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ABSTRACT 

 

 
The Software-Defined Networking (SDN) technologies promise to enhance the 

performance, reliability, and cost of managing both wired and wireless network 

infrastructures, functions, controls, and services (i.e., Internet of Things). However, 

centralized reliability management in Softwareization architecture poses both scalability 

and latency challenges. Significantly, the current OpenFlow Discovery Protocol 

(OFDP)  in SDN  induces substantial scalability, accuracy, and  latency  hurdles  due to 

its gossipy, centralized, periodic, and tardy protocol.  

This dissertation proposes a novel reliability management framework, which 

efficiently orchestrates different reliability monitoring mechanisms over SDN networks 

and synchronizes the control messages among various applications. The proposed 

framework facilitates multiple discovery frequency timers for each target over different 

stratum instead of using a uniform discovery timer for the entire network. It supports 

many common reliability monitoring factors for registered applications by analyzing 
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offline and online network architecture information such as network topologies, traffic 

flows, virtualization architectures, and protocols. The framework consists of a high 

availability registration platform (HARP) and the topology-aware reliability 

management (TARman) and Bug Detection, Debugging, and Isolation (BuDDI) 

protocol facilities. The reliability management framework is implemented on both Ryu   

and Cisco’s OpenDayLight (ODL) controllers. Extensive Mininet experimental results 

validate that framework significantly improves discovery message efficiency and makes 

the control traffic less bursty than OFDP with a uniform timer. It also reduces the 

network status discovery delay without increasing the control overhead. Our reliability 

management framework also proposes a novel network reliability cost model to ensure 

that the SLA covers customer service impact and damage. We classify network outages 

and calculate their effect on the network services to formulate a cost-based model. 

Besides, we have performed evaluations using various campus network outage 

scenarios. The proposed cost-based model enables customers to identify the service 

impact of unplanned network outages to their networks instead of entirely depending on 

the service provider’s data.
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CHAPTER 1 

 
INTRODUCTION 

 
The modern computer networking is more complicated now than it ever has been. 

A proliferation of network-enabled devices and bandwidth-intensive applications lead 

massive growth of customer’s demands on the higher bandwidth and better quality of      

the network. As the network progresses, it is getting more difficult to efficiently manage 

the network. Network volume and complexity come to the fore as the main reasons that 

hinder efficient network management. As the number of network devices in the network 

gets higher, operating expense (OPEX) of the network accordingly increases. In addition, 

as more network layers, various protocols, and multiple vendors are introduced in a given 

network, network operation and management gets even more inefficient and difficult. 

In order to grapple with closed, inflexible, complex, error-prone, and hard-to- 

manage production network problems, Software-Defined Networking (SDN) [4, 57, 79] 

has been proposed by many network companies and researchers. Particularly, fueled by 

increasing data center networking and cloud computing, SDN has been building up 

significant momentum toward the production network deployment. This recently 

emerging concept of a network architecture supports the programmable control interfaces 

by separating and abstracting the control plane from the data plane. This centralized 

control plane, which is called an SDN controller, becomes the brain of the underlying 

network. SDN enables many features, such as traffic engineering and network 

virtualization, in the form of an application on top of the controller of the network. In 

addition, SDN allows for rapid and simplified network exploration that improves network 

reliability, manage- ability, and security. Therefore, the centralized controller plays a very 
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important role in controlling and operating, for example imposing policies and making 

decisions for routing, underlying network switches. Logically, it lies between northbound 

applications and southbound network devices. The OpenFlow protocol [63], which is 

managed by Open Networking Foundation (ONF) [61] is the de facto protocol that is 

being used for communication between the controller and the underlying network devices 

(e.g., OpenFlow switches). Northbound APIs are used for communication between the 

controller and the applications. These applications are developed to fulfill a specific 

purpose. The controller is an agent that connects applications and network devices and 

manages flow control to enable intelligent networking based on the applications’ needs. 

As mentioned, this centralized architecture takes all the intelligence from the underlying 

network switches and leaves a flow table in the network switches. When the network 

switches receive new packets, they will forward these packets to the controller to decide 

where to send them. 

High Availability (HA) of a network control system is important in a real network 

operation. Thus, provisioning redundancies a priori, then detecting failures and invoking 

mitigation mechanisms are the necessary steps in action. In the traditional network, HA 

is solely limited to data paths so that the system maintains a certain level of availability 

such as Service-Level Agreement (SLA). In the SDN architecture, the issue of HA be- 

comes more critical especially for the controllers of SDNs, as they are responsible for   

the functions of the network switches.  Furthermore, the SDN architecture poses more
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complexity on the HA issues by creating a couple of separate HA network domains, in 

addition to the data plane, such as controller cluster networks as well as control and data 

plane connection networks. Although there have been a few recent studies that focus on the 

failures of switches or links connecting them in data plane, little work is found to consider 

the failures of controller cluster network itself nor to orchestrate the failure detection and 

recoveries of all the separate HA network domains. Another important aspect with regard 

to HA is fast and accurate failure detection. Detecting a failure quickly and accurately is 

also very critical to maintain HA of a system. This is because slow or wrong failure detection 

delays the root cause analysis of the problem and delays recovery of the system. As a result, 

overall performance of system’s HA would be degraded. Therefore, we additionally focus 

on how fast we can detect failures in order to reduce the downtime of the network and 

improve HA of the network in the SDN environment. 

Along with HA, scalability of a network system is also important in a real network 

operation. There has been a few research conducted on the scalability issue of an SDN 

controller. Those researches can be divided into three types such as improving the capacity 

of the controller itself by using parallel processing and multi-threads, devolving some 

control functions to the OpenFlow switches, and clustering multiple controllers. Most of 

the existing approaches try to increase the system capacity to accommodate the increasing 

number of network traffic between a controller and underlying switches. However, if we 

look at the network messages between a controller and underlying switches more closely, 

we can find each message has different importance according to the activities and status 

of the current network. 
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In this research, we study various aspects of controller’s HA impacting the overall 

performance of SDN. We identify several critical HA issues and propose a solution for 

each problem. In addition, we also study and propose solutions for SDN scalability using 

prioritization and classification techniques. 

 

1.1 Software-Defined Networks 

 
SDN is an emerging computer networking paradigm that supports programmable 

interfaces providing an agile and convenient way to customize the network traffic control. 

The main contribution of the SDN architecture is the disaggregation of the vertically 

integrated networking planes in order to improve network flexibility and manageability. 

The control plane of the vertical network stack is decoupled and abstracted to interact and 

handle all of the underlying network devices within its domain. It is logically centralized 

and is called an SDN controller.   An SDN controller can run on a commodity server.    

With this centralized controller in the network, it gets the global view on the underlying 

network with ease. In addition, new services can be loaded up to the controller and each 

differentiated service can utilize the global view of the controller to achieve its optimized 

performance. Therefore, SDN brings many benefits such as easier traffic optimization, 

agile new feature deployment, and reduced management cost. 

As illustrated in Figure 1, this centralized architecture takes all the intelligence 

from the underlying network switches and leaves a flow table in the network switches. 

Therefore, when the network switches receive packets, they will search the matching  

rules from the flow tables.  Each flow table consists of flow entries and there are six 
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Figure 1: Software-Defined Networks (SDN) architecture 

main components in each flow entry such as match fields, priority, counters, instructions, 

timeouts, and cookie. The match fields category, which consists of the ingress port and 

packet headers, is the most important factor to examine incoming packets. If there is a 

matching flow entry, the switch will handle the packets according to the associated action 

of its instructions category. If there is no matching flow entry (e.g., new packets), then 

they will forward these new packets to the controller in order to ask how to handle them
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Table 1: Open Source SDN controllers 

 

 

Controller Languages OpenFlow Protocol Copyright 

Beacon Java 1.0 Apache 2.0 license 

Floodlight Java 1.0 Apache 2.0 license 

IRIS Java 1.0 ∼ 1.3 Apache 2.0 license 

Maestro Java 1.0 GNU LGPL v2.1 

Mul C 1.0 ∼ 1.4 GNU GPL v2.0 

Nox C++ & Python 1.0 Apache 2.0 license 

OpenDaylight Java 1.0 ∼ 1.4 Eclipse Public License v1.0 

Pox Pyhon 1.0 Apache 2.0 license 

Ryu Python 1.0 ∼ 1.4 Apache 2.0 license 

Trema Ruby & C 1.0 GNU GPL v2.0 
 
 

Many companies, universities, and research institutes have been involved to 

develop and improve SDN for practical use. Major components of SDN are SDN 

controllers, OpenFlow protocol, and OpenFlow switches. Table 1 and 2 compares the 

specifi- cations of the current SDN controllers. Various SDN controllers have been 

developed and running commercially and academically such as Beacon [11], Floodlight 

[13], IRIS [14], Maestro [3], Mul [15], Nox [29], OpenDaylight [17], Pox [18], Ryu [19], 

Trema [20] and etc. 

Being a detailed embodiment of SDN, OpenFlow [63] is a configuration language 

and protocol that abstracts the data plane of a networking device into a flow based 

architecture composed of a cascading set of classifiers and policy enforcement. The 

OpenFlow protocol is currently the de facto standard being used for the communication 

between     an SDN controller and an OpenFlow switch.  It is an open source project 

managed by  Open Networking Foundation (ONF) [61]. It enables that an SDN controller 

controls the 
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Table 2: Commercial SDN controllers 

 

 
Controller Languages OpenFlow Protocol Company 

Big Network Controller Java 1.0 ∼ 1.3 Big Switch Networks 

ONE Java 1.0 ∼ 1.4 Cisco 

Contrail Java & Python 1.0 ∼ 1.3 Juniper Networks 

ProgammableFlow Ruby & C 1.0 ∼ 1.3 NEC 

SDN VE Java & Python 1.0 ∼ 1.3 IBM 

ViSION Java 1.0 ∼ 1.3 HP 

Vyatta Java 1.0 ∼ 1.4 Brocade 
 
 

forwarding plane of switches/routers. It also helps an SDN controller collect statistic in- 

formation from the network in order to have a global view on the underlying network. 

The OpenFlow protocol is currently being implemented by major switch/router vendors 

to support and deliver OpenFlow-enabled products. Various OpenFlow switches are 

commercially available in the market. 

 

1.2 Network Availability 

 
Achieving network availability is one of the most important operational objectives 

of network service providers (NSPs). Availability is the fraction of a time that a system 

or component is continuously operational. Figure 2 describes terminologies related to 

network availability. HA can be measured by three main metrics such as Mean Time 

Between Failures (MTBF), Mean Time To Repair (MTTRr), and Mean Time To Failure 

(MTTF). MTBF is an expected average time between failures of a network component. 

MTTRr is an expected average time to restore a failed network component. The average 

downtime can be further divided into two parts such as MTTD and MTTRc.  MTTD is an 
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Table 3: Network downtime according to the number of nines 

 

 

Availability Downtime per year Downtime per month Downtime per week 

90% 36.5 days 72 hours 16.8 hours 

99% 3.65 days 7.2 hours 1.68 hours 

99.9% 8.76 hours 43.8 minutes 10.1 minutes 

99.99% 52.56 minutes 4.32 minutes 1.01 minutes 

99.999% 5.26 minutes 25.9 seconds 6.05 seconds 
 

 

expected average time to detect a failed network component and MTTRc is an expected 

average time to recover the failed network component. Lastly, MTTF is a mean time to 

failure once the network component starts working normally. Therefore, the availability 

of the network component can be calculated by the formula as shown in Equation 1.1. 

Table 3 shows the operational performance (i.e., downtime) according to the number of 

nines. As we have more nines, we can say that the network is more stable. 

M T T F 
Availability = 

M T BF 

M T BF − M T T D − M T T Rc 
 

  

M T BF 
(1.1) = 
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Many technologies have been developed to increase availability and ensure the 

reliability requirements. As shown in Table 5, traditional HA architecture supports link 

bundling, multipath routing, system redundancy mechanisms along with efficient state 

synchronization, and failure detection and handling protocols. These HA mechanisms  are 

implemented in each network device as a distributed protocol to handle the network 

problems according to the dedicated network topologies. 

The emerging concept of SDN decouples the control plane from the underlying 

network devices and abstracts it out as a centralized service. Many NSPs are very 

supportive on its deployment due to potential benefits such as operational cost reduction 

and 

 
 

Figure 2: Network availability timeline 

 
enhanced system resilience. However, unlike traditional networks, the existing HA 

mechanisms may face many critical challenges to achieve the same Service Level 

Agreement (SLA) of HA for the network services in the SDN environment where the out-

of-band connections and controller connections (control path) exist between the control 

and data planes and between controllers, respectively. The issue of HA becomes more 

crucial on the ‘controllers’ than the ‘OpenFlow switches’, as they are responsible for the 
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intelligent decision of the OpenFlow switch policies. 

1.2.1 Issues of Existing High Availability Solutions 

 
Although there have been a few recent studies that focus on the failures of Open- 

Flow switches or links connecting them in the data plane [23] and the controller cluster 

networks for improving both scalability and reliability [50, 75], respectively, little work 

is found to sophisticatedly exploit HA mechanisms over the abstraction domain. For ex- 

ample,  even  though ONIX [50],  HyperFlow [75], and ONOS [1] consider reliability of 

  
Table 4: High availability mechanisms 

 

 

Mechanisms Protocols 

Link bundling 
Link Aggregation Control Protocol (LACP) [36], 

EtherChannel [33] 

Multipath routing Equal-Cost Multi-Path routing (ECMP) [31] 

 

System redundancy 

Virtual  Router Redundancy Protocol (VRRP)  [41], 

Host Standby Router Protocol (HSRP) [35], Re- 

silient Packet Ring (RPR) [39] 

State synchronization 
Non-Stop Routing (NSR) [38], Non-Stop  Forward- 

ing (NSF) [37], Stateful Switch-Over (SSO) [40] 

 

Failure detection and handling 

Ethernet Automatic Protection Switching 

(EAPS) [30], Ethernet  Ring  Protection  Switch-  

ing (ERPS) [32], Fast Re-Routing (FRR) [34] 

 
 

the controller cluster via the distributed physical controllers and synchronization among 

controllers, they don’t extensively exploit reliability problems caused by the limitations 

of the current OpenFlow specification [64]. 

To address this problem, we propose and implement three HA strategies toward 

the control path of the SDN environment such as coupling logical connections with 

physical redundancy, virtualizing the controller cluster, and fast and accurate failure 
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detection and recovery. 

 

1.3 Network Scalability 

 

In the traditional network systems, the main network functionalities such as data, control,  

and management planes are distributed and embedded within the vendor spe-  cific 

networking devices and are managed remotely by EMSs [26], NMSs [60], OSSs, and BSSs 

[65] through provisioning and configuration.  As the network systems become bigger, 

faster, and more complex over multiple administration domains and diverse com- ponents, 

they need to handle multiple protocols with cross-layer interactions, support various 

applications and services over multi-tenant policies, and are managed over uncertain 

underlying topology and internal structure. At the same time, the network services and 

applications are expected to be deployed quickly and more dynamically on the large-scale 

networking systems while insuring security, reliability, performance, traffic isolation, end- 

to-end virtualization and priority treatment. However, providing quick and easy dynamic 

network adaptability is intrinsically difficult problems for the legacy network systems, as 

they barely cope with the complexity through the layers of the extensive and expensive 

remote provisioning and configuration. 

More specifically, traffic and resource monitoring is the essential function for 

large-scale enterprises, service providers, and network operators to ensure reliability, 

availability, and security of their resources. For this reason, many large-scale enterprises 

and providers have been investing in various stand-alone dedicated monitoring solutions. 

However, they find that a proprietary and dedicated stand-alone hardware-based appliance 

per-feature is inflexible, slow to install, and difficult to maintain as well as the cost is 

prohibitive. To cope with such a huge required investment, many enterprises are looking 
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for outsourcing alternatives and providers are also looking for means to reduce the cost. 

As networks are evolving towards software defined networks, control and management 

functions are logically centralized and real-time, scalable, and dynamic monitoring of 

managed resources is a key to make precise control decisions.  In addition to this, 

virtualization (e.g., Network Virtualization (NV) and Network Function Virtualization 

(NFV) [59]) of the underlying computing, network resources including Layer 4 

(transport) ∼ Layer 7 (application) capabilities, and network services has emerged as a 

complementary approach along with SDN. Specially, NFV provides more flexible and 

programmable monitoring functions which are used to be built in specific hardware. To 

provide such flexible and programmable monitoring functions, virtualization of monitoring 

function itself can be a solution. That is, a monitoring function of a particular objective can 

be instantiated on demand in real-time whenever a new monitoring requirement occurs 

and can dynamically be deleted once its demand completes. Since main benefit of 

network function virtualization is the chaining of its functionality, virtual monitoring 

function can be utilized as a part of such a virtual function chaining. Despite SDN and 

NFV promises flexibility, simplicity, and cost-effectiveness, the abstractions toward the 

remote and centralized control and management tend to introduce the following challenging 

problems: 

 

• Scalability problem: The proposed SDN architecture tends to open up control mes- 

sages between the controllers and the forwarding devices to the communication 

networks, which is spatiotemporally concentrated around the centralized controller. 

As studied in DevoFlow [22], DIFANE [81], ONIX [50], SDN imposes excessive 

control traffic overheads in order for the controller to acquire the global network 

visibility. More significantly, the overheads will be further increased by the 
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traditional network management events as well as the application specific control 

traffic, as they may use the same physical network paths, buffers,  and I/O channels 

at the same time. If the overheads are not controlled properly, they can cause various 

scalability problems on the networking devices, controllers, and the network itself 

including slow message processing, potential message drop, delayed root cause analysis, 

and late response against urgent problems. 

• Inaccurate and unreliable management problem: In traditional network systems, 

the network management practice mainly takes remote approaches coping with the 

network-centric infrastructure. However, since the network events occurred within 

the network should be inferred by the remote management systems, the potential 

network problems are often accumulated and enlarged, and the diagnosis is delayed, 

inaccurate, unreliable, and not scalable. SDN’s remote and centralized control tends 

to extend the legacy network management problems into the control plane. 

• Multiple management pillar problem: Although SDN’s management plane is the 

relatively unexplored area, either the SDN controller agnostic application of the 

incumbent management protocols or the full integration of the management plane into the 

controller protocols such as OpenFlow cannot be the viable approach for the highly 

dynamic SDN management. Moreover, there are growing expectations for the fine grained 

management of the customer specific services and applications. Many existing SDN 

approaches evidence that SDN allows variety of heterogeneous application interfaces and 

protocols to the data plane. For example, according to the most recent OpenDaylight 

controller architecture, the SDN control and management provide an expendable facility 

for the protocol specific management. Al- though OpenFlow gained its visibility as the 

most fundamental pillar to support SDN, it is actually one of the many programming 
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interfaces to the data plane. Multiple other interfaces and protocols such as OVSDB [66], 

SNMP [72], and various NFV applications also play a significant role in the evolution of 

the SDN management architecture. 

• Heterogeneous deployment problem: Moreover, in the practical network operation 

point of view, the SDN deployment may take the gradual transition instead of the 

one-night-all transition. Therefore, integrating existing services and protocols with 

SDN is an essential step for the transition.   Also, some of the network systems   

may want to employee the SDN functions only partially. For example, inter data 

center networks may want to use the provisioning functionality only, but to use   

their existing management tools. This will result a heterogeneous management 

environment. A complex combination of multiple and heterogeneous management 

channels introduces a significant scalability problem. 

 
We have investigated various network service aspects including agility, accuracy, 

reliability, and scalability in order to identify an effective SDN network management 

system. This dissertation intensively focuses on scalability issues. We propose a filtering 

and common processing module that facilitates various communication interfaces to 

collect network events. It also provides common filtering and event mitigation functions 

to simplify the event processing for the user-defined monitoring modules. In order to 

validate the functionalities of our proposed schemes, we implemented the proposed 

schemes and 
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Figure 3: Software-defined Unified Monitoring Agent (SUMA) board (MDS-40G) 

 
metrics in OpenFlow with OpenWrt [54] based switches. In collaboration with 

Electronics and Telecommunications Research Institute (ETRI), we also implemented our 

pro- posed modules in an intelligent management middlebox called Software-defined 

Unified Monitoring Agent (SUMA) [8] that becomes one logical point of intelligence for 

the integrated management services. SUMA is an essential switch-side middlebox that 

provides control and management abstraction and filtering layer among vNMS, SDN 

controllers, legacy NMS, and Openflow switches. SUMA performs a light weight event 

detection and filtering and the correlation will be conducted in vNMS. The two-tier 

framework is used to balance the performance impact between network devices and 

controllers, to provide scalability, and to ensure dynamic deployment. 

1.3.1 Software-defined Unified Monitoring Agent 

 
Figure 3 shows the SUMA board. SUMA is implemented in a couple of multi- 

core network processing cards powered by a Tile-Gx36 [74] processor.  It supports 36 
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Figure 4: SUMA implementation structure 

 

 
cores and each core has 1.2GHz clock speed. It also supports 10 Gbps packet processing 

capacity. Each card supports four 10G ports. As illustrated in Figure 4, the smart packet 

and flow filter take the fast-path to process the incoming packets with the line-rate. Com- 

mon processing, basic monitoring functions are all processed over the slow-path. Virtual 

monitoring and function manager are implemented in the host user space and interact     

with other functions via the virtual monitoring manager agent in the card. Our solutions 

for scalability issues are implemented as a User-defined Monitoring (UM) service and are 

realized on a Virtual Machine (VM). 

1.3.2 Issues of Existing Scalability Solutions 

 
In order to overcome SDN’s scalability issues, there has been a few research con- 

ducted. These solutions can be categorized into three types. As shown in Figure 5, the  

first type of the solutions tries to improve the capability of the controller itself by using 
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Figure 5: Existing solutions to improve scalability 

 

 
parallel processing and multi-threads [20]. The second type of the solutions is devolving 

some control functions of the SDN controller to the OpenFlow switches. DIFANE [81] 

runs the partitioning algorithm that divides the rules evenly and devolves those partitioned 

rules across authority switches. These authority switches will handle new flows instead of 

the SDN controller. DevoFlow [22] mainly reduces the interactions between OpenFlow 

switches and the SDN controller using rule aggregation, selective local action, and ap- 

proximating techniques. Another devolving solution, called Control-Message Quenching 

(CMQ), sends only one packet-in message for each source-destination pair, suppresses 

and enqueues the following un-matching packets until the switch receives packet-out or 

flow-mod message and installs the matching rule in its flow table. It reduces unnecessary 

packet-in messages from the OpenFlow switch to the controller.  The third type of the 
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solutions is clustering multiple physical controllers. In HyperFlow [75], the authors tried 

to provide scalability, using as many SDN controllers as necessary and keep the global 

visibility of link state changes. However, it has lower visibility for the flowlevel statis- 

tics. ONIX [50] is also distributed control platform for large-scale networks. It provides 

more general APIs than earlier systems, so it is easier to distribute controllers and collect 

fine-grained flow statistics from the distributed controllers. ONOS [1] is an experimental 

open source distributed SDN operating system which provides scalability for SDN control 

plane and achieves strong consistency of the global network visibility. 

Although the existing scalability solutions are to reduce the amount of the control 

messages within one controller instance, they are not able to reduce the overall quantity 

of the control messages from the network. In addition, they don’t sufficiently consider the 

quality of individual controller messages, especially, while the control messages are 

competing the same resources against themselves or other messages. To address this 

problem, we propose and implement a two-tier network management framework in two 

different approaches; embedded approach and agent-based approach. Each approach in- 

cludes various schemes and algorithms using event filtering, annotation, prioritization and 

classification techniques to alleviate the workloads of SDN controllers. 

 

1.4 Objectives of the Dissertation 

 
The objectives of the dissertation are to suggest new ways to remove or alleviate 

problems of the existing solutions and current specification; and develop management 

frameworks that improve HA and scalability of the current Software-Defined Networking 
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Figure 6: Overall SDN Reliability Framework Architecture 

 

 
systems. As illustrated in Figure 6, the proposed framework handles different issues (e.g., 

HA and scalability).  

 

1.5 Scope and Contribution of the Dissertation 

 
In this dissertation, we focus on two aspects of SDN management such as HA and 
scalability. The main contributions of this dissertation are as follows.  
 

• Online software bug detection, debugging, and isolation (BuDDI) middlebox architecture is 

proposed to solve for software-defined network controllers Common Software Failure 

problem.  

• HARP (High Availability Registration Platform) orchestrates control messages over the 

network virtualization components.  

• TARMan (Topology Aware Reliability Management) promotes an Architectures 
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Awareness in reliability management. By individualizing the inspection timers, TARMan 

can detect outage faster with less control messages. 

• We also propose distinctive network reliability cost model to ensure that the SLA 

covers customer service impact and damage. We classify network outages and 

calculate their effect on the network services to formulate a cost-based model. 

 
1.6 Organization 

 
The rest of this dissertation is organized as follows. In Chapter 2,  we review  

related work dealing with the HA and scalability issues of SDN. Before we dive  into      

the HA and scalability issues of SDN, we discuss the traditional network availability in 

Chapter 3. In Chapters 4 and 5 we identify new problems of SDN in regards to reliability, 

HA and scalability issues and propose their practical solutions. We address the novel 

reliability cost model and associated Markov model in Chapter 6. Finally, Chapter 7 

summarizes and concludes this dissertation and discusses future research goals. 
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CHAPTER 2  

 
RELATED WORK 

 
As the control plane in SDN is separated from the data plane and becomes a re- 

mote and centralized controller of the network, two major operational problems have  

arisen. First of all, HA issues of the SDN controller becomes very critical. One centralized 

controller of the network means a single point of failure.  Since the controller     is the 

brain of the network, the network could be disrupted without a proper operation    of the 

controller. In addition, since the underlying forwarding devices (e.g., OpenFlow 

switches) don’t have its own decision engine, it may induce delay to recover from switch 

failures (e.g., hardware and software) compared to the legacy network. Therefore, it is 

also critical to have a fast recovery mechanism to improve HA of the data plane. These 

concerns on HA issues motivate several research on HA in SDN. We will discuss them in 

detail in the following sections. Secondly, as the number of underlying network devices, 

protocols, and applications running on top of the SDN controller drastically increases, the 

capacity of the controller could not be enough to handle all the requests from the net- 

work, protocols, and applications. In addition, an OpenFlow switch also could be under 

congestion when it receives more packets than its peak capability or is under malicious 

attacks. These issues motivate researchers to study on scalability of the SDN controller. 

Therefore, in order to provide a highly reliable and robust SDN environment, we have to 

deeply consider these two major properties of the SDN controller. 
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In terms of HA in SDN, two types of issues have been studied so far. One is data 

plane HA and the other is control plane HA. Data plane HA of SDN can be further 

categorized into two topics such as fast failure detection on a data plane and HA for 

application servers that are running in the SDN environments. The scheme for the fast 

failure detection on a data plane utilizes the OpenFlow switch’s link signals to check 

connectivity among neighboring switches or delegates fault management to the OpenFlow 

switches by extending the OpenFlow protocol to support the monitoring function. The 

scheme for the server HA mainly focuses on HA between OpenFlow switches and 

multiple server replicas [23, 47, 49, 52]. In addition to the above proposed HA strategies, 

it is also significant to detect failures in the network fast and accurately so the network 

can be recovered in    a timely manner so as to maintain a highly available system [78]. 

There are a few work done for fast failure detection in the SDN area. The existing research 

focused on a data plane network. To compare with the existing research work, our research 

direction is unique, in that it mainly focuses on the HA issue of controller networks and 

a network between a controller and OpenFlow switches. 

As previously mentioned, the separation of the control plane from the data plane 

introduces a centralized SDN controller. Since the SDN controller administers the under- 

lying network and manages all the flows over the underlying network devices, it is easy 

to expect that it may have an intrinsic scalability issue on the SDN controller. Along with 

the HA research work, there has been a few research conducted on the scalability issue   

of the SDN controller.  Those research can be divided into three types.  The first type of 
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Table 5: High availability mechanisms 

 

 

Mechanisms Protocols 

Link bundling 
Link Aggregation Control Protocol (LACP) [36], 

EtherChannel [33] 

Multipath routing Equal-Cost Multi-Path routing (ECMP) [31] 

 

System redundancy 

Virtual Router Redundancy Protocol (VRRP) [41], 

Host Standby Router Protocol (HSRP) [35], Re- 

silient Packet Ring (RPR) [39] 

 

State synchronization 
Non-Stop  Routing  (NSR)  [38],   Non-Stop  For- 

warding (NSF) [37], Stateful Switch-Over 

(SSO) [40] 

 

Failure detection and handling 
Ethernet Automatic Protection Switching 

(EAPS) [30], Ethernet Ring Protection Switching 

(ERPS) [32], Fast Re-Routing (FRR) [34] 

 
 

the solutions is dedicated to improving the capacity of the controller itself by using multi- 

cores with parallel processing and multi-threads [3]. The second type of the solutions is 

devolving some control functions to the OpenFlow switches [22, 47, 56, 81]. These hybrid 

approaches allow some degrees of intelligence to the OpenFlow switches. By offloading 

some control functions from the controller, they expect to reduce workloads imposed on 

the controller. We will see in detail what functions/intelligence are left in the Open- Flow 

switches. Last but not the least, the third type of the solutions is clustering multiple 

controllers [1, 50, 51, 76]. These approaches show how they can synchronize the global 

visibility of network state changes across the multiple controllers in the cluster. 
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2.1 Related Work of Traditional Availability Issues 

 
HA is a well-established research topic and many technologies have been 

developed to increase availability and ensure the reliability requirements. As shown in 

Table 5, traditional HA architecture supports link bundling, multipath routing, system 

redundancy mechanisms along with efficient state synchronization, and failure detection 

and handling protocols. These HA mechanisms are implemented in each network device 

as a distributed protocol to handle the network problems according to the dedicated 

network topologies. In addition, most of the implementations of these HA mechanisms 

are proprietary. Therefore, they are not readily available in the SDN environment. LACP 

[36] and VRRP [41] can be easily adopted to the SDN system. However, they don’t cover 

the synchronization between the SDN controllers, correlation of failures between the 

control plane and the data plane, and inter connection HA, we need a sophisticated HA 

mechanisms specifically designed for SDN. 

 

2.2 Related Work of High Availability Issues in SDN 

 
In Section 2.1, we have presented types of HA techniques and discussed the cur- 

rent HA mechanisms in the traditional network. HA is a well-known research topic and 

well-established. However, these HA features don’t fully consider the correlation be- 

tween failures of the control plane network and inter-connection network that are newly 

introduced in SDN. There have been a few recent studies that focus on the failures of 

OpenFlow switches or links connecting them to facilitate the HA feature of the data plane 

in SDN. In this section, we categorize HA issues in SDN into two topics; data plane HA 
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Figure 7: High availability classification in SDN 

 

 
and control plane HA and talk about the current research work. Table 6 presents a com- 

prehensive view of the current high availability research in SDN. The details are explained 

in the following sections. 

2.2.1 Data Plane High Availability 

 
As we mentioned, data plane HA in SDN can be further categorized into two top- 

ics; application server HA and fast failure detection. First of all, we discuss the current 

research work related to the application server HA. The study on application server HA in 

SDN can be found in [78]. The authors proposed RuleBricks that provides HA in existing 

OpenFlow policies. It primarily focuses on embedding HA policies into OpenFlow’s for- 

warding rules. They implemented RuleBricks by utilizing an expressive brick-based data 

structure instead of naive tree-based data structure. They show that RuleBricks maintains 

linear scalability with the number of replicas (i,e,. backup rules) and offers approximately 

50% reduction in the active rule set. 

Now, we discuss the current research work in the area of fast failure detection and 
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Table 6: High availability research: comprehensive view 

 

 

Ref. 
Data plane HA Inter 

connection HA 

Control plane HA 
Server HA F.D. F.R. Horizontal Instance 

[78] 
√ 

     

[23]  
√ 

    

[47]  
√ √ 

   

[49]   
√ 

   

[42]     
√ 

 

[76]     
√ 

 

[50]     
√ 

 

[1]     
√ 

 

[3]      
√ 

 

F.D.=Fast detection, F.R.= Fast recovery 

 
 
 

recovery on the data plane. As we discussed in the definition of network availability, it is 

very important to quickly detect failures in the network as well as to recover the network 

as soon as possible after the failure detection. Failure detection and network recovery in 

a timely manner maintain highly available system. There have been a few studies con- 

ducted on fast failure detection and recovery in SDN and most of them have focused on 

the data plane network. Desai et al. [23] proposed an algorithm that utilizes the Open- 

Flow switch’s link signal to check the connectivity among neighboring switches for fast 

failure detection. This scheme notifies the link failure to all the neighboring switches in 

order to refrain from sending messages in the direction of the failed link so it can minimize 

unnecessary traffic in the network and reduce the effects of the link failures. Their 

algorithm enables failure detection faster than the controller which identifies the failed 

link through heartbeat messages and sends out an update.  However, their algorithm does 
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not contribute to the recovery of the network. Kempf et al. [47] also considers fast failure 

detection and recovery by extending the OpenFlow protocol to support a monitoring 

function on OpenFlow switches. They followed the fault management operation of MPLS-

TP for the implementation and achieved fault recovery in the data plane within 50 ms. 

Kim et al. [49] proposed an SDN fault-tolerant system, named CORONET (controller 

based robust network), that mainly focuses on recovering the data plane network from 

multiple link failures. Their proposed modules can be implemented and integrated into 

NOX con- troller. They summarized challenges on building a fault-tolerant system based 

on SDN but they didn’t describe the proposed modules in detail. 

2.2.2 Control Plane High Availability 

 
Along with data plane HA, control plane HA has also been studied for various 

aspects.  Hellen et al. [42] discussed about controller’s physical placement in the network. 

They tried to optimize the number of controllers and their location in the network. By 

connecting an OpenFlow switch to the closest controller in the network, it can re-   duce 

control delay and contribute to improvement of high availability. Tootoonchian et al. [76], 

Koponen et al. [50], and Berde et al. [1] proposed HyperFlow, ONIX, and ONOS, 

respectively. These proposed frameworks establish one logical controller consisting of 

physically distributed controllers in the cluster. Since they run on the multiple physical 

controllers, the slave controllers can operate the network when the master controller goes 

down. Even though HyperFlow, ONIX, and ONOS consider some aspects of reliability 

of the controller cluster via the distributed physical controllers, their main concerns are 
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Figure 8: Two major scalability issues in SDN 

 

 
scalability and synchronization of network status among multiple physical controllers.   

Cai et al. [3] proposed Maestro controller which supports software HA. A task manager 

of Maestro manages incoming computations and evenly distributes work to each SDN 

controller instance at each core of the processor. Since it exploits multi-core architecture, 

it can re-distribute the work evenly at the time of the core crash or software crash. 
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Figure 9: Scalability classification in SDN 

 

 
2.3 Related Work of Scalability Issues in SDN 

 
Along with the HA research work, there has been a few research conducted on 

scalability issues in SDN. Figure 8 illustrates the scalability problems that can be ad- 

dressed in the current SDN architecture. The first problem can be seen in the controller. 

As introduced, SDN relies on a centralized controller to operate the underlying network 

and opens up control messages to communicate between the controller and the forwarding 

devices. As the size of the underlying network gets bigger, the capacity of the SDN con- 

troller could be quickly saturated. The second problem can be observed in the OpenFlow 

switch. Unlike the traditional network, the forwarding device in SDN has to communi- 

cate with the SDN controller to make a decision for forwarding or routing and get network 

policies. Specially, it is a mandatory procedure for an OpenFlow switch to send new flow 

packets to the SDN controller in an encrypted format such as the packet-in message to 

cope with them. This could be extra workloads and saturate the OpenFlow switch. 
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Current scalability research in SDN primarily focuses on the controller part. Those 

researches can be divided into three types such as improving the capacity of the controller 

itself by using parallel processing and multi-threads, devolving some control functions to 

the OpenFlow switches, and clustering multiple controllers. Table 7 presents a 

comprehensive view of the current scalability research in SDN. The details are explained 

in the following sections. 

2.3.1 Controller Enhancement with Multi-threading 

 
The first type of the solutions tries to improve the capacity of the controller itself. 

Cai et al. [3] proposed the Maestro controller for scalable OpenFlow network control. 

Since the SDN controller is the only brain of the network that copes with all the requests 

from the underlying network devices, it could be a performance bottleneck of the network 

system. The authors exploits parallelism to improve the capacity of the controller. They 

implemented Maestro that can support multi-core processors with parallel processing and 

multi-threads. Their experiments show that the throughput of Maestro can achieve near 

linear scalability on a multi-core processor server. 

2.3.2 Devolving Control Functions 

 
The second type of the solutions is devolving some control functions to the Open- 

Flow switches. There are two well-known papers such as DIFANE [81] and DevoFlow [22]. 

DIFANE runs a partitioning algorithm that divides the rules evenly and devolves those 

partitioned rules across authority switches.  These authority switches will handle new 
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flows instead of the controller. DevoFlow mainly reduces the interactions between Open- 

Flow switches and the SDN controller using filtering and sampling such as rule aggrega- 

tion, selective local action, and approximating techniques. Another devolving solution, 

called Control-Message Quenching (CMQ), is proposed by Luo et al. [56]. The switch 

with CMQ sends only one packet-in message for each source-destination pair, suppresses 

and enqueues the following un-matching packets until the switch receives packet-out or 

flow-mod message and installs the matching rule in its flow table. It reduces unneces-  

sary packet-in messages from the OpenFlow switch to the controller. Lastly, the work 

done by Kempf et al. [47] also can be considered one of the devolving schemes. The 

authors claimed that the centralized fault management has serious scalability limitations. 

Therefore, the proposed scheme delegated fault management to the OpenFlow switches 

by extending the OpenFlow protocol to support the monitoring function. 

2.3.3 Clustering Multiple Controllers 

 
The last type of the solutions is clustering physically distributed controllers into a 

logically centralized controller in order to increase the capacity of the controller. There 

are two types of clustering techniques such as horizontal clustering and hierarchical clus- 

tering. In the horizontal clustering, each controller plays a role of master or slave. They 

could have the same functionalities or may have different functionalities based on the 

configuration and implementation. In HyperFlow [76], the authors tried to provide scal- 

ability, using as many controllers as necessary and keep the global visibility of link state 

changes. However, it has lower visibility for the flow-level statistics. Koponen et al. [50] 
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Table 7: Scalability research: comprehensive view 

 

 

Ref. 
Focus Scalability method Devolving Cluster 

Cont. Switch M.C. Devol. Cluster Switch Other Horizontal Hier. 

[3] 
√ 

 
√ 

      

[81] 
√ 

  
√ 

  
√ 

  

[22] 
√ 

  
√ 

 
√ 

   

[56] 
√ 

  
√ 

 
√ 

   

[47] 
√ 

  
√ 

 
√ 

   

[76] 
√ 

   
√ 

  
√ 

 

[50] 
√ 

   
√ 

  
√ 

 

[1] 
√ 

   
√ 

  
√ 

 

[51] 
√ 

   
√ 

  
√ 

 

[80] 
√ 

   
√ 

   
√ 

[70] 
√ 

   
√ 

   
√ 

[53] 
√ 

   
√ 

   
√ 

 

Cont.= Controller, M.C.= Multi-cores with multi-threads, Devol.= Devolving, Hier.= Hi- 

erarchical 

 
 

proposed ONIX which is also distributed control platform for large-scale networks. And 

it provides more general APIs than earlier systems, so it is easier to distribute controllers 

and collect fine-grained flow statistics with the distributed controllers. Berde et al. [1] 

proposed ONOS. It is an experimental open source distributed SDN operating system 

which provides scalability for SDN control plane and achieves strong consistency of the 

global network visibility. Krishnamurthy et al. [51] tried to improve performance of the 

current distributed SDN control platforms by proposing a novel approach for assigning 

SDN switches and partitions of SDN application state to distributed controller instances. 
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The authors focused on two metrics such as minimizing flow setup latency and 

minimizing controller operating costs. Their scheme shows that a 44% decrease in flow 

setup latency and a 42% reduction in controller operating costs. 

The second clustering technique uses the hierarchical structure. Controllers in the 

cluster can be classified into two types of controllers; a super controller and a regular 

controller. Yeganeh et al. [80] proposed an efficient and scalable framework that offloads 

the control applications by separating the controllers into two different roles such as a    

root controller and a local controller. The root controller processes rare events and while 

highly replicated local controllers cope with frequent events.  The local controllers are   

not connected each other.   Therefore, it only handles the local events that require the   

local visibility. However, since the root controller maintains the network-wide global 

visibility, the root controller involves in packet processing that requires the global network 

state. Park et al. [70] proposed a novel solution, called RAON, that recursively abstracts 

controller’s underlying networks as OpenFlow switches to reduce the complexity. In this 

architecture, the networks of the lower-level controllers are abstracted as a big OpenFlow 

switches. This abstraction extracts the relationship between two different networks that 

are operated by physically different controllers. Therefore, all the ingress and egress ports 

of the network becomes the ports of logical OpenFlow switch.  Lee et al. [53] proposed a 

hierarchical controller structure with a super controller that collects global visibility   from 

the lower-level controllers. Their main contribution is defining northbound message 

formats to realize the hierarchical controller in the field. They defined three different types 

of messages; normal messages, bandwidth event messages, and delay event messages. 
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New types of messages such as bandwidth event messages and delay event messages are 

added in order for a super controller to quickly respond to abnormal events from the 

underlying network operated by the lower-level controllers. 
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CHAPTER 3 

 
MEASUREMENT AND ANALYSIS OF AN ACCESS NETWORK AVAILABILITY 

 
Before we dive into the SDN’s practical management issues, which include high 

availability issues, we discuss the network availability of a traditional network. In this 

chapter, we present our work on the measurement and analysis of the access network 

health. Understanding the health of a network via failure and outage analysis is important 

to assess the availability of a network, identify problem areas for network availability 

improvement, and model the exact network behavior. However, there has been little failure 

measurement and analysis work on access networks.  We carry out an in-depth outage and 

failure analysis of a university campus network (University of Missouri-Kansas City) 

using a rich set of node outage and link failure data and topology information. We 

investigate the attributes of hardware/software and misconfiguration problems of the 

networks, the relation of link failure and node outage, the node availability, and the 

correlations between layers of a hierarchical network. For this dissertation, we mainly 

focus on the campus network availability. Section 3.1 describes the architecture of the 

campus network and the data sets we used for the availability measurement and analysis. 

 

3.1 Campus Network Architecture and Data Sets 

 
The campus network of our study is designed in a hierarchical manner that is a 

common practice of campus or enterprise networks [10].  It provides a modular topology 
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of building blocks that allow the network to evolve easily. A hierarchical design avoids 

the need for a fully-meshed network in which all network nodes are interconnected. The 

building block components are the access layer, the distribution layer, and the core (back- 

bone) layer as shown in Figure 10. The building blocks of modular networks are easy to 

replicate, redesign, and expand. There is no need to redesign the whole network each time 

a module is added or removed. Distinct building blocks can be put in-service and taken 

out-of-service with little impact on the rest of the network. This capability facilitates 

troubleshooting, problem isolation, and network management. In a hierarchical design, 

the capacity, features, and functionality of a specific device are optimized for its position 

in the network and the role that it plays. The number of flows and their associated 

bandwidth requirements increase as they traverse points of aggregation and move up the 

hierarchy from access to distribution and to core layer. 

In the earlier years - until 2007, the UMKC network had 2 core routers in the core 

layer, 38 routers in distribution layer, and 373 nodes in the access layer. Since then, the 

core layer has increased up to 3 routers with different names. The new core router was 

added more recently to aggregate some part (e.g., dormitory area) of our campus network 

and wireless. In the distribution layer, there are currently 54 routers. The access layer has 

about 571 nodes and includes wireless access points, switches that connect to end-systems 

directly, and switches that aggregate other switches. 

We have collected the node outage data as well as the link failure data from the 

university campus access network. As for network topology, we have had the direct and 

complete network topology information available for the network operators.  We have 
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Figure 10: Hierarchical access (university campus) network design 

 

 
used the naming conventions of devices to classify and relate devices, and utilized the 

topology information tool, called ‘Intermapper’. Additionally, we have incorporated 

vendors’ documents in regards to the causes and recommended actions, and have 

discussed the network operators’ anecdotal comments on special events and actions.  To 

the best    of our knowledge, those data are the most extensive and complete data used in 

network failure and outage analysis. 

Node outage data was gathered by SNMP polling and trap,  and it is from April   

7, 2005 till April 10, 2009 with 42,306 outage events. The polling time varies depending 

on the monitored devices ranging from 2 minutes to 5 minutes.   The outage event   time 

is recorded in the unit of minutes, and the outage duration is measured with second 

granularity. 
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Link failure data is collected from syslog which is UPDOWN messages from each 

device to a central syslog server. The period of data is from October 1, 2008 to October 

5, 2009. Among many syslog error messages, we only consider ‘LINK-3-UPDOWN’ 

messages as pertaining to failure analysis. The 12 month data contains roughly 46 million 

syslog messages, of which 3.8 million messages represent ‘LINK-3-UPDOWN’ attached 

to itself.   Syslog data has a slightly different format depending on the device vendors     

and router OSes. The campus consists of routers and switches from mostly Cisco, pro- 

viding a similar format of syslog messages. Note that a link failure can occur due to 

software/hardware malfunction, natural or human-caused incidents, and may not lead to 

service outage due to redundancy or recovery mechanisms. 

There may be some possible artifacts in the data, however, due to in-band (the 

monitoring data follows the same physical path as the user data) monitoring, the SNMP 

polling interval, and nature of protocol. Failure or outage reporting can be affected by the 

topology of the network. Any failure that is on the path to the monitoring system would 

likely result in an outage being reported for all devices on the path, though it is possible 

that the issue only affected one host. If connectivity is lost between the sending device 

and the syslog server, the syslog event would not be recorded. Additionally, as syslog 

uses UDP protocol, data can possibly be lost due to transient network congestion, CPU 

load, OS patching, EIGRP reconvergence, STP (Spanning Tree Protocol) recalculation, 

etc. 
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3.2 Network Availability Measurement 

 
In this section, we investigate the availability of network nodes over four years. 

The node availability is the percentage of the uptime of a node. For each node i, let 

NodeAvail(i) represent the node availability over a month, and it is computed as  below. 

 

T T BF (i) T T T R(i) 
NodeAvail(i) = 100 (3.1) 

T T BF (i) 

where T T BF (i) is the monthly Total Time Between Failure of node i, and T T T R(i) is 

the monthly Total Time To Repair of node i.  This formula shows that we can improve  

the network availability by increasing the time between failures and reducing the time to 

recover. As we will see from Chapter 4, we focus on reducing the time to recover. Then, 

we compute the mean node availability (MNA) of all the nodes in the network. 

 
M NA = 

m 
i=1 

NodeAvail(i) m 
 

(3.2) 
∑ 
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where m is the number of nodes in the network. The data set of the TTR per 

device is derived from the node outage data shown in Figure 11 and the 

monthly mean node avail- ability for the period from April 2005 to March 

2009 is shown in Figure 12. We only use the events of the unplanned outages. 

We exclude the planned outages from the results to see the impact of the 

unplanned outages on the network availability. We observe that the network 

maintains two or three-nine availabilities in most of the months.  It appears 

to    be fairly healthy performance, even though there is no comparable 

measurement, to the best of our knowledge. Delve into the details, we notice 

one big drop in the availability in August 2006. Consulting the network 

operator, we confirm that there was a fire near a building that took out the 

fiber that month. We also observe slightly lower availabilities in 

Table 8: Long term outages in the access layer 

 

 

Year Month Causes of Degradation 

2006 
Jun Reason 1&2&3 

Aug Fire accident 

2007 
Apr Reason 2 

Dec Reason 2 

 

2008 
Jun Power outages all over campus 

Jul Backup link installation & OS bugs 

Nov Reason 2&3 
 

 

several months in 2007 and 2008. To concisely explain those occasions, we 

list possible reasons for the unidentified outage events below, based on the 

consultations with the net- work operator. Then, we summarizes the causes 

that made the performance degradation for each case, in Table 8. 

• Reason 1:  Issues that were either out of our control to correct any 
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more quickly (like power problems) 

• Reason 2: Issues that didn’t justify an on-call response, thus were 

dealt with in the morning 

• Reason 3: Issues that we were working on but took a while to fix 

• Reason 4: Issues that affected monitoring but not operation 

 
3.3 Network Availability Analysis with Splunk 

 
We also discuss network availability analysis using Splunk and 

tailored scripting. Splunk is one of big data analysis tools and provides easy 

classifications and statistics 

 
Figure 11: Node Outages vs Link Failures. 

 
in a convenient format by efficiently capturing, indexing, and correlating big 

data. It analyzes the similarity between each line of the given data and 

recognizes the format of the messages or anomalies. It is very useful to 
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quickly check various statistics of big data in real-time. Therefore, it enables 

us to have an agile visibility on the data and manage systems efficiently. 

As the size of the network increases, network operators usually focus 

on only important links that are uplinks from a switch to other switches in 

the upper layer. Considering the limited human resources, it’s impossible for 

them to track all the network messages caused by the very end links due to 

the sheer amount of messages being generated daily. Currently, the issues 

with individual interfaces are not monitored well nor 

 

 

Figure 12: Node Availability (SNMP). 

fixed unless a user contacts the network operators. However, to improve the 

user experi- ence, we need to harness the syslog messages by providing an 

automatic tool that analyzes network log messages and detects detrimental 

network events based on the institutional network policies. 

In order to quickly identify network anomaly, we conduct 

quantitative analysis that ranks the number of node outages and link 

failures. We use Splunk for this analysis so that we can identify the 

problematic areas in our campus network taking the spatial    and temporal 
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aspects into consideration. For example, as shown in Figure 13, Splunk 

identifies that our network has many node outages in the “D” field of our 

campus. This is a soccer field, which is a wide-open area. Since no students 

expect Wi-Fi availability in this area, no complaints have been filed and it 

was left unfixed.  Splunk can also be used to detect a problematic network 

component. In Figure 14, Splunk indicates that we have many link failures 

in one of switches in the “m” building. The possible reasons could be 

related to a bad port on the switch, a bad adapter on a client’s NIC, or very 

old cables such as CAT3. In this case, the old cables cause these errors. After 

the new wiring installation, these problems are resolved. This type of errors 

has detrimental impact on only individual network devices, which is why it 

doesn’t get urgent attention. 

 

Figure 13: Statistical analysis of syslog in Splunk 

 

 

 
Figure 14: Statistical analysis of syslog in Splunk 
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These network events that are captured by Splunk are hard to be monitored by net- 

work operators since these errors don’t have significant impact on the network operation. 

There is no way for them to get this information unless they carefully look through all the 

node outage and link failure events. Network availability analysis with Splunk can help 

network operators actively search problematic areas and devices in a quick and easy way. 

 

3.4 Summary 

 
We have conducted analysis of node outage and link failure data on a university 

campus network (UMKC) in order to understand the general characteristics of an access 

network including network availability. In order to precisely analyze the 

characterizationof the campus network, we incorporated vendors’ documents in regards to 

the causes and recommended actions, and the network operators’ input on special events 

and actions     as well as long periods of network data such as syslog messages and SNMP 

data. This study on a campus network provides insights on the behaviors and conditions 

of access network availability, and potential end-to-end availability expectations.  
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CHAPTER 4 

 
SDN CONTROL PATH NETWORK RELIABILITY 

 
In this chapter, we present our approaches to the current high availability 

problems. We elaborate our proposed control path reliability management framework that 

includes several algorithms and describe its implementation. As aforementioned, the 

remote and centralized controller needs to be connected to its underlying network devices 

and communicate with them to manage flow requests from the network and impose 

network administrative policies into the network. This introduces new physical links 

between the controller and network devices.  In addition to this, the controller can be 

configured as   a cluster having multiple controllers for high availability (as well as 

scalability). In this case, there would be a separate network that connects the multiple 

controllers in the clus- ter. In this work, we call the links that connect the controllers in 

the cluster as well as between the controller and underlying network devices control paths. 

We propose a novel Multitemporal Cross-Stratum (MuCroS) discovery protocol 

framework, which efficiently orchestrates different reliability monitoring mechanisms over 

SDN networks and synchronizes the control messages among various applications. MuCroS 

facilitates multiple discovery frequency timers for each target over different stratum instead of 

using a uniform discovery timer for the entire network. It supports many common reliability 

monitoring factors for registered applications by analyzing offline and online network 

architecture information such as network topologies, traffic flows, virtualization architectures, 

and protocols. MuCroS framework consists of a high availability registration platform (HARP) 
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and the topology-aware reliability (TAR) and traffic-aware discovery (TAD) protocol facilities.  

MuCroS framework  is  implemented  on  both  Ryu   and Cisco’s OpenDayLight (ODL) 

controllers. Extensive Mininet experimental results validate that MuCroS significantly 

improves discovery message efficiency and makes the control traffic less bursty than OFDP 

with a uniform timer. It also reduces the network status discovery delay without increasing the 

control overhead. 

 
 

 

 
 

Figure 15: Complex SDN Reliability Management Domain 

 

 
4.1 Network Reliability Issues 

 
Network reliability management is one of the most crucial operational functions 

for the network service providers (NSPs). A network system fundamentally uses various 

heartbeat based failure detection mechanisms which is built-in distributed network 

devices. No heartbeat from a remote or neighbor node over a threshold duration indicates 

a potential failure of the node or link. The recent softwareization of network functions, 

controls, and applications is promising, as it improves the cost efficiency, control 



47  

accuracy, and deployment flexibility of infrastructures. Software-Defined Networking 

(SDN) is a softwareization technology that logically centralizes the application and 

control planes (controllers) of a network by separating them from the underlying data 

plane (forwarders). OpenFlow [62] has been adopted as a southbound communication 

protocol between the control plane and data plane networks. In SDN, where the control 

plane responsibility is moved to the logically centralized controller, the network 

reliability schemes are operated by the controllers as centralized discovery protocols. An 

SDN controller operates periodic heartbeats to discover the initial network topology. The 

controller maintains up-to-date network visibility of the discovered network topology 

using the remote node’s status notifications and periodic discovery messages.    For 

example, an SDN controller identifies SDN switches when they initiate a TCP  connection  

to  the  controller  according to the controller’s configuration. In addition, it discovers the 

network links by using discovery protocols such as the Link Layer Discovery Protocol 

(LLDP) [63], Broadcast Domain Discovery Protocol (BDDP) [64], and OpenFlow 

Discovery Protocol (OFDP) [65]. The SDN controller also finds connected hosts when 

they initiate a new flow message (i.e., initially ARP and RARP). Among them, LLDP is 

used as a dominant periodic discovery protocol. 

However,  the issue of centralized reliability management in softwareization 

architecture becomes more complex due to multi-lateral new network domains and poses 

both scalability and latency challenges on the existing network reliability mechanisms in 

order to achieve the same reliability services.  The fundamental failure sensing timing 

and sequence can be vary and unnecessary redundant messages are often induced 

depending upon the given network architecture such as net-   work topologies, 

virtualization, protocols, flows, policies, etc. In some situation, the control messages are 

conflicting each other that causes consolidation or convergence time. It not       only incurs 
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control overhead but also delays the topology and failure discovery processes. For 

example, in traditional networks, LLDP was configured as an optional protocol for the 

link layer neighbor discovery. However, SDN relies heavily on LLDP for discovering 

and maintaining its network visibility. Each controller (i.e., Cisco’s ODL) maintains a 

uniform period timer for a discovery protocol. The total number of LLDP messages for a 

controller to process for an OFDP discovery period is about twice of the entire number of 

switch ports  (including the inter-SDN switch port, host port,  and  non-  SDN switch port) 

in the network. Hence, the control message scalability decreases significantly, if the 

network size and the discovery frequency increase. As illustrated in Figure 15, if the 

forwarding network is an in-band or tree topology and is used by various virtualized 

networks, many redundant control messages will be introduced to the network especially 

for the top of the network switches. Although there have been a few recent SDN reliability 

studies in the forwarding links [66] and control cluster [67], [68], little work has been 

conducted to orchestrate the separated abstraction and virtualization network planes in 

support of the SDN reliability. 

In this paper, we propose a Network Architecture-aware Reliability Management 

Schemes (NetAware) to efficiently orchestrate different reliability monitoring 

mechanisms over multi-lateral SDN network architecture and synchronize the control 

messages among different controllers and applications. NetAware uses the network 

architecture information to expedite the network reliability decision as well as reduce any 

unnecessary redundant control messages. NetAware facilitates many common reliability 

monitoring factors for the registered applications by analyzing both off-line and on-line 

network architecture information such as network topologies, virtualization, protocols, 

flows, policies,  etc.  NetAware  consists of a High Availability Registration Platform 

(HARP) and a Topology Aware Reliability (TAR) discovery facility. HARP handles 
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redundant management messages due to the network virtualization and aligns 

asynchronous reliability protocols. TAR promotes hierarchical network topology in an 

order of importance based on the core, aggregate or edge. It differentiates the discovery 

message period according to the network topology. The impact of a target (node/link) to 

the network    traffic is calculated according to the location, relationship, and functionality 

(i.e., core, aggregate and edge). For example, in a data center environment, a typical 

network architecture  uses a three-tiered design that has a core tier in the root of        the 

tree, an aggregation tier in the middle, and an edge tier   at the leaves of the tree (i.e., Top  

of Rack) [69]. TAR can also facilitate many common reliability monitoring parameters 

such as protocol type, heartbeat mechanism, period, and target for the registered 

applications by analyzing both off-line and on-line network topology information. We 

implemented both HARP and TAR into Cisco’s Open-DayLight (ODL) [71] High 

Availability (HA) component. By taking a common corrective action against a failure, it 

acts as an effective decision-making tool. The Mininet based experiment results show that 

NetAware eliminates redundant control messages   over different virtualized network 

management segments, uses much less periodic control messages, and expedite a failure 

detection on the critical network segment without impacting the network scalability. 

4.2 Motivations 

4.2.1 SDN Control Message Experimental Setting 

 

 
Figure 16 Mininet Configuration 

As illustrated in Figure 16, we have conducted initial control message experiments 
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using Mininet [15] with daisy chain  based networks by varying the switches between 20 

and 140    as well as tree topology networks  varying  the  tree  depth  from 2 to  5  levels  

(assuming  2  fan  outs,  there  are  3,  7,  15, and 31 switches, respectively). We have 

captured control messages for 10 mins with various SDN controllers including ODL,  

ONOS  [72],  [73],  Floodlight  [74]  (FL),  RYU, IRIS. 

In this observation, we can infer a few interesting SDN controller design 

approaches. The results indicate that each    SDN controllers interpret the same OpenFlow  

specification differently. Some controllers use far more initial control mes- sages. Also, 

it should be noticed that there are many redundant control messages such as echo, LLDP, 

and ICMP to monitor network status for detecting  and  isolating  network  failures as 

well as to identify the network topology. They are not synchronized among the 

applications. They often cause more complex detection and isolation process and 

potential racing conditions among the network status. 

 

Figure 17 Total Control Message 

According to Figure 17, there are various initial control messages to setting up the 

network. However, among the control messages, periodic LLDP messages are dominant. 

Figure 18 shows that ODL generates the smallest number of control messages. ONOS has 

a comparatively small number of control messages, which increases linearly as the 
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number of switches increase. On the other hand, RYU has a relatively large number of 

control messages and the number of control messages increase remarkably as the number 

of switches increase. This suggests that an RYU controller can be easily congested with 

its own control messages. 

 

Figure 18 Control Messages Per Controller 

 

4.2.2 Observation on Asynchronous and Redundant Reliability Management 

 
 

Figure 19 Redundant LLDP Messages over Virtualization  Layer 

 
As one of the essential problems in the network virtualization, virtual network 

embedding (VNE) has been widely studied to achieve different goals. Various VNE models 

have been proposed with different optimization goals or constraints. However, as layers of 

virtualization, policy application, and service chaining rely on network visibility, virtualized 
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network management becomes more critical issues and impacts more complex ways. There 

are several management strategies to maintain the network visibility such as Event Driven 

(Report every events, the Health Manager (HM) will take care of them), Polling (Reply the 

event only if an HM asks), and Callback (Report the registered events only). However, it is 

unclear which  approach  works  better  in  which  condition.  As shown in figure 17 there also 

are many periodic control   messages such as echo, LLDP, RARP, and ping to monitor network 

status in order to detect and isolate network failures    as well as to identify the network 

topology. However, many messages redundant in their functionality and are not synchro- nized 

among the applications. They often cause more complex detection and isolation process and 

potential racing conditions among the network status. For example, as  illustrated  in  Figure 

19, LLDP messages for the virtual networks V1, V2, and V3 will be used for each virtual 

network management. However, all of those LLDP messages are used redundantly, indeed to 

discovery the link status of P1 in the physical network. In addition, as shown in Figure 20, 

multiple control messages (LLDP, ICMP, RARP, etc.) are asynchronously used for the same 

component for the same status detection. For an efficient reliability management, a facility that 

can be aware     of the virtualized network mapping in order to optimize the control over the 

heterogeneous softwareized networks. The framework should be able to synchronize control 

messages via registration methods as well as orchestrate control messages over the network 

virtualization components. For example, if     an SDN network segment is an in-band network 

and SDN controller is aware of the network topology, it can send a representative discovery 

message instead of sending discovery messages for the overlapping network segments. Only 

if the representative discovery fails, it can conduct an individual discovery process. 
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Figure 20 Redundant Reliability Protocols over In-band SDN Network 

4.2.3 Issues on Topology  Agnostic Discovery Protocols 

 

Figure 21 Topology of LLDP-Discovery and LLDP-Speaker 

The LLDP has been used by distributed network devices for advertising their local 

information such as identity, capabilities, and neighbors. In traditional networks, this vendor-

neutral link layer protocol is configured as an optional component in network management 

and monitoring applications. However, in SDN, OFDP, or an SDN LLDP is a centralized 

discovery protocol that transmits information about the current status of a device and the 

capabilities of its interfaces. As illustrated in Figure 21, the SDN controller has LLDP facilities 

including    an LLDP Speaker and LLDP Discovery. When a switch is connected to a 

controller, an LLDP Speaker periodically sends dedicated LLDP packets in the Packet-Out 

messages for all      the interfaces of the network switches. The switch floods the LLDP packets 

through all of its ports. Upon receiving an LLDP packet, an SDN switch sends a Packet-In 

message     to its controller for acknowledging a direct link between the switches. Figure 22 

presents accumulative LLDP message counts on the daisy chain topology networks with 2 and 

8 switches, respectively. As the network size increases, the amount of control messages 

dramatically increases due to the path dependency among the network switches. For example, 

if an SDN network segment is an in-band network or over        the tree topology, a link failure 
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on L1 can have a more significant impact on the entire network than a link failure on L2 

because more components are depending upon the L1 link. Hence, increasing the LLDP 

discovery frequency will worsen the scalability of the network, but decreasing the LLDP 

discovery frequency will delay the detection of the network   status changes. 

 

Figure 22 LLDP messages over the daisy chain network 

 

 

4.3       Reliability Management Framework 

 

 
Figure 23 HARP Architecture 

We design and develop an intelligent SDN reliability control approach. The 

Network Architecture-Aware Reliability (NetAware) Management Framework facilitates 

many com- mon HA monitoring factors for the registered applications by analyzing both 

offline and online information instead of implementing HA services for each object (i.e., 

application, controller, protocol, and switch). NetAware eliminates redundant control 
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messages, simplifies the fault detection and isolation process, and expedites fault 

recovery by chaining network problems intelligently. It enables a common corrective 

action against a failure. NetAware framework consists of TAR and HARP modules. We 

prototype NetAware into Cisco’s ODL in support of a few practical case scenarios. As 

described in Figure 23, a High Availability Registration Platform (HARP) orchestrates 

different monitoring mechanisms over the com- plex SDN architecture and synchronize 

the control messages among different controllers and applications. In this case scenario, 

we implement HARP that filters redundant discovery LLDP messages over the virtual 

networks by aligning with      the Virtual Network Embedding (VNE) information. 

HARP   gets virtual to physical network mapping information from       the VNE. Along 

with the current physical network status, HARP arranges the physical network control 

budget for the registered HA requirements. Virtualization application also takes physical 

network topology from the HARP for the next VNE. A Topology-Aware Reliability 

(TAR) module enhances the scalability and latency issues of the centralized discovery 

mechanism by assigning target specific discovery frequencies instead of using a uniform 

period for the entire network. It promotes hierarchical network topologies in an order of 

im- portance based on the core, aggregation, or edge. The impact   of a target (node/link) 

to the network traffic is calculated according to the location, relationship, and 

functionality (i.e., core, aggregation, and edge). We used a zone concept to differentiate 

the discovery message period according to the network topology. We set a 3-depth binary 

tree topology and categorized the topology by zone. The node on the top of         the tree 

topology, such as the core switch, is categorized as Zone1. The middle tier of the 

topology in an aggregation tier is categorized as Zone2. The edge nodes in the bottom of 

the tree topology categorized as Zone3. For example, a failure    in a core switch may 

impact the most data traffic and control messages. By sending more frequent discovery 
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messages to the core (the more important nodes), TAR can expedite a failure detection 

and recovery on the critical network segment while sending less frequent discovery 

messages to the edge nodes. 

 

Figure 24 Network Architecture aware Reliability Management Implementation 

Considering the network distance to travel, TAR can achieve faster detection 

without worsening the network scalability issues. As illustrated in Figure 24, the 

NetAware is implemented in ODL on the LLDP-Speaker module (TAR) and the Open- 

Flow Packet processing module (HARP). LLDP-Speaker is      an application in the 

Openflow module for sending LLDP frames. A 

NodeConenctorInventoryEventTranslator( ) thread listens on status change events such 

as nodes and link added    or removed from the networks. It maintains all the node- 

connector information that consists of the node ID and port number. The LLDP-speaker 

module runs a thread that sends    the LLDP frames packaged into Openflow PACKET 

OUT messages to all learned nodes for every 5 secs. We intercept this routine to embed 

the TAR  module that returns an    LLDP frequency value for each target switch 

(switchID). The LLDP frequency () determines how often the LLDP-Speaker sends a 

probe to a specific switch for requesting the LLDP message. The frequency value can be 
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dynamically assigned according to the network condition (i.e., a switch functionality and 

frequency). With the returned LLDPfrequency(period) and switchID(target), the TAR 

module calls a packetPro- cessingService.transmitPacket (PacketInput) API. The Pack- 

etInput consists of the NodeConnector, LLDP payload, and other pointers.  In an 

OpenFlow packet processing module, the packetProcessingService. 

transmitPacket(PacketInput) calls harp_register_packet(). HARP module holds the 

incom- ing packets by listening harp_registe_packet(). This API creates buffers and 

threads for scheduling the packets per period (identified by the TAR module) instead of 

just transmitting the packet via transmitPacket(PacketInput). In HARP, virtual net- work 

embedding information is used to filter out unnecessary discovery requests. Then, it calls 

messageservice.packetOut() that uses an out-going ODL sockets for sending the packets      

out to switches. Algorithm 1 presents an LLDP discovery frequency function of the 

TARMan moudle that returns an LLDPfrequency value for each target switch (switchID). 

The LLDP frequency determines how often the LLDP-Speaker sends a probe to a 

specific switch for requesting the LLDP message. First, it calls the getZones function to 

check the right zone of the target. It reads a switch functionality from      the 

configuration (ZoneInfo) using the switch ID. Using the switch functionality (i.e., core, 

aggregation, and edge), it assigns the zone number. Second, using the zone number, it   

calls the readFrequency function. It reads an LLDP control message period from the 

configuration using the zone value. The frequency value can be dynamically assigned 

according    to the network condition. With the returned LLDPfrequency (period) and 

switchID (target), the TARMan  module calls a packetProcessingService.transmitPacket 

(PacketInput) API. The PacketInput consists of the NodeConnector, LLDP pay- load, and 

other pointers. In an Openflow packet processing module, the 

packetProcessingService.transmitPacket (Packet- Input) function calls the 
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messageservice.packetOut () that is,    an ODL API to send the packets out to switches. 

Algorithm  1 LLDP Discovery Frequency 

Input: switchID 

Output: lldpfrequency 

1:   for all  SwitchID queue  do 

2: zone  = getZones(switchID) 

3: lldpfrequency = readFrequency(zone) 

4:  read  a  LLDP  control  message  period   from  the configuration using the 

zone  value 

5: return lldpfrequency 
6:   end for 

7:  function GETZONES(rwitshI D) 

8:  read a switch functionality from the configuration using the switch  ID 
9: if readSWfunc(switchID) core then 

10: return 1 

11: else 

12: if readSWfunc(switchID) agg then 

13: return 2 

14: else 

15: return 3 

16: edge 

17: end if 

18: end if 

19:   end function 

 

4.4 Evaluations  
 

4.4.1 Experimental Setup 

 

Figure 25 SDN Control Message Experiment  Setting 

We investigate our proposed architecture through emulation of real 

implementation. For the first emulation environment     we used DELL PowerEdge 

T320 server with Intel (R) Xeon(R) CPU ES-2403 V2  @ 1.80  GHz  x4  and Ubuntu  

14.04  OS. OpenFlow controller, running on ODL Beryllium-SR2.     On the second 
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emulation environment we also used similar setup with DELL PowerEdge T320 server 

with Intel (R) Xeon(R) CPU ES-2403 V2  @ 1.80  GHz  x4  and Ubuntu  14.04  OS. We 

had OpenFlow controller, running on TARMan. We have conducted five experiments: 

1) testing LLDP message overhead for the virtual networks, 2) testing LLDP message 

overhead from the controller I/O, 3) testing accumulated control message hop counts by 

capturing LLDP messages from the switches, 4) testing the impact of control message 

outage over the in-band networks, and 5) testing the impact of data    flow outage. For 

aforementioned experiments, as illustrated in Figure 11, we built a balanced binary tree 

topology network   with a depth of three (7 switches and 8 hosts) by using Mininet. Ping 

is used to generate packets and Wireshark is       used to capture messages from the 

loopback interface. The      ODL controller uses the default 5 second uniform intervals      

in sending LLDP PACKET OUT messages to the switches, named “Without NetAware” 

or “ODL (5,5,5)”. In the TAR module, we configured a couple of simplified frequency 

sets. The TAR (1,3,5) set is with intervals of 1, 3, and 5 seconds      for the core, 

aggregation, and edge switches, respectively. The TAR (1,3,5) set creates the more 

frequent LLDP messages for the core and aggregation than the ODL (5,5,5) set in order        

to detect failures faster from those important links or nodes. The TAR (1,5,10) set is 

with intervals of 1, 5, and 10 seconds for the core, aggregation, and edge switches, 

respectively. The TAR (1,5,10) set creates the more frequent LLDP messages to the 

core switches than the ODL (5,5,5) set to have the quicker updates from the core links 

or switches. However, it creates     the less frequent LLDP messages to the edge 

switches than      the ODL (5,5,5) set that could have the slower updates from     the 

edge links and switches. We assumed 3 consecutive LLDP message failures to change a 

status. 

4.4.2  Control Messages Overhead for Virtual Networks 
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Figure 26 Control Message Overhead for Virtual Networks 

We performed this experiment to appreciate the discovery message overhead 

over the virtual networks. As illustrated in Figure 26, we have created a daisy chain 

topology with four switches. Two OLD controllers are connected to Mininet. In each 

ODL controller, a virtual topology (VTN) is created. Both VTN connect hosts from 1 to 

4. Wireshark capture is on the controller interface side. The number of LLDP messages    

for 2 VTNs with no HARP filter is two times greater than         the number of LLDP 

messages with HARP VTN filter. In        the HARP filter, we randomly (alternatively) 

filtered messages from each controller. 

4.4.3  Control Message Overheads 

 

Figure 27 LLDP messages captured on a controller 
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Figure 28 Accumulated LLDP messages captured by the switches 

 According to Figure 28, it is obvious that both the TAR      (1,3,5) and TAR 

(1,5,10) sets create relatively more LLDP messages from the controller than the ODL  

(5,5,5)  set.  However, the LLDP messages are not significantly increased. Especially, 

the TAR (1,5,10) set generates the similar amount of LLDP messages to the ODL 

(5,5,5) set. On the other hand, Figure 15 presents the practical network usage 

(accumulated LLDP messages per network hop) by the LLDP messages in case of the 

in-band networks. The presented results are       the accumulated LLDP messages 

captured by the network switches. Although the TAR (1,3,5) set still have slightly 

higher accumulated LLDP messages than the ODL (5,5,5) set, the TAR (1,5,10) set 

creates less accumulated LLDP messages than the ODL (5,5,5) set. This is because the 

important core and aggregation nodes are closer to the controller with      the in-band 

network, which creates less accumulated LLDP messages. These results are promising 

because creating more frequent messages to the core does not create a significant     

control message overhead. 

Figure 27 compares the performance of our configurable TARMan with the 

existing ODL in terms of the number of unique LLDP messages, in a balanced binary 
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tree topology     with 3 tier depths. We further measured the number of LLDP messages 

that are seen in all links in the network while traversing paths from/to the controller 

to/from switches in Figure 28. 

For example, for ODL in 60 seconds there will be 12 LLDP PACKET_OUT 

message sent to the root and 12 LLDP PACKET_IN is received from the other side of 

the link where there is one hop from the controller. Therefore, ODL has total of 24 

LLDP message multiplied by hop count (1) results to 24. The second depth in the binary 

tree requires 2 hops from   the controller. There are 72 LLDP messages to those nodes     

from the controller in 60 second.  The Total LLDP messages (72) multiplied by number 

of hops (2) gives us 144 messages. To the edge of the network there 144 total LLDP 

messages in 60 seconds multiplying that with the three hops required from the 

controller, we get 432.  The sum of those three results    in 600 LLDP messages count 

by hops for 60 second from the ODL controller. On the other hand, TARMan generates      

the most LLDP message count in the core of the network, where within 60 seconds there 

are 60 LLDP PACKET_OUT  and 60 LLDP PACKET_IN messages reaching to total of 

120 LLDP messages. Multiplying the 120 LLDP messages with      hop count (1) results 

in 120 LLDP message for the core. At the aggregate there are 72 LLDP message times 

by the hop count (2) we get 144 LLDP message count. The edge of the network 

generates 72 LLDP message count. Multiplying the 72 with     the hop count of 3 we 

reach to 216 LLDP messages. Summing the three, we achieve 480 LLDP messages for 

TARMan for   the duration of 60 seconds. From this experiment we can conclude that, 

analyzing the LLDP message count between    ODL and TARMan, we can observe that 

TARMan pays closer attention to the core, the node that is the closest to controller, by 

configuring the LLDP message more frequently. Even with more messages at the core, 

TARMan generates far less overall LLDP message count by hop than ODL. TARMan 
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provides more realtime information of the core of the network resulting in more reliable 

controller as illustrated in Figure 28. 

4.4.4  Impact Factor on Control Messages 

It is important to identify failure quickly in order to begin     the repair process as 

soon as a failure is discovered. We established connection of the software-defined-

network to a controller. Our goal in this experiment is to measure the link    or node 

failure impact on the control in-band and data flow. In an event of node failure or link 

failure, controller is impacted differently than the data flow. For example, when the core 

node is down, controller may lose access to the rest of the network. However, data flow 

between the active switches can still take place. To calculate the Impact factor for the 

controller, we used the number of impaired node multiplied by the outage time in 

second. Using our TARMan platform we configured the core, aggregate, and edge with 

two variations. One of the TARMan was configured with 1, 3, 5 seconds for core, 

aggregate, and edge respectively and the second was configured with 1, 5, 10 second 

intervals for core, aggregate, and edge respectively. We compared that with a controller 

without TARMan default of 5 second frequency for all core, aggregate and edge. We    

define an Impact to be the number of impaired/impacted node multiplied by the outage 

time in second. 

For example, the TARMan platform that was configured     with 1 second for the 

core failure would result impacting all 7 nodes. To calculate the Impact factor, we 

multiply 7 by outage time of 3 second (3 times the frequency of 1 second) results with 

21. At the aggregate of the tree topology there will be 3 nodes impacted multiplied by 

outage of 9 second (3 times frequency of aggregate 3 second) would be 27. The edge the 

topology would have one node impacted multiplied by 15 second outage (3 times 5) 

would end up to be 15. Figure 29 illustrates the numerical values. 
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Figure 29 Impact on Control Messages 

 

4.4.5  Impact Factor on Data Flow 

In this experiment we calculate the Impact Factor on data flow. To calculate the 

impact factor, we utilized the number    of impaired bi-directional flows multiplied by 

the outage time in seconds. To calculate the outage time, we use 3 times the frequency 

of the LLDP message. The controller assumes the node inactive after sending three 

consecutive LLDP message out and not receiving reply. We used softwarize network 

with TARMan and without TARMan. The TARMan platform was configured with two 

variations for core, aggregate and edge frequency. One was set with 1, 3, 5 seconds 

frequency for core, aggregate, edge respectively while the second variation    of 

TARMan had 1, 5, 10 seconds for core, aggregate, and         edge respectively. The 

controller without TARMan had the default frequency of 5 second. We used perfectly 

balanced       tree topology with 3 depths. For our tree topology, there were total of 56 

bi-directional flows form 8 hosts.  To generate the bi-directional flows, we utilized Ping. 

Ping is a simple echo protocol. It works by sending a message to a server that contains 
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the message "PING" and receive a copy of the message back. This allows the host that 

sent the ping to calculate the "Round Trip Time" (or RTT) that it takes a packet to reach 

a particular server. It calculates how long it takes         for the packet to reach the server 

and to be sent back. It is         also a method used for checking if a host is connected to a 

network. In our experiment, we utilized the ping protocol after simulating the node 

outage to measure the number of impaired flows. A core node failure would result in 

theoretical 28 bi- directional flows impacted by the outage. 28 multiplied by the 3 

second outage (3 times 1 frequency) would be 84. The result of our experiment shows in 

section Bi-directional data flow result. We can observer that the Pings sent from h1, h2, 

h3, and h4 where only successful to each other and all other failed. This create two 

islands of networks in our tree topology and we can observe that 32 out of 56 flows 

were impaired causing 57% of the flows to drop. A core node failure in our tree 

topology creates two islands of network The two islands of network can communicate 

internally. However, they cannot communicate with each other. An aggregate node 

failure where theoretically impacts 14 bi-directional flows show different result in our 

experiment. We observed that 71% of the flows were impaired as a result of aggregate 

node failure. Theoretically, multiplying the 14 impaired flows by 9 sec of outage (3 time 

3 seconds) would be 126. From our experiment, we see that 40 of the        56 flows were 

dropped. We can observe that while h1 can communicate with h2 and h3 can 

communicate with h4, they cannot reach the rest of the network or each other (h1 and         

h2 cannot communicate to h3 and h4). Theoretically 7 bi- directional flows will be 

impacted. 7 multiplied by 15 seconds (3 times 5 seconds) would be 105. The result of 

our experiment showed something different. It showed that 43% of the flows were 

impaired. Out of 56 flows, 24 were dropped. Figure 30 shows the result of our analytical 

computations. 
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Figure 30 Impact on Data  Flow 

4.5 Conclusions 

 
Little attention has been paid to the SDN network reliability management that 

suffers from scalability and latency issues.    We proposed a novel Network Architecture-

aware Reliability Management Schemes (NetAware) to efficiently orchestrate different 

reliability monitoring mechanisms over SDN network architecture and synchronize the 

control messages among different controllers and applications. We enabled the NetAware 

platform to provide fast and smart decision-making information for fast failure detection 

and recovery. A prototype is implemented on Cisco’s OpenDayLight (ODL). Extensive 

experiment results exhibit that our algorithm achieves effective and efficient network 

failure detection while generating limited LLDP message overhead.
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CHAPTER 5 

 
SDN CONTROL PLANE NETWORK RELIABILITY 

 
In this chapter, we discuss the reliability of control plane network. Despite 

tremendous software quality assurance efforts made by network vendors, chastising 

software bugs is a   difficult problem especially, for the network systems in operation. 

Recent trends towards softwarization and open sourcing of net- work functions, protocols, 

controls, and applications tend to cause more software bug problems and pose many 

critical challenges to handle them. Although many traditional redundancy recovery 

mechanisms are adopted to the softwarized systems, software bugs cannot be resolved 

with them due to unexpected failure behavior. Furthermore, they are often bounded by 

common mode failure and common dependencies (CMFD). In this paper, we propose an 

online software bug detection, debugging, and isolation (BuDDI) middlebox architecture 

for software-defined net- work controllers. The BuDDI architecture consists of a shadow- 

controller based online debugging facility and a CMFD mitigation module in support of 

a seamless heterogeneous controller failover. Our proof-of-concept implementation of 

BuDDI  is  on  the top of OpenVirtex by using Ryu and Pox controllers and verifies      that 

the heterogeneous controller switchover does not cause any additional performance 

overhead. 

5.1 Control Plane Network Reliability Issues 
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Figure 31 BuDDI N +2 Reliability 

 
Software faults in the operating network systems can cause not only critical 

system failures [79] but also various unexpected and transient results. Although network 

vendors have a series of development guidelines, checkpointing facilities, assurance 

processes, and debugging mechanisms to improve their soft- ware reliability, it is 

commonly accepted that maintaining a    bug free network system is impossible. The 

recent networking paradigm changes towards softwarization and virtualization    has 

increased the detrimental effect of software faults on network functions, protocols, 

controls, and applications. Furthermore, the increasing open-source and third-party 

software (TPS) used in Software-Defined Networks (SDN) aggravates software bug 

problems because vendors may not fully identify all issues during software quality 

assurance testing. To cope with the software reliability issues, a few software bug 

handling mechanisms have been proposed. For example, the bug tolerant router design 

has been proposed in [79], [82]   to run multiple diverse copies of virtual router instances. 

LegoSDN to tolerate SDN application failure [80], [82] focuses on SDN-App failures, 

fail-stop crashes and byzantine failures. However, software bugs are hard to be resolved 

with the traditional redundancy-based failure detection and recovery mechanisms alone 
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as software bugs can cause unexpected root cause failures, baffle failure detections, and 

hinder recovery mechanisms. In addition, some of the deterministic bugs in   SDN 

controllers are often bound by common mode failure       and dependencies (CMFD) that 

bring the system into the same software failures after a failover.  On-line debugging, and 

especially CMFD resolutions in SDN are still a relatively unexplored area. In this paper, 

we propose an online software Bug Detection, Debugging, and Isolation (BuDDI) 

middlebox architecture for SDN controllers. BuDDI consists of a shadow- controller 

based online debugging facility and a CMFD mitiga- tion module in support of a seamless 

heterogeneous controller failover. For on-line bug detection and debugging, unlike a 

traditional N +1 redundancy cluster system, we propose an    N +2 load balancing cluster 

system where components (N) have at least two independent failover components (+2). 

As illustrated in Figure 31, BuDDI facilitates a CMFD mitigation module by taking 

advantage of software diversity of the existing heterogeneous controllers. In addition, 

BuDDI enables a shadow controller that mirrors the active controller functions and turns 

on a verbose debugging mode for a specific failure module. Eventually, the two failover 

components will converge into one active controller.  If the shadow-controller cannot 

identify a software bug in a given period, it sends a preemption message to the active 

CMFD module to take over the active   role. Otherwise, it will confirm an active role for 

the CMFD module. 

Controller switchover algorithms and shadow controllers debugging facilities are 

built on the top of OpenVirtex, which provides the facility to create virtual networks and 

to map them to the physical network. The middlebox acts as proxy between the physical 

network and the controllers. As a preliminary       part of our experiment, we choose two 

of the heterogeneous controllers (Ryu [76] and Pox [75]) to verify that both the 

heterogeneous controller switchover and N + 2 redundancy mechanism supports do not 



70  

cause any additional performance overhead in the proposed BuDDI mechanism. 

 

5.2 BUDDI 

 
Our proposed architecture aims at bug detection, debugging and isolation 

(BuDDI) for SDN controllers. BuDDI is built      on top of OpenVirteX, which is a network 

virtualization platform that enables operators to create and manage vSDNs [78]. BuDDI 

provides three main functionalities: (i) detection of any bug in the controller (ii) automatic 

debugging of the controller for bugs (iii) isolation by switching over the controllers. It 

works with all four main failure scenarios in the SDN deployment [80]: (i) controller 

server failure (hardware failure); (ii) controller crashes (bug in the controller code); (iii) 

network device failures (switch, application server or link failure); and (iv) SDN 

application (SDN-App) crashes (bugs    in the application code). Our work focuses on the 

controller failures as well as on SDN-App failures. BuDDI is designed in such a way that 

whenever there is any failure in the Controller or the SDN-App crashes, it detects that the 

connection to the controller is down, and it switches over the controller. The      same time 

debugging is also started. Important keywords are explained in Table 9. 

Definition Explanation 

Active Controller 
Controller to which the network 

is connected 

 
Standby Controller 

Controller to which switchover takes 

place after bug is detected in the active 

controller 

Shadow Controller 
Controller used for debugging. 

Copy of the active controller 

Heterogeneous Controllers 
Different types of controllers. 

E.g.,Pox + Ryu 

Homogeneous Controllers 
Same types of controllers. 

E.g., Pox + Pox. 

Switchover time 
Time between bug detection 

and connection to standby controller 

Table 9 Switchover Mode Definition 

A. Proposed Architecture 
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Figure 32 BuDDI Middlebox Architecture. 

The proposed architecture is shown in Figure 32. The middle- box is connected to 

the controllers via northbound OpenFlow, whereas with the physical network, via 

southbound OpenFlow. Ryu, POX, FloodLight, Trema, and OpenDaylight are some of 

the most commonly used open-source controllers [9]. These controllers vary from each 

other in one way or another, which gives them diversity and supports our claim of using 

a heterogeneous controller approach. Table 10 lists the basic differences between the 

controllers. 

 

Table 10 Comparison among controllers 

For this architecture there are three controllers used: active, standby and shadow 

controllers. The standby controller is a heterogeneous controller, whereas the shadow 

controller is a homogeneous controller. Failure in the controller can be caused due to 

indeterministic bug in the source code or due to a controller crash. When the active 

controller is down due    to any bug in the SDN app, or due to any hardware failure in the 
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controller, BuDDI switches the control from the active controller to the standby 

controller, which is a heterogeneous controller. We use heterogeneous controller since 

different controllers are coded in different languages and there is less probability that the 

same bug would reoccur. At the same time, the shadow controller, which is homogeneous 

controller, is also switched over, but is used for debugging the failure. The main aim of 

the shadow controller is to find the root cause of the failure. The shadow controller has 

the information about the application state, so if the automated debugging process passes 

the state at which the failure occurred in the active controller, then the shadow controller 

becomes the new active controller, or else, the standby controller continues to serve as 

the new active controller. 

B. Functional Modules 

Our architecture can be divided into three different functional modules as shown 

in Figure 32: (i) Fault Detection Module (ii) Isolation Module and the (iii) Debugging 

Module. Each module described below. 

Fault Detection Module: The main function of this module is to monitor the 

applications running on the controller. Using the keep-alive messages exchanged between 

the data-paths and controllers, we try to monitor the connection between the virtual 

network and the controllers. If any online software bug causes the application to stop, an 

error message would       be generated. By using this error message and the event log      on 

the controllers, we can check which application on the   controller has stopped or has 

encountered a bug. If there are    any hardware failures or any network device failure, the 

keep- alive messages will not be exchanged and an error message would be generated. 

Isolation Module: This module is responsible for switching over to a 

heterogeneous controller and the homogeneous controller at the same time. The 

heterogeneous controller will take over as the active controller whereas the homogeneous 
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controller will be used for debugging purposes. The main reason for a switchover to a 

heterogeneous controller (in spite of applications being controller specific) is that if any 

non-deterministic software bug is found, it would be affected if we switched over to same 

type of controller. Since different con- trollers are coded in different coding languages, 

the probability that we will encounter the same bug in different controllers is less. This 

module is also responsible for the synchronization    of the flow states. 

Debugging Module: As we know, applications are controller specific. It will not 

be good to use a different controller for long time. So, we use the same type of controller 

as a shadow controller, which would be used in a debugging mode. An occurrence of a 

bug in an SDN application will         most likely result in the SDN system being down. In 

order to seamlessly switchover and avoid failure, we use the shadow controller. The main 

idea is to see if we are getting the same error again in the shadow controller. If we 

encounter the same error in the same point, it would mean that there is a bug and    it 

would be reported. If we do not encounter the same error in the shadow controller, it 

would mean that our active controller had some other failure and not a bug. The 

debugging module aims at detecting liveness bugs. 

C. Switchover Procedure 

Prior to the network getting connected to the controller, we need to have a copy 

of the active controller that would act as our shadow controller and also as a standby 

heterogeneous controller. Once the network is operational, it points towards   the 

middlebox. Inside the middlebox, a virtual topology is created. The virtual topology 

points towards the active controller and the error detection module initialized to monitor 

the     active controller. When any bug arises in the active controller, an error is generated 

in the error detection module. Once the error shows up in the error detection module, a 

notification is sent to the Isolation and Debugging module. Now the Isolation module will 
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switch over the control of the entire network to     the standby controller and transfer the 

flow states from the      active controller to the standby controller. At the same time, it 

also makes a switchover to the shadow controller, which       is  an  exact  copy  of  the  

active  controller,  but  this  shadow controller would be used by the Debugging module 

to find       the root cause of the bug. If while debugging the shadow controller, it does not 

find the same bug, which occurred in      the active controller, it would be mean that there 

was some     other error that occurred in the active controller, which was      not necessarily 

a bug. Then the whole network would be switched over to the shadow controller and it 

would act as        the active controller. If while debugging the shadow controller, the 

debugging module finds the same error that occurred in the active controller, it would be 

mean that there is a software bug. At this point, the standby controller will continue to act 

as the controller. Figure 33 demonstrates the switchover procedure. Introduction of 

BuDDI adds a latency of 0.2 ms, which is     because our architecture is built on top of 

OpenVirtex that  adds the delay to the control channel [77]. 

 

Figure 33 Shadow Controller Switchover (no bug detected vs bug detected) 

5.3 Implementation and results 
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A. BuDDI Switchover Algorithm 

Algorithm 1 shows the proposed BuDDI switchover mechanism. It covers how 

the switchover happens when any bug is detected and the convergence after the debugging 

process. 

 
  

Algorithm  1: BUDDI Switchover 
 

  

Result: Controller Switched Over 

Error Detection module starts monitoring the Active Controller ; 
while Bug Detected  do 

Switchover Module starts switchover to Standby Controller as the new 

Active Controller and to Shadow Controller for automated Debugging; 

Transfer buggy state to the shadow controller; Transfer flow state to the 

standby controller; 
if Debugging Module finds same error in Shadow Controller then 

Continue using Standby Controller as  Active 
controller 

else 

Switchover Module switches over to Shadow Controller as the new 

Active  Controller; 

Transfer the flow state from Standby controller to 
Shadow controller 

end 
end 

 

 

 
B. Simulation Setup and Results 

In our initial experiment, we conducted switchover performance tests between 

heterogeneous and homogeneous con- trollers by using both Ryu and Pox controllers. Our test 

environment is a regular virtual machine with 2 GB RAM and an Ubuntu 14.04 operating system. 

We use Mininet [84]      to simulate different network sizes (3, 8, and 11 switches) with linear 

topology. Each experiment has ping traffic, and       was conducted 15 times, and the average values 

were taken. 
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Figure 34 Heterogeneous vs Homogeneous Controllers Switchover Time 

Figure 34 compares the switchover time for homogeneous      and heterogeneous controllers 

in different simulated network sizes. Figure 35 presents two switchover time differences: (i) the 

switchover time difference between heterogeneous controllers, Ryu to Pox, and homogeneous 

controllers, Ryu -to -Ryu (a red line); and (ii) the switchover time difference between heterogeneous 

controllers, Pox to Ryu, and homogeneous controllers, Pox to Pox, (a blue line). The graph 

demonstrates that there is very little switchover time difference between the heterogeneous and 

homogeneous controller switchovers for the example networks we tested. 

As we can see from the graph, when the network size in- creases, the switchover time 

increases as well. The switchover time is application specific. The architecture has been tested   with 

a layer 2 simple switch. Since our test environment is a regular virtual machine, there is very 

minimum overhead to run a shadow controller. The result shows promise that BuDDI can 

effectively support a CMFD module switchover with minimal overhead. 
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Figure 35 Heterogeneous vs Homogeneous Controllers Switchover Time Com- parison 

5.4 Conclusion 

 
We proposed a novel online software bug detection, de- bugging, and isolation 

(BuDDI) middlebox architecture for software-defined network controllers. Unlike the 

traditional recovery solutions, the proposed solution facilitates on-line based quality 

assurance, prediction, debugging, and, especially, common cause software failure mode 

resolutions by    using the existing controllers on the top of the open source clustering 

facility, OpenVirtex. 

We verified that BuDDI supports our claim of a heterogeneous controller 

switchover without causing additional performance overhead. By using the BuDDI 

algorithms and protocols in future work, we will further investigate additional debugging 

features and design an automated compatibility matrix over other existing controllers. We 

also plan to design   a facility to transfer the buggy states and modules instead of switching 

over the entire controllers. We will further test our system by injecting SDN errors both 

from the software and network. We will also consider a wide range of applications and a 

high load on the network. 
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CHAPTER 6 

 
RELIABILITY COST MODEL 

 
Although the network system operation and management become complex to 

cope with modern network virtualization, softwareization, and federation approaches, the 

network reliability management still uses traditional availability measures such as Mean 

Time Between Failures (MTBF) and Mean Time Between Failures (MTTR), and     a 

network  Service  Level  Agreement  (SLA)  which is  a  time-  based contract but hard to 

use or enforce in real world. Hence, the network outage measurement     is an integral part 

of ensuring SLA conformance. However, when there is an outage, the current simple 

time-based SLA becomes overambitious for the customers to interpret the practical 

service impact due to the lack of suitable measurement tools and models. This paper 

proposes a novel network reliability cost model to ensure that the SLA covers customer 

service impact and damage. We classify network outages and calculate their effect on the 

network services to formulate a cost- based model, then we use Markov chain to capture 

the redundancy switchover and network outage rippling effect details when calculate 

downtime. Besides, we have performed evaluations using various campus network outage 

scenarios. The proposed cost-based model enables customers to identify the service 

impact of unplanned network outages to their networks instead of entirely depending on 

the service provider’s data.  

6.1 Reliability Modeling Issues 

 

Internet is a massive, intricately connected network and requires high-skilled 

personnel to (re)configure and (re)install devices due to the complexity. It is expensive to 

add, remove, or move network appliances such as switches, routers, etc. The changes also 
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have cascading impacts on network middleboxes and software functions such as Access 

Control Lists (ACLs), Virtual Local Area Networks (VLANs), and some other network 

domains. Additionally, network federation may cause a simple node or link failure to 

propagate and become global issues.      For example, in 2020, COVID-19 caused a 

worldwide social lockdown that made an abrupt shift away from traditional business 

methods (ontact) to remote and online work as a new normal (untact). Many new untact 

technologies (i.e., Zoom, Microsoft Teams) have become more dependent on network 

availability. While this improves how businesses operate, it opens the possibility of risk 

from the rippling effect felt globally from a simple network outage. Cascading failure is 

the usual mechanism by which failures propagate to cause more massive impact and occur 

commonly in congested complex networks in the form of congestion generation, 

diffusion, and dissipation. Besides, network outages are experienced differently from site 

by site and from time to time. Moreover, the impact spectrum (both in time and space) of 

the network outages become much more significant than before. For example, there was 

a campus network outage in the University of Missouri KansasCity (UMKC) on     Oct 

22, 2020, at 06:54 CDT [85]. The outage has impacted both the UMKC email and Canvas 

system partially. As   it has happened in early hour and all services are up and running in 

4 hours by Oct 22, 2020, 10:49 CDT. However, unlike the traditional school days before 

COVID-19, the school had to cancel all the scheduled classes, meetings, and exams on 

the day. 

A network Service Level Agreement (SLA) [89] is a time-based contract between 

a service provider and a customer, which defines service requirements and the expected 

service quality. Although the SLA definitions vary in vendors, services, and industries, 

providers typically promise quantifiable service quality to ensure High Availability (HA) 

network operations and services, which is better than five nines (99.999%) of network 
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availability, according to equation, where Mean Time To Failures (MTTF) is a measured 

network outage, Mean Time To Repair (MTTR) is an estimated repair time, and Mean 

Time Between Failures (MTBF) is MTTF plus MTTR. 

Availability(A)  =  MTTF/(MTTF + MTTR) 

=  MTTF/MTBF  

 

 

Hence, network outage measurement is an integral part of assuring SLA 

conformance. However, due to network virtualization, softwareization, multitenancy, and 

federation, modern network systems become complex and highly intricated. The service 

impact is not always proportional to the length of outage time, but outage affects 

differently. Hence, when there is an outage, the time-based SLA becomes overambitious 

for the customers to interpret the practical service impact due to the lack     of suitable 

measurement tools and models. In most cases, these contracts are one-sided, with the 

service provider making a promise to the end-user (customer) the level of service it plans 

to provide. The customer has no measure to ensure if the service meets the promised SLA. 

For example, Amazon had a service disruption in the Northern Virginia (US-

EAST-1) Region on February 28th, 2017. The disruption impacted a subsystem necessary 

to serve all GET, LIST, PUT, and DELETE requests. This outage affected 148,213 

websites and 121,761 unique domains, including the UMKC. The UMKC campus’s 

Blackboard and many AWS-based services were not available for a couple of days.  

However, SLA was not impacted to the UMKC by this disruption because   most SLAs 

are time-based and have no service cost. On the contrary, The Wall Street Journal reported 

the outage cost companies in the S&P 500 index $150 million, according to Cyence Inc. 

Apica Inc., a website- monitoring company, said 54 of the Internet’s top 100 retailers saw 

website performance slow by 20% or more” [9]. It is assumed that not many companies 
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received much compensation due to the fixed and limited SLA agreement. 

We present a measurement study to bring forth the various unplanned network 

outage issues faced on a university campus network. We discuss the type of the network 

outage and the impact to the SLA. In   addition, we perform evaluations using different 

network performance analysis tools. This study will shed light on unplanned network 

outage issues, as these will become applicable with the increasing prevalence of large 

metro area wireless networks. It is important to understand what the cost of network 

planning, design and implementing is to estimate cost as accurately as possible when it 

comes   to decisions. Such estimations will enable a trade-off between the required 

availability of the network and the associated cost. Equipment cost model is used to 

estimate capital expenditure (CapEx) costs. Operational expenditure (OpEx) costs is 

associated with continuous running of the network. CapEx mainly contributes to the xed 

infrastructure of a company, and they depreciate over time [24]. They include the 

purchase of land and buildings (e.g., to house the personnel), network infrastructure (e.g., 

optical ber and IP routers), and software (e.g., network management system). Buying 

equipment has always been considered part of CapEx, regardless of whether the payment 

is made all at once or spread over time. Additionally, interest paid for a loan is included 

in CapEx. Land and building which is composed of network land/building and personnel 

building contribute toward CapEx as illustrated by 1. OpEx represents the cost of keeping 

the company operational and include costs of technical and commercial operations, 

administration, etc. The majority contributors to OpEx for network service providers can 

be classified into three major categories: the portion directly related to continues cost of 

infrastructure, running the network and outage recovery. Operating an existing network 

(which has already been set up), equipment installation, and some general expenditure 

(aspects not specific to a network operator). Although, Miscellaneous OpEx such as 
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payroll, talent management, cost of infrastructure heating, building cleaning and 

administration costs are not included in the figure, they contribute toward OpEx. In 

addition to OpEx and CapEx, Total Cost of Ownership (TOC) illustrated by Figure 36 

includes service providers factor in service penetrations, population density per 

geographic area and service demand per user to determine the benefit of setting up 

network. 

 

Figure 36 Total Cost of Ownership (TCO) 

6.2 COST OF NETWORK OUTAGE 

 

Network outage could impact both CapEx and OpEx.   It can be classified into 

two major categories: planned network outage and unplanned network outage. Planned 

network outage mainly impacts continuous cost of structure and maintenance (device 

upgrade and cleaning) in OpEx. For example, Internet Service Providers (ISP) send out 

an announcement on their web page when they schedule a planned outage for upgrade or 

maintenance, informing their clients that service will not be available during the upgrade 

or maintenance window.  However, with SDN, the cost of planned outage is minimal and 

customers should not experience any  outage. 
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Most planned outages are provisioned in the Service Level Agreement (SLA) 

[89], a contract between a service provider and it’s an internal or external customers  that 

documents what services the provider will furnish, and defines the performance standards 

the provider is obligated to meet. Unplanned network outage can be grouped into three 

subcategories: human error (where a planned outage goes wrong), natural disaster (such 

as thunder storm, excessive heat leading to electrical fire,   etc.) or device failure (where 

unsupported devices get introduced to the network causing network failure). For example, 

an unplanned outage could be triggered by human error from mis-configuration while 

doing planned outage or from unplugging the wrong device, etc. Figure 37 illustrates 

effects of network outage. 

SDN makes several sets of attributes that minimize the impact on OpEx. First, 

mechanized and automated roll-out (creation/provisioning/ removal/termination) of 

capacity of SDN functions including transport connections, based on near-realtime 

demand, application performance, and so on, are enabled by features such as network 

programmability and open APIs. This enables automated elasticity for fast deployment of 

network service roll-out [100]. Furthermore, SDN removes the dependency between 

software and hardware. Software service can be deployed on any Hardware. SDN also 

enables multi-tenancy and resource pooling for multiple software functions on the same 

hardware. Hypervisors   and associated management and orchestration software facilitate 

virtualization of the network functions and the automation of network processes are 

attributes found in SDN, lacking from physical network. SDN consolidates and optimizes 

Service agility through enabled service abstraction and automation. Operating model 

change by blurring staff responsibility of network and IT [100]. 

 



84  

 

 

Figure 37: Effect of Unplanned Outage 

A. Root Cause of Unplanned Outage 

There is a major difference between planed and unplanned network outage. With 

planned outage, applications and servers are brought down gracefully in preparation to 

the outage with little need for cleanup and restoration. Unplanned outage depending on 

the impact could be as low as a glitch that unnoticed by end users to high unrecoverable 

network. Human error is the second highest root cause of unplanned failure in a data-

center reported in 2016 [101]. Figure 38 illustrated the different root cause of unplanned 

data-center outage. 

 

Figure 38: Root Cause of Unplanned Data-center Outage in 2016 

B. Cost of Reliability 

It can achieve the business system reliability by minimizing these four categories: 

recovery cost, revenue loss, productivity loss, and hedonistic cost. The impact of network 

failure varies according to the network dependency of the business [96]. For example, the 
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questions include “Is revenue generated primarily on- line?”, “Is revenue highly 

dependent on the use of email, Learning Management System (LMS), cloud accessibility, 

databases, or other online resources?”  and “When is the most significant business hour?” 

We have defined initial cost-based reliability variables in 4 and an additive formula of the 

total cost of outage (TC) with the help of the Department of Economics of the UMKC. 

The total   cost of outage (TC) includes Impact Factor (α), Recovery Cost (RC), Revenue 

Loss (RL), Production Loss (PL), and Hedonistic Loss (HL).  

Variable Description 

α % reliant on network  up-time 

E Number of employee 

HW Number of Hours worked 

W Median Wage  / Hour 

GR Gross Revenue Generated /  Year 

TH Total  Business Hour / Year 

HD Hours of Downtime 

S Cost of service to  recover 

L % Potential loss to  competitor 

Table 11: Cost-based Reliability Variables 

1) Impact Factor (α): Impact factor (α) is % the reliant on up-time as illustrated 

by Table  11. 

α (n) = % of dependent on up − time  

2) Recovery Cost (RC): Recovery cost depend on the impact factor(α), number 

of employee(E) and wage (W), hours to recover (HW) and the cost of service (such as 

device, tool, date etc.) to recover (S). 

RC (n) = α × (E × W) × (HW)+ S  

3) Revenue Loss (RL): Revenue Loss is affected by the impact factor and 

average revenue generated per day. 

 

4) Production Loss (PL): Production Loss is affected by the number of 
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employees, the average wage, hour of downtime and impact factor. 

PL (n)= (NE × W) × HD × α  

5) Hedonistic Loss (HL): Hedonistic Loss includes all intangible loss impacted 

by the total sell, impact factor and % lost potential business to competitors. For example, 

customers leaving because they are frustrated by the network outage. 

 

6) Total Cost of Outage (TC): Total cost of outage include all the above. 

TC (n) = RC + RL + PL + HL 

From the above formulars, we can see the parameter HD, which stands for Hour 

of Downtime, play an important role in the overall cost of reliability. However, as we 

described before, the after outage behavior, including switchover to redundant system, 

outage rippling effect etc. need to be accurately captured to represent the overall 

reliability experience people experienced in the real world.  

6.3 Markov Model 

 

As The Markov modeling approach is an accurate availability model in capturing 

the dependencies. For example, Markov chain can express the redundancy switchover 

procedure explicitly with states and state transitions.  

6.3.1 1 Reliability Characteristics in model  

Our The following reliability characteristics are taken into consideration:  

• MTBF – The mean time between failure of an single unit 

• MTTR – The mean time to repair of an single unit 

• Switchover – The operation of switching communication traffic from one 

unit to another unit 
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• Switchover Time – The time takes for the communication traffic to switch 

from one unit to another unit 

• Switchover Coverage – The probability of the successful  communication 

traffic switchover 

• M-of-N Redundancy – For a system to be fully functional, it needs minimum 

M units to work out of the total N units. If M-1 units are working, 1/M of 

the traffic is affected. If fewer units are working, more communication 

traffic is affected proportionally. 

• Active Unit – In normal condition, unit actively takes traffic 

• Standby Unit – In normal condition, unit does not take traffic 

• M-of-N Active-Standby Redundancy – In normal condition, M units are 

active and N-M units are standby. When active units fail, standby units take 

over to be active. The communication traffic is not affected with M active 

units working and taking traffic. 

 

• M-of-N Load-Sharing Redundancy – In normal condition, N units are all 

active and each takes 1/N of the traffic. When units fail, the rest of the units 

each take more traffic. The communication traffic is not affected with at 

least M units working and taking traffic. 

6.3.2 Markov Model for reliability system 

 Markov model has the capability to capture the time and sequence dependency. 

It has been used to model the redundant system unplanned hardware and software failures 

behavior as well as planned software upgrades.  

6.3.2.1  M-of-N Load-sharing Markov Model 
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Markov chain for M-of-N load-sharing redundant system is shown in Figure 39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39 M-of-N Load-sharing Markov Chain 

Legend 

m Equals M in M-of-N system. Is minimum number of units needed for system 

to work without affecting communication traffic 

s Equals (N-M) in M-of-N system. Is maximum number of spare units which 

can fail without affecting communication traffic 

N Total units 

M Is minimum number of units needed for system to work without affecting 

communication traffic 
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λ Failure rate of individual unit 

μ Repair rate of individual unit 

β Rate if traffic switchover from failed unit to other healthy unit 

C Switchover coverage factor 

State Descriptions 

0 All N=m+s units working  

U0 One unit failed, undetected 

F0 One unit failed, detected 

1 One of the s spares has been used and traffic has been taken over from the 

one originally failed unit.  

U1 Second unit failed, undetected 

F1 Second unit failed, detected 

2 Two of the m spares has been used and traffic has been taken over from the 

two originally failed units. 

S All s spares have been used and traffic has been taken over from the 

originally failed s units.  

S+1 s+1 units failed. System can not take full traffic any more. 1/M system 

capacity is lost 

In Figure 39, state 0 is the normal state when everything is working. The entire 

N=m+s units are working in the load-sharing mode, each of them take 1/N of the traffic. 

When there is a detected failure in one of the units, the system goes to state F0, which 

triggers the switchover operation. The rate of entering state F0 is (m+s)λC because there 

are (m+s) units that can fail, each of them fails with rate λ, and C is the probability of 

detecting this failure. After a switchover delay represented by the transition rate β, the 
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system goes into state 1 which represents (m+s-1) working units with 1 spared unit being 

used. With rate μ that failed unit is repaired and the system returns to state 0. This is the 

normal flow of the system when failures happen. The transition from state 0 to state U0 

represents the case where there is a failure in a unit but it is not detected. The rate of 

going into state U0 is (m+s)λ(1–C). The repair rate from state U0 is also μ. 

The system will stay in state 1 after the switchover, then  it will have a rate of 

(m+s-1)λC and  (m+s-1)λ(1-C) to go into state F1 and U1, based on whether another unit 

fails covered or uncovered this time. The same state transition process will continue, as 

long as the there are still spares available. 

Finally, in state S, all the possible spare units have been used. There are M units 

that take the traffic, and the system is still working as the minimum required M units are 

still fine. If there is one more unit fail, the system will transit to S+1 state and lose 1/M of 

the traffic. As expected, the probability of this happening could be small and it will be 

reflected in the time the system spends in state S+1. 

The working states are 0, 1, 2 to S. The failure states are S+1, U0 to Um-1 and F0 

to Fm-1.   

6.3.2.2  M-of-N Active-standby Markov Model 

 
 

Markov chain for M-of-N active-standby redundant system is shown in Figure 40. 
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Figure 40 M-of-N Active-standby Markov Chain  

Legend 

m Equals M active units in M-of-N system. Is minimum number of units 

needed for system to work without affecting communication traffic 

s Equals (N-M) standby units in M-of-N system. Is maximum number of spare 

units which can fail without affecting communication traffic 

N Total units 

M Is minimum number of units needed for system to work without affecting 
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communication traffic 

λ Failure rate of individual unit 

μ Repair rate of individual unit 

β Rate if traffic switchover from failed unit to other healthy unit 

C Switchover coverage factor 

State Descriptions 

0 All m active units are working and taking traffic. All s standby units are 

working and ready to take over the traffic if any active unit fails 

U0 One active unit failed, undetected 

F0 One active unit failed, detected 

E0 One standby unit failed 

1 One of the m standby units has been used and traffic has been taken over 

from the one original failed active unit.  

U1 Second active unit failed, undetected 

F1 Second active unit failed, detected 

S1 Second standby unit failed 

2 Two of the m standby unit has been used and traffic has been taken over 

from the two original failed units. 

S All s standby units have been used and traffic has been taken over from the 

s failed active units. 

S+1 s+1 units failed. System can not take full traffic any more. 1/M system 

capacity is lost. 

In Figure 40, state 0 is the normal state when everything is working. All the m 

units are working and actively taking traffic. s units in the standby mode. When there is 
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a detected failure in one of the m active units, the system goes to state F0, which triggers 

the switchover operation. The rate of entering state F0 is mλC because there are m active 

units that can fail, each of them fails with rate λ, and C is the probability of detecting this 

failure. After a switchover delay represented by the transition rate β, the system goes into 

state 1 which represents m active units with 1 standby unit being used. With rate μ that 

failed unit is repaired and the system returns to state 0. This is the normal flow of the 

system when active unit failures happen. The transition from state 0 to state U0 represents 

the case where there is a failure in an active unit but it is not detected. The rate of going 

into state U0 is mλ(1–C). The repair rate from state U0 is also μ. When a standby unit 

fails in state 0, the system goes to E0.  While the systems stay at E0, if three is a second 

active unit fails and detected, it goes to F1; if the second active unit fails but undetected, 

it goes to U1; if second standby fails, it goes to state 2. 

The system will stay in state 1 after the switchover, then it will have a rate mλC 

and mλ(1-C) of going into state F1 and U1, based on whether another of the active units 

fail covered or uncovered this time. When another standby unit fails, the system goes to 

state E1 with a rate (s-1)λ. The same state transition process will continue, as long as the 

spares are not used up. 

Finally, in state S, all the possible standby units have been used. There are M units 

are taking the traffic and the system is still working as the minimum required M units are 

still fine. If there is one more unit fail, the system will transit to S+1 state and lose 1/M 

of the traffic. As expected, the probability of this happening could be small and it will be 

reflected in the time the system spends in state S+1. 

The working states are 0, 1, 2 to S. The failure states are S+1, U0 to Um-1 and F0 

to Fm-1.   
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6.3.2.3 Planned Software Upgrade Markov Model 

Markov chain for planned software upgrade is shown in Figure 41. 

 

 

 

Figure 41 Software Upgrade Markov Chain 

Legend 

λ Software upgrade rate 

μ1 Repair rate of successful software upgrade 

μ2 Repair rate of unsuccessful software upgrade 

C Software upgrade coverage factor 

State Descriptions 

0 Software working 

F Successful software upgrade by switchover 

U Failed software upgrade, reset the system 

In Figure 41, state 0 is the normal state when software is working. λ represents the 

software upgrade rate, such as twice a year. To save the downtime, software upgrade is 

normally done by saving a new version of the software in a standby unit, and the upgrade 

operation is done by a switchover. The successful switchover case is represented in F state 

and the unsuccessful one is represented in U state, which normally means a system reset is 

needed. Repair rates μ1 represent how quickly the switchover can be and repair rate μ2 

represents how quickly the system reset can be. 

6.4. Verification with Reliability and Cost Analysis 
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Figure 42 Reliability Block Diagram 

 

Reliability Block Diagram is commonly used in the industry. Engineers typically 

use the serial and parallel RBD to represent their system. In this type of RBD, the 

availability of a system is characterized by a set of serial and parallel blocks 

interconnected. [1] For an IP networking system the blocks need to include items in 

hardware and software unplanned failures as well as software planned upgrades. A RBD 

example is illustrated in Figure 42, where simplex blocks in series represent non-

redundant parts and blocks in parallel represent parts in redundancy. Item1 is a simplex 

hardware part, Item2 is 1-of-2 active-standby redundant hardware part. Item3 is simplex 

hardware part again. Item4 is in 2-of-4 load-sharing redundancy while item5 is 3-of-5 

active-standby redundant parts. The software failure is represented in item6 for 1-of-2 

active-standby redundancy. Finally, the planned software upgrade outages are 

represented as redundant software upgrade parts in item7. 

The availability analysis tool is used after the development of system RBD. The 

blocks in RBD are translated into the rows in the excel-format analysis tool. 
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Figure 43 Reliability and Availability Analysis Tool User Interface 

 

The user interface of the availability analysis tool is shown in Figure 43. It is 

comprised of three portions, i.e., input area for part availability calculation (left half of 

the data table), result area from part availability calculation (right half of the data table), 

and result area for system availability calculation (above the data table).  

The worksheet parameters and metrics are defined as follows.  

Part Calculation Inputs 

Part Description—describes the part under availability calculation.  

Total Part Quantity N—specifies the total number of parts for a given part type. 

In case of M-of-N redundancy, it includes all the N units.  

Redundancy—describes redundancy types with three selectable character values: 

“N”, “A”, and “L”. 
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“N” indicates that no redundancy exists.   

“A” indicates active-standby redundancy. By the active-standby redundancy, M 

units are active and N-M unit serves as a standby unit. When any one of the M 

active units fails, the standby unit takes over.  

“L” indicates load-sharing redundancy. With the load-sharing redundancy, all N 

units are active and carrying traffic in roughly equal 1/N distributions. If one unit 

fails, the other N-1 units take over the load.  

Required Part Quantity m—specifies the required number of parts for a given part 

type. In case of M-of-N redundancy, it is the minimum required M units.  

Part MTBF (hours)—is the MTBF of a single unit.  

Part MTTR (hours)—is the MTTR of a single unit.  

Switchover Time (sec.)—is the amount of time spent on switching from one 

(failed) unit to another (healthy) unit. 

Switchover Coverage Factor (%)—is the probability that a failure in the working 

unit can be successfully detected and a switchover from the failed unit to a healthy 

unit is successful. It depends on the fault detection on the working part;  the 

successful operation of the switchover mechanism, and the readiness of spare part 

on demand. 

Part Calculation Results 

Part Availability (%)—is the calculated availability for a given single unit.  

Combined Part Availability (%)—is the calculated availability for a set of 

redundant part units. If there is no part redundancy, it is equal to the Part 

Availability.  

Combined Part Downtime (min./year)—is the calculated annual downtime for a 

set of redundant part units.  
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System Calculation Results 

System Availability (%)—is the calculated availability for the entire system.  

System Unavailability (%)—is the calculated unavailability for the entire system.  

System Annual Downtime (min./year)—is the calculated annual downtime for the 

entire system. 

As an example, Figure 42 shows a worksheet for the system described in Figure 

41. In the worksheet, Row-1 records the availability data for a simplex hardware part Item1. 

Similarly, Row-2 entry captures a pair of 1-of-2 active-standby redundant parts Item2. 

Row-4 calculates the availability of 2-of-4 load-sharing Item4, where two items are used to 

backup the other two items. The calculation results are displayed on a per-part type basis in 

the data table. 

 

Figure 44 Cost Model Tool 

The user interface of the reliability cost tool is shown in Figure 44. We analyze network 

outages and calculate their effect on the network services to formulate a cost-based model 

including recovery cost, revenue loss, productivity loss, and hedonistic cost. 
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CHAPTER 7 

 
SUMMARY AND FUTURE WORK 

 
As our daily life gets more dependent on essential and important services con- 

nected to the Internet, network reliability has never been more important. To deal with 

network reliability, we have mainly focused and studied high availability and scalability. 

This dissertation specifically focused on Software-Defined Networks (SDN), identified 

new issues of high availability and scalability of SDN, and solved the problems using 

various schemes and algorithms. 

Little attention has been paid to the SDN network reliability management that 

suffers  from  scalability  and  latency issues. We proposed a novel Network Architecture- 

aware Reliability Management Schemes to efficiently orchestrate different reliability 

monitoring mechanisms over SDN network architecture and synchronize the control 

messages among different controllers and applications. We enabled the platform to 

provide     fast and smart decision making information for fast failure detection and 

recovery.  A  prototype  is  implemented  on  Cisco’s OpenDayLight (ODL). Extensive 

experiment results exhibit that our algorithm achieves effective and efficient network 

failure detection while generating limited LLDP message overhead. We propose a novel 

network reliability cost model to ensure that the SLA covers customer service impact and 

damage. 

By applying the proposed reliability scenarios and algorithms, as future work, 

further investigation and development can be continued for efficient and reliable 

mechanisms to achieve reliability for the carrier-grade SDN networks where we consider 

a large scale network deployment.  
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