
3D CITY SCALE RECONSTRUCTION USING

WIDE AREA MOTION IMAGERY

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

RAPHAEL VIGUIER

Dr. Kannappan Palaniappan, Thesis Supervisor

JULY 2018

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

3D CITY SCALE RECONSTRUCTION USING WIDE AREA MOTION IMAGERY

presented by Raphael Viguier,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Kannappan Palaniappan

Dr. Je↵rey Uhlmann

Dr. Filiz Bunyak Ersoy

Dr. David R. Larsen

To my parents and my brothers, none of this would have been possible without

your unconditional love and support, from my first day on earth to these last years

spent so far away from you.

To Heather, I am so thankful for having you by my side during the past 5 years

and I could not imagine going through these without you.

To Henry, my dedicated ”pair programming” partner.

ACKNOWLEDGMENTS

I want to express my gratitude to my advisor Dr. Kannappan Palaniappan for his

advice, and support during all these years first as an intern and then as a graduate

student. I also owe to him the opportunity I had to work as a research intern at IBM.

I learnt a lot as his students and feel particularly well prepared for my next endeavors

thanks to him. I also want to thank Dr. Guna Seetharaman, and Dr. Steve Suddarth

who made it possible for me to work on such an interesting research topic.

I would like to thank Dr. Uhlmann and Dr. Larsen for doing me the honor of being

members of my doctoral committee and for the invaluable insights they provided to

improve this research work. I want to thank Dr Filiz Bunyak for being a member of

my committee too, but also for all the particular help and support she provided while

I worked with her at the CIVA lab.

I would like to thank everyone at the CIVA lab: Rengarajan, Hadi, Surya,

Mahdieh, Sema, Anoop, Rahul, Josh, Yao, Ke, Rumana, and Rui. It was great

working with all of you and you made this journey so much nicer.

I would also like to thank all my collaborators at IBM, in particular Sharathandra

Pankanti, Chung Ching Lin and Karthikeyan Ramamurthy. Working at IBM was an

invaluable experience, during which I learned a lot from all of you.

I also want to thank My CEO and CTO, Tara Pham and Ilan Goodman as well

as all the Numina team for their support towards finishing my degree.

Finally , I also want to particularly thank Jodie Lenser for her advice and the

countless times she helped me during all these years as a graduate student.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xiii

CHAPTER .

1 Introduction . 1

1.1 3D Reconstruction in Wide Area Motion Imagery 5

1.1.1 From 2D Registration to 3D Reconstruction 6

1.1.2 Challenges . 6

1.1.3 Contribution . 10

1.2 Datasets Overview . 12

1.2.1 Four Hills . 13

1.2.2 Albuquerque . 16

1.2.3 Berkeley . 18

1.2.4 Los Angeles . 20

1.2.5 Columbia . 22

1.3 Dataset Preprocessing . 24

1.3.1 Using Sensor Metadata . 24

iii

1.4 Thesis Outline . 30

1.5 Notations . 31

2 Fundamentals of 3D Computer Vision 32

2.1 Pinhole Camera Model . 32

2.1.1 The Intrinsic Matrix K . 33

2.1.2 The Rotation Matrix R . 36

2.1.3 The Translation Vector t . 37

2.1.4 Projection Matrix . 37

2.1.5 Bundle Adjustment Formulation 39

2.2 Camera Calibration . 39

2.3 Epipolar Geometry and Image Transformation 40

2.3.1 Homography . 40

2.3.2 Epipolar Geometry . 41

2.3.3 Fundamental and Essential Matrices 42

2.3.4 4 Points and 8 Points Algorithms 43

2.4 Data Representation . 43

2.4.1 Depthmap . 43

2.4.2 Voxel Grid . 44

2.4.3 Point Cloud and Mesh . 46

2.5 Data Visualization . 48

3 Related Work . 51

3.1 Bundle Adjustment . 51

3.2 Stereo 3D Reconstruction . 52

3.3 Patch Based Methods . 53

3.4 Volumetric Methods . 54
iv

3.5 Surface Fitting Method . 56

3.6 Other Notable Work . 56

3.6.1 Single View 3D Reconstruction 56

3.6.2 Deep Neural Network . 57

3.7 Site Modeling . 58

3.8 Thesis Contribution . 58

4 Voting Pipeline . 60

4.1 Introduction . 60

4.2 Pipeline Description . 61

4.2.1 Voting . 63

4.3 Post-Processing . 65

4.3.1 Vote Collapsing . 65

4.3.2 Gradient Magnitude . 66

4.3.3 Horizontal Smoothing . 67

4.3.4 Histograms Computing . 67

4.3.5 Combination of Information for Automatic Thresholding . . . 67

4.3.6 Manual Thresholding . 70

4.4 Point Cloud Coloring . 71

4.4.1 Bresenham Based Coloring Algorithm 72

4.4.2 Z-Bu↵er Based Coloring Algorithm 72

4.4.3 Complexity Analysis . 74

4.5 Experimental Results . 75

4.5.1 Four Hills . 75

4.5.2 Albuquerque . 75

4.5.3 Berkeley . 76
v

4.5.4 Los Angeles . 77

4.5.5 Columbia . 77

4.5.6 Scaling Summary . 78

4.6 Other Experiments . 79

4.6.1 Temporal Incremental Voting and Removal 79

4.6.2 Occlusion and Appearance Consistency Filtering 82

4.6.3 Thresholding by Vote Accumulation 84

4.6.4 Algorithms Memory Requirement 85

4.7 Discussion: Shortcoming and Limitations 86

5 Plane Sweep with Voting Pipeline 88

5.1 Introduction . 88

5.2 Pipeline Overview . 88

5.2.1 Plane Sweeping . 90

5.2.2 Depth Based Voting . 94

5.2.3 Algorithms Memory Requirement 94

5.2.4 Point Cloud Extraction . 95

5.2.5 Depth Voting and Thresholding 95

6 Benchmarking and Evaluation . 101

6.1 Evaluation of Accuracy and Completeness of the 3D Structure 102

6.2 Evaluation of the Photo Consistency 102

6.3 Qualitative Comparison . 103

6.3.1 Evaluation using cloud compare 103

7 Applications . 106

7.1 Introduction . 106

7.2 Altitude Masks . 106
vi

7.2.1 Synthetic Images . 109

7.2.2 Hazard Map . 109

7.3 Ortho-rectified Maps . 110

8 Conclusion . 113

BIBLIOGRAPHY . 116

VITA . 127

vii

LIST OF TABLES

1.1 Four Hills summary . 14

1.2 Albuquerque summary . 16

1.3 Berkeley summary . 18

1.4 Los Angeles summary . 20

1.5 Columbia summary . 22

4.1 Summary of Dataset resolution and output point cloud sizes 78

viii

LIST OF FIGURES

1.1 General principle of 3D Reconstruction 1

1.2 Example of 3D reconstruction in medical imaging 2

1.3 Example of WAMI data . 7

1.4 An illustraton of parallax in registered images 8

1.5 Illustration of the combination of camera pose error estimate 9

1.6 An example of 3D optical illusion . 10

1.7 An example illustrating scene uncertainty 11

1.8 An overview of MU3D pipeline . 12

1.9 Illustration of WAMI data acquistion conditions 13

1.10 Example of frames from Four Hills 15

1.11 Example of frames from Albuquerque 17

1.12 Example of frames from Berkeley . 19

1.13 Example of frames from Los Angeles 21

1.14 Example of frames from Columbia . 23

1.15 Lamppost manually tracked in Four Hills dataset 25

1.16 Ground projection calculation . 25

1.17 Ground Projection Illustration . 26

1.18 Visualization of epipolar lines on Four Hills 26

1.19 Top view projection of lamppost rays 27

1.20 Generation of a synthetic path . 28

ix

1.21 Synthetic data experiment results . 29

2.1 The Pinhole camera model . 33

2.2 Camera aspect ratio . 34

2.3 Example of camera distorsions . 36

2.4 World and camera system of coordinates 38

2.5 A checkboard used for camera calibration 40

2.6 Illustration of stiching two images using Homography 41

2.7 Epipolar geometry . 42

2.8 An illustration of depthmaps . 44

2.9 Viisualization of a voxel grid on a real dataset 45

2.10 Illustration of rasterization . 46

2.11 Illustration of octree . 46

2.12 Illustration of Delauney triangulation in Meshlab 47

2.13 A visualization the Hough transform space for a line 49

2.14 Standford bunny visualized in meshlab 50

3.1 Distributed bundle adjustment illustration 52

3.2 Local plane sweep result . 54

3.3 PMVS result . 55

3.4 Crispell et Al novel view generation result 56

3.5 SSD applied to MU3D Los Angeles point cloud 57

3.6 An example of output from PlaneNet 58

3.7 Screenshot of Empire State Building and its surroundings in Google map 59

4.1 Block diagram of the voting pipeline 62

4.2 Block diagram focusing on dense reconstruction 62

4.3 Illustration of the voting principle . 63

4.4 Example of rays not well separated 64
x

4.5 Example of well separated rays . 65

4.6 Comparison with and without vote collapsing 66

4.7 Histograms of votes and gradient magnitude for Albuquerque 68

4.8 Example of sigmoid . 69

4.9 Example of top views used for thresholding 71

4.10 Relationship between depth gradient and surface normal 73

4.11 Screenshots of the vizualized output for Four Hills 75

4.12 Screenshots of the vizualized output for Albuquerque 76

4.13 Screenshots of the vizualized output for Berkeley 76

4.14 Screenshots of the vizualized output for Los Angeles 77

4.15 Screenshots of the vizualized output for Columbia 78

4.16 Example of incremental voting and removal 81

4.17 Probability function along a ray . 83

4.18 Occlusion and Apperance consistency filtering result 84

4.19 Example of result for vote accumulation thresholding 85

5.1 Block Diagram of Plane Sweeping Pipeline 89

5.2 Plane sweeping principle . 89

5.3 Illustration of plane sweeping implementation 90

5.4 Image warping transformation . 91

5.5 Image scaling transformation . 92

5.6 Plane sweep image di↵erence . 92

5.7 Example of output depthmaps from Albuquerque 93

5.8 Illustration of depthmap fusion . 94

5.9 Albuquerque Vote and visibility count histograms 96

5.10 Top views of vote space and visibility count for Albuquerque. 97

5.11 Screenshot of final point cloud for Albuquerque 98

5.12 Screenshot of final point cloud for Columbia MO 99
xi

5.13 Multiple iteration with prior . 100

6.1 Learning based methods results . 103

6.2 Point cloud evaluation in Cloud Compare 105

7.1 Superimposed altitude mask on its corresponding image for Albuquerque

dataset. 107

7.2 Altitude masks illustration . 108

7.3 Example of synthetic images generated with Los Angeles point cloud 110

7.4 Sampling of the superior hemisphere using recursive divisions 110

7.5 Hazard map for Los Angeles, hemisphere sampled with 105 points . . 111

7.6 Illustration of 3D orthorectified image for Albuquerque 112

xii

ABSTRACT

3D reconstruction is one of the most challenging but also most necessary part of

computer vision. It is generally applied everywhere, from remote sensing to medical

imaging and multimedia. Wide Area Motion Imagery is a field that has gained trac-

tion over the recent years. It consists in using an airborne large field of view sensor

to cover a typically over a square kilometer area for each captured image. This is

particularly valuable data for analysis but the amount of information is overwhelming

for any human analyst. Algorithms to e�ciently and automatically extract informa-

tion are therefore needed and 3D reconstruction plays a critical part in it, along with

detection and tracking.

This dissertation work presents novel reconstruction algorithms to compute a 3D

probabilistic space, a set of experiments to e�ciently extract photo realistic 3D point

clouds and a range of transformations for possible applications of the generated 3D

data to filtering, data compression and mapping. The algorithms have been success-

fully tested on our own datasets provided by Transparent Sky and this thesis work

also proposes methods to evaluate accuracy, completeness and photo-consistency. The

generated data has been successfully used to improve detection and tracking per-

formances, and allows data compression and extrapolation by generating synthetic

images from new point of view, and data augmentation with the inferred occlusion

areas.

xiii

Chapter 1

Introduction

Three-dimensional (3D) reconstruction is the art of estimating a model of the shape

and the appearance of a real object through image processing. It is one of the promi-

nent area of computer vision, finding many applications in various domains, such as

remote sensing [1], medical imaging [2, 3] (figure 1.2), multimedia [4]. There are many

di↵erent approaches depending on the problem that is being solved and the means at

disposal but it is however always possible to distinguish two principal layers between

Figure 1.1: From physical world to digitalized 3D model.

1

the physical world and the data being produced: the sensor layer which determines

what type of data is then used by the image processing layer (see figure 1.1).

Several critical tasks can be decided to be handled in either one of these two layers.

For example, depth estimation can be obtained directly from a depth sensor at the

hardware layer, or inferred from the images using image processing software. On the

sensor layer, a distinction is often made between active methods that interact with

the physical world by analyzing the reflection of a signal they directly emitted and

passive methods whose sensor only measures the sun light reflected by the object.

As the most prominent active method, LIDAR (Light Detection and Ranging, or

contraction of Light and RADAR) consists in measuring distance of an object, by

reflecting a laser on its surface, and measuring the di↵erence in wavelengths and

return time, in order to infer the distance. It is possible to achieve high resolution

depth imaging with this method. LIDAR data when available are often a preferred

way of acquisition that can be used to benchmark other reconstruction method.

Figure 1.2: An example of result of Marching Cube applied to medical imaging [3]

Expectedly, the design of the software layer is heavily dependent on the upstream

sensor layer. It can contain various subtasks depending again on the sensor layer but

also on the final goal. It is however possible to distinguish three main categories that

we will name as follows:
2

• camera pose estimate

• shape or structure modeling

• novel view generation

Depending on the application, one or several of these tasks are necessary. The

need for camera pose estimation can be avoided if the data acquisition is done in

a controlled environment with fixed calibrated sensors. However, outside of these

restrained conditions, it is often a preliminary step the rest of any reconstruction

pipeline would heavily depend on. Most of multi view reconstruction are done from a

set of images captured with a same sensor from di↵erent positions. An accurate esti-

mate of the camera pose becomes then absolutely necessary and localization sensors

such as GPS or Inertial Measurement Unit (IMU) are either cost prohibitive or often

fail to provide this information with the required accuracy [5, 6] . Computer vision

technics are therefore needed in order to refine these estimate. Optimizing camera

pose estimate from image extracted features is often referred to as Structure from

Motion and, or, Bundle adjustment.

Next, at the core of the art is shape or structure modeling. It can mean resolving

the spatial state of the scene by being able to tell which part of the space is occupied

by an object and which part is empty, or it can mean being able to accurately assign

a three dimensional localization to each pixels on a 2D image from the scene. Under

ideal conditions, (control environment, depth sensor), this problem is rather well

understood and it is already possible to achieve highly accurate 3D rendering of

objects that can then be used to benchmark other methods. It becomes a lot more

challenging without depth sensor using only RGB images, from a single camera with

complex motion. It is arguable that the 3D information is retrievable uniquely from

RGB images in most cases, even if that requires heavy manual intervention, but this

is most certainly more challenging than with the use of an active sensor. Active

3

sensors being less a↵ordable, there is therefore an interest into solving the problem

of 3D recontruction from RGB images.

In general shape modeling is a lot more challenging if the data comes from a

passive sensor, and the choice of active methods is motivated by a will to achieve the

best accuracy on that aspect.

Finally novel view generation consists in predicting a photorealistic rendering of a

scene from a point of view where no image was taken. In addition to the almost un-

avoidable shape estimation, appearance modeling is needed. LIDAR although highly

accurate for structure modeling is not su�cient in that case and RGB imaging is

needed. A lot of challenges can arise due to illumination, reflections, shadows, changes

in a living scenery.

As previously stated, we can distinguish di↵erent type of sensors, mainly separated

in two categories: depth sensors and light intensity sensors. It is also possible to try to

combine both type of sensors. One of the main challenges to tackle is the registration

between the two type of data: It is indeed di�cult to establish correspondances

between features from depth images and features from RGB images, as the descriptors

that are being computed in general cannot be expected to be similar. [7, 8]

Finally, the design of the whole reconstruction pipeline is often guided by the type

of data we are trying to build a 3D model of. As Furukawa et al[9] stated it, we can

distinguish three categories:

• Objects: In the simplest case, a single object is being reconstructed. This allows

a variety of approaches based on segmentation.

• Scenes: A scene is composed of several objects making the segmentation more

di�cult.

• Crowded scenes: A complex scene with the addition of moving distractors.

Structure from motion techniques cannot estimate with precision the position

4

of an object that would have moved between the time of acquisition of the two

images. Image segmentation is unreliable.

From this categorization we can picture a wide range of scenarii, from an ideal

situation when we are trying to reconstruct a single object in an ideal controlled envi-

ronment, with fixed calibrated camera and or depth sensors or both, perfectly known

and refined sensor pose estimate, and simplified background facilitating the segmen-

tation of the targeted object in the images, to the most challenging one, when the

sensor is constantly moving at high velocity, and the scene is complex and constantly

changing. 3D reconstruction in Wide Area Motion Imagery from RGB images, that

we will present in the next section, falls at the most challenging extreme of that

spectrum.

1.1 3D Reconstruction in Wide Area Motion Im-
agery

This thesis works focuses on 3D reconstruction in Wide Area Motion Imagery also

simply referred to as WAMI. It is a type of imagery taken from airborne camera,

either an helicopter, plane, or drone, from high altitude, covering an area typically

at least 1 square kilometers large (see figure 1.3 as example). WAMI based Remote

sensing receives a lot of interest. It uses a camera with a large field of view, or

sometimes an array of cameras, and o↵ers the possibility to detect and track a lot of

urban activity simultaneously with a single sensor unit. It can be used to enhance

data from full motion video sensors. This saves man power by allowing each oper-

ator to cover more area. The images resolution is usually over a million pixels, and

vehicles are therefore identifiable at this level of detail. This opens the door to e�-

cient surveillance, tra�c monitoring, mapping and change detection for example for

disaster response after hurricanes and tornadoes or insurance assessment. However,
5

the amount of information to process is overwhelming for a human analyst. This mo-

tivates the development of algorithms to help them in that task, more particularly,

vehicle detection and tracking and possibly at higher level event detection [10, 11, 12].

Image stabilization is a often a critical part of any of these algorithms but the rapid

change of position and angle of view between frames makes this exercise particularly

di�cult. It is however a necessary task that can be made more accurate with the

help of a 3D model. 3D data also allows to predict occlusion and rule out spurious

matching.

1.1.1 From 2D Registration to 3D Reconstruction

2D registration computes an a�ne homography between consecutive images and or

between each image and a reference map. The idea is to collect a set of images from

an airborne camera and to build a mosaic. Being able to register each pixel from

each image to a common coordinate frame is a critical part of tracking and change

detection. If this is theoritically possible, 2D approache only gives decent results in

very specific and restrained conditions. The complexity of an urban scene, or the

variation of elevation are factors that make 2D registration often coming short or

even unusable. This motivates the development of more complex algorithm using 3D

modelization. (see figure 1.4)

1.1.2 Challenges

3D reconstruction in WAMI comes with many challenges of di↵erent nature [13].

Some are related to precision of the estimate of physical parameters modeling the

camera position and intrinsic properties, and some are inherent to the approach that

consists in trying to match the appearance of an object from di↵erent points of view.

6

Figure 1.3: An example of WAMI data: an image of downtown Columbia MO, at the
edge of the campus. A Mizzou landmark, the columns near Jesse Hall can be seen on
the botton corner.

precision requirement

The first challenging aspect coming to mind in remote sensing is the level of precision

needed while estimating a wide range of parameters. In a typical set up, we are trying

to localize a specific point in space with an error that reasonably should not exceed 1

meter, using information from a sensor located several thousands of meters away. At

this distance a deviation of more than a thousand of a radian between the real light

ray and the computed one would be su�cient to exceed that error bound. In fact,

several sources of error are combining:

• error in positioning of camera center

• error in orientation of the camera

• error in localization on the image (due to razterization or just unperfect auto-

matic detection)

Figure 1.5 illustrates how the di↵erent camera pose estimate errors combine.
7

Figure 1.4: Example of motion parallax, side by side comparison of two di↵erent
orthorectified views from Albuquerque Dataset, showing an obvious change of orien-
tation of the tall buildings projections. .

It is actually impossible to get the required level of precision only with sensor

data like GPS or IMU, for several reasons. The intrinsic precision of the sensor

already gives little margin of error, since most GPS system precision are not better

than a meter. But to make matter worse, there is a particularly di�cult chalenge in

synchronizing all the sensor data: image acquisition, position and angle reading that

are expectedly taken from three independant sources [5].

As a result, Bundle Adjustment is an absolute necessity without which no accu-

rate reconstruction is possible, and is integrated in most of pipelines attempting to

reconstruct urban scenery [14, 15, 16].

As initially stated by Bhotika et al [17, 18] and more specifally illustrated in the

context of WAMI data by Crispell[19], the sources of di�culty in 3D reconstruction

can be separated into two general classes:

• scene ambiguity

• scene uncertainty

8

Figure 1.5: The camera position is known with a certain radius, and the ray orien-
tation within a certain range of deviation. These two errors combine when trying to
estimate the position of the ray intersection.

scene ambiguity

Scene ambiguity refers to the fact that several di↵erent 3D reconstruction can be

photoconsistent. It means that the information contained in the imagery is not initself

su�cient to retrieve the true geometry of the scenery and that the use of a prior or

additional knowledge is needed to make a decision between di↵erent photoconsistent

hypothesis. This is certainly even the case for the human brain, and this how we are

able to create optical illusion. As our brain is making all sort of assumptions from

context, lights, shadows, shapes. Ultimately 3D reconstruction from visible spectrum

info, based only on photo consistency, is an ill-posed problem as even the photo hull

is photo consistent.

scene uncertainty

Scene uncertainty refers to the fact that even a perfect reconstruction cannot be

expected to maintain photo consistency due to unpredictable scenes changes such as

moving vehicles, illumination and reflection variations. This problem is handled by
9

Figure 1.6: An illustration of 3D optical illusion (CopyRight: IllusionPoint.com [20]).
Our Brain is extremely proficient at perceiving depth but is using assumptions that
are not necessarily true and can therefore be tricked into seeing volume where there
is none.

relaxing the photoconsistency constraint and working on quantifying the variance of

the pixels intensity values. The lambertian assumption considers that the brightness

of a surface is isotropic, and this would imply the same brightness in everyview. This

is obviously never really the case, and a complex scene like a urban area makes the

violation of this assumption particularly likely.

1.1.3 Contribution

This thesis focused on 3D reconstruction in Wide Area Motion Imagery (referred to

as WAMI in the rest of this thesis). It is mostly aimed for surveillance but could find

application in urban planning too for example. The algorithms proposed are only

using RGB images and localization metadata. The contributions of this dissertation

work can be listed as follows:

• Methods and experiments for evaluation of metadata precision

• Generation of synthetic data with simulated sensor noise for test and evaluation

10

Figure 1.7: Highly reflective surfaces are not lambertian as their appearance dramat-
ically change depending on the angle of view. Here is an example where the reflection
of the swimming pool translates from one edge of the building facade to the other as
the camera moves.

purpose

• Implementation of voting module and plane sweeping module

• Design and implementation of post processing module

• Design and implementation of point cloud coloring algorithms

We also present di↵erent possible use of the generated data, such as filtering, coverage

summarization and data compression.

We tested our pipelines on our own dataset, supplied by Transparent Sky inc and

this thesis presents the results. The novelty of this dissertation work resides in the

presented possible combinations of voting, post processing, plane sweeping, depthmap

fusion, and coloring modules, applied to these specific aerial dataset.

11

Figure 1.8: Block diagram of our proposed pipeline..

1.2 Datasets Overview

We experimented on data provided by Transparent Sky [71], a company based in New

Mexico, who developped a camera system called Red river.

In addition to high resolution images, synchronized metadata are also available,

giving for each image an estimate of the camera position and orientation, as well as

the position of the object it is pointing at.

We generated point cloud for datasets:

• Four Hills

• Albuquerque

• Berkeley

• Los Angeles

• Columbia Missouri
12

Figure 1.9: High resolution images (6600x4400 Pixels) and their synchronized meta-
data are acquired from airborne camera, GPS and IMU sensors. The airplane usually
flights 1500 meters above the ground and complete an orbit in between 4 and 5 min-
utes, recording 4 frames every second. The area covered on the ground with complete
overlap has an aproximate 1200 meters diameter.

The following of this section contains in section 1 a presentation for each dataset

of a summarizing tab and some examples of images taken from the on-board camera

and an evaluation of the metadata accuracy before and after bundle adjustment.

Then the next section presents the a protocol to evaluate the sensor metadata and

its conclusions.

1.2.1 Four Hills

Four Hills is one of our oldest datasets and is particularly challenging due to signifi-

cant variations in elevation. The images were taken with an older camera compared

to the other more recents datasets. This is why the image resolution and frame rate

are lower. The images are taken from relatively closer to the ground too.

See Figure 1.10 for examples of frames.
13

Dataset Four Hills
Orbit Radius (m) 1620

Di↵erence in Height (m) 915
Number of Images One Orbit Full rate 80

Number of Images used for reconstruction 100 (Full rate, Overlap)
Elevation range (m) 100

Table 1.1: Four Hills summary

14

(
a
)
F
ra
m
e
0

(
b
)
F
ra
m
e
7

(
c
)
F
ra
m
e
14

(
d
)
F
ra
m
e
21

(
e
)
F
ra
m
e
28

(
f
)
F
ra
m
e
35

(
g
)
F
ra
m
e
42

(
h
)
F
ra
m
e
49

(
i
)
F
ra
m
e
56

(
j
)
F
ra
m
e
63

(
k
)
F
ra
m
e
70

(
l
)
F
ra
m
e
77

F
ig
u
re

1.
10
:
12

fr
am

es
fr
om

on
e
or
b
it
of

F
ou

r
H
il
ls
D
at
as
et
,
sp
re
ad

ar
ou

n
d
on

e
fl
yi
n
g
or
b
it

15

Dataset Albuquerque
Orbit Radius (m) 2589

Di↵erence in Height (m) 1551
Number of Images One Orbit Full rate 1071

Number of Images used for reconstruction 216 (DownSampled)
Elevation range (m) 130

Table 1.2: Albuquerque Hills summary

1.2.2 Albuquerque

Albuquerque is a good baseline dataset. The center of the area contains the plaza

surrounded by tall buildings, while the exterior ring is flatter but with some varia-

tions of elevation. There are only small areas with trees. Compared to the precedent

dataset it has a higher frame rate which allows to use more images in a single orbit

and the camera resolution is higher, allowing higher level of detail even from higher

flight altitude.

16

(
a
)
F
ra
m
e
0

(
b
)
F
ra
m
e
90

(
c
)
F
ra
m
e
18

0
(
d
)
F
ra
m
e
27

0

(
e
)
F
ra
m
e
36

0
(
f
)
F
ra
m
e
45

0
(
g
)
F
ra
m
e
54

0
(
h
)
F
ra
m
e
63

0

(
i
)
F
ra
m
e
72

0
(
j
)
F
ra
m
e
81

0
(
k
)
F
ra
m
e
90

0
(
l
)
F
ra
m
e
99

0

F
ig
u
re

1.
11
:
T
w
el
ve

fr
am

es
fr
om

on
e
or
b
it
of

A
lb
u
qu

er
qu

e
d
at
as
et
,
sp
re
ad

ov
er

on
e
fl
yi
n
g
or
b
it
.

17

Dataset Berkeley
Orbit Radius (m) 1955

Di↵erence in Height (m) 1750
Number of Images One Orbit Full rate 877

Number of Images used for reconstruction 220 (DownSampled)
Elevation range (m) 80

Table 1.3: Berkeley summary

1.2.3 Berkeley

Berkeley is a Dataset similar to Albuquerque with some building with flat homoge-

neous roofs, or a stadium field, and some variations in the elevation. Compared to

Albuquerque, it has larger vegetation area too.

18

(
a
)
F
ra
m
e
0

(
b
)
F
ra
m
e
72

(
c
)
F
ra
m
e
14

4
(
d
)
F
ra
m
e
21

6

(
e
)
F
ra
m
e
28

8
(
f
)
F
ra
m
e
36

0
(
g
)
F
ra
m
e
43

2
(
h
)
F
ra
m
e
50

4

(
i
)
F
ra
m
e
57

6
(
j
)
F
ra
m
e
64

8
(
k
)
F
ra
m
e
72

0
(
l
)
F
ra
m
e
79

2

F
ig
u
re

1.
12
:
12

fr
am

es
fr
om

on
e
or
b
it
of

B
er
ke
le
y
d
at
as
et
,
sp
re
ad

ov
er

on
e
fl
yi
n
g
or
b
it

19

Dataset Los Angeles
Orbit Radius (m) 4221

Di↵erence in Height (m) 4081
Number of Images One Orbit Full rate 1400

Number of Images used for reconstruction 350
Elevation range (m) 350

Table 1.4: Los Angeles summary

1.2.4 Los Angeles

Los Angeles dataset contains images taken from a significantly higher altitude. Los

Angeles has a relatively constant ground elevation, but a lot of tall buildings in the

downtown area, occluding each other while the camera flies through the orbital path.

The scenery is almost exclusively urban, except for a moderate size parc near the

downtown area. Because of the high altitude and the wide range in elevation due to

the tall buildings, Los Angeles is the most demanding dataset in term of storage and

processing time.

20

(
a
)
F
ra
m
e
0

(
b
)
F
ra
m
e
11

6
(
c
)
F
ra
m
e
23

2
(
d
)
F
ra
m
e
34

8

(
e
)
F
ra
m
e
46

4
(
f
)
F
ra
m
e
58

0
(
g
)
F
ra
m
e
69

6
(
h
)
F
ra
m
e
81

2

(
i
)
F
ra
m
e
92

8
(
j
)
F
ra
m
e
10

44
(
k
)
F
ra
m
e
11

60
(
l
)
F
ra
m
e
12

76

F
ig
u
re

1.
13
:
12

fr
am

es
fr
om

on
e
or
b
it
of

L
os

A
n
ge
le
s
d
at
as
et
,
sp
re
ad

ov
er

on
e
fl
yi
n
g
or
b
it

21

Dataset Columbia MO
Orbit Radius (m) 4221

Di↵erence in Height (m) 2022
Number of Images One Orbit Full rate 805

Number of Images used for reconstruction 202
Elevation range (m) 120

Table 1.5: Columbia summary

1.2.5 Columbia

Columbia like Four Hills has a lot of variation in ground elevation with fewer tall

buildings than Los Angeles or even Albuquerque. One of the focus area is the center

of the campus, with the peace park, the columns. The scene is a good combination

of urban area with streets and buildings, and parks with vegetation

22

(
a
)
F
ra
m
e
0

(
b
)
F
ra
m
e
68

(
c
)
F
ra
m
e
13

6
(
d
)
F
ra
m
e
20

4

(
e
)
F
ra
m
e
27

2
(
f
)
F
ra
m
e
34

0
(
g
)
F
ra
m
e
40

8
(
h
)
F
ra
m
e
47

6

(
i
)
F
ra
m
e
54

4
(
j
)
F
ra
m
e
61

2
(
k
)
F
ra
m
e
68

0
(
l
)
F
ra
m
e
74

8

F
ig
u
re

1.
14
:
12

fr
am

es
fr
om

on
e
or
b
it
of

C
ol
u
m
b
ia

D
at
as
et
,
sp
re
ad

ov
er

on
e
fl
yi
n
g
or
b
it

23

1.3 Dataset Preprocessing

1.3.1 Using Sensor Metadata

Assuming ideal detection and frame to frame matching, which we enforced in our

experiment by manually tracking a small set of points through the image sequence,

the smallest box that would be traversed by every ray would need to be 5 meters

large if the camera pose estimate is solely based on the sensor data. After running

our bundle adjustment pipeline, this error margin falls below 0.5 meter.

However, metadata can still be used for several purposes:

• Accelerating Bundle Adjustment convergence: The search of an optimum can

be facilitated by initializing near the wanted solution. This is especially true in

the case were several local extrema are possible.

• Estimating prior bounding box for the reconstruction

Description of the metadata evaluation protocole

In order to evaluate the accuracy of the metadata, we manually track a perfectly

localized point through the whole image sequence. We chose the base of a lamppost

as the localization of its visible surface stays relatively constant from any angle (See

Figure 1.15).

Once we have the pixels coordinate of the considered object in every image we

can reverse the projections equation to calculate the ray trajectory and then the

projection on the ground. (See figure 1.16). The result is shown in Figure 1.17.

The ray trajectories can be visualized several ways (Figure 1.18 and 1.19). The

conclusion is however always the same: the camera pose estimate from sensor mea-

surement does not have the level of precision needed in order to hope to run any 3D

reconstruction algorithm.
24

Figure 1.15: The lamppost is tracked manually through the whole sequence. The
localization of the visible pixel in space can be considered constant because of the
small size of the lamppost base.

Figure 1.16: The projection matrix (More detailed formulation in Chapter 2) can be
inversed to compute the ray direction, that is then intersected with the ground plane.

25

Figure 1.17: Illustration of Ground Projection metadata

Figure 1.18: The rays supposed to aim at the lamppost base are missing the target
by several meters.

26

F
ig
u
re

1.
19
:
A

to
p
vi
ew

p
ro
je
ct
io
n
of

th
e
ra
ys

ai
m
ed

at
th
e
la
m
p
p
os
t
u
si
n
g
se
n
so
r
m
et
ad

at
a.

27

In order to confirm that this type of convergence result should be expected we also

ran simulations by generating synthetic data (See Figure 1.20) and adding gaussian

noise modeling the expected precision of each measuring instrument. The result is

shown in Figure 1.21.

Figure 1.20: A flight path and a camera are generated syntheticaly. Di↵erent ex-
periments with di↵erent noise parameters can be done in order to evaluate an error
expectation.

28

F
ig
u
re

1.
21
:
In
tr
od

u
ci
n
g
a
ga
u
ss
ia
n
an

gu
la
r
n
oi
se

of
0.
05

d
eg
re
e
is
su
�
ci
en
t
to

ob
ta
in

th
e
sa
m
e
ra
n
ge

of
er
ro
r
ob

se
rv
ed

in
ou

r
ex
p
er
im

en
ts

on
F
ou

r
H
il
ls
.

29

Conclusion

From this study we can confirm that bundle adjustment is a critical step in order to

perform 3D reconstruction.

1.4 Thesis Outline

The rest of the dissertation is organized as follows:

• Chapter 2 presents fundamental concepts in 3D computer vision that are con-

stantly used throughout the rest of the thesis

• In Chapter 3 we review related work and justify our contribution relative to the

state of the art methods

• In Chapter 4 , we present the original voting pipeline, its advantages and limi-

tations and all the experiments we tried with more or less successful outcome.

• Chapter 5 presents the plane sweeping pipeline, how it was motivated, and how

it can take advantage of the work from the voting pipeline

• Chapter 6 discusses the di�culty of qualitatively evaluating 3D reconstruction of

urban scene and proposes di↵erent strategies for evaluation and benchmarking

• Chapter 7 presents how the data we generated can be transformed for di↵erent

applications, in particular for tracking and filtering.

• Chapter 8 concludes with a summary of our findings, what is left to solve and

proposes possible extensions.

30

1.5 Notations

This thesis adopts standard conventions for mathematical formulas. Vectors and Ma-

trices variable names are written in bold, scalars are in regular font. When vectors

and matrices are written as tabulars of coe�cient and that several frame of coordi-

nates can be used, in order to improve clarity, the frame of coordinates are specified

as indices. For example if the vector v is expressed by the triplet of coordinates

(x1, y1, z1) in the vector base B1 (ex1 ,ey1 ,ez1), we can write:

v =

2

66664

x1

y1

z1

3

77775

B1

(1.1)

If v is expressed by a second triplet of coodrinates (x2, y2, z2) in a second vector

base B2 (ex2 ,ey2 ,ez2), we name RB2B1 the change of basis matrix from B1 to B2:

v =

2

66664

x1

y1

z1

3

77775

B2

=

2

66664

r11 r12 r13

r21 r22 r23

r31 r32 r33

3

77775

B2B1

2

66664

x1

y1

z1

3

77775

B1

(1.2)

Which is equivalent to:

v = x1ex1 + y1ey1 + z1ez1 = x2ex2 + y2ey2 + z2ez2 (1.3)

31

Chapter 2

Fundamentals of 3D Computer
Vision

This chapter gives an overview of the basis for 3D computer vision that are being

systematically used including in this dissertation. Some Comprehensive theory for-

malization books are also available [21, 22].

2.1 Pinhole Camera Model

The Pinhole Camera Model (Figure 2.1) allows to easily calculate the coordinates of

the projection of a point from the three-dimensional space onto an image plane. The

camera is considered as ideal on many aspect, lenses distortions and unfocused objects

blurring phenomenon are ignored. In a real physical sensor, the light goes through

the aperture and prints an inverse image on a plane located behind the point of entry.

It is however more intuitive to use the virtual image plane and to consider the image

is formed on a plane located between the object and the aperture, at a distance

corresponding to the physical focal length of the camera. The usually rectangular

boundaries of the visible frame, and the ideal pinhole or center of projection, are

32

forming what is sometimes called the pyramid of vision.

Figure 2.1: The pinhole camera model: In the ideal case, the light rays going through
the camera pinhole are forming an inversed image on the Image Focal Plane. It is
more intuitive and mathematically equivalent to consider that the image forms on the
virtual image plane and thaat the camera pinhole point acts as a center of projection.

The camera extrinsic parameters can be modeled by a 3 dimensional vector t

defining its position in space and a 3x3 rotation matrixR defining its axis orientation.

In addition, a 3x3 matrix K summarizes its intrinsic parameters such as the focal

length or radial distortions.

2.1.1 The Intrinsic Matrix K

In the ideal camera pinhole model, the intrinsic matrix K can be written has follows:

K =

2

66664

fx s Cx

0 fy Cy

0 0 1

3

77775
(2.1)

fx and fy are measuring the focal length in pixels. In the ideal case we have

fx = fy

, but this is however not always verified for several possible reasons:
33

Figure 2.2: Aspect ratio defined by the values in intrinsic matrix K.

• Lens distorsion

• Distorsion introduced by post processing

Cx and Cy represent the translation between the Image origin and the optical axis.

s can model what is called shear distortion, a phenomenon that is in general

ignored in order to simplify the model.

Therefore, for an ideal pinhole camera model, giving a 6600x4400 image with ideal

focal length parameters, and center o↵set, and with the a X:Y:Z aspect ratio equal

to 6600:4400:17500, the intrinsinc K matrix would be as follows:

K =

2

66664

17500 0 3300

0 17500 2200

0 0 1

3

77775
(2.2)

K represents the parameters depending only on the intrinsic properties of the
34

camera sensor. Once it has been estimated, its values can be stored and are expected

to remain constant, unlike the extrinsic parameters representing the camera pose that

can change over time as the camera changes position.

other distorsions

The camera matrix K does not model radial and tangential distorsions that tend to

curve lines expected to be straight. These distorsion phenomenon can be separated

into three types:

• Barrel distorsion: image magnification decreases as the distance from the optical

axis increases.

• Pincushion distorsion: image magnification increases as the distance from the

optical axis increases.

• Mustache distorsion is a complex combination of the two previous distorsions

It is possible to correct for these distorsion through image processing. For example

this the division model initially proposed by Lenz [23]:

xu = xc +
xd � xc

1 +K1r2 +K2r4
(2.3)

yu = yc +
yd � yc

1 +K1r2 +K2r4
(2.4)

where r =
p
(xd � xc)2 + (yd � yc)2 is the distance from the center

Another possible sort of distorsion is when the lense orientation is not parallel

to the image plane. This is referred to as tangential distorsion. The model below

35

Figure 2.3: Left: No Distortion. Center: Positive Radial Distortion (Barrel) Right:
Negative Radial Distortion (Pincushion)

accounts for both radial and tangential distorsions [24]:

xu = xd + (xd � xc)(K1r
2 +K2r

4 + ..) + (P1(r
2 + 2(xd � xc)

2)+

2P2(xd � xc)(yd � yc))(1 + P3r
2 + P4r

4 + ..) (2.5)

yu = xd + (yd � yc)(K1r
2 +K2r

4 + ..) + (2P1(xd � xc)(yd � yc)+

P2(r
2 + 2(yd � yc)

2))(1 + P3r
2 + P4r

4 + ..) (2.6)

2.1.2 The Rotation Matrix R

The columns of the Rotation matrix are the coordinates of the camera axis vectors

expressed in the reference frame.

R =

2

66664

R11 R12 R13

R21 R22 R23

R31 R32 R33

3

77775

Camera,World

(2.7)

The camera frame of coordinate is set so that the X axis is colinear with the

horizontal axis of the image plane, the Y axis colinear to its vertical axis, and the Z

36

axis colinear to the optical axis. R is therefore the change of basis matrix between

the world and the camera frame of coordinates. Furthermore, R is an orthogonal

matrix, and as a very important property, it can be inversed simply by transposing

it:

Rt ⇤R = R ⇤Rt = I3 (2.8)

2.1.3 The Translation Vector t

The translation vector is expressed in the camera system of coordinate:

t =

2

66664

tx

ty

tz

3

77775

Camera

(2.9)

tx, ty and tz are therefore the translation of the camera center from the world

origin respectively along the image horizontal axis, the image vertical axis, and the

camera optical axis (See figure 2.4) .

Let P be the position vector of the camera center of projection, expressed in the

world frame of coordinates, the relationship between P and t is the following:

P =

2

66664

PX

PY

PZ

3

77775

World

= -Rt ⇤ t (2.10)

2.1.4 Projection Matrix

K, R and t entirely define the camera pose estimate and allow to calculate for any

point in the real world (x, y, z), the image coordinate (px, py) of the pixel it is projected

onto. We define Pm the projection matrix as follows:

37

Figure 2.4: The Camera orientation is defined by three axis: thw two image axis x
and y and the optical axis z.

Pm = K ⇤

R t

�
(2.11)

s ⇤

2

66664

px

py

1

3

77775

Image

= K ⇤

R t

�

2

66666664

x

y

z

1

3

77777775

World

= Pm ⇤

2

66666664

x

y

z

1

3

77777775

World

(2.12)

The projection matrix is applied to vectors expressed in homogeneous coordinates.

38

2.1.5 Bundle Adjustment Formulation

The Bundle Adjustment problem is an optimization problem that aims to simultane-

ously refine the estimate of the camera pose and the 3D localization of the tie points

used for the optimization.

The formulation is as follows: if we have Nimages images, Ntiepoints 3D points whose

existence is inferred from matching descriptors from the image set. For point i and

image j we use xi to refer to point i vector of homogeneous coordinates, Pmj the

projection matrix of camera j, and zij to refer to the observation of point i on image

j and Sj the subset of points observed on image j. The bundle adjustment problem

in that case consists in minimizing the following cost function:

C =

NimagesX

j=0

X

i2Sj

||zij � Pmjxi|| (2.13)

2.2 Camera Calibration

The previous parameters can be estimated using camera calibration methods. A

wide range of approaches have been developped over time, it generally consists in

using a known pattern in order to retrieve the camera pose and the intrinsic param-

eters including focal length and lense distorsion. This pattern is typically a grid (or

checkerboard) which enables reliable and accurate detection of lines and corners. All

the camera calibration parameters can then be inferred from the di↵erence between

the identified corners on the image and their actual disposition in the real world,

which is completely known. Camera Calibration being the first step towards inferring

measurement from computer vision, it has been widely studied and several surveys

of the di↵erent approaches are available [25, 26].

39

Figure 2.5: A checkboard used for camera calibration

2.3 Epipolar Geometry and Image Transformation

There are several ways to establish a relationship between two images of a same scene

taken from di↵erent points of view. This is often needed to build a larger image

than the camera physical limitation allows to, and in general required for example

for background substraction.

2.3.1 Homography

The simplest way to register two images is by using an homography that warps the

paired image to the reference image.

The most standard way to compute an homography follows the following steps:

• establish point correspondences between the two images (using descriptors for

example like SIFT[28], SURF [29] or ORBS [30])

• use RANSAC with direct linear transform to find the homography that mini-

mizes the number of outliers

• apply back transformation to warp the sensed image

40

Figure 2.6: After applying the homography estimated with Direct Linear Transform
and RANSAC. The target image is warped and overlayed on the reference image that
remains unchanged. [27]

Although it is still widely used, this transformation is not ideal to build a panorama

from images with high variation of point of views. It somehow assumes near-planar

structure of the scene and will perform poorly on a scene with complex 3D structure.

This motivates creation of models taking better account of the 3D structure of the

scene.

2.3.2 Epipolar Geometry

The epipolar geometry (See figure 2.7) describes the geometrical relationship between

two views. It defines the following notions for a pair of images:

• The epipole: the projection of the camera center of projection onto the paired

image plane.

• The baseline joins the two cameras center of projection.

• The epipolar plane is formed by the previously defined baseline and a point in
41

3D space. There are an infinity of epipolar planes for a specific pair of cameras,

but they all intersect at the baseline.

• Epipolar lines go in pairs. On each image, they join the epipole to the point

projection. It is as if we were visualizaing a light ray joining the paired camera

to the point in 3D space.

Figure 2.7: A point in one image is a line in the other one.

2.3.3 Fundamental and Essential Matrices

Fundamental and Essential matrices are representing the epipolar constraint, in an

equation called the fundamental constraint:

yt ⇤ E ⇤ x = 0 (2.14)

if x and y are points from two images, on each other epipolar lines.

The fundamental matrix is derived from the essential matrix with the following

equation:

F = K 0t ⇤ E ⇤K (2.15)

42

relation with K,R and t

it is possible to deduce the fundamental matrix from the camera intrinsic and extrinsic

parameters:

E = R


t

�

x

(2.16)

2.3.4 4 Points and 8 Points Algorithms

It is possible to estimate the fundamental matrix using point correspondances between

the images. One of the algorithm requires 8 points correspondances between a pair of

images. Just like for the estimate of an homography, RANSAC can be used to refine

the fundamental matrix estimate and to deal with outliers for example when the

method to obtain the correspondances is automatic and prone to spurious matches.

2.4 Data Representation

This section is an overview of the various formats that can be used to represent 3D

Data. They can be mainly separated into three categories:

• Depthmaps

• Voxels grids

• Point Cloud and meshes

2.4.1 Depthmap

A Depthmap is a 2D image, storing spatial information. In its most standard use, for

each pixel (px,py), the image would store at this location the distance between the

camera center of projection and the nearest surface that project onto that pixel (see

43

figure 2.8). This can be the immediate output of a depth sensor, it is however often

needed to register this data into another frame of reference.

Figure 2.8: An example of Depthmap. The image intensity is used to represent the
distance between the surface of a sphere and the camera center of projection. Two
conventions are possible, nearest surface can be either lighter (left) or darker (right).

2.4.2 Voxel Grid

Another widely used data structure is the voxel grid. A voxel is the 3 dimensional

generalization of a pixel. A voxel grid is therefore a regular sampling of the 3D space

into subdividing cubes. The simplest way to use this structure in order to model the

shape of an object is to build a grid all around the target object and to determine

for each individual voxel whether it is occupied or empty. The quality of the shape

rendering is then directly linked to the grid resolution. This data structure allow

e�cient computation by instant access to any loaction in space. However, if only

a binary information on occupancy is maintained, this is rarely the most e�cient

way to store a model as keeping a list of the occupied voxels is often preferable.

This is why this data structure is more often used as an intermediary model, usually

44

storing a measurement of the occupancy probability. After this probability space is

thresholded, the use of point cloud or Mesh is often preferred.

Figure 2.9: An example of Voxel Grid on the Albuquerque Dataset. Because of
memory limitation is is often impossible to cover the whole scene at high resolution.

razterization

One of the consequences of space discretization is that geometric objects such has

lines or solids sometime need to be converted to the list of voxels they intersect or

contain. The use of rays as a geometrical concept being ubiquitous in 3D recontruction

algorithms, a 3D generalization of Bresenham is needed to get the list of voxels that

are being traversed by a specific ray.

optimization

It is possible to optimize the implementation of some of these tasks, using appropriate

data structure. Indeed, most of the space is empty and some compression strategies

can be used in order to be more memory e�cient or even to speed up some of the

calculations. For that purpose, one powerful data structure is the octree. If the whole

space is a cube, the tree recursively divides the space into 8 subparts. This allows to

45

Figure 2.10: From the mathematical line, raszterization algorithms retrieve the set of
discrete unit of space that are being traversed

take advantage of the heterogeneous occupancy

Figure 2.11: Illustration of an octree

2.4.3 Point Cloud and Mesh

Point Clouds are the preferred format for 3D model. In its simplest form it can just

be a list of 3D coordinates, but is is possible to augment the data for example by

assigning a RGB color to each point.

An even higher level of representation is reached with meshes. The base informa-

tion is still a list of point but a relationship graph linking a point to its neighbors is

46

built. In the most common case, triplets of points are forming a network of rectan-

gular faces. A color can then be assigned to each face, and for an even more realistic

rendering, the face normal is used to model the light reflection.

delauney triangulation

Delauney triangulation is a triangle mesh construction from a set of discrete points.

The specific property of this triangulation is that no point of the set is inside the

circumcircle of any of the triangles. Except for a few degenerated cases, existence

and unicity is garanteed if using the euclidian distance. The Delauney triangulation

is closely related to the voronoi diagram and is defined as its dual. There are several

algorithms allowing to construct the delauney triangulation, the simplest being the

flip algorithms. Tools out of the box exist to quickly compute a mesh from a point

cloud, based on this approach.

Figure 2.12: Delauney triangulation of a random set of points in Meshlab

47

normal estimation and plane fitting

Another problematic in point cloud processing is the estimation . of normal that can

eventually be used in order to compute a surface, or for better rendering

Plane fitting can be done with several methods:

• Principal Component Analysis

• Ransac

• Hough Transform

The Hough transform, originaly a method to detect lines in images (Figure 2.13),

can be generalized to plane detection in 3D and naturally infer a set of plane from

an initially unstructured set of points. The two other methods can only extract a

single plane from the set they are applied on. In the event of a complex scene, it is

therefore needed to cluster the set of points first or to divide it into subsets using for

instance Nearest Neighbors. A basic RANSAC approach would select three random

poiont from the set and threshold the other points as outliers if they were too far

away from the considered plane.

2.5 Data Visualization

Some of these data representation also pose interesting challenges in term of visual-

ization. Mesh gives the representation that is the closest to the human perception

of his environment but building a mesh is a non trivial task and it can sometimes

deteriorate the accuracy of the structure model estimate. Point clouds on that aspect

are safer in term of accuracy of what is being displayed, but less complete and require

a very high resolution in order to achieve fidel rendering of a scene. On the opposite,

surface fitting and meshes can allow to compress the data.

48

Figure 2.13: Hough transform output of a line. Each point generate one of the curved
line. These curve all interset in one point that corresponds to a single line in image
space.

A voxel space is a continuous volume a visualizing this type of data is more

challenging as every discrete unit of space contains information. It is possible to use

maximum intensity projection to have a grasp of what the volume contains but in

general visualizing the voxel space requires to give up on some information. The

choice between these di↵erent representations depends on what information needs to

be emphasized.

49

(a) Point Cloud view 1 (b) Point Cloud view 2

(c) Mesh view 1 (d) Mesh view 2

(e) Surface view 1 (f) Surface view 2

Figure 2.14: Standford bunny, from the Standford 3D dataset collection [31]
50

Chapter 3

Related Work

This thesis work is closely related to several other approaches and tries to increment

upon it. This chapter gives an overview of previously developed methods. It mainly

focuses on traditional multi view reconstruction even though a mention of reconstruc-

tions from single view is also made. The last sections in this chapter are presenting

site modeling and its history, and situating the contribution of this thesis work.

3.1 Bundle Adjustment

Bundle Adjustment is critical preliminary step in many 3D reconstruction pipeline.

It is always formulated as an optimization problem that minimize the projection error

for a refined set of tie points. For a satisfying result, a su�cient number of tie points

need to be used, but the number of parameters to optimize grows proportionally to

this number of points and the number of views. The problem can therefore rapidly

become extremely complex. This is why this problem has been largely studied and

many di↵erent approaches were developped[32]. The preferred optimization method

is usually the LevenbergMarquardt [33, 34, 35]. Although this thesis focuses on

51

the dense reconstruction part, from images and refined camera pose obtained from

MUB4S by aliakbarpour et al[36, 37, 38] or Visual SFM [39], it is worth mentioning

the work done one that critical part without which the desne reconstruction is not

possible.

Figure 3.1: A possible approach for bundle adjustment: instead of two cameras look-
ing at a partially overlapping set of points, All the possible camera-point pairs are
instantiated and the equivalence between for example cameras A1 to A3 are treated
as a constraint of the optimization problem.[40]

3.2 Stereo 3D Reconstruction

3D reconstruction from photo-consistency, in its simplest form starts with stereo

reconstruction and computation of a disparity map between two images. Several

torough suveys have been done on stereo reconstruction [41, 42]

The search of matching patches between the paired images can be done using

52

the epipolar constraint by computing the fundamental matrix, or it can also be done

using plane sweeping. One of the state of the art method this thesis work is inspired

from is the local plane sweeping from Sinha et al [43] (Figure 3.2). After matching

features, the use of GPU to rapidly test several orientation gives promising results on

standard stereo datasets. Hirschmuller et al using Semi-Global Matching of mutual

information also achieved highly accurate results on Stereo reconstruction [44, 45, 46]

.

In general, inference from a unique image pair cannot give a full 3D model of the

scene which is why the output format is generally kept as a depthmap. This type

of technique also require the two views to be close one to another in order to have

su�cient overlap and consequently are only a first step toward the obtension of a full

3 model for a real object. Stereo reconstruction method tends to allow less ressource

towards handling occlusion for that reason too. The two point ov view being very

close together, what is visible on one image is expected to remain as such in the other

one.

Multi-view 3D reconstruction can often be framed as a generalization of stereo

reconstruction. Comprehensive surveys of multiview algorithms are already available

[47, 48], proving that a lot has already been achieved. The rest of this chapter tries

to classify the di↵erent approaches of interest.

3.3 Patch Based Methods

Also referred to as feature matching based methods. The basic concept is that a

feature patch is match through a set of images, and the corresponding 3D point

is then triangulated from the 2D images correspondances. If the camera pose has

already been estimated through bundle adjustment, the search space can be reduced

by matching a point descriptor from the reference image only along the associated

53

Figure 3.2: Result of Local Plane sweep by Sinha et al [43].

epipolar line in the comparison images. It is still computationally expensive to build

a dense 3D model with this approach. EPFL is matching along the epipolar line using

DAISY descriptors [49, 50]. One of the top performing algorithm, PMVS [9] also uses

this approach, matching SIFT points, and expands surfaces from initally matched

patches (Figure 3.3). The search for the nearest patch can also be randomized and

give good results as shown by Barnes et al [51].

3.4 Volumetric Methods

The common principle in all volumetric methods is to sample the 3D space and

to evaluate for each voxels wether or not the space is occupied. Early methods

54

Figure 3.3: PMVS reconstruction result from Furukawa et al. [9]

were also referred to as space carving [52, 53, 54]. The basic principle being that

a surface voxel would be considered empty if not photoconsistent and the object

would progressively take form as if it was carved from a stone. A survey by Slabaugh

et al[55] gives a comprehensive overview of early methods through 2001. Many of

space carving methods require segmentation of the object as first step [56, 57]. Most

recent works instead of binary decision prefer to compute a probabilistic value that

can better handle scene uncertainty and ambiguity for novel view generation. This

was successfully applied to change detection by Polard et al [58, 59] and then later

by Crispell et al[19]. Also as a volumetric approach, Ulusoy at al [60] used Markov

Random Field to tackle the scene uncertainty and ambiguity problem.

The principal limitation of the volumetric approach is the memory it requires, the

resolution-related issues, and the bounding box localization as this approach typically

requires to intialize a bounding volume. The number of voxels grows with the cube of

the voxel length, and increasing the resolution becomes quickly memmory prohibive

if no optimization are made. The number of operations is also directly related to the

number of voxels.

55

Figure 3.4: An illustration of Novel view generation by Crispell et al. [19]

3.5 Surface Fitting Method

Another type of methods matches point from between images and triangulate them

before fitting a surface to it, possibly as a 3D generalization of active contour. This

is very unlikely to do well with our type of data, which is why most group dont really

apply this sort of methods to WAMI datasets. The clutter in the scene, especially

in urban area with alternance of high buildings and streets makes the outcome of

such approaches very uncertain. However, Calakli et al [61, 62] use Smoothed Signed

Distance to reconstruct a surface either from oriented points cloud or probabilistic

volumetric grid, with promising result on aerial imagery.

3.6 Other Notable Work

3.6.1 Single View 3D Reconstruction

Some great work was done in an attempt to extract 3D model from a single view.

While most stereo or multi view algorithm are using at one point or another photo

consistency constraint, it is in this case not possible. Other clues need to be used such

as lightning model in the case of shape from shading [63] or intersection of parallel

56

Figure 3.5: SSD from Calakli et al [61] applied to MU3D Los Angeles Point Cloud.

lines at a vanishing point to model a piecewise planar world [64]. These methods are

however hardly applicable to Aerial Imagery where the target of the reconstruction

is a highly diverse and complex scene.

3.6.2 Deep Neural Network

The available datasets usable to train a deep neural network for 3D reconstruction

are still relatively rare although their availaibility is increasing. In general, a learning

based approach is not as obvious and straightforward as for a classification task, but

the incredible results obtained with CNNs on object classification and even detection

obviously raised hope to obtain the same kind of outstanding improvement in 3D

reconstruction. Furukawa et al are now working on deep neural networks trained on

RGBD data [65]. It is uncleared whether their approach can be applied to Wide Area

Imagery. Nonetheless, there are more and more learning based approaches in order

to try to learn features that are robust to changes in illumination and point of view

[66, 67, 68, 69], and as shown by Paschalidou et al [70], there is potential for learning

methods applied to 3D reconstruction from Aerial Imagery.
57

Figure 3.6: An example of output from PlaneNet.[65]

3.7 Site Modeling

Site modeling consists in constructing a 3D model of an geographic area using sensor

data, including but not necessarily limited to aerial imagery. Reconstruction of urban

scene can also be done with street level imagery or combination of both. This is an

obvious potential application of this research work. Most methods were for a long

time heavily manual and development of e↵cient automatic algorithm is of great value

for that purpose. Google now has 3D model of main area of biggest city in the US.

It can be very important data for mapping, change detection, damage assessment in

catastrophic event. This is still a heavily manual process and a lot of e↵ort is made

to try to automatize as much as possible what is otherwise very tedious work.

3.8 Thesis Contribution

The main contribution of this thesis work is the combination of several of best per-

forming approaches to tackle the specific challenges raised by our own datasets. The

presented work demonstrates how voting with repeatable features can be used to

e�ciently traingulate a very high number of points without bruteforce descriptor

matching in the whole set of images. Di↵erent processing steps are presented to

either optimize accuracy or completeness.

58

Figure 3.7: Screenshot of Empire State Building and its surroundings in Google map.

59

Chapter 4

Voting Pipeline

4.1 Introduction

The camera pose estimation problem is generally solved by minimizing the repro-

jection error of a relatively reduced number of points that were matched over a sub-

set of images. A typical implementation would detect and match SIFT points before

minimizing a cost function. This problem is refered to as Bundle Ad- justment, and

although state of the art methods lead to very high precision in the estimate of the

cameras position and orientation, the number of triangulated points is too low to ren-

der the structure of the scene. Trying to match more points would rapidly increase

the computation cost and dense recontruction is therefore not at- tainable this way.

Di↵erent strategies exist to e�ciently render dense structures. For simple objects,

space carving coupled with image segmentation techniques can give good results but

is not a preferred solution for complex scenes. If match- ing patches between images

is still required, once a precise camera pose estimate has been obtained, the epipolar

constraint can be used to reduce the search space. The search along the epipolar line,

using sum of absolute di↵erence or normalized cross-correlation has proven to be a

60

robust approach but matching every feature point even after using the epipolar con-

straint, could still end up being computa- tionally expensive. The proposed approach

tries to take advantage of the assumed repeatability of feature points detection over

a sequence of images taken from ad- jacent views to avoid the use of an expensive

matching function. The following of this chapter is organized as follows:

4.2 Pipeline Description

After data has been acquired from airborne camera and platform sensors such as

IMU and GPS, our 3D reconstruction pipeline (Figure 2.2) first refines the cam- era

pose estimate with a fast Structure-from-Motion algorithm, and runs a feature point

detector on each image in order to select a�ne stable points that are the most likely

to be repeatably detected over several consecutive frames [72, 73]. This choice of

feature point is explained by the fact thaqt we need the detection to be repeatable

ofr accumulation to occur, but the algorithm could easily be generalized to other

feature points such as Harris corners [74] or lines [75]. Estimated camera intrinsic

and extrinsic parameters and the sets of feature points are then used by our voting

algorithm. After the voting phase is complete, some post process- ing tasks are nec-

essary to separate real structure from inherent voting noise. Then, the 3D structure

extraction can be performed by either automatically or manually thresholding the

processed vote space. Finaly, only one last step remains, in order to obtain photo

realistic rendering, the raw uncolored point cloud is reprojected on a subset of images

in order to assign a color to each point.

This thesis work focuses on the dense reconstruction part that starts after bundle

adjustment (Figure 4.2).

The following of this section will consecutively describe into further details:

• Voting
61

Figure 4.1: Feature Based Voting Pipeline: From RGB high resolution images and
metadata to dense photo realistic point cloud.

Figure 4.2: Dense Reconstruction part: from refined camera pose estimates and sets
of feature points to photo-realistic point cloud.

• Post-Processing

• Point Cloud Coloring

62

Figure 4.3: An object with two corners (or point of interest) creates for 3 di↵erent
point of view, images each with 2 detected feature points. Without explicitly matching
them and only by casting rays through a voxel box, the location of the two points of
interest can be infered from the vote accumulation.

4.2.1 Voting

First part of the dense reconstruction, voting is a volumetric approach. A Voxel

box is computed around the targeted area and for each feature point of each image,

a ray is computed. We then cast these rays from the camera center of projection,

through the Voxel box, and increment the vote count of a voxel as many times a ray

is traversing it (Figure 4.3). The algorithm can be summarized as follows: Given a

set of images and an accurate estimate of the camera positions, the orientation and

the optical parameters:

The method relies on the consistent and repeated detection of the same feature

point over several consecutive images. Detection are more likely to be repeated over

views that are very close in time. However, projections of a same point on two

very close views give almost identical rays, and would reduce the precision of the

63

Algorithm 1 Voting Algorithm
1: V oxelBox = InitializeV oxelBox
2: for ImageIndex = 1 : NImage do

3: FeaturePointList = GetFeaturePointList(ImageIndex)
4: CameraParameters = GetCameraParameters(ImageIndex)
5: for FeatureIndex = 1 : NFeatures do

6: Ray = GetRay(FeaturePointList(FeatureIndex), CameraParameters)
7: [EntryPoint, ExitPoint] = GetRayAndV oxelBoxIntersections(Ray, V oxelBox)
8: V oxelList = Bresenham3D(EntryPoint, ExitPoint)
9: for V oxelIndex = 1 : NV oxel do

10: V oxelList(V oxelIndex) + +

11: end for

12: end for

13: end for

triangulation (See Figure 4.4). Ideally, we would want an angle as close as possible to

90 degrees for an optimal triangulation precision (Figure 4.5), but it is less likely that

a a point on a scene would consistenly trigger a corner detector on images separated

by that angle.

Figure 4.4: Two examples of two consecutive rays going through a same point. Pixels
traversed only by yellow (resp blue) ray are colored in yellow (resp blue), pixels
traversed by both rays are colored in green. As they are closed in time, the angle
between each pair of rays is small and they therefore share a lot of pixel, preventing
from locating with precision the intersection point. Obviously, the number of pixel
in common will also depend on the resolution

64

Figure 4.5: If we superimpose the contribution of the four rays of figure 2, the number
of votes for each pixel ranges from 0 to 4. Using rays with a bigger angle between
them, therefore more distant in time allowed getting a more accurate estimate of the
position

4.3 Post-Processing

Right after voting, the main post processing phase is implemented in four steps:

• Vote Collapsing

• Gradient Computing

• Horizontal smoothing

• Automatic or Manual Thresholding

4.3.1 Vote Collapsing

The Vote collapsing algorithm is a first way to increase the density of 3D points in the

final point cloud. It is based on the assumption that detected structures cannot float

in the air and should be supported underneath by a base. Therefore, as the number

65

of votes is evidence of occupancy for any given voxel, no voxel should have less votes

than the voxels directly above it. This constraint is enforced using the algorithm 2:

Algorithm 2 Vote Collapsing
1: for x=1:Xmax do

2: for y=1:Ymax do

3: for z=Zmax-1:1:-1 do

4: V oxel(x, y, z) = max(V oxel(x, y, z), V oxel(x, y, z + 1))

5: end for

6: end for

7: end for

Figure 4.6: Left: Without vote collapsing, right with vote collapsing. Vote collapsing
allows to reconstruct homogeneous building facades that would otherwise not be
infered with enough confidence if only using photo-consistency.

4.3.2 Gradient Magnitude

Experience has proven that we obtain better results by thresholding using the gradient

magnitude instead of the number of votes. The gradient magnitude computation

described in algorithm 3, is straight forward.

66

Algorithm 3 Gradient Magnitude
1: for x=2:Xmax-1 do

2: for y=2:Ymax-1 do

3: for z=2:Zmax-1 do

4: GradientMagnitude(x, y, z) = sqrt((V oxel(x + 1, y, z) � V oxel(x � 1, y, z))2 +

(V oxel(x, y + 1, z)� V oxel(x, y � 1, z))2 + (V oxel(x, y, z + 1)� V oxel(x, y, z � 1))

2
)

5: end for

6: end for

7: end for

4.3.3 Horizontal Smoothing

A smoothing step is implemented on the Gradient magnitude, using a gausian Kernel.

For e�cienty, we loop on each sampled altitude and perform a 2D convolution (See

algorithm 4):

Algorithm 4 Horizontal Smoothing
1: K = GaussianKernel(Size, Sigma)
2: for z=1:Zmax do

3: GradientMagnitude(:, :, z) = K ⇤GradientMagnitude(:, :, z)
4: end for

4.3.4 Histograms Computing

Depending on the tresholding method that comes next, this phase can be necessary

or optional. Either way it is straight forward, We simply compute the histograms

(Simple and Cumulative) of values for both Votes and GradientMagnitude. The size

of the bins is set to one. (See example in Figure)

4.3.5 Combination of Information for Automatic Threshold-
ing

The number of votes, the range of the gradient magnitude depend on numerous pa-

rameters as for example the number of frames used for voting and the grid resolution.

In case of automatic thresholding it becomes necessary to normalized the information

contained in the voxel box. Therefore, we use the histograms to define a low threhold
67

(a) Histogram of votes

(b) Histogram of gradient magnitude

Figure 4.7: Example of histograms for Albuquerque Dataset

below which the voxel score is set to 0 and a high threshold above which the score is

set to 1 and use a sigmoid function (Figure 4.8 and equation) to assign a normalized

score between 0 and 1 to any value between the low and the high thresholds. The

standard equation for a sigmoid function is:

S(x) =
1

1 + e�x
(4.1)

In this particular case, we have S(0) = 0.5 and S tends to 0 for negative values

of x, and to 1 for positive values. This can be adjusted by composing with an a�ne

68

transformation so that the transition from 0 to 1 is delayed and slower.

The low threshold is chosen as the mean value, and the high threshold as the

value such as only 2 percent of the voxels are above it. Two independant scores

are computed, one for the number of votes and one for the gradient magnitude and

for each voxel the two scores are then multiplied together to obtain a final score

normalized between 0 and 1. Usually we keep in the final point cloud only voxel with

a value above 0.5.

Figure 4.8: Example of sigmoid used as a transition function, the low threshold is set
to 10 and anything below it is given the probability 0, any value above 20 is set to a
probability of 1 and we have a continuous transition between the two thresholds.

69

4.3.6 Manual Thresholding

Alternatively is is also possible to manually threshold the volume. In interest of time,

we avoid generating a point cloud every time a threshold value is tested. Instead we

quickly compute a 2D image showing a top view of the expected point cloud for a

serie of values until we narrow down a suitable threshold (see figure 4.9).

70

(a) TH=25 (b) TH=35

(c) TH=55 (d) TH=75

(e) TH=95 (f) TH=115

Figure 4.9: Example of outputs of the vizualizer used to threshold manually for
Albuquerque

4.4 Point Cloud Coloring

The previous steps only allow to extract the structure but not the appearance. Hence,

once the volume has been thresholded, each point still needs to have a color assigned

71

to it. Besides, a significant amount of the points present in the raw point cloud are

actually interior point that are not visible on the images. The proposed coloring

algorithms deal with occlusion when assigning a color to each point and eventually

remove from the point set, any point that would never be visible on the tested views.

There are actually two possible algorithms:

• One Algorithm is Bresenham based, and strictly enforces occlusion but is time

expensive

• One Algorithm is faster but has a lower accuracy with regard to the occlusion

constraint

4.4.1 Bresenham Based Coloring Algorithm

Given the initial number of points and the computation cost to determine the visi-

bility, we cannot a↵ord to run the algorithm on too many views and have to select a

subset of the images used for the reconstruction. Usually this subset contains around

10 views. For each image of the subset, we go through every point of the raw point

cloud and check for its visibility on the current image using bresenham to determine

if another occupied voxel stands in between this point and the cam- era center. If

the point is visible, after back projecting it on the image, the color read on the image

is assigned to it. Once a color is assigned to a point it cannot be modified and we

will not even check for its visibility in the next images. This con- straint is to avoid

mixing di↵erent views to color adjacent points. the algorithm can be summarized as

follows:

4.4.2 Z-Bu↵er Based Coloring Algorithm

This alternative algorithm has the obvious advantage to be faster. The Bresenham

algorithm is computationaly expensive. Projecting every point once is still obvi- ously
72

Algorithm 5 Bresenham based coloring algorithm
1: ImageSubset = ExctractImageSubset()
2: for ImageIndex = 1 : NImagesInSubset do

3: for PointIndex = 1 : NPoints do

4: if IsColored(PointIndex) == false then

5: V oxelList = Bresenham3D(CurrentPoint, CameraCenter, V oxelBox)
6: if AllV oxelsAreEmpty(V oxelList) == true then

7: ImageProjection = GetImageProjection(ImageIndex, PointIndex)
8: Color(PointIndex) = ImageProjection.Color
9: IsColored(PointIndex) = true
10: end if

11: end if

12: end for

13: end for

a necessity, but instead of searching all along the ray for other occluding voxel it is

more e�cient to keep track for each location on the projection plane of the projected

point with minimal depth. After every point has been projected, the list of visible

point can easily be retrieved and updated with the appearance infor- mation from

the current image. A cost function such as the local depth or depth gradient can be

used to decide wether or not to update. However, since points have no dimension, the

well enforcement of the occlusion constraint is dependant on the depthmap resolution

that need to be lower than the one of the point cloud.

Figure 4.10: A larger angle between the ray and the surface create a larger depth
di↵erence between adjacent pixels

73

Algorithm 6 Z-Bu↵er based coloring algorithm
1: ImageSubset = ExctractImageSubset()
2: DepthMap=assign < float > (DepthMapWidth,DepthMapHeight)
3: IndexMap=assign < int > (DepthMapWidth,DepthMapHeight)
4: Cost=assign < float > (NPoints)
5: Cost.fill(INF)
6: for ImageIndex = 1 : NImagesInSubset do

7: DepthMap.fill(INF)

8: IndexMap.fill(�1)

9: CurrentImage = LoadImage(ImageIndex)
10: for PointIndex = 1 : NPoints do

11: [px py Depth]=BackProject(PointIndex, ImageIndex)
12: [x y]=Image2DepthMap(px, py)
13: if Depth < DepthMap(x, y) then
14: DepthMap(x, y) = Depth
15: IndexMap(x, y) = PointIndex
16: end if

17: end for

18: for x = 1 : DepthMapWidth do

19: for y = 1 : DepthMapHeight do

20: if IndexMap(x, y)! = �1 then

21: CurrentPointIndex=IndexMap(x, y)
22: CurrentCost=CostFunction(x, y)
23: [px py]=DepthMap2Image(x, y)
24: if CurrentCost < Cost(CurrentPointIndex) then
25: Cost(CurrentPointIndex) = CurrentCost
26: Color(CurrentPointIndex) = CurrentImage(x, y).Color
27: end if

28: end if

29: end for

30: end for

31: end for

4.4.3 Complexity Analysis

The fast Z-Bu↵er algorithm presents several advantages compared to its Bresenham

based counterpart. In term of memory complexity, it onlyh requires to maintain a list

of points, a depthmap and an image, whereas the Bresenham based algorithm requires

to keep a 3D grid in memory. The depthmap resolution is tied to the point cloud

resolution in such a way that it is always lower than the input image resolution. We

can therefore consider that the memory complexity of Bresenham based and Z-bu↵er

based coloring algorithms are respectively O(Nvoxels + Nimagepixels) and O(Npoints +

Nimagepixels). As most of the 3D grid is usually empty, the memory usage is divided

74

by at least a factor of 10. In term of execution time, the Z-bu↵er algorithm scales

linearly with the number of points and the number of views (O(Nviews ⇤Npoints) while

the brensenham based algorithm is dependant on the number of voxels ((O(Nviews ⇤

Nvoxels))

4.5 Experimental Results

4.5.1 Four Hills

Four Hills dataset sheds light on the limits of the approach. The high variation of

elevation in general makes the approach fall apart. Since this dataset has lower frame

rate and lower image resolution, less time has been spent optimizing the result, as

the new frame rate and resolution was going to be the new baseline moving forward.

(a) Four Hills overall view (b) Zoom in bridge and residential area

Figure 4.11: Screenshots of the vizualized output for Four Hills

4.5.2 Albuquerque

The presented approach works very well on Albuquerque dataset. A lot of the struc-

ture is correctly reconstructed, notably around the downtown plaza. Thje result have

a few obvious flwas, like the large white roof of the convention center that cannot

75

be completely reconstructed, unless we use an additional post processing step with

morphology. However this additional processing has its downside as it tends to merge

together buildings that are to close from one another.

(a) Albuquerque overall view (b) Zoom in Downtown

Figure 4.12: Screenshots of the vizualized output for Albuquerque

4.5.3 Berkeley

Berkeley, is another example of dataset on which the voting pipeline is relatively

successful. The moderate size buildings are reconstructed with good accuracy. Some

building with homogenous rooftops have holes and the stadium area already shed

lights on some of the pipeline limitations.

(a) Berkeley overall view (b) Zoom in Downtown

Figure 4.13: Screenshots of the vizualized output for Berkeley

76

4.5.4 Los Angeles

Los Angeles provides the most satisfying result. The algorithm seems to perform

particularly well with this type of dataset. All the tall buildings in the downtown area

are reconsgtructed with high fidelity. The relatively flatter area is also rendered with

a very good quality. To name a few rare downsides, the extrusion or vote collapsing

causes a crane to turn into a wall and the lack of usable views of the skyscrapers basis

causes the presence of holes or shadows in that area.

(a) Los Angeles overall view (b) Zoom in Downtown

Figure 4.14: Screenshots of the vizualized output for Los Angeles

4.5.5 Columbia

The original voting pipeline does not perform well on the Columbia dataset. The

elevation variation poses a challenge not properly handled by this pipeline, and this

dataset makes that flaw very obvious. Depending on where the bottom plane is set,

we either get empty areas or a ”house on pillar” e↵ect. Another possible explanation

is that the feature detector also happens to under perform on that specific image

sequence. The result indeed shows very sparse and discontinuous structures.

77

(a) Columbia overall view (b) Zoom in Downtown

Figure 4.15: Screenshots of the vizualized output for Columbia

Dataset Voxel Resolution Number of points in output point cloud
Four Hills 1001x1001x66 (1m) 1,141 Millions

Albuquerque 1001x1001x201 (1m) 1,521 Millions
Berkeley 1001x1001x151 (1m) 1,756 Millions

Los Angeles 1501x1501x401 (1m) 4,727 Millions
Columbia MO 1001x1001x161 (1m) 2,795 Millions

Table 4.1: Summary of Dataset resolution and output point cloud sizes

4.5.6 Scaling Summary

The table 4.1 summarizes the size of each reconstructed dataset:

78

4.6 Other Experiments

We tried several other experiments to extract the 3D structure from the voting space

as rigourously as possible. The rest of this section presents some of the approaches

we tried.

4.6.1 Temporal Incremental Voting and Removal

Voting all along a ray, from its Voxel Box entry to its exits, partly explain the sig-

nificant amount of noise in the final vote volume. This noise increases for each new

view and one possible solution would be to remove some of the votes classified as

noise at the same time we are adding votes from another new frame. Therefore, we

propose a modified voting algorithm that enforces an implicit temporal consistency of

votes and filters the noise from older frames at the same time it adds new frame, by

alternating phasis of voting and vote removal (See algorithm 9). Besides, this method

also enforces that each voxel can received at the most one vote per frame, regardless

of the voxel resolution and features density (See algorithms 7 and 8).

Algorithm 7 Voting Unique(CurrentImageIndex)
1: for All V oxel do

2: V oxel.CurrentV ote = false
3: end for

4: FeaturePointList = GetFeaturePointList(CurrentImageIndex)
5: CameraParameters = GetCameraParameters(CurrentImageIndex)
6: for each FeaturePoint in FeaturePointList do

7: Ray = GetRay(FeaturePoint, CameraParameters)
8: [EntryPoint, ExitPoint] = GetRayAndV oxelBoxIntersections(Ray, V oxelBox)
9: RayV oxelList = Bresenham3D(EntryPoint, ExitPoint)
10: for each V oxel in RayV oxelList do

11: V oxel.CurrentV ote = true
12: end for

13: end for

14: for All V oxel do

15: if V oxel.CurrentV ote == true then

16: V oxel.V oteCount++

17: end if

18: end for

79

Algorithm 8 Voting Removal(CurrentImageIndex)
1: for All V oxel do

2: V oxel.CurrentV ote = false
3: end for

4: FeaturePointList = GetFeaturePointList(CurrentImageIndex)
5: CameraParameters = GetCameraParameters(CurrentImageIndex)
6: for each FeaturePoint in FeaturePointList do

7: Ray = GetRay(FeaturePoint, CameraParameters)
8: [EntryPoint, ExitPoint] = GetRayAndV oxelBoxIntersections(Ray, V oxelBox)
9: RayV oxelList = Bresenham3D(EntryPoint, ExitPoint)
10: for each V oxel in RayV oxelList do

11: if V oxel.V oteCount < RepeatabilityThreshold then

12: V oxel.CurrentV ote = true
13: end if

14: end for

15: end for

16: for All V oxel do

17: if V oxel.CurrentV ote == true then

18: V oxel.V oteCount��
19: end if

20: end for

Algorithm 9 Alternated Unique Voting and Vote Removal
1: for FrameIndex=1 to RepeatabilityThreshold do

2: Voting Unique(FrameIndex)
3: end for

4: for FrameIndex=RepeatabilityThreshold+ 1 to N Frames do

5: Voting Removal(FrameIndex�RepeatabilityThreshold)
6: Voting Unique(FrameIndex)
7: end for

80

(
a
)
S
te
p
1

(
b
)
S
te
p
2

(
c
)
S
te
p
3

(
d
)
S
te
p
4

(
e
)
S
te
p
5

(
f
)
S
te
p
6

(
g
)
S
te
p
7

(
h
)
S
te
p
8

(
i
)
S
te
p
9

(
j
)
S
te
p
10

(
k
)
S
te
p
11

(
l
)
S
te
p
12

F
ig
u
re

4.
16
:
T
h
e
al
go
ri
th
m

st
ar
ts

by
ca
st
in
g
vo
te
s
fr
om

4
co
n
se
cu
ti
ve

fr
am

es
(r
ay
s
in

re
d
),
an

d
th
en

al
te
rn
at
es

re
m
ov
in
g
vo
te

fr
om

ol
d
es
t
vi
ew

(r
ay
s
b
ec
om

e
b
lu
e)

an
d
ad

d
in
g
vo
te
s
fr
om

n
ew

vi
ew

s,
u
nt
il
th
er
e
ar
e
n
o
n
ew

vi
ew

le
ft
.
O
n
ly

vo
xe
ls

w
it
h
a

vo
te

co
u
nt

b
el
ow

a
th
re
sh
ol
d
ar
e
d
ec
re
m
en
te
d
.

81

4.6.2 Occlusion and Appearance Consistency Filtering

deriving depth probability distribution from vote volume

Instead of applying a global threshold, the vote volume can be converted into a prob-

ability of occupancy for each voxel, from which can be derived a depth distribution

along each ray (See figure 4.17). The order in which the voxels are met is important

and the first voxel with very high occupancy probability should correspond to the

maximum of likelihood for the depth value, even if some peaks with higher vote value

can be met later down the ray. It is actually simple to formalize it. A voxel is visible

from a position if and only if all the voxels in between are not occupied. Therefore,

given the probability of occupancy for each voxel in between, we can compute the

probability of visibility as the product of all preceding voxel probabilities of non-

occupancy (See equation 4.2). Then, the current voxel corresponds to the feature

observed on the image if and only if that voxel is visible, and occupied. We consider

in that case that the depth of the ray is the distance from the camera center to the

current voxel, and to simplify without loss of information, we write Depth=i where i

is the voxel index, varying from 1 which is the closest to the camera to N which is the

furthest apart. (See equation 4.3). Before all of this, the probability of occupancy is

computed by normalizing the vote volume, using a sigmoid (see figure 4.8) and two

boundaries corresponding to a low threshold, taken as the average number of vote,

below which the probabiilty equals 0 and a high threshold that coresponds to the top

2 percent number of votes, above which the probability is set to 1.

PV isibility(i) =
Y

j<i

(1� POccupancy(j)) (4.2)

P (Depth = i) = PV isibility(i) ⇤ POccupancy(i) (4.3)

82

Figure 4.17: The ray goes through the whole voxel box and comes across voxels with
various number of Votes. The higher the number of votes, the higher the probability
for the voxel to be occupied. The order in which the voxels are met matters and the
highest probability of occupancy is in general not the same as the highest probability
of Depth. The candidate locations for the real point are taken at each local maximum
peak (red dots)

combining with appearance consistency

It is possible to make the model more robust by adding appearance information. Each

voxel can be projected on several images, and a matching score can then be computed

(using either cross correlation or a descriptor like for example Daisy). If the appear-

ance is not consistent between di↵erent views, it should decrease the probability for

that voxel to be occupied. However, we do not want the consistency information to

take over the depth probability we previously computed. The appearance matching

score is normalized into an ↵ value between 0 and 1. A value of 0 should correspond

to a total inconsistency and should raise the probability of non-occupancy or trans-

parency to 1. A high consistency should decrease the probability of transparency, but

the latter should still depend on the voting information. We therefore propose to use

83

↵ as an exponent in the following way:

PV isibility(i) =
Y

j<i

(1� POccupancy(j))
↵j (4.4)

P (Depth = i) = PV isibility(i) ⇤ [1� (1� POccupancy(i))
↵i] (4.5)

Equation 4.5 can also be put in the simpler form:

P (Depth = i) = PV isibility(i)� PV isibility(i+ 1) (4.6)

Figure 4.18: A Jet colormap is applied to the point cloud to represent the final
confidence. Blue is the lowest confidence, red the highest. As we can see most of the
point have low confidence

4.6.3 Thresholding by Vote Accumulation

Another possibility is to keep track of the number of rays computed from feature

points and to select the minimal set of voxels such as the sum of all their votes equals

this number of rays. This global threshold is always perfectly defined and naturally

selects the voxels with higher vote accumulation.

84

Figure 4.19: Screenshot of a point cloud of Albuquerque Dataset obtained with the
vote accumulation thresholding method.

4.6.4 Algorithms Memory Requirement

As a volumetric approach, the voting memory requirement is dependant on the num-

ber of voxels (O(NV oxels)), which is determined by the size of the bounding volume

and the space sampling resolution.

85

4.7 Discussion: Shortcoming and Limitations

The quality of the result significantly varies from one dataset to another. A scene

like downtown Los Angeles, or to a certain extent Albuquerque will allow the method

to produce good results but scenes wthl smaller structures are in often only partially

reconstructed. There is in general only little garantee over the qual- ity of the final

result due to several reasons. First of all, after every feature point from every image

has been used to cast a ray, the resulting vote space contains a lot of noise and

finding a thresholding method based on strong theoritical ground and leading to a

satisfactory result has proven to be di�cult. The best results were obtained with ad

hoc method and manual intervention. But even with an ideal thresholding method,

the final number of true 3D point should be bounded to the average number of

feature points per frame and as a result the reconstruction is often only partial. This

drawback is however inherent to the method and if the number of feature point per

frame is increased, firstly this means using less reli- able features and secondly the

amount of noise can rapidly become overwhelming to a point it becomes impossible to

extract any structure. It is therefore preferable to be selective when voting and then

apply post processing techniques on the vote space such as vote collapsing, gaussian

smoothing and morphology. The vote collapsing works as an extrusion and allows

to reconstruct most of the building facades and adds a lot of structure as it is very

common that only feature points on rooftops would get detected. However, the lack

of information on the local terrain often causes to extrude beyond the ground level.

In addition, some of the structures like bridges, arches or cranes are non convex and

cannot be correctly re- constructed with this method. Similarly Gaussian smoothing

was used to derive a continuous density value from the sparse voting information,

but while it allows to obtain more continuous structures, this has a cost with regard

to accuracy. Then, morphology can be used in ad hoc way to fill holes in wide

rooftops that tends to lack textures but it can sometime cause unwanted merges
86

between neighboring buildings. Last but not least, the actual detected structures

are placed on a solid horizontal plane corresponding to the bottom lowest altitude

of the reconstruction volume. This only works well in ideal cases of cities with low

varation of eleva- tion, which in addition, needs to be determined beforehand. For all

these reasons, although the method can give impressive results on a dataset like Los

Angeles or to a lesser extent Albuquerque, these flaws become very obvious on more

chal- lenging scenes, like Four Hills, or Columbia MO. It was therefore necessary to

address these weaknesses and to design an approach that could lead to denser and

continuous reconstruction without making strong assumptions that are too rapidly

challenged in real scenarii.

87

Chapter 5

Plane Sweep with Voting Pipeline

5.1 Introduction

The approach proposed in chapter 4 succeeds in triangulating an increased num- ber of

detected feature points without having to use an explicit matching function. However,

a significant amount of structure is still missing and some strong as- sumptions holding

only in specific case had to be made to try to retrieve some of it. While the vote

collapsing, or vertical extrusion is a reasonable in most case, the use of an arbitrary

bottom plane as ground terrain is a weak solution that will turn out to be problematic

more often than not. The approach presented in this chapter tries to adress these

issues.

5.2 Pipeline Overview

The proposed pipeline in its simplest version can be decomposed into the following

subparts:

• Depth Map from Stereo Vision
88

• Multi-View Depth Voting

• Point Cloud Extraction

Figure 5.1: Plane Sweeping based Pipeline: This framework doesnt require the intial
computation of features and instead starts with a plane sweeping phase, followed by
a modified voting algorithm.

Figure 5.2: Plane sweeping principle: The projected image patch of the object, from
each image, overlap perfectly only when the projection plane is at the same location
as the object, in order for this method to work optimally the plane orien- tation must
be parallel to the surface of the object.

89

Figure 5.3: The matching only involves two views. Each image is projected on a
common plane, giving two new images in a common frame of reference. A sum of
absolute di↵erence is then computed over the whole projection plane.

5.2.1 Plane Sweeping

In an attempt to achieve a complete dense reconstruction, di↵erent from the ap-

proach that consists in triangulating a limited number of points, we want to resolve

continuous fields. Plane sweeping is a method that allows to compute a continu-

ous depthmap from a pair of images by sampling the 3D space in parallel slices and

finding the projection distance with maximum photometric consistency (Figure 3.2).

One of the advantages of this method is that once a projection direction is defined, it is

possible to compute a matching measure for several projection distance by only scaling

the projected image, instead of going again through the computationaly expensive

projection. Di↵erent from voting in first pipeline, the memory usage can be reduced

to a minimum. Only the current projection plane and the registered maps keeping

track of the maximum score and optimal distance are required to stay in memory.

Parallelization is also straightforward. There are several ways to divide the work load

between thread and minimize conflicts between threads for data access.

90

Algorithm 10 Plane sweep
1: ProjectionDistance,Rplane

2: WarpedImage1 = BuildImageProjection(Image1, P rojectionDistance, Rplane)
3: WarpedImage2 = BuildImageProjection(Image2, P rojectionDistance, Rplane)
4: OptimalDistanceImage = Initialize(inf)
5: OptimalDiffImage = Initialize(inf)
6: for SweepingDistance = SweepingRangeMin : SweepingRangeMax do

7: ScaledImage1 = ScaleImage(WarpedImage1, SweepingDistance)
8: ScaledImage2 = ScaleImage(WarpedImage2, SweepingDistance)
9: AbsoluteDiff = Abs(ScaledImage1� ScaledImage2)
10: AbsoluteDiff = Abs(conv2d(ADiff, ones(KernelSize)))
11: RescaledAbsoluteDiff = ScaleImage(AbsoluteDiff, ProjectionDistance)
12: for pixelinOptimalDiffImage do

13: if RescaledAbsoluteDiff(pixel) < OptimalDiffImage(pixel) then
14: OptimalDiffImage(pixel) = RescaledAbsoluteDiff(pixel)
15: OptimalDistanceImage(pixel) = ProjectionDistance
16: end if

17: end for

18: end for

Figure 5.4: A local coordinate system is associated to the plane on which the image
is being projected. Rplane allows to transform from plane coordinates to world coor-
dinates. Then the projection matrix of a chosen camera can be used to calculate the
pixel projection and obtain the color sample.

91

Figure 5.5: Once the image has been warped a projection on any parallel plane can
be obtained by simple rescaling and translating operations.

Figure 5.6: Intensity di↵erence between two warped adjacent views at two di↵erent
projection distances.

92

(
a
)
F
ra
m
e
0

(
b
)
F
ra
m
e
90

(
c
)
F
ra
m
e
18

0
(
d
)
F
ra
m
e
27

0

(
e
)
F
ra
m
e
36

0
(
f
)
F
ra
m
e
45

0
(
g
)
F
ra
m
e
54

0
(
h
)
F
ra
m
e
63

0

(
i
)
F
ra
m
e
72

0
(
j
)
F
ra
m
e
81

0
(
k
)
F
ra
m
e
90

0
(
l
)
F
ra
m
e
99

0

F
ig
u
re

5.
7:

T
w
el
ve

ou
tp
u
t
d
ep
th
m
ap

s
fr
om

on
e
or
b
it
of

A
lb
u
qu

er
qu

e
d
at
as
et
,
sp
re
ad

ov
er

on
e
fl
yi
n
g
or
b
it
.

93

5.2.2 Depth Based Voting

Once we have produced a large enough set of Depth Map from adjacent pairs, the

next step is to combined the information into a single probabilsitic volume. Each

Depthmap are telling us to a certain extend what part of space is probably empty,

occupied or hidden

Figure 5.8: Depth based Voting: for each voxel, its distance to the camera center
of projection is compared to the depth value read on the depthmap at its projection
location. If the distance is significanlty shorter than the depth value, the voxel should
be empty. Hence it is given a negative vote. If the distance is close enough to the
depth value, the voxel is considered as occupied according to this view and its vote
count is incremented positively. For distances beyond the read depth value, the voxel
is not supposed to be visible and its vote count should not be updated.

5.2.3 Algorithms Memory Requirement

Ultimately, the plane sweep based pipeline is also a volumetric approach and the

memory usage is therefore bound to the voxel grid resolution. A possible optimization

is to discard each depthmap once it has been used to update the voxel grid, in which

case only one depthmap in addition to the grid is needed at any time in memory

94

Algorithm 11 Depth-based voting Algorithm
1: for DepthMapIndex = 1 : NDepthMap do

2: for V oxelIndex = 1 : NV oxels do

3: (p
x

, p
y

) = GetV oxelProjection(DepthMapIndex, V oxelIndex)
4: EstimatedDepth = DepthMap(DepthMapIndex)(p

x

, P
y

)

5: Distance = GetDistance(V oxelIndex,DepthMapIndex)
6: if Distance < EstimatedDepth� ✏ then

7: Count(V oxelIndex)��
8: else if Distance < EstimatedDepth+ ✏ then

9: Count(V oxelIndex) + +

10: end if

11: end for

12: end for

(O(Nvoxels +Ndepthmappixels).

5.2.4 Point Cloud Extraction

After enough depthmaps have been used for voting, a clear separation between empty

space with low negative vote count and occupied space with strictly pos- itive count

is expected. In that case, thresholding the vote space, unlike in our Feature Voting

based pipeline, is a trivial task. Applying an extrusion step, such as the vote collapsing

presented in section 2.2.2 can still help adding back missing building structures. As

the method performs well overall on the terrain reconstruc- tion aspect, this therefore

eliminates one of the undesirable e↵ect of the extrusion.

5.2.5 Depth Voting and Thresholding

As a next step, the set of generated depthmap are used for voting according to

the method described in the Depth based voting section. In addition to the vote

count, we are keeping track for each voxel of the number of frames its projection is

within the image boundaries. Figure 5.9 shows histograms of these two measures for

Albuquerque reconstruction volum and Figure 5.10 shows the vote count and visibility

count spaces observed from above.

95

(a) Vote Space Histogram

(b) Visibility Count Histogram

Figure 5.9: Albuquerque Vote and visibility count histograms

96

(a) Vote Space visualization

(b) Visibility Count visualization

Figure 5.10: Top views of vote space and visibility count for Albuquerque.

The visibility histograms and top views shape are expected. The majority of the

center area is visible on every view and account for most of the space. The visibility

gradually declines as we move towards the borders. Experiments also show that the

empty space ends up with very low negative vote count and a trivial threshold value

97

around 0 gives satisfactory result provided that we also use the visibility count to

filter out voxel with uncertain vote value due lack of persistent information. After a

raw point cloud has been extracted, we can reuse coloring algorithms from section ??

in order to obtain the final rendering. Figure 5.11 and 5.12 show screenshot of the

final result for respectively Albuqerque and Columbia.

(a) Overall view (b) Overall view from opposite angle

(c) Zoom on Convention Center (d) Zoom on Judicial Courts area

Figure 5.11: Screenshot of final point cloud for Albuquerque

98

(a) Overall view (b) Overall view from opposite angle

(c) Zoom on Broadway street (d) Zoom on 6th street, and a part of Naka
Hall

Figure 5.12: Screenshot of final point cloud for Columbia MO

successive iterations using priors

The 3D model obtained by fusing the depthmaps can be used to compute a prior and

refine the sweeping range and adapt it locally on the image. The most direct way

is to divide the image into tiles. (See Figure 5.13). This can potentially accelerate

the computation of each depthmap in addition to making it more robust by adding

information from more views.

99

Figure 5.13: The sweeping pipeline can be initialized using a previous reconstruction
result to locally refine the sweeping range. Here a regular grid is used an local prior
is computed on each tile from which a more narrow sweeping range can be inferred.

100

Chapter 6

Benchmarking and Evaluation

This chapter discusses possible ways to quantitatively evaluate the performance of

the 3D reconstruction algorithms. Benchmark datasets for 3D reconstruction exist

but are not suitable for our application as Crispell et al has shown.[19] Qualitatively

when looking at a reconstruction result we particularly focus on two aspects :

• The accuracy and completeness of the 3D shape

• The photoconsistency of the appearance model

Performing these evaluations qualitatively is a di�cult task.

We can resort to sampling, by tracking points throughout an image sequence, and

then check the variation in the position estimate. Occlusion prediction can also be

evaluated that way.

Alternatively the quality of a reconstruction can be appreciated indirectly for

example by assessing what was the performance gain when tracking.

101

6.1 Evaluation of Accuracy and Completeness of
the 3D Structure

This part is the most di�cult as it requires the availability of a from of Groundtruth,

possibly LIDAR data or manually generated 3D models.

When this type of data are available, one can either compute a mean square error

over registered depthmaps or compute di↵erence between 3D volumes.

As a preliminary step, registration in a common coordinate system will be needed

[76]. In the case of aerial imagery, it makes sense to convert the coordinates into

latitude and longitude. Ideally, we would want an equation that analyticaly converts

from the original reconstruction frame of coordinate to the lat-long values. If this is

not possible, an alternative is to manually match at least 4 tie points from the point

cloud to google map or on site measurements.

6.2 Evaluation of the Photo Consistency

This part is more straight forward. Once a photo realistic 3D model has been gener-

ated, synthetic images can be generated by specifying a camera pose identical to one

of the available real images. We can then just compare the error between the two

images. Photo consistency is however a measure to consider with great care. Indeed,

it has already been stated that an infinity of reconstructions are photo consistent,

which means that a high score in photo consistency does not necessarily mean that

the 3D model is accurate. Furthermore, since the lambertian surface hypothesis does

not hold in real data either, any static appearance model like the one presented in

this thesis will never be able to achieve full photo-consistency as for example, reflec-

tion surfaces are not supported by this approach. Measuring photo consistency can

however help setting a baseline to compare di↵erent photo realistic models as long as

it is always paired with an evaluation of the shape modeling accuracy.
102

6.3 Qualitative Comparison

Neither 3D reconstruction nor LIDAR datasets are easily shared right now. We were

able to test PMVS on transparent sky datasets. The algorithm gives reliable results

sometimes better like on Columbia MO compared to the voting based pipeline, but

sometimes not as good like for example on Los Angeles where the tall building facades

have holes.

Deep Learning based methods do not seem for now to outperform traditional

approaches. Our reconstruction results are comparable to the ones displayed by

Paschalidou et al [70] (Figure 6.1).

Figure 6.1: Comparison of several depthmap results from Paschalidou et al [70] and
a match result of our plane sweep method.

6.3.1 Evaluation using cloud compare

More and more LIDAR data is becoming available and it was for example possible

to download LIDAR data for Albuquerque and to compare it with our reconstruction
103

results using cloud compare [77](See Figure 6.2). The LIDAR data is however signifi-

cantly more sparse than the reconstructed point cloud, which makes the interpretaton

of any matching metric di�cult and uncertain.

104

Figure 6.2: A LIDAR point cloud (in red) can be aligned with our reconstruction in
order to evaluate the result in cloud compare [77].

105

Chapter 7

Applications

7.1 Introduction

This chapter presents a list of practical uses for the data generated by the 3D pipeline.

Thus from the 3D point clouds it is possible to generate:

• Altitude Masks

• Synthetic Images

• Hazard maps

• Orthorectified maps

7.2 Altitude Masks

Object tracking in WAMI data is a very challenging task, due to lower frame rate

and low definition of the object being tracked. For instance a vehicle will be fit

in a window of 20 by 20 pixels and its position from one frame to another might

change significantly. For these reasons it is common for any automatic tracker to
106

lose the target and even often continue tracking a spuriously matched image patch.

Furthermore if detection relies on motion, even after registration the parallax can

cause a very high number of false alarms unless additional filtering measures are

taken. For that purpose, Altitude maps generated from the 3D data can prove to be

very useful by filtering out impossible locations for a vehicle [78, 79].

Figures 7.2 and 7.1 show examples of altitude mask for Albuquerque.

Figure 7.1: Superimposed altitude mask on its corresponding image for Albuquerque
dataset.

107

Figure 7.2: Illustration of altitude masks

108

7.2.1 Synthetic Images

Once we have the final output of the reconstruction, building a synthetic image is

straighforward. We could project each point of the point cloud on a corresponding

pixell, but if the resolution of the built image is too high, this will generate an image

with most of its pixels without any color assigned. Instead we project each pixel onto

an occupied voxel. (See example of synthetic image in Figure 7.3)

As an estimate of the potential compression, we can compare for Los Angeles the

size of the input data to the size of the output point cloud. Los Angeles orbit sequence

contains 351 frames of 6600x4400 rgb pixels which amounts if uncompressed to about

30.57 GB. The JPEG compressed images are actually taking 2.86 GB on disk. The

point cloud used to generate the image from Figure 7.3 contains 4.727 millions colored

points. Each points coordinates and apperance information is represented by respec-

tively 3 floats and 3 chars, therefore taking 15 bytes in memory. The total memory

space taken by the point cloud is therefore 70 MB, which represents a compression

factor of around 430 with regard to the uncompressed image sequence and a factor

of 40 compared to the JPEG images.

7.2.2 Hazard Map

An other application, once we have a reconsctruction is to produce an hazard or

visibility map. First we need to sample the hemisphere surrounding the whole point

cloud (See Figure 7.4). Each sampled point of the hemisphere is considered to be

a view point. For each point in the point cloud, we compute the percentage of view

points it is visible from, and eventually apply a jet colormap to the whole point

cloud representing the visibility of each area (See screenshot on Figure 7.5). This

visualization gives additional insight to an analyst by emphasing parts of the scenery

with permanent full visibility and areas that are expected to be unaccessible on a

109

Figure 7.3: Example of synthetic images generated with Los Angeles point cloud

bigger fraction of the acquired imagery.

Figure 7.4: Sampling of the superior hemisphere using recursive divisions

7.3 Ortho-rectified Maps

Another possible format is an orthorectified image augmented with the 3D model

that allows to identify blind spots from the current point of view. Figure 7.6 shows a
110

Figure 7.5: Hazard map for Los Angeles, hemisphere sampled with 105 points

preliminary result for Albuquerque of an image orthoprojection that also accounts for

structural occlusions. Ortho-rectified maps can be an important part for example of

a video-summarization workflow [80, 81], but the generation of a panorama without

the use of 3D model will cause element of background to change from one image to

another.

111

Figure 7.6: Example of 3D orthorectified image for Albuquerque. The 3D model
allows to determine the occluded areas that are rendered as black shadows.

112

Chapter 8

Conclusion

This dissertation presents several algorithms to e�ciently generate highly accurate

reconstruction of city landscape from Wide Area imagery. Mainly organized in two

pipelines, one based on accumulation of votes from repeatably detectable features,

and one based on plane sweeping.

The algorithms have been tested on several datasets and prove to be promising

allowing us to generate high quality reconstructions of very large urban areas in a very

short time. Results prove still on par with Deep Neural Network based frameworks,

or highly recognized methods such as PMVS.

This thesis also presents applied uses of the generated 3D data, such as:

• Hazard Maps which are an example of new information that we can learn after

generating the 3D model

• Filtering through the use of altitude masks, which proved to significantly im-

prove detection and tracking performance

• Synthetic image generation which demonstrate the potential for novel view gen-

eration and also data compression.

113

• Ortho rectified maps which show the potential of the data for augmented map-

ping.

As possible extension, the algorithms can be accelerated via parralelization, and

further research could be invested into automation as it still requires educated man-

ual interventions. The plane sweep model is extensible with adaptable local plane

orientations, and di↵erent partitioning of the prior map using segmentation data.

The presented methods all, in a way or another rely on the photoconsistency

assumption which in real dataset never totally holds. The inherent flaw of photo

consistency was already well documented before and this research leads us to the

same conclusion. The voting pipeline based on a relatively simple model, is on par

with PMVS on Albuquerque dataset and gives a better result for Los Angeles. This is

because the vote collapsing or vertical extrusion applies particularly well to this type

of scenery. It seems even the most elegant models using only photoconsistency will

expectedly meet random success or failure, while extrapolation of data via additional

knowledge go a surprisingly long way towards achieving completeness. My personal

belief after these years of research is that significant step up in 3D reconstruction

can only be achieved by using a higher level of abstraction for example via shape

recognition, either from 3D data or from images. The human brain, which is still

the best computing machine at understanding its 3 dimensional surrounding does so

much more than matching light intensity patterns between the two eyes. We recognize

shape from our past experience or infer it from shading. Deep Neural Network having

proven to be already performant on these tasks, It will probably play a decisive role

in the future of 3D reconstruction too.

future work

The present work can will be further improved by:

• improve voting using available terrain information
114

• apply a weight to each vote depending of the length of the rays segment that

actually traverses a voxel

• using 3D models from voting as initialization to the plane sweep algorithm and

image segmentation to partition the image for the computation of the local

priors.

• improving the plane sweep cost function to optimize by computing a multi-scale

error metric, and generalize the optimization problem to more than 2 views.

• sweep along several directions and fuse the di↵erent results into a single depthmap.

• Use deep learning to try to apply scene reasoning or to design operators similar

to vote collapsing in order to improve the completeness of the reconstruction.

• use input imagery from di↵erent time and fuse the separated reconstructions

into a single model optimizing a confidence value over the whole set of recon-

struction.

115

Bibliography

[1] Fabio Remondino, Luigi Barazzetti, Francesco Nex, Marco Scaioni, and Daniele

Sarazzi. Uav photogrammetry for mapping and 3d modeling–current status and

future perspectives. International archives of the photogrammetry, remote sens-

ing and spatial information sciences, 38(1):C22, 2011.

[2] JB Antoine Maintz and Max A Viergever. A survey of medical image registration.

Medical image analysis, 2(1):1–36, 1998.

[3] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d

surface construction algorithm. In ACM siggraph computer graphics, volume 21,

pages 163–169. ACM, 1987.

[4] A Roy Chowdhury, Rama Chellappa, Sandeep Krishnamurthy, and Tai Vo. 3d

face reconstruction from video using a generic model. In Multimedia and Expo,

2002. ICME’02. Proceedings. 2002 IEEE International Conference on, volume 1,

pages 449–452. IEEE, 2002.

[5] Erik P Blasch, Matthew Pellechia, Paul B Deignan, Kannappan Palaniappan,

Shiloh L Dockstader, and Gunasekaran Seetharaman. Contemporary concerns

in geographical/geospatial information systems (gis) processing. In Aerospace

and Electronics Conference (NAECON), Proceedings of the 2011 IEEE National,

pages 183–190. IEEE, 2011.

116

[6] Arnold Irschara, Christof Hoppe, Horst Bischof, and Stefan Kluckner. E�cient

structure from motion with weak position and orientation priors. In Computer

Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer

Society Conference on, pages 21–28. IEEE, 2011.

[7] Brittany Morago, Giang Bui, and Ye Duan. Integrating lidar range scans and

photographs with temporal changes. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages 718–723, 2014.

[8] Brittany Morago. Multi-modality fusion: registering photographs, videos, and

LIDAR range scans. University of Missouri-Columbia, 2017.

[9] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview

stereopsis. IEEE transactions on pattern analysis and machine intelligence,

32(8):1362–1376, 2010.

[10] Kannappan Palaniappan, Filiz Bunyak, Praveen Kumar, Ilker Ersoy, Stefan

Jaeger, Koyeli Ganguli, Anoop Haridas, Joshua Fraser, Raghuveer M Rao, and

Guna Seetharaman. E�cient feature extraction and likelihood fusion for ve-

hicle tracking in low frame rate airborne video. Technical report, MISSOURI

UNIV-COLUMBIA DEPT OF COMPUTER SCIENCE, 2010.

[11] Rengarajan Pelapur, Kannappan Palaniappan, and Gunasekaran Seetharaman.

Robust orientation and appearance adaptation for wide-area large format video

object tracking. In Advanced Video and Signal-Based Surveillance (AVSS), 2012

IEEE Ninth International Conference on, pages 337–342. IEEE, 2012.

[12] Rengarajan Pelapur, Sema Candemir, Filiz Bunyak, Mahdieh Poostchi, Guna

Seetharaman, and Kannappan Palaniappan. Persistent target tracking using

likelihood fusion in wide-area and full motion video sequences. In Information

117

Fusion (FUSION), 2012 15th International Conference on, pages 2420–2427.

IEEE, 2012.

[13] Kannappan Palaniappan, Raghuveer M Rao, and Guna Seetharaman. Wide-

area persistent airborne video: Architecture and challenges. In Distributed video

sensor networks, pages 349–371. Springer, 2011.

[14] Marc Pollefeys, David Nistér, J-M Frahm, Amir Akbarzadeh, Philippos Mor-

dohai, Brian Clipp, Chris Engels, David Gallup, S-J Kim, Paul Merrell, et al.

Detailed real-time urban 3d reconstruction from video. International Journal of

Computer Vision, 78(2-3):143–167, 2008.

[15] Johannes L Schönberger, Friedrich Fraundorfer, and Jan-Michael Frahm.

Structure-from-motion for mav image sequence analysis with photogrammetric

applications. International Archives of the Photogrammetry, Remote Sensing &

Spatial Information Sciences, 2014.

[16] Simon Lynen, Torsten Sattler, Michael Bosse, Joel A Hesch, Marc Pollefeys,

and Roland Siegwart. Get out of my lab: Large-scale, real-time visual-inertial

localization. In Robotics: Science and Systems, 2015.

[17] Rahul Bhotika, David J Fleet, and Kiriakos N Kutulakos. A probabilistic theory

of occupancy and emptiness. In European conference on computer vision, pages

112–130. Springer, 2002.

[18] Rahul Bhotika. Scene-space methods for bayesian inference of 3d shape and

motion. PhD thesis, PhD thesis, University of Rochester, New York, 2003.

Supervisor-Kiriakos N. Kutulakos. 61 155 156 BIBLIOGRAPHY, 2004.

[19] Daniel E Crispell. A continuous probabilistic scene model for aerial imagery.

PhD thesis, Brown University, 2010.

118

[20] Illusionpoint.com.

[21] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer

vision. Cambridge university press, 2003.

[22] Yi Ma, Stefano Soatto, Jana Kosecka, and S Shankar Sastry. An invitation to

3-d vision: from images to geometric models, volume 26. Springer Science &

Business Media, 2012.

[23] Reimar Lenz. Linsenfehlerkorrigierte eichung von halbleiterkameras mit standar-

dobjektiven für hochgenaue 3dmessungen in echtzeit. In Mustererkennung 1987,

pages 212–216. Springer, 1987.

[24] Jason P De Villiers, F Wilhelm Leuschner, and Ronelle Geldenhuys. Centi-pixel

accurate real-time inverse distortion correction. In Optomechatronic Technologies

2008, volume 7266, page 726611. International Society for Optics and Photonics,

2008.

[25] Timothy A Clarke and John G Fryer. The development of camera calibration

methods and models. The Photogrammetric Record, 16(91):51–66, 1998.

[26] Elsayed E Hemayed. A survey of camera self-calibration. In Advanced Video

and Signal Based Surveillance, 2003. Proceedings. IEEE Conference on, pages

351–357. IEEE, 2003.

[27] Matthew Brown, David G Lowe, et al. Recognising panoramas. In ICCV, vol-

ume 3, page 1218, 2003.

[28] David G Lowe. Object recognition from local scale-invariant features. In Com-

puter vision, 1999. The proceedings of the seventh IEEE international conference

on, volume 2, pages 1150–1157. Ieee, 1999.

119

[29] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust

features. In European conference on computer vision, pages 404–417. Springer,

2006.

[30] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An

e�cient alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE

international conference on, pages 2564–2571. IEEE, 2011.

[31] http://graphics.stanford.edu/data/3dscanrep/.

[32] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.

Bundle adjustmenta modern synthesis. In International workshop on vision al-

gorithms, pages 298–372. Springer, 1999.

[33] Niko Sünderhauf and Peter Protzel. Towards using sparse bundle adjustment for

robust stereo odometry in outdoor terrain. 2006.

[34] Aleksandr Y Aravkin, Michael Styer, Zachary Moratto, Ara Nefian, and Michael

Broxton. Student’s t robust bundle adjustment algorithm. arXiv preprint

arXiv:1111.1400, 2011.

[35] Andrea Albarelli, Emanuele Rodolà, and Andrea Torsello. Imposing semi-local

geometric constraints for accurate correspondences selection in structure from

motion: A game-theoretic perspective. International journal of computer vision,

97(1):36–53, 2012.

[36] H. AliAkbarpour, K. Palaniappan, and G. Seetharaman. Fast structure from

motion for sequential and wide area motion imagery. Dec 2015.

[37] Hadi AliAkbarpour, Kannappan Palaniappan, and Guna Seetharaman. Parallax-

tolerant aerial image georegistration and e�cient camera pose refinementwithout

120

piecewise homographies. IEEE Transactions on Geoscience and Remote Sensing,

55(8):4618–4637, 2017.

[38] Hadi Aliakbarpour, Kannappan Palaniappan, and Guna Seetharaman. Ro-

bust camera pose refinement and rapid sfm for multiview aerial imagerywithout

ransac. IEEE Geoscience and Remote Sensing Letters, 12(11):2203–2207, 2015.

[39] Changchang Wu et al. Visualsfm: A visual structure from motion system. 2011.

[40] Karthikeyan Natesan Ramamurthy, Chung-Ching Lin, Aleksandr Aravkin,

Sharath Pankanti, and Raphael Viguier. Distributed bundle adjustment. arXiv

preprint arXiv:1708.07954, 2017.

[41] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. International journal of computer

vision, 47(1-3):7–42, 2002.

[42] Jens Ackermann, Michael Goesele, et al. A survey of photometric stereo tech-

niques. Foundations and Trends R� in Computer Graphics and Vision, 9(3-4):149–

254, 2015.

[43] Sudipta N Sinha, Daniel Scharstein, and Richard Szeliski. E�cient high-

resolution stereo matching using local plane sweeps. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 1582–

1589, 2014.

[44] Heiko Hirschmuller. Accurate and e�cient stereo processing by semi-global

matching and mutual information. In Computer Vision and Pattern Recogni-

tion, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages

807–814. IEEE, 2005.

121

[45] Heiko Hirschmuller. Stereo vision in structured environments by consistent semi-

global matching. In Computer Vision and Pattern Recognition, 2006 IEEE Com-

puter Society Conference on, volume 2, pages 2386–2393. IEEE, 2006.

[46] Heiko Hirschmüller. Semi-global matching-motivation, developments and appli-

cations. In Photogrammetric week, volume 11, pages 173–184, 2011.

[47] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard

Szeliski. A comparison and evaluation of multi-view stereo reconstruction al-

gorithms. In Computer vision and pattern recognition, 2006 IEEE Computer

Society Conference on, volume 1, pages 519–528. IEEE, 2006.

[48] Yasutaka Furukawa, Carlos Hernández, et al. Multi-view stereo: A tutorial.

Foundations and Trends R� in Computer Graphics and Vision, 9(1-2):1–148, 2015.

[49] Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An e�cient dense descrip-

tor applied to wide-baseline stereo. IEEE transactions on pattern analysis and

machine intelligence, 32(5):815–830, 2010.

[50] Engin Tola, Christoph Strecha, and Pascal Fua. E�cient large-scale multi-view

stereo for ultra high-resolution image sets. Machine Vision and Applications,

23(5):903–920, 2012.

[51] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patch-

match: A randomized correspondence algorithm for structural image editing.

ACM Transactions on Graphics (ToG), 28(3):24, 2009.

[52] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape by space carving.

International journal of computer vision, 38(3):199–218, 2000.

[53] Annie Yao and Andrew D Calway. Dense 3-d structure from image sequences

using probabilistic depth carving. In BMVC, volume 1, page 2, 2003.
122

[54] Adrian Broadhurst, Tom W Drummond, and Roberto Cipolla. A probabilistic

framework for space carving. In Computer Vision, 2001. ICCV 2001. Proceed-

ings. Eighth IEEE International Conference on, volume 1, pages 388–393. IEEE,

2001.

[55] Greg Slabaugh, Ron Schafer, Tom Malzbender, and Bruce Culbertson. A survey

of methods for volumetric scene reconstruction from photographs. In Volume

Graphics 2001, pages 81–100. Springer, 2001.

[56] Aldo Laurentini. The visual hull concept for silhouette-based image understand-

ing. IEEE Transactions on pattern analysis and machine intelligence, 16(2):150–

162, 1994.

[57] Hadi Aliakbarpour and Jorge Dias. Phd forum: Volumetric 3d reconstruction

without planar ground assumption. In Distributed Smart Cameras (ICDSC),

2011 Fifth ACM/IEEE International Conference on, pages 1–2. IEEE, 2011.

[58] Thomas Pollard and Joseph L Mundy. Change detection in a 3-d world. In

Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference

on, pages 1–6. Ieee, 2007.

[59] Thomas B Pollard. Comprehensive three dimensional change detection using

volumetric appearance modeling. PhD thesis, Brown University, 2009.

[60] Ali Osman Ulusoy, Andreas Geiger, and Michael J Black. Towards probabilis-

tic volumetric reconstruction using ray potentials. In 3D Vision (3DV), 2015

International Conference on, pages 10–18. IEEE, 2015.

[61] Fatih Calakli and Gabriel Taubin. Ssd: Smooth signed distance surface recon-

struction. In Computer Graphics Forum, volume 30, pages 1993–2002. Wiley

Online Library, 2011.

123

[62] Fatih Calakli, Ali O Ulusoy, Maria I Restrepo, Gabriel Taubin, and Joseph L

Mundy. High resolution surface reconstruction from multi-view aerial imagery.

In 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIM-

PVT), 2012 Second International Conference on, pages 25–32. IEEE, 2012.

[63] Ruo Zhang, Ping-Sing Tsai, James Edwin Cryer, and Mubarak Shah. Shape-

from-shading: a survey. IEEE transactions on pattern analysis and machine

intelligence, 21(8):690–706, 1999.

[64] Erwan Guillou, Daniel Meneveaux, Eric Maisel, and Kadi Bouatouch. Using

vanishing points for camera calibration and coarse 3d reconstruction from a single

image. The Visual Computer, 16(7):396–410, 2000.

[65] Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, and Yasutaka Furukawa.

Planenet: Piece-wise planar reconstruction from a single rgb image. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 2579–2588, 2018.

[66] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio

Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object recon-

struction. In European conference on computer vision, pages 628–644. Springer,

2016.

[67] Haoqiang Fan, Hao Su, and Leonidas Guibas. A point set generation network

for 3d object reconstruction from a single image. In Conference on Computer

Vision and Pattern Recognition (CVPR), volume 38, page 1, 2017.

[68] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learn-

ing a predictable and generative vector representation for objects. In European

Conference on Computer Vision, pages 484–499. Springer, 2016.

124

[69] J Gwak, Christopher B Choy, Animesh Garg, Manmohan Chandraker, and Silvio

Savarese. Weakly supervised generative adversarial networks for 3d reconstruc-

tion. CoRR, vol. abs/1705.10904, 2, 2017.

[70] Despoina Paschalidou, Ali Osman Ulusoy, Carolin Schmitt, Luc Van Gool, and

Andreas Geiger. Raynet: Learning volumetric 3d reconstruction with ray poten-

tials. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3897–3906, 2018.

[71] https://www.transparentsky.net/.

[72] Krystian Mikolajczyk and Cordelia Schmid. An a�ne invariant interest point

detector. In European conference on computer vision, pages 128–142. Springer,

2002.

[73] Krystian Mikolajczyk and Cordelia Schmid. Scale & a�ne invariant interest

point detectors. International journal of computer vision, 60(1):63–86, 2004.

[74] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey

vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[75] John Canny. A computational approach to edge detection. IEEE Transactions

on pattern analysis and machine intelligence, (6):679–698, 1986.

[76] Maria I Restrepo, Ali O Ulusoy, and Joseph L Mundy. Evaluation of feature-

based 3-d registration of probabilistic volumetric scenes. ISPRS Journal of Pho-

togrammetry and Remote Sensing, 98:1–18, 2014.

[77] https://www.danielgm.net/cc/.

[78] Mahdieh Poostchi, Hadi Aliakbarpour, Raphael Viguier, Filiz Bunyak, Kan-

nappan Palaniappan, and Guna Seetharaman. Semantic depth map fusion for

125

moving vehicle detection in aerial video. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops, pages 32–40, 2016.

[79] Kannappan Palaniappan, Mahdieh Poostchi, Hadi Aliakbarpour, Raphael Vigu-

ier, Joshua Fraser, Filiz Bunyak, Arslan Basharat, Steve Suddarth, Erik Blasch,

Raghuveer M Rao, et al. Moving object detection for vehicle tracking in wide

area motion imagery using 4d filtering. In Pattern Recognition (ICPR), 2016

23rd International Conference on, pages 2830–2835. IEEE, 2016.

[80] Raphael Viguier, C-C Lin, Karthik Swaminathan, Augusto Vega, Alper Buyuk-

tosunoglu, Sharathchandra Pankanti, Pradip Bose, H Akbarpour, Filiz Bunyak,

Kannappan Palaniappan, et al. Resilient mobile cognition: Algorithms, innova-

tions, and architectures. In Computer Design (ICCD), 2015 33rd IEEE Inter-

national Conference on, pages 728–731. IEEE, 2015.

[81] Raphael Viguier, Chung Ching Lin, Hadi AliAkbarpour, Filiz Bunyak,

Sharathchandra Pankanti, Guna Seetharaman, and Kannappan Palaniappan.

Automatic video content summarization using geospatial mosaics of aerial im-

agery. In Multimedia (ISM), 2015 IEEE International Symposium on, pages

249–253. IEEE, 2015.

126

VITA

Raphael Viguier was born in 1987 in Versailles, France. After obtaining his Sci-

entifique Baccalaurat in Villaroy, Guyancourt in 2004, he attended Lycee Michelet’s

Mathematique Superieure and Speciale classes, in Vanves, before being admitted at

Ecole Centrale de Lille(ECL) in summer 2007. He graduated from ECL in 2011

with a Masters Degree of Engineering. Raphael first worked under Dr. Palaniappan

supervision as a research intern during summer 2011 as a part of his Masters degree

requirement. He later started a doctorate degree at University of Missouri in January

2012. His research focused on 3D reconstruction in Wide Area Imagery, Tracking

and Data fusion. During his doctorate degree, Raphael worked as a research intern

at IBM Watson Researching Yorktown Heights NY from March 2015 to December

2016. At IBM, he worked on Video-Summarization in Wide Area Motion Imagery,

and Tracking on full motion videos from law enforcement body-worn cameras. In

January 2018 he started a new position as Computer Vision Engineer at Numina,

in NYC. He received his Ph.D. degree in computer science from the University of

Missouri Columbia in July 2018

127

