access individual
sequence details if multiple sequences are loaded, the frame rate control and sequence name
dropdown widgets were added to KOLAM-Loop.

Figure 2.25: Evolution of the KOLAM-Loop User Interface Tool (VII). Participatory De-
sign brings to light 2 issues: Given sequences of greater length, how can the users inspect
them quicker? Next, how can info about length of the sequence be easily accessed?

77

Figure 2.26: Evolution of the KOLAM-Loop User Interface Tool (VIII). In response to
the P.D. issues, the frame stride control and frame range indicator widgets were added to
KOLAM-Loop.

Figure 2.28: Evolution of the KOLAM-Loop User Interface Tool (X). In response to S.D.
and P.D. feedback, the alternate play modes ‘Bkwd’, ‘Loop’, ‘Rock’ and ‘Blink’ were
added and were compactly grouped together in a drop-down within KOLAM-Loop.

78

Figure 2.27: Evolution of the KOLAM-Loop User Interface Tool (IX). Feedback from both
Scenario and Participatory Design methods highlight the need for alternate modes of data
playback.

Figure 2.29: Evolution of the KOLAM-Loop User Interface Tool (XI). All tool features are
now available. Participatory Design brings in the final requirement of making KOLAM-
Loop more visually compact.

79

Figure 2.30: Evolution of the KOLAM-Loop User Interface Tool (XII). In response to the
P.D. requirement, the stride and frame range features were identified as less used. These
are thus candidates for hiding from default view, thereby allowing for visual compactness.

Figure 2.31: Evolution of the KOLAM-Loop User Interface Tool (XIII). Once the less used
stride and frame range widgets are hidden from default view, we obtain the final form of
KOLAM-Loop.

80

The Take-Away Lessons from KOLAM’s HCI component design process are now enu-

merated below:

• Design and Development Time: The total development time for the KOLAM-Loop

tool was approximately 6 months. Multiple iterations were involved, and each suc-

cessive iteration was of a longer duration than the previous one, as the tool matured

and users became more used to the tool features.

• Aspects of User Behavior: At every step, it is crucial to reconcile user expectations

with the actual system requirements. An important point to note is that at times,

users ‘do not know what they want’. This may be elaborated upon as follows: Users

may not give useful information during the requirements gathering process, they may

oppose certain features based on their negative past experiences (with KOLAM or

even with other tools) or other factors, and and may make do with sub-optimal feature

set without raising flags about factors potentially reducing their work efficiency.

2.6 Porting, Version Control and Multi-platform Support

This portion of the chapter describes the tasks needed to be performed in order to ‘morph’

KOLAM 2.0 as it was, into the starting point for KOLAM 3.0. They are as follows, with de-

scriptions following thereafter: (a) Porting of KOLAM from Qt 3 to Qt 4, moving through

several versions of Qt 4, and finally porting KOLAM from Qt 4 to Qt 5, (b) Creation

of a version-controlled source-code repository for KOLAM, which has been continuously

updated to the current day, and (c) Support for KOLAM on multiple OS platforms - specif-

ically, the Windows, Linux and Mac OSX systems. It is important to note that these were

not one-time tasks: they either needed to be continuously performed throughout KOLAM

81

3.0’s life cycle, or at intervals coinciding with the release of a stable and more enhanced

version of the Qt API.

In moving from KOLAM 2.0 to KOLAM 3.0, the first task completed was the migration

of KOLAM from Qt version 3 (Qt 3) to Qt 4. This version change of the Qt GUI develop-

ment API was extremely significant: the majority of all classes were affected. This change

was felt in the KOLAM 2.0 codebase as well, as member functions of several derived or

re-implemented classes were completely deprecated, in some cases completely removed.

Mapping of the old functionality to the new was provided in a number of cases, but not

all. Challenges in the porting process were ameliorated somewhat by the tool ‘qt3to4’,

provided by the creators of Qt and which semi-automated some of the porting. The tool did

not handle those classes which were completely deprecated and replaced: these needed to

manually addressed over a lengthy period of time. In the time following the port and after

several features had been added to KOLAM 3.0, porting was again performed in moving

between minor Qt versions; specifically Qt 4.4.3, Qt 4.6.3 and Qt 4.7.4. While the final mi-

nor version of Qt 4 was Qt 4.8, stability issues pertaining to the drawing classes prevented

its adoption until Qt 5 was released. In fact, the most stable version (for all three OSes

mentioned above) of KOLAM 3.0 is built using Qt 4.7.4. As with the Qt 4.8 releases, the

early Qt 5 releases were not satisfyingly stable either, which delayed the porting of KO-

LAM 3.0 to Qt 5. The Qt minor version release Qt 5.3.2 was to the first relatively stable

version of Qt 5; which motivated KOLAM 3.0 being ported to Qt 5.3.2 for the multiple

OSes. KOLAM was then ported to Qt 5.6.1. The final port of KOLAM prior to the author’s

Dissertation Defense was to Qt 5.7.0.

The KOLAM 3.0 code base was set up as a repository using the Subversion (SVN)

version control system. Updated at regular intervals, the source trunk has gone through

82

several hundred code commits to date. Taking advantage of Qt being a cross-platform UI

development API, the author has maintained KOLAM 3.0 for all three major OSes, with

varying degrees of success. Development tools and environments have been consistent

under the Windows and Linux environments, with a few issues needing to be addressed.

Porting for Mac OSX, however, has been a challenge from day 1. Factors contributing to

this include the closed source development model of Apple, with non-native graphical APIs

being denied direct access to system resources unlike the Cocoa and Carbon APIs; sporadic

documentation and ad-hoc solutions for Mac OSX specific issues. Problems encountered

include font resizing errors, widget layout overflow/underflow, inconsistent focus stealing

by child windows, inconsistencies with inter-session saving of settings and inconsistencies

with the trajectory drawing, to name the most prominent.

2.7 Scope of Research on KOLAM

The remainder of this thesis details the problems and challenges tackled; as well as the

author’s solutions and unique contributions to these, in KOLAM. Three problems in three

different application domains were tackled and are presented as case studies.

Chapter 3 presents the 1st Case Study; involving the problems and challenges faced in

automated, manual and assisted object tracking in wide-area motion imagery (WAMI), as

well as the solutions. Chapter 4 presents the 2nd Case Study, and details the trajectory vi-

sualization and editing features that were implemented in KOLAM. Chapter 5 presents the

3nd Case Study; involving the problems and challenges pertaining to guiding the output of

epithelia-stroma segmentation and classification algorithms when applied to histopathol-

ogy whole-slide imagery (WSI), when examining the role played by stroma in determining

83

short- and long-term breast cancer patient prognoses.

Chapter 6 provides details about KOLAM extensions for tiled wall displays. This cov-

ers aspects common to all three case studies that had to be uniquely extended and/or modi-

fied to fit this new display paradigm. In order for a visual analytics system (whose front end

is entirely UI based) to be considered reliable enough to use by a wider audience, it must be

comprehensively evaluated. Chapter 7 does exactly this, and involves the discussion about

quantitative and qualitative evaluation (ie Usability Testing) of KOLAM. Finally, Chapter 8

outlines directions for possible future work, derived from the directions which were unex-

plored (or partially explored) in this thesis; and directions for the implementation of these

ideas within the KOLAM framework.

84

Chapter 3

CASE STUDY 1: Object Tracking

3.1 Motivation

As mentioned in Chapters 1 and 2, performing object tracking on different WAMI datasets

was the primary driving force for the definition of the problem statement and subsequently

identifying the associated challenges by the author. In devising the solutions to these, the

author conceived, designed and implemented all the object tracking related functionality in

KOLAM 3.0. In its present form, KOLAM 3.0 allows for the exploratory analysis of WAMI

data sets, thereby providing dense spatio-temporal coverage of wide field-of-view urban

regions. This makes the system useful for applications requiring accurate multiple target

tracking, scalable to very large numbers of objects. Besides addressing our immediate

research needs, KOLAM 3.0’s object tracking capabilities were motivated by needs from

both the civilian and defense sectors. On the civilian side, the need by law enforcement

agencies for software capable of forensic traffic analysis and video summarization features,

85

the need of city planners for urban planning based on analysis of traffic patterns and existing

buildings and emergency response planning needs continue to motivate the maintenance

and addition of features to KOLAM 3.0’s object tracking feature set. In a similar vein,

the tasks of improving situational awareness, persistent target observation, reconnaissance,

force protection and rapid targeting and response in the defense context also continue to

motivate object tracking feature development in KOLAM 3.0.

3.2 Introduction

Tracking in wide-area motion imagery is a challenging research domain that is receiving a

lot of current interest. The visualization of hundreds to thousands of tracks resulting from

automated and manual tracking of objects offers new challenges in visualization and vi-

sual analytics. Even with standard video sequences, meaningful comparisons of tracking

algorithm behavior with quantitative performance metrics were difficult to perform due to

the paucity of standard video datasets with associated manual labeled groundtruth. How-

ever, recent work has led to the creation of extensive, open repositories of non-wide area

video datasets, tools and ground-truth. Prominent examples include open source tools such

as ViPER-GT [50], which allow for concept selection, ground truth generation and anno-

tation of video; the ViSOR project [51], which comprises a dynamic, open repository of

annotated surveillance video sequences accessible via a web interface; and the Scoring,

Truthing And Registration Toolkit (START), for semi-automated ground-truth generation

using a keyframe approach [52]. Several workshops, such as the PETS series and the

VSSN series, and national-level projects, such as I-LIDS [53] and ETISEO [54], utilize

the ViPER-XML annotation format in their video databases. Another important example is

86

the ground-truth motion database developed along with the layer segmentation and motion

annotation tools at MIT CSAIL [55].

Given the established importance of standard video annotation ground-truth databases

and performance metrics, increasing attention is currently being focused in the domain of

wide-area motion imagery (WAMI). Wide-area surveillance first emerged as a new area

of interest around 10 years ago and continues to be a highly active research area, due to

its large scale continuous coverage of urban regions for a variety of applications [10, 56].

Working with WAMI data presents a unique set of challenges, not common to standard

video surveillance data, including interactive visualization of very large time-sequence im-

agery, efficient algorithms for mosaicing, georegistration, stabilization and tracking [10]

[57]. The difficulties of tracking vehicles in low frame rate aerial wide-area motion imagery

are many, including large object displacements, parallax and occlusions from tall structures,

low contrast, moving seams across cameras, significant object appearance changes with

viewing direction that are described in recent publications including [10, 57–61]. Unlike

regular video surveillance databases, only few WAMI datasets are available in the public

domain. One example is the Columbus Large Image Format (CLIF) dataset, collected in a

flyover of the Ohio State University Campus in October 2007 [62]. Visualizing the statis-

tical distribution of a dense set of automatically estimated tracks in a limited geographical

region by overlaying a large number of trajectories is described in [60, 61]. The WAMI

database utilized here for visualization and ground-truth generation purposes, is the Per-

sistent Surveillance Systems (PSS) database of event management, law enforcement and

emergency response video collections.

WAMI datasets were collected using an eight camera array on an airborne platform

producing 256 megapixel mosaiced georegistered images. The example described here in-

87

volves the WAMI PSS data consisting of several thousand frames collected over Philadel-

phia (March 13, 2008). Some of the features of the Philadelphia WAMI dataset are listed

in Table 3.1.

Frame Rate: 1 frame per second (fps)
Altitude: 3,500 – 12,500 ft.
Coverage: 4 square miles, 80°x 60°fov
GSD: 25 – 50 cm
Pixel Type: Grayscale
Bandwidth: 1 TB/hr; 16K x 16K pixels / frame
File Format: Tiled JPEG pyramids

Table 3.1: WAMI North Philadelphia, Pennsylvania dataset characteristics (Datasets cour-
tesy of PSS).

3.3 KOLAM Interface for Visualization and Tracking

KOLAM allows users to interact with and manipulate a time sequence of very large imagery

in pyramid format (or same-sized image files in TIFF, PNG, JPEG, etc.) in an exploratory

fashion. In addition to image visual analytics, KOLAM also supports the interactive visu-

alization of extremely large, spatially and spectrally varying geospatial imagery rendered

as a 3D globe. KOLAM uses the Qt application programming interface and UI framework

to provide interactive tracking and management of trajectories for WAMI datasets, as well

as the ability to interface with and invoke external tracking algorithms.

3.3.1 Visualization of Multiple Layers of Analytic Information

KOLAM can simultaneously display and combine multiple layers of raster or vector in-

formation interactively to produce composite analytic visualizations using a layer selection

88

interface. A layer is a high level visual representation of a dataset that encapsulates both

the image information and relevant metadata [38]. It is possible to simultaneously visu-

alize multiple layers, and each layer may have one each of several types of viewers and

navigators associated with it. The user can interactively move a given layer up or down

the layer-stack currently being visualized to control visibility and blending of layers. Since

the portion of a given layer that is occluded depends on its position on the overall stack of

layers, this feature allows for rapid control of the visibility of a large number of layers. Ad-

ditionally, alpha blending enables exploratory visualization by combining different layers.

The user can interactively switch between applying a global navigation transformation to

affect all visible layers of information or apply a local transformation to align each image

in the layer which is a useful property for interactive mosaicing and georegistration.

3.3.2 Visualizing Motion Imagery

KOLAM provides a highly compact user interface via the KOLAM-Loop tool with a read-

ily usable set of functionality that comprehensively addresses user needs when playing

back WAMI sequences (as well as other sequences) of image data. KOLAM supports play-

back of a given sequence, in any direction, with or without looping, and with on-the-fly

frame rate adjustment. The user can choose to step through the sequence one frame at a

time (with a skip/stride factor), or jump to an arbitrary frame. The user can also construct

collections of related time-varying data and switch between them. This enables compar-

ison and collation of related motion imagery sequences that may be spread over multiple

datasets.

89

3.3.3 Tracking and Trajectory Visualization Subsystems

The tracking subsystem in KOLAM was specifically designed and implemented to accom-

modate the visual analytic needs of tracking objects of interest in both WAMI datasets

as well as more general video sequences. The KOLAM-Tracker tool accomplishes this

by providing a comprehensive environment for manual ground-truth (target) annotation,

rapid, simultaneous tracking of multiple objects, editing of trajectories, and assisted track-

ing. Sample manual and automatic tracking results for two different data sets are shown

in Figure 3.1. The ‘master’ Target Tracking algorithm (Algorithm 5) involves the invoca-

tion of either the automatic tracking algorithm, the visual tracking algorithm or the assisted

tracking algorithm; depending on the needs of the user.

3.4 Tracking types in KOLAM 3.0

The Kolam-Tracker tool (Figure 2.12) supports three modes of operation: fully automatic

tracking, manual tracking (or ground-truth generation) and a mixed mode of assisted track-

ing.

3.4.1 Track file formats supported by KOLAM

KOLAM provides support for two track file formats - an in-house designed flat file for-

mat, and the KW-18 file format, developed by Kitware Inc and adopted at CIVA lab for

collaborative data sharing efforts. The specifications for both formats are presented below.

Users desiring to have their programs output track files in either format for display in KO-

LAM are advised to strictly adhere to the format details presented in the illustrations

90

Algorithm 5: Target Tracking Algorithm
Input : Image sequence I , task to track object(s) purely via automated methods,

manual intervention, or a combination of both; based on pre-defined
spatio-temporal parameters, tracker program(s)

Output: Tracker/User/Combined-generated trajectories; loaded in memory (data
structure) and visualized by KOLAM

1 TrajectoryPoint(x, y, ...);
2 Trajectory(ptList list¡TrajectoryPoint ¿, color, thickness);
3 TrajectoryDS(list¡Trajectory ¿, ...);

4 while User still needs to track objects in the data do
5 if Object tracked purely via Tracking Algorithms then
6 Perform Automatic Tracking();
7 end
8 if Object tracked purely via Manual Intervention then
9 Perform Visual Tracking();

10 end
11 if Object is tracked via Combination of Both then
12 Human In The Loop Tracking();
13 end
14 if Object Trajectory needs to be Modified then
15 Perform Track Editing();
16 end
17 if No more objects to be tracked then
18 break;
19 end
20 end

21 Return to KOLAM’s main UI Loop;

91

(a) (b)

(c) (d)

Figure 3.1: Visualization of multiple tracked objects and their trajectories in KOLAM using
different vector primitives. The images show: (a) Tracked vehicle trajectories without
local registration (i.e. unstabilized), (b) Vehicle trajectories that are locally registered (i.e.
stabilized), (c) Unstabilized and stabilized pairs of vehicle trajectories, and (d) Ground-
truth polygons marked for tracked objects. The first three images display results for a PSS
WAMI dataset collected over Charlotte, NC and the last shows ground-truth for a non-
WAMI dataset (Army Research Lab FPSS [63]).

and descriptions.

Flat file format

The flat file format is an unstructured (vis-a-vis structured formats like XML) file for-

mat (file extension - .txt) that was designed specifically to handle the unique challenges

presented by certain wide-area datasets (extreme parallax, poor registration, wrong eleva-

tion model, inferior IMU etc.). For every trajectory, each time step is represented by a

92

single file, that contains the centroids on the trajectory upto that particular time step. In

other words: if a trajectory has a length of 100 time steps, the flat file system associates

100 files with this single trajectory. Unfortunately, such a data management system is the

only means of addressing a scenario in which all centroids on the trajectory are different

for every time step (the non-registered nature of the data necessitates that the trajectories

themselves be registered). The structure of KOLAM’s flat files is illustrated in Figure 3.2.

Figure 3.2: Screen shot of a typical KOLAM flat file, for one time step on a trajectory.

All lines in a flat file that lie with a ’Begin Blob’ - ’End Blob’ block correspond to

93

information pertinent to the Object-ID indicated by the ObjNo field, for this particular time

step. Thus, the flat file illustrated in Figure 3.2 contains data for two trajectories (since there

are 2 Blobs) corresponding to Object-ID ’17’, for its 2nd time step (indicated by the number

of (x,y) pairs under the Centroid field). While all fields after the ’BoundingBox’ field

must be written out while creating the flat track file(s), these fields merely have a nominal

presence in the file. They are not currently used by KOLAM for drawing trajectories.

KW-18 file format

The KW-18 file format is a semi-structured file format (file extension - .kw18). Its data

organization scheme allows multiple trajectories representing a complete tracking database

to be stored in a single file. A KW-18 file is partly illustrated in Figure 3.3.

Figure 3.3: Screen shot of a typical KW-18 file, for ALL trajectories.

Each trajectory in a KW-18 file is represented by a contiguous group of lines arranged

in increasing order of time. Such trajectories are then arranged in increasing order of

94

Track-ID. Each line represents a single time step on the trajectory, and stores multiple

pieces of information about that single time step in a space-separated fashion. All 20 data

columns (see Figure 3.3) are mandatory.

Examining Figure 3.3, additional details become apparent. First, fields (4,5) and (8,9)

are identical, and field (18) is identical to field (3). Second, ALL fields for which data are

unavailable are populated with the placeholder ’-1’.

3.4.2 Automatic Tracking

Support for visualization and analysis of the results of automated tracker execution in KO-

LAM was added to support the algorithm development effort for automated tracking of ob-

jects of interest in low frame rate wide area motion imagery. The automatic tracking mode

refers to the tracking of objects solely through the invocation of external tracker software

such as CSURF, LOFT or any other program that has been configured to accept KOLAM

3.0’s input parameter format. The loose coupling that was created between KOLAM 3.0

and external tracker software such as CSURF and LOFT, and the simple means of input

generation and tracker invocation from within KOLAM 3.0, together form a system that is

among the first of its kind: the survey of relevant literature reveals that competing tracker

programs have only been tested within the limited environment of their development: for

example, trackers developed using MATLAB or OCTAVE have test results and tables de-

rived from MATLAB and OCTAVE simulations. The strength of such environments lies

in rapid algorithm prototyping, and not in providing the user with a scalable, extensible

interface for visualizing ultra-high resolution WAMI imagery, interactively executing the

tracker algorithms and performing visual and analytic result inspection while interfacing

95

with such a system. In this regard, the conception and implementation of KOLAM 3.0’s

Automatic Tracking capability, and the testing and refinement of trackers such as CSURF

and LOFT is a unique contribution to the field of object tracking in WAMI imagery.

The various tracker and trajectory properties set via Kolam-Tracker prior to tracker ini-

tialization are encapsulated in the specific container class, instances of which are created

for each distinct target. The data and control flows between Kolam-Tracker and the auto-

matic tracking algorithms are depicted in Figure 3.4. The multi-step process of automatic

tracking, which begins with Kolam-Tracker, is described below:

Figure 3.4: Automatic Tracking mode in Kolam-Tracker. Interaction steps and flow of
processing in invoking an external tracker program for object tracking and trajectory visu-
alization. The black boxes denote user interaction steps, and the red ones denote steps of
algorithm execution.

• First, the user sets the tracker type (currently, either CSURF or LOFT) and draw

primitive parameters (either point, bounding box or polygon) via the interface. Tracker

selection initializes a temporary drawing overlay on the display area, which is utilized

96

in the next step.

• Given that both CSURF and LOFT trackers expect object selection by means of

bounding boxes, this draw primitive is assumed as default in all object selection de-

scriptions henceforth. The user annotates a rectangular region around the object to

be tracked on the drawing overlay. This enclosing bounding box may be re-drawn

until the most satisfactory selection has been made. Each selected object is inter-

nally maintained in two parts. First is the drawable component, ie. the visual rep-

resentation of the trajectory that will be generated by the tracker (under normal and

favorable operational conditions) once its execution commences, and which is used

by KOLAM’s trajectory drawing class with visual properties dynamically modifiable

by Kola-Tracker. Second is the process component: each object selected for tracking

is internally maintained in a data structure of references to QProcess instances. This

list is used to start and optionally stop auto-tracking program execution applied to

multiple objects in a distributed processing fashion.

• The completion of object selection is an event which when received by Kolam-

Tracker causes it to signal the start of execution of the selected tracker for the se-

lected object. Automatic tracker invocations are initialized as forked processes on

Unix-based systems or as independent child processes on Windows-based systems.

This ensures that KOLAM at large is neither blocked, left in a wait state nor unpre-

dictably interrupted by the external auto-tracker. This implies that KOLAM interac-

tivity is independent of computationally intensive tracker while it is executing.

• The output of the tracker for each object is saved to disk and also incrementally

updated in KOLAM’s trajectory data structure for immediate, interactive review of

97

the results. Object IDs that have been used to track specific objects may be used

to track other objects, however this will result in the (prior) existing trajectory data

being overwritten.

Algorithm 6 lists steps involving user-selected input, KOLAM-to-tracker message pass-

ing, the resulting asynchronous tracker invocation and finally the on-the-fly display of the

generated results. The steps involved in the invocation and execution of the SURF Tracker

are illustrated in Figures 3.5, 3.6 and 3.7.

Similarly, the steps involved in the invocation and execution of the LOFT Tracker are

illustrated in Figures 3.8, 3.9, 3.10 and 3.11.

3.4.3 Manual Tracking

Support for manual track creation and manipulation was added in response to the need for

effective ground truth generation capability, as well as to benchmark automated tracker

performance.

98

Figure 3.5: Step I of tracking an object using the CSURF Tracker. The user first cre-
ates a new Object-ID (Highlighted by rounded rectangle 1). Creating a new Object-ID in
KOLAM always sets the Tracking Mode to Automatic (2) and sets CSURF as the selected
tracker (3). KOLAM gives the user feedback and the next step to perform in the tracking
process (4). The object (vehicle in this case) to be tracked is also highlighted (5).

Figure 3.6: Step II of tracking an object using the CSURF Tracker. The user now draws a
bounding box around the object to be tracked with the right mouse button (6). The drawn
box must include the object and a small amount of background (again, see (6)). This box
may be re-drawn as many times as the user needs to get it right. When satisfied with the box
drawn, the user presses the ’ENTER’ key. This action ends the object selection phase of
tracking; creates a .txt1 parameter file containing information about the drawn box, dataset
path, output file path etc. and invokes the tracker program as an external process, with the
.txt1 file as a parameter. Feedback regarding the same is presented by KOLAM to the user
(7).

99

Figure 3.7: Step III of tracking an object using the CSURF Tracker. Once initialized, the
CSURF program begins tracking the object (8). While tracking, CSURF presents addi-
tional useful information to the user (9, 10, 11) as well as the means to terminate itself
(12). The trajectories for the object - unregistered (13) and registered (14) - are drawn in
KOLAM as soon as they are generated by the tracker.

Software systems such as Kitware Inc’s vpView and MIT Layer Annotator feature

ground-truth generation by manual tracking, and feature a number of optimizations which

attempt to increase user productivity, such as a simple, five to ten-frame tracker incorpo-

rated into the former, allowing users to perform actual object marking annotations on the

data every five to ten frames; and rich annotation generation facilities per object and repli-

cation of such annotation properties to successive objects being tracked, in the case of the

latter.

In KOLAM 3.0’s manual tracking mode, the user tracks objects by hand marking the

location of the target in each frame. These points can be visualized as a connected trajectory

(vector plot in the overlay plane) as in the automated tracking mode. KOLAM currently

supports marking of objects using points, bounding boxes or polygons.

100

Figure 3.8: Step I of tracking an object using the LOFT Tracker. The user first creates a
new Object-ID (Highlighted by rounded rectangle 1). Creating a new Object-ID in KO-
LAM always sets the Tracking Mode to Automatic (2) and sets CSURF as the selected
tracker. The user needs to change the tracker to LOFT (3). KOLAM gives the user feed-
back and the next step to perform in the tracking process (4). The object (vehicle in this
case) to be tracked is also highlighted (5).

Figure 3.9: Step II of tracking an object using the LOFT Tracker. The user now draws a
bounding box around the object to be tracked with the right mouse button (6). The drawn
box must include the object and a small amount of background (again, see (6)). This box
may be re-drawn as many times as the user needs to get it right. When satisfied with the box
drawn, the user presses the ’ENTER’ key. Since LOFT takes TWO user-drawn BBoxes
as input, pressing ’ENTER’ advances the sequence by 1 time step and lets the user draw
the next BBox (7).

101

Figure 3.10: Step III of tracking an object using the LOFT Tracker. The user now draws
a SECOND bounding box around the object to be tracked, for the SECOND time step (8).
When satisfied, the user presses the ’ENTER’ key. This action ends the object selection
phase for LOFT; creates a .txt1 parameter file containing information about the drawn
boxes, dataset path, output file path etc. and invokes the tracker program as an external
process, with the .txt1 file as a parameter. Feedback regarding the same is presented by
KOLAM to the user (9).

Figure 3.11: Step IV of tracking an object using the LOFT Tracker. Once initialized, the
LOFT program begins tracking the object (10). While tracking, LOFT presents additional
useful information to the user. The trajectory for the object (11) - is drawn in KOLAM as
soon as it is generated by the tracker.

102

The fastest and easiest means of manual tracking involves using the auto-advance op-

tion to automatically step to the next frame as soon as the user marks the location of the

object. In this mode of operation, an expert user can quickly generate long ground-truth

trajectories. The auto-advance feature in combination with frame advance aims to provide

flexibility in quickly jumping to the frames where the target is moving (more rapidly) and

skip frames when the target is stationary for example; the skipped frames are connected via

a constant velocity trajectory. To update an incorrect target location on the current frame,

auto-advance should be disabled. KOLAM 3.0 also provides select features for enhanc-

ing efficiency of manual tracking: draw primitives such as bounding boxes or polygons

may be spatially replicated, orientations of annotations may be altered for a group of ob-

jects, and so on. Algorithm 8 describes how an object of interest may be visually tracked

by hand by the user; the different possible user operations are covered by the algorithm

‘Perform Track Editing’ (Algorithm 14) and the algorithms invoked therein.

Ideas for future work in this regard include the following: small lengths of trajectories

may be linearly interpolated under special conditions in the data (for example, a vehicle

moving in a near-straight line along a straight road for several frames, at constant velocity);

and properties of moving objects in past frames such as direction of motion and velocity

may also be used to aid in annotating once every few frames instead of for every single

frame.

3.4.4 Assisted Tracking

Also known as semi-automated/supervised target tracking, human-in-the-loop tracking,

and tracking with expert intervention; it is the ultimate goal for tracking purposes. First,

it moves away from pure manual object annotation from frame to frame of the image se-

103

Algorithm 6: Perform Automatic Tracking
Input : Image sequence I , task to track object(s) purely via automated methods

based on pre-defined spatio-temporal parameters, tracker program(s)
Output: Tracker-generated trajectories; loaded in memory (data structure) and

visualized by KOLAM

1 TrkType = {CSURF,LOFT, ...};
2 TrajParam = {V isibility, Color, Thickness};
3 TrajInitTypes = {Point, BBox};
4 currTrajIdx, NumTrkInits = 0, TrajInitType = 0;
5 Process P, list¡Process¿ ProcessList;

6 Activate AutoOverlay instance for Automatic Tracking;
7 Prepare ProcessList for tracker invocation instances;
8 Prepare TrajectoryDS trajectory data structure;

9 while AutoOverlay is active do
10 for Every ID the User Creates or Re-uses do
11 NumTrkInits = TrkType [0].inits;
12 if User Creates New ID then
13 TrajectoryDS.append (new Trajectory);
14 currTrajIdx = TrajectoryDS.size− 1;
15 end

16 // Choose Object Selection Primitive type
17 for i← 0 to TrajInitTypes.size− 1 do
18 if User selects TrajInitTypes [i] then
19 TrajInitType = TrajInitTypes [i];
20 end
21 end

22 // Choose Tracker type
23 for i← 0 to TrkType.size− 1 do
24 if User selects TrkType [i] then
25 NumTrkInits = TrkType [i].inits;
26 end
27 end

28 // FOR Loop continues in Listing 7
29 end
30 end

31 Return to KOLAM’s main UI Loop;

104

Algorithm 7: Perform Automatic Tracking: FOR Loop continued
1 // Create Tracker Init(s) by highlighting the object

using the selected primitive
2 for i← 0 to NumTrkInits.size− 1 do
3 User draws Initialization i using TrajInitType;
4 if User wants to change Initialization i then
5 i−−;
6 end
7 Add Initialization i to TrkInitList;
8 end

9 // Create and Initiate Tracker Process
10 Init P {TrkType,TrkInitList, imgPath, resPath};
11 ProcessList.append(P);
12 startASync(P);
13 while P.isRunning() do
14 TrajectoryDS [currTrajIdx].append(P.output());
15 for i← 0 to TrajParam.size− 1 do
16 if User alters TrajParam [i] then
17 TrajectoryDS [currTrajIdx].TrajParam [i]← TrajParam [i];
18 end
19 end
20 Update Trajectory display;
21 end
22 deleteProcess(P);

105

Algorithm 8: Perform Visual Tracking
Input : Image sequence I , task to track object(s) purely via user intervention,

based on pre-defined spatio-temporal parameters
Output: User-generated trajectories; loaded in memory (data structure) and

visualized by KOLAM

1 TrajParam = {V isibility, Color, Thickness};
2 TrajInitTypes = {Point, BBox, Polygon};
3 currTrajIdx, TrajInitType = 0, AutoAdvance = true;

4 Activate VizOverlay instance for Visual Tracking;
5 Prepare TrajectoryDS trajectory data structure;

6 while VizOverlay is active do
7 for Every ID the User Creates or Re-uses do
8 if User Creates New ID then
9 TrajectoryDS.append (new Trajectory);

10 currTrajIdx = TrajectoryDS.size− 1;
11 end

12 // Choose Object Selection Primitive type
13 for i← 0 to TrajInitTypes.size− 1 do
14 if User selects TrajInitTypes [i] then
15 TrajInitType = TrajInitTypes [i];
16 end
17 end

18 end
19 end

20 Return to KOLAM’s main UI Loop;

106

Algorithm 9: Perform Visual Tracking: FOR Loop continued
1 // Add Points to Trajectory
2 if User Adds Time Steps to a Trajectory then
3 if TrajInitType == 1 then
4 TrajectoryDS [currTrajIdx].append(Point);
5 end
6 else
7 while !Primitive.Completed() do
8 Primitive.append(Point);
9 if Primitive.Completed() then

10 break;
11 end
12 end
13 TrajectoryDS [currTrajIdx].append(Primitive);
14 end
15 end

16 // Modify Existing Trajectory
17 if User Modifies an Existing Trajectory then
18 Call Perform Track Editing() for this ID;
19 end

20 // Update Trajectory Parameters and Display
21 for i← 0 to TrajParam.size− 1 do
22 if User alters TrajParam [i] then
23 TrajectoryDS [currTrajIdx].TrajParam [i]← TrajParam [i];
24 end
25 end
26 Update Trajectory display;

107

quence, thus offering significant time savings over the same while being less error prone.

Second, given that current automatic tracking algorithms are not trustworthy enough in

dense urban environments with many movers, assisted tracking offers a way to handle such

scenarios by utilizing automatic tracking programs in combination with manual interven-

tion in the form of trajectory editing. The assisted tracking mode is especially useful when

tracking involves many similar targets maneuvering through multiple occlusions and shad-

ows in complex environments.

In the assisted tracking mode, the user is able to stop the automatic tracker as neces-

sary, manually correct trajectory errors, or add target location information in a difficult to

track region, then quickly switch back to the auto-tracker mode in a seamless fashion. The

sequence of operations in assisted tracking includes use of the automatic tracking process,

combined with manual tracking and trajectory editing procedures which are performed by

the user in an iterative fashion until the supervised tracking task is completed. In super-

vised tracking and video indexing, the user learns to anticipate the most common failure

modes of the automatic tracker, thereby significantly increasing the productivity of the an-

alyst. Preventative intervention by the user aims at avoiding long invalid track segments

from being generated by the automatic tracker running unsupervised that then need to be

manually inspected and corrected. For simultaneous tracking of multiple objects, the user

needs to time-slice between the objects in order to enhance productivity.

KOLAM 3.0 is capable of performing assisted tracking, albeit in a non-seamless man-

ner. This is primarily due to the fact that multiple user interaction steps are currently needed

at the interfaces of the different operations. Firstly: the identification of non-accurate be-

havior of the automatic tracker and transitioning the created trajectory into the manual or

editing modes of operation is not seamless. Secondly: the various editing operations in

108

their current state are not seamless enough for efficient assisted tracking; a few steps like

the repetitive need to access the GUI to perform editing operation switching still need to

be streamlined or eliminated. Finally: the hand-off of the edited trajectory to the automatic

tracker for re-initialization and continuation of tracking is currently a series of separate

steps. Algorithm 10 describes how analysts may use KOLAM to perform a tightly-coupled

combination of tracking automation (automatic tracking) and human-in-the-loop interven-

tion (visual tracking) in order to complete object tracking tasks that are either too erroneous

or too time inefficient to be completed by solely one or the other means of object tracking.

Implementation of a seamless and robust form of assisted tracking is part of the author’s

future work. To this end, a number of points being followed up on are listed below:

• Goals toward achieving seamless assisted tracking can be broadly given as:

– Faster ground truth generation.

– Higher productivity via one analyst monitoring multiple targets

• The need to match the speed of the tracking algorithm versus the ability of the human

operator to verify the result. This needs to be done:

– Frame by Frame

– Chunk by Chunk (a ‘chunk’ referring to a group of frames)

– A combination of the above two

– Event by Event. Examples of events are failure to track, and lost target.

• Seamless transfer of data and control between the tracker and editing interfaces - by

reducing user input and decision steps, caching one or more of the most recent edited

points in anticipation of a tracker re-initialization etc.

109

Algorithm 10: Human In The Loop Tracking
Input : Image sequence I , task to track object(s) purely via tightly coupled

combination of automated methods and user intervention based on
pre-defined spatio-temporal parameters, tracker program(s)

Output: Tracker-and-User-generated trajectories; loaded in memory (data
structure) and visualized by KOLAM

1 TrkType = {CSURF,LOFT, ...};
2 TrajParam = {V isibility, Color, Thickness};
3 TrajInitTypes = {Point, BBox, Polygon};
4 currTrajIdx, TrajInitType = 0, AutoAdvance = true;

5 Activate AssistOverlay instance for Human in the Loop Tracking;
6 Prepare list<Process> ProcessList for tracker invocation instances;
7 Prepare TrajectoryDS trajectory data structure;

8 while AssistOverlay is active do
9 for Every ID the User Creates or Re-uses do

10 while Tracking for this ID is incomplete do

11 Perform Automatic Tracking();

12 if Tracking is complete for this ID then
13 break;
14 end

15 currTraj← TrajectoryDS[currTrajIdx];
16 if currTraj has wrong points then
17 while currTraj.currPt.isWrong() do
18 currTimeStep = currTimeStep−1;
19 end
20 end

21 while Automatic Tracking cannot be done do
22 Invoke the desired editing operation of Perform Trajectory Editing(),

invoked from Perform Visual Tracking(), on currTraj.currPt;
23 currTimeStep = currTimeStep+1;
24 end
25 end
26 end
27 end
28 Return to KOLAM’s main UI Loop;

110

Figure 3.12: Simultaneous visualization of tracker algorithm execution and trajectory visu-
alization in KOLAM. There are three instances of the tracking algorithm running to track
three objects. The two inlaid (MATLAB) windows shown on the left are the realtime
(heads-up or cursor-on-target) displays generated by the automatic tracking algorithms.
The main window shows both stabilized and unstabilized computed trajectories for the
three objects.

• A way to minimize data navigation - fast forward or rewind of the image sequence

as this is highly distracting to the analyst.

• Provision of multiple view windows - preferably a single main display window ac-

companied by multiple display sub-windows; so as to keep the global view context

while simultaneously monitoring multiple objects, each in visual isolation.

111

3.5 Conclusions

The utility of KOLAM for exploratory visualization and analysis of both static and time-

varying imagery of different types and formats conveys the usefulness of the system for a

variety of applications requiring accurate multiple target tracking that can scale to a large

number of objects and image sizes. This was the primary driving force for the definition

of the problem statement and subsequently identifying the associated challenges by the

author. In devising the solutions to these, the author conceived, designed and implemented

all the object tracking related functionality in KOLAM 3.0.

The loose coupling between KOLAM and the external automatic tracking algorithm

processes enables immediate display of the computed trajectory up to that point in time

as shown in Figure 3.12. For WAMI imagery KOLAM’s ability to interactively animate

gigapixel-sized images as well as perform automatic or manual tracking and trajectory vi-

sualization and analysis translates into applications in both the civilian and defense sectors.

On the civilian side, the tracking, visualization, and annotation capabilities may be utilized

by law enforcement for forensic analysis, for urban planning and traffic patterns, video

summarization for long duration surveillance and emergency response [10]. In the defense

context KOLAM can be used for improved situational awareness, persistent observation of

targets, reconnaissance, force protection, rapid targeting and response.

112

Chapter 4

CASE STUDY 2: Trajectory
Visualization and Editing

4.1 Introduction

The detection and tracking of objects of interest (both moving and stationary) forms an es-

sential component of the exploitation of WAMI data. The same is true to some extent for a

number of cell biology datasets as well, in particular those wherein analyzing cell motility

characteristics over time is a subject of research interest. The problems and challenges, as

well as the solutions implemented as KOLAM’s capabilities regarding handling the detec-

tion of such moving objects were discussed in Chapter 3. The visualization and editing of

object trajectories play a vital role in the generation of ground truth trajectory generation

for datasets of interest, and are essential components of a human in the loop (assisted) ob-

ject tracking system. This chapter describes the details the author’s work in conceiving and

implementing KOLAM’s trajectory visualization system as well as KOLAM’s trajectory

113

editing system.

4.2 Trajectory Visualization in KOLAM

The tracking subsystem in KOLAM 3.0 has been specifically designed to accommodate

the visual analytic needs of tracking objects of interest in both WAMI datasets as well as

more general video sequences. The KOLAM-Tracker tool accomplishes this by providing

interfaces for manual ground-truth (target) annotation, simultaneous tracking of multiple

objects, editing of trajectories and assisted tracking. Visualization of the trajectories gen-

erated, modified and saved in these different ways is handled by KOLAM 3.0’s trajectory

visualization module, the aspects of which are now discussed in detail.

4.2.1 Current Trajectory Visualization Features

The trajectory visualization subsystem of KOLAM 3.0 was conceived with an initial set of

requirements, and has evolved over time to serve new needs as well as modifications to the

original requirement set. Details about the subsystem such as design and implementation

choices, and the justifications for the same are best conveyed against the backdrop of the

current feature set that the trajectory visualization system supports, and the features that

are required to address emerging needs. As such, said features are outlined here.

• Local Stabilization: KOLAM 3.0 can visualize both unstabilized trajectories (those

generated by trackers operating on unregistered imagery) and locally stabilized ver-

sions of these trajectories, either separately or together, for each tracked object. The

visual toggling of these trajectory types is done via Kolam-Tracker. Stabilized tra-

114

jectories are internally handled by KOLAM 3.0 in two ways:

– As a complete second trajectory independent of the unstabilized trajectory, for

each tracked object, and

– As a set of offset values, one corresponding to each point on the unstabilized

trajectory. KOLAM 3.0 constructs and displays the stabilized trajectory by ap-

propriately accumulating these offsets over the length of the unstabilized tra-

jectory.

• Appearance: As briefly described under the functionality of Kolam-Tracker in Sec-

tion 2.5.3, KOLAM 3.0 allows users to alter the visual representation of trajectories,

either individually or in groupings, by permitting properties such as thickness, color

and visibility to be modified. While the default values of color and thickness are

determined independent of any properties of the tracked objects, such properties can

be taken into account in the visualization. An example is the utilization of prop-

erties such as velocity, acceleration and geographical location to determine object

trajectory color and thickness.

Another modifiable visual property is the draw type of the currently used primitive. A

good example of this is provided by KOLAM 3.0’s trajectory editing facility, wherein

trajectories selected for editing are highlighted by enclosing them within tight bound-

aries. The modified draw type feature is also available for polygon drawing within

KOLAM 3.0. Besides modifying the primitive draw type, KOLAM 3.0 also supports

drawing of any additional image markers, at user-determined offsets from select or

all points along trajectories. This is currently limited to a single text label for each

point on a trajectory, but may be easily extended.

115

• Intelligent navigation: This feature of KOLAM 3.0’s trajectory drawing was incor-

porated so that users could determine spatial proximity of objects being tracked to

certain features of interest in the imagery. For example, was a vehicle traveling along

a particular path in proximity to a particular building or parked vehicle at any point in

time. Effectively, a single user event (such as a mouse click) at a point of interest on

the imagery will rewind or fast-forward the image sequence such that any one of all

currently loaded object trajectories is within a pre-determined proximity of the user

event point. While apparent, it is reiterated that the sequence rewind or fast forward

causes the state of all other object trajectories to also be updated. Thus, the posi-

tions of objects that are not of immediate interest to the user are also made available,

and are potentially useful for examining the relationship between object positions, if

any. If none of the tracked objects was or will ever be within proximity of the user

selected point of interest, KOLAM doesn’t respond; thereby indicating to the user

that no object association with the point of interest can be found. The process is a

spatial search problem and is made efficient by organizing the bounding box extents

of the trajectories in an interval tree, which allows for O(log n) search time given n

trajectories.

4.2.2 Metadata Encoding for Trajectories

Imagery produced within different research domains have different significance for re-

searchers. For example, the majority of quantifiable properties of tracked objects that a

biomedical researcher is interested in (cell age, cell division status, cell malignancy etc.)

are completely dissimilar to those properties that an analyst of WAMI imagery needs to

follow (vehicle type, traffic patterns, specific vehicle movement patterns etc.). Some object

116

properties, such as object velocity, acceleration and direction of motion, are of interest to

users from multiple domains (they are relevant to WAMI and Biomedical users, in particu-

lar) in similar or dissimilar ways.

Such metadata that are associated with different properties of objects are primarily used

for different types of statistical analyses. The difference in available visualizations and

types of visualizations depends primarily on whether users expect the visualization soft-

ware to incorporate such statistical analysis capabilities into the work-flow. In the case of

KOLAM 3.0, its current users perform the prototyping and analysis of their research imple-

mentations within environments such as MATLAB, which provide a multitude of mature

and stable statistical analysis and result display features, often accessible via a single func-

tion call. So while making such facilities within KOLAM 3.0 is attractive, their absence

does not hamper the productivity of such users. Nevertheless, the author posits that making

such features available within KOLAM 3.0 is still critical: environments such as MATLAB

are incapable of the imagery display flexibility that KOLAM 3.0 possesses, and the abil-

ity to perform all required analyses in the global, visual backdrop of the image data being

analyzed will potentially lead to new observations and insights for researchers.

4.2.3 Challenges in Trajectory Representation

KOLAM 3.0 needs to provide a scalable environment for handling the smooth, interac-

tive, simultaneous display of tens of thousands (or even greater numbers) of trajectories.

It is therefore incumbent that KOLAM 3.0 provide a memory representation or data struc-

ture that can serve as answer to these challenging requirements. Listed below are factors

that further increase the complexity of implementation of an optimum data structure(s) for

trajectory representation.

117

• As part of its current operational requirements, KOLAM 3.0 cannot make strict as-

sumptions about trajectory data for the sake of optimizing the memory representa-

tion of trajectory database(s). For example, trajectories generated for unregistered

imagery make caching of trajectory history difficult, since all position values for all

objects change with each time step. Caching can still be done, but at the expense of

increased time and space complexity. One means of doing so (and which is imple-

mented and active) would be incorporating local registration modules into KOLAM

to apply incremental positional corrections at each time step: ‘base’ position values

will remain unchanged over time and could be cached, but the aforementioned mod-

ule(s) will have to be invoked for each vertex of each trajectory, for each time step;

in order to obtain the actual positions of objects.

• KOLAM 3.0 cannot make assumptions about the temporal navigation patterns that

different users follow while observing the imagery. For example, some users might

be content solely with unidirectional playback of the image sequence(s). Other users

might play forward, backward, play back-and-forth between a small subset of im-

ages, or perform jumps to non-consecutive parts of the image sequences. This im-

plies that potentially all trajectory data must be readily displayable at potentially all

times: a worst case scenario which makes optimizing for temporal locality/coherence

of data navigation difficult.

4.2.4 Trajectory Drawing in KOLAM 3.0

Given the different features taken into account for trajectories, the extra handling that has

to be accounted for in terms of metadata and the visualization challenges, we now present

118

the details of KOLAM 3.0’s trajectory drawing system.

Drawing of trajectories is performed by utilizing a combination of Qt’s QPainter draw-

ing capabilities and OpenGL commands on a dedicated overlay plane that is enabled when

trajectories are being visualized in KOLAM 3.0. OpenGL is leveraged for the matrix com-

putations involved in all coordinate system transformations that are performed, and the

QPainter object is utilized for its extensive, customizable and vector drawing of draw prim-

itives, and image element and font drawing support.

Trajectory datasets are currently stored on disk in two formats: a flat, unstructured text

file format and a semi-structured kw18 file format. The former was developed during the

initial phase of trajectory drawing development in KOLAM 3.0 and is no longer generated

by any tracker programs, though KOLAM 3.0 continues to support it to continue visu-

alizing any old trajectory datasets. The kw18 file format developed by Kitware Inc. to

represent trajectories is the file format currently used by KOLAM 3.0 and which is also

generated by all trackers developed in-house. Regardless of file format, KOLAM 3.0 loads

the trajectories read from file via appropriate readers, into a hierarchical data structure

which represents all loaded trajectories, from one or more datasets, across the duration of

the underlying image sequence. During image sequence animation, provided that trajectory

drawing is enabled, KOLAM 3.0’s trajectory drawing system navigates the data structure

in sync with the animated frames, and draws the trajectories with a mix of QPainter and

OpenGL calls. Samples of the text file format and the kw-18 file format are provided in

Figure 4.1 and Figure 4.2.

Given now is the description for both the data structure for storing trajectory datasets in

memory, as well as the algorithm for drawing the trajectories. The scenarios encountered

in the various applications are enumerated, followed by a description of the design choices

119

Figure 4.1: Flat file trajectory storage format for KOLAM.

which permit a single implementation to be capable of handling all the disparate cases. See

Algorithm 11 and Algorithm 12 for more detail. Algorithm 13, which is the continuation

of Algorithm 12, details the process of trajectory stabilization.

Given the details of trajectory drawing, the following section describes trajectory edit-

ing in KOLAM 3.0.

120

Algorithm 11: Trajectory Drawing Algorithm
input : Sequence(s) of images of dimensions [w×h] loaded in KOLAM; trajectory

dataset(s) loaded in KOLAM, with the task of visualizing these dataset(s)
output: KOLAM correctly overlays and visualizes the trajectory dataset(s), both

spatially and temporally as well as with all user modifications; on the image
sequence

1 Initialize variables: painter, penWidth, dbType, dbPointer, currObjID,
currFrNum, showIDs, showBBs, showCentroids, showLines, toggleName,
toggleColGroup, toggleEdit, sendInfoToLoc, stabilValue, centering;

2 while Trajectory overlay is active do

3 dbPointer← getDbPointer();
4 dbType← dbPointer.getType();
5 ... or any of the other variables ...

6 Handle state changes from mousePress(), mouseRelease(), mouseMove() and
keyPress();

7 if dbType == ‘FLAT FILES ′ then
8 Init Data Structure Setup(FLAT FILES);
9 else

10 Init Data Structure Setup(KW18 FILES);
11 end

12 if Trajectory overlay visibility is enabled then

13 Save previous OpenGL drawing state;
14 painter.init(display);
15 painter.set(pen(penColor,penWidth), font(f));

16 if toggleName then

17 painter.saveState();
18 Draw all trajectory dataset names with painter;
19 painter.restoreState();
20 end

21 draw Trajectories Aux();

22 Restore previous OpenGL drawing state;
23 end
24 end

121

Algorithm 12: draw Trajectories Aux()
1 for Each Trajectory dataset ‘h’ do
2 for Each Object ID ‘i’ do
3 start← ObjID[i].startIndex;
4 end← ObjID[i].endIndex;
5 if curFrame >= start && curFrame <= end then
6 if toggleColGroup then
7 penColor← color(Dataset ‘h’);
8 else
9 penColor← color(ObjID ‘i’);

10 end
11 painter.set(pen(penColor, penWidth));
12 for (j = currFrame-start; j >= 0; j−−) do
13 painter.saveState();
14 if stabilValue == 0 then
15 x← ObjID[i].centroid.x;
16 y← ObjID[i].centroid.y;
17 [scrX, scrY]← imgToScreen(x, y);
18 painter.translate(scrX, scrY);
19 painter.scale(getZoom(), getZoom());
20 if j == currFrame− start then
21 drawCentroid(currPt);
22 if showIDs then
23 painter.drawID();
24 end
25 if showBBs then
26 getBBs(ObjID[i]);
27 drawBBs(ObjID[i]);
28 end
29 Highlight trajectory end;
30 else
31 drawCentroid(currPt);
32 end
33 end
34 end
35 end
36 end
37 end

122

Algorithm 13: draw Trajectories Aux(); Inner ELSE block and remainder
1 // Continued from previous listing
2 // ‘Else’ corresponds to innermost ‘If’

3 else if stabilValue == 1 then
4 if j == curFrame− start then
5 accum.setX(0);
6 accum.setY(0);
7 end
8 [X1, Y1]← ObjID[i].pt[curFrame];
9 X2← X1 − accum.X;

10 Y2← Y1 − accum.Y;
11 [scrX, scrY]← imgToScreen(X2, Y2);
12 accum.set(accum + ObjID[i].pt[j].diff);
13 painter.translate(scrX, scrY);
14 painter.scale(getZoom(), getZoom());
15 end
16 if j >= 1 && showLines then
17 if toggleEdit then
18 painter.drawBB(currPt, prevPt);
19 end
20 painter.drawLine(currPt, prevPt);
21 end
22 painter.restoreState();

123

Figure 4.2: kw-18 file trajectory storage format for KOLAM.

4.3 Interactive Trajectory Editing

Tracking algorithms such as CSURF and LOFT are capable of predicting the movement

and future positions of moving objects with high accuracy for a reasonable period of time.

However, factors such as object illumination and shape change, parallax distortion, image

registration errors and other erroneous elements in the imagery have made the goal of per-

fect automated tracking impossible to achieve, to date. Assisted tracking, as discussed in

Section 3.4.4 is an accepted approach of addressing this deficiency, as follows: (a) Supple-

ment the tracking algorithm with a robust manual trajectory generation and editing module,

(b) Implement efficient interfaces for the inter-module interactions, and (c) Finally, the sys-

tem UI must also be optimized to maximize user productivity. This in turn successfully

positions KOLAM as a viable solution for large scale object tracking endeavors in multiple

research domains.

In order to be editable, the trajectory of interest must first be selected by the user.

124

Trajectory selection is a one-click operation that greatly reduces the closest point search

space for the user clicks performed during each editing operation. The overall UI workflow

for trajectory editing is given in Algorithm 14.

4.3.1 Connecting Automatic Tracking and User Intervention

As discussed in Section 3.4.4, the typical scenario tackled by an assisted tracking system

involves alternating automated tracker execution and manual trajectory editing steps. We

assume that the algorithm implementations are as efficient as possible, in order to eliminate

them as a limiting factor. Subsequently, the overall efficiency (the combination of user

productivity and time spent) of the assisted tracking system is dependent on:

• Efficiency of the Tracker-to-Editing data interface,

• Aggregate efficiency of the various operations of the Editing system, and

• Efficiency of the Editing-to-Tracker data interface.

The Tracker-to-Editing interface handles the transfer of detected trajectory points of the

tracked object to the visualization and user interaction module. The underlying limitation

of this operation is the ceiling imposed on trajectory points generated per unit time by the

tracker’s detection speed. Therefore, the interface design must make this periodic delay

as transparent as possible to the human operator while minimizing its own operational de-

lays. A file I/O interface is a straightforward solution, simple to implement and offers the

benefit of maximal decoupling of the two modules by minimizing inter-module interaction.

However, incorporation of such a system into KOLAM 3.0 has demonstrated that the effect

of file I/O delays scales proportionally with the number of objects being simultaneously

125

Algorithm 14: Perform Trajectory Editing
Input : Image sequence I , task to edit object position(s) for one (or more)

trajectories purely via user intervention based on visually perceived
spatio-temporal parameters

Output: One or more points on One or more trajectories modified by the user;
action and result interactively visualized by KOLAM

1 TrajOp = {Add,Delete,Move, Join, Split, Select};
2 Prepare SelectTrajs list¡Trajectory ¿;
3 Prepare TrajectoryDS data structure;
4 Prepare minHeap CandidateTraj;
5 Activate EditOverlay instance for Human in the Loop Tracking;

6 while EditOverlay is active do
7 for Every User Right-Click do

8 UserPt← ScrToImg(User-Click);

9 // Find trajectory point closest to user-click
10 for i← 0 to TrajectoryDS.size− 1 do
11 currPt← TrajectoryDS [i].currTimeStep.trajPt;
12 currDist← EuclidDist(UserPt,currPt);
13 if currDist < ε then
14 CandidateTraj.addTo(i,currDist);
15 end
16 end
17 end
18 SelectIdx← CandidateTraj.minimumDist();

19 if !TrajectoryDS [SelectIdx].isSelected() then
20 SelectTrajs.append(TrajectoryDS [SelectIdx]);
21 Refresh display showing newly selected trajectory;
22 end

23 // Perform User-selected Editing operation
24 (If TrajOp == 1) Trajectory POINT ADD();
25 (eIf TrajOp == 2) Trajectory POINT DELETE();
26 (eIf TrajOp == 3) Trajectory POINT MOVE();
27 (eIf TrajOp == 4) Trajectory SPLIT();
28 (eIf TrajOp == 5) Trajectory JOIN();
29 (eIf TrajOp == 6) Trajectory DESELECT();
30 end

31 Return to KOLAM’s main UI Loop;

126

tracked. The viability of this approach is thus restricted to a small number of simultane-

ously tracked objects. Another approach involves tighter coupling of the modules and data

transfer via auxiliary libraries. Point generation delays may be ameliorated by transferring

them in groups.

The Editing-to-Tracker interface performs a relatively simple task: communication of

coordinate information to the tracker for restarting its execution. Since this interface is

activated by the human operator, even multiple tracker invocations (performed by one or

more operators) are multiple isolated events involving single data transfers. It is important

that the transfer of control from user to tracker be seamless. The library communication

strategy outlined for the Tracker-to-Editing interface above can handle all requirements of

this interface as well.

Unlike the two interfaces described above, the Editing system is solely driven by user

interaction. The efficiency of this system thus depends on minimizing user interaction steps

and maximizing the throughput of each step. Besides efficiency, all editing operations must

be intuitive and reliably interactive from the user perspective. The interactive editing mod-

ule in KOLAM 3.0’s trajectory editing system fulfills these requirements by minimizing

visual distraction during user interaction with the visualization, and minimizing the num-

ber of widget-to-visualization navigation steps by the user.

4.3.2 Factors Governing Trajectory Editing in KOLAM 3.0

The number of trajectories for a given data set is limited only by the number of distinct,

trackable objects or features in the data set - implying potentially thousands, tens of thou-

sands or an even greater number of trajectories. A simple method for maintaining the

efficiency and interactivity of editing operations given this fact is to reduce the total num-

127

ber of trajectories that need to be examined to match the user editing events to, via some

filtering mechanism. KOLAM 3.0 currently implements this filtering via user-driven trajec-

tory selection. Thus, of all trajectories currently being displayed, the editing operations are

active only for the user-selected subset. The status of a given trajectory as being selected is

visually communicated to the user by enclosing said trajectory in a tight outline/boundary.

While a simplistic scheme, the following factors make it a viable one:

• Trajectory editing is a focus-intensive task: Typical object tracking scenarios given

time-sequenced imagery (which is either large in spatial dimensions, lengthy in the

temporal dimension, or both) require that the analyst track as many objects as possi-

ble with complete accuracy in a given time frame. For the average user, the highest

accuracy is typically guaranteed by focusing on these objects sequentially. Such per-

trajectory focus is also highly desirable because incorrectly marking trajectories due

to attention lapses will result in said trajectories having to be either partially or com-

pletely re-annotated. Thus, the average user is highly likely to select only a small

number of related (part of a single longer trajectory, spatio-temporal proximity etc.)

trajectories at any given time.

• The Temporal aspect of the data: Given that the visualization of time-sequenced

imagery is governed by the linear flow of time, the trajectories corresponding to

different tracked objects start being displayed at certain points in time, continue to be

visible and may be interacted with for different durations, and are no longer displayed

beyond their ending points. Accounting for this as well as for the perceptual and

processing limitations of the human visual system, the average user will only select as

many trajectories as he or she can completely and coherently focus attention on. This

implies that the number of selected trajectories will always be small in comparison

128

to the total number of trajectories being visualized.

4.3.3 Trajectory Editing Operations

Given these factors, the user typically selects a small set of trajectories that are highly likely

to be related. As mentioned above, such relationships may be based on membership in a

set (for example, individual trajectories forming part of a single longer trajectory), spatial

and/or temporal proximity, the nature of the data and the objects being tracked therein,

and possibly other factors. KOLAM 3.0 provides a small number of distinct editing opera-

tions which may either be used individually or in multiple combinations. These operations

completely satisfy all user editing needs for trajectories, and are the following:

• ADD point(s) to a trajectory,

• DELETE point(s) from a trajectory,

• MOVE existing trajectory point(s), and

• JOIN trajectories.

Employing these operations to rapidly edit multiple trajectories requires that the user be

presented with all relevant information. A basic component of such information is the

complete history of the selected trajectories of interest, regardless of the current anima-

tion progress of the input imagery. KOLAM 3.0 allows for this alternative visualization

of trajectories, thereby allowing the user to switch between time-dependent and time-

independent trajectory views as desired. The editing operations are further described below.

129

ADD point(s) to a trajectory

The ADD operation is used to create track segments in portions of the WAMI sequence

where no previous track data exists (i.e. extending a trajectory at the ends). It enables

inserting primitive(s) before the beginning of a track, after the end of a track, or creating a

track segment in-between two (or more) existing tracks in order to create a single, longer

track.To add a single point, the user navigates to either one frame before the start of, or one

frame after the end of the trajectory and drops the new point. To add multiple points, the

user drops a new point several frames before the trajectory start or after the trajectory end.

This results in trajectory interpolation - new points are added by KOLAM for the missing

frames. The new points generated are currently positioned using simple distance interpo-

lation. However, object position prediction methods, involving features like last known

object position, last known object velocity, trajectory point density and point distribution

and so on may be incorporated in a straightforward manner. Such methods serve to mini-

mize (if not eliminate) the user correction needed for each newly added point. An example

of the ADD operation is illustrated in Figure 4.3. Algorithm 15 outlines the procedure for

adding point(s) anywhere along the current trajectory. In particular, this operation creates

a new trajectory if one with the desired ID does not exist.

DELETE point(s) from a trajectory

The DELETE operation allows for the removing the vector data associated with an object

at either end of or at any point within a selected trajectory. Deleting point(s) within the

trajectory splits it in two, with the section prior to the deleted portion retaining the orig-

inal trajectory ID, and the following section being given the first new available ID. The

trajectory retains its ID when point(s) are deleted from either end. Deleting the whole tra-

130

Algorithm 15: Trajectory POINT ADD algorithm
Input : Image sequence I , task to add object position(s) for one (or more)

trajectories purely via user intervention based on visually perceived
spatio-temporal parameters

Output: One or more points on one or more trajectories added by the user; action
and result interactively visualized by KOLAM

1 Activate EditOverlay instance for Trajectory Editing;
2 Prepare SelectTrajs list<Trajectory >;
3 Prepare TrajectoryDS data structure;

4 while EditOverlay is active do

5 // ADD point to New trajectory
6 if TrajectoryDS.newIDRequested then
7 newTraj (new Trajectory);
8 newTraj.append(new TrajectoryPoint);
9 TrajectoryDS.append(newTraj);

10 SelectTrajs.append(newTraj);
11 end

12 // Or, ADD point to Existing trajectory
13 // -ELSE BLOCK HERE-, CONTINUED in next listing.
14 end

15 Return to KOLAM’s main UI Loop;

131

Algorithm 16: Trajectory POINT ADD algorithm: Inner ‘Else’
1 else

2 // Select trajectory to ADD point to
3 User selects SelectTrajs.currID();
4 pickedID← SelectTrajs.currID();
5 pickedTraj← TrajectoryDS [pickedID];

6 // If current time step is BEFORE trajectory start
time, ADD user-clicked point to current time and
extrapolate points for the time steps in between

7 if currTime < pickedTraj.startTime then
8 timeDiff← startTime - currTime;
9 for i← 0 to timeDiff−2 do

10 pickedTraj.prepend(new ExtrapolatePoint);
11 end
12 pickedTraj.prepend(new TrajectoryPoint);
13 end

14 // Or, If current time step is AFTER trajectory end
time, ADD user-clicked point to current time and
extrapolate points for the time steps in between

15 else if currTime > pickedTraj.endTime then
16 timeDiff← currTime - endTime;
17 for i← 0 to timeDiff−2 do
18 pickedTraj.append(new ExtrapolatePoint);
19 end
20 pickedTraj.append(new TrajectoryPoint);
21 end

22 else
23 pickedTraj.insert(new TrajectoryPoint);
24 end
25 end

132

Figure 4.3: ADD Operation of Track Editing. The red inset denotes the original tailing
portion of the trajectory. The points indicated by the green arrows were generated by
KOLAM 3.0 by interpolation when the user clicked on the last point, enclosed by the
square and circle annotation. The MOVE operation was then applied to move the points
into their correct positions w.r.t motion of the object. The MOVE operation is described
further on.

jectory is a special case of this operation. Algorithm 17 outlines the procedure for deleting

point(s) from anywhere along the current trajectory. In particular, this operation deletes

the current trajectory when the user deletes the last available point on the trajectory. Fur-

thermore, deleting point(s) that are not at either end of the trajectory results in the splitting

of the trajectory; this case is handled separately as outlined in Algorithm 19. In both lat-

ter cases, the IDs of the remaining trajectories are updated as required. Examples of both

variants of the DELETE operation are illustrated in Figures 4.4 and 4.5. Algorithm 19

outlines the procedure for splitting the current trajectory anywhere along its length. This

is a special case of deleting a non-terminal point from a trajectory. Splitting creates a new

133

trajectory with a new ID, the new ID being the first freely available ID. This new trajectory

is formed from the points that were temporally antecedent to the point that was deleted.

Points that were temporally precedent to the deleted point remain on the original trajectory.

Algorithm 17: Trajectory POINT DELETE algorithm
Input : Image sequence I , task to delete object position(s) for one (or more)

trajectories purely via user intervention based on visually perceived
spatio-temporal parameters

Output: One or more points on One or more trajectories deleted by the user; action
and result interactively visualized by KOLAM

1 DeleteOp = {ToStart, ToEnd, InBetween};
2 Activate EditOverlay instance for Trajectory Editing;
3 Prepare SelectTrajs list<Trajectory >;
4 Prepare TrajectoryDS data structure;

5 while EditOverlay is active do

6 // Select trajectory to DELETE point from
7 User selects SelectTrajs.currID();
8 pickedID← SelectTrajs.currID();
9 pickedTraj← TrajectoryDS [pickedID];

10 // DELETE from current time to start time
11 if DeleteOp == ToStart then
12 timeDiff← currTime - pickedTraj.startTime;
13 for i← 0 to timeDiff−1 do
14 pickedTraj.startTime + = 1;
15 pickedTraj.popFront();
16 end
17 end

18 // REMAINING CASES continued in Listing 18
19 end

20 Return to KOLAM’s main UI Loop;

134

Algorithm 18: Trajectory POINT DELETE algorithm: REMAINING CASES
1 // DELETE from current time to end time
2 else if DeleteOp == ToEnd then
3 timeDiff← pickedTraj.endTime - currTime;
4 for i← 0 to timeDiff−1 do
5 pickedTraj.endTime − = 1;
6 pickedTraj.popBack();
7 end
8 end

9 // Invoke Trajectory SPLIT operation
10 else if DeleteOp == InBetween then
11 Trajectory SPLIT();
12 end

13 // DELETE Trajectory if no more points on it
14 if pickedTraj (endT ime− startT ime) == −1 then
15 TrajectoryDS.delete(pickedTraj);
16 Adjust all Trajectory IDs following pickedID;
17 end

MOVE existing trajectory point(s)

The MOVE operation allows for the translation of one or more point(s) of the trajectory.

Unlike other operations, MOVE does not involve change of trajectory ID. A noteworthy

point is that extending this operation to MOVE the whole trajectory gives one of three cases

of a general trajectory transformation operation, the other two cases involving trajectory

rotation and trajectory scaling. Generalized transformation operations may be applied to

either a part of or to the entire trajectory. Trajectory transformation methods have been

explored for volumetric data in fields such as robotics. Algorithm 20 outlines the procedure

for moving point(s) anywhere along the current trajectory. An example of the MOVE

operation is illustrated in Figure 4.6.

135

Algorithm 19: Trajectory SPLIT algorithm
Input : Image sequence I , edit op. POINT DELETE selected with current

Trajectory in SelectTrajs, task to split Trajectory purely via user
intervention based on visually perceived spatio-temporal parameters

Output: Trajectory split into two or more trajectories by user; action and result
interactively visualized by KOLAM; Trajectory with newer start time
appended to TrajectoryDS by default

1 Activate EditOverlay instance for Trajectory Editing;
2 SelectTrajs is ready from POINT DELETE;
3 TrajectoryDS is ready from POINT DELETE;
4 pickedID is ready from POINT DELETE;
5 pickedTraj is ready from POINT DELETE;

6 while EditOverlay is active do

7 // Screen-to-Image conversion
8 UserPt← ScrToImg(User-Click);

9 for i← 0 to pickedTraj.ptList.size− 1 do

10 // Find point on trajectory to perform SPLIT
11 currPt← pickedTraj.ptList [i];
12 testDist← EuclidDist(UserPt, currPt);

13 // Make sub-trajectory following SPLIT point a new
trajectory

14 if testDist < clickThresh then
15 TrajectoryDS.append(new Trajectory);
16 for j ← i+ 1 to pickedTraj.ptList.size− 1 do
17 TrajectoryDS [size-1].ptList.append(pickedTraj.ptList [j]);
18 delete pickedTraj.ptList [j];
19 end

20 SelectTrajs.append(TrajectoryDS [size-1]);
21 end
22 end
23 end

24 Return to KOLAM’s main UI Loop;

136

Algorithm 20: Trajectory POINT MOVE algorithm
Input : Image sequence I , task to move object position(s) for one (or more)

trajectories purely via user intervention based on visually perceived
spatio-temporal parameters

Output: One or more points on one or more trajectories moved to new coordinate
position(s) by the user; action and result interactively visualized by
KOLAM

1 Activate EditOverlay instance for Trajectory Editing;
2 Prepare SelectTrajs list<Trajectory >;
3 Prepare TrajectoryDS data structure;
4 clickThresh: Threshold distance to pick trajectory point in proximity to user-click;

5 while EditOverlay is active do

6 // Select Trajectory to MOVE point(s) on
7 User selects SelectTrajs.currID();
8 pickedID← SelectTrajs.currID();
9 pickedTraj← TrajectoryDS [pickedID];

10 // While User MOVEs point(s) on trajectory
11 while User moves point(s) on pickedTraj do

12 // Screen-to-Image conversion
13 UserPt← ScrToImg(User-Click);

14 // Find the point to MOVE
15 for i← 0 to pickedTraj.ptList.size− 1 do
16 currPt← pickedTraj.ptList [i];
17 testDist← EuclidDist(UserPt, currPt);
18 if testDist < minDist then
19 minDist← testDist;
20 dragPt← currPt;
21 end
22 end

23 // Sync selected pt display with User Drag
24 while User performs drag do
25 dragPt← ScrToImg(UserPt);
26 end
27 end
28 end

29 Return to KOLAM’s main UI Loop;

137

Figure 4.4: DELETE Operation of Track Editing. The last point of the green trajectory (red
inset in ‘A’, separately shown in ‘B’), is deleted in ‘C’, with the overall result being shown
in ‘D’.

JOIN trajectories

The JOIN operation allows for two or more trajectories to be merged together into a single,

longer trajectory. Given that joining three or more trajectories is simply a case of perform-

ing multiple pairwise joins, we present the details of performing JOIN on a single pair of

trajectories. We then examine the multiple join operation as an extension of the same, and

enumerate any additional constraints. A meaningful JOIN operation requires that one tra-

jectory start at an earlier point in time than the other. For ease of description, ‘source’ and

‘target’ are aliases for the earlier and later starting trajectories henceforth. The target may

start at one of four possible points in time with respect to when the source ends:

• One or more time steps prior to source end,

• At the same time step as source end,

• One time step after source end, and

138

Figure 4.5: The ‘Split’ variant of the DELETE Operation. Note that the portion of the
original trajectory preceding the DELETEd point in time has retained the original trajectory
ID, while the trajectory fragment following the DELETEd point in time has been assigned
the first free ID.

• Two or more time steps after source end.

Of the four cases, the third case is the base case: no trajectory points need be eliminated

since each time step has a single associated point.

The fourth case involves trajectory interpolation, and the relevant details presented for

ADD apply here as well. However, an additional step is involved: determining the trajec-

tory to which the interpolated points should be added. KOLAM implements the simple

rule that new points be added at the end of the source trajectory. Additionally, given any

selected trajectory pair, KOLAM flexibly permits the user to designate either member of

the pair as source or target. Thus, new points may be added (prepended or appended) to

either trajectory. This decision may also be made via methods similar to those outlined for

ADD.

Finally, the first and second cases involve elimination of one (the second case) or more

(the first case) points from one (in certain situations, both) of the trajectories. It is important

that both cases satisfy the following constraint: Regardless of the choice of trajectory for

139

Figure 4.6: MOVE Operation of Track Editing. The end point (incorrect tracker detection)
of the selected purple trajectory in ‘A’ is MOVEd by the user to its correct position in ‘B’.

point deletion, the resulting merged trajectory should continue to represent the motion of

the object without loss of accuracy. Let us clarify this point further.

For the temporally overlapping portion of the two trajectories, two candidate points are

present at each time step. In determining the candidate for deletion in each such pair, the

optimal solution (that which minimizes the needed number of user corrections) is to discard

that candidate which is spatially further from the actual position of the object. Depending

on the nature of the specific dataset and the specific object being tracked, candidates for

elimination might be at the end of the source, at the beginning of the target, or might be on

both sides. This ’stitching’ problem is non-trivial, and whether the latency of the chosen

algorithmic solution can be accommodated while retaining the real-time interactivity of the

JOIN operation is uncertain. Given this difficulty, KOLAM currently provides a couple of

simple solutions (which rely on user input rather than being automated): Given the case of

140

erroneous points being on only one trajectory, KOLAM uses the rule that points be deleted

from the target, and allows the user to designate either trajectory as source or target. If

erroneous points are present in both trajectories, the user may use the DELETE and MOVE

operations to partially correct the trajectories prior to using the JOIN operation. The partial

overlap scenarios for the JOIN operation are illustrated in Figures 4.7, 4.8, 4.9 and 4.10.

Algorithm 21 outlines the procedure for joining a pair of trajectories. The trajectories

may be chosen in any order, and the join is performed from the temporally precedent (with

earlier start time) trajectory to the temporally antecedent (with later start time) trajectory.

In the case of temporal overlap between the two trajectories, extra points in the temporal

overlap zone are deleted from the temporally precedent trajectory.

4.4 Conclusions and Future Work

KOLAM is demonstrated to be a scalable and flexible tool for exploratory analysis of

WAMI datasets that provides dense spatiotemporal coverage of wide-field urban regions

and can be used for object detection and tracking. The current KOLAM environment sup-

ports an efficient tiled memory representation of very large time series of images using a

spatial and temporal dual-caching mechanism. The multithreaded synchronization archi-

tecture ensures that tile access and tile display processes work smoothly with each other

and can be readily scaled with the availability of additional processing cores and mem-

ory. KOLAM is particularly designed to facilitate user interaction and user-driven WAMI

exploitation.

KOLAM is able to improve human effectiveness measured in terms of productivity

for accurately tracking multiple targets and reviewing and validating the results of track-

141

Figure 4.7: JOIN Operation with ‘source’ and ‘target’ trajectory overlap. Legend on TOP,
Case (1) at BOTTOM

142

Figure 4.8: JOIN Operation with ‘source’ and ‘target’ trajectory overlap. Case (2) on TOP,
Case (3) at BOTTOM

143

Figure 4.9: JOIN Operation with ‘source’ and ‘target’ trajectory overlap. Case (4) on TOP,
Case (5) at BOTTOM

144

Figure 4.10: JOIN Operation with ‘source’ and ‘target’ trajectory overlap. Case (6) on
TOP, Case (7) at BOTTOM

145

Algorithm 21: Trajectory JOIN algorithm
Input : Image sequence I , task to join a pair of trajectories purely via user

intervention based on visually perceived spatio-temporal parameters
Output: A pair of trajectories joined by the user; action and result interactively

visualized by KOLAM; remaining trajectories have their IDs adjusted to
account for eliminated IDs

1 Activate EditOverlay instance for Trajectory Editing;
2 Prepare SelectTrajs list<Trajectory >;
3 Prepare TrajectoryDS data structure;

4 while EditOverlay is active do

5 // Need at least 2 trajectories to perform JOIN
6 if TrajectoryDS.size < 2 then
7 Create new Trajectory newTraj with newObj;

8 // Automatically track additional object
9 if User wants to automatically track newObj then

10 Perform Automatic Tracking() with newTraj;
11 end

12 // OR, Visually track additional object
13 else if User wants to manually track newObj then
14 Perform Visual Tracking() with newTraj;
15 end
16 TrajectoryDS.append(newTraj);
17 end

18 // WHILE Loop; CONTINUED in Algorithm listing 22
19 end

20 Return to KOLAM’s main UI Loop;

146

Algorithm 22: Trajectory JOIN algorithm: INNER WHILE
1 while Need to do JOIN && TrajectoryDS.size > 1 do

2 // Select 2 trajectories to JOIN
3 while pickCount < 2 do
4 if pickCount == 0 then
5 IDOne← User selects SelectTrajs.currID();
6 pickCount← pickCount +1;
7 continue;
8 end
9 IDTwo← User selects SelectTrajs.currID();

10 pickCount← pickCount +1;
11 end

12 FStart← TrajectoryDS [IDOne].startTime;
13 FEnd← TrajectoryDS [IDOne].endTime;
14 SStart← TrajectoryDS [IDTwo].startTime;
15 SEnd← TrajectoryDS [IDTwo].endTime;

16 // If they temporally overlap, delete ending pts of
temporally precedent trajectory, perform JOIN and
update IDs

17 if FStart < SStart && FEnd > SStart then
18 while FEnd >= SStart do
19 TrajectoryDS [IDOne].popBack();
20 end
21 tempTraj← TrajectoryDS [IDTwo];
22 TrajectoryDS [IDOne].append(tempTraj);
23 delete tempTraj and update IDs;
24 end

25 else if SStart < FStart && SEnd > FStart then
26 while FEnd >= SStart do
27 TrajectoryDS [IDTwo].popBack();
28 end
29 tempTraj← TrajectoryDS [IDOne];
30 TrajectoryDS [IDTwo].append(tempTraj);
31 delete tempTraj and update IDs;
32 end
33 end

147

ing especially in the assisted tracking mode. As described in detail in this Chapter, the

author’s work in conceiving and implementing trajectory visualization and trajectory edit-

ing operations within the KOLAM system constitutes a crucial component of the solution

to the problems and challenges involved in assisted object tracking, as well as automatic

and manual object tracking. Visual analytics and visual synopsis will be useful directions to

deal with the large data volume from WAMI sensors. Future improvements include support

for IR and multispectral WAMI, a knowledge base for managing thousands of trajectories

from automated and interactive analysis of events, developing techniques to visualize sta-

tistical trajectory flow information, distinguishing between normal and abnormal patterns

of activity, and processing event-based queries using semantic models.

148

Chapter 5

CASE STUDY 3: Interactive
Segmentation Relabeling for
Histopathology Applications

5.1 Motivation

Within the cancer research community, it is being increasingly appreciated that tumor

stroma constitutes an integral part of cancer initiation, growth, and progression; therefore,

it holds valuable prognostic and response-predictive information [64] [65] [66] [67] [68]

[69] [70]. Stroma tissue surrounding cancer cells plays an important role in tumor devel-

opment and behavior [67]. It is widely recognized that tumor progression and metastasis

are intimately linked to tissue remodeling resulting from tumor cell interactions with the

host tissue stroma [68]. On Haematoxylin-Eosin (H&E) stained histopathology images,

the impact of stroma on patient outcome is mostly studied through tumor-stroma area ratio.

In [67] Kruijf et al. showed that tumor-stroma ratio is a prognostic factor for relapse-free

149

period. Dekker et. al. [69] observed that tumor-stroma ratio was associated with disease-

free survival. For both studies, tumor-stroma ratio was determined by visual estimation. In

a more comprehensive study [64], automated analysis of H&E slides has revealed that

the stromal regions of breast tumors contain more prognostic information than the epithe-

lial regions. The ‘C-Path’ system [64] that was developed for this purpose combined a large

set (more than 6600) of image-derived morphometric features with image classification and

machine learning techniques. In following the ‘human-in-the-loop’ paradigm, investigat-

ing whether a system that allows for the coupling of human expert intervention (via ground

truth generation) with a smaller set of automatically derived features is capable of achiev-

ing similar or superior performance presents an interesting problem. The work described

in this chapter attempts to lay a foundation to solving this problem.

Collecting ground-truth or gold standard annotations from expert pathologists for devel-

oping histopathology analytic algorithms and computer-aided diagnosis for cancer grading

is an expensive and time consuming process. At this juncture, the term ‘gold standard’

must be defined, from a medical and statistical perspective. A gold standard test com-

monly denotes a diagnostic test or benchmark which is the best available under reasonable

conditions [71]. It may also refer to the most accurate test possible without any restrictions.

By a different definition, a hypothetical ideal gold standard test has a sensitivity of 100%

and a specificity of 100%. However, such values are nearly impossible to obtain, and there-

fore in conjunction with the prior definitions, a gold standard test is one with the highest

possible values for sensitivity and specificity under reasonable conditions. To conclude,

the phrase ‘gold standard’ can be ambiguous, and therefore its relevant meaning must be

deduced from the context of usage.

Efficient visualization and annotation tools are needed to enable ground-truthing large

150

whole-slide imagery. As elaborated above, we thus have a new domain-specific motivation

and problem statement, with the challenges involved being largely the same as encoun-

tered in previous chapters. In summary, the solution involves providing support for rapid

interactive labeling and correction of automatic image classifier-based region labels of the

tissue micro-environment by pathologists. In implementing the solution, KOLAM; which

is already implemented as a scalable, cross-platform framework for interactive visualiza-

tion of 2D, 2D+t and 3D imagery of high spatial, temporal and spectral resolution; has

been extended to perform these tasks by the author [72]. Indeed, examples such as the one

illustrated in Figure 5.1 demonstrate how KOLAM’s extensible nature made visualization

of the big-data histopathology image data a straightforward task that involved few changes

to the existing architecture besides adding support for the requisite image file formats [72].

Besides annotating regions-of-interest (ROIs), KOLAM was extended to enable extrac-

tion of the corresponding large polygonal image sub-regions for input into automatic seg-

mentation algorithms, single-click region label re-assignment and maintaining hierarchical

image sub-regions [72]. Experience indicates that clinicians prefer simple-to-use interfaces

that support rapid labeling of large image regions with minimal effort. The incorporation

of easy-to-use tissue annotation features in KOLAM makes it an attractive candidate for in-

tegration within a multi-stage histopathology image analysis pipeline (consisting of pre-

processing, segmentation, feature extraction, and classification modules [73]) supporting

assisted segmentation and labeling to improve whole-slide imagery (WSI) analytics [72].

151

Figure 5.1: KOLAM 3.0 diplaying several histopathology BigTIFF images interactively
arranged in a grid. The dimensions and raw sizes of these big-data images follow. Top
Left: 146878 x 79128 px, 46.5 GB. Top Right: 83519 x 57591 px, 19.2 GB. Bottom Left:
113279 x 38616 px, 17.5 GB. Bottom Right: 117119 x 84257 px, 39.5 GB. KOLAM 3.0
can fluidly translate and zoom into each image separately, or transform them as a group.

5.2 Introduction

Clinical decision support systems (CDSSs) play a crucial role in the clinical process, from

diagnosis and investigation to treatment and long-term care [74]. CDSSs are currently fac-

ing a deluge of image data from multiple sources including radiology and pathology. Ad-

vances in imaging techniques, high-throughput technologies, pathology informatics, bioin-

formatics, need for exploratory analysis of WSI and personalized medicine data sets con-

152

Figure 5.2: Breast Cancer slide section and segmentation results side-by-side.

tinue to generate big data volumes in need of immediate analysis. The web-based Cancer

Digital Slide Archive [75] is one such repository, that integrates imaging, genomic and

clinical datasets.

The approach of manually labeling patient biopsy slides for automatic algorithm devel-

opment has its advantages: it leverages the ability of the pathologist expert to quickly intuit

relevant meaning from slide appearance, as well as the robust invariance of his/her (human)

visual system to irrelevant variations in image properties such as contrast and illumination.

However, it is not scalable with the burgeoning volume of biopsy data, due to subjectivity

of interpretation by pathologists, fatigue and likelihood of errors. The expert variability (in

observer training, ability, experience, alertness and timing) in the visual inspection process

is quite high, with up to a 20 percent discrepancy between different reviewers [76]. The

important consequence of such variability is the potential danger of disagreement regarding

course of treatment options among pathologists. In contrast, the image analysis component

of CDSS is objectively versatile, consistent, inherently multiplexed, high in information

content and far less labor-intensive. Furthermore, the image analysis component of CDSS

is also capable of capturing small but significant biological characteristics that are unde-

153

tectable by the human eye. By providing efficient methods for objective quantification of

image features, CDSSs have emerged as useful decision-making tools involving biomedical

imaging.

It is known that a foundational principle of cancer histopathology is the direct corre-

lation between cancer cell biology and tissue morphology and the tumor microenviron-

ment [77]. The C-Path system [64] is the first example of a multi-stage system that di-

rectly correlates tumor morphological patterns to outcomes in order to assist in cancer

characterization, diagnosis and prognosis in a versatile and groundbreaking manner. In

contributing to the goal of developing a system titled ’M-Path’ which could potentially

achieve similar goals, the author designed and implemented an improved human-computer

interface for rapid annotation of the tissue microenvironment in histopathology WSI using

a combination of automatic image classification output with manual expert region label

correction, within the KOLAM visual analytics framework [72]. This KOLAM subsys-

tem is focused on further investigating the correlation between microenvironment image

features derived from stromal and epithelial regions and patient survivability beyond five

years post-diagnosis, following the work done in [64]. In requiring a means to identify

and distinguish between stromal and epithelial regions in hematoxylin and eosin (H&E)

stained histopathology digital slides, we examined results derived from a number of ap-

proaches ([78] [79] [80] [81] [82]). We chose to integrate the KOLAM system with [73],

which uses a hierarchical fuzzy c-means (HFCS) based segmentation system to partition

the images into coherent partitions (super-pixels), from which regional color and texture

features are extracted, followed by classification by a support vector machine (SVM) based

classifier of the regions into stroma and epithelium (See Figure 5.2 for an example of the

input data and the output as visualized in KOLAM). The benefits of this approach are two-

154

fold: the partitions provide larger support regions for the features used in classification, and

ameliorate blending problems encountered when the neighborhood around a pixel contains

both epithelial and stromal regions [73]. The overall M-Path system [72] [73] is illustrated

in Figure 5.3.

Figure 5.3: The M-Path pipeline.

For handling the type of problem like epithelia-stroma classification in imagery, two

approaches have been widely employed : (a) perform the task with extensive (complete)

manual intervention, or (b) develop scripts, macros and plugins which operate with well-

known software packages, such as Metamorph, ImagePro Plus and MATLAB. The sys-

tem we have developed is capable of performing in both roles: it has been developed as

a dedicated system capable of solving this type of problem, and can additionally be en-

hanced via plugins and scripts. With the goal of positioning KOLAM [39] [40] [45] [9]

as a cross-platform and scalable digital light table or virtual microscope framework, it has

been extended to support visualization and fast, reproducible semi-supervised annotation of

155

histopathology slides. KOLAM also provides interfaces for (semi-)automated labeling and

manual correction or relabeling of stromal, epithelial and other regions of interest in the tis-

sue micro-environment. The potential benefits of our system are two-fold. Firstly, utilizing

automated classification modules permits the grading of patient cancer on the basis of mor-

phological criteria to be performed objectively. Following automatic image segmentation,

the discrepancies with the ground truth that invariably arise necessitate manual verifica-

tion and correction of the segmentation. Leveraging KOLAM’s interactive label annotation

features, experts may dynamically alter patient cancer grades and iteratively improve the

performance of the classification module. Secondly, by using KOLAM’s features to vi-

sually analyze segmented and classified patient biopsy results before and after treatment,

experts have more opportunities to potentially make new judgments and discoveries regard-

ing how morphological features of interest have changed in response to said treatment over

time.

The following section describes related work, including the state-of-the-art segmen-

tation, classification, ROI extraction etc involving histopathology WSI data; as well as

the leading proprietary and open-source software tools capable of handling and process-

ing such imagery. Section 5.4 begins with a description of KOLAM’s relevant features

and handling of various WSI data aspects. The rest of the section describes KOLAM’s

interactive segmentation relabeling module and its use in ground-truth generation for cre-

ating training cases. These training cases are for histopathology image analysis as well

as for interactively correcting any automated classification results. Section 7.5 presents

details about our evaluation methodology; namely the factors we took into consideration

while designing our experimental setup for evaluating different interactive relabeling soft-

ware. Section 7.6 covers the experimental procedure, and in Section 7.7 we present the

156

experimental results of quantitative and qualitative evaluation of KOLAM for the task of

interactive histopathology segmentation/classification result relabeling. The final section

of this chapter includes our concluding remarks and a brief outline of ongoing and planned

future work on our system.

5.3 Related Work

There have been several algorithmic advancements pertaining to WSI data analysis in re-

cent years. Beck et al. [64] have designed the ‘C-Path’ system which attempts to compre-

hensively analyze a large set of automatically quantified morphological features, thereby

trying to identify characteristics of prognostic relevance and provide an accurate and repro-

ducible means for assessing prognosis from microscopic image data. The set of features

includes standard morphometric descriptors of image objects and higher-level contextual,

relational and global image features.

Kothari et al. [83] present a framework which they use to demonstrate qualitative asso-

ciation between biologically interesting WSI regions and common histopathological image

features, the usability of supervised analysis to help translate ROI-relevant histopathology

domain knowledge into image features, and that portions of WSIs may be clustered into

biologically relevant regions by sets of multiple image features. Gutierrez et al. [84] pro-

pose a means of emulating the pathologist’s process of identifying diagnostically relevant

ROIs by modeling the human visual recognition process. It involves simulating the ef-

fect of the V1 region of the visual cortex and its interaction with the V2 and V4 regions,

thereby attempting to capture the groupings possessing similar histopathological meaning.

Romo et al. [85] have formulated a semi-automatic method for extracting ROIs, which

157

upon partitioning a Virtual Slide (VS) arbitrarily into sub-blocks and being assigned a (ex-

pert pathologist determined) distance measure, utilizes a non-linear combination of projec-

tion of the sub-blocks into low-level feature defined subspaces. A ranking score is then

used to define several (not necessarily connex) levels of relevancy. Raghunath et al. [86]

assessed pathologists’ visual search performance by analyzing their mouse cursor and eye-

gaze movement while they viewed WSI data of pathological specimens. They attempted

to determine whether cursor movement data is a reliable indicator of physician attention

and diagnostic behavior by examining the spatial coupling between eye-gaze and cursor

positions.

We now outline a number of state-of-the-art segmentation and classification strategies

that have been utilized on WSI data. As opposed to the explicit segmentation module

whose results are passed to an SVM-based classifier module used in the pipeline that KO-

LAM has been integrated with, research efforts by other groups ([87], [88]) utilize pixel or

block-based epithelium-stroma classifiers. DiFranco et al. [89] have devised a system that

produces clinically relevant heat-maps of tumor presence probability, using sparsity of data

derived from a limited number of training WSIs. Expert-annotated tiles from the training

images are used to build an ensemble of classifiers, and individual classifier responses are

used to compute cancer presence probability scores. Visualization is then performed via

ensemble classification of the query image tiles. Roullier et al. [90] propose a graph-based

multi-resolution segmentation strategy for breast cancer WSIs, that seeks to mimic pathol-

ogist interpretation under the microscope as focus of attention. Kong et al. [91] worked on

multi-resolution hierarchical images to perform adaptive segmentation across the resolu-

tion levels based on confidence measure output from a classifier combination mechanism.

Doyle et al. [92] utilize a boosted Bayesian multi-resolution classifier to initially identify

158

suspicious regions at lower resolutions of the WSI, and analyze successive image resolu-

tions in this fashion until a spatial map of the disease extent is obtained. Huang et al. [93]

propose means to improve the efficiency of WSI handling in terms of speed and precision

by incorporating a multi-scale dynamic sampling approach and GPU processing capabili-

ties.

Another aspect of handling WSIs is the increasing number of custom data formats.

Increasing clinical and commercial interest in digital (histo)pathology alongwith the cur-

rent non-standardized proprietary large image formats has led to the Digital Imaging and

Communications in Medicine (DICOM) Standards Committee proposing Supplement 145

for WSI, compatible with current enterprise-wide Picture Archiving and Communication

System (PACS) software widely used by hospital information systems for radiology im-

agery [94]. The DICOM standard for histopathology will enable the electronic display,

sharing, storage and management of large multi-resolution multi-planar WSI in a tiled

pyramid image format. Each tile can be compressed using JPEG, JPEG2000 or other com-

pression and coding methods. The OME Remote Objects (OMERO) [95] software platform

is a collaborative effort towards building open-source data access and interoperability tools

for WSI data.

WSI handling also requires capable visualization systems. Jeong et al. [96] present a

novel visualization framework capable of smooth interaction with extremely large histopathol-

ogy WSIs, which employs a local, adaptive data structure with demand-driven processing:

this display-aware paradigm accesses image data via lazy, on-demand evaluation, thereby

not having to manage fully processed global image pyramids unlike other existing methods.

Imaris [97] is an extensive software suite primarily focusing on image processing opera-

tions for multi-channel 4D imagery. The industry-leading Visualization Toolkit (VTK) [98]

159

is a comprehensive and mature C++ API for performing 3D computer graphics, visualiza-

tion and image processing operations. ImageJ, the Java-based image processing program

developed at the National Institutes of Health, has an open architecture extensible via Java

plugins and recordable macros [99]. Fiji, a distribution of ImageJ focused on biological-

image analysis, combines software libraries with scripting languages to enable rapid proto-

typing of image-processing algorithms [100]. The ePathology ImageScope [101] allows for

panning and zooming, stain comparison, image analysis and more on digital slide images.

ilastik [102] is an interactive segmentation and classification system that infers problem

specific segmentations based on user-generated labels. The real-time feedback it provides

allows for interactive refinement of the segmentation result, thus further fine-tuning the

in-built random forest classifier. Cytomine [103] is a rich internet application integrating

popular web and open-source technologies to enable remote visualization and collabora-

tive annotation of digital slide imagery. Sedeen 5.0 [104] supports a number of WSI data

formats, provides extensive annotation capability and other features including multi-modal

overlays, image registration, cropping and resizing. GRAPHIE [105] is a visual analytics

tool to explore, annotate and discover potential relationships in histology image collections

with a biologically relevant context. By representing each image with informative features

and subsequently visualizing the image collection as a graph, GRAPHIE allows users to

effectively explore the image collection. Interactive feature selection for improved image

collection visualization and annotation is possible.

160

5.4 KOLAM for Histopathology VisAnalysis

KOLAM is a large data / information visualization environment and visual analytics sys-

tem with robust support for out-of-core multiresolution tiled imagery across application

domains [39] [40] [45] [9]. In addition to the functionality of a virtual microscope [106] or

light table, KOLAM has been extended by the author to support WSI data and is currently

being used for generating ground-truth or supervised region labels for input to image classi-

fication training algorithms. The suitability of KOLAM for WSI (big data) handling stems

from the following aspects of WSI. Firstly, WSI come with a wide variety of image and

metadata formats, with a variety of format specifications and proprietary aspects; secondly,

issues pertaining to the large images, of the order of tens of gigabytes; and finally, the need

for an intuitive yet efficient human computer interface for interactive visualization, navi-

gation, manipulation and labeling. We also note that the complexity of the ground-truth

collection process (with respect to H&E stained histopathology imagery data) is typically

governed by (a) the quality of the imaging system, (b) standardization of data access [95],

(c) clinical diagnostic requirements, and (d) access to clinical patient data.

We now explain the solutions implemented in KOLAM that provide its capability to

handle these aspects. Per Keim et al [107], visual analytics combines the tasks of visual-

ization, human intervention and data analysis to make decisions about the data in an inte-

grated fashion. Through our choice of segmentation and classification algorithms, we have

selected superior candidates for our specific WSI analysis tasks, clearly defined the limits

of (automated) operation of these algorithms on the data, consequently developing visual-

ization and user interactive capabilities in KOLAM which complement our algorithms to-

gether in the best possible tightly integrated solution. The KOLAM interface environment

aims to provide the pathologist with easy-to-use visualization and annotation capabilities

161

Figure 5.4: KOLAM’s multi-threaded image rendering engine, showing the roles and inter-
actions of the tile cache, tile request queue, display and reader threads for managing large
multiscale tiled imagery with multiple layers of information including segmentation and
classifier label annotations.

in a way that captures the expert’s knowledge that is scalable [95]. Similar goals have

been pursued and implemented in [102], [103] and [105]. Furthermore, these capabilities

along with the intuitive feedback provided by KOLAM’s interface allow the expert to in-

teractively refine the results generated by segmentation, thereby further tweaking the input

to the classifier module in a meaningful way. The KOLAM GUI facilitates and enhances

opportunities for scientists and experts to make new inferences using the rich feature set of

visanalysis tools, that would otherwise be difficult. The typical workflow for histopatho-

logical image analysis that has been observed in the literature comprises identifying regions

of interest (ROI), feature extraction, feature selection and supervised classification.

5.4.1 Big Data Out-of-Core Visualization

As seen previously, KOLAM handles big data imagery by exploiting a multi-scale tiled

memory efficient data structure [9] and out-of-core cache management strategies [39] as

shown in Figure 5.4. KOLAM’s multi-threaded image-rendering engine is capable of

162

rapidly displaying multiple images and information layers as well as a temporal collec-

tion of multi-image (sequence) layers for display. The partitioning of each image into tiles

allows fast, scalable random access to spatially coherent regions of the imagery across

resolutions. This permits on-demand access to arbitrary regions and scales of the image

needed for display, as well as application-level out-of-core management of memory [39].

Multiresolution (pyramidal) tiling allows for the interactive zooming of the image across

scale [9]. Use of thread synchronization and CPU load balancing schemes allow KOLAM

to manage out-of-core I/O and CPU demand patterns for visualizing large, tiled imagery.

Furthermore, KOLAM’s spatio-temporal dual cache system [39] permits the interactive vi-

sualization and playback of multiresolution image sequences. By using KOLAM features

such as overlays, altering projection parameters, or interactively modifying the image res-

olution level the user can generate multiple views of the data by composing and organizing

it in different ways. Additionally, custom view settings for data generated by one user may

be stored and thus shared with other users of the WSI. All these features of KOLAM were

covered in detail in Chapter 2.

5.4.2 Support for Multiple WSIs and Metadata Types

A number of image formats capable of supporting the huge dimensions and metadata re-

quirements of WSIs have emerged recently. The Aperio ‘.svs’ format is being supported

in microscopy software from multiple vendors. The BigTIFF format can also handle the

large sizes of WSI bio-images. In addition to handling these formats by supporting the

OpenSlide [108] and LibTIFF libraries, KOLAM was also extended to provide access to

a large single collection of popular microscopy image formats via its interfacing with the

LOCI Bio-Formats [109] library. KOLAM provides a uniform interface for access to meta-

163

data and can query or update metadata information for all supported image file formats.

5.4.3 WSI Pre-processing

Prior to undergoing the imaging process which generates the WSIs, the tissue samples

are processed, embedded, sectioned and stained. McCann et al. [110] and Rolls [111]

both provide a description of these stages of the pre-analysis pipeline. They [110] also

summarize the sources of image variability in the WSIs that arise due to different problems

which occur during the pre-analysis stages. Consequently, the histopathology WSI dataset

needs to be pre-processed, prior to undergoing either segmentation, classification, expert-

driven ground truth generation or label re-assignment.

Regardless of whether or not the imagery has undergone some corrective processing by

the image acquisition software suites, illumination often varies by up to 150% across the

field of view. Such variations are caused either by uneven incoming illumination, sensor

bias, lens and slide imperfections or operator error. Secondly, the staining stage is respon-

sible for both color and contrast. The intensity of a given stain depends on: (a) original

stain strength, (b) the staining procedure, (c) percentage fading since original processing

of the sample, and (d) how much of the cellular substance of interest is present in the

material [112]. Non-uniformity in the staining procedure is a critical source of variabil-

ity. Together, such sources add noise at unacceptable levels to the imagery, obscure true

quantitative differences and make all experiments dependent on fluorescence intensity mea-

surements impractical [113]. The need for accuracy in the quantitative comparisons being

performed between KOLAM and other software systems further underscores how critical

illumination correction and noise removal are to this work.

To this end, a good WSI pre-processing module would incorporate techniques such as

164

anisotropic diffusion filtering [114] for noise removal while preserving features, and con-

trast limited adaptive histogram equalization (CLAHE) [115] for illumination correction.

The problem of staining variability is addressed by stain normalization of the WSI data.

A number of approaches are described in the literature; for both when the stain colors are

known [116], and when they are not [112] [117] [118] [119].

5.4.4 Interactive Region-of-Interest (ROI) Selection

The first step prior to ground-truth generation involves the clinicians interactively visual-

izing the WSI data, and annotating ROIs (ie. regions with abnormal tissue characteristics

that may be cancerous) via KOLAM’s overlay drawing planes. These annotations are saved

in XML format and may be reloaded for later use or shared between users. These regions

are sometimes very large themselves (e.g. a WSI image of 130K×100K pixels, with ROIs

of sizes 30K×20K pixels). In order to focus more closely on select areas within these

ROIs, and to keep the burden of computational complexity as small as possible, the ROIs

are further partitioned into image chips for individual processing. While feasible for han-

dling a single or a few WSI images, the approach of having experts annotate ROIs from

scratch for each image in a large WSI dataset is extremely time-consuming. To this end,

the approach implemented in [120]; ie. keeping track of the expert’s viewport change his-

tory via viewport logs, learning from this history and attempting to predict similar ROIs in

subsequent images by utilizing zoom level, navigation displacement and viewing duration

information does indeed serve the need for increased efficiency, is part of the future work

being implemented in KOLAM.

In the following steps, KOLAM is used first to assign new tissue labels for some of

the segments generated by the applied segmentation algorithm. Subsequently, KOLAM is

165

Figure 5.5: KOLAM’s role in the training and testing steps of the classifier algorithm. The
input image and corresponding partition IDs are provided to the classifier module, which
the outputs new tissue microenvironment labels. The expert re-labels incorrectly labeled
classes. These corrections are input to the classifier module for training.

used to relabel some of the tissue classes assigned by the classifier algorithm. The details

of the training and testing steps are presented below.

5.4.5 Ground-Truth Creation and Relabeling

We now re-examine those stages of the multi-stage pipeline for epithelia-stroma classifi-

cation (pre-processing, segmentation, feature extraction and classification) where KOLAM

has the role in facilitating the creation of ground truth labels as well as their subsequent re-

labeling (as required). During the pre-processing step, image enhancement (morphological

reconstruction, normalization, bilateral filtering etc.) operations are performed and pixel

features are computed [73]. The computed pixel features include color transforms, tex-

166

ture features within a small region surrounding each pixel, including local binary patterns

(LBP), first and second order derivatives, and derived features such as shape index and

normalized curvature index [73]. During the segmentation step, the hierarchical fuzzy

c-means with spatial constraint (HFCS) segmentation module incorporates spatial infor-

mation into the objective function of the classical fuzzy c-means algorithm by including

terms for spatial correlation and multi-resolution [73]:

JSCM(U, V) =
C∑
i=1

N∑
j=1

umij‖ xj − vi ‖
2+

n

2
α

C∑
i=1

N∑
j=1

umij e
−

∑
k∈Ω u

m
ik + β

C∑
i=1

N∑
j=1

umijf
(n−1)
i (xj) (5.1)

where X = {x1,x2, ...,xN} denotes data (pixel feature vectors). V = {v1,v2, ...,vC}

represents the prototypes (clusters centers). Ω is a set of neighbors (k 6= j). f (n−1)
i (xj)

is the point xj ’s ancestor membership function to the ith cluster in lower layer (n − 1) .

Parameters α and β control the influence of the associated terms. α is multiplied by scale

factor (n
2
) to reduce the effect of spatial constraint at lower levels. The HFCM objective

function (5.1) contains three terms [73]. The first term is the same as in regular FCM. The

second term is a spatial penalty that forces neighboring pixels to belong to the same class.

It reaches a minimum when the membership value of neighbors for a particular cluster is

large. The third term incorporates the relationship between classes of elements at different

resolutions for more feature consistency. Optimization of (5.1) with respect to U is done in

167

a classical way by a Lagrange multiplier technique [73]:

JSCM(U, V) =
N∑
j=1

λj(1−
C∑
i=1

uij) +
C∑
i=1

N∑
j=1

umij(
‖ xj − vi ‖2 +

n

2
αe−

∑
k∈Ω u

m
ik + βf

(n−1)
i (xj)

)
(5.2)

After taking the derivative of Eq. 5.2 versus uij , solving for uij , and solving for λj with

respect to the constraint eventually leads to the following membership update equation [73]:

uij =
1∑C

p=1

(
‖xj−vi‖2+n

2
αe
−

∑
k∈Ω um

ik+βf
(n−1)
i (xj)

‖xj−vp‖2+n
2
αe
−

∑
k∈Ω um

pk+βf
(n−1)
p (xj)

) 1
m−1

(5.3)

As in (5.3), uij , the membership value of a point j to cluster i, depends on membership

values of its neighbors and ancestor in the pyramidal representation. Regularization is

controlled by weights α and β. The prototype update equation is the same as in standard

FCM, since the second component of (5.1) does not depend on vi. Centroids update obeys

the equation:

vi = (
N∑
j=1

umijxj)/(
N∑
j=1

umij) (5.4)

The process of segmentation relabeling for classification involves the two stages of

training and testing. Designation of ground-truth tissue micro-environment labels is the fo-

cus of the training step in the processing pipeline. In Figure 5.5, the training step includes

every module except the classifier module and its input, which is solely part of the subse-

quent testing step. Prior to tissue label reassignment by the expert, the image chips need

to be segmented and assigned preliminary labels. Using the HFCM segmentation scheme

described above, initial partitions of the input images were generated. For the first training

168

subimage, the expert sees the partition boundaries in a single class color that is overlaid

on top of the underlying image. The pathologist can then change the color of any partition

from epithelia to stroma or vice versa with just a few user interaction events. Tha manual

assignment of ground-truth labels continues until the pathologist is satisfied with the la-

bels assigned to partitions without having to tediously draw any boundary contours in the

image. The partitions are essentially an unlabeled segmentation.

These corrected tissue labels are then passed from KOLAM to the image region clas-

sifier module that can be applied to other test (sub)images with segmentations. Examples

of classifier algorithms that are typically applied to histopathology WSI problems include

k-nearest neighbor classifiers, support vector machines (SVM), random forest classifiers,

multiple instance learning and classifier ensembles. The classifier module used in conjunc-

tion with KOLAM utilizes a two-class support vector machine (SVM) classifier (Figure

5.6). Prior to the testing step, the classifier module which received ground truth classes

from KOLAM during the training step is trained on these classes in order to produce tissue

labels for images outside of the original training image set. For each partition in the train-

ing set, class labels are extracted from corresponding expert labeled images. For reliable

training, small partitions and partitions with mixed classes are removed from the training

set. The complementary set of features used account for color/intensity and texture [73].

They can be grouped as: (1) color features, (2) first-order derivatives: gradient magnitude

and gradient orientation, (3) second-order derivatives: from Hessian matrix-derived fea-

tures such as Laplacian, eigen values, and eigen vectors; and (4) other texture features such

as the local binary pattern (LBP) operator.

During the active learning testing phase (see Figure 5.5) the classifier generated tissue

micro-environment labels on new (sub)images are used as input to the relabeling system.

169

Figure 5.6: Stroma versus Epithelium identification pipeline.

The expert visualizes these modified results, and may correct the annotations (generate

ground truth) as necessary. Figure 5.7 illustrates an example of reassignment of a label

or label annotation correction during the testing step. This shows the benefits of various

KOLAM interface components supporting ground-truth region label annotations. Thus

armed with user-corrections to the classes it has already characterized the classifier now

has additional verified input that it can use to further refine its next classification step.

The interactive segmentation and relabeling pipeline is described in listing Algorithm

23, with the listings for component Algorithms 24 and 25 describing the label color chang-

ing and the image/partitions/labels/borders loading processes, respectively. Each image to

be relabeled is comprised of a 3-tuple: the input image data, the class labels and the classi-

fier output. The output of the pipeline is the set of corrected labels to be passed back to the

170

classifier for re-training.

5.5 Conclusion

Pathologists have a strong and growing need for tools to lessen the burden involved in an-

alyzing and annotating large numbers of whole-slide histopathology imagery for training

CMSS/CAD systems, and for sharing results among experts using a web-based interface.

Algorithm designers require a means to interactively visualize the results of their segmen-

tation algorithms on the WSI data, a means to generate ground-truth for training classifiers

and improving and fine-tuning the performance of other algorithmic modules. In address-

ing these problems and the inherent challenges, the author has devised the solutions and

implemented them within the KOLAM system toward this thesis. Now, KOLAM pro-

vides capabilities to meet both computational and clinical needs, as well as to bridge the

gap between pathologists and algorithm developers. Furthermore, KOLAM now provides

a virtual microscope interface supporting a variety of WSI formats along with a novel

method for rapidly labeling and correcting the tissue microenvironment stroma-epithelia

region labels. To summarize, due to the author’s unique contributions which have been de-

scribed in this chapter, KOLAM now provides vital visanalysis software tools for medical

and computational experts to develop the evolving field of computational histopathology.

171

Algorithm 23: Segmentation Region Relabeling Algorithm
1 while Relabeling File Mgmt UI Loop is Active do
2 if User cancels without loading files or a project then
3 break;
4 end
5 if User selects files or project for loading then
6 Load image data;
7 Obtain
8 end
9 end

10 while Relabeling UI Loop is Active do
11 if User Clears Dataset then
12 break;
13 end
14 if User hits the ‘Escape’ key then
15 break;
16 end
17 if User Loads Dataset then
18 Load Image Partitions Labels Borders();

19 while Data not Cleared do
20 if User Clears Dataset then
21 break;
22 end

23 if User Clicks on Image then
24 Change Label Color();
25 end

26 if User Toggles All Borders then
27 ToggleDraw All Borders();
28 Save changed label image to disk;
29 end

30 if User Toggles Current Border then
31 ToggleDraw Current Border();
32 Save changed label image to disk;
33 end
34 end
35 end
36 end

37 Return control to KOLAM’s main UI loop;

172

Algorithm 24: Change Label Color
input : PartitionID table with IDs, classes, borders, labels
output: Label of user-selected class updated. Borders updated. Updated label image

saved to disk.

1 // Update color of user-clicked label
2 pixel (x, y)← scrnToImg(UserClick x,y);
3 ID x,y ← getID(pixel (x, y));
4 color x,y ← segClassTbl [ID x,y].color;
5 segClassTbl [ID x,y].color← getNextColor(color x,y);

6 // Refresh and update borders if enabled
7 if drawAllBorders then
8 for i← 0 to segClassTbl.size()− 1 do
9 segClassTbl [i].border.draw();

10 end
11 end

12 if drawCurrentBorder then
13 segClassTbl [IDx,y].border.draw();
14 end

15 // Save updated label image
16 IsegClassTbl.save();

173

Algorithm 25: Load Image Partitions Labels Borders
input : Image I[w × h] with partitions and classifier labels
output: PartitionID table populated with IDs and associated classes, borders and

labels

1 Clear any previously loaded data;
2 Initialize Segmentation Class list;
3 Load image I;

4 // Build Segm Class table from Partition IDs
5 for i← 0 to w − 1 do
6 for j ← 0 to h− 1 do
7 ID i,j ← getID(pixel (i, j));
8 segClassTbl [ID i,j].append(pixel (i, j));
9 end

10 end

11 // Associate borders with labels
12 size← segClassTbl [borderIdx].class.size;

13 for i← 0 to size− 1 do
14 border pixel← segClassTbl [borderIdx].class[i];

15 for j ← 0 to maxNeighbors(border pixel) do
16 nb← neighbor(border pixel);

17 if nb[j] /∈ segClassTbl[borderIdx].class then
18 neighIdx← getID(neighbor(border pixel)[j]);
19 thisIdx← segClassTbl [neighIdx];
20 thisIdx.border.append(border pixel);
21 end
22 end
23 end

24 Return to KOLAM’s main UI Loop;

174

Figure 5.7: An example of interactive relabeling of classifier-assigned tissue labels within
the KOLAM visualization framework. The inputs to KOLAM for the testing step are
shown. The labels for the stroma and epithelium, colored green and red respectively, are
overlaid with partial transparency on the underlying imagery which is an image subregion
from a breast cancer WSI. The tissue label in the inset box at the left, labeled ’1’, is being
relabeled by the user. The label is zoomed up (Inset 2) on the far left, which clearly dis-
plays the boundary of the label. Finally, with one click, the expert changes the label, from
stroma (Inset 2) to epithelia (Inset 3) class label.

175

Chapter 6

Extension to Tiled Wall Displays

6.1 Motivation

The demand for contiguous, high resolution display capability of the order of several hun-

dred megapixels to gigapixels has been increasing over the past several years. The driving

forces for this trend include the huge dimensions of image datasets needing to be ana-

lyzed, the decreasing costs of LCD (and competing technology) displays over time, and

the collaborative computing and visual presentation needs of entities such as corporations,

governments and research labs.

This chapter describes KOLAM’s ability to utilize a high-performance cluster to display

huge datasets across a tiled, multi-monitor ’Wall’ display system. This feature of KOLAM

makes it extremely useful and available for deployment to collaborators with interactive

visualization and analysis requirements, needing to be demonstrated on multi-monitor wall

display environments. An example of this was KOLAM’s usage on a multi-monitor Wall

176

display system at the Air Force Research Lab (AFRL) in Rome, NY. The single display /

monitor paradigm needed to be extended to allow seamless image data display and inter-

action across monitor arrays of any available arrangements. The largest such environment

comprised a system of 40 wall-mounted monitors, in an array configuration having 8 mon-

itors along the length of the aggregate display area and 5 monitors along the height (ie. an

8 x 5 array).

6.2 Related Work

Gigapixel-sized imagery have become much more prevalent over the past decade in a vari-

ety of domains including medicine, space, satellite and defense. Consequently, the devel-

opment of tools for gigapixel-sized image visualization has been an active area of research.

A review of the most prominent literature allows for the rough classification of gigapixel

visualization into single display-oriented and multiple display-oriented systems. As an im-

portant example of a single display-based system, Kopf et al. created a system for creating,

processing and displaying ultra-high resolution images with high dynamic range and wide

angle fields of view [11]. Means for systematically annotating and rendering both audi-

tory and visual annotations in gigapixel imagery have also been devised [12]. Additionally,

work has been done towards rapid post-processing of gigapixel imagery utilizing an effi-

cient parallel programming methodology [13].

Based on the ability of the human visual system to rapidly identify patterns and dis-

cern differences, especially when the targeted data is extremely large, extensive research

has been performed regarding the visualization of high-resolution image planes on tiled dis-

plays [14–24]. Architectures such as SAGE [16,20,25] (see Figure 6.1) and DIGI-Vis [24];

177

(a) (b)

Figure 6.1: Multi-display visualization system examples: (a) SAGE and (b) JuxtaView.

and applications such as JuxtaView [17] (see Figure 6.1) and Giga-Stack [23] seamlessly

display a number of visualization applications over the entire tiled display.

6.3 Challenges and Solutions

When taking a multi-monitor “Wall” system into account, the fundamental differences be-

tween such a setup and a single display system include modification of display coordinate

systems, changes to user interactions and associated event handling, and communication

issues arising from ensuring that all content being displayed on all the physical monitors

is accurately synchronized. Rendering performed by the different GPUs in the cluster (or

different computers on a subnet) driving the overall display is done to each local display

coordinate system by default. However, the display wall needs to present a single dis-

play coordinate system, spanning all rendering devices and associated displays, to the user.

This is implemented in KOLAM as a virtual coordinate system that encompasses the indi-

vidual display coordinate systems, which hides the transformation updates needing to be

performed for each rendering device from the user. Tied closely to this are the modifica-

178

tions to the user interaction system, giving the user the feel of interacting with a single

display. Finally, updates needed by the different local coordinate systems for display and

interaction are transmitted to the different computers/cluster nodes, and are synchronized

so that display and interaction feel no different to a user than using a single monitor sys-

tem. KOLAM’s broadcaster-receiver system works together with the changes to coordinate

system handling to tackle these issues.

Multiple instances of KOLAM are instantiated on each of the servers driving the wall

display. All instances are initialized as receivers, each only capable of receiving messages.

Following this, one instance is made the broadcaster, thereby putting it solely in charge

of sending messages to the receivers. The message contents may be either display refresh

directives or coordinate system transformation information. The user may re-designate the

role of broadcaster to a different receiver by interacting with a different display than the one

the current broadcaster actively receives user input from. Consequently, the broadcaster

and the selected receiver ‘switch’ roles. The interaction events generated by the user on

the broadcaster instance are transmitted to the receivers along with the coordinate system

information. Event queuing and delayed processing facilities provided by the Qt API are

utilized in conjunction with broadcaster update frequency handling in KOLAM to provide

the user a smooth interaction experience over the wall display. Event queuing and delayed

event processing also takes care of display ‘freezing’ and ‘swimming’ issues that arise due

to event overflow and de-synchronization.

Unlike the single monitor display mode, this mode of operation involves multiple command-

line invocations of KOLAM (one to each node of the cluster), each of which takes multiple

parameters that designate what to display on each tile (ie. monitor) of the multi-monitor

system. It is highly recommended that the command-line instructions be saved in the

179

form of script files, in order to save initial setup time and to enable off-line editing of

the display parameters. Furthermore, it is imperative that the nodes of the cluster be on the

same network subnet; the wall display mode will not function otherwise.

Additional networking parameters affecting the performance of the Wall system may

be modified via the section of the Kolam-Preferences tool. An illustration of KOLAM

displaying multiple layers at different zoom levels on a multi-monitor display is shown in

Figure 6.2.

Figure 6.2: An illustration of KOLAM being used on a multi-monitor display.

6.3.1 Example Setup Scenario

Consider that the available multi-monitor setup is a 2x2 grid, with each of the four mon-

itors having a resolution of 2560 x 1600. Let the KOLAM instance that will be desig-

nated as the broadcaster display to the lower-left monitor. Three other computers on the

same subnet, connected to the other three monitors on the grid, are designated as receivers

180

(since they receive update events generated by the user from the broadcaster instance).

The command-line instructions to load a PSS sequence of image files, in order, on the

lower-left, lower-right, upper-left and upper-right monitors (these must be issued on the

respective computers) are as follows:

kolam -geometry 2560x1600 ’full path’/frame ##### 0.pss -x 2560 -y 0

kolam -geometry 2560x1600 ’full path’/frame ##### 0.pss -x 0 -y 0

kolam -geometry 2560x1600 ’full path’/frame ##### 0.pss -x 2560 -y 1600

kolam -geometry 2560x1600 ’full path’/frame ##### 0.pss -x 0 -y 1600

6.3.2 Current System Limitations

User events are processed and propagated ONLY IF they occur within the monitor(s) to

which the broadcaster instance of KOLAM is displaying. Events that occur on any receiver

instance are ignored in favor of display synchronization updates that are dispatched from

the broadcaster. Making another running instance of KOLAM a broadcaster instance is

currently a manual process: the current broadcaster instance must have its broadcaster

status removed and must be designated a receiver instance, followed by designating the

instance of interest (currently a receiver) as the next broadcaster. The restriction of all

KOLAM instances to the same subnet is yet another limitation of the system.

181

Chapter 7

Evaluation of KOLAM

7.1 Introduction

In this chapter, we present the evaluation methodologies, metrics, experiments that have

been performed, as well as the results obtained, in order to evaluate the KOLAM software

system. Both quantitative and qualitative evaluations have been performed. In the follow-

ing sections, we first take a look at the evolution of the KOLAM system over time, looking

at the addition of key features already described in previous chapters and the decisions and

needs that led to them, and how these features were modified or replaced based on the

feedback provided by expert domain users who used the software system for their specific

needs during this time. Following this, we describe details of Usability Testing and provide

a framework for the testing procedures that KOLAM was subjected to. The final sections

describe the experimental setup, testing data, testing procedures, results and conclusions.

182

7.2 Evolution of KOLAM based on Iterative Expert Feed-
back

The involvement of experts over time in evaluating the newly added as well as the exist-

ing features of KOLAM can be considered a series of stakeholder walkthroughs; wherein

end users, stakeholders and the designer collaborated to evaluate the earlier versions of

KOLAM, generating recommendations for improvements and changes, as well as building

empathy [121].

The author’s initial contributions to KOLAM were made during August of 2009, when

he created the initial design and implementation of the animation caching system and

the animation playback interface (Kolam-Loop). Both initial implementations were sub-

optimal, and were enhanced and thus evolved into the first stable version of the present day

spatio-temporal caching and animation interface; with expert advice and feedback from the

faculty adviser, the previous developer of KOLAM and other research group members. The

first version of KOLAM’s overlay system for annotation display and interaction was also

developed at this time.

Around October of 2009, the initial version of the trajectory drawing module was de-

veloped. This system could process and render trajectory data solely from sets of flat files

corresponding to each object trajectory (One file per time step, per trajectory). Further-

more, the drawing performance of the trajectory system was sub-par at this time, both for

greater number of trajectories, as well as individually long trajectories. Concurrent with the

development of the trajectory visualization system, the author implemented the first version

of the Kolam-Tracker tool, which provided (a) the UI interface to the loose coupling be-

tween KOLAM and the first version of the CSURF object tracker, as well as (b) trajectory

visualization management, which was also designed and implemented during this time.

183

The end of 2009 was spent iteratively refining the different UI aspects of the Kolam-

Tracker tool with expert feedback from the faculty adviser and research group members fol-

lowing usage and testing, and addition of support for the first version of the LOFT tracker.

The LOFT and SURF tracker programs require different number of input initializations to

begin execution, and KOLAM’s tracker input annotation component was modified to trans-

parently handle both cases. Expert feedback regarding features was also received from a

visiting domain expert collaborator from the Air Force Research Lab (AFRL). Following

this, the author implemented a change to the trajectory visualization data structure which

resulted in trajectory visualization efficiency improving by a polynomial factor.

During the Spring of 2010, a number of KOLAM’s current features were created, mod-

ified and improved. Based on expert feedback from the faculty adviser, the menu systems

were revamped to reduce the mouse travel time needed to perform related tasks. Tools such

as the Kolam-Layer Editor were significantly updated during this period: for the first time,

loaded layers could be interactively moved up or down the layer display stack, with the

contents of the main display area being updated immediately. Interactive layer visibility

toggling was also added to the Layer Editor during this period. Research and implementa-

tion ideas by the author led to several newly implemented components of KOLAM coming

together: animation playback in layers, dynamically changing layer positions in the layer

stack with immediate visual update, annotation overlays, trajectory drawing and manage-

ment, per-layer vs whole-view transformation: to create one of the novel contributions:

Coordinated visualization using stacked layers, side-by-side static/time-lapse image data

layers with either annotations or trajectories. Partial inspiration for this idea was due to fea-

ture feedback provided by a domain expert collaborator from the Harvard Medical School

visiting during this time. Finally, KOLAM’s feature set was utilized in the conception of

184

the first research paper on the LOFT object tracking system [45].

The Summer of 2010 saw several features added to KOLAM during the author’s in-

ternship at the Army Research Lab (ARL) campus in Adelphi, MD. The features imple-

mented during this time reflected both the object tracking and trajectory visualization needs

of ARL, as well as the valuable expert feedback received from the highly experienced

ARL analysts pertaining to relevant features for implementation and avoidable stumbling

blocks they encountered in several other tools. The main features added during this time

included the context-sensitive trajectory rewind, the Kolam-Locate tool displaying the Lat-

itude, Longitude, image x-and y-coordinates of the user-clicked point in the data (with data

navigation-driven interactive updates), the trajectory archival system for storing and sharing

trajectory data across systems, and support for Octave executables in addition to Matlab.

UI enhancements during this time (also driven by domain-expert user feedback) included

improved animation scrubbing for image sequences, mouse wheel-based zomming for the

data, and the addition of an online Help and imagery data browser.

The Fall of 2010 saw enhancements to KOLAM’s trajectory drawing system. Based

on expert user feedback, additional drawing primitives - bounding boxes and polygons -

were added to supplement centroids as the primitive of choice for each time step along

a trajectory. KOLAM started receiving interest from collaborators in cell biology during

this time, and additions were made to trajectory drawing and visualization based on their

requirements and feedback. 2011 saw greater interaction with collaborators from Cell Bi-

ology and incorporation of KOLAM with a harness system to test SURF and LOFT tracker

performance [40].

Interaction between our group and Kitware Inc. began in Spring of 2012, with Kitware

expressing interest in using KOLAM for ground-truthing with their in-house trajectory data

185

format, KW18. Designing and implementing support for this semi-structured data storage

format in KOLAM offered significant performance and storage benefits vis-a-vis the older

flat text file system. KOLAM’s trajectory input and data structure underwent changes to

accommodate the KW18 format. The benefits were immediate: multiple trajectories could

be stored in a single KW18, also allowing for a higher level of trajectory data organization

involving data from multiple KW18s. The Summer of 2012 saw further work involving

Kitware. Also, the AFRL’s need at this time saw the development in KOLAM of the multi-

monitor display Wall system. This work would carry on into the Fall of 2012.

The Spring of 2013 saw development begin on KOLAM’s histopathology segmentation

system. The author was part of a team from our research group who visited the patholo-

gist expert at the University of Missouri Medical School. The expert was able to test the

portion of the segmentation relabeling system that had already been completed, gave posi-

tive reviews of the implemented features, and provided valuable feedback regarding further

feature addition and existing feature modification or enhancement. This resulted in a sec-

ond visit during the Summer of 2013, when the process was repeated for another iteration

of development, and acquisition of new data for segmentation and classification analysis

alongwith KOLAM relabeling was discussed. Work on the interactive segmentation re-

labeling system continued through the Fall of 2013. The year 2014 was spent designing

and implementing the initial form of KOLAM’s trajectory editing system, followed by the

iterative enhancements and modifications which resulted in its current form. The current

feature set for the trajectory editing system was derived through extensive user feedback.

The remainder of the period between then and the current time was spent either en-

hancing or modifying existing features in KOLAM, based on expert feedback from various

domain expert users. Notable activities during this time include addition of support of extra

186

imagery data formats, in order to increase the target audience who could use KOLAM to vi-

sualize their data. Finally, optimizations and bug fixes were made throughout the KOLAM

system in reponse to user feedback regarding prolonged usage scenarios for KOLAM. The

following section outlines and provides some details regarding Usability testing.

7.3 Usability Testing

Usability testing is an evaluative method that allows for the observation of an individual’s

experience with a software system, while he/she performs the steps of a specified task (or

task set). Per Gould et al. [122], usability testing focuses on people and their tasks, and

seeks empirical evidence about how to improve the usability of an interface. The tests

are designed based on tasks and scenarios that represent the end-user goals involving the

software system and needs in question. The tasks should reflect the actual goals of the target

users, and should be concrete and specific. The scenarios provide task context and thereby

aid in task completion by providing additional information. Tasks and scenarios should

be designed such that they do not influence testers to solve problems in a certain manner,

nor seek to justify the software system requirements. Errors that need to be detected [123]

include instances during which the tester: (1) cannot complete the task in a reasonable time

period despite understanding it, (2) needs to try different approaches to complete the task

despite understanding the goal, (3) gives up doing the task, (4) completes a different task

from what was specified, (5) expresses surprise, (6) expresses frustration or confusion, (7)

states that something is wrong or illogical, or (8) suggests alternative(s) for event flow or

interface structure.

187

7.4 Surveys

Surveys enable collection of self-reported information from testers regarding their thoughts,

feelings, perceptions, behaviors and attitudes as pertain to the task being performed and the

software tool being used. They are an efficient method for collecting a large amount of

data in a short time frame, typically from a large sample of testers. Survey data collection

can be done either using questionnaires or structured interviews. The types of questions on

the questionnaire are chosen to be (1) Closed, (2) Specific, (3) Factual, (4) Judgmental, (5)

Comparative, and (6) Neutral.

7.5 Evaluation Methodology

As mentioned previously, KOLAM is part of the overall M-Path (MU Pathologist) system,

a multi-stage pipeline which integrates computer vision and machine learning algorithms

with a scalable big data visualization and analysis interface, thereby aiming to extend the

duration of the patient survivability prediction performed by the C-Path system [64]. The

portion of the pipeline that requires user intervention, include relabeling of the segmen-

tation results and correcting classifier assigned labels. Furthermore, KOLAM’s trajectory

editing system is an individual component by itself, but also forms a part of KOLAM’s

overall ability to perform human expert assisted semi-automatic tracking of objects of in-

terest in WAMI and relevant biomedical imagery datasets. These tasks need to be imple-

mented in a manner that maximizes operational efficiency while retaining user attention and

minimizing user fatigue. We now describe the evaluation methodology we have designed,

and tabulate the results of experiments we have performed.

In order to effectively evaluate the different performance aspects of KOLAM, the fol-

188

lowing criteria need to be considered:

1. Accuracy: The role played by various features of the software system being evaluated

in influencing the accuracy of the user in performing 1-Click Object Tracking of

objects of interest, the interactive relabeling of segmentation results, or performing

multiple ‘Move’ corrective operations on several points along an object’s trajectory;

2. Efficiency: How do the features provided by the software system being evaluated

affect user efficiency? Is the increase in efficiency quantifiable, and if so, what metric

is suitable to do the same?

3. Repeatability: For a given software system, can the user reproduce the the same set

of object tracking results, relabeling corrections or trajectory editing operations with

ease and accuracy?

We note that these criteria are highly interdependent: for example, user results are

typically more accurate when users are given greater amount of time per task. Providing

more time to perform the corrections may also reduce the possible number of user errors

in the object tracking, relabeling or trajectory editing processes, thereby raising efficiency

and repeatability. Repeatability (or reproducibility) describes the certainty by which dif-

ferent people under varying laboratory conditions can reproduce all the procedures and

methodologies from start to finish, thereby describing the accuracy and reliability of a test

method [124]. These criteria closely match the criteria outlined in the ISO/IEC standards

for usability metrics, which are outlined below.

189

7.5.1 Usability Metrics in the ISO/IEC

Usability is defined as “the extent to which a product can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a specified context

of use; per the ISO 9241-11 standard [125]. The ISO/IEC 9126-4 metrics [126] recommend

the same, stating that usability metrics should include:

1. Effectiveness: The accuracy and completeness with which users achieve specified

goals (in this case, the accuracy of the user in performing either the trajectory editing

or interactive relabeling of segmentation labels operations);

2. Efficiency: When the users achieve the specified goals, quantify the resources ex-

pended in relation to their accuracy and completeness.

3. Satisfaction: In achieving the specified goals, the comfort and acceptability of (using

KOLAM by) the users.

The experiments that were performed using KOLAM aimed to obtain quantitative (ef-

fectiveness and efficiency) and qualitative (satisfaction) measures of these usability metrics.

7.6 Experimental Procedure

In this section, we detail the various aspects of the experiments that were performed to-

wards KOLAM’s Usability testing. This includes information about experimental goals,

participant involvement, a listing of the software systems and ground truth datasets, and

the rules utilized for guiding the experiments. Criteria such as accuracy, reproducibility

and efficiency were taken into account.

190

As errors in the ground truth have a direct impact on accuracy, any ground truth dataset

used must be as accurate as possible, in order to measure accuracy effectively. The effective

measurement of efficiency is primarily dependent on recording all the intermediate correc-

tions that the users make in tracking objects, or editing the object trajectories, or relabeling

the segmentation results; over time. It is important to note the relationship and tradeoff

between accuracy and time: considering segmentation relabeling for example, users will

have to prioritize what they relabel based on ’how wrong’ the individual segments they re-

label are. Given that the purpose of the interactive relabeling facility in KOLAM and other

software systems is to drastically reduce the amount of time in obtaining a correct segmen-

tation of a histopathology image versus a purely manual labeling approach, users will need

to correct the most inaccurate (based on object and / or boundary dissimilarity) segments

prior to lesser inaccurate ones. A sufficient number of users / participants is needed in order

to effectively measure reproducibility.

7.6.1 Goals

Currently used automated object detection algorithms [46] [127] do not perfectly produce

object detections in the context of the relevant (WAMI) data. Obtaining correct object

detections (viz trajectories) given the additional intervention of human experts implies that

the time spent on trajectory editing operations is an important component of the overall

time spent on the object detection task. The goals of the 1-Click Object Tracking and

Trajectory Editing experiments are two-fold: (1) Assess KOLAM’s editing efficiency and

effectiveness quantitatively, and (2) assess the satisfaction of using KOLAM qualitatively.

Beck et al. [64] developed the C-Path system with the goal of designing a data-driven

approach without bias to discover prognostically significant morphological features in breast

191

cancer imagery. This system is characterized by: (i) Comparatively small imagery (< 10

MPixels each) and (ii) A large number of features (6642) per image. The epithelia-stroma

classifier we are developing uses 700 features instead of 6642, while attaining the same

predictive accuracy as the C-Path system (due to the greater predictive power per feature

in our system). The goal of using the KOLAM system is to reduce the amount of time in-

volved in the corrective relabeling process. It accomplishes this by (i) working in a tightly

coupled fashion with the hierarchical segmentation and epithelia-stroma classifier modules

and seamlessly exchanging information back and forth, and (ii) providing an interface in

which each corrective step can be performed with minimum user interaction while max-

imizing the total corrected region and providing the best possible visual feedback for the

same. KOLAM’s whole-slide imagery visualization system, coupled together with its ROI

extraction, sub-region partitioning interfaces make available to the segmentation and classi-

fication systems all the information they need to extract and generate powerful higher level

features which could facilitate more robust predictive model performance for the classifier.

The goals of the segmentation relabeling experiment are two-fold: (1) Assess KOLAM’s

relabeling efficiency and effectiveness quantitatively, and (2) assess the satisfaction of using

KOLAM qualitatively.

7.6.2 Software

Users were able to test 1-click Object Tracking, Segmentation Relabeling and Trajectory

Editing in KOLAM alone, due to time constraints and software and infrastructure deficien-

cies. The initial testing plan prior to these constraints is provided below for completeness.

Besides KOLAM, users would perform interactive relabeling of segmentation results

by utilizing the iLastik, ePathology ImageScope and paint.Net software packages. Like-

192

wise, users were to perform trajectory editing in software that supported the feature, such

as ViPER. 1-Click Object Tracking is a unique feature of KOLAM that does not exist in

any other software system in the world, to the author’s knowledge. Due to the disparity

between interfaces, the users were to be given time sufficient to familiarize themselves

with operating the different software features needed to perform the interactive segmenta-

tion relabeling task. The main set of experiments were not to be initiated until all users

had achieved a similar level of comfort and expertise with the different software systems,

thus none of the software were penalized due to factors such as past user familiarity, user

preference based on subjective factors etc.

KOLAM

1-Click Object Tracking in KOLAM is performed by (i) Identifying the object of interest

to track, (ii) Panning and/or zooming the image data until the object is in the user’s field

of view such that the user is comfortable with viewing and selecting the object for track-

ing, (iii) Annotate the object to track with a bounding box: the user is free to redraw the

BBox until it’s correct, (iv) Signal KOLAM that object selection is complete, wherein KO-

LAM invokes the external CSURF tracker to track the object, (v) Observe the output of the

CSURF tracker in real time within the KOLAM display: the user can terminate the CSURF

tracker if its output becomes erroneous, continue observing the object being tracked until

the tracker is done, or begin the simultaneous tracking of the next object of interest.

Trajectory Editing in KOLAM is performed by (i) Selecting the trajectories of interest,

(ii) Selecting the relevant trajectory from a drop-down, (iii) Selecting the desired editing

operation (MOVE; in the case of the experiment), and (iv) Applying the operation to the

desired points on the trajectory via right mouse click (and drag, in the case of MOVE). If

193

the same editing operation is to be performed for multiple trajectories, Step (iii) needs to be

performed only the first time. If users desire to visualize the entire length of the trajectory

regardless of the current time step, they can do so via the ‘Whole Trajectory (Display)’

button. Furthermore, if users wish to avoid visual clutter from unselected trajectories as

well as from overlapping selected trajectories, they may opt to select relevant trajectories

one at a time and toggling the visibility of un-selected trajectories.

Segmentation relabeling in KOLAM is performed via a single right mouse click. Re-

peatedly clicking the right mouse button cycles through all used labels (currently, stroma,

epithelia and undecided). The different labels are visually represented by transparent

masks; each of which can be colored red, green or colorless. Every time the user per-

forms the above relabeling interaction, the updated label is internally maintained, and one

or more labels can be saved to an updated image label mask at the user’s discretion. The

default mode for the same is to save the updated label mask every time the user makes a

correction.

7.6.3 Data

For the purposes of the 1-Click Object Tracking experiment, a WAMI image sequence

from the Philadelphia, PA dataset (image sequence, each multi-resolution tiled image of

dimensions 16384 pixels × 16384 pixels) collected by Ross McNutt (Persistent Surveil-

lance Systems) on March 13th, 2008 was used as input imagery. The object tracker used

for tracking the objects of interest was the CSURF tracker, developed in our research group.

For the purposes of the Trajectory Editing experiment, an ROI image sequence from

the Edgewood, NM Walmart dataset (image sequence, each multi-resolution tiled image of

dimensions 6600 pixels × 4400 pixels) collected by Dr. Steve Suddarth (Transparent Sky)

194

on June 8th, 2017 was used as input imagery. The trajectories that were used for editing

by the users were generated by a multi-target tracking algorithm developed in our research

group.

For the purposes of the Segmantation Relabeling experiment, the input images were

chosen from the Stanford Breast Cancer Microarray dataset. The segmentations and clas-

sifier labels used for relabeling by the users were generated by the segmentation and clas-

sification modules described in Section 5.4.

7.6.4 Tasks

For the purposes of the 1-Click Object Tracking experiment, each user task comprised

performing the 1-Click Object Tracking operation on 10 random objects of interest within

a given image of the loaded image sequence dataset. Each user performed a total of 5 such

tasks, for 5 different images in the loaded image sequence.

For the purposes of the Trajectory Editing experiment, each user task comprised per-

forming the ‘MOVE’ edit operation on 10 random (object detection) points on a trajectory

he/she selected. Each user performed a total of 5 such tasks, for 5 different trajectories.

For the purposes of the Segmentation Relabeling experiment, each user task com-

prised performing the relabeling operation on 10 random (classifier generated) labels for

an image from the Stanford Breast Cancer microarray dataset. Each user performed a total

of 5 such tasks, for 5 different images.

195

7.6.5 Conducting the Experiment

Based on the methodology described by Rubin et al [128], the different stages involved in

conducting the experiment were carried out. These stages are described below.

(1) Developing the Test Plan: The test plan served as a test blueprint, defined the

required resources, and provided the test milestone(s). It included the objectives of the

test, the research questions, participant characteristics, test design, the list of tasks, the

test environment and equipment, role of moderator, data to be collected and evaluation

measures, and the final report.

(2) Setting up the Testing Environment: The testing procedure had no special obser-

vational requirements and no need for specialized equipment. KOLAM and data access

were the only requirements. The former was installed on the relevant machines and access

to the latter was provided via portable storage. The author’s lab was chosen as the location

for the tests.

(3) Finding and Selecting Participants: Obtained test results are valid only if test par-

ticipants are typical users of image visualization and analysis software. Thus, the behavior,

skill set and knowledge of a typical participant (a user profile) were taken into account when

considering the prospective candidates for the experiment. The group of test users obtained

in this way consisted of 5 graduate students. This number of participants was determined

by the number of available candidates as well as time constraints. Of the 5 candidates, one

used KOLAM every now and then (but not day-to-day), two rarely used KOLAM and the

final two had never used KOLAM before. The participants were scheduled and confirmed

via phone and email communications. The participants’ privacy was protected in that no

personal identifying information was collected from any of them. They are identified as

‘User A’, ‘User B’, ‘User C’, ‘User D’ and ‘User E’ in the test result tabulation.

196

(4) Preparing the Test Materials: These included the orientation script, data collection

instruments, task scenarios and post-test questionnaire. The orientation / introduction script

was read out to participants and described what would happen during the test session, the

testing setup, and set that tone in the participants’ minds. Finally, it put them at ease by

informing them what they would be doing in neutral language, and that only KOLAM was

being tested. It was made clear that the participants were not being tested themselves. The

orientation script was read to each participant individually. In choosing a data collection

method (timing information), the author chose the option of user-generated data collection.

This choice was made due to the author’s financial and time constraints. Data was collected

manually; with participants recording times taken and number of operations in a table, and

starting and stopping the timer device themselves. The task scenarios represent actual work

that real-world users could perform using KOLAM. They comprised: (1) the result to be

achieved by the participant, (2) motives for performing the task, (3) details about the data,

(4) state of the system when the task was initiated, and (5) what the participant saw while

performing the task. Upon completion of the tasks, the participants were given a post-test

questionnaire. This was done to gather participant feedback, in order to gain insight into

KOLAM’s strengths and weaknesses from multiple user perspectives. The questionnaire

used by the author was derived from the System Usability Scale (SUS), which is a Likert

scale commonly used to test computer software and hardware systems.

(5) Conducting the Experiment Sessions: The author greeted the participants and

read the orientation script to each participant individually. Following this, each participant

was requested to move to the testing area. The author assumed the role of moderator for the

sessions with each participant. After clearly communicating to the participants what tasks

they were expected to perform, what data to collect and how to collect it, the moderator

197

stepped away from the vicinity of the participant, until the participant signaled that he/she

had completed the assigned activity. Upon completion, the participant was given the post-

test questionnaire to fill, following which the author debriefed the participant and closed

the session. The author then collected the data observation sheets.

(6) Participant Debriefing: Following the post-test questionnaire, the author explored

and reviewed the participant’s actions during the test. The goal of this was to understand

why any errors occurred, as well as to resolve any residual questions. The debriefing was

held in the same room as the testing area.

(7) Analyze data and observations: Details are presented in the Experimental Out-

come section (Section 7.7).

7.7 Experimental Outcome

7.7.1 Raw Data

The raw data gathered from the participant users for the three experiments (1-click object

tracking, trajectory editing and segmentation relabeling) are presented in Table 7.1, Table

7.2 and Table 7.3.

The individual scores (1-5) for each participant for the System Usability Scale (SUS)

questionnaire, which contained 10 questions, are given in Table 7.4.

7.7.2 Usability Metrics

The effectiveness of the application (viz. KOLAM) can be gauged via usability metrics

such as completion rate (the fundamental usability metric, whether a test participant com-

198

User A User B User C User D User E
Run# #Objs T(s) #Objs T(s) #Objs T(s) #Objs T(s) #Objs T(s)

1 10 184 10 229 10 192 10 198 10 175
2 10 179 10 209 10 183 10 186 10 185
3 10 140 10 219 10 175 10 178 10 160
4 10 139 10 213 10 187 10 181 10 167
5 10 137 10 229 10 174 10 177 10 173

Avg. 156 220 182 184 172

Table 7.1: User testing data from five runs of the 1-Click Object Tracking operation for 5 users ‘A’, ‘B’,
‘C’, ‘D’ and ‘E’. Average times for each user have also been computed.

User A User B User C User D User E
Run# #Movs T(s) #Movs T(s) #Movs T(s) #Movs T(s) #Movs T(s)

1 10 21 10 150 10 54 10 52 10 45
2 10 23 10 53 10 37 10 42 10 38
3 10 24 10 95 10 30 10 43 10 40
4 10 21 10 105 10 33 10 47 10 41
5 10 18 10 66 10 29 10 49 10 37

Avg. 21.4 93.8 36.6 46.6 40.2

Table 7.2: User testing data from five runs of the Trajectory Editing operation - MOVE points for 5 users
‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Average times for each user have also been computed.

pletes a task or not) and number of errors per task. Completion rate is calculated as follows:

Completion Rate =
Number of tasks completed successfully

Total number of tasks undertaken
∗ 100 (7.1)

Application (KOLAM) efficiency is measured in terms of the time the participant takes

to successfully complete a task. Task time is obtained by subtracting task starting time from

the task ending time. Efficiency can be computed either in terms of Time-based Efficiency

or Overall Relative Efficiency. Both are described below.

Time-based Efficiency is computed as follows:

199

User A User B User C User D User E
Run# #Clks T(s) #Clks T(s) #Clks T(s) #Clks T(s) #Clks T(s)

1 10 16 10 20 10 20 10 22 10 16
2 10 15 10 4 10 21 10 21 10 15
3 10 15 10 20 10 17 10 19 10 11
4 10 16 10 26 10 16 10 21 10 10
5 10 13 10 17 10 15 10 19 10 10

Avg. 15 17.4 17.8 20.4 12.4

Table 7.3: User testing data from five runs of the Segmentation Relabeling operation - CHANGE labels for
5 users ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Average times for each user have also been computed.

Question # 1 2 3 4 5 6 7 8 9 10
User A 5 3 4 4 4 2 4 1 4 1
User B 5 2 4 1 5 1 5 1 5 2
User C 5 1 5 1 5 1 5 1 5 1
User D 5 1 5 1 5 1 5 1 5 2
User E 5 1 5 1 4 2 5 1 5 1

Table 7.4: User satisfaction data from the post-experiment (SUS) questionnaire: 5 users ‘A’, ‘B’, ‘C’, ‘D’
and ‘E’.

Time Based Efficiency =

R∑
j=1

N∑
i=1

nij
tij

NR
(7.2)

where N = The total number of tasks

R = The number of users

nij = The result of task i by user j :

if completed, then nij = 1, else nij = 0

tij = Time user j spends to complete task i

200

The Overall Relative Efficiency is defined as the ratio of the time taken by the users

who successfully completed the task relative to the total time taken by all the users, and is

computed as follows. The same definitions for the terms (as above) apply:

Overall Relative Efficiency =

R∑
j=1

N∑
i=1

nijtij

R∑
j=1

N∑
i=1

tij

∗ 100% (7.3)

The System Usability Scale (SUS) [129] was chosen to qualitatively evaluate user sat-

isfaction with KOLAM as it is a proven method for evaluating system usability against

industry standards. Other features of SUS that factored into its choice for KOLAM’s Us-

ability Metrics evaluation include (i) its short length and not requiring much in the way of

resources to administer and (ii) the availability of an existing SUS template questionnaire

which was modified for KOLAM’s specifics.

The SUS score was computed from the user selections on their questionnaires using

these steps: (1) Subtract 1 from the score for odd-numbered questions, (2) Subtract the

scores from 5 for even-numbered questions, and (3) Add the obtained values, and multiply

the sum by 2.5. The score obtained is out of 100.

7.7.3 Results

Using Equation 7.1 with successful completion information from Table 7.1 gives KOLAM

a Completion Rate of 100% for the 1-Click Object Tracking experiment. Additionally, us-

ing Equation 7.1 with the successful completion information from Tables 7.2 and 7.3 gives

KOLAM a Completion Rate of 100% for both the Trajectory Editing and Segmentation

Relabeling experiments.

201

Using Equation 7.2 with the timings from Table 7.1 gives KOLAM a Time Based Ef-

ficiency of 0.003 Tasks/second for the 1-Click Object Tracking experiment, where each

Task consisted of 10 object tracking operations. Furthermore, using Equation 7.2 with the

timings from Table 7.2 gives KOLAM a Time Based Efficiency of 0.029 Tasks/second

for the Trajectory Editing experiment, where each Task consisted of 10 editing (MOVE)

operations. Finally, using Equation 7.2 with the timings from Table 7.3 gives KOLAM a

Time Based Efficiency of 0.067 Tasks/second for the Segmentation Relabeling experi-

ment, where each Task consisted of 10 relabeling operations.

Using Equation 7.3 with the timings from Table 7.1 gives KOLAM an Overall Rela-

tive Efficiency of 100% for the 1-Click Object Tracking experiment. Furthermore, using

Equation 7.3 with the timings from Table 7.2 gives KOLAM an Overall Relative Effi-

ciency of 100% for the Trajectory Editing experiment. Finally, using Equation 7.3 with

the timings from Table 7.3 gives KOLAM an Overall Relative Efficiency of 100% for the

Segmentation Relabeling experiment.

Using the score data from Table 7.4, the SUS scores for each user were as follows:

User A = 75, User B = 92.5, User C = 100, User D = 97.5, User E = 95

This gave a SUS score of 92 for the overall qualitative evaluation of KOLAM.

7.7.4 Findings

In the 1-Click Object Tracking experiment, the test participants performed 0.003 ob-

ject tracking operations/second on average, per the results in subsection 7.7.3. Based on

post-experiment feedback, several factors played a role in determining the obtained mea-

202

surements. Most importantly, it was observed that of the three experiments, users took the

longest time on average to complete individual tasks in this experiment. The primary con-

tributing factor to these long times is that 1-Click Object Tracking is actually a collection

of tasks, including: identifying the object to track in the imagery, panning and/or zooming

to visually bring the object into the user’s field of view, annotating the object and visu-

ally validating the correctness of this annotation, passing the object selection information

to the external target tracking program and finally validating the tracking result. Each of

these sub-tasks takes its own time to perform. User feedback also indicates that of all these

sub-tasks, the task of panning and zooming the data to bring the object of interest into the

users’ field of view took the most time. Again, from user feedback, it was inferred that

zooming in to examine objects in greater detail results in loss of global context of the data,

whereby it was necessary to zoom out again to regain it, in order to focus on other potential

objects of interest. Any approach to increase efficiency for this task must therefore involve

retaining the global context of the data in some manner, while examining objects in greater

detail (ie. in their local contexts) at different locations.

In the segmentation relabeling experiment, the test participants performed 0.67 rela-

beling operations/second on average, per the results in subsection 7.7.3. Based on post-

experiment feedback, several factors played a role in determining the obtained measure-

ments. Primary among these was the mouse travel time from one segment to another, and

the data navigation steps (panning and/or zooming) that were required. Longer mouse

travel time and/or higher number of navigation steps directly translated into longer over-

all time to complete the task of relabeling 10 segmentation labels. The converse is true

for shorter overall task completion time. This explains the ‘anomalous’ time of 4 seconds

for the 2nd run for User ‘B’, who chose to relabel neighboring segments in an alternating

203

manner during this run.

It can be inferred that user navigation of the data display in order to examine regions

of interest (possible erroneous labeling), which involves a combination of one or more of

panning in different directions and zooming in and out; plays the primary role in time taken

to perform a multiple relabeling task (thereby its efficiency). Besides possible erroneous

behavior of the software, task completion is affected by incorrect user actions, clarity of

the visualization to the user, whether the user is relaxed or in a hurry to complete the task,

the users’ eyesight etc.

In the trajectory editing experiment, the test participants performed 0.29 MOVE op-

erations/second on average, per the results in subsection 7.7.3. Based on post-experiment

feedback, several factors played a role in determining the obtained time measurements. Un-

like segmentation relabeling, mouse travel time and data navigation time was not the only

influencing factors. Overlapping trajectories and the interaction modes in KOLAM (for

trajectory editing) also played a part in some of the recorded times. User ‘C’ experienced

delays due to trajectory overlap, and had to spend extra time using KOLAM’s features to

display the trajectory of interest in an un-occluded manner prior to performing the MOVE

operations on the trajectory points. This contributed to the longer time taken by User ‘C’

compared to User ‘A’. User ‘B’ also experienced delays from trajectory overlap, and spent

extra time toggling trajectory visibilities and scrubbing the image sequence back and forth

in time to provide the clearest possible view of the trajectory point to edit. The combination

of these two factors additionally contributed to User ‘B’ taking the longest time to complete

the trajectory editing tasks.

Trajectory occlusion due to overlap is a defined problem to which a number of solutions

are available - while these improve the display, they do not simultaneously provide user

204

access to the actual data itself. KOLAM attempts to compromise by overlaying the actual

trajectory data including positional overlaps, and providing additional view filtering options

to the user to restrict the number of trajectories visible in the view of interest. While this

does aid in task completion, users do need additional time to utilize the extra features.

While the author acknowledges that an interaction and visualization scheme which raises

operational efficiency might indeed be possible, the author has not conceived such a scheme

at the present time. Another factor playing a role is the prior frequency of usage of these

KOLAM features by the different users: User ‘A’ had spent significantly more time using

the trajectory editing feature than either User ‘B’ or User ‘C’. Yet another factor that may

have played a role is possible user bias against KOLAM’s features, due to having used

similar features through different interaction sequences with other software.

7.8 Conclusions

User interfaces (UI) and the associated user experiences (UX) of a software system must

be comprehensively evaluated, both to obtain standard benchmarks of their performance as

well as to engender trust in their use. To this end, both quantitative and qualitative usability

evaluations were performed for various operations of the KOLAM visual analytics system.

The operations chosen for the evaluations: 1-Click Object Tracking, Trajectory Editing and

Segmentation Relabeling are representative of KOLAM’s capabilities across the spectra of

domains as well as of task complexity. Per ISO/IEC specifications, metrics corresponding

to the efficiency, effectiveness and satisfaction of users to complete the specified tasks

were evaluated. The experimental goals, software, data and tasks were formally defined,

following which the usability experiments were carried out per the methodology outlined

205

in the literature.

Perfect task completion rate (effectiveness) was achieved for all 3 tasks for all partici-

pant users. Task efficiencies for each of the tasks was computed from on the experimental

data for each experiment, and the reasons for these values for each experiment were elabo-

rated on. In the cases of current efficiency bottlenecks, possible directions for tackling the

same were also explored. To conclude, KOLAM has been proven to be perfectly effective

in tackling real world scenarios of which the chosen experiments are representative. With

regards to efficiency, there is room for improvement, which will be addressed in the future

work. Overall qualitative user satisfaction with KOLAM is also high at present, and is ex-

pected to improve further when the efficiency concerns to be addressed are further explored

and implemented.

206

Chapter 8

Conclusions and Future Work

8.1 Summary of Conclusions

This thesis began by elaborating on the subject of visual analytics, the need for it as well

as its mission. In exploring its building blocks, the inherent process, the motivation for

interactivity and the challenges involved, we see that visual analytics can serve as a highly

interdisciplinary collaboratory for a number of disciplines such as visualization, data min-

ing, data fusion, machine learning and statistics. The author’s unique contributions to the

KOLAM visualization system which transformed it into an interactive visual analytics sys-

tem were presented. This was followed by an in-depth look at KOLAM’s architecture, with

emphasis on the new addition of spatio-temporal data access, handling and management.

Following a general look at the requirements of integrating KDD and visual analytics sys-

tems, the changes to the KOLAM user interface were explored, in terms of the challenges,

design choices and how they evolved for the UI components. In concluding this introduc-

207

tory portion of the thesis, KOLAM’s source and executable availability details are provided,

followed by a division of the remainder of the thesis into case studies, the usability test-

ing of KOLAM, ending with this chapter, the bibliography and the appendix containing

KOLAM’s manual and documentation.

The first case study dealt with the utility of KOLAM for exploratory visualization and

analysis of both static and time-varying imagery of different types and formats, which

underscored the usefulness of the system for a variety of applications requiring accurate

multiple target tracking that could scale to a large number of objects and image sizes. To

this end, the requisite algorithms, data structures, data I/O formats and human computer

interfaces towards performing automated, manual and human-in-the=loop assisted target

tracking were conceived, designed and implemented in KOLAM by the author. For WAMI

imagery, KOLAM’s ability to interactively animate gigapixel-sized images as well as per-

form automatic or manual tracking and trajectory visualization and analysis translates into

applications in both the civilian and defense sectors.

The second case study underscores the importance of the visualization and editing of

object trajectories, as these play a vital role in the generation of ground truth trajectory

generation for datasets of interest, and are essential components of a human in the loop (as-

sisted) object tracking system. KOLAM is able to improve human effectiveness measured

in terms of productivity for accurately tracking multiple targets and reviewing and validat-

ing the results of tracking, in the automatic and manual tracking modes, and especially in

the assisted tracking mode. The author’s work in conceiving and implementing trajectory

visualization and trajectory editing operations within the KOLAM system constitutes a cru-

cial component of the solution to the problems and challenges involved in assisted object

tracking, as well as automatic and manual object tracking.

208

The third case study identifies the problems faced and needs of pathologists as well as

algorithm designers: with the former having a strong and growing need for tools to lessen

the burden involved in analyzing and annotating large numbers of whole-slide histopathol-

ogy imagery for training CMSS/CAD systems, and for sharing results among experts using

a web-based interface. The latter require a means to interactively visualize the results of

their segmentation algorithms on the WSI data, a means to generate ground-truth for train-

ing classifiers and improving and fine-tuning the performance of other algorithmic mod-

ules. The case stody then elaborates on the author’s unique contributions which resulted in

KOLAM’s capabilities to meet both computational and clinical needs, as well as to bridge

the gap between pathologists and algorithm developers; by providing a virtual microscope

interface supporting a variety of WSI formats along with a novel method for rapidly la-

beling and correcting the tissue microenvironment stroma-epithelia region labels. Thus,

due to the author’s unique contributions, KOLAM now provides vital visanalysis software

tools for medical and computational experts to develop the evolving field of computational

histopathology.

User interfaces (UI) and the associated user experiences (UX) of a software system must

be comprehensively evaluated, both to obtain standard benchmarks of their performance as

well as to engender trust in their use. To this end, both quantitative and qualitative usability

evaluations were performed for various operations of the KOLAM visual analytics system.

The operations chosen for the evaluations: 1-Click Object Tracking, Trajectory Editing and

Segmentation Relabeling are representative of KOLAM’s capabilities across the spectra of

domains as well as of task complexity. Per ISO/IEC specifications, metrics corresponding

to the efficiency, effectiveness and satisfaction of users to complete the specified tasks were

evaluated. KOLAM has been proven to be perfectly effective in tackling real world scenar-

209

ios of which the chosen experiments are representative. With regards to efficiency, there

is room for improvement, which will be addressed in the future work. Overall qualitative

user satisfaction with KOLAM is also high at present, and is expected to improve further

when the efficiency concerns to be addressed are further explored and implemented.

8.2 Future Work

The problems, the respective domains, the associated challenges, and finally the possible

solutions as identified and tackled in this thesis belong to dynamic, evolving fields of study.

As such, while several problems and their solutions have been the subject of this thesis,

many new and interesting directions of research yet remain to be explored as future work.

The proposed future work to be completed has been briefly discussed at multiple points

throughout the thesis. A summary listing of the discussed points follows.

(a) Multiple real-time updating display sub-windows, for multiple purposes. Currently

intended to visually monitor and focus on particular tracked objects. (b) Porting to mo-

bile platforms (Android, iOS etc.). Will require significant alteration to memory model,

data handling (all remote, local data of very low priority), need to monitor power usage

by different code portions so as to not inefficiently drain battery on target devices. (c)

Superior data structure for scalable trajectory handling. (d) Add extensive data analytics

modules. (e) Completion of assisted tracking system. (f) Modify KOLAM to be a full-

fledged data acquisition and handling system, handling acquisition of image data from the

source to real-time post-processing of the data. (g) Support for IR and multispectral WAMI.

(h) A knowledge base for managing thousands of trajectories from automated and interac-

tive analysis of events. (i) Developing techniques to visualize statistical trajectory flow

210

information, distinguishing between normal and abnormal patterns of activity, and pro-

cessing event-based queries using semantic models. (j) Tiled image processing operators.

(k) Cloud-enabled big visual data workflows. (l) Support for parallel operators and GPU

implementations for interactive big data analytics. (m) Interfacing with image processing

operator libraries. (n) Provenance of workflows or image processing chains. (o) Rendering

point clouds and meshes. (p) Support for storing and reading annotations from a database

like FireFly and DragonFly tools. (q) Extension to AR and VR environments for big data

visualization.

The following is a description of an idea that struck the author, which is very tentative

and has not been discussed previously. It lists a few steps for fundamentally changing KO-

LAM’s user interfaces. (a) Minimize eye loss of focus from the object of interest through

possibly several steps involved in completing a task such as object tracking. Productivity is

maximized if the user is allowed to focus solely on the object rather than having to shift eye

focus towards spatially distant UI components in order to perform the next steps. (b) Need

to minimize hand movement to reduce overall fatigue when performing a time-consuming

operation such as generating ground-truth over several thousand image frames in a long

image sequence. Also factors into prevention of loss of visual focus from object currently

being operated on. A task like object tracking involves several steps. Let these steps be

defined by the hypothetical sequence a,b,c,d,e. One group of users might find a,b’,c,d,e to

be more natural and productive. Another group might prefer a,b’,c’,d,e. Here, b’ and c’

are action options that are currently undefined in the system, yet seem more natural to spe-

cific user interaction. Current methods for handling such user behavior include limiting the

available interaction options (either through interface non-responsiveness, warnings and

error messages, disabling interface components) or presenting as many choices as possible

211

through a hierarchy of interface components: menus and sub-menus, which in turn bring

up dialogs, each of which can potentially possess one or more specialized sub-components.

The latter approach models a tree of possible interaction choices, with the user having to

navigate down the tree, from the ‘root’ (a top level menu item, for example), down to a leaf

(altering the state of an end-of-the-line component like a check box, and clicking an ‘OK’

button). This approach, while both straightforward and comprehensive, suffers from forc-

ing a learning curve of increasing complexity upon the user, as more choices of interaction

need to be made available. (c) An interesting option is a ‘plastic’ interface: one that does

not provide too many interaction options out-of-the-box, but rather attempts to learn from

user actions and patterns of actions. Given a particular task like object tracking that in-

volves a pipeline of actions on KOLAM’s part in order to be accomplished, the system can

attempt to learn user behavior by recording user actions that are undefined in the pipeline

and mapping them to expected actions. Subsequent performance of the task (object track-

ing in this instance) will allow for the previously performed user action to either to go to

the next step or to complete the overall task. This approach thus attempts to make user

interaction with the system more natural, rewarding and less stressful, thereby increasing

user productivity.

212

Appendix A

Manual for KOLAM

A.1 Location of Manual for KOLAM

In keeping with the need for extensive documentation of features and user interactions

for a complex system such as KOLAM, the author has prepared a separate document -

the ‘Kolam Manual’, which serves as a comprehensive guide for all of KOLAM’s usage

scenarios.

The manual has been physically appended to the end of the thesis document, and can

be found after the Bibliography.

213

Bibliography

[1] P. C. Wong and J. Thomas. Guest editors’ introduction–visual analytics. IEEE

Computer Graphics and Applications, 24 (5): 20-21, 24(PNNL-SA-41935), 2004.

[2] D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann. Mastering the information

age solving problems with visual analytics. 2010.

[3] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Challenges in visual

data analysis. In Tenth International Conference on Information Visualization, 2006.

IV 2006., pages 9–16. IEEE, 2006.

[4] D. A. Keim, F. Mansmann, and J. Thomas. Visual analytics: how much visualization

and how much analytics? ACM SIGKDD Explorations Newsletter, 11(2):5–8, 2010.

[5] B. Shneiderman. Designing the user interface: strategies for effective human-

computer interaction. Pearson Education India, 2010.

[6] K. A. Cook and J. J. Thomas. Illuminating the Path: The Research and Development

Agenda for Visual Analytics. IEEE Computer Society, Los Alamitos, CA, United

States(US)., 2005.

214

[7] B. Shneiderman. The eyes have it: A task by data type taxonomy for information

visualizations. In IEEE Symposium on Visual Languages, 1996, pages 336–343.

IEEE, 1996.

[8] J. W. Tukey. Exploratory data analysis. Addison-Wesley Series in Behavioral Sci-

ence: Quantitative Methods, 1977.

[9] K. Palaniappan and J. Fraser. Multiresolution tiling for interactive viewing of large

datasets. In 17th Int. AMS Conf. Interactive Information and Processing Systems

(IIPS) for Meteorology, Oceanography and Hydrology, pages 338–342, 2001.

[10] K. Palaniappan, R. Rao, and G. Seetharaman. Wide-area persistent airborne video:

Architecture and challenges. In B. Banhu, C. V. Ravishankar, A. K. Roy-Chowdhury,

H. Aghajan, and D. Terzopoulos, editors, Distributed Video Sensor Networks: Re-

search Challenges and Future Directions, chapter 24, pages 349–371. Springer,

2011.

[11] J. Kopf, M. Uyttendaele, O. Deussen, and M.F. Cohen. Capturing and viewing

gigapixel images. volume 26, pages 93–102. ACM, 2007.

[12] Q. Luan, S.M. Drucker, J. Kopf, Y.Q. Xu, and M.F. Cohen. Annotating gigapixel

images. In Proc. 21st ACM Symp. on User Interface Software and Technology, pages

33–36, 2008.

[13] D.R. Jones, E.R. Jurrus, B.D. Moon, and K.A. Perrine. Gigapixel-size real-time in-

teractive image processing with parallel computers. In Proc. Parallel and Distributed

Processing Symposium, page 7 pp., 2003.

215

[14] L.L. Smarr, A.A. Chien, T. DeFanti, J. Leigh, and P.M. Papadopoulos. The optiputer.

Communications of the ACM, 46(11):58–67, 2003.

[15] N. Schwarz, S. Venkataraman, L. Renambot, N. Krishnaprasad, V. Vishwanath,

J. Leigh, A. Johnson, G. Kent, and A. Nayak. Vol-a-tile a tool for interactive ex-

ploration of large volumetric data on scalable tiled displays. In Proceedings of the

conference on Visualization’04, pages 598–19. IEEE Computer Society, 2004.

[16] R. Singh, B. Jeong, L. Renambot, A. Johnson, and J. Leigh. Teravision: a distributed,

scalable, high resolution graphics streaming system. In cluster, pages 391–400.

IEEE, 2004.

[17] NK Krishnaprasad, V. Vishwanath, S. Venkataraman, AG Rao, L. Renambot,

J. Leigh, AE Johnson, and B. Davis. Juxtaview-a tool for interactive visualization of

large imagery on scalable tiled displays. In Proceedings of the 2004 IEEE Interna-

tional Conference on Cluster Computing, pages 411–420. IEEE Computer Society,

2004.

[18] Xi Wang, V. Vishwanath, Byungil Jeong, R. Jagodic, E. He, L. Renambot, A. John-

son, and J. Leigh. Lambdabridge: A scalable architecture for future generation

terabit applications. In Broadband Communications, Networks and Systems, 2006.

BROADNETS 2006. 3rd International Conference on, pages 1 –10, oct. 2006.

[19] T. Ni, G.S. Schmidt, O.G. Staadt, M.A. Livingston, R. Ball, and R. May. A survey of

large high-resolution display technologies, techniques, and applications. In Virtual

Reality Conference, 2006, pages 223–236. IEEE, 2006.

216

[20] L. Renambot, B. Jeong, H. Hur, A. Johnson, and J. Leigh. Enabling high resolution

collaborative visualization in display rich virtual organizations. Future Generation

Computer Systems, 25(2):161–168, 2009.

[21] T.A. DeFanti, J. Leigh, L. Renambot, B. Jeong, A. Verlo, L. Long, M. Brown, D.J.

Sandin, V. Vishwanath, Q. Liu, et al. The optiportal, a scalable visualization, stor-

age, and computing interface device for the optiputer. Future Generation Computer

Systems, 25(2):114–123, 2009.

[22] B. Jeong, J. Leigh, A. Johnson, L. Renambot, M. Brown, R. Jagodic, S. Nam, and

H. Hur. Ultrascale collaborative visualization using a display-rich global cyberin-

frastructure. IEEE Computer Graphics and Applications, 30(3):71–83, 2010.

[23] K. Ponto, K. Doerr, and F. Kuester. Giga-stack: A method for visualizing giga-pixel

layered imagery on massively tiled displays. Future Generation Computer Systems,

26(5):693–700, 2010.

[24] K. Ponto and F. Kuester. DIGI-Vis: Distributed interactive geospatial information

visualization. In IEEE Aerospace Conference, pages 1–7, 2010.

[25] L. Renambot, A. Rao, R. Singh, B. Jeong, N. Krishnaprasad, V. Vishwanath,

V. Chandrasekhar, N. Schwarz, A. Spale, C. Zhang, et al. Sage: the scalable adaptive

graphics environment. In Proceedings of WACE, volume 2004, 2004.

[26] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. El-

lis, L. Gautier, Y. Ge, J. Gentry, et al. Bioconductor: open software development for

computational biology and bioinformatics. Genome biology, 5(10):R80, 2004.

217

[27] R. Theron. Visual analytics of paleoceanographic conditions. In IEEE VAST, pages

19–26. IEEE, 2006.

[28] TIBCO Spotfire. Spotfire 5. Online at: http://spotfire.tibco.com, 2012.

[29] S. Wolfram. The Mathematica. Cambridge university press Cambridge, 1999.

[30] SAS Institute. SAS user’s guide: statistics, volume 2. Sas Inst, 1985.

[31] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull. Graphvizopen

source graph drawing tools. In International Symposium on Graph Drawing, pages

483–484. Springer, 2001.

[32] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl,

K. Thiel, and B. Wiswedel. Knime-the konstanz information miner: version 2.0

and beyond. AcM SIGKDD explorations Newsletter, 11(1):26–31, 2009.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

weka data mining software: an update. ACM SIGKDD explorations newsletter,

11(1):10–18, 2009.

[34] R. Klinkenberg. RapidMiner: Data mining use cases and business analytics appli-

cations. Chapman and Hall/CRC, 2013.

[35] J. Lin, E. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom. Viztree: a tool

for visually mining and monitoring massive time series databases. In Proceedings

of the Thirtieth international conference on Very large data bases-Volume 30, pages

1269–1272. VLDB Endowment, 2004.

218

[36] J. Seo and B. Shneiderman. A knowledge integration framework for information vi-

sualization. In From Integrated Publication and Information Systems to Information

and Knowledge Environments, pages 207–220. Springer, 2005.

[37] R. Santamarı́a, R. Therón, and L. Quintales. Bicoverlapper: a tool for bicluster

visualization. Bioinformatics, 24(9):1212–1213, 2008.

[38] I.J. Roth. Real-time visualization of massive imagery and volumetric datasets. Mas-

ter’s thesis, University of Missouri-Columbia, 2006.

[39] J. Fraser, A. Haridas, G. Seetharaman, R. Rao, and K. Palaniappan. KOLAM: A

cross-platform architecture for scalable visualization and tracking in wide-area mo-

tion imagery. In Proc. SPIE Conf. Geospatial InfoFusion III, volume 8747, page

87470N, 2013.

[40] A. Haridas, R. Pelapur, J. Fraser, F. Bunyak, and K. Palaniappan. Visualization of

automated and manual trajectories in wide-area motion imagery. In 15th Int. Conf.

Information Visualization, pages 288–293, 2011.

[41] K. Palaniappan, A.F. Hasler, J.B. Fraser, and M. Manyin. Network-based visualiza-

tion using the distributed image spreadsheet (DISS). In 17th Int. Conf. on Interactive

Information and Processing Systems (IIPS) for Meteorology, Oceanography and Hy-

drology, pages 399–403, 2001.

[42] K. Palaniappan and J.B. Fraser. Multiresolution tiling for interactive viewing of

large datasets. In 17th International Conference on Interactive Information and

Processing Systems, 2001.

219

[43] G. J. Hunter and M. F. Goodchild. Managing uncertainty in spatial databases:

Putting theory into practice. In Papers from the Annual Conference-Urban and Re-

gional Information Systems Association, pages 15–15. URISA URBAN AND RE-

GIONAL INFORMATION SYSTEMS, 1993.

[44] K. Palaniappan, A.F. Hasler, J.B. Fraser, and M. Manyin. Network-based visualiza-

tion using the distributed image spreadsheet (DISS). In 17th Int. Conf. Interactive

Information and Processing Systems, 2001.

[45] K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jaeger, K. Ganguli, A. Haridas,

J. Fraser, R. Rao, and G. Seetharaman. Efficient feature extraction and likelihood

fusion for vehicle tracking in low frame rate airborne video. In 13th Int. Conf.

Information Fusion, 2010.

[46] I. Ersoy, K. Palaniappan, and G. Seetharaman. Tracking in persistent wide-area

motion imagery. In M.F. Pellechia and Sorensen R., editors, SPIE Proc. Geospatial

InfoFusion Systems and Solutions for Defense and Security Applications, volume

8053, 2011.

[47] M. B. Rosson and J. M. Carroll. Scenario based design. Human-computer interac-

tion. boca raton, FL, pages 145–162, 2009.

[48] P. Ehn. Scandinavian design: On participation and skill. Participatory design: Prin-

ciples and practices, 41:77, 1993.

[49] E. B-N Sanders, E. Brandt, and T. Binder. A framework for organizing the tools and

techniques of participatory design. In Proceedings of the 11th biennial participatory

design conference, pages 195–198. ACM, 2010.

220

[50] D. Doermann and D. Mihalcik. Tools and techniques for video performance eval-

uation. In 15th Int. Conf. Pattern Recognition, volume 4, pages 167–170. IEEE,

2000.

[51] R. Vezzani and R. Cucchiara. Annotation collection and online performance evalu-

ation for video surveillance: The ViSOR project. In IEEE 5th Int. Conf. Advanced

Video and Signal Based Surveillance, pages 227–234, 2008.

[52] S.K. Ralph, J. Irvine, M.R. Stevens, M. Snorrason, and D. Gwilt. Assessing the

performance of an automated video ground truthing application. Applied Image

Pattern Recognition Workshop,, 0:202–207, 2004.

[53] Home Office Scientific Development Branch. Imagery Library for Intelligent De-

tection Systems (i-LIDS). pages 445–448, 2006.

[54] A.T. Nghiem, F. Bremond, M. Thonnat, and V. Valentin. ETISEO: Performance

evaluation for video surveillance systems. In IEEE 5th Int. Conf. Advanced Video

and Signal Based Surveillance, 2007.

[55] C. Liu, W.T. Freeman, E.H. Adelson, and Y. Weiss. Human-assisted motion annota-

tion. In IEEE Conf. Computer Vision and Pattern Recognition. IEEE, 2008.

[56] C.J. Carrano. Ultra-scale vehicle tracking in low spatial resolution and low frame-

rate overhead video. In Proceedings of SPIE, volume 7445, 2009.

[57] R. Porter, A.M. Fraser, and D. Hush. Wide-area motion imagery. IEEE Signal

Processing Magazine, 27(5):56–65, 2010.

[58] K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jaeger, K. Ganguli, A. Haridas,

J. Fraser, R. Rao, and G. Seetharaman. Efficient feature extraction and likelihood

221

fusion for vehicle tracking in low frame rate airborne video. In 13th Int. Conf.

Information Fusion, 2010.

[59] N.P. Cuntoor, A. Basharat, A.G.A. Perera, and A. Hoogs. Track initialization in

low frame rate and low resolution videos. In Int. Conf. Pattern Recognition, pages

3640–3644. IEEE, 2010.

[60] V. Reilly, H. Idrees, and M. Shah. Detection and tracking of large number of targets

in wide area surveillance. In 11th European Conf. Computer Vision, pages 186–199.

Springer-Verlag, 2010.

[61] X. Jiangjian, C. Hui, H. Sawhney, and H. Feng. Vehicle detection and tracking

in wide field-of-view aerial video. In IEEE Conf. Computer Vision and Pattern

Recognition, pages 679 – 684, 2010.

[62] Air Force Research Laboratory. Columbus Large Image Format (CLIF) 2007 dataset.

[63] A. L. Chan. A description on the second dataset of the U.S. Army Research Labora-

tory Force Protection Surveillance System. Technical Report ARL-MR-0670, Army

Research Laboratory, Adelphi, MD, 2007.

[64] A. H. Beck, A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen, M. J. van de Vi-

jver, R. B. West, M. van de Rijn, and D. Koller. Systematic analysis of breast cancer

morphology uncovers stromal features associated with survival. Science Transla-

tional Medicine, 3(108):108–113, 2011.

[65] G. Finak, N. Bertos, F. Pepin, S. Sadekova, M. Souleimanova, H. Zhao, H. Chen,

G. Omeroglu, S. Meterissian, A. Omeroglu, M. Hallett, and M. Park. Stromal gene

222

expression predicts clinical outcome in breast cancer. Nature Medicine, 14(5):518–

527, 2008.

[66] K. Pietras and A. Östman. Hallmarks of cancer: Interactions with the tumor stroma.

Exp. Cell Res., 316(8):1324–1331, 2010.

[67] E. de Kruijf, J. van Nes, C. van de Velde, H. Putter, V. Smit, G. Liefers, P. Kuppen,

R. Tollenaar, and W. Mesker. Tumor-Stroma Ratio within the Primary Tumor Is

a Prognostic Factor in Early Breast Cancer Patients, Especially in Triple-Negative-

Carcinoma Patients. Cancer Res., 69(24 Supplement):3049–3049, 2009.

[68] A. Planche, M. Bacac, P. Provero, C. Fusco, M. Delorenzi, J.C. Stehle, and I. Sta-

menkovic. Identification of prognostic molecular features in the reactive stroma of

human breast and prostate cancer. PLoS One, 6(5), 2011.

[69] T. J. Dekker, C. J. H. Van De Velde, G. W. Van Pelt, J. R. Kroep, J. P. Julien, V. Smit,

R. Tollenaar, and W. E. Mesker. Prognostic significance of the tumor-stroma ratio:

Validation study in node-negative premenopausal breast cancer patients from the

EORTC perioperative chemotherapy (POP) trial (10854). Breast Cancer Res. Treat.,

139(2):371–379, 2013.

[70] J.M. Chen, A.P. Qu, L.W. Wang, J.P. Yuan, F. Yang, Q.M. Xiang, N. Maskey, G.F.

Yang, J. Liu, and Y. Li. New breast cancer prognostic factors identified by computer-

aided image analysis of he stained histopathology images. Scientific Reports, 5,

2015.

[71] E Versi. ”Gold standard” is an appropriate term. BMJ: British Medical Journal,

305(6846):187, 1992.

223

[72] A. Haridas, F. Bunyak, and K. Palaniappan. Interactive segmentation relabeling for

classification of whole-slide histopathology imagery. In IEEE Int. Symposium on

Computer-Based Medical Systems (CBMS), pages 84–87, Jun 2015.

[73] F. Bunyak, A. Hafiane, Z. Al-Milagi, I. Ersoy, A. Haridas, and K. Palaniappan. A

segmentation-based multi-scale framework for the classification of epithelial and

stromal tissues in h & e images. In Proc. IEEE International Conference on Bioin-

formatics and Biomedicine (BIBM), pages 450–453, 2015.

[74] The OpenClinical Project. Decision Support Systems. Online at:

http://www.openclinical.org/dss.html, 2001.

[75] D. A. Gutman, J. Cobb, D. Somanna, Y. Park, F. Wang, T. Kurc, J. H. Saltz, D. J.

Brat, L. Cooper, and J. Kong. Cancer Digital Slide Archive: an informatics resource

to support integrated in silico analysis of TCGA pathology data. J. American Medi-

cal Informatics Association, 20(6):1091–1098, 2013.

[76] L. A. Teot, R. Sposto, A. Khayat, S. Qualman, G. Reaman, and D. Parham. The

problems and promise of central pathology review: development of a standard-

ized procedure for the children’s oncology group. Ped. and Develop. Pathology,

10(3):199–207, 2007.

[77] B. Sabata. Digital Pathology Imaging-The Next Frontier in Medical Imaging. In

2012 International Conference on Advanced Computer Science and Information

Systems (ICACSIS), pages 1–6. IEEE, 2012.

224

[78] V. B. S. Prasath, F. Bunyak, P. Dale, S. R. Frazier, and K. Palaniappan. Segmentation

of breast cancer tissue microarrays for computer-aided diagnosis in pathology. In

IEEE Healthcare Innovation Conference, 2012.

[79] F. Bunyak, A. Hafiane, and K. Palaniappan. Histopathology tissue segmentation by

combining fuzzy clustering with multiphase vector level sets. In Software Tools and

Algorithms for Biological Systems, pages 413–424. Springer, 2011.

[80] A. Hafiane, F. Bunyak, and K. Palaniappan. Evaluation of level set-based histology

image segmentation using geometric region criteria. In IEEE Int. Symp. Biomedical

Imaging, 2009.

[81] A. Hafiane, F. Bunyak, and K. Palaniappan. Fuzzy clustering and active contours for

histopathology image segmentation and nuclei detection. Lecture Notes in Computer

Science (ACIVS), 5259:903–914, 2008.

[82] A. Hafiane, F. Bunyak, and K. Palaniappan. Clustering initiated multiphase active

contours and robust separation of nuclei groups for tissue segmentation. In IEEE

Int. Conf. Pattern Recognition, page Online, 2008.

[83] S. Kothari, J. H. Phan, A. O. Osunkoya, and M. D. Wang. Biological Interpretation

of Morphological Patterns in Histopathological Whole-Slide Images. In Proceedings

of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine,

pages 218–225. ACM, 2012.

[84] R. Gutiérrez, F. Gómez, L. Roa-Peña, and E. Romero. A supervised visual model for

finding regions of interest in basal cell carcinoma images. Diag. Pathology, 6(1):14,

2011.

225

[85] D. Romo, E. Romero, and F. González. Learning regions of interest from low level

maps in virtual microscopy. Diag. Pathology, 6(Suppl 1):8, 2011.

[86] V. Raghunath, M. O. Braxton, S. A. Gagnon, T. T. Brunyé, K. H. Allison, L. M.

Reisch, D. L. Weaver, J. G. Elmore, and L. G. Shapiro. Mouse cursor movement

and eye tracking data as an indicator of pathologists attention when viewing digital

whole slide images. Journal of pathology informatics, 3, 2012.

[87] A. Qu, J. Chen, L. Wang, J. Yuan, F. Yang, Q. Xiang, N. Maskey, G. Yang, J. Liu, and

Y. Li. Two-step segmentation of hematoxylin-eosin stained histopathological images

for prognosis of breast cancer. In IEEE International Conference on Bioinformatics

and Biomedicine, pages 218–223, 2014.

[88] N. Linder, J. Konsti, R. Turkki, E. Rahtu, M. Lundin, S. Nordling, C. Haglund,

T. Ahonen, M. Pietikäinen, and J. Lundin. Identification of tumor epithelium and

stroma in tissue microarrays using texture analysis. Diagnostic Pathology, 7(1):22,

2012.

[89] M. D. DiFranco, G. OHurley, E. W. Kay, R. W. G. Watson, and P. Cunningham.

Ensemble based system for whole-slide prostate cancer probability mapping using

color texture features. Computerized Medical Imaging and Graphics, 35(7):629–

645, 2011.

[90] V. Roullier, O. Lézoray, V-T. Ta, and A. Elmoataz. Multi-resolution graph-based

analysis of histopathological whole slide images: Application to mitotic cell extrac-

tion and visualization. Comp. Med. Imaging and Graphics, 35(7):603–615, 2011.

226

[91] J. Kong, O. Sertel, H. Shimada, K. L. Boyer, J. H. Saltz, and M. N. Gurcan.

Computer-aided evaluation of neuroblastoma on whole-slide histology images:

Classifying grade of neuroblastic differentiation. Pattern Recognition, 42(6):1080–

1092, 2009.

[92] S. Doyle, M. Feldman, J. Tomaszewski, and A. Madabhushi. A boosted Bayesian

multiresolution classifier for prostate cancer detection from digitized needle biop-

sies. IEEE Trans. Biomedical Engineering, 59(5):1205–1218, 2012.

[93] C. Huang, A. Veillard, L. Roux, N. Loménie, and D. Racoceanu. Time-efficient

sparse analysis of histopathological whole slide images. Computerized Medical

Imaging and Graphics, 35(7):579–591, 2011.

[94] R. Singh, L. Chubb, L. Pantanowitz, A. Parwani, et al. Standardization in digital

pathology: Supplement 145 of the DICOM standards. Journal of Pathology Infor-

matics, 2(1):23, 2011.

[95] C. Allan, J. Burel, J. Moore, C. Blackburn, M. Linkert, S. Loynton, D. MacDonald,

W. J. Moore, C. Neves, A. Patterson, et al. OMERO: flexible, model-driven data

management for experimental biology. Nature Methods, 9(3):245–253, 2012.

[96] W. Jeong, J. Schneider, S. G. Turney, B. E. Faulkner-Jones, D. Meyer, R. West-

ermann, R. C. Reid, J. Lichtman, and H. Pfister. Interactive histology of large-

scale biomedical image stacks. IEEE Trans. Visualization and Computer Graphics,

16(6):1386–1395, 2010.

[97] Bitplane Inc. Imaris v 8.0.1. Online at: http://bitplane.com, 2014.

227

[98] W. Schroeder, K. Martin, L. S. Avila, and C. C. Law. The Visualization Toolkit

User’s Guide, Version 4.0. Kitware Publishing, 4, 2001.

[99] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years

of image analysis. Nature methods, 9(7):671–675, 2012.

[100] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,

S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al. Fiji: an open-source platform

for biological-image analysis. Nature Methods, 9(7):676–682, 2012.

[101] Leica Biosystems. ePathology Imagescope. Online

at: http://www.leicabiosystems.com/pathology-imaging/aperio-

epathology/integrate/imagescope/, 2015.

[102] C. Sommer, C. Straehle, U. Koethe, F. Hamprecht, et al. ilastik: Interactive learning

and segmentation toolkit. In 2011 IEEE International Symposium on Biomedical

Imaging: From Nano to Macro, pages 230–233. IEEE, 2011.

[103] R. Marée, B. Stévens, L. Rollus, N. Rocks, X. M. Lopez, I. Salmon, D. Cataldo, and

L. Wehenkel. A rich internet application for remote visualization and collaborative

annotation of digital slides in histology and cytology. Diagnostic Pathology, 8(Suppl

1):1–4, 2013.

[104] PathCore Inc. Sedeen 5. Online at: http://pathcore.ca/sedeen, 2015.

[105] H. Ding, C. Wang, K. Huang, and R. Machiraju. GRAPHIE: graph based histology

image explorer. BMC bioinformatics, 16(Suppl 11):S10, 2015.

228

[106] U. Catalyurek, M. D. Beynon, C. Chang, T. Kurc, A. Sussman, and J. Saltz. The

virtual microscope. IEEE Trans. Information Technology in Biomedicine, 7(4):230–

248, 2003.

[107] D. Keim, G. Andrienko, J. Fekete, C. Görg, J. Kohlhammer, and G. Melançon. Vi-

sual analytics: Definition, process, and challenges. Information Visualization, pages

154–175, 2008.

[108] A. Goode, B. Gilbert, J. Harkes, D. Jukic, M. Satyanarayanan, et al. OpenSlide:

A vendor-neutral software foundation for digital pathology. Journal of Pathology

Informatics, 4(1):27, 2013.

[109] M. Linkert, C. T. Rueden, C. Allan, J. Burel, W. Moore, A. Patterson, B. Loranger,

J. Moore, C. Neves, D. MacDonald, et al. Metadata matters: access to image data in

the real world. J. Cell Biology, 189(5):777–782, 2010.

[110] M. T. McCann, J. A. Ozolek, C. A. Castro, B. Parvin, and J. Kovacevic. Automated

histology analysis: Opportunities for signal processing. IEEE Signal Processing

Magazine, 32(1):78–87, 2015.

[111] G. Rolls. An Introduction to Specimen Preparation. Online at:

http://www.leicabiosystems.com/pathologyleaders/an-introduction-to-specimen-

preparation/, 2011.

[112] M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley, X. Guan,

C. Schmitt, and N. E. Thomas. A method for normalizing histology slides for

quantitative analysis. In Proceedings of the Sixth IEEE International Symposium

on Biomedical Imaging: From Nano to Macro, pages 1107–1110. IEEE, 2009.

229

[113] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman,

D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, et al. Cellprofiler: image

analysis software for identifying and quantifying cell phenotypes. Genome biology,

7(10):R100, 2006.

[114] J. Weickert. Anisotropic diffusion in image processing, volume 1. Teubner Stuttgart,

1998.

[115] Karel Zuiderveld. In Graphics Gems IV, pages 474–485. Academic Press Profes-

sional, Inc., San Diego, CA, USA, 1994.

[116] A. C. Ruifrok and D. A. Johnston. Quantification of histochemical staining by color

deconvolution. Analytical and quantitative cytology and histology/the International

Academy of Cytology [and] American Society of Cytology, 23(4):291–299, 2001.

[117] A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee. A nonlinear mapping approach

to stain normalization in digital histopathology images using image-specific color

deconvolution. IEEE Transactions on Biomedical Engineering, 61(6):1729–1738,

2014.

[118] M. T. McCann, J. Majumdar, C. Peng, C. Castro, J. Kovacevic, et al. Algorithm and

benchmark dataset for stain separation in histology images. In IEEE International

Conference on Image Processing (ICIP), pages 3953–3957. IEEE, 2014.

[119] M. Gavrilovic, J. C. Azar, J. Lindblad, C. Wahlby, E. Bengtsson, C. Busch, and I. B.

Carlbom. Blind color decomposition of histological images. IEEE Transactions on

Medical Imaging, 32(6):983–994, 2013.

230

[120] E. Mercan, S. Aksoy, L. G. Shapiro, D. L. Weaver, T. Brunye, and J. G. Elmore.

Localization of diagnostically relevant regions of interest in whole slide images. In

IEEE 22nd International Conference on Pattern Recognition (ICPR), 2014, pages

1179–1184. IEEE, 2014.

[121] R. G. Bias. The pluralistic usability walkthrough: coordinated empathies. In Us-

ability inspection methods, pages 63–76. John Wiley & Sons, Inc., 1994.

[122] J. D. Gould and C. Lewis. Designing for usability: key principles and what designers

think. Communications of the ACM, 28(3):300–311, 1985.

[123] Niels Ebbe Jacobsen, Morten Hertzum, and Bonnie E John. The evaluator effect in

usability studies: Problem detection and severity judgments. In Proceedings of the

Human Factors and Ergonomics Society Annual Meeting, volume 42, pages 1336–

1340. SAGE Publications Sage CA: Los Angeles, CA, 1998.

[124] A. Pospischil and G. Folkers. How much reproducibility do we need in human and

veterinary pathology? Experimental and Toxicologic Pathology, 67(2):77–80, 2015.

[125] W Iso. 9241-11. ergonomic requirements for office work with visual display termi-

nals (vdts). The international organization for standardization, 45, 1998.

[126] N. Bevan. Quality in use: Meeting user needs for quality. Journal of systems and

software, 49(1):89–96, 1999.

[127] R. Pelapur, F. Bunyak, K. Palaniappan, and G. Seetharaman. Vehicle detection and

orientation estimation using the radon transform. In Proc. SPIE Conf. Geospatial

InfoFusion III (Defense, Security and Sensing: Sensor Data and Information Ex-

ploitation), volume 8747, page 87470I, 2013.

231

[128] J. Rubin and D. Chisnell. Handbook of usability testing: how to plan, design and

conduct effective tests. John Wiley & Sons, 2008.

[129] John Brooke et al. SUS-A quick and dirty usability scale. Usability evaluation in

industry, 189(194):4–7, 1996.

232

KOLAM 3.0 (v. 199)
The Complete Reference

Anoop Haridas
(Author)

Kannappan Palaniappan
(Faculty Supervisor)

Department of Computer Science
University of Missouri

Columbia, MO 65201, USA

ahkrc@mail.missouri.edu
palaniappank@missouri.edu

Rev. 2: Apr. 20, 2016.
Rev. 1: Nov. 19, 2014.
Rev. 0: Apr. 08, 2013.

1

CONTENTS

Contents 2

Acknowledgements 9
Disclaimer . 9

1 Introduction 10
Please cite our work . 11

2 Build, Install & Run 12
1. Windows OSes (XP, Vista, 7, 8, 8.1, 10) 12

Using the pre-built executable 12
Building with MinGW . 13
Building with Visual Studio . 13

2. Linux OSes (CentOS, Arch, Fedora) 14
Using the pre-built executable 14
Building from source . 14

3. Mac OSX (10.7, 10.8, 10.9, 10.10) . 15
Using the pre-built executable 15
Building from source . 15

4. External dependencies . 16
The MATLAB Compiler Runtime (MCR) 17

5. Running KOLAM . 17
Command-line execution . 17

3 Description of Menus 19
FILE Menu . 19

Open Image(s) ... 19
Open Sequence ... 19
Open Colormap ... 19
Discover PSS ... 20
Preferences ... 20
Close Layer . 20
Close All Layers . 20
Quit . 20

LAYER Menu . 20
Grid . 20
Layer Info ... 20
Layer Editor ... 20
Colormap Editor... 20

2

CONTENTS 3

Synthetic Pyramid ... 20
DISPLAY Menu . 21

2D Raster . 21
2D Texture . 21
3D Sphere . 21

WINDOW Menu . 21
Overview . 21
Cache Glyph . 21

TOOLS Menu . 21
Loop . 21
Track Viz . 22
Track Files . 22
Screen Capture . 22
ROI Selection . 22
Coordinate Position . 22

PLUGINS Menu . 23
Computer Vision . 23

HELP Menu . 23
Kolam Shortcuts . 23
About Kolam ... 23

4 Tools and Widgets 24
Layer Editor . 24

1. Path to Dataset . 25
2. Colormap Selector . 25
3. Heightmap Selector . 25
4. Layer Visibility . 25
5. Layer Enhancement . 25
6. Layer Black Transparency 25
7. Alpha Blending . 25
8. Change Layer . 25
9. Delete Layer . 25
10. Grid Visibility . 26
11. Grid Show All Tiles . 26
12. Grid Color . 26
13. Interactive Mode . 26
14. X Offset . 26
15. Y Offset . 26
16. Scale . 26
17. Layer List . 26
18. Layer Move . 26

Colormap Editor . 27
Preferences - Performance Tuning . 28

1. Quality . 29
2. Performance . 29
3. Balanced Q+P . 29
4. Adaptive Q+P . 29
5. All Events . 29
6. Compressed Events . 29
7. Enable Broadcaster Sync Packets 29

CONTENTS 4

8. Maximum Sync Frequency 30
9. Sync skipped if Apart by Less Than 30
10. Provide Text Feedback . 30
11. Protocol(s) Used . 30
12. Tile Cache Size . 30
13. Prefetch Border . 30
14. Max. Screen Tiles . 30
15. # Reader Threads . 30
16. Strict/Flexible Tile Display 30
17. Modify Parameters for Sequence 30
18. File Buffer Size . 30
19. Frame Buffer Size . 31

Preferences - Tracking Executable . 31
1. MATLAB . 31
2. OCTAVE . 31

Overview . 32
Cache Glyph . 33

5 Animation 34
Widget Description . 34

1. Frame Counter . 34
2. Playing speed . 35
3. Play Type . 35
4. Play . 36
5. Stop . 36
6. Skip to Start . 36
7. Step Backward . 36
8. Step Forward . 36
9. Skip to End . 36
10. Dataset Name . 36
11. More Options . 36
12. Animation Scrub Bar . 36

6 Layer Display Modalities 37
1. Display Layers overlaid one on top of the other 37
2. Layers arranged side-by-side . 37
3. Trajectory overlay placement . 38
4. A combination of all of the above . 38

7 Sphere & Terrain Rendering 39
Sphere Rendering . 39
Terrain Rendering . 39

8 Tracking 42
Page 1: ’WAMI’ . 42

1. Track Backward toggle . 42
2. (Altitude) Parameter File toggle 42
3. Auto Advance toggle . 43
4. Object ID display . 43
5. Create new Object ID . 44

CONTENTS 5

6. Manual Tracking toggle button 44
7. Automatic Tracking toggle button 44
8. Assisted Tracking toggle button 44
9. Vehicle toggle button . 44
10. Point primitive toggle button 44
11. Bounding Box primitive toggle button 44
12. Polygon primitive toggle button 45
13. CSURF Tracker toggle button 45
14. LOFT Tracker toggle button 45
15. Trajectory operation feedback 45

Page 2: ’BioMed’ . 45
1. Select Algorithm . 45
2. Number of Inputs . 45
3. Input Parameter file path . 46
4. Input Parameter File selector 46
5. Output file path . 47
6. Output file path selector . 47

Page 3: ’Track Viz’ . 47
1. Object ID Selector . 48
2. Go To frame toggle . 48
3. Draw All Tracks toggle . 48
4. Centroid display toggle . 48
5. Read Trajectories from Archive 48
6. Write Trajectories to Archive 48
7. Stop the Selected Running Tracker 48
8. Delete Trajectory files for Object ID 48
9. Trajectory Visibility toggle 48
10. Stabilized Trajectory display toggle 48
11. Center screen on tracked object toggle 49
12. Draw primitive toggle . 49
13. Set Trajectory thickness . 49
14. Set Trajectory color . 49
15. Current Trajectory output directory 49

Page 4: ’Editing’ . 49
1. Display All Trajectories . 49
2. Turn OFF unselected trajectories 49
3. Select Trajectories toggle . 49
4. Selected Trajectory list . 50
5. Jump to Start . 50
6. Jump to End . 50
7. Save Selections . 51
8. Unselect All . 51
9. Add Point(s) to Trajectory End(s) 51
10. Delete Point(s) from Trajectory End(s) 51
11. Delete clicked point / Split Track 51
12. Move Point(s) on Trajectory 51
13. Connect Trajectories . 51
14. ’Join From’ Trajectory . 51
15. ’Join To’ Trajectory . 52
16. Join Trajectory pair . 52

CONTENTS 6

17. Multiple Trajectory Join . 52
Track file formats supported by KOLAM 52

Flat file format . 52
KW-18 file format . 53

Tracking Modes in KOLAM . 53
Automatic Tracking . 54
Manual Tracking . 58
Assisted Tracking . 58

9 Multi-Monitor Display 59
Example Setup Scenario . 60
Current System Limitations . 60

10 Trajectory Editing 61
ADD point(s) to either end of a Trajectory 61
DELETE point(s) from either end of a Trajectory 62
MOVE any point on a Trajectory . 62
SPLIT a Trajectory . 63
JOIN Two or More Trajectories . 63

Pairwise Trajectory Join . 63
Multiple Trajectory Join . 63

11 Screen Capturing 64
Widget Description . 65

1. None . 65
2. Current image only . 65
3. Until stopped by user . 65
4. Give a sub-range . 65
5. From . . . To . 65
6. Kolam Window . 66
7. User Specified . 66
8. Capture Dimensions Specified by User 66
9. ’Set Capture Directory’ Button 66
10. Capture Directory full path 66
11. Edit Save file Prefix . 66
12. Edit Save file Index . 66
13. Select Save file Type . 66

Capturing with multiple Layers & Overlays 67
Using the ROI Selection Utility . 67

12 Plugins and KOLAM 69
12.1 Segmentation Relabeling . 69

Widget Description . 69
1. Original Image Path . 69
2. Partition Label Image Path 69
3. Classifier Output Image Path 69
4. Original Image Button . 70
5. Partition Label Image Button 70
6. Classifier Output Image Button 70
7. Load Project File Button . 70

CONTENTS 7

8. Project File Path . 70
9. Save Project File Button . 70
10. Load Sequence Project File Button 70
11. Create New Sequence Project File Button 71
12. Current Sequence Project File Path 71
13. Save Sequence Project File Button 71
14. Clear All . 71
15. Load . 71
16. Cancel . 71

Initial Setup for Relabeling . 71
Relabeling Procedure . 72

13 KOLAM: How to..? 73
1. LOAD - a Single Image . 73
2. LOAD - Images As A Sequence . 74
3. LOAD - Images into Separate Layers 74
4. LOAD - a Color Map . 74
5. CLEAR - The display area . 75
6. CHANGE - Order of layers in the layer stack 75
7. CHANGE - Currently active layer . 75
8. CHANGE - Colormap associated with a layer 76
9. CHANGE - Heightmap associated with a layer 76
10. TOGGLE - Visibility of a layer . 76
11. TOGGLE - Black Transparency of a layer 77
12. TOGGLE - Tile grid for a layer . 77
13. TOGGLE - Per-Layer Transformation 77
14. DISPLAY - Information about the active image layer 78
15. DISPLAY - Data using Raster Rendering on a Plane 78
16. DISPLAY - Data using Texture Rendering on a Plane 78
17. DISPLAY - Data using Texture Rendering on a Sphere 78
18. CONFIGURE - Display Settings . 78
19. CONFIGURE - Wall Networking Settings 78
20. CONFIGURE - Display Fine-Tuning 79
21. CONFIGURE - Tracking Executable paths for KOLAM 79
22. CONFIGURE - Tracking file save paths for KOLAM 79
23. USE - KOLAM’s Pan-Zoom Tool . 79
24. USE - KOLAM’s Coordinate Position Tool 80
25. USE - KOLAM’s ROI Selection Tool 80
26. CAPTURE - The display area as a screenshot 80
27. CAPTURE - The display area as a screenshot sequence 81
28. DISPLAY - An overview of the displayed data 81
29. DISPLAY - Memory usage while interactively displaying data . . 81
30. DISPLAY - Transparent dialogs for KOLAM 82
31. LOAD - Trajectories from a KW18 File 82
32. SAVE - All loaded KW18 Data to a KW18 File 82
33. SAVE - All loaded KW18 Data to a CSV File 83
34. DELETE - Most recently loaded KW18 Dataset 83
35. DELETE - All loaded KW18 datasets 83
36. TOGGLE - Visibility of a Single Trajectory 84
37. TOGGLE - Visibility of All Trajectories 84

CONTENTS 8

38. TOGGLE - Visibility of Selected Trajectories 84
39. TOGGLE - Display unstabilized and/or stabilized trajectories . . 85
40. TOGGLE - Display Names of Loaded KW18 Files 85
41. TOGGLE - Group loaded KW18 Files by Color 85
42. TOGGLE - Frame auto-advance during manual/visual tracking . 86
43. TOGGLE - Display full lengths of all trajectories 86
44. CHANGE - Trajectory Color and Thickness 86
45. CHANGE - Input selection primitive used for Tracking 87
46. CHANGE - Tracker type used for Tracking 87
47. CHANGE - The type of Tracking to be performed 87
48. ADD - Point(s) to a trajectory . 88
49. DELETE - Point(s) from a trajectory 89
50. MOVE - A point on a trajectory . 89
51. JOIN - Two or more trajectories . 90
52. SPLIT - A trajectory in two . 90
53. USE - KOLAM’s Interactive Segmentation Relabeling Plugin . . . 91
54. DISPLAY - KOLAM’s Shortcuts . 91
55. DISPLAY - Information about KOLAM 91

14 Hotkey Listing 92
Menu Bar: . 92
Kolam-Loop (MUST have focus): . 92
Main Window (MUST have focus): . 93

General . 93
Tracking Related . 93
Trajectory Drawing Related . 93
Screen Capturing Related . 93
Animation Related . 93
Wall Networking Related . 93
Segmentation Relabeling Related 94

15 Known Problems & Workarounds 95
1. Closing Image Sequences . 95

Workaround . 95
2. Non-Tiled Imagery . 95

Tiled or Non-Tiled? . 96
Tiling a Non-Tiled Sequence 96
Workaround . 97

3. Sequence with different sized images 97
Workaround . 97

4. Trajectory display hiccup on Linux and Mac OSX 97
Workaround . 97

5. Centering on objects with trajectories 97
Workaround . 97

6. KW-18 Trajectory files with missing frame information 98
Workaround . 98

7. Problem with toggling Layer visibility in Layer Editor 98
Workaround . 98

Bibliography 99

ACKNOWLEDGEMENTS

KOLAM is a software package for interactive visualization of massive geospatial
datasets and 2D biomedical imagery on standard desktop and mobile computers
developed at the University of Missouri. KOLAM uses multi-resolution tiled pyra-
mid data structures and an efficient cache memory hierarchy to deliver interactiv-
ity independent of dataset size. KOLAM supports embedded datasets at multiple
resolutions that may be hundreds of gigabytes to hundreds of terabytes in size. In
addition to rapid roam & zoom operations, KOLAM supports an arbitrary number
of simultaneously visible embedded layers, on-the-fly mosaics, colormap lookup
tables and histogram enhancement, projection of images onto a spherical surface
and elevation maps or terrain rendering. KOLAM 3.0 enables animating pyramid
files (2D+t) plus other supported file types, supports interactive object tracking us-
ing either a MATLAB or OCTAVE interface, interactive ground truth generation and
annotation, multi-object user configurable trajectory display and interactive seg-
mentation relabeling.

KOLAM 3.0 is developed by Anoop Haridas and Kannappan Palaniappan. Past
developers are Joshua Fraser, Ian Roth and Jared Hoberock. Rengarajan Pelapur
contributed full feature testing, performance and error feedback, and building and
porting for multiple target platforms. Ilker Ersoy contributed testing and feedback.
©2002 - 2016, All rights reserved.

The development of KOLAM and its associated out-of-core 2D and 3D rendering
technologies using memory hierarchies was partially supported by grants from
NASA Goddard Space Flight Center NAG 5-3900, NASA Stennis Space Center NAG-
13-99014, the U.S. Air Force Research Laboratory (AFRL) under agreements AFRL
FA8750-09-C-0226, FA8750-11-C-0091, FA8750-11-1-0073 and Leonard Wood Insti-
tute (LWI 181223) in cooperation with the U.S. Army Research Laboratory (ARL)
under Cooperative Agreement Number W911NF-07-2-0062. Approved for public
release. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied of AFRL, LWI, ARL, NASA or the U.S. Government.

This manual is authored by Anoop Haridas ©2013 - 2016. This revision corresponds
to KOLAM 3.0 v. 199, built against Qt 4.7.4 and Qt 5.3.2 (©The Qt Company).

Disclaimer

This program is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING
THE WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE.

9

C
H

A
P

T
E

R 1
INTRODUCTION

Exploratory visualization and analytics tools are powerful methods to support mul-
tiple data-streams and navigation through very large datasets. Such tools offer
ways to mitigate the data deluge being faced by users and analysts and are useful
for providing insight into complex patterns in scientific, geospatial, satellite, and
surveillance applications. KOLAM is a scalable and extensible framework for high-
resolution, high throughput image data visualization with applications in a variety
of image analysis domains (including WAMI). It is platform and operating system
independent and supports embedded datasets scalable from hundreds of gigabytes
to petabytes in size on architectures ranging from clusters to netbooks.

KOLAM uses a scalable data structure and cache management strategies to sup-
port large datasets along with an extensive set of image processing and analysis
features. In order to efficiently manage the display of large time-varying imagery,
each image is partitioned or tiled into sub-images of the larger dataset through the
process of a quad-tree like regular tiling. These tiles allow random access to spa-
tially coherent regions of the image and thus allow for on-demand access to those
parts of the image needed for display. In order to provide interactive zooming of
the image across scale, multiresolution tiling is used. A multiresolution pyramid is
created by scaling the image in half along each dimension like a quad-tree until a
minimum size (i.e. single tile) is reached. Following successive scaling, each resolu-
tion is divided into fixed-sized tiles. For our system, we’ve chosen fixed-resolution
(compressed) tiles across all resolutions of the image. This tiled multiresolution
data organization creates a pyramidal structure for each frame in motion imagery
as shown in Figure 1.1.

KOLAM supports a robust animation and novel tracking interface that enables
smooth animation of WAMI sequences and supports one-click tracking of multiple
objects. KOLAM is capable of interfacing with different tracking algorithms and vi-
sualizing the resulting trajectories that may be composed of multiple segments.
The coupling between the visualization environment and the open architecture

10

CHAPTER 1. INTRODUCTION 11

Level 0

Level 1

Level 2

Level 3

Figure 1.1: Multiresolution tiled images are used by KOLAM for efficient display.

supporting a collection of tracking algorithms. A feature-rich tracking interface
enables simultaneous visualization of multiple tracks, context-sensitive track op-
erations, track archival and retrieval, moving object ground truth generation, track
editing and annotation.

The need for user-driven models in the analysis of WAMI data to address chal-
lenging or unsolved problems in WAMI exploitation include: automated search
tools, a complementary visual analytics tool for analysis, human-computer inter-
action that is capable of capturing user domain knowledge to improve productivity
and search tools applied to multitarget tracking results. The following chapters pro-
vide a detailed description and usage details about all the components of KOLAM.

Please cite our work

If you use KOLAM in your projects, please cite our publications as described here.

When using KOLAM for all visualization and analysis needs, please cite our Info-
Vis 2011 paper [1], our SPIE 2013 paper [2], our Fusion 2010 paper [3], as well as our
IIPS 2001 papers [4] [5].

When using KOLAM’s interactive segmentation relabeling module, please also cite
our CBMS 2015 paper [6] and our BIBM 2015 paper [7].

C
H

A
P

T
E

R 2
BUILD, INSTALL & RUN

This chapter details the building and installation steps for KOLAM for multiple tar-
get platforms. External library dependencies are also explained here.

IMPORTANT: For each OS, there are two scenarios: first; using the respective pre-
built binaries, and second; building KOLAM from a source distribution. For the
latter use case, we strongly recommend that the user possess the necessary OS-
specific knowledge and skill set regarding building an executable from a large source
tree, dealing with multiple external dependencies etc.

1. Windows OSes (XP, Vista, 7, 8, 8.1, 10)

Using the pre-built executable

Using the pre-built KOLAM Windows executable is the easiest of all the OS options
- with the exception of external programs such as the MATLAB Compiler Runtime,
object trackers, algorithm plugins etc. the user does not need to perform any addi-
tional setup, besides downloading the KOLAM compressed archive (a .zip file), un-
compressing the files into a desired location, and running the executable. In case
the user’s copy of Windows has not been patched with the latest software updates,
attempting to run the KOLAM executable might produce some seemingly mean-
ingless errors. These arise due to one or more versions of the Microsoft Visual C++
Redistributable missing from the user’s system. Should this occur, please download
and install every version of the Microsoft Visual C++ Redistributable starting from
the 2005 version onward. This includes versions 2005, 2008, 2010, 2012 (and 2013,
if available). This also includes the SP1 versions. Unless KOLAM is specifically built
as 64-bit, which is not the case by default, the x64 versions of these redistributables
are not needed.

12

CHAPTER 2. BUILD, INSTALL & RUN 13

Building with MinGW

MinGW stands for Minimalist GNU for Windows. MinGW thus provides access to
GNU G++ and GCC, and is being used for developing the Windows flavored GNU
version of KOLAM. All Qt versions have pre-built MinGW versions of the API, which
may be freely downloaded from the Qt website. Under Windows, building with
MinGW is the alternative to building KOLAM with Visual Studio (which is explained
in the next subsection). Follow these steps:

(1) Download and install the desired MinGW version of the Qt API (version 4.8.4
for Qt 4, version 5.5.1 for Qt 5; or the closest available higher numbered versions in
each case). During the installation procedure, if installing Qt Creator is provided as
an unchecked option, we recommend enabling it. We will use Qt Creator to build
KOLAM. KOLAM may also be built via a Qt - configured DOS command prompt, if
such an approach is preferable.

2. Configure the system environment variables. This includes the ‘HOME’, ‘IN-
CLUDE’, PATH’, ‘QMAKESPEC’ and ‘QTDIR’ user variables, as well as the ‘INCLUDE’
and ‘Path’ system variables. Details can be found at:

http://doc.qt.io/qt-5/windows-building.html.

3. Set up Qt Creator. This IDE which is provided along with the Qt API is highly
versatile and may be used for developing non-Qt C++ projects as well. The steps for
configuring the different aspects of any Qt project within Qt Creator can be found
at:

http://doc.qt.io/qtcreator/creator-configuring.html,

and should be followed for configuring the KOLAM source project.

4. Build the KOLAM project, after finishing setting up all external dependencies
(explained later in this chapter). If the build procedure is unsuccessful, please
make sure that all steps were followed. If a step was missed, perform a clean (‘make
clean’) of the project (within the same top-level menu as the build option of the
project), and perform all the build steps again. If the problem persists, please con-
tact the authors for support.

Building with Visual Studio

The KOLAM source tree can also be built with Microsoft Visual Studio, from version
2010 onward. Follow these steps:

(1) Download and install the desired Visual Studio version of the Qt API (version
4.8.4 for Qt 4, version 5.5.1 for Qt 5; or the closest available higher numbered ver-
sions in each case). During the installation procedure, if installing Qt Creator is
provided as an unchecked option, we recommend enabling it. We will use Qt Cre-
ator to build KOLAM. KOLAM may also be built via a Qt - configured DOS command
prompt, if such an approach is preferable.

CHAPTER 2. BUILD, INSTALL & RUN 14

2. Configure the system environment variables. This includes the ‘HOME’, ‘IN-
CLUDE’, PATH’, ‘QMAKESPEC’ and ‘QTDIR’ user variables and the ‘INCLUDE’ and
‘Path’ system variables. Details can be found at:

http://doc.qt.io/qt-5/windows-building.html.

3. Set up Qt Creator. This IDE which is provided along with the Qt API is highly
versatile and may be used for developing non-Qt C++ projects as well. The steps for
configuring the different aspects of any Qt project within Qt Creator can be found
at:

http://doc.qt.io/qtcreator/creator-configuring.html,

and should be followed for configuring the KOLAM source project. Alternatively,
Visual Studio can be directly used to build KOLAM. Download and install the Vi-
sual Studio plugin from the Qt website. Complete setup and configuration steps
can be found at:

http://doc.qt.io/vs-addin/.

4. Build the KOLAM project, after finishing setting up all external dependencies (ex-
plained later in this chapter). If the build procedure is unsuccessful, please make
sure that all steps were followed. If a step was missed, perform a clean of the project
(within the same top-level menu as the build option of the project), and perform
all the build steps again. If the problem persists, please contact the authors for
support.

2. Linux OSes (CentOS, Arch, Fedora)

Using the pre-built executable

Under most circumstances, usage under Linux will involve building from source.
However, a pre-built executable is also available for the sake of completeness. We
offer no guarantees regarding its ability to operate, given the wide range of variabil-
ity of the different aspects of a random Linux installation. Open a terminal, navi-
gate to the KOLAM directory, and run the shell script file (file with extension ‘.sh’)
that is in the same directory as the actual executable file (which typically will either
not have an extension, or the extension ‘.bin’). The script takes care of issues such
as temporarily adding to the system’s ‘LD_LIBRARY_PATH’ variable and changes to
any other Linux environmental variables.

Building from source

The steps involved in building KOLAM under Linux include downloading and in-
stalling the desired version of Qt, getting the desired KOLAM version from the svn
or git (as applicable) repository, ensuring that all of KOLAM’s external dependen-
cies are taken care of, and finally building KOLAM. More details follow:

(1) Download and install the desired Qt version for Linux. All details can be found
at:

CHAPTER 2. BUILD, INSTALL & RUN 15

http://doc.qt.io/qt-5/linux.html.

(2) Get the desired version of KOLAM from the svn or git repository. Links to these
will be provided soon. In the interim, please contact the authors for the source tree.

(3) With the exception of the ‘libtiff’ library, all of KOLAM’s external dependencies
should come installed with Linux by default. If not, simply use your package man-
agers to download and install these libraries. Please look at ‘External Dependen-
cies’ later in this chapter for the list of libraries.

(4) In the final build step, run the following commands within KOLAM’s ‘src’ di-
rectory:

qmake -spec linux-g++
make

This assumes that the path to ‘qmake’ has been corectly set in the environment
variables. If not, do so, and run the commands again. If the build procedure is
unsuccessful, please contact the authors for support.

3. Mac OSX (10.7, 10.8, 10.9, 10.10)

Using the pre-built executable

KOLAM can be run without issues from the pre-built app bundle. A download link
for the same will be provided soon. In the interim, please contact the authors.

Building from source

The steps involved in building KOLAM under Mac OSX include downloading and
installing the desired version of Qt, getting the desired KOLAM version from the svn
or git (as applicable) repository, ensuring that all of KOLAM’s external dependen-
cies are taken care of, and finally building KOLAM. More details follow:

(1) Download and install the desired Qt version for Mac OSX. All details can be
found at:

http://doc.qt.io/qt-5/osx.html.

(2) Get the desired version of KOLAM from the svn or git repository. Links to these
will be provided soon. In the interim, please contact the authors for the source tree.

(3) With the exception of the ‘libtiff’ library, all of KOLAM’s external dependencies
should come installed with Mac OSX by default. If not, simply use your package
managers to download and install these libraries. Please look at ‘External Depen-
dencies’ later in this chapter for the list of libraries.

(4) In the final build step, run the following commands within KOLAM’s ‘src’ di-
rectory:

qmake -spec macx-g++

CHAPTER 2. BUILD, INSTALL & RUN 16

make

This assumes that the path to ‘qmake’ has been corectly set in the environment
variables. If not, do so, and run the commands again. If the build procedure is
unsuccessful, please contact the authors for support.

4. External dependencies

KOLAM depends on a number of 3rd party libraries to provide efficient and crucial
functionality. These libraries along with their download and install instructions are
listed below. When installing any external library, it is crucial to ensure that all nec-
essary system paths are properly set. On *NIX platforms, the shell being used (bash,
tcsh etc.) needs to be taken into account when running the installation commands.

(a) The POSIX threads (pthreads) library: The POSIX threads library is a default
part of *NIX OSes, which include Linux and MacOS systems. For Windows, differ-
ent DLL versions are available for download at:

https://www.sourceware.org/pthreads-win32/,

depending on whether development is being done under MinGW/Cygwin
(pthreadGC2.dll) or Visual Studio (pthreadVC2.dll) environments. The .dll and .lib
files need to be placed in the ‘/extern/win32’ directory.

(b) The Joint Photographic Experts Group (JPEG) library: The JPEG library is used
by KOLAM for fast tile decompression for certain supported image file formats. The
library needs to be built from source on all platforms, if not installed at a prior time.
Users need to download version ‘6b’ of the library from:

http://jpegclub.org/support/.

GCC and Visual Studio specific Makefiles are available within the source tree so
that the library may be built using compilers of choice under all major OSes. For
Windows and MacOS, generated library files must be placed within the OS specific
directory under ‘/extern’.

(c) The Zlib library: This compression library is included as part of the libtiff li-
brary, and details will be explained in that subsection.

(d) The Tagged Image File Format (TIFF) library: The libtiff library is required by
KOLAM as it adds support for the TIFF and BigTIFF image file formats. The library
source may be downloaded at:

http://www.remotesensing.org/libtiff/.

Users must remember to obtain a version greater than 4.0.0 of the library, in or-
der to get BigTIFF support. Follow similar build steps as for the previously listed
libraries. The libtiff library has the zlib library as a dependency of its own, so down-
load and install this library from source as well if it hasn’t already been installed.
Under Windows and Mac, place all compiled library files under the OS specific sub-

CHAPTER 2. BUILD, INSTALL & RUN 17

directories of the ‘/extern’ directory.

(e) The Bio-Formats LOCI library: The links for downloading as well as installing
the Bio-Formats library can be found at:

http://loci.wisc.edu/software/bio-formats.

Please note that this library is currently supported for Windows ONLY. Support for
other platforms is being added.

The MATLAB Compiler Runtime (MCR)

The MCR needs to be installed ONLY IF the user desires to perform automatic
tracking of objects (usually vehicles in Wide-Area Motion Imagery). MCR installa-
tion has been most tested on the Windows platform. Links to download Windows,
Linux and Mac versions of the MCR are available on the MATLAB website. In the
event that our MATLAB trackers use a version of the MCR that is older than the ver-
sions of the MCR publicly available for download, please contact Dr. Palaniappan
via email in order to get in contact with the developers of the tracker programs, so
that they may provide the user with the correct version of the MCR to install. Once
correctly installed, the MCR typically does not require additional configuration. In-
voking the MATLAB tracker program involves the sole step of setting the path to the
tracker executable within the ‘KOLAM Preferences’ tool.

5. Running KOLAM

KOLAM may be executed in one of two ways: first; by double-clicking an icon repre-
senting a shortcut to the KOLAM executable, and second; from a command prompt
or terminal. While the former method is suitable for most of KOLAM’s operation,
certain execution conditions (such as running KOLAM with command-line param-
eters, or running KOLAM in a multi-monitor wall display environment) require the
latter method. Command-line execution of KOLAM, alongwith the possible param-
eters, is explained below.

Command-line execution

The main command for executing KOLAM with options from the command line is
of the form:

kolam.exe [option(s)] [imageName [-cm colormapName]] ...

‘kolam.exe’, ‘imageName’ and ‘colormapName’ are the full paths (or pre-defined
aliases) to the KOLAM executable, the name of the image/image sequence, and the
name of the colormap file. Multiple image or image sequence paths may be sup-
plied in this command, separated by single spaces. Each image or image sequence
may have one or more associated colormaps, each of which is preceded by ’-cm’.
‘option(s)’ refers to one or more options that may be supplied in the above com-
mand, and these are listed in the following table.

CHAPTER 2. BUILD, INSTALL & RUN 18

KOLAM Options & their Descriptions

-h / –help Command-line usage help
-a Toggle the use of the alpha channel.
-x offset Horizontal offset. offset is in pixels.
-y offset Vertical offset. offset is in pixels.
-z zoomFactor Specify zoom. zoomFactor is a floating point number.
-k offset Specify trajectory file. filename is the full path to the kw18 trajectory file.
-cm filename File name, with full path, of colormap file.

C
H

A
P

T
E

R 3
DESCRIPTION OF MENUS

This chapter lists the actions performed when the items on KOLAM’s different
menus are clicked. The inner workings of all the dialogs and widgets that pop up are
explored in different chapters, and are conveniently cross-referenced from here.

FILE Menu

Open Image(s) ...

Pops open a file dialog which lets the user select one or more image file(s) for dis-
play. Selecting and loading a single image will cause it to be loaded in a single
new layer and be displayed on top of the currently displayed content. Selecting
and loading multiple images will cause each of them to be loaded in its own new
layer. The layers thus created are successively overlaid, and displayed on top of the
currently displayed content.

Open Sequence ...

Pops open a file dialog which lets the user select an image sequence for display.
Once the user has navigated to the directory containing the desired image se-
quence, only the first image in the sequence need be selected and loaded; KOLAM
automatically loads the whole sequence. For proper display, KOLAM requires that
ALL images in the directory be of the same dimensions (width and height). KO-
LAM also allows simultaneous animation of multiple sequences.

Open Colormap ...

Pops open a file dialog which lets the user load a colormap (.cm) file. Colormaps
are typically used to specify color Lookup Tables (LUT) for images that have less
than 8 bits per pixel (bpp).

19

CHAPTER 3. DESCRIPTION OF MENUS 20

Discover PSS ...

Pops open a tool which discovers all PSS datasets on all drives located in the direc-
tory ’pss_pss’, in turn located in the drives’ root directory. Currently implemented
exclusively for the Windows platform. This tool is the precursor to a general (plat-
form independent) file-type based dataset discovery utility.

Preferences ...

Pops open the Kolam-Preferences tool, described in detail in Chapter 4.

Close Layer

Closes the currently active layer. Currently, works for single image layers only.

Close All Layers

Closes all loaded image layers. Currently, works for single image layers only.

Quit

Exits KOLAM. Certain user-specified preferences are saved prior to program exit.
This procedure allows these settings to be maintained across sessions until modi-
fied by the user.

LAYER Menu

Grid

Toggles the display of the tile outlines on the multiple levels of a multi-resolution
image.

Layer Info ...

Displays the second page of the Layer Editor tool, containing all relevant informa-
tion about the current layer. The Layer Editor is described in detail in Chapter 4.

Layer Editor ...

Pops open the Layer Editor tool, which is used for layer management and manip-
ulation in KOLAM. It is described in detail in Chapter 4.

Colormap Editor...

Pops open the Colormap Editor tool, which is used for colormap management and
manipulation in KOLAM. It is described in detail in Chapter 4.

Synthetic Pyramid ...

Pops open a tool for creation of a blank pyramid image, with all the tiles but no
data.

CHAPTER 3. DESCRIPTION OF MENUS 21

DISPLAY Menu

This menu includes different modes of visualizing data - when the data is physi-
cally mapped differently (onto a rectangular or spherical surface), when the data is
rendered differently (scanline drawing versus texture mapping), when the camera
processes a different projection (orthographic versus spherical) and so on.

2D Raster

Changes the current viewing mode, if different, to an orthographic view in which
the data is rendered in scanline fashion, ie. data from the tiles that have been
loaded into memory is rendered in a row-by-row manner for visualization. When
zooming in, one notices aliasing artifacts all over the image, which are a defining
characteristic (as well as the most important disadvantage) of scanline rendering.

2D Texture

Changes the current viewing mode, if different, to an orthographic view in which
the data is rendered by texture mapping, ie. KOLAM uses the texturing facilities
in the OpenGL API to load and render the tiles in the image. In-built as well as
explicitly issued OpenGL texture interpolation directives ensure that aliasing is by-
and-large eliminated by smoothing. Anti-aliasing capabilities are also enabled to
further mitigate any remaining aliasing artifacts. This is KOLAM’s default viewing
mode.

3D Sphere

Changes the current viewing mode, if different, to a 3D spherical view in which the
data is rendered by texture mapping to spherical coordinates. Unlike the other
viewing modes which utilize 2D transformations, this mode utilizes 3D translation,
rotation and scaling. KOLAM avoids Gimbal Lock which can arise in this viewing
mode by using quaternions in all transformations.

WINDOW Menu

Overview

Pops open the Overview tool, which enables the user to view the whole image as
well as the portion of it being currently displayed. It also permits instant navigation
to parts of the image that are not in close proximity to each other. The tool is further
described in Chapter 4.

Cache Glyph

Pops open the Cache Glyph tool. This is a diagnostic utility which illustrates which
tiles of the different levels of the loaded multi-resolution image are currently loaded
in memory. It is further described in detail in Chapter 4.

TOOLS Menu

Loop

Pops open the Kolam-Loop tool, described in Chapter 5.

CHAPTER 3. DESCRIPTION OF MENUS 22

Track Viz

Pops open the Kolam-Tracker tool, described in Chapter 8.

Track Files

The sub-menu entries are described below:

(a) Load a File: Pops a File Open dialog to select a KW-18 track file for loading.

(b) Create new File: Creates a new KW-18 track file. Newly created tracks are
added to this file.

(c) Save to KW-18: Pops a File Save dialog for saving the currently loaded KW-18
file as needed.

(d) Save to CSV: Pops a File Save dialog for saving the currently loaded KW-18
file in the CSV file format. To save user-selected tracks in CSV, first save them from
KOLAM-Tracker as a KW-18, then load the saved KW-18 and save it as a CSV.

(e) Delete Last: Deletes the most recently loaded KW-18 file. All associated tra-
jectories will no longer be displayed.

(f) Delete All: Deletes all KW-18 files that have been loaded. ALL trajectories
will no longer be displayed.

(g) Display Names: Displays the names of the currently loaded KW-18 files. The
default display color is green. If ’Group by Color’ (below) is checked, each file name
will be displayed in its group color.

(h) Group by Color: Displays ALL trajectories in a KW-18 file in a single color.
This is useful in a number of scenarios; for example, when a comparison between
ground-truth trajectories and tracker-generated trajectories (each set in separate
KW-18 files) needs to be performed.

(i) Track Toggling File: Provides an alternative way for selecting and toggling
visibilities of user selected versus unselected tracks. Allows the user to load a track
toggling file (must be in .txt format, with each line containing a single, unique
Object-ID), provided a KW-18 file has already been loaded.

Screen Capture

Pops open the Screen Capturing tool, described in Chapter 11.

ROI Selection

Pops open the Region-Of-Interest (ROI) Selection tool, described in Chapter 11.

Coordinate Position

Pops open the Coordinate Position tool, described in Chapter 8.

CHAPTER 3. DESCRIPTION OF MENUS 23

PLUGINS Menu

This section lists the plugins currently installed and active in KOLAM. The detailed
description of KOLAM’s plugin architecture is provided in Chapter 12.

Computer Vision

The Segmentation Relabeling plugin (under the Computer Vision menu) is cur-
rently available to users as an example of KOLAM’s plugin capabilities. The detailed
description of the same is provided in Chapter 12.

HELP Menu

Kolam Shortcuts

This menu item pops up a web page that lists the various hotkeys in KOLAM. A
consolidated listing of all hotkeys is available in Chapter 14.

About Kolam ...

Pops open a dialog with several pieces of information about KOLAM. Key among
these is the Build number, listed on the first line. Users must provide the build
number when placing requests for bug fixes. Among the other information pro-
vided, users must also provide the Qt version numbers (compile-time and run-
time) when requesting bug fixes.

C
H

A
P

T
E

R 4
TOOLS AND WIDGETS

In this chapter, we describe KOLAM’s Preferences, Discover PSS, Layer Editor, Col-
ormap Editor, Overview and Cache Glyph tools.

Layer Editor

This tool allows the user to manage layer properties and set up certain viewing
and navigation options for all loaded data layers.

Figure 4.1: ’Layer’ page of KOLAM’s Layer Editor

24

CHAPTER 4. TOOLS AND WIDGETS 25

The following is a listing of the available functionality on the ’Layer’ page of the
Layer Editor (Figure 4.1, page 24).

1. Path to Dataset

Displays the full file path to the dataset loaded in the CURRENTLY ACTIVE Layer.

2. Colormap Selector

Sets the colormap for the currently active Layer.

3. Heightmap Selector

Sets the heightmap for the currently active Layer. If set, the result is most apparent
in a 3D viewing mode, such as the Sphere Rendering Mode.

4. Layer Visibility

Toggles the visibility of the currently active Layer ON or OFF.

5. Layer Enhancement

Currently non-functional.

6. Layer Black Transparency

Sets the visibility of the fully black pixels in the dataset of the currently active Layer
to zero, ie. those pixels are rendered fully transparent. DOES NOT WORK with
image datasets (single image OR sequence) that have an inherent alpha channel
(in other words, it works with RGB, but not with RGBA imagery).

7. Alpha Blending

Blends the currently active Layer against a fully black background. In other words,
it progressively renders the active Layer transparent and dark.

8. Change Layer

Loads a new Layer, and makes it the currently active Layer. The display is instantly
updated to reflect the change. Currently functional only if the loaded layers have
image(s) of the same file type (Different file types causes display corruption).

9. Delete Layer

Deletes the currently active Layer. The display is instantly updated to reflect the
change. Currently functional only for single image layers.

CHAPTER 4. TOOLS AND WIDGETS 26

10. Grid Visibility

Given that the currently active Layer is a multi-resolution pyramidal image, this
check box allows the user to toggle ON or OFF the grid displaying tile boundaries at
the current zoom level. If the active Layer is a non-tiled image, it has only ONE tile
boundary (regardless of the current zoom level), and the check box simply toggles
the visibility of this single tile boundary.

11. Grid Show All Tiles

Currently non-functional.

12. Grid Color

Allows the user to set the color of the tile Grid. The latest color selection made by
the user is also visible in the color pixmap to the right.

13. Interactive Mode

When checked, allows the user to apply transformations (viz. translation and scal-
ing) to the currently active Layer ALONE: when unchecked (KOLAM’s default mode
of operation), ALL layers are transformed together.

14. X Offset

Sets the X-Offset of the currently active layer on the display. This setting affects only
ONE layer, even if multiple layers have been loaded.

15. Y Offset

Sets the Y-Offset of the currently active layer on the display. This setting affects only
ONE layer, even if multiple layers have been loaded.

16. Scale

Sets the zoom level of the currently active layer on the display. This setting affects
only ONE layer, even if multiple layers have been loaded.

17. Layer List

Lists the currently loaded layers. The check box provided at the beginning of each
Layer name may be used to toggle the visibility of the associated Layer ON or OFF.
The status of Layer visibility is also communicated to the user via the EYE icon, next
to the check box (A Black icon stands for a Visible Layer, and a Grey Icon stands for
an Invisible Layer).

18. Layer Move

These two buttons allow the user to MOVE the currently active Layer UP or DOWN
the list of Loaded Layers. If multiple Layers are simultaneously visible, this has the
effect of moving the active Layer TO THE FRONT or TO THE BACK of the ‘visibility
stack’.

CHAPTER 4. TOOLS AND WIDGETS 27

Figure 4.2: ’Info’ page of KOLAM’s Layer Editor

The ’Info’ page of the Layer Editor (Figure 4.2, page 27) lists various properties
of the currently active layer. These are self-explanatory and are hence not covered.

Colormap Editor

This tool allows the user to load, create, manage and save colormaps.

Figure 4.3: KOLAM’s Colormap Editor

Figure 4.3 (page 27) shows the ’Create’ page of the tool. The other two pages
(not shown) are the ’Colormap’ page (for loading and closing colormaps) and the
’Info’ page (displays information about the currently active colormap).

CHAPTER 4. TOOLS AND WIDGETS 28

Preferences - Performance Tuning

This tool allows for user management of various system-wide KOLAM settings. The
various pages of the ’Performance Tuning’ section are illustrated in Figure 4.4.

Figure 4.4: The Performance Tuning section of Kolam-Preferences.

CHAPTER 4. TOOLS AND WIDGETS 29

1. Quality

Displays data at the best possible quality for a given zoom level. KOLAM does this
by displaying the next higher level of detail while transitioning between the CUR-
RENT zoom level and the next HIGHER zoom level. Prioritizes display quality over
display interactivity; actions such as panning and animating might cause display
lag on computers with older hardware. Computers with modern hardware on the
other hand, should avail of the crisp display quality made possible by this mode.

2. Performance

KOLAM prioritizes user interactivity over display quality in this display mode. Done
by displaying the next higher level of detail ONLY when the next HIGHER zoom
level is reached, and not before. This mode of display is better suited for computers
with older hardware. Additionally, this mode might be more viable over ’Quality’ if
the data is being animated at a high frame rate AND the user is rapidly interacting
with the display.

3. Balanced Q+P

In this display mode, KOLAM attempts to create a balance between the two prior
display modes, by transitioning between display qualities in a manner that aver-
ages the quality transitioning behavior of the prior two modes.

4. Adaptive Q+P

This is arguably the best choice among all the display modes; in this mode, KOLAM
attempts to adapt the current display quality to the frequency of user interactivity
with the display. In other words: when the frequency of user interaction increases,
display quality is progressively lowered to maintain interactivity; and when this fre-
quency drops, display quality is progressively raised. Currently non-functional.

5. All Events

KOLAM processes all user events on the display as soon as they arrive. For diagnos-
tic purposes only; the default (better) mode is for KOLAM to process compressed
events. Choosing this mode will cause KOLAM to lag frequently due to event flood-
ing.

6. Compressed Events

The default mode of user event handling (on the display) by KOLAM. Prevents event
flooding by compressing multiple events that occur in rapid succession into a sin-
gle event, which is then handled by KOLAM. The best mode for event handling, and
should not be changed by the user under normal circumstances.

7. Enable Broadcaster Sync Packets

[WALL MODE] Checking this box will cause the KOLAM broadcaster instance to
regularly transmit synchronization packets to all KOLAM receiver instances. In
other words, this forces synchronization between the broadcaster and all receivers.

CHAPTER 4. TOOLS AND WIDGETS 30

8. Maximum Sync Frequency

[WALL MODE] Sets the frequency at which the KOLAM broadcaster instance sends
out synchronization packets to all receivers. If set to a value less than that set in the
field below, the KOLAM broadcaster instance will skip sending the synchronization
packets.

9. Sync skipped if Apart by Less Than

[WALL MODE] Sets the fastest frequency at which the KOLAM broadcaster instance
can synchronize all KOLAM receiver instances. Determines whether the value set
in the field above will be used by KOLAM or not.

10. Provide Text Feedback

[WALL MODE] This check box toggles ON or OFF whether the user receives text
feedback from KOLAM when synchronization packets are broadcast.

11. Protocol(s) Used

Currently hard-set to the UDP protocol.

12. Tile Cache Size

Currently hard-set to 1024 MB.

13. Prefetch Border

Currently disabled.

14. Max. Screen Tiles

Currently disabled.

15. # Reader Threads

Currently hard-set to 4 Threads.

16. Strict/Flexible Tile Display

Currently disabled.

17. Modify Parameters for Sequence

Selects a sequence, from ALL loaded sequences, for which the File Buffer Size and
Frame Buffer Size parameters may be modified.

18. File Buffer Size

Sets the size of the file buffer for the currently selected sequence. The size of the
file buffer must always be less than the number of images in the sequence, and
must always be greater than the size of the lookahead buffer, the size of which is set
below.

CHAPTER 4. TOOLS AND WIDGETS 31

19. Frame Buffer Size

Sets the size of the lookahead (frame) buffer for the currently selected sequence.
If set to a value greater than the size of the file buffer (set above), the file buffer is
resized to be of the same size as the lookahead (frame) buffer.

Preferences - Tracking Executable

The ’Tracking Executable’ section of Kolam-Preferences is illustrated in Figure 4.5.

Figure 4.5: The Tracking Executable section of Kolam-Preferences.

1. MATLAB

Checking this box sets MATLAB-based tracker(s), (or any non-OCTAVE based ex-
ecutables), as the tracker programs that KOLAM can invoke as external processes
corresponding to the CSURF and LOFT trackers. The section allows the user to set
the paths to the CSURF and LOFT executables, as well as the path (for Flat Files
ONLY) to the output trajectory files.

2. OCTAVE

Checking this box sets an OCTAVE-based tracker as the external program invokable
by KOLAM. Currently allows for setting the path for only ONE tracker program AT A
TIME. The OCTAVE tool chain is not as robust as that for MATLAB; hence the user
is allowed to set paths to the source code files directly, rather than to a stand-alone
executable.

CHAPTER 4. TOOLS AND WIDGETS 32

Overview

This tool provides the user with a miniature view of the whole dataset and allows
rapid navigation to non-adjacent parts of the data. The green, semi-transparent
grid indicates the sub-region of the imagery (at the current zoom level) that is ac-
tually loaded in memory and being displayed on-screen.

Figure 4.6: KOLAM’s overview tool. The green semi-transparent grid shows the
loaded tiles for the view of the continental United States.

Figure 4.7: KOLAM’s overview tool. The grid, now much smaller than in Figure 4.6,
shows the loaded tiles for the zoomed-in view of New York City, Long Island and
the surrounding area.

CHAPTER 4. TOOLS AND WIDGETS 33

Cache Glyph

This tool interactively displays the various residency states of image tiles in mem-
ory. Navigating on the image instantly updates the cache glyph view: panning
causes more tiles to be displayed in blue on the same plane of the multiresolution
image pyramid, and zooming in or out changes the plane with the active, memory
resident tiles. This is clearly demostrated in the given illustrations. In Figure 4.8,
the image is zoomed to one level above the native resolution, and is then zoomed
to the native resolution itself in Figure 4.9.

Figure 4.8: KOLAM’s cache glyph tool, with a zoomed out view.

Figure 4.9: KOLAM’s cache glyph tool, with a zoomed in view.

C
H

A
P

T
E

R 5
ANIMATION

This chapter details the animation capabilities currently available in KOLAM. The
user may interact with KOLAM’s animation subsystem via the Kolam-Loop dia-
log, depicted in Figure 5.1. The fully expanded tool with all widgets displayed
is depicted in Figure 5.2. The slightly different appearance is due to a change
in stylesheets that was necessitated for maintaining compatibility with Qt 4 while
continuing development with Qt 5.

Widget Description

A description of the numbered component widgets of Kolam-Loop and their func-
tionality is given below.

Figure 5.1: Kolam-Loop

1. Frame Counter

Indicates the current frame number of the sequence being animated. May be
edited by the user (within the valid frame range) to instantaneously jump to an
arbitrary frame. Editing instantly updates the Animation Scrub Bar (5).

34

CHAPTER 5. ANIMATION 35

Figure 5.2: Kolam-Loop expanded to show all widgets

2. Playing speed

Animation speed in frames per second. May be edited by the user to either speed
up or slow down the animation playing speed.

3. Play Type

This button allows the user to choose from 5 different modes/types of playing the an-
imation, provided as a drop down button menu (visible only when the user clicks
this button). See Figure 5.2. The buttons (from top to bottom) are as follows:

a) Loop forward: The image frames will be played forward in time, in an un-
ending loop.

b) Loop backward: The image frames will be played backward in time in an un-
ending loop.

c) Rock: The image frames will be ’rocked’ (ie., played forward until the end,
and then backward until the beginning) in an unending loop.

d) Blink:
The animation will be continually ’blinked’ between the current frame, and

either the previous frame (if the sequence was playing backward prior to blink
mode being activated) or the following frame (if the sequence was playing forward
prior to blink mode being activated).

e) Play without looping: The animation will be played once and stopped, either
at the beginning of the sequence (if it was playing backward prior) or at the end of
the sequence (if it was playing forward prior).

CHAPTER 5. ANIMATION 36

4. Play

Plays an image sequence in the mode selected by the ’Play Type’ button. This
button serves to toggle between playing (the button is depressed and displays the
’Pause’ icon) and pausing (the button is raised and displays the ’Play’ icon) the im-
age sequence.

5. Stop

Stops the currently playing animation. Regardless of whether the animation is play-
ing or paused, this button rewinds the animation to the first frame of the sequence.

6. Skip to Start

Pauses the animation (if playing when pressed) and skips to the first frame of the
image sequence.

7. Step Backward

Pauses the animation (if playing when pressed) and skips to the previous frame in
the image sequence. When KOLAM’s main window has focus, this functionality
may also be accessed via the Left Arrow key on the keyboard.

8. Step Forward

Pauses the animation (if playing when pressed) and skips to the next frame in the
image sequence. When KOLAM’s main window has focus, this functionality may
also be accessed via the Right Arrow key on the keyboard.

9. Skip to End

Pauses the animation (if playing when pressed) and skips to the last frame of the
image sequence.

10. Dataset Name

This drop down displays the names of the currently loaded image sequences. Need
not be used as KOLAM’s Layer Editor provides the same functionality.

11. More Options

This button toggles between displaying and hiding the lower portion of the Kolam-
Loop tool (normally hidden from view). The frames per step widget (first on the left)
is currently non-functional. The second and third widgets (non-interactive) display
the starting and ending frame number of the image sequence, thus providing the
total number of images in the sequence at a glance.

12. Animation Scrub Bar

Dragging this slider allows the user to navigate to any frame in the image sequence.
Instantly updates the Frame Counter (page 34).

C
H

A
P

T
E

R 6
LAYER DISPLAY MODALITIES

KOLAM’s flexibility of visualization allows for multiple types of visualizations to be
created, especially when multiple layers and overlays have been loaded. This chap-
ter describes these different visualization types.

1. Display Layers overlaid one on top of the other

This is KOLAM’s default display mode: newly loaded layers are overlaid on top of
the layer(s) already loaded and being displayed. Each layer loaded after the first is
aligned with the top left corner of the first loaded layer. An example of this type
of visualization combined with other display modalities is illustrated in Figure 6.1.
At present, loading a new layer causes all layers already being displayed to be re-
aligned with the top left corner of the first layer, regardless of how the user has
already moved them about the display or zoomed them. Since this is undesirable
behavior, a solution is being implemented at present and will be part of the next
minor software update to KOLAM.

2. Layers arranged side-by-side

By using either KOLAM’s interactive translation capability in the Layer Editor (the
Interactive Mode checkbox within the Registration Transformation section, see Fig-
ure 4.1), via predefined settings in a script file, or by user mouse interaction; indi-
vidual layers may be arranged in any desired non-overlapping manner in the dis-
play area. The most common mode of arrangement is a non-overlapping grid of
layers. See Figure 6.1 for an example. Other possible arrangements include partial
overlap between layers to correspond to a desired mosaic pattern, and arrange-
ment (of smaller regions of interest) along the edges of the display surrounding a
larger, central display of one particular layer.

37

CHAPTER 6. LAYER DISPLAY MODALITIES 38

3. Trajectory overlay placement

KOLAM allows for yet more complex and information-rich visualizations by allow-
ing for multiple overlays containing trajectories or any other supported annota-
tions to be overlaid on the loaded layers. See Figure 6.1. All overlays are currently
associated with the active layer only. If multiple sequence layers are loaded, over-
lay placement may be transferred to the desired layer by making that layer active;
which may be done by clicking on the respective layer name in the layer listing on
the left hand side of the Layer Editor (see Figure 4.1, page 24).

4. A combination of all of the above

This case represents the most general and versatile case of KOLAM’s 2D+t visual-
ization and animation capabilities. Multiple layers may be loaded, of which one
or more layers may have their transparencies altered. These layers may overlap to
varying degrees with each other and may be zoomed in on at different resolution
levels. In addition to this, one or more overlays with trajectory data or any other
type of annotation may be overlaid on the layers. Figure 6.1 is an example of such
a visualization.

Figure 6.1: KOLAM’s screen capturing feature, with multiple layers and overlays.
Eight sequences (4 copies of the wound healing dataset & 4 mask layers show-
ing different results, from top left to bottom right: segmentation masks, 4-colored
graph-based segmentation results, Voronoi diagram, and cell motility trajectories
with ID labels; transparently overlaid on the dataset copies) have been organized
in a grid pattern for comparative visualization. KOLAM can also capture this grid
visualization animation and output the captures utilizing user specified location,
format and naming scheme.

C
H

A
P

T
E

R 7
SPHERE & TERRAIN RENDERING

Sphere Rendering

KOLAM’s sphere viewing and rendering system (Eg., Figure 7.1) projects the loaded
2D image data onto a spherical shape which is approximated by a triangular mesh.
Vertices on the sphere’s surface are computed for each tile using that tile’s (x,y) im-
age plane offsets, as well the tile’s (u,v) latitude-longitude pair. The prohibitive time
and space requirements for performing the required trigonometric computations
are ameliorated by precomputing the individual components and combining them
in the final formula.

The data used for both the sphere and terrain rendering visualizations (Fig-
ure 7.1, Figure 7.2 and Figure 7.3) is from NASA’s MODIS satellite imagery dataset.

Terrain Rendering

KOLAM’s terrain rendering system is an extension of its texture rendering function-
ality, and generates additional geometry to represent the height values associated
with the textured image loaded in the layer. Height map (or elevation map) images
are typically 8-bit or 16-bit grayscale images. Acceptable frame rates when render-
ing these height maps are achieved by simplifying the generated geometry, which
KOLAM currently performs by uniformly subsampling the input height samples.

An example visualization of the terrain rendering in action in provided below,
as a pair of illustrations. Figure 7.2 shows a zoomed in view of the Himalayas with-
out terrain rendering, and Figure 7.3 shows exactly the same view, but with terrain
rendering enabled.

39

CHAPTER 7. SPHERE & TERRAIN RENDERING 40

Figure 7.1: Sphere viewing and rendering in KOLAM.

CHAPTER 7. SPHERE & TERRAIN RENDERING 41

Figure 7.2: A zoomed-in view of the Himalayas; Terrain Rendering - turned OFF.

Figure 7.3: A zoomed-in view of the Himalayas; Terrain Rendering - turned ON.

C
H

A
P

T
E

R 8
TRACKING

This chapter presents KOLAM’s tracking modes and capabilities. We first introduce
the Kolam-Tracker dialog and give its widget description. The remainder of the
chapter then details the operation of KOLAM’s tracking modes and their applica-
bility to multiple domains.

Page 1: ’WAMI’

Given below is the description of the widgets on the WAMI page of Kolam-Tracker.

1. Track Backward toggle

This check box toggles whether or not the automated, manual or assisted track-
ing modes perform their specific sequential operations (tracking, ground truthing,
combination of the two) backward in time. The check box is disabled by default,
ie., all tracking modes operate forward in time. KOLAM does not currently possess
any backward tracking capability; these will be incorporated as the specific needs
arise.

2. (Altitude) Parameter File toggle

This check box is specifically relevant to the automated tracking module. It toggles
whether or not the selected automatic tracker (CSURF or LOFT) will use an extra
parameter file (the location of the same being specified by KOLAM). Though the
widget name is short for Altitude (as it was originally intended to toggle ON or OFF
an altitude parameter file for the chosen automatic tracker to use when tracking on
a dataset with a significantly different flight altitude), it informs the tracker to use
any given parameter file, with any required purpose.

42

CHAPTER 8. TRACKING 43

Figure 8.1: WAMI page of Kolam-Tracker

3. Auto Advance toggle

This check box is specifically relevant to the manual tracking (ground truthing)
module, and toggles whether or not KOLAM auto-advances to the next frame in
the image sequence once the user completes creating ground truth for the current
frame. The type of ground truth typically comprises only point primitives. This is
because either the bounding box or polygon primitives have a significantly greater
probability of needing to be corrected; meaning that there exists no uniform means
for KOLAM to determine when to advance to the next frame.

4. Object ID display

Displays the most recently created (or loaded) Object ID. Each Object ID represents
either a tracked or potentially trackable object or image feature that has been se-
lected on the currently displayed image.

CHAPTER 8. TRACKING 44

5. Create new Object ID

This button allows the user to create new Object IDs, either individually (pressing
the button) or several at once (accessing the right-click context menu and typing in
the desired number in the data entry widget that appears).

6. Manual Tracking toggle button

This radio button toggles KOLAM’s manual tracking (ground truthing) mode ON.
The manual, automatic and assisted tracking radio buttons are functionally exclu-
sive, ie. enabling one disables all others. The details are presented under Manual
Tracking.

7. Automatic Tracking toggle button

This radio button toggles KOLAM’s automatic tracking (external tracker invocation)
mode ON. The details are presented under Automatic Tracking.

8. Assisted Tracking toggle button

This radio button toggles KOLAM’s assisted tracking (combination of auto & man-
ual tracking functionality) mode ON. The details are presented under Assisted
Tracking.

9. Vehicle toggle button

This radio button is specifically relevant to the automated tracking module, and
toggles the type of object being tracked. It is currently non-functional, since KO-
LAM defers the process of distinguishing between trackable object types to the in-
dividual external tracking programs.

10. Point primitive toggle button

This radio button, alongwith the Bounding Box and Polygon radio buttons, tog-
gles ON the specific type of primitive that will be drawn for each time step on any
given track. The default primitive for all tracking modes (Automatic Tracking, Man-
ual Tracking or Assisted Tracking) is the Point (more accurately referred to as the
centroid). Any trajectory is represented by a number of centroids pairwise joined
(between successive time steps) by line segments.

11. Bounding Box primitive toggle button

This radio button toggles ON the drawing of bounding boxes for each time step
on all visible trajectories, provided that the loaded trajectory information has valid
bounding boxes specified for this time step. The centroids of the bounding boxes
are computed from their corners. The trajectory is then formed by the pairwise
joining of these centroids, in exactly the same manner as trajectories are formed
from point primitives (page 44). When performing Manual Tracking, the user is
given as many tries as needed to draw the best desired bounding box; and needs to
signal completion of the task to KOLAM via explicit input (in this case, by pressing
the ’ENTER’ key). In other words, there is no Auto-Advance capability defined for
the drawing of bounding boxes.

CHAPTER 8. TRACKING 45

12. Polygon primitive toggle button

This radio button toggles ON the drawing of polygons for each time step on all visi-
ble trajectories, provided that the loaded trajectory information has valid polygons
specified for this time step. The centroids of the polygons are computed from their
vertices. While drawing a polygon for a given time step, users are presented with a
context menu (activatable within the polygon boundary) which allows for a multi-
tude of polygon editing operations, these are: add vertex, move vertex, delete ver-
tex, translate, rotate, scale, duplicate polygon along this trajectory and replicate
polygon to other trajectories.

13. CSURF Tracker toggle button

This radio button toggles ON the usage of the CSURF tracker in the Automatic
Tracking mode, further described on page 54.

14. LOFT Tracker toggle button

This radio button toggles ON the usage of the LOFT tracker in the Automatic Track-
ing mode, further described on page 54.

15. Trajectory operation feedback

This text box provides feedback to the user when tracking activities are performed,
and in some occasions, the results of performing said activities.

Page 2: ’BioMed’

Given below is the description of the widgets on the BioMed page of Kolam-Tracker.
The section only details the unique widgets under ’Available Algorithms’ and ’File
Settings’; all other widgets have the same functionality as their counterparts de-
scribed under Page 1: ’WAMI’.

1. Select Algorithm

This check box toggles whether or not the automated, manual or assisted track-
ing modes perform their specific sequential operations (tracking, ground truthing,
combination of the two) backward in time. The check box is disabled by default,
ie., all tracking modes operate forward in time. KOLAM does not currently possess
any backward tracking capability; these will be incorporated as the specific needs
arise.

2. Number of Inputs

This check box is specifically relevant to the automated tracking module. It toggles
whether or not the selected automatic tracker (CSURF or LOFT) will use an extra
parameter file (the location of the same being specified by KOLAM). Though the
widget name is short for Altitude (as it was originally intended to toggle ON or OFF
an altitude parameter file for the chosen automatic tracker to use when tracking on
a dataset with a significantly different flight altitude), it informs the tracker to use
any given parameter file, with any required purpose.

CHAPTER 8. TRACKING 46

Figure 8.2: BioMed page of Kolam-Tracker

3. Input Parameter file path

This check box is specifically relevant to the manual tracking (ground truthing)
module, and toggles whether or not KOLAM auto-advances to the next frame in
the image sequence once the user completes creating ground truth for the current
frame. The type of ground truth typically comprises only point primitives. This is
because either the bounding box or polygon primitives have a significantly greater
probability of needing to be corrected; meaning that there exists no uniform means
for KOLAM to determine when to advance to the next frame.

4. Input Parameter File selector

Displays the most recently created (or loaded) Object ID. Each Object ID represents
either a tracked or potentially trackable object or image feature that has been se-
lected on the currently displayed image.

CHAPTER 8. TRACKING 47

5. Output file path

This button allows the user to create new Object IDs, either individually (pressing
the button) or several at once (accessing the right-click context menu and typing in
the desired number in the data entry widget that appears).

6. Output file path selector

This radio button toggles KOLAM’s manual tracking (ground truthing) mode ON.
The manual, automatic and assisted tracking radio buttons are functionally exclu-
sive, ie. enabling one disables all others. The details are presented under Manual
Tracking.

Page 3: ’Track Viz’

Given below is the description of the widgets on the Track Viz page of Kolam-
Tracker (Figure 8.3).

Figure 8.3: Track Viz page of Kolam-Tracker

CHAPTER 8. TRACKING 48

1. Object ID Selector

This drop-down selects one of all loaded trajectories to be currently active. This
trajectory is hereafter referred to as either the current trajectory or the current
Object-ID.

2. Go To frame toggle

Currently non-functional.

3. Draw All Tracks toggle

This check box toggles the display of ALL trajectories.

4. Centroid display toggle

This check box toggles the display of centroids for each time step, for ALL trajec-
tories.

5. Read Trajectories from Archive

This button loads trajectories from a user-created archive, and depending on the
current tracking mode, places them in either the Tracker_IO_Kolam/auto or the
Tracker_IO_Kolam/manual directory (works to flat files only).

6. Write Trajectories to Archive

Pops open a directory selector, so that the user may archives the trajec-
tory files for ALL trajectories (works to flat files only, depending on the cur-
rent tracking mode, trajectories under either the Tracker_IO_Kolam/auto or the
Tracker_IO_Kolam/manual directory are archived).

7. Stop the Selected Running Tracker

When pressed, this button halts the execution of the invoked external tracker exe-
cutable. If multiple executables are running, it halts the programs in the order that
they were initiated. Thus, it is relevant exclusively to the Automatic Tracking mode.

8. Delete Trajectory files for Object ID

When pressed, this button deletes the trajectory files associated with the current
Object-ID (works to flat files only).

9. Trajectory Visibility toggle

This check box toggles the visibility of the currently selected trajectory.

10. Stabilized Trajectory display toggle

This check box toggles between displaying only the unstabilized trajectory, dis-
playing only the stabilized trajectory and displaying both; for the currently selected
Object-ID. Such trajectory pairs are a unique by-product of trackers invoked in the
Automatic Tracking mode.

CHAPTER 8. TRACKING 49

11. Center screen on tracked object toggle

This check box toggles centering the on-screen display on the primitive (point,
bbox or polygon) of the currently selected trajectory, for the current time step.
Proper effect is seen when the image sequence is animated.

12. Draw primitive toggle

This radio button is currently non-functional.

13. Set Trajectory thickness

Allows the user to alter trajectory thickness by entering integer values greater than
or equal to 1. This setting applies to ALL trajectories.

14. Set Trajectory color

Provides the user access to a color palette to modify the current color of the trajec-
tory. This is a per-trajectory setting.

15. Current Trajectory output directory

Displays the current output directory for trajectories (works for flat files only).

Page 4: ’Editing’

Given below is the description of the widgets on the Editing page of Kolam-Tracker
(Figure 8.4).

1. Display All Trajectories

This button toggles whether KOLAM displays the full trajectories at ALL TIME
STEPS, regardless of when the individual trajectories start or end. This is in con-
trast to the traditional manner of trajectory display: a given trajectory is not visible
until the time step on which it starts, its visibility then transitions from partial to-
wards complete, and it is once again not visible past its ending time step. This type
of display is uniquely useful when performing editing operations which alter the
trajectory length in some fashion (since visibility of the trajectory will remain un-
changed even if editing causes it to end before or start after the current time step).

2. Turn OFF unselected trajectories

This check box toggles the visibility of those trajectories not selected by the user.

3. Select Trajectories toggle

This check box toggles whether right-clicking on a centroid of any trajectory
(upto and including the current time step) causes that trajectory to be selected.
User-selected trajectories are treated as a special subset of all trajectories in the
current KW-18; a small set of additional operations may be performed on them,
and these are described below.

CHAPTER 8. TRACKING 50

Figure 8.4: Editing page of Kolam-Tracker

4. Selected Trajectory list

Lists the subset of currently selected trajectories. The list is dynamically updated
as trajectories are newly selected, created or merged together. Selecting a trajec-
tory in this list marks it as ’active’, meaning that all potential editing operations
will be performed on it only. If an active trajectory is unselected, the most recent
trajectory to be added to the list is marked as being active.

5. Jump to Start

Jump to the starting time step of the currently active trajectory. Has no effect if no
trajectory is currently active.

6. Jump to End

Jump to the ending time step of the currently active trajectory. Has no effect if no
trajectory is currently active.

CHAPTER 8. TRACKING 51

7. Save Selections

Pops open a file dialog to save all selected trajectories to a KW-18 file.

8. Unselect All

Unselect all selected trajectories.

9. Add Point(s) to Trajectory End(s)

This check box toggles setting ’ADD Point’ as the current trajectory editing oper-
ation. Note that checking this box will lock the user into ADD-ing to either end
of the currently active trajectory, thus preventing selection of any other trajecto-
ries. Unchecking the box (and those of any other editing operations) will re-enable
trajectory selection. ADD is explored in detail in Chapter 10.

10. Delete Point(s) from Trajectory End(s)

This check box toggles setting ’DELETE Point’ as the current trajectory editing op-
eration. Note that checking this box will lock the user into DELETE-ing from ei-
ther end of the currently active trajectory, thus preventing selection of any other
trajectories. Unchecking the box (and those of any other editing operations) will
re-enable trajectory selection. DELETE is explored in detail in Chapter 10.

11. Delete clicked point / Split Track

This check box toggles setting ’SPLIT Track’ as the current trajectory editing oper-
ation. Note that checking this box will lock the user into SPLIT-ing the currently
active trajectory, thus preventing selection of any other trajectories. Unchecking
the box (and those of any other editing operations) will re-enable trajectory selec-
tion. SPLIT is explored in detail in Chapter 10.

12. Move Point(s) on Trajectory

This check box toggles setting ’MOVE Point’ as the current trajectory editing oper-
ation. Note that checking this box will lock the user into MOVE-ing point(s) on
the currently active trajectory, thus preventing selection of any other trajectories.
Unchecking the box (and those of any other editing operations) will re-enable tra-
jectory selection. MOVE is explored in detail in Chapter 10.

13. Connect Trajectories

This check box toggles setting ’CONNECT Trajectories’ as the current trajectory
editing operation. Note that checking this box will lock the user into CONNECT-
ing trajectories, thus preventing selection of any other trajectories. Unchecking
the box (and those of any other editing operations) will re-enable trajectory selec-
tion. CONNECT is explored in detail in Chapter 10.

14. ’Join From’ Trajectory

This drop-down (relevant to pairwise trajectory joining ONLY) lists all selected tra-
jectories, and lets the user select a SOURCE trajectory (the ’source’ is the trajectory

CHAPTER 8. TRACKING 52

from which points are removed in the event of temporal overlap between itself and
the ’target’). The role played by this drop-down is explored in detail in Chapter 10.

15. ’Join To’ Trajectory

This drop-down (relevant to pairwise trajectory joining ONLY) lists all selected tra-
jectories, and lets the user select a TARGET trajectory (the ’target’ is the trajectory
which is completely retained in the event of temporal overlap between itself and
the ’source’). The role played by this drop-down is explored in detail in Chapter 10.

16. Join Trajectory pair

Pressing this button JOINs the pair of trajectories that have been selected via the
drop-downs described above. Has no effect if either one or both trajectories have
not been selected in the drop-downs. The PAIRWISE JOIN operation is explored in
detail in Chapter 10.

17. Multiple Trajectory Join

Pressing this button JOINs ALL selected trajectories. Has no effect if none have
been selected. The FAST JOIN operation is explored in detail in Chapter 10.

Track file formats supported by KOLAM

KOLAM provides support for two track file formats - an in-house designed flat file
format, and the KW-18 file format, developed by Kitware Inc and adopted at CIVA
lab for collaborative data sharing efforts. The specifications for both formats are
presented below. Users desiring to have their programs output track files in either
format for display in KOLAM are advised to strictly adhere to the format details
presented in the illustrations and descriptions.

Flat file format

The flat file format is an unstructured (vis-a-vis structured formats like XML) file
format (file extension - .txt) that was designed specifically to handle the unique
challenges presented by certain wide-area datasets (extreme parallax, poor regis-
tration, wrong elevation model, inferior IMU etc.). For every trajectory, each time
step is represented by a single file, that contains the centroids on the trajectory upto
that particular time step. In other words: if a trajectory has a length of 100 time
steps, the flat file system associates 100 files with this single trajectory. Unfortu-
nately, such a data management system is the only means of addressing a scenario
in which all centroids on the trajectory are different for every time step (the non-
registered nature of the data necessitates that the trajectories themselves be regis-
tered). The structurs of KOLAM’s flat files is illustrated in Figure 8.5.

All lines in a flat file that lie with a ’Begin Blob’ - ’End Blob’ block correspond to
information pertinent to the Object-ID indicated by the ObjNo field, for this par-
ticular time step. Thus, the flat file illustrated in Figure 8.5 contains data for two
trajectories (since there are 2 Blobs) corresponding to Object-ID ’17’, for its 2nd
time step (indicated by the number of (x,y) pairs under the Centroid field). While
all fields after the ’BoundingBox’ field must be written out while creating the flat

CHAPTER 8. TRACKING 53

Figure 8.5: Screen shot of a typical KOLAM flat file, for one time step on a trajectory.

track file(s), these fields merely have a nominal presence in the file. They are not
currently used by KOLAM for drawing trajectories.

KW-18 file format

The KW-18 file format is a structured file format (file extension - .kw18). Its data
organization scheme allows multiple trajectories representing a complete tracking
database to be stored in a single file. A KW-18 file is partly illustrated in Figure 8.6.

Each trajectory in a KW-18 file is represented by a contiguous group of lines
arranged in increasing order of time. Such trajectories are then arranged in in-
creasing order of Track-ID. Each line represents a single time step on the trajectory,
and stores multiple pieces of information about that single time step in a space-
separated fashion. All 20 data columns (see Figure 8.6) are mandatory.

Examining Figure 8.6, additional details become apparent. First, fields (4,5)
and (8,9) are identical, and field (18) is identical to field (3). Second, ALL fields for
which data are unavailable are populated with the placeholder ’-1’.

Tracking Modes in KOLAM

KOLAM has three tracking modes: Automatic Tracking, Manual Tracking and As-
sisted Tracking. Trajectory editing is covered in Chapter 10.

CHAPTER 8. TRACKING 54

Figure 8.6: Screen shot of a typical KW-18 file, for ALL trajectories.

Automatic Tracking

This mode involves the invocation of external tracking program(s) to track objects
of interest, given that an image sequence has been loaded and the Kolam-Tracker
dialog has been opened. All necessary widgets have been presented under Page
1: ’WAMI’ . Automatic tracking may be currently performed via two trackers: the
CSURF Tracker and the LOFT Tracker. The steps for invoking the CSURF tracker
are illustrated sequentially in Figure 8.7, Figure 8.8 and Figure 8.9.

(a) Creating a new Object-ID

Figure 8.7: Step I of tracking an object using the CSURF Tracker. The user first cre-
ates a new Object-ID (Highlighted by rounded rectangle 1). Creating a new Object-
ID in KOLAM always sets the Tracking Mode to Automatic (2) and sets CSURF as the
selected tracker (3). KOLAM gives the user feedback and the next step to perform
in the tracking process (4). The object (vehicle in this case) to be tracked is also
highlighted (5).

CHAPTER 8. TRACKING 55

(b) Selecting the object for tracking

Figure 8.8: Step II of tracking an object using the CSURF Tracker. The user now
draws a bounding box around the object to be tracked with the right mouse but-
ton (6). The drawn box must include the object and a small amount of background
(again, see (6)). This box may be re-drawn as many times as the user needs to get
it right. When satisfied with the box drawn, the user presses the ’ENTER’ key. This
action ends the object selection phase of tracking; creates a .txt1 parameter file con-
taining information about the drawn box, dataset path, output file path etc. and
invokes the tracker program as an external process, with the .txt1 file as a parame-
ter. Feedback regarding the same is presented by KOLAM to the user (7).

(c) Tracker Startup

Figure 8.9: Step III of tracking an object using the CSURF Tracker. Once initialized,
the CSURF program begins tracking the object (8). While tracking, CSURF presents
additional useful information to the user (9, 10, 11) as well as the means to termi-
nate itself (12). The trajectories for the object - unregistered (13) and registered (14)
- are drawn in KOLAM as soon as they are generated by the tracker.

The steps for invoking the LOFT tracker are illustrated sequentially in Fig-

CHAPTER 8. TRACKING 56

ure 8.10, Figure 8.11, Figure 8.12 and Figure 8.13.

(a) Creating a new Object-ID

Figure 8.10: Step I of tracking an object using the LOFT Tracker. The user first cre-
ates a new Object-ID (Highlighted by rounded rectangle 1). Creating a new Object-
ID in KOLAM always sets the Tracking Mode to Automatic (2) and sets CSURF as the
selected tracker. The user needs to change the tracker to LOFT (3). KOLAM gives the
user feedback and the next step to perform in the tracking process (4). The object
(vehicle in this case) to be tracked is also highlighted (5).

(b) Selecting the object: PHASE 1

Figure 8.11: Step II of tracking an object using the LOFT Tracker. The user now
draws a bounding box around the object to be tracked with the right mouse but-
ton (6). The drawn box must include the object and a small amount of background
(again, see (6)). This box may be re-drawn as many times as the user needs to get it
right. When satisfied with the box drawn, the user presses the ’ENTER’ key. Since
LOFT takes TWO user-drawn BBoxes as input, pressing ’ENTER’ advances the se-
quence by 1 time step and lets the user draw the next BBox (7).

CHAPTER 8. TRACKING 57

(c) Selecting the object: PHASE 2

Figure 8.12: Step III of tracking an object using the LOFT Tracker. The user now
draws a SECOND bounding box around the object to be tracked, for the SECOND
time step (8). When satisfied, the user presses the ’ENTER’ key. This action ends
the object selection phase for LOFT; creates a .txt1 parameter file containing infor-
mation about the drawn boxes, dataset path, output file path etc. and invokes the
tracker program as an external process, with the .txt1 file as a parameter. Feedback
regarding the same is presented by KOLAM to the user (9).

(d) Tracker Startup

Figure 8.13: Step IV of tracking an object using the LOFT Tracker. Once initialized,
the LOFT program begins tracking the object (10). While tracking, LOFT presents
additional useful information to the user. The trajectory for the object (11) - is
drawn in KOLAM as soon as it is generated by the tracker.

CHAPTER 8. TRACKING 58

Manual Tracking

In the manual tracking mode the user tracks objects by hand marking the location
of the target in each frame. These points can be visualized as a connected trajec-
tory (vector plot in the overlay plane) as in the automated tracking mode. KOLAM
currently supports marking of objects using points, bounding boxes or polygons.

The fastest and easiest means of manual tracking involves using the auto-
advance option to automatically step to the next frame as soon as the user marks
the location of the object. In this mode of operation, an expert user can quickly
generate long ground-truth trajectories.

Tracking performed in either the automatic or manual modes may include er-
roneous target locations. Tracking errors can be repaired using KOLAM’s trajectory
editing facilities, which are the subject of Chapter 10.

Assisted Tracking

Current automatic tracking algorithms are not trustworthy enough in dense urban
environments with many movers, while fully manual tracking is time consuming
and error prone. Assisted tracking augments an automatic tracker with manual in-
tervention for rapid and accurate trajectory generation, especially when tracking
involves many similar targets maneuvering through multiple occlusions and shad-
ows in complex environments and flows.

The assisted tracking mode merges KOLAM’s automatic tracking and trajectory
editing capabilities in a manner that maximizes user effectiveness. In the assisted
tracking mode the user is able to stop the automatic tracker as necessary, manually
correct trajectory errors, or add target location information in a difficult to track re-
gion, then quickly switch back to the auto-tracker mode in a seamless fashion. The
sequence of operations in assisted tracking includes use of the automatic tracking
process, combined with track editing procedures (not shown) which are performed
by the user in an iterative fashion until the supervised tracking task is completed.

C
H

A
P

T
E

R 9
MULTI-MONITOR DISPLAY

This chapter describes KOLAM’s ability to utilize a high-performance cluster; to
display huge datasets across a tiled, multi-monitor ’Wall’ display system. Ad-
ditional networking parameters affecting the performance of the Wall system
may be modified via the Preferences - Performance Tuning section of the Kolam-
Preferences tool. An illustration of KOLAM displaying multiple layers at different
zoom levels on a multi-monitor display is shown in Figure 9.1.

Figure 9.1: An illustration of KOLAM being used on a multi-monitor display.

Unlike the single monitor display mode, this mode of operation involves multi-
ple command-line invocations of KOLAM on the nodes of the cluster, each of which
takes multiple parameters that designate what to display on each tile (ie. monitor)
of the multi-monitor system. It is highly recommended that the command-line in-

59

CHAPTER 9. MULTI-MONITOR DISPLAY 60

structions be saved in the form of script files, in order to save initial setup time and
to enable off-line editing of the display parameters. Furthermore, it is imperative
that the nodes of the cluster be on the same network subnet; the wall display mode
will not function otherwise.

Example Setup Scenario

Consider that the available multi-monitor setup is a 2x2 grid, with each of the four
monitors having a resolution of 2560 x 1600. Let the KOLAM instance that will
be designated as the broadcaster display to the lower-left monitor. Three other
computers on the same subnet, connected to the other three monitors on the grid,
are designated as receivers (since they receive update events generated by the user
from the broadcaster instance). The command-line instructions to load a PSS
sequence of image files, in order, on the lower-left, lower-right, upper-left and
upper-right monitors (these must be issued on the respective computers) are as
follows:

kolam -geometry 2560x1600 <full_path>/frame_#####_0.pss -x 2560 -y 0
kolam -geometry 2560x1600 <full_path>/frame_#####_0.pss -x 0 -y 0
kolam -geometry 2560x1600 <full_path>/frame_#####_0.pss -x 2560 -y 1600
kolam -geometry 2560x1600 <full_path>/frame_#####_0.pss -x 0 -y 1600

Current System Limitations

User events are processed and propagated ONLY IF they occur within the moni-
tor(s) to which the broadcaster instance of KOLAM is displaying. Events that occur
on any receiver instance are ignored in favor of display synchronization updates
that are dispatched from the broadcaster. Making another running instance of
KOLAM a broadcaster instance is currently a manual process: the current broad-
caster instance must have its broadcaster status removed and must be designated
a receiver instance, followed by designating the instance of interest (currently a re-
ceiver) as the next broadcaster. The hotkeys for setting the broadcaster/receiver
status on a running KOLAM instance are listed on page 93.

C
H

A
P

T
E

R 10
TRAJECTORY EDITING

This chapter describes the trajectory editing facilities available to the user in KO-
LAM. The various operations are: (a) ADD point(s) at either end of the trajectory,
(b) DELETE point(s) from either end of the trajectory, (c) MOVE any point on the
trajectory, (d) SPLIT a trajectory into two, and (e) JOIN two or more trajectories into
a single trajectory.

ADD point(s) to either end of a Trajectory

Figure 10.1: The ADD point operation. The red inset depicts a portion of the trajec-
tory prior to addition of point(s). The correspondence between the inset and the
final trajectory is denoted by the black arrows. The trajectory points indicated by
the green arrows were added using the ADD operation.

The ADD operation allows for the addition of one or more points at either end
of a selected trajectory. The user navigates to either one frame before the start of, or

61

CHAPTER 10. TRAJECTORY EDITING 62

one frame after the end of the trajectory and drops the new point. Dropping a new
point several frames before the trajectory start or after the trajectory end results in
trajectory interpolation - new points are added by KOLAM for the missing frames.
See Figure 10.1.

DELETE point(s) from either end of a Trajectory

Figure 10.2: The DELETE point operation. The first point (rightmost point) on track
’238/190’ in inset ’A’ is an erroneous detection, and needs to be deleted. The rele-
vant region is isolated in inset ’B’. The effect of the deletion operation is depicted in
’C’, and the final view is shown in inset ’D’.

The DELETE operation allows for the deletion of one or more points at either
end of or at any point within a selected trajectory. The trajectory retains its ID when
point(s) are deleted from either end. Deleting the whole trajectory is a special case
of this operation. See Figure 10.2.

MOVE any point on a Trajectory

Figure 10.3: The MOVE point operation. The erroneous point position (in inset
designated ’A’) and the corrected point position (in inset designated ’B’) are both
highlighted with red circles.

CHAPTER 10. TRAJECTORY EDITING 63

The MOVE operation allows for the translation of one or more point(s) of the
trajectory. MOVE does not involve change of trajectory ID. The MOVE operation is
performed by right-clicking on the point of interest, and dragging it to its desired
position. See Figure 10.3.

SPLIT a Trajectory

Figure 10.4: The SPLIT Track operation. The original, single track (in inset desig-
nated ’A’) and the two split tracks (in inset designated ’B’).

Deleting point(s) within the trajectory splits it in two, with the section prior to
the deleted portion retaining the original trajectory ID, and the following section
being given the first new available ID.

JOIN Two or More Trajectories

The JOIN operation allows for two or more trajectories to be merged together into a
single, longer trajectory. A meaningful JOIN operation requires that one trajectory
start at an earlier point in time than the other.

Pairwise Trajectory Join

In this mode, the user may select a pair of trajectories and join them into a single
trajectory.

Multiple Trajectory Join

Sorts all selected trajectories according to starting frame number and joins them
into a single trajectory. It involves aggregating pairwise trajectory joins in order of
increasing trajectory start time. Each pairwise join is governed by the assumption
that potential errors occur with increasing probability towards the end of any tra-
jectory - the starting centroids of any automatic tracker initialization are almost
always user supplied; as such, they are as reliable as ground truth. Therfore, in the
event of trajectory overlap in time, one or more centroids are always deleted from
the end of the aggregate trajectory, followed by appending the current trajectory
to the end of the aggregate trajectory. This process is repeated for all remaining
trajectories to produce the final aggregate trajectory. While extremely efficient in
terms of time saved, we recommend that the user exercise caution while using this
operation, as it involves centroid deletion from multiple trajectories.

C
H

A
P

T
E

R 11
SCREEN CAPTURING

This chapter details the screen capturing facilities of KOLAM. KOLAM’s tool for
managing screen capturing settings, Kolam-Capture, is illustrated below.

Figure 11.1: Kolam-Capture.

64

CHAPTER 11. SCREEN CAPTURING 65

Widget Description

1. None

Do not perform screen capturing. This button has BEEN DISABLED; when run-
ning, KOLAM is capable of performing screen capturing for single image(s) and/or
image sequences at any time.

2. Current image only

This button enables KOLAM’s ability to capture a single screen shot of a single im-
age (HotKey: see Screen Capturing Related). This is KOLAM’s default mode for
performing screen capturing (ie., it is enabled at KOLAM execution start time), and
may be used for taking single screen captures of Single Image Layers, or from the
current time step in an Image Sequence. The widgets for setting additional file pa-
rameters prior to capturing are described on page 66 and page 66.

3. Until stopped by user

This button enables KOLAM’s ability to capture screen shots (of the same rectangu-
lar region) from successive frames of an image sequence, for as long as it is being an-
imated (HotKey: see Screen Capturing Related). This implies that the user should
disable sequence animation looping (see page 35) to avoid potentially repeating
the same screen captures from being generated one or more times. User actions
affecting sequence playback such as pausing (page 36), stopping (page 36), skip-
ping (page 36) or stepping(page 36) directly affect the screen capturing capability
of this mode. The widgets for setting additional file parameters prior to captur-
ing are described on page 66 and page 66. The shortcut for performing Image
Sequence capturing (reference provided above) is capable of turning this capture
mode ON, even if the Kolam-Capture tool has not been opened. Once turned ON,
KOLAM will remain in sequence capturing mode (ie., will continue to capture screen
shots whenever a loaded sequence is animated), UNTIL the same shortcut is used
to switch the capture mode BACK to single image capture.

4. Give a sub-range . . .

This button enables KOLAM’s ability to capture screen shots (of the same rectangu-
lar region) from successive frames of an image, within the frame number subrange
specified by the user (see page 65). If either the starting, or ending, or both ends of
the subrange have out-of-range or invalid values specified, KOLAM appropriately
substitutes these with the starting and/or ending frame index values. While KO-
LAM is performing screen capturing within the subrange, the user must take care
not to stop or alter the direction of the animation.

5. From . . . To . . .

These two text entry widgets are used to provide a valid subrange (of the total num-
ber of frames of a loaded image sequence) for KOLAM to perform screen capturing
within. The box on the left must hold the starting frame number, while the one on
the right must hold the ending frame number. If either the starting, or ending, or
both ends of the subrange have out-of-range or invalid values specified, KOLAM
appropriately substitutes these with the starting and/or ending frame index values.

CHAPTER 11. SCREEN CAPTURING 66

6. Kolam Window

This button sets KOLAM to save the entire visible content of the display window
as a screen shot. Note that the display window may or may not be maximized (set
to full screen); this setting works for both cases.

7. User Specified

This button sets KOLAM to save a subregion of the visible content of the display
window as a screen shot. Subregion specification is possible via KOLAM’s ROI
(Region of Interest) Selection facility, and is described under.

8. Capture Dimensions Specified by User

These values are set in Kolam-Capture by the user using the ROI Selection facility
to create a subregion of KOLAM’s current display contents. It is further discussed
under.

9. ’Set Capture Directory’ Button

This button pops open a directory selector dialog which lets the user select the
parent directory for KOLAM to save future screen capture image files.

10. Capture Directory full path

Displays the full directory path where screenshots will be written out by KOLAM.
The value of this field is set by the directory selector button described above. If no
path is listed in this field, KOLAM will save screen shot files in the same directory
as the KOLAM executable.

11. Edit Save file Prefix

Sets the text prefix portion of the next to-be-generated filename. The file naming
convention for screen captures is <Text-Prefix>_<Numerical-Index>.<FileType>.
For example, with a prefix ’Example’, numerical index value ’4’, the file type being
’PNG’, and 20 screen captures having already been performed by KOLAM, the next
generated file will be named ’Example_0020.PNG’.

12. Edit Save file Index

Sets the number of digits in the numerical index portion of the next to-be-
generated filename. The number of digits determines the total number of unique
filenames (with the same text prefix) that may be generated by KOLAM: for exam-
ple, choosing ’3’ means filenames with indices ranging from 0 - 999, for a total of
1,000 unique file names.

13. Select Save file Type

Sets the current image file type that all captured screenshots will be saved as. KO-
LAM currently supports the JPG, TIF, PNG and BMP image file types for the saving
of screenshots.

CHAPTER 11. SCREEN CAPTURING 67

Figure 11.2: KOLAM’s screen capturing feature, with multiple layers and overlays.
Eight sequences (4 copies of the wound healing dataset & 4 mask layers show-
ing different results, from top left to bottom right: segmentation masks, 4-colored
graph-based segmentation results, Voronoi diagram, and cell motility trajectories
with ID labels; transparently overlaid on the dataset copies) have been organized in
a grid pattern for comparative visualization. KOLAM can capture this grid visual-
ization animation and output the captures utilizing user specified location, format
and naming scheme.

Capturing with multiple Layers & Overlays

KOLAM is capable of capturing the screen output when multiple layers and over-
lays are being simultaneously interacted with. Multiple layers may be loaded, of
which one or more layers may have their transparencies altered. These layers may
overlap to varying degrees with each other. In addition to this, one or more over-
lays with trajectory data or any other type of annotation may be overlaid on the
layers. See Figure 11.2 and its description for details of the image sequences and
trajectories loaded. KOLAM can capture all the screen contents as fast as the screen
capturing capability allows, and save the output images in the location and format
of the user’s choice.

Using the ROI Selection Utility

When visualizing imagery, the user needs (at times) to know the dimensions of cer-
tain objects of interest, their position in the image (both in terms of image coordi-
nates as well as screen coordinates) and to set a selected region to be captured (via
KOLAM’s screen shot tool) for one or more images. KOLAM’s Region-Of-Interest
(ROI) utility fulfils these needs. The steps involved in using the ROI utility in per-
forming these tasks are illustrated in Figure 11.3.

CHAPTER 11. SCREEN CAPTURING 68

Figure 11.3: KOLAM’s ROI utility. The steps for its usage are as follows. The user first
pans and zooms the image until the region of interest is displayed in a convenient
manner. The user then activates the ’ROI Selection → Mouse Click-and-drag’ menu
item (2) from the ’Tools’ Menu (1). This creates an overlay on which the ROI Selec-
tion may be made; the user performs this action by Left-Click-Dragging a (green,
semi-transparent) bounding box around the Region-Of-Interest (3). As a conve-
nience feature, KOLAM runs an interactive display of the Top-Left and Bottom-
Right corners (5) of the selection box, in image coordinates. Once the user is sat-
isfied with the box drawn (it may be redrawn as many times as needed to get it
right), a right-click within the box pops up a context menu (4). Selecting the sec-
ond option causes the screen coordinates of the selected region to be sent to the
Kolam-Capture tool, where it may subsequently be used for subregion capturing.
Selecting the first option causes KOLAM to zoom in on the selected region at the
native image resolution. In both cases, KOLAM remains in ROI selection mode;
and the user must press the ESC key to exit the mode.

C
H

A
P

T
E

R 12
PLUGINS AND KOLAM

This chapter details the plugin architecture supported by KOLAM, and the require-
ments for writing and loading 3rd party plugins into KOLAM.

12.1 Segmentation Relabeling

We now present details regarding the Segmentation Relabeling plugin, which has
been implemented in KOLAM in a tightly coupled fashion. The file management
utility which allows users to specify the different files to be loaded, and allows man-
agement of project files specific to this tool, is illustrated in Figure 12.1.

Widget Description

1. Original Image Path

This text box displays the full file path to the original image. This path is normally
set by using the ’Original Image Button’ (page 70), but it may also be set by a man-
ual Copy-Paste-Edit action by the user.

2. Partition Label Image Path

This text box displays the full file path to the partition label image. This path is
normally set by using the ’Partition Label Image Button’ (page 70), but it may also
be set by a manual Copy-Paste-Edit action by the user.

3. Classifier Output Image Path

This text box displays the full file path to the classifier output image. This path is
normally set by using the ’Classifier Output Image Button’ (page 70), but it may also
be set by a manual Copy-Paste-Edit action by the user.

69

CHAPTER 12. PLUGINS AND KOLAM 70

Figure 12.1: The file management utility for Segmentation Relabeling.

4. Original Image Button

Opens a File Selector dialog to specify the path to the original (source) image.

5. Partition Label Image Button

Opens a File Selector dialog to specify the path to the partition label image.

6. Classifier Output Image Button

Opens a File Selector dialog to specify the path to the classifier output image.

7. Load Project File Button

Opens a File Selector dialog which may be used to specify the path to a project
file (extension - .khist) previously saved or imported by the user, to be loaded by
KOLAM.

8. Project File Path

Gives the path to the most recently selected project file.

9. Save Project File Button

Opens a File Selector dialog, which lets the user save the currently set Original,
Partition Label and Classifier Output Image Paths to a new project file.

10. Load Sequence Project File Button

Currently non-functional.

CHAPTER 12. PLUGINS AND KOLAM 71

11. Create New Sequence Project File Button

Currently non-functional.

12. Current Sequence Project File Path

Currently non-functional.

13. Save Sequence Project File Button

Currently non-functional.

14. Clear All

Clears the display of all loaded image layers.

15. Load

Uses the currently set original image, partition label image and classifier output
image paths to display the composite editable view for the user to begin perform-
ing segmentation relabeling operations. Making sure that the paths of matching
images are loaded in each of the three fields is the responsibility of the user.

16. Cancel

Pressing this button closes the dialog without performing any additional actions.

Initial Setup for Relabeling

Figure 12.2: A source image from the Stanford Breast Cancer Microarray Dataset.

Figure 12.2 serves to illustrate the type of visualization KOLAM presents to the
user for relabeling segmentation results. The left side of the illustration shows the
original image (from the Stanford Breast Cancer microarray dataset), while the right
side displays the result of overlaying and blending the segmentation results on the
original image. The user may obtain this view in two different ways. First (if no pre-
vious input files have been loaded, the user wishes to change any preloaded paths,
or no project files have been saved), the user employs widgets 4, 5 and 6 (page 70)
to load the appropriate input files; whose paths are then displayed in widgets 1, 2
and 3 (page 69). Alternatively, if a project file was previously saved, the user may

CHAPTER 12. PLUGINS AND KOLAM 72

load its path with widget 7 (page 70). The second (and final) step involves using
widget 15 (page 71), which causes all images to be loaded, overlaid and blended,
to produce the aforementioned desired view; the user may edit segmentation labels
on this image. KOLAM uses three colors to designate the different segmentation la-
bels: RED → stroma, GREEN → epithelium and BLACK → borders. The hotkeys for
toggling ALL label borders, or just the border of the most recently relabeled label, are
listed on page 94.

Relabeling Procedure

Given that the user has completed the setup process as described on page 71, Fig-
ure 12.3 illustrates the steps involved in the relabeling process. The user can iden-
tify the labels that have been incorrectly colored by viewing the classifier image
and the original image separately in order to compare them. Since the classifier
image is overlaid on the original image, its visibility may easily be toggled ON or
OFF using the ’V’ hotkey (page 93).

Figure 12.3: Steps involved in doing Segmentation Relabeling in KOLAM.

The user begins editing by identifying and right-clicking on a wrongly classified
label, shown in (1) and enlarged in (2) to highlight the orange border of the selected
label. The user performs relabeling by right-clicking within the selected label (2),
this causes the color of the label to begin cycling through all available label colors.
Relabeling is complete when the user cycles through to the correct label color, as
shown in (3).

C
H

A
P

T
E

R 13
KOLAM: HOW TO..?

‘Okay, this manual is all fine and dandy, but how do I use KOLAM to do
what I want?’

This chapter strives to answer this question, by providing lists of actions for every
possible usage scenario of KOLAM. On several occasions, the actions will reference
images and sections in other parts of the manual.

‘But doesn’t that mean that I’ll have to scroll back and forth every single
time I click on a link ?!’

Of course not ! The links used in this manual enable you to jump right back
to where you clicked a particular link, by pressing the Backspace key. If you have
a mouse with extra buttons that are mapped to ‘Page forward’ & ‘Page backward’,
even better! Finally, on phones, tablets & other touch-driven devices, the ’Back’
button takes care of this need.

1. LOAD - a Single Image

– Use the menu: File –> Open Image(s).... This opens your OS’s file browser
with KOLAM’s supported image formats’ wildcards selected to display only
image files with those extensions.

– Navigate to the location of the file, and double-click it.

– Alternatively, you can click it and then click the ’Open’ button, usually located
at the bottom-right portion of the file browser dialog.

73

CHAPTER 13. KOLAM: HOW TO..? 74

– OR, you can eschew KOLAM’s menu system: drag-and-drop the image file of
interest from a normal OS file browser dialog, onto KOLAM’s main display
area. (WARNING: Does not work under Mac OSX.)

2. LOAD - Images As A Sequence

– NOTE: It is recommended that the images of interest all be of the same width
and height.

– Use the menu: File –> Open Sequence.... This opens your OS’s file browser
with KOLAM’s supported image formats’ wildcards selected to display only
image files with those extensions.

– Navigate to the directory containing the files, and double-click on any file.

– Alternatively, you can click any file and then click the ’Open’ button, usually
located at the bottom-right portion of the file browser dialog.

– OR, you can eschew KOLAM’s menu system: drag-and-drop the directory
containing the images of interest from a normal OS file browser dialog, onto
KOLAM’s main display area. (WARNING: Does not work under Mac OSX.)

3. LOAD - Images into Separate Layers

– NOTE: Unlike for image sequences, the images of interest can have different
widths and heights in this case.

– Use the menu: File –> Open Image(s).... This opens your OS’s file browser
with KOLAM’s supported image formats’ wildcards selected to display only
image files with those extensions.

– Navigate to the location of the files. All the files of interest need to be within
the same directory.

– Select all the files, and then click the ’Open’ button, usually located at the
bottom-right portion of the file browser dialog.

– OR, you can eschew KOLAM’s menu system: Select, then drag-and-drop the
image files of interest (NOT the directory) from a normal OS file browser dia-
log, onto KOLAM’s main display area. (WARNING: Does not work under Mac
OSX.)

4. LOAD - a Color Map

– NOTE: A colormap may be loaded even if no image has been loaded prior.
HOWEVER, be aware that if a colormap is loaded without an image layer,
there will be no discernible visible effect in the main display area. When mul-
tiple images are loaded, a loaded colormap will be applied to the currently
active layer.

– Use the menu: File –> Open Colormap.... This opens your OS’s file browser
with the .cm wildcard selected to display only colormap files with the .cm ex-
tension. To edit loaded colormaps, use the editing tool illustrated on page 27.

CHAPTER 13. KOLAM: HOW TO..? 75

– Navigate to the location of the .cm file of interest. Load the file by either
double-clicking on it, or by selecting it and clicking the ’Open’ button.

– Once loaded, the colormap will be applied to the currently active layer. To
change the layer to which the colormap is assigned, open the Layer Edi-
tor by using the menu: Layer –> Layer Editor..., selecting another layer in
the ‘Items’ list thereby making it the currently active layer, and selecting the
loaded colormap file from the colormap drop down on the top-right of the
‘Layer’ page. See Figure 4.1 and the widget description on page 25.

5. CLEAR - The display area

– KOLAM provides two options to clear the display area - clearing a single (the
currently active) image layer, as well as clearing the display area of ALL loaded
image layers. Once the display is cleared, you may load other image layers if
so desired, or exit KOLAM.

– NOTE: Both the layer closing options described below currently only work
for single image layers, and not for image sequences. If you have loaded an
image sequence and wish to clear the display to load some other data, you
will need to restart KOLAM. The author is currently working on rectifying
this issue.

– Use the menu: File –> Close Layer. This clears the currently active image
layer from the main display area.

– Use the menu: File –> Close All Layers. This clears ALL loaded image layers
from the main display area.

6. CHANGE - Order of layers in the layer stack

– KOLAM loads layers in a stacked manner, with the most recently loaded layer
being active and visible ‘on top’, given that no operations to alter the ordering
of layers have been already performed in KOLAM. The Layer Editor (page 24)
allows for the order of layers in the visibility stack to be interactively changed
as desired.

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool. See
Figure 4.1.

– Click on any layer’s name in the Layer List (page 26) to make it active, and
use the Up/Down arrow keys (page 26) in order to change its order in the
Visibility Stack. This action may be repeated for as many layers as needed in
order to obtain the desired visual effect.

7. CHANGE - Currently active layer

– The concept of the ‘active layer’ is central to KOLAM’s operations. All oper-
ations in KOLAM are performed on the active layer. If the layer you wish to
perform any operation is not currently active, it must be set as so, before per-
forming any further tasks. The Layer Editor provides the facility to change
the currently active layer.

CHAPTER 13. KOLAM: HOW TO..? 76

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool. See
Figure 4.1.

– Identify the layer of interest in the Layer List on the left, and click on its name
to make it the active layer.

– If less than 11 layers have been loaded, the Layer Editor may be eschewed
in favor of a layer activating shortcut: after ensuring that the main display
area has focus, press a number from 0 - 9, in order to make the corresponding
layer active.

8. CHANGE - Colormap associated with a layer

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool. See
Figure 4.1.

– Identify the layer of interest in the Layer List on the left, and click on its name
to make it the active layer.

– Select the colormap of interest from the ‘Colormap:’ drop-down (page 24)
and click on it to associate it with the currently active layer. If you need to
dissociate a colormap from this layer, select the top-most entry of the col-
ormap drop-down list, which is ‘None’. In either case, the display updates
immediately to reflect the change.

9. CHANGE - Heightmap associated with a layer

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool. See
Figure 4.1.

– Identify the layer of interest in the Layer List on the left, and click on its name
to make it the active layer.

– Select the colormap of interest from the ‘Heightmap:’ drop-down (page 24)
and click on it to associate it with the currently active layer. If you need
to dissociate a heightmap from this layer, select the top-most entry of the
heightmap drop-down list, which is ‘None’. In either case, the display up-
dates immediately to reflect the change.

10. TOGGLE - Visibility of a layer

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool. See
Figure 4.1.

– Identify the layer of interest in the Layer List on the left, and click on its name
to make it the active layer. This step may be skipped is the layer of interest
was already active.

– Toggle the ‘Visible’ checkbox (Figure 4.1) for the desired visual effect.

– Like changing the currently active layer, toggling visibility of a particular layer
also has a shortcut if less than 11 layers have been loaded. Perform the last
step for changing the currently active layer (page 75) and press the ‘V’ key to
toggle the visibility of the desired layer.

CHAPTER 13. KOLAM: HOW TO..? 77

11. TOGGLE - Black Transparency of a layer

– In addition to alpha blending, KOLAM provides ‘Black Transparency’, which
turns only those pixels of an image with pixel color ‘Black (0, 0, 0)’ fully trans-
parent. This functionality may be toggled via the Layer Editor (Figure 4.1).

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool. See
Figure 4.1.

– Identify the layer of interest in the Layer List on the left, and click on its name
to make it the active layer. This step may be skipped is the layer of interest
was already active.

– Toggle the ‘Black Transparency’ checkbox (Figure 4.1) in the ‘Rendering’ sec-
tion for the desired visual effect.

12. TOGGLE - Tile grid for a layer

– When dealing with multi-resolution image data, KOLAM provides the ability
to visualize the tiles of each level of the image pyramid as a grid, overlaid on
the image. The visibility and color of this grid may be toggled and changed
via the Layer Editor.

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool. See
Figure 4.1.

– Toggle the ‘Visible’ check box located in the ‘Grid’ section on the ‘Layer’ page
for the desired visual effect. The grid color may be altered by changing the
color in the color picker, brought up by clicking the ‘Color..’ button.

13. TOGGLE - Per-Layer Transformation

– KOLAM’s default mode of transformation (ie. pan and zoom operations) in-
volves transforming ALL loaded layers within a single, global coordinate sys-
tem. It is also possible to transform each layer within its own, local coordi-
nate system via a toggle in the Layer Editor.

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool. See
Figure 4.1.

– Check the ‘Interactive Mode’ checkbox (Figure 4.1) in the ‘Registration Trans-
formation’ section. Once you have completed the following steps, remember
to un-check the check box.

– Click on the layer to be transformed in the ‘Items’ list to make it active.

– For general (but numerically imprecise) transformation, use the mouse to
pan and/or zoom the active layer. For numerically precise transformation,
use the ‘X Offset’, ‘Y Offset’ and ‘Scale’ numerical entry boxes located within
the ‘Registration Transformation’ section.

– The two prior steps may be repeated for as many of the loaded layers, in order
to obtain the desired visual presentation.

CHAPTER 13. KOLAM: HOW TO..? 78

14. DISPLAY - Information about the active image layer

– Use the menu: Layer –> Layer Editor.... This opens the Layer Editor tool.
See Figure 4.1. The ‘Info’ page displays all the relevant information of the
currently active layer. See Figure 4.2.

15. DISPLAY - Data using Raster Rendering on a Plane

– NOTE: For this menu action to work, at least one layer must be loaded with
either a single image or an image sequence.

– Use the menu: Display –> 2D Raster. KOLAM now uses raster rendering to
display the image data.

– NOTE: Some images produce no display in Texture Rendering mode, which
is the default display mode; but do display under the Raster Rendering mode.
Therefore, in the event that loading a give image produces no change to the
display, we recommend that the Raster Rendering mode also be tried prior to
categorizing this as a bug.

16. DISPLAY - Data using Texture Rendering on a Plane

– NOTE: For this menu action to work, at least one layer must be loaded with
either a single image or an image sequence.

– Use the menu: Display –> 2D Texture. KOLAM now uses texture mapped
rendering to display the image data.

– NOTE: This is the default rendering mode for KOLAM, because texture ren-
dering is faster, and handles the aliasing artifacts present in Raster Rendering.

17. DISPLAY - Data using Texture Rendering on a Sphere

– NOTE: For this menu action to work, at least one layer must be loaded with
either a single image or an image sequence.

– Use the menu: Display –> 3D Sphere. KOLAM now uses texture mapping to
map the image data onto a spherical surface.

18. CONFIGURE - Display Settings

– Use the menu: File –> Preferences.... This opens the KOLAM Preferences
tool. See Figure 4.4.

– Click on the ‘Performance Tuning’ item in the list on the left.

– Open the ‘Display’ page. See page 29 for the widget descriptions.

19. CONFIGURE - Wall Networking Settings

– Use the menu: File –> Preferences.... This opens the KOLAM Preferences
tool. See Figure 4.4.

– Click on the ‘Performance Tuning’ item in the list on the left.

– Open the ‘Networking’ page. See page 29 for the widget descriptions.

CHAPTER 13. KOLAM: HOW TO..? 79

20. CONFIGURE - Display Fine-Tuning

– Use the menu: File –> Preferences.... This opens the KOLAM Preferences
tool. See Figure 4.4.

– Click on the ‘Performance Tuning’ item in the list on the left.

– Open the ‘System’ page. See page 30 for the widget descriptions.

21. CONFIGURE - Tracking Executable paths for KOLAM

– Use the menu: File –> Preferences.... This opens the KOLAM Preferences
tool. See Figure 4.5.

– Click on the ‘Tracking Executable’ item in the list on the left.

– See page 31 for the widget descriptions.

22. CONFIGURE - Tracking file save paths for KOLAM

– Use the menu: File –> Preferences.... This opens the KOLAM Preferences
tool.

– Click on the ‘Tracking File Paths’ item in the list on the left.

– Set the file save paths as desired.

23. USE - KOLAM’s Pan-Zoom Tool

– While KOLAM utilizes the mouse to perform interactive panning and zoom-
ing, a mouse might not always be available. This holds true for smaller laptop
computers and other mobile devices.

– Use the menu: View –> Pan-Zoom. This brings up the Kolam-Pan+Zoom
tool.

– The tool provides 3 capabilities: means to alter the zoom factor, to pan the
display, and to navigate the different levels of a multi-resolution image.

– KOLAM’s Preferences tool provides the means to alter both the step size and
the event frequency for both Pan and Zoom operations, via the ‘Display’
page of ‘Performance Tuning’. Reducing the event frequency interval pro-
vides a more fluid pan and zoom experience, but comes at the expense of
what amounts to an ‘event flood’ for the event handling system. Increasing
the pan or zoom step size will increase the ‘speed’ of panning and zoom-
ing, at the expense of fine grained control. Conversely, increasing the event
frequency interval and decreasing the step size will have effects opposite to
those mentioned above.

CHAPTER 13. KOLAM: HOW TO..? 80

24. USE - KOLAM’s Coordinate Position Tool

– KOLAM’s Coordinate Position tool allows you to obtain image coordinates
for the currently active layer in real time as you move the mouse over the
display area. Where applicable (currently PSS image data ONLY) latitude and
longitude information are also displayed in the same manner. If a trajectory
dataset is loaded and the mouse is not being moved, this tool will display the
image coordinates of the current Object ID as selected on the WAMI page of
the Kolam-Tracker tool.

– Use the menu: View –> Coordinate Position.

25. USE - KOLAM’s ROI Selection Tool

– Using the menu selection mentioned below, it is possible to interactively se-
lect a rectangular Region Of Interest (ROI) with respect to the currently active
image layer. Figure 11.3 illustrates an example of interactive ROI selection.

– Use the menu: View –> ROI Selection –> Mouse click-and-drag.

– Usage instructions are provided with the previous illustration.

26. CAPTURE - The display area as a screenshot

– Use the menu: View –> Screen Capture. This opens the Kolam-Capture dia-
log. Details regarding the Kolam-Capture dialog and its components are pre-
sented in Chapter 11.

– Enable the ‘Current image only (C)’ radio button. This button is enabled by
default.

– Under the ‘Capture Directory and File name Template...’ section, set the di-
rectory where you would like the screen captures to be saved, the name tem-
plate for the image capture, the numerical range for images with this name
structure (setting ‘2’ digits will generate unique ordered names from 0 - 99,
setting ‘4’ digits will generate unique ordered names from 0 - 9999), and the
image file type. For example, with a prefix ‘test’, ‘3’ digits, and the ‘PNG’ file
type; successive screen captures will be named ‘test_000.PNG’, ‘test_001.PNG’
and so on. Once a file is saved with the name ‘test_999.PNG’, the next file will
be once again named ‘test_000.PNG’, over-writing any previously existing file
with the same name.

– Click ‘OK’ at the bottom right to save the settings you’ve made. To discard
any changes you’ve made, click ‘Cancel’ instead.

– Make sure the main display window has focus, and click the ‘C’ key to capture
the content of the main display area. NOTE: In order to capture a sub-region
of the whole screen, all you have to do is resize the KOLAM display window so
that only the region of interest to you is visible in the display area: performing
the capture operation now results in only that region being captured.

CHAPTER 13. KOLAM: HOW TO..? 81

27. CAPTURE - The display area as a screenshot sequence

– NOTE: In order to capture screenshots from an image sequence as the se-
quence is being animated, an image sequence must already be loaded.

– Use the menu: View –> Screen Capture. This opens the Kolam-Capture dia-
log.

– Enable the ‘Until stopped by user (Shift-C)’ radio button. Once the sequence
capturing task is complete, make sure to re-enable the ‘Current image only
(C)’ button, otherwise image capturing will continue!

– Follow the same steps as for a single screen capture (page 80) for setting the
screen capture parameters, and close the dialog.

– Resize the screen and position the image data (pan and/or zoom) as needed
to set up your desired sequence capture area.

– Press the ‘Play’ key on the Kolam-Loop tool. This tool should already be vis-
ible if you are visualizing the sequence. This will cause the screen content to
be captured while the image sequence is being animated.

– ONCE AGAIN! Once you’ve completed your sequence capturing task, make
sure to re-enable the ‘Current image only (C)’ button in the Kolam-Capture
dialog, otherwise image capturing will continue!

28. DISPLAY - An overview of the displayed data

– NOTE: For this menu action to have a visible effect, at least one image must
be loaded.

– KOLAM’s Overview tool allows to have a bird’s eye view of the whole image
data while allowing for even faster panning navigation of the data.

– Use the menu: View –> Overview. This brings up KOLAM’s Overview tool,
which is covered in detail on page 32.

– Panning and zooming the image layer in the main display area interactively
updates the green grid region (Figure 4.6, zooming leads to Figure 4.7) in the
Overview Tool.

– For fast panning of the image with a bird’s eye view of the whole data, drag
the green grid region in the Overview tool, and the data pans correspondingly
in the main display area.

– The Overview tool must be explicitly closed once you’ve finished using it; it
cannot be ‘Escape’-d like other dialogs.

29. DISPLAY - Memory usage while interactively displaying data

– NOTE: For this menu action to have a visible effect, at least one image (single
or sequence) must be loaded.

CHAPTER 13. KOLAM: HOW TO..? 82

– KOLAM’s Cache Glyph tool allows you to interactively visualize how KOLAM
manages memory for multi-resolution imagery, while interacting with the
imagery.

– Use the menu: View –> Cache Glyph. This brings up KOLAM’s Cache Glyph
tool, which is covered in detail on page 33.

– The Cache Glyph tool must be explicitly closed once you’ve finished using it;
it cannot be ‘Escape’-d like other dialogs.

30. DISPLAY - Transparent dialogs for KOLAM

– NOTE: For this menu action to have a visible effect, at least one of KOLAM’s
different dialogs must be visible.

– Having transparent dialogs is useful when the user wishes to keep multiple
dialogs open, but overlapping each other so as to maximize the amount of
visible display area, while being able to see settings in multiple dialogs in a
relatively un-obscured manner.

– Use the menu: View –> Transparent Dialogs. Whatever dialogs are visible
at the time will individually become visually fainter. If dialogs overlap, the
content of the underlying dialogs will be partially visible through the bodies
of the obscuring dialogs.

31. LOAD - Trajectories from a KW18 File

– NOTE: In order to load trajectories from a .kw18 file, an image sequence must
already be loaded. If no image sequence is loaded, KOLAM will ignore the
.kw18 file loading action.

– Use the menu: Tools –> Track Files –> [KW18] - Load A File. This opens your
OS’s file browser with the .kw18 wildcard selected to display only trajectory
files with the .kw18 extension.

– Navigate to the location of the .kw18 file of interest. Load the file by either
double-clicking on it, or by selecting it and clicking the ’Open’ button.

– OR, you can eschew KOLAM’s menu system: drag-and-drop the .kw18 file of
interest from a normal OS file browser dialog, onto KOLAM’s main display
area. (WARNING: Does not work under Mac OSX.)

32. SAVE - All loaded KW18 Data to a KW18 File

– NOTE: In order to save all loaded KW18 data into a KW18 file, an image se-
quence must already be loaded, and at least one KW18 trajectory dataset
must also be loaded.

– Use the menu: Tools –> Track Files –> [KW18] - Save to KW-18 File. This
opens your OS’s file browser with the .kw18 wildcard selected to display only
trajectory files with the .kw18 extension.

CHAPTER 13. KOLAM: HOW TO..? 83

– Navigate to the directory in which you would like to save the KW18 file. If
you would like to over-write an existing KW18 file, open it using the dialog.
Alternatively if you would like to create a new KW18 file into which to save
the KW18 data, enter an unused file name and click the ‘Open’ button.

– All loaded KW18 data will be saved in the specified KW18 file. Please verify
that the data was indeed saved by starting a new instance of KOLAM and
checking the newly saved file.

33. SAVE - All loaded KW18 Data to a CSV File

– NOTE: In order to save all loaded KW18 data into a CSV file, an image se-
quence must already be loaded, and at least one KW18 trajectory dataset
must also be loaded.

– Use the menu: Tools –> Track Files –> [KW18] - Save to CSV File. This opens
your OS’s file browser with the .csv wildcard selected to display only trajec-
tory files with the .csv extension.

– Navigate to the directory in which you would like to save the CSV file. If you
would like to over-write an existing CSV file, open it using the dialog. Alterna-
tively if you would like to create a new CSV file into which to save the KW18
data, enter an unused file name and click the ‘Open’ button.

– All loaded KW18 data will be saved in the specified CSV file.

– NOTE: Exporting KW18 trajectory information into the CSV format was added
per a 3rd party request. KOLAM cannot currently LOAD trajectory informa-
tion directly from a .csv file. Please contact the authors if you need this fea-
ture implemented. In such an event, the data columns in your .csv files MUST
match the KW18 format, which is the top line in Figure 8.6.

34. DELETE - Most recently loaded KW18 Dataset

– NOTE: In order to delete the most recently loaded KW18 dataset, an image
sequence must already be loaded, and at least one KW18 trajectory dataset
must also be loaded. If no KW18 file has been loaded, the following actions
will have no effect.

– Use the menu: Tools –> Track Files –> [KW18] - Delete Last.

– The trajectories from the last loaded KW18 file will be deleted: the visual ef-
fect is that all these trajectories will disappear from the display area, and can
no longer be visualized unless the KW18 is reloaded.

35. DELETE - All loaded KW18 datasets

– NOTE: In order to delete all loaded KW18 datasets, an image sequence must
already be loaded, and at least one KW18 trajectory dataset must also be
loaded. If no KW18 file has been loaded, the following actions will have no
effect.

– Use the menu: Tools –> Track Files –> [KW18] - Delete All.

CHAPTER 13. KOLAM: HOW TO..? 84

– The trajectories from all loaded KW18 files will be deleted: the visual effect is
that ALL trajectories will disappear from the display area, and can no longer
be visualized unless one or more KW18 files are reloaded.

36. TOGGLE - Visibility of a Single Trajectory

– NOTE: In order to toggle trajectory visibility, an image sequence must already
be loaded, and a trajectory dataset must also be loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Track Viz’ page of the dialog.

– Select the trajectory ID of the trajectory of interest in the ‘Obj. ID’ drop down.

– Under ‘Track Properties’, toggle the ‘Visible’ check box for the desired visual
effect.

37. TOGGLE - Visibility of All Trajectories

– NOTE: In order to toggle trajectory visibility, an image sequence must already
be loaded, and a trajectory dataset must also be loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Track Viz’ page of the dialog.

– Toggle the ‘Draw All’ check box for the desired visual effect.

38. TOGGLE - Visibility of Selected Trajectories

– NOTE: In order to toggle trajectory visibility, an image sequence must already
be loaded, and a trajectory dataset must also be loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Editing’ page of the dialog, and enable the ‘Select Track(s)’ check-
box.

– In the main display area, pan and/or zoom in on any of the trajectories that
you would like to have as ‘Selected’. Right-click in close proximity to any of
the centroids along the trajectory. The display will indicate that the trajectory
has been successfully selected by enclosing the entire trajectory in a white
boundary. See Figure 10.1 for an example of a selected trajectory. In the
same manner; pan, and zoom in/out in order to select all other trajectories
which you would like to be marked as ‘Selected’.

– Toggle the ‘Turn OFF Unselected Tracks’ checkbox, located at the top-right of
the ‘Editing’ page of the Kolam-Tracker dialog, for the desired visual effect.

CHAPTER 13. KOLAM: HOW TO..? 85

39. TOGGLE - Display unstabilized and/or stabilized trajectories

– NOTE: Having stabilized and unstabilized versions of a given trajectory stems
from whether any of the object tracker programs associated with KOLAM
generate such trajectories in order to compensate for registration errors in
the underlying image data. If you are not aware of this scenario, it is most
likely that the trajectory data of interest to you does not have these trajectory
types. In case you do, please follow these steps.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Track Viz’ page of the dialog.

– When stabilized trajectories are included in the trajectory data, there are three
visibility states: display unstabilized only, display stabilized only and display
both. Use the ‘Stabilize’ check box under ‘Track Properties’ to toggle between
these visibility states. If your trajectory data does not include stabilized tra-
jectories, toggling the check box will have these effects corresponding to the
three states just described: visible, not visible, visible.

40. TOGGLE - Display Names of Loaded KW18 Files

– NOTE: In order to display the names of loaded KW18 files, an image sequence
must already be loaded, and at least one KW18 trajectory dataset must also
be loaded.

– Use the menu: Tools –> Track Files –> [KW18] - Display Names. This causes
the display of the names of all loaded KW18 files to be displayed in the top
left corner of the main display area, overlaid as a form of annotation on any
currently visible image data.

– NOTE: The menu item acts as a toggle, so use it again to turn off display of
the file names.

41. TOGGLE - Group loaded KW18 Files by Color

– NOTE: In order to observe the visual effect of grouping KW18 file data by
color, an image sequence must already be loaded, and at least one KW18
trajectory dataset must also be loaded.

– Use the menu: Tools –> Track Files –> [KW18] - Group by Color. This causes
ALL trajectories which were loaded from a single KW18 to be rendered with
the same color. Trajectories from different KW18s will be colored differently.
This visualization mode is very useful in several scenarios: one such use case
involving visually analyzing trajectories for individual objects that came from
multiple sources: ground truth versus one or more tracker outputs, for exam-
ple. You can return to the default trajectory visualization mode by activating
this menu option again.

CHAPTER 13. KOLAM: HOW TO..? 86

42. TOGGLE - Frame auto-advance during manual/visual tracking

– NOTE: Toggling frame auto-advance (or not) is applicable ONLY for the man-
ual/visual tracking mode - auto-advance is always enabled for object selec-
tion while in the automatic tracking mode.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘WAMI’ page of the dialog.

– Enable the ‘Auto Adv.’ check box. The result will be visually apparent when
an object primitive (a point, BBox or polygon) is drawn and confirmed (via
the ‘Enter’ key). Disabling the check box will cause the image frames to no
longer auto-advance once object primitives are drawn and confirmed.

43. TOGGLE - Display full lengths of all trajectories

– NOTE: In order to display the entire temporal extent of every loaded trajec-
tory, regardless of the current time step, an image sequence must already be
loaded, and at least one KW18 trajectory dataset must also be loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Editing’ page of the dialog.

– The ‘Display All’ button is a toggle - when pressed, it remains depressed un-
less pressed again.

– Pressing the ‘Display All’ button so that it’s depressed will result in ALL tra-
jectories being displayed for their entire temporal extents, regardless of the
current time step. There is a single difference between how trajectories are
visualized in this mode versus when they are not: the centroid correspond-
ing to the current time step is surrounded by a large circle. This circle also
provides a way to distinguish between trajectories of which the current time
step is a part versus those that either end before or begin after the current time
step: the aforementioned large circle will not be seen on any centroid along
the latter set of trajectories.

44. CHANGE - Trajectory Color and Thickness

– NOTE: In order to change the color and/or thickness of trajectories, an image
sequence must already be loaded, and at least one KW18 trajectory dataset
must also be loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Track Viz’ page of the dialog.

– Trajectory thickness is a SINGLE property applied to ALL trajectories. Thick-
ness can be altered by entering any non-zero, integer value in the text line
next to the ‘Thick’ label, which can be found under ‘Track Properties’. The

CHAPTER 13. KOLAM: HOW TO..? 87

display area updates immediately to reflect the newly set trajectory thickness
value.

– Trajectory color is a per-trajectory property. First, pick the ID of the trajectory
for which the color is to be altered in the ‘Obj. ID’ drop down. Next, change
the color of the current trajectory by picking a different color via the color
picker button, found under ‘Track Properties’.

45. CHANGE - Input selection primitive used for Tracking

– NOTE: In order to change the input selection primitive used for tracking, an
image sequence must already be loaded, and at least one trajectory dataset
must also be loaded. Furthermore, the tracker program you wish to use to
perform automatic tracking must support the input primitive you wish to
select.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘WAMI’ page of the dialog, and make sure the ‘Automatic’ radio
button is enabled (located on the top left portion of the page).

– The currently available choices for input selection primitive are ‘Point’, ‘BBox’
and ‘Polygon’, represented by radio buttons located on the right of the page.
Select the desired primitive type to set the input primitive type as needed.

– NOTE: The CSURF and LOFT trackers currently use bounding box(es) (op-
tion ‘BBox’) as their input selection primitive. This selection is within the
tracker programs themselves and is not within KOLAM’s control. In order to
use ‘Point’ or ‘Polygon’ input primitives for tracking, please contact Dr. Pala-
niappan for a appropriately configured tracker program.

46. CHANGE - Tracker type used for Tracking

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘WAMI’ page of the dialog.

– The currently available tracker types to choose from are ‘CSURF’ and ‘LOFT’.
Choose the one you desire by enabling the corresponding radio button.

– NOTE: If you wish to use a different tracker program, please contact the au-
thor for support.

47. CHANGE - The type of Tracking to be performed

– NOTE: KOLAM currently supports three tracking types: automatic, manual
and assisted. These types may be toggled between on the ‘WAMI’ page of the
Kolam-Tracker dialog. However, in order for such a choice to have effect, an
image sequence must already be loaded prior to setting the tracking type.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

CHAPTER 13. KOLAM: HOW TO..? 88

– The currently available tracking types to choose from are ‘Automatic’, ‘Man-
ual’ and ‘Assisted’. ‘Automatic’ is selected by default. You may switch between
the ‘Automatic’ type and the ‘Manual’ type of tracking by clicking on the re-
spective radio buttons.

– NOTE: ‘Automatic’ tracking requires correctly installed and configured tracker
programs that KOLAM can invoke

48. ADD - Point(s) to a trajectory

– NOTE: In order to ADD point(s) to a trajectory, an image sequence must
already be loaded, and at least one KW18 trajectory dataset must also be
loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Editing’ page of the dialog.

– Enable the ‘Select Track(s)’ checkbox, and select trajectories as desired. Now,
press the ‘Display All’ button to display all trajectory data. Following this,
enable the ‘Turn OFF Unselected Tracks’ checkbox, so that only selected tra-
jectories are still being displayed.

– Enable the ‘Add Point’ checkbox, and select the trajectory of interest from the
‘Selected Tracks’ drop down.

– Pan and zoom in on the trajectory of interest. Depending on where the new
centroid is to be added, enable the ‘Before Start’, or the ‘After End’, or the ‘In
Between’ radio button. Navigate to the appropriate time step in the image
sequence.

– In the cases of adding the new centroid either before the current beginning,
or after the current end of the trajectory, there are two methods for adding the
point: either at the immediately preceding or succeeding time step, OR sev-
eral time steps before or after. In the latter case, a line is drawn from the old
beginning/ending to the new beginning/ending, with additional points cor-
responding to the skipped time steps being placed at regular intervals along
this line.

– Click and add the new point. The selected trajectory is visually updated with
the new point added in. See Figure 10.1 for an example.

– If additional points were created and artificially placed due to skipped time
steps, these additional points can be moved to their correct locations in a
following step. See page 89.

– Exit the point(s) adding mode by unchecking the ‘Add Point(s)’ checkbox.

CHAPTER 13. KOLAM: HOW TO..? 89

49. DELETE - Point(s) from a trajectory

– NOTE: In order to DELETE point(s) from a trajectory, an image sequence
must already be loaded, and at least one KW18 trajectory dataset must also
be loaded. Furthermore, this description ONLY COVERS the cases of cen-
troid deletion from either the beginning or the end of a trajectory; deleting
any other centroid is covered under ‘SPLIT a trajectory in two’ (page 90).

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Editing’ page of the dialog.

– Enable the ‘Select Track(s)’ checkbox, and select trajectories as desired. Now,
press the ‘Display All’ button to display all trajectory data. Following this,
enable the ‘Turn OFF Unselected Tracks’ checkbox, so that only selected tra-
jectories are still being displayed.

– Enable by the ‘Delete Point(s)’ checkbox, and select the trajectory of interest
from the ‘Selected Tracks’ drop down.

– Pan and zoom in on the trajectory of interest. Depending on where the new
centroid is to be deleted from, enable the ‘Upto Start’, or the ‘Upto End’ radio
button.

– Navigate to the appropriate time step in the image sequence. This time step
can be either the starting point, several points after the starting point (both
in the case of ‘Upto Start’), or it can be the end point, or several points before
the end point (both in the case of ‘Upto End’).

– Click on the point to be deleted. In the cases where the point clicked is nei-
ther at the start or at the end, all points upto and including the starting (or
the ending) point are also deleted. The display is updated immediately.

– Exit the point(s) deleting mode by unchecking the ‘Delete Point(s)’ check-
box. See Figure 10.2 for an example of point deletion.

50. MOVE - A point on a trajectory

– NOTE: In order to MOVE point(s) on a trajectory, an image sequence must
already be loaded, and at least one KW18 trajectory dataset must also be
loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Editing’ page of the dialog.

– Enable the ‘Select Track(s)’ checkbox, and select one or more trajectories.

– Enable the ‘Other’ checkbox, followed by the ‘Move Point’ checkbox. Now,
select the trajectory of interest from the ‘Selected Tracks’ drop down.

– Pan and zoom in on the trajectory of interest, and the centroid to be moved.

CHAPTER 13. KOLAM: HOW TO..? 90

– Right-click on, or in very close proximity to, the centroid to be moved. Now
drag to the new location; the trajectory display updates immediately to re-
flect the changing position of the moved point.

– Exit the point moving mode by unchecking both the ‘Other’ and ‘Move Point’
checkboxes. See Figure 10.3 for an example.

51. JOIN - Two or more trajectories

– NOTE: In order to JOIN two or more trajectories, an image sequence must
already be loaded, and at least one KW18 trajectory dataset must also be
loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Editing’ page of the dialog.

– Enable the ‘Select Track(s)’ checkbox, and select one or more trajectories.

– Enable the ‘Connect two Tracks’ checkbox, and select the two trajectories of
interest from the ‘Join from Track’ and ‘To Track’ drop downs.

– NOTE: Care MUST be taken to verify the temporal extents of both trajectories
prior to performing a JOIN operation. If the two trajectories overlap tempo-
rally, temporally duplicate centroids will be deleted from the ending of the
trajectory that starts earlier in time. Depending on user choice, this can
either be the ‘Join From’ trajectory or the ‘Join To’ trajectory.

52. SPLIT - A trajectory in two

– NOTE: In order to SPLIT a trajectory in two, an image sequence must already
be loaded, and at least one KW18 trajectory dataset must also be loaded.

– If KOLAM’s Tracker dialog is not visible, open it: use the menu: Tools –>
Tracker. This opens the Kolam-Tracker dialog.

– Open the ‘Editing’ page of the dialog.

– Enable the ‘Select Track(s)’ checkbox, and select at least one trajectory. Now,
press the ‘Display All’ button to display all trajectory data. Following this,
enable the ‘Turn OFF Unselected Tracks’ checkbox, so that only selected tra-
jectories are still being displayed.

– Enable the ‘Delete Point’ checkbox, and select the trajectory of interest from
the ‘Selected Tracks’ drop down.

– Pan and zoom in on the trajectory of interest. Enable the ‘In Between’ radio
button.

– Navigate to the appropriate time step in the image sequence.

– Click on the point to be deleted. Deletion of the point causes the trajectory
to which the point belonged to be split into two. The portion of the trajectory
that comes later in time w.r.t the deleted point is constituted into a new tra-
jectory, with the first available trajectory ID. See Figure 10.4 for an example.

CHAPTER 13. KOLAM: HOW TO..? 91

53. USE - KOLAM’s Interactive Segmentation Relabeling Plugin

– Use the menu: Tools –> Vision –> Segmentation Relabeling. This brings up
the file loading interface for KOLAM’s Interactive Segmentation Relabeling
plugin.

– Interactive relabeling is covered in full detail in Chapter 12.

54. DISPLAY - KOLAM’s Shortcuts

– Use the menu: Help –> Kolam Shortcuts. This opens up a web page which
enumerates KOLAM’s shortcuts under the different, relevant sections.

55. DISPLAY - Information about KOLAM

– Use the menu: Help –> About Kolam.... This displays the page with details
about KOLAM, author information and executable build information.

C
H

A
P

T
E

R 14
HOTKEY LISTING

This chapter serves as a listing of KOLAM’s hotkeys, which are grouped into cat-
egories for user convenience. In order to use any given shortcut, the associated
dialog/window in KOLAM must be active (click on it with the left mouse button to
be sure).

Menu Bar:

File → Open Image Ctrl + O
File → Open Sequence Ctrl + N
Close Layer Ctrl + W

Layer → Toggle Tile Grid G
Layer → Layer Editor Ctrl + L
Layer → Layer Info Ctrl + I
Layer → Color Map Editor Ctrl + C

Window → Overview Ctrl + V
Window → Cache Glyph Ctrl + G

Tools → Kolam-Loop Ctrl + K
Tools → Kolam-Tracker Ctrl + T
Tools → Kolam-Screen Capture Ctrl + Shit + C
Tools → Kolam-Coordinate Position Ctrl + Shift + L

Help → Kolam Help Ctrl + H

Kolam-Loop (MUST have focus):

Toggle Play/Pause Space
Next Frame in Sequence →
Prev Frame in Sequence ←

92

CHAPTER 14. HOTKEY LISTING 93

Main Window (MUST have focus):

General

Pan Layer Left [Click-Drag] Left Mouse [Left]
Pan Layer Right [Click-Drag] Left Mouse [Right]
Pan Layer Up [Click-Drag] Left Mouse [Up]
Pan Layer Down [Click-Drag] Left Mouse [Down]

Zoom IN TO Layer [Scroll] Mouse Wheel [Forward]
Zoom OUT OF Layer [Scroll] Mouse Wheel [Backward]
Reset Layer Zoom & Position Space
Enhance Layer E

Quit KOLAM Q

Toggle Full screen F
Toggle Layer visibility V
View Layer 0 . . . 9 0 . . . 9

Display at High Quality Shift + L
Display for Best Interaction Shift + P
Display Balancing Both Shift + B

Toggle All events for Display Z
Toggle Compressed events for Display Z

Tracking Related

Re-initialize current Object ID for automatic tracking R

Trajectory Drawing Related

Toggle Trajectory visibility B
Toggle Trajectory Tail visibility D
Toggle Trajectory ID visibility Shift + D

Screen Capturing Related

Single Screen Capture C
Toggle Sequence Capture Shift + C

Animation Related

Click Rewind ON Shift
Click Rewind OFF Alt

Wall Networking Related

Enable Broadcast Mode Shit + M
Disable Broadcast Mode M
Enable Receiver Mode S

CHAPTER 14. HOTKEY LISTING 94

Segmentation Relabeling Related

Toggle All Label Borders (BLACK) A
Toggle Corrected Label Border (ORANGE) B

C
H

A
P

T
E

R 15
KNOWN PROBLEMS & WORKAROUNDS

The goal of this chapter is to summarize KOLAM’s current list of problems and lim-
itations, as well as to provide workarounds for several of them. Performing the
actions listed below will result in one or more of the following: diminished perfor-
mance, impaired display and program crashing. Following the specific workaround
will ensure the continued operation of KOLAM without the aforementioned prob-
lems. Further details are presented below.

1. Closing Image Sequences

KOLAM’s capability to close a loaded image sequence is impaired, as of version
199 of the software system. Attempting to close an image sequence via the File
Menu will clear the display, however; subsequent image or sequence loading will
cause the display to be corrupted with data from the previously loaded and closed
sequence. Continued operation of KOLAM is very likely to result in the program
crashing. This problem is restricted to sequences, closing of layers with individual
images works fine.

Workaround

Close and restart KOLAM when a new image sequence needs to be loaded, and the
old one needing to be cleared out. To avoid the effort involved in navigating multi-
ple OS windows, and to prevent breaking the flow of presentation using KOLAM, we
recommend that multiple instances of KOLAM be initiated at the same time: thus,
when one needs to be closed, a fresh unused instance is immediately available for
use.

2. Non-Tiled Imagery

KOLAM is highly optimized for the interactive display of tiled imagery. However,
similar efficient handling of non-tiled imagery is an ongoing task. What this effec-
tively means, is that KOLAM’s interactive display performance degrades quickly as

95

CHAPTER 15. KNOWN PROBLEMS & WORKAROUNDS 96

the dimensions of the non-tiled imagery increases. For example, consider an image
sequence comprised of images each of dimensions 3000 x 3000 or above. Attempt-
ing to animate such a sequence at a frame rate greater than 5 frames per second
will cause the display area to ‘blank out’, as the system cannot efficiently process
the display requirements at present.

Tiled or Non-Tiled?

One means of determining whether the loaded data is tiled is to press the ‘G’ key
while KOLAM’s main display area has focus. A tiled image will have a grid overlaid
on it, while a non-tiled image will have a single box enclosing the image and no grid.
Another approach involves opening the ‘Info’ tab of the Layer Editor (Figure 4.2,
page 27). A tiled image will have a ‘Total tiles’ value greater than 1, while a non-
tiled image will not.

Tiling a Non-Tiled Sequence

The ImageMagick software suite (http://www.imagemagick.org) is free software
distributed under the Apache 2.0 license that may be utilized to generate the multi-
resolution tiled versions of non-tiled images. We recommend tiling any image se-
quence whose individual image resolution exceeds 1600 x 1200. The ImageMagick
suite may be downloaded at:

http://www.imagemagick.org/script/binary-releases.php.

Tiling scripts for Windows, Linux distros and Mac OSX are provided below. This
assumes that the user has correctly installed ImageMagick and all system paths
have been set without any issues. If you are working with a Linux (or any oher OS)
server and do not have root access, please ask your system administrator to in-
stall ImageMagick and to perform all the necessary setup so that you may access
its commands from your account. Our example assumes that the output image
names are the same as those of the input, with ‘out_’ prefixed to the name, use the
TIFF (.tiff) format (mandatory, do not change output format), and that input im-
ages are in the jpeg (.jpg) format. For alternative input formats such as PNG, BMP
etc. please use .png, .bmp etc. in the command strings below. To determine which
image formats are supported by ImageMagick on your system, execute the follow-
ing command in a command prompt or terminal:

identify -list format

For Windows OSes, open a DOS command prompt and navigate to the directory
containing the images to be tiled. Execute the following command:

FOR %a in (*.jpg) DO convert %a -define tiff:tile-geometry=256x256 ptif:out_%a.tiff

For Linux distros, open a terminal and navigate to the directory containing the im-
ages to be tiled. Create a directory ’Tiled’ in here for the tiled images to be gener-
ated in. Execute the following commands (assumes the ‘tcsh’ shell. For other shells
please use the appropriate commands):

CHAPTER 15. KNOWN PROBLEMS & WORKAROUNDS 97

foreach img (*.jpg)
convert $img -define tiff:tile-geometry=256x256 ptif:Tiled/out_$img.tiff
end

Workaround

If the non-tiled image sequence cannot be tiled as given above, animate such non-
tiled sequences at a maximum speed of 2 frames per second. Should the screen
turn blank, pause the animation and use the mouse to move the blank display area
around. This will refresh and restore the image display.

3. Sequence with different sized images

Loading a sequence containing images that do not have identical widths and heights
results in different images being displayed at different positions on the display, that
is, the images will not be centered at a common point. Further operation of KOLAM
with such a sequence could potentially result in a program crash.

Workaround

Ensure that all images in a sequence have identical width and height dimensions.

4. Trajectory display hiccup on Linux and Mac OSX

Upon loading a trajectory dataset, the trajectories are not visible when animating
the sequence under Linux and Mac OSX. Trajectory visibility is internally handled
by a boolean state variable the handling of which by Linux and Mac OSX differs
from Windows OSes. An OS-independent alternative to the current implementa-
tion is being explored.

Workaround

On the ‘Track Viz’ page of the Kolam-Tracker dialog (Figure 8.3, page 47), check-
ing the ‘Stabilize’ checkbox twice will result in the trajectories being displayed. No
further problems arise as a result of this anomalous behavior and KOLAM will con-
tinue to operate normally.

5. Centering on objects with trajectories

When the centering option (Figure 8.3, page 47) is enabled for an object with a
trajectory during image sequence animation, KOLAM presents incorrect display
behavior. Prolonged use in this state will result in a program crash, especially on
the Linux and Mac OSX OSes.

Workaround

A solution is being formulated to fix the problem. In the interim, refrain from using
the Centering option.

CHAPTER 15. KNOWN PROBLEMS & WORKAROUNDS 98

6. KW-18 Trajectory files with missing frame information

When loading and displaying trajectories, KOLAM cannot correctly handle broken
trajectories, for instance, those generated when the tracked object is occluded for
several frames. KOLAM displays a single contiguous trajectory, falling behind in
time by 1 step for each missing time step. KOLAM operates normally however, and
does not crash.

Workaround

Until KOLAM is updated with a fix, refrain from displaying trajectories that have
missing time steps. If erroneous display behavior is observed, the problematic tra-
jectory file may be turned off and unloaded from memory safely. KOLAM will con-
tinue to operate normally.

7. Problem with toggling Layer visibility in Layer Editor

Multiple layers loaded in KOLAM are listed to the left in the Layer Editor (Figure 4.1,
page 24), and each item in this list is provided with a checkbox to toggle its visibility,
alongwith an eye icon to indicate ‘visible’ or ‘hidden’ status. If multiple layers are
loaded, clicking on the check boxes directly causes the incorrect layer to be toggled
ON or OFF. This behavior does not cause KOLAM to crash.

Workaround

Click on the layer name first, thereby making it active, before clicking on the check-
box. This will cause the correct layer’s visibility to be toggled as desired.

BIBLIOGRAPHY

[1] A. Haridas, R. Pelapur, J. Fraser, F. Bunyak, and K. Palaniappan, “Visualization
of automated and manual trajectories in wide-area motion imagery,” in 15th
Int. Conf. Information Visualization, 2011, pp. 288–293.

[2] J. Fraser, A. Haridas, G. Seetharaman, R. Rao, and K. Palaniappan, “KOLAM: A
cross-platform architecture for scalable visualization and tracking in wide-area
motion imagery,” in Proc. SPIE Conf. Geospatial InfoFusion III, 2013, vol. 8747,
p. 87470N.

[3] K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jaeger, K. Ganguli, A. Haridas,
J. Fraser, R. Rao, and G. Seetharaman, “Efficient feature extraction and likeli-
hood fusion for vehicle tracking in low frame rate airborne video,” in 13th Int.
Conf. Information Fusion, 2010.

[4] K. Palaniappan, A. Hasler, J. Fraser, and M. Manyin, “Network-based visualiza-
tion using the distributed image spreadsheet (diss),” in 17th Int. AMS Conf. on
Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanog-
raphy and Hydrology, 2001, pp. 399–403.

[5] K. Palaniappan and J. Fraser, “Multiresolution tiling for interactive viewing of
large datasets,” in 17th Int. AMS Conf. Interactive Information and Processing
Systems (IIPS) for Meteorology, Oceanography and Hydrology, 2001, pp. 338–
342.

[6] A. Haridas, F. Bunyak, and K. Palaniappan, “Interactive segmentation relabeling
for classification of whole-slide histopathology imagery,” in IEEE Int. Sympo-
sium on Computer-Based Medical Systems (CBMS), Jun 2015, pp. 84–87.

[7] F. Bunyak, A. Hafiane, Z. Al-Milagi, I. Ersoy, A. Haridas, and K. Palaniappan, “A
segmentation-based multi-scale framework for the classification of epithelial
and stromal tissues in h&e images,” in Proc. IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 2015, pp. 450–453.

99

VITA

Anoop Haridas was born on October 28, 1979 in Sharjah, U.A.E.. He graduated high

school from Indian High School, R.A.K, U.A.E in 1997, and obtained his undergraduate

Bachelor of Technology (B.Tech) degree from the T.K.M. College of Engineering, Univer-

sity of Kerala in 2001. Anoop joined the Masters (M.S.) program in Computer Science at

the Department of Electrical Engineering and Computer Science, University of Missouri in

2003, following which he was accepted (and transferred) into the PhD program at the same

Department in 2005. Anoop began his initial PhD research with his program advisor Dr.

Kannappan Palaniappan in 2005, and switched the topic and focus of his research in 2009.

After a lengthy period as a doctoral student, Anoop graduated with his PhD degree from

the Department of Computer Science in the Spring of 2018.

Anoop is actively seeking research oriented jobs in industry after his graduation in the

field of visual analytics. Anoop was married in 2015 and is currently living with his wife

in Toronto, Canada.

332

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	ABSTRACT
	Introduction
	Summary of Novel Contributions
	Need for Visual Analytics
	Visual Analytics
	Visual Analytics: Building blocks and Challenges
	The Visual Analytics Process
	Motivation For Interactive Visual Analytics
	Extreme-Scale Visual Analytics
	Introduction to KOLAM
	Related Work and Success Stories
	Visualization
	Visualization and KDD Methods

	Novel Contributions in KOLAM
	Credits

	KOLAM 3.0
	Synopsis of KOLAM 2.0
	Motivation for KOLAM 3.0
	KOLAM Multithreaded Synchronization Architecture
	Multithreaded Cache Access and Management
	Thread Synchronization and Load Balancing
	Spatio-Temporal Data Characteristics
	 Spatial-Temporal Dual-Caching Tile Organization

	Symbiosis between Visualization and KDD Technologies
	Data Handling Characteristics
	Required Features of Visual Analytics and KDD Integration

	Changes to the KOLAM User Interface
	Design choices for UI components
	Changes to existing UI components
	New UI Components
	Evolution of Design

	Porting, Version Control and Multi-platform Support
	Scope of Research on KOLAM

	CASE STUDY 1: Object Tracking
	Motivation
	Introduction
	KOLAM Interface for Visualization and Tracking
	Visualization of Multiple Layers of Analytic Information
	Visualizing Motion Imagery
	Tracking and Trajectory Visualization Subsystems

	Tracking types in KOLAM 3.0
	Track file formats supported by KOLAM
	Automatic Tracking
	Manual Tracking
	Assisted Tracking

	Conclusions

	CASE STUDY 2: Trajectory Visualization and Editing
	Introduction
	Trajectory Visualization in KOLAM
	Current Trajectory Visualization Features
	Metadata Encoding for Trajectories
	Challenges in Trajectory Representation
	Trajectory Drawing in KOLAM 3.0

	Interactive Trajectory Editing
	Connecting Automatic Tracking and User Intervention
	Factors Governing Trajectory Editing in KOLAM 3.0
	Trajectory Editing Operations

	Conclusions and Future Work

	CASE STUDY 3: Interactive Segmentation Relabeling for Histopathology Applications
	Motivation
	Introduction
	Related Work
	KOLAM for Histopathology VisAnalysis
	Big Data Out-of-Core Visualization
	Support for Multiple WSIs and Metadata Types
	WSI Pre-processing
	Interactive Region-of-Interest (ROI) Selection
	Ground-Truth Creation and Relabeling

	Conclusion

	Extension to Tiled Wall Displays
	Motivation
	Related Work
	Challenges and Solutions
	Example Setup Scenario
	Current System Limitations

	Evaluation of KOLAM
	Introduction
	Evolution of KOLAM based on Iterative Expert Feedback
	Usability Testing
	Surveys
	Evaluation Methodology
	Usability Metrics in the ISO/IEC

	Experimental Procedure
	Goals
	Software
	Data
	Tasks
	Conducting the Experiment

	Experimental Outcome
	Raw Data
	Usability Metrics
	Results
	Findings

	Conclusions

	Conclusions and Future Work
	Summary of Conclusions
	Future Work

	Manual for KOLAM
	Location of Manual for KOLAM

	BIBLIOGRAPHY
	VITA

