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Abstract

We study the relative motion of nearby free test particles in cosmological
spacetimes, such as the FLRW and LTB models. In particular, the influence
of spatial inhomogeneities on local tidal accelerations is investigated by means
of simple spherically symmetric models. The implications of our results for
the dynamics of the solar system are briefly discussed. That is, on the basis of
the models studied in this paper, we estimate the tidal influence of the cosmic
gravitational field on the orbit of the Earth around the Sun and show that the
corresponding temporal rate of variation of the astronomical unit is negligibly
small.

PACS number: 04.20.Cv

1. Introduction

The gravitational influence of distant galaxies extends over all of the bodies in our cosmic
neighbourhood; therefore, the relative motion of these bodies would be affected by the tidal
field of distant masses. The local tidal effects of distant cosmic masses as a whole can
be studied by means of general relativistic cosmological models. Hence we consider—for
the sake of concreteness—tidal dynamics in the standard homogeneous FLRW models as
well as certain rather simple spherically symmetric inhomogeneous models. Inhomogeneous
cosmological models are of current interest as they may be potentially useful in solving the
dark-energy problem; however, we emphasize that our simple models are employed here
merely to illustrate our general approach.

To study the lowest order tidal effects invariantly, it is necessary to choose an observer and
determine the projection of the Riemann tensor on the observer’s local frame; these curvature
components are then employed to define a quasi-inertial system of normal coordinates in the
neighbourhood of the observer’s worldline. The motion of test bodies can be studied in such
a Fermi coordinate system in accordance with the ideas and methods developed in detail in
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[1]. In the cosmological models that we examine, it is natural to choose the fundamental
observers—i.e. those that are spatially at rest—as fiducial observers and study cosmological
tidal effects in their immediate neighbourhoods. A general outline of the standard procedures
for the study of tidal dynamics is provided below.

In general relativity, it is natural to study the relative motion of a test particle with
respect to an observer in the quasi-inertial Fermi coordinate system [1] established about the
worldline of the observer. To simplify matters, let us assume that the observer follows a
geodesic worldline C and let A" ) be the observer’s local orthonormal tetrad frame that is
parallel transported along C. Here A* ) = dx*/dz is the observer’s local temporal axis and t
is its proper time, while Ay, i = 1, 2, 3, are unit gyro directions that constitute the observer’s
local spatial frame. We choose units such that ¢ = 1, unless specified otherwise. An event P
in the neighbourhood of the observer has Fermi coordinates X* = (7, X); in fact, P can be
orthogonally connected to C at Py via a unique spacelike geodesic of proper length o such that
o = 0 at Py. Let the proper time along C at Py be 7 and £" = (dx"/do )¢ be the unit tangent
vector to the spacelike geodesic at Py; then the Fermi coordinates of the event P are defined
by 7 =t and X' = 0&"2,"). It follows that the observer permanently occupies the spatial
origin of this Fermi coordinate system.

The spacetime metric in Fermi coordinates can be expressed as

Feoo = —1 = "Rojo;,(T)X' X/ +-- -, (1)

Fgo = =3 Roj(MX/ X+, 2

Faij =8 — %FRikjl(T)Xle"'"w 3)
where

FRapys (T) = Rynpo M @y2" (52" 1A% 6) )

is the Riemann curvature tensor along C projected on the tetrad frame of the observer. The
Fermi coordinates are admissible in a cylindrical spacetime region around C with | X| < L,
where L is a measure of the radius of curvature of spacetime.
The motion of a free test particle is given by the geodesic equation
d>x+ dxe« dx#
+ Tl ———— =0, ®)
ds? ds ds

where dX*/ds = T'(1, V) is the particle’s timelike 4-velocity vector. Equation (5) can be
expressed as

Ldl _ ppo 4X° dx?

= — 6
rdr 4T dT ©
and the reduced geodesic equation
aext e - dX« dXx?
——+ (T, =T V) ——— =0 7
arz * (T V') G ar @

This latter equation, to linear order in distance away from C, is the generalized Jacobi equation
(2]

ﬁ Fpo.o.X/ +2FR. ..Vkx/

a72 + Koioj + ikjo

W N

+ (SFR()kj()Vi Vk + FRikﬂVk Vl + FR()ijVi Vk Vl) Xj = 0, (8)
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and the modified Lorentz factor is given by
1
r2
Equation (8) reduces to the Jacobi equation when the velocity-dependent terms are negligibly
small.
In some situations of physical interest, it is possible to have purely one-dimensional
motion, say along the Z-direction. In this case, equation (8) reduces to

dz—Z+k(T)(1 —272)Z =0 (10)
d7? -
where Z = dZ/dT and k(T) = *Ryz7. For |Z] <« 1, equation (10) reduces to the standard
Jacobi equation. However, when the relative speed cannot be neglected in comparison with
the speed of light, the generalized Jacobi equation (10) has solutions with Z = 41/+/2 such
that the relative motion within the linear approximation scheme is uniform at the critical speed
V. = 1/+/2. Below this speed, the relative motion should essentially conform to expectations
based on the post-Newtonian approximation. On the other hand, novel relativistic tidal effects
are expected to occur above the critical speed.

Let the critical solutions of equation (10) be expressed as Z.(T) = Z; £ V.(T — T;),
where 7; is an initial time and Z; = Z.(T;). Then, the behaviour of Z(T) near a critical
solution can be examined by introducing ¢(7') = Z — Z,. It follows from (10) that

4 o 1 ‘ .
=1—V?+ Ryo; X' X' + gFRoﬁka vixk+ gFR,-kﬂV’XkV/Xl. 9)

d’¢ . .

a7z —2k(T)(&" £2V.0)(¢ +Z.) = 0. (11)
Keeping only terms of linear order in (11), we find

1 d¢g

T—g = 34V, Z.k(T), (12)

cdT

where ¢ = d¢/dT. It follows that the long-term behaviour of this motion can be determined
from

o0
I:/ (T + C)Hk(T)dT, (13)
T;
where C; = —T;, + \/QZ,- is a constant and £2V,.Z. = T + C;. For instance, the critical
solutions are attractors for Z = —oo [2]. Equation (10) has been extensively studied in black

hole spacetimes in connection with the problem of astrophysical jets [3, 4].

The main purpose of this paper is to study tidal dynamics in some cosmological models.
It turns out that for the standard FLRW models, k(T') is characterized by the deceleration
of the universe. This point is demonstrated in the following section. In section 3, a
locally inhomogeneous model is employed to determine the corresponding k(7). In this
way, the influence of cosmic spatial inhomogeneities on local measurements is elucidated.
This treatment is extended in section 4 to the Lemaitre-Tolman—Bondi (LTB) models. The
consequences of the results of section 4 for the dynamics of the solar system are briefly
discussed in section 5 and in the appendix. Section 6 contains a brief discussion of our results.

2. FLRW models

Let us first consider the FLRW spacetimes given in isotropic coordinates x* = (¢, x') by
§%(1)
12

—dS2 = —dt2+ 8,‘]‘ dxi dxj, (14)
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where S(f) > 0 is the scale factor and
f@r) = 1+%Kr2 (15)

with k = —1,0, or +1 for the open, flat, or closed universe models, respectively. We note
that the spatial coordinates x' are dimensionless, while the scale factor S has the dimension of
length.

A fundamental observer in this spacetime occupies a fixed position in space and follows
a geodesic worldline C with proper time v = . Let us choose a fundamental observer with
M) = 8" and A* ;) = [f(r)/S(¢)]6";, which can be shown to be parallel transported along
the geodesic worldline. The curvature tensor “Rus,s along C can be expressed as a 6 x
6 matrix (FR,x), where the indices J and K range over the set {01, 02, 03, 23, 31, 12}. Then,

E B
PR = <BT N), (16)

where for the FLRW models £ = u(t)I, B =0,and N = w(¢)I. Here, I is the 3 x 3 identity
matrix and

(1) LS a7
u(t) = ———,
S dr?
oL (98 : LK (s)
wit)=—|— —.
S2 \ dr s?
We note in passing that (17) and (18) imply
dw ds
S—=-2 —. 19
dr rwr g (19)

It is possible to show that the only nonzero components of the Einstein tensor,
G/LU - R/Lu - %gu\;R, are given by

G/w)nu(o))nv(o) = 3w(t), (20)

le)»u'(i))\v(j) = [2u(t) — U)(l)]ﬁij. 21

The gravitational field equations (with a cosmological constant A) are given by

Gy +Aguw =8nGT),, (22)
where T),, is the stress—energy tensor for a perfect fluid

Ty = p(Oupuy + p)(guv +uyty). (23)

Here, u(t) and p(¢) are the invariant density and pressure of the cosmic fluid, and the
fundamental observers are assumed to be comoving with the cosmic fluid, i.e. u* = A% ().
Equations (20)—(23) imply that # and w, defined respectively by (17) and (18), are given by

4G A
u(t) = ——(wu+3p) — 7, (24)
3 3
8t G A
)= —u+—. 25
w(t) 3 3 (25)
It follows from (19), (24), (25), and the constancy of A that
1du 1dS
A 1B . (26)

3 dt S dr
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This is the expression of the first law of thermodynamics for the adiabatic flow of the perfect
fluid under consideration here. The standard Hubble and deceleration parameters (H and g)
are given by
1dS ) 1d%s
s M5 &7
sothatu = gH? and w = H* + k/S>.
A Fermi coordinate system (7, X') can be established along the worldline of a fundamental

observer; then, the observer has Fermi coordinates (7', 0), where T = ¢. The FLRW spacetime
metric in spherical Fermi coordinates

X = psin® cos O, Y = psin®sin d, Z =pcos®, (28)

can be expressed as [5]
1
—ds? = —[1 +u(T)p*1dT?* + dp* + [1 - gw(T)p2j| p2(dO? + sin®> © dd?). (29)

This is based on (1)—(3) and thus holds only to second order in distance away from the observer.
It appears that explicit Fermi coordinates can be constructed for FLRW models based on the
results of [4]; however, the scale factor S(¢#) must then be explicitly specified. To have a
general treatment for arbitrary S(¢), we must use the implicit approach as in (1)—(3).

The spatial isotropy of the FLRW models implies that an equation of motion of the
form of equation (10) is possible along any direction in space with k(T) = u(T) = qH?>.
Thus the nature of such motion is characterized by the sign of the deceleration parameter.
Imagine, for instance, a free test particle moving radially away from the observer. For an
initially infrarelativistic particle with recession speed less than V,, the particle decelerates
(accelerates) for g > 0 (¢ < 0), as expected. However, for an initially ultrarelativistic particle
with recession speed above V., the particle accelerates (decelerates) for ¢ > 0 (¢ < 0). In
the following sections, we simply concentrate on the nature of k(7") in certain inhomogeneous
models.

In the slow-motion approximation, it is possible to extract a ‘Newtonian’ gravitational
potential [5]

W = 3qH?p? (30)

from (29). Equation (30) has been employed in the discussion of the influence of cosmology
on local phenomena [6]. Reference [6] contains only a partial list of papers on this subject; for
background material and further references, see [7]. The form of the quadratic potential (30)
suggests that the influence of the cosmic gravitational field is reflected in local experiments—in
the solar system, for instance—via a relative tidal acceleration of the form g gnos = —¢ H>X.
It is interesting to note that the deceleration parameter ¢ also appears in the second-order
expansion of luminosity distance d;, versus redshift z, that is

1 1
dr = —74 — (1 —a)z22+---. 31
t HZ+2H( 9+ G

This ‘degeneracy’ is removed by spatial inhomogeneities as demonstrated in the following
section.

It appears highly likely that instead of providing evidence for dark energy, the
observational data from type Ia supernovae have demonstrated the inadequacy of the standard
spatially homogeneous FLRW models of the universe. That is, spatial inhomogeneities
must be taken into account when comparing observational data with theoretical models of
the universe. This is based on the fact that in the luminosity distance—redshift relation,
spatial inhomogeneities can mimic dark energy [8]. It is therefore important to develop
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inhomogeneous models that could account for the current observational data in cosmology;
this is an active area of current research and a recent useful review of this topic is contained
in [9].

3. Inhomogeneous models

It is important to investigate how spatial inhomogeneities in the universe are reflected in local
spacetime measurements. We begin with a metric of the form [5, 10]

—ds? = —a®(t, r)dt* + B> (¢, r) dr? + R2(z, r)(d6? + sin® 6 d¢?), (32)
where

a(t,ry=1+3a@r’+--, (33)

bt,r)=[1+ip®)r*+--]S@), (34)

R(t.r)=r[l+iy@r*+--]S@). 35)

Here, o,  and y are parameters in the expansion of the cosmic gravitational potentials in
powers of the dimensionless radial coordinate r away from the centre of spherical symmetry
(r = 0). Expansions (33)—(35) are valid when the cosmological redshift z is sufficiently small
compared to unity; hence, such a ‘local’ model cannot be used over large cosmological scales.
This model has been discussed at length [5, 10]; in particular, it has been shown in [10] that
this ‘local’ inhomogeneous model is generally valid for a cosmic fluid that has pressure and
satisfies a reasonable equation of state of the form p = p(u) with p > 0, u > 0,and u > 3p
or i > p. We note that at the order of approximation indicated in (33)—(35), the homogeneous
models of the previous section are recovered foro = 0O and g = y = —« /2.

We imagine, as before, observers that are fixed in space and carry orthonormal tetrad
frames along their worldlines. The natural tetrad of such an observer is diagonal with nonzero
elements A%y = a~ ', Ay = b7, A% = R, and A3 5) = (Rsin@)~!. We are interested in
a Fermi coordinate system along the worldline C of the observer that is at the centre of spherical
symmetry. It can be shown explicitly using equations (32)—(35) that C is a geodesic and the
spatial frame is indeed parallel propagated along C in the r — O limit. Alternatively, one
can employ local Cartesian coordinates as in the previous section. In any case, the curvature
components © Ryg,s along C can be explicitly calculated and the results can be expressed as a
6 x 6 matrix (16) with

E=U@I, B =0, N=W@l, (36)
where for this inhomogeneous model
a(t)
U(t) =qH*+ 5 (37)
1) =3y
W) = H>+ w (38)

Here, ¢ and H are defined in terms of the scale factor S(¢) as in (27). Moreover, the analogues
of equations (24) and (25) hold for wu(z, r) and p(¢, r) evaluated at r = 0; that is,

47 G A
U@ = ”T[w, 0) +3p(t. 0)] — (39)

?1

871G A
W(t) = Tu(t, 0) + 3 (40)
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The spacetime metric in spherical Fermi coordinates about C has the same form as
equation (29), except that u(r) — U(¢) and w(t) — W(t); moreover, t = T, since r = 0
along C. Let us note in this connection that the quantity 8 — 3y in (38) is related to the spatial
curvature and reduces to x in the homogeneous limit [5, 10]. The motion of a free test particle
in the neighbourhood of C can be studied as in the previous section except that in this case
k(T) = U(T) in equation (10). Furthermore, the influence of the cosmic gravitational field
on local physics in the slow-motion approximation appears as a ‘Newtonian’ acceleration of
the form

Gcosmos = _Hz(q -0)X, 41
where C(t) is the inhomogeneity parameter given by
o
C=———. 42
GSH) (42)

It is interesting to note that in this inhomogeneous model, the luminosity distance—redshift
relation can be expressed as [5, 10]

1 1
dp= zat 5ol =@+ O+, (43)

so that the measured ‘deceleration’ parameter is in fact ¢ + C. It follows that both ¢ and C
could be determined from observation if it were possible to measure k(7) = H 2(q —C) as
well. It follows from (39) that

5 1 A
H(q = C) =47G | 3u(1,0)+ p(1.0) | - . (44)

Hence, in the absence of a cosmological constant we have C < ¢, which is a noteworthy
inequality.
Finally, let us note that by imposing the comoving coordinate condition [10]

d
3 B —3r) =2HD)e), (45)

one can show from (39) and (40) that

a
5“0’ 0) = =3H®)[n(t,0) + p(z, 0)], (46)

which is the analogue of (26) in this inhomogeneous case.

4. LTB models

Imagine a spacetime metric of the form (32) with
R'(t,r)
JI+2E0)’

where R’ = 9R/dr. It turns out that the gravitational field equations (22) are satisfied in this
case for pure dust

Ty = u(t, ruyu, (48)

in comoving coordinates (i.e. u* = ") provided

a(t,r)=1, b(t,r) = 47)

1., GM() A,
E(r) =R = SR (49)
M) _, .,

— 4w u(t, YRR (50)

dr
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Here, £(r) with € > —1/2 has the interpretation of the net energy per unit mass of the spherical
shell of dust at radius r, M (r) has the interpretation of mass within a sphere of radius r, and
R = R /dt. These spherically symmetric inhomogeneous dust models were first discovered
by Lemaitre [11] and further studied by Tolman [12] and Bondi [13]; see [14] for a detailed
discussion.

It is a general result that in a spacetime with a metric of the form —d¢? +g; i (t, xK) dx? dx/,
any test particle that is at rest in space follows a geodesic [2]. Therefore, the fundamental
comoving observers in the LTB model follow geodesics. Moreover, each fundamental observer
carries the standard orthonormal tetrad frame (discussed in the previous section) that has its
axes along the directions of the coordinates employed in (32). It can be shown explicitly that
such a tetrad frame is parallel transported along the geodesic path of a fundamental observer.
The off-centre cosmological measurements of such observers have been discussed in [15]. We
are interested, however, in the local tidal dynamics of nearby test particles.

It proves convenient, for the sake of simplicity, to orient the spatial axes of the Fermi frame
such that the X-axis points along the polar (6) direction, the Y-axis points along the azimuthal
(¢) direction, and the Z-axis points along the radial () direction, that is, for the purposes of this
section we choose A"y = ut = 8"y, A"y = (0,0,1/R,0), Aoy = (0,0,0,1/(Rsin0))
and A*3) = (0, 1/b, 0, 0). We find that for a fundamental observer at a fixed position in space,
the nonzero components of the curvature tensor can be obtained from

"Roo1 = "Rooon = K1(T), (51
"Rozos = Ko(T), (52)
"R3131 = "Rapsy = K3(T), (53)
"Rizz = Ky(T). (54)

Thus the analogue of (16) in this case is given by £ = diag(K,, K|, K,), B =0and N =
diag(K3, K3, K4). Here,

R 2 (1.,

Ki(T) =2, Ky(T) =5 (SR =€), (55)
R 1 o0 1.

Ko(T) = ==, Ks(T) = = (57%2—5), (56)

where t = T and r is simply a constant in the final expressions. Then (1)—(3) together with
(28) imply that the Fermi system (7', X) along the worldline of any fundamental observer has
a metric of the form

—ds? = —[1 + (K, sin®> ® + K, cos® ©)p?1dT? + dp* + (1 - %K3,02) p?de?
+[1 = L(Kysin? © + K3 cos? ©)p?] p* sin® © dd?, (57

which is axially symmetric about the Z-axis (i.e. the radial r-direction), as expected. Local
dynamics in this spacetime is considered in the appendix.

We are particularly interested in the form of this metric in the neighbourhood of the
fundamental observer at the centre of spherical symmetry (» = 0). Assuming that the
spacetime manifold is smooth at » = 0 [13], we can write

R(t,r) =rS®) [L+IA0r + 120 + 0], (58)
Er) = 1" O)r* + 0(), (59)
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M(r) = 1M O + 0. (60)

Here, the scale factor is given by S(¢) = R'(¢,0) > 0 and

R"(t,0) R"(t,0)
A(t) = , Xty = ———. 61
@) R/(t,0) ® R/(t,0) 1)
Using these expressions, we find that
Ki =UT) [1+inr+00H)], Ky, =UD[1 +nr + 0], (62)
K3 =W(T)[1+ O], Ky =W(D)[1+ 0(r)], (63)
where
. .2
g s £"(0)
U=-=, w=(=) - —=, 64
S <S> 52 ©4)
and n = (28A + SA) / §. The Fermi metric for r = 0 then takes the form
1
—ds? = —(1 +Up»HAT? +dp* + (1 - §Wp2> p>(dO? + sin’ © dd?). (65)

It is now a simple matter to recognize that the gravitational field equations for metric (65)
result in the analogues of equations (39) and (40) in this pressure-free case, namely,

47 G A
U=——u,0) ——, 66
3 u(t, 0) 3 (66)

8t G A
W= ——nu(,0)+—. 67)

3 3

Here (¢, 0) can be expressed as
M///(O) 1

t,0) = 68
u(t, 0) st S°(0) (68)

by virtue of equation (50).

It follows from a comparison of (64) with (18) that —£”(0) plays the role of spatial
curvature in these inhomogeneous models. Moreover, k(T) = gH? in this case and it is
interesting to compare this appearance of the deceleration parameter, defined in terms of
S(¢) in the standard manner, with the effective deceleration parameter Q obtained from the
luminosity distance—redshift relation. It has been shown [10] that in the general pressure-free
case,

1 1
d = —z+—0—-0)7*+---, 69
L=git5 H( 0)z (69)
where the inhomogeneity parameter is given by
1 dA(z)
—g=— 70
0—gq SH? dr (70)

The LTB models have recently received much attention as simple alternatives to the dark-
energy models of the universe; see, for example, [9, 16-20] and references therein.
Equations (64) and (66)—(68) may be written as

2 "
lg”(o) = l (d_S> — l [M + A52i| , (71)
2 2\ dt 6 S
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2qH? = H?> — [5;,?) +Ai|. (72)

The scale factor S(¢) can be simply determined from (71) by quadratures. In general, however,
a simple analytic solution is not available. The qualitative behaviour of S(¢) can be studied
using the interpretation of (71) in terms of the radial motion of a ‘particle’ of unit mass with
kinetic energy $2/2 and total energy £”(0)/2. That is, a graph of the potential energy in (71)
versus S can be used to illustrate the fact that motion can take place only in regions where
"
£"(0) > ! |:—GM © +
3 S

Alternatively, (71) can be integrated numerically with the initial condition that at the present

epoch 7y, S(t)) = R, where Ry is the (spatial) curvature radius. Let us note that for £”(0) = 0
and A =0,

ASZ} . (73)

s=[26m" 0], (74)
so that H = 2/(3t), and ¢ = 1/2 follows immediately from (72); therefore, this case
corresponds to the familiar Einstein—de Sitter model. Equation (72) is used in the following
section to estimate the influence of the cosmic gravitational field on the dynamics of the solar
system.

5. Local dynamics

The expanding universe is over ten billion years old; therefore, the cosmic tidal acceleration
within the solar system is expected to be relatively very small. The long-term cosmological
evolution of an ‘isolated’ gravitationally bound system in an expanding universe is beyond
the scope of this work; instead, we are interested in observable cosmological perturbations
on the dynamics of the solar system. As explained in detail in the appendix, the influence
of spatial inhomogeneities on a Keplerian binary system can be studied on the basis of
the Fermi coordinate system (57) associated with the LTB model. However, the small
anisotropy of the cosmic microwave background radiation implies that a useful estimate
of the effect can be obtained by ignoring any deviations from spherical symmetry. Therefore,
we consider the quasi-inertial Fermi coordinate system that can be established along the
worldline of the fundamental observer at » = 0. Within this coordinate system associated with
equation (65), imagine the approximately elliptical relative orbit of a Keplerian binary system
that is perturbed by the cosmic tidal acceleration

X  GM,
W + TX = Ycosmos> (75)
where at the present epoch, G.oumos = —quOZX according to equation (65). Here, My is

the net inertial mass of the binary system. Let us note that if the members of the Keplerian
binary were test particles, i.e. My — 0, then equation (75) would simply reduce to the
Jacobi equation at the present epoch, since the relative speed of the particles is assumed to be
negligible compared to the speed of light; therefore, (75) originates from a superposition of
weak gravitational forces. If the external tidal acceleration is turned off at any instant of time,
the resulting orbit is the osculating ellipse at that instant with eccentricity e and semimajor
axis A. Thus, the Newtonian orbital energy of the osculating ellipse per unit reduced mass is
—GM;y/(2A). On the other hand, it follows from (75) that the rate of change of this orbital
energy is given by g.osmos * V'» SO that
GM,dA

Wﬁ = Ycosmos * V. (76)
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For the osculating ellipse,

XV =wgAley/1— 2 —f 77)

l+ecosg’

where wg = (GM,/A*)'/? is the Keplerian frequency and ¢ is an azimuthal angle of the orbit
(‘true anomaly’). Moreover, it follows from (72) that 2gop = 1 — xo, where g is the present

value of
1 [&7(0)

Putting equations (76)—(78) together, we find that dA /dT has the same periodicity as the orbit
and its average over an orbit vanishes, that is

dA Hi Ae V1 —e?sing
- = d=xo)—— (79)
dr wK 1+ecosg

This is in fact the Lagrange planetary equation for the semimajor axis of the osculating ellipse
in this particular case. It turns out that—on average—the cosmological perturbations under
consideration here cause a precession of the orbit in its plane, but leave the orbit otherwise
unchanged. The appendix should be consulted for further details about the average behaviour
of the orbit in this case.

For the orbit of the Earth around the Sun,

HiAe 1 0 |
~ 7 x 1077 cmyr -, (80)

WK

where ¢ ~ 0.02, A ~ 1.5 x 103 cm and Hy ~ 70 km s~! Mpc’l. Even if—as a result of
spatial inhomogeneities or a nonzero cosmological constant—the absolute magnitude of the
deceleration parameter is enhanced by several orders of magnitude or so, the rate of variation
of the astronomical unit would still be too small to be detectable at present. This should
be contrasted with the recent reported secular increase of the astronomical unit, based on
radiometric data, amounting to about 10 cm per year [21, 22]. We therefore conclude that
the presence of cosmological inhomogeneities (or a cosmological constant) cannot change the
conclusion that the expansion of the universe has a negligible influence on the dynamics of
the solar system.

The results of this section as well as the appendix indicate that solar-system anomalies
[22]—such as the Pioneer anomaly—cannot be explained in terms of cosmological
perturbations based upon the general relativistic cosmological models considered in the present
work. This is particularly evident from the negligibly small magnitude of g, over the
solar system, since for | X | ~ 100 AU, Hj|X| ~ 107 cm s~2. This is about thirteen orders
of magnitude smaller than the anomalous acceleration of Pioneer spacecraft.

6. Discussion

For local systems, such as the solar system, each body is subject to the gravitational influence
of the whole mass—energy content of the universe; therefore, the relative motion of bodies is
only affected by the tidal acceleration of the cosmic gravitational field. The main purpose of
this paper has been to study the general features of tidal dynamics in certain simple spherically
symmetric cosmological models. Particular emphasis has been placed on inhomogeneous
models, since spatial inhomogeneities can mimic dark energy in the luminosity distance—
redshift relation; moreover, inhomogeneous cosmological models are of current interest as
possible alternatives to the dark-energy models [9, 16-20]. Indeed, we have elucidated the
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influence of inhomogeneities on tidal dynamics in the simple models that we have considered.
The results of this work could therefore be of interest in the theoretical study of the tidal
evolution of galaxies.

The tidal influence of the cosmic gravitational field on the solar system can be estimated
and the result turns out to be too small to be measurable in the foreseeable future. Specifically,
the influence of the cosmic tidal field on local dynamics has been studied here with a view
towards observable effects in the solar system. We have therefore considered in detail how
a Keplerian binary system might be affected by the main cosmic tidal acceleration. The
change in the semimajor axis as well as the ‘slow’ evolution of the elements of the osculating
ellipse appears to be too small to be detectable at present for the cosmological models under
consideration here. These results make it highly improbable that solar system anomalies that
have recently received attention [22] could be of cosmological origin.

Appendix. Local dynamics in LTB spacetime

Imagine a Keplerian binary system consisting of masses m; and m, with positions X; and
X, within the Fermi coordinate system associated with the LTB metric (57). It turns out that
for linear tidal perturbations, the motion of the binary system can be simplified, essentially as
in the standard unperturbed Kepler system, by a separation into the motion of the centre of
mass and the relative motion; in this paper, we ignore the motion of the centre of mass of the
perturbed binary and concentrate on the directly observable relative motion. The ‘Newtonian’
tidal potential

W = 3 Ki(T)(X? +Y?) + 3Ky (T) 2 (A-)

is quadratic in X, so that the corresponding tidal acceleration, —V VY, is linear in X . This
implies that the external cosmological perturbation on the relative motion has the form

F=-K!X+(K)-K))2Z, (A2)
where X = X — X, describes relative position. Here, K ? = K;(Ty) and KV = K, (Tp)
are evaluated at the present epoch 7. It is important to emphasize that our task here is
to study the main observable consequences of cosmological perturbations on local systems;
therefore, the external perturbation on the binary system is evaluated at the present epoch in
equation (A.2). The equation of relative motion now takes the standard form

d2X GMyX
4+ _—F, (A.3)
d7? 03

where My = m; + m,. We assume that the binary system experiences small perturbations
due to the tidal influence of the cosmological gravitational field. The perturbed Kepler system
(A.3) can thus be treated using standard methods of celestial mechanics [23]. In our approach,
the study of the long-term cosmological evolution of the Keplerian binary should be based
upon the solution of (A.3) in the more general case in which K (7)) and K,(T) in F' are not
restricted to the present epoch; however, such an analysis is beyond the scope of this paper.
On the other hand, the influence of the expansion of the universe on the binary system during
the period of time that the orbit is monitored can be included in our perturbative treatment via
Taylor expansions of K(7") and K,(T') about K ? and K7, respectively, in powers of T — Tj
such that |T — Ty| < Ty. The first-order terms would have an even smaller effect on the
relative orbit in comparison with the considerations of section 5; moreover, the results of this
approach can be compared with previous work in this direction [6, 7].

The state of relative motion in (A.3) is given by the position and velocity at a given time
T; on the other hand, one could employ instead the six orbital elements of the instantaneous
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osculating ellipse to specify the motion. The temporal evolution of these orbital elements
is described by the Lagrange planetary equations [23], which are therefore equivalent to
(A.3). For the orbital parameters, it is useful to employ Delaunay’s action-angle elements
(L,G,H,I,g,h) given by

L =AY, G = [GMyA(1 — &*)]'/2, H = G cosi, (A.4)

I =0 —esing, g = argument of the pericentre, / = longitude of the ascending node.
(A.5)

Here, A is the semimajor axis of the osculating ellipse, e is its eccentricity, i is the orbital
inclination, ¥ is the eccentric anomaly and I is the mean anomaly. Moreover, G is the
magnitude of the orbital angular momentum vector and H is its Z-component. Along the
osculating ellipse, the radial position p can be expressed in terms of the true anomaly ¢ and
eccentric anomaly 1}, respectively, as follows:
Al —é€?)
= —F) p=A(l —ecos?). (A.6)
1+ecosg
In equation (A.4) and throughout, we consider only positive square roots. To express the
dynamical equations in terms of Delaunay’s elements, it is necessary to decompose the
perturbing acceleration F' in terms of an orthonormal frame field adapted to the osculating
ellipse. That is, we can write

F=F,p+F3+Fn, (A7)

in terms of its radial, sideways and normal components. Here p = X /p is the radial unit
vector, § = 7 X p and 7 is the unit vector in the direction of the orbital angular momentum
G; that is, G = G#. Thus, p and 3 are in the instantaneous orbital plane of the osculating
ellipse, while 7 is normal to it.

The equations of motion in terms of Delaunay’s elements are then given by

dL _ L7 [Foesing + Fy(1 + )] (A.8)
— = = sin B cos ¢)], .
dr G pCSINY ceosy
dG
— = pF;, A.9
a7 = PFs (A.9)
dA . . _
T = p[Fscosi — F,sini cos(¢ + g)], (A.10)
di + p [F,(—2e+ + o) — F,2+ ) sin @] (A.11)
— =w —2e + cos e cos - e cos @) sin ¢], .
dT K a)KAZe P @ @ K @ @
dg pF, cosi . ( +~)+(1—ez)1/2 e +F2+ecos<p . (A.12)
— = —————s5in —— | —F,cos y——————sing |, .
dTr G sini bre wgAe ? ¢ 1+ecosg ¢
dh F, sin (¢ + @

= ’ON M (A.13)

dr G sin i

where wg = (GM,)'/?/L3. A direct derivation of these equations is essentially contained in
appendix B of [24].

To find the explicit form of F,, Fy and F), in terms of Delaunay’s elements, we note that
[24]
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X = p[cosfz cos(p+8) — sinf cosi sin(p + 2)], (A.14)
Y = p[sin cos(¢ + &) + cos & cosi sin(¢ + §)], (A.15)
Z = psinisin(¢ + 2). (A.16)

Moreover [24],
f = (sinhsini, —cos h sini, cosi), (A.17)

8 = (—coshsin(p + §) — sinh cosi cos(p + g),

—sin/sin(p + ) + cosh cosi cos(p + ), sini cos(¢ + 2)). (A.18)

A straightforward calculation using (A.2) reveals that

F, = —K)p+ (K} — K3) psin’isin’* (¢ + ), (A.19)
Fy = (K — KY) psin’i sin(p + &) cos(p + &), (A.20)
F, = (K?— Kg)psinicosisin(<p+g). (A.21)

Substituting these results in equations (A.8)—(A.13) and averaging over the ‘fast’ orbital
motion, one can determine the ‘slow’ evolution of the orbit under cosmological perturbations
in this case.

The weak external perturbation (A.2) naturally splits into two terms: one that is
proportional to K and the other proportional to K — K. The influence of these on the orbit
can be analysed separately and the results can be superimposed in accordance with our linear
perturbation scheme. Let us therefore first consider a tidal perturbation of the form —K ?X .
It turns out that this problem has already been solved in a different context [25]; in fact, the
details of the averaging procedure are given in section I'V of [25] for a perturbing acceleration
of the form A X, where X is a constant. It is interesting to note that in [25], . = Ac?/3, where
A is the cosmological constant associated with the Kerr—de Sitter spacetime. It is shown in
[25] that the orbit is planar and its semimajor axis and eccentricity do not change on average;
however, the pericentre precesses with frequency 31 (1 — e?)!/?7/(2wy). Thus the net average
effect of the first term in (A.2) on the orbit is to generate a pericentre precession of frequency
—3](?(1 — )20/ Quwy).

The second term in (A.2) is a perturbing acceleration in the Z-direction, which
corresponds to the radial direction in the standard form of the LTB spacetime. Inspection of
equations (A.8)—(A.13) reveals that dH /dT = 0, hence the Z-component of the orbital angular
momentum remains unchanged; moreover, there is clearly no effect to linear order if the orbit
lies in the (X, Y)-plane. Hence we assume i # 0. It is then straightforward to average the
right-hand sides of the remaining equations over the ‘fast’ motion with frequency wx = 27/ Tx
such that for a function F, (F) = T, ! fOTK F dt, or equivalently,

(1 _ 62)3/2 /27r fd(p
2 o (l+ecosg)?’

using the unperturbed orbit. The resulting integrals can be evaluated in principle, but it is
simpler to express the main results for a slightly eccentric orbit. We find that

dA\ 5 de\
<ﬁ> = 0(e), <ﬁ> = 0(e), (A.23)

(F) = (A22)
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dg K9 — K9 cos?i
<§> - —(ITZ) +0(e), (A.24)
K
i K9 — K j
<%> — (12& + 0. (A.25)
WK

Thus the main effects here are the precessions of the pericentre and the ascending node with
frequencies given by (A.24)—(A.25). The net average effect of (A.2) on the orbit is mainly
the precession of the orbit in its own plane as well as about the Z-axis (i.e. the LTB radial
direction); the latter motion occurs with frequency (K ? — Kg) cosi/QRuwg).

It should be noted that a discussion of observable relativistic effects would be incomplete
without a proper treatment of the methods that could be employed for the measurement of
such effects. For instance, such methods may involve light signals; therefore, in the case
under consideration, the propagation of electromagnetic radiation in the cosmic tidal field
may have to be taken into account. However, the local deviation of the cosmological Fermi
metric from the flat background Minkowski metric involves dimensionless tidal potentials that
are extremely small compared to unity; for example, we note that Hip? /(2¢*) ~ 107 for
p ~ 1 AU. Thus the net influence of cosmology on local measurement techniques is expected
to be negligibly small in this case.

Finally, let us restrict our general off-centre LTB treatment to a situation where the
fundamental observer is very close to the centre of spherical symmetry. Indeed, the maximum
anisotropy in the temperature of the cosmic background radiation is about 0.002 due mainly to
our peculiar motion relative to this radiation bath; therefore, within the LTB model a reasonable
estimate may be obtained by assuming » = 0 as in section 5. Indeed, equation (62) implies
that K| — K, — 0 forr — 0. It follows that the cosmological perturbations on average leave
the shape of the orbit and the orientation of the orbital plane unchanged, but cause a pericentre
precession of frequency —3q0H02(1 — )27,/ (2wk). For the motion of the Earth around
the Sun, HO2 / wg ~ 10721 /yr, which is some fourteen orders of magnitude smaller than the
Einstein pericentre precession. Thus the cosmological pericentre precession does not appear
to be detectable in the foreseeable future. This conclusion applies to all of the cosmological
models considered in this paper, so long as any deviation from isotropy about the Keplerian
system can be neglected.
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