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ABSTRACT

In the past few years, we have witnessed a rapid development of deep neural
networks in computer vision, from basic image classification tasks to some more ad-
vanced applications e.g. object detection and semantic segmentation. Inspire of its
great success, there exists two challenges of deep neural networks real-world applica-
tions: its computational cost and vulnerability. Thus we are aimed to deal with these
two problems in this thesis.

To speed up deep networks, we propose a £1-Norm based low-rank approximation
method to reduce float operations based on the alternating direction method (ADM)
in Chapter 2. Our experimental results on public datasets, including CIFAR-10 and
ImageNet, demonstrate that this new decomposition scheme outperforms the recently
developed Ls-norm based nonlinear decomposition method.

To defend against adversarial examples, we develop a novel pre-processing alogrithm
based on image restoration to remove adversarial attack noise in Chapter 3. We de-
tect high-sensitivity which have significant contributions to the image classification
performance. Then we partition the image pixels into the two groups: high-sensitivity
and low-sensitivity keypoints. For the low-sensitivity pixels, we use the existing total
variation (TV) norm-based image smoothing. For the high-sensitivity pixels, we de-
velop a structure-preserving low-rank image completion methods. Based on matrix
analysis and optimization, we have derived an iterative solution for this optimiza-
tion problem. This high-sensitivity points detection helps us to improve the defense
against white-box attack BPDA.

However, in our keypoints defense we only remove and recover a few part of pixels,

xii



which indicates there are still many perturbation over the whole image. In Chapter 4,
we propose a novel image completion algorithm structure-preserving progressive low-
rank image completion (SPLIC) based on smoothed rank function (SRF) in which
we can reconstruct a image with over 50% removed pixels. In SPLIC, we randomly
remove over 50% pixels on the image and then do matrix completion by low-rank
approximation to remain the global structure of the image. Differ from other low-
rank methods, we replace nuclear norm by smoothed rank function (SRF) for its closer
rank function approximation. We introduce total variance (TV) regularization to
improve image reconstruction, and then combine total variance (TV) norm de-noising
to further remove the perturbation over the whole image. Then we train the network
on the SPLIC images. The experimental results show our SPLIC' outperforms other

pre-processing methods in image reconstruction, gray-box and black-box scenario.

xiil



Chapter 1

Introduction

1.1 Background

First of all, a brief background knowledge of image representations including Deep
Convolutional Neural Networks (DCNNs) and low-rank Approximation will be intro-

duced as follow.

1.1.1 Deep Convolutional Neural Networks

Recently, deep learning, as a branch of machine learning based on artificial neural
networks with multiple functional layers including non-linear transformations, has
become the baseline approach in various computer vision tasks. Inspired by biological
neural networks, researchers created artificial neural networks (ANN) in 1940s and the
theory was completely developed well in 1970s. Due to recent development of digital

electronics hardware and the huge data emergence, deep learning has achieved a great



success in both academia and industry. Convolutional neural network (CNN), as the
most commonly used network model, has played a very important roles in almost all

computer vision tasks.

Convolutional Layers

The convolutional layer is the most important functional component of a convolutional
neural network which has most of the computational complexity. It contains a set of
filters with learnable parameters. Each of these filters is small spatially, but extends
through the full depth of the input tensor. A typical first layer convolutional filter
has size of 7x 7 x 3 (i.e. 7 pixels width and height, 3 for RGB color channels). In the
forward operation, we slide each filter across the width and height of the input and
compute dot products of the entries of the filter and the input at all position. Then
we can obtain a 2D feature map that gives the responses of the sliding filter at every
spatial position. In the backward operation, the filter parameters will be updated
by the gradients of the loss function. Intuitively, filters can be activated when they
see some visual features. For examples, the first layer filters might recognize some
local features like an edge of some orientation or a blotch of some color, and filters on

higher layers might recognize some global patterns like entire honeycomb or wheel.

Fully-connected Layers

Unlike convolutional layer, fully connected layers connect every neuron on the current
layer to every neuron in the next layer. It is in principle the same as the traditional
multi-layer perceptron neural network (MLP). Usually, the neurons’ activation will

be computed with a matrix multiplication followed by a bias offset.



1.1.2 Low-rank Approximation

In the low rank approximation, a given matrix M can be approximated by a low-rank
matrix M, ie. |[M — M| ~ 0. This area is also known as principal component
analysis. A high dimensional data can be represented as a much lower dimensional
data. But the point of low-rank approximation is not necessarily just for performing
dimension reduction. In the ideal case where the entries of matrix M are not affected
by noise, corruption, missing values etc. But in reality, the observed matrix typically
will have much higher rank. Low-rank approximation is thus a way to recover the
original (the "ideal” matrix before it was corrupted by noise) low-rank matrix, i.e.
find the matrix that is most consistent with the current matrix and is low-rank so that
it can be used as an approximation to the ideal matrix. Low-rank approximation is
a minimization problem in mathematics. It’s cost function measures the fit between
a given matrix and an approximated matrix, which is subject to a constraint that
the approximated matrix has reduced rank. The low-rank approximation technique

is usually used in mathematical modeling and data compression.

1.2 Deep Neural Networks Acceleration

During the past several years, deep neural networks, especially deep convolutional
neural networks (DCNNs), have achieved remarkable success in various computer vi-
sion tasks including classification [3, 4], detection [5, 6] and segmentation [7, 8]. The
continuously improving performance often builds upon increasingly huge volume of
labeled data, deeper networks, and massive numbers of network parameters, often

in the range of tens or even hundreds of millions, which result in prohibitively high



computational complexity [4, 9]. This creates significant challenges in deploying these
high-performance networks in real-world devices, platforms, and applications. For ex-
ample, portable devices such as smart phones and tablets have limited computational
power. Cloud service platforms have access to very powerful GPUs. But, each cloud
service needs to handle a large number of concurrent requests, which results in very
limited computational resources for each deep neural network task. In this case, the
available computing resource for each deep neural network task becomes very limited.
Therefore, accelerating the deep neural networks has become an urgent research task.

In a deep convolutional neural networks (DCNNs), convolutional layers contribute
to the most computational complexity [10, 11]. Therefore, most of the existing meth-
ods for accelerating the DCNNs have been focusing on optimizing the convolution
layers of the network [12, 13].

A set of approaches have been developed in the literature, including connection
pruning and low-rank approximation [14, 12]. Normal connection pruning produce
non-structured network connections, resulting in irregular memory access that of-
ten degrades the performance of network speed optimization, especially in practical
implementations on parallel computing devices, such as GPUs [13, 14].

Low-rank approximation has emerged as a promising approach for speeding up
DCNNs. Typical high-performance DCNNs have large numbers of network filters and
channels, whose parameters are to be learned during the training process. The low-
rank approximation approach aims to explore the redundancy or correlation existing
between different network channels and filters, approximate and speed up the network
using low-rank decomposition [15, 16]. All these approximations are based on Ls-

norm. Whereas, many recent low-rank approximation and image reconstruction works



[17, 18, 19] show Ly-norm approximation is very sensitive to outliers and will cause
large approximation error.

To deal with the outliers problem, we propose a new Li-norm based method
to reduce the rank of filters for DCNNs acceleration and develop a mathematical
solution for this optimization problem. We also develop a iterative two-step procedure
to fine-tune the whole network after each decomposition and further improve the
performance. We demonstrate that the linear £;-norm decomposition is more efficient
than the non-linear Lo-norm decomposition in accelerating deep neural networks in

our experimental results.

1.3 Deep Neural Networks De-noising

Recently, researchers have realized that deep neural networks are very sensitive to
adversarial attacks [20]. A little changes of input image can easily fool the deep
neural network image classifier. Because this small error at the input layer can be
gradually increased along the network inference layers, finally exceed the decision
boundary at the last layer, and result in the false decision [20, 21]. This vulnerability
of deep neural networks has become a critical threat in many real-world applications of
deep neural networks, such as face recognition, security monitoring, and autonomous
driving [22].

There exists three different adversarial attack modes: white-box, gray-bor and
black-box. In white-box attacks, the attacker knows all details of the classifier network
including the network architecture and model parameters, and the details of defense

strategy as well. While gray-box attack can only access the classifier. In the case of



black-box attack [23], neither the classifier and the defense strategy are visible, but
a substitute classifier can be trained to mimic the real classifier behavior and then
generates adversarial perturbations by applying attack algorithms on the substitute
classifier.

The adversarial attacks can be considered as a special type of image noise. Re-
cently, a number of image de-noising methods [24, 25, 26] have been developed to
remove adversarial attack noise and recover the image. These noise removal-based
approaches are attractive because they do not introduce any changes to the network.
More importantly, unlike other defense methods based on deep neural network design
or adversarial training, they cannot be easily attacked by existing white-box attack
methods. This is because most of existing white-box attacks are based on gradient
back propagation and the gradient cannot be easily propagated through the highly
complicated image de-noising algorithms.

Adversarial attacks generate the perturbation on every point of the image. But
impacts of those perturbations at each point are not equal. We propose a hyper-thesis
that even in the case of FGSM [20], in which magnitudes of all perturbations are the
same, the impacts of different points can not be consistent.

Based on this hyper-thesis, we a new approach to defending image against ad-
versarial noise in Chapter 3. Firstly, we rank all points in the input image by their
contributions to the classification result. Based on this ranking result, we can obtain a
mask which differentiates the high-sensitivity keypoints and low-sensitivity keypoints.
To address them discriminately, low-sensitivity keypoints are processed by TV norm
minimization de-noising [27], while the high-sensitivity keypoints are removed and a

new image will be recovered by our reweighted low-rank matrix approach. Our exten-



sive experimental resutls on benchmark datasets demonstrate that our approach can
achieve highly effective defense and outperforms existing noise removal-based defense

methods with powerful black-box, gray-box, and white-box attacks.

1.4 Deep Neural Networks Robustness

As mentioned in 1.3, many image pre-processing studies [24, 25, 26] are naturally
considered to be the strategy for perturbations removal. However, they are challenged
by the BPDA attack [28], since these defenses essentially provide obfuscated gradients
and can be broken by approximated gradients. Then Yang et al. [29] points out that
human recognize images by the global structure, while image processing by computers,
especially deep neural networks, are more likely affected by the local structure. They
develop ME-Net to randomly discard over 50% pixels and then reconstruct the image
by matrix completion. The matrix completion in MFE-Net is formulated as a rank
minimization problem. In this way, computers can learn the images global structure
by the reconstructed images.

The completion algorithm in MFE-Net is based on nuclear norm, which is the
tightest convex relaxation of the rank minimization problem. Recently, many studies
replace nuclear norm by smoothed rank function (SRF). SRF methods have the ad-
vantage that smooth term lie much closer than nuclear norm to rank function, which
results in the better reconstruction. However, the original SRF performance often
degrades due to the yielded noise and the reconstructed image is lack of structure
smoothness. Another weakness of MFE-Net is that there still remains some adversar-

ial perturbation because of the preserved pixels.



To deal with this problem. We propose a novel T'V-regularization constrain into
the SRF and develop the mathematical solution for this optimization problem. With
the help of the TV-regularization the image reconstruction performance is further
improved. We also exploit the TV-norm to smooth the whole image, which not
only benefits the image reconstruction but also increase the resistance of adversarial
perturbations. Our experiment demonstrates our TVSRF reconstruction outperforms
the ME-Net on almost all situation and we achieve a much better defense than other

data pre-processing methods.

1.5 Summary

We recognize deep learning real-world implementation still faces two challenges: the
speed and the security. Low-rank approximation, as a effective and robust data dimen-
sion reduction method, can be explored to solve deep learning application problems.
In this thesis, we study the deep learning acceleration and adversarial robustness
problems and provide solutions by exploiting low-rank approximation. In the first
part of our work, we introduce our layer decomposition algorithm which is based on
L1-norm and show its speedup result. In the second part of our work, we present a de-
fending strategy against adversarial attacks based on high-sensitivity points detection
and demonstrate the significant improvement. This defending strategy only involves
image de-noising. In the third of our work, we propose a novel image pre-processing
method by introducing TV smoothness to train a robust deep convolutional neural
network classifier, which achieve a great success against many kinds of adversarial

attacks.



The rest of this thesis is organized as follows. In Chapter 2, we introduces the
deep neural networks acceleration algorithm. In Chapter 3, we presents our de-noising
defense based on high-sensitivity keypoints selection. In Chapter 4, we show our new

smoothed rank function method with TV smoothness and discuss the future work.



Chapter 2

L1-Norm Low-Rank Linear
Approximation for Accelerating
Deep Neural Networks

2.1 Motivation

Recently, to accelerate the test-phase computation of DCNNs, Zhang et al. [12] devel-
oped a network speed optimization method which decomposes the convolution layer
into two convolution layers using Lo-norm based low-rank approximation. They also
considered the joint approximation of the convolution and nonlinear activation (e.g.
ReLU) layers so that the method can be applied to deeper networks. However, recent
studies on low-rank matrix approximation and image recovery have demonstrated that
Lo-norm approximation is sensitive to outliers, which may result in a large approxi-
mation error. To address this issue, many efficient low-rank approximation methods

developed for image recovery often resort to £i-norm [17, 18, 19] analysis. Motivated

10



by its success in image recovery, in this work, we propose to develop an L£;-norm
based low-rank decomposition method for approximating the convolution layers so as
to speed up the DCNN.

Specifically, in this paper, we propose a linear Low-Rank Approximation of Re-
sponses (LRAR) algorithm based on £i-norm for accelerating the test-phase compu-
tation of deep convolutional neural networks to improve the accuracy of accelerated
networks in [12]. As illustrated in Fig. 2.1. We decompose one pre-trained convolu-
tional layer’s filters into two groups: the first one is the basic filters and the second
one is linear combination filters. Once the decomposition of the trained network is
finished, the decomposed network can be used directly in the test-phase. During
our Lq-norm based low-rank decomposition, we aim to minimize the approximation
error between the original output Y without decomposition and the output Y after
decomposition. This new Li;-norm based low-rank decomposition problem can be
solved by an augmented Lagrange method. After the decomposition of the convolu-
tion layer, we fine-tune the network to improve its accuracy. Our experimental result
demonstrates that this new low-rank decomposition can significantly reduce the com-
putational complexity of the convolution layers and speed up the whole network. We
also demonstrate that the proposed £;-norm decomposition is more efficient than the

Lo-norm based decomposition recently developed in the literature [12].

2.2 Related Work

Convolution layers are the most time-consuming component in deep convolutional

neural networks [30]. Currently, the most widely-used method to implement convolu-

11
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Figure 2.1: (a) Conventional convolution layer before decomposition; (b) convolu-
tional layer after decomposition. The weight shape of the original layer is n x ¢ x k x k.
It is decomposed as two layers: Wy, is the weight of the basic filter and its shape
ismxcxkxk, and Wy is the weight of the linear combination filter and its
shape is n x m x 1 x 1, where m < n. Y., is the intermediate output of the basic
convolutional layer and Y is the approximated output. Then the complexity can be
reduced from n x (h,w,) X (k*c) to m X (how,) x (k%c) +n x (how,) X m.

12



tion is based on matrix multiplication, which is often accelerated by the Basic Linear
Algebra Subprograms (BLAS) libraries, such as Intel MKL and OpenBLAS [31]. To
further speed up the convolution layers, connection pruning and low-rank approxima-
tion are two commonly used approaches. Connection pruning exploits matrix sparsity
to save computations [30]. Low-rank approximation reduces the rank of the matrix
to save computations [12]. In the following, we provide a detailed review of these two

approaches and other related methods.

2.2.1 DCNNs Acceleration by Connection Pruning

Connection pruning was firstly proposed by Han et al. to reduce the DCNN param-
eters [30]. Deep compression [10] introduced a DCNN model compression algorithm
with three stages: pruning, trained quantization, and Huffman coding. These meth-
ods focused on fully connected layers for model compression. Many recent methods
shift the focus to convolution layers by pruning their connections to achieve compu-
tation reduction. Wen et al. [11] exploited group-lasso regularization during DCNN
training to obtain filters with structured sparsity. Lebedev et al. developed a similar
idea in [32]. ThiNet [9] introduced a filter-level pruning method and argued that the
pruning criteria should be the output of its next layer instead of the current layer.
Yu et al. [14] developed a three-step method for pruning: first, it scored every neuron
in the final response layer for its importance; the importance scores were then prop-
agated through the whole network; finally, the method pruned the neurons based on
these importance scores. Zhao et al. [33] leverage the batch normalization layer to
prune the channels with small coefficient. Generative adversarial learning (GAL) is

proposed to solve the pruning optimization problem in [34].
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2.2.2 DCNNSs Acceleration by Low-rank Approximation

Low-rank approximation has been extensively used in matrix recovery, matrix com-
pletion, and low-rank representation [35, 36, 37]. The traditional principal component
analysis (PCA) [38, 39] evaluated the approximation error based on Frobenius norm,
which was effective for Gaussian additive noise. [35, 40] demonstrated that £;-norm
based low-rank decomposition, or called robust PCA, is robust to large and sparse
noise or outliers. Recent studies on low-rank matrix theory [41, 42] mostly focus
on Li-norm analysis. The main objective of these methods was to decompose the
noisy matrix into a low-rank matrix and a sparse error matrix. Specifically, it can be

formulated into the following minimization problem:

min { X + A1}, (2.1)

st. E=D-X,

where || - ||« is the nuclear norm, the sum of singular values of the matrix.

Recently, researchers are exploring various applications of low-rank approximation
in DCNN optimization [43] by decomposing one single high-complexity convolutional
layer into several low-complexity convolutional layers. Jaderberg et al. [15] demon-
strated that the redundancy between feature channels and filters can be exploited to
speed up the convolutional neural networks. [15] designed two simple schemes and two
optimization functions to reduce redundant channels and filters. Denton et al. [44]
proposed two alternative methods: monochromatic approximation and bi-clustering
approximation. Force regularization developed in [16] exploited the correlation among

filters during the DCNNs training stage to ensure the low-rank properties of filters.
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Zhang et al. [12] considered both convolution layers and nonlinear layers, such as
the ReLU layers of DCNN, and solved the nonlinear low-rank approximation prob-
lem so as to optimize deep neural networks. They exploited the ideas of multi-layer
asymmetric reconstruction, rank selection, higher-dimensional decomposition, and
fine-tuning. During our experiments, we observed that this non-linear approxima-
tion often destroys the well-learned feature pattern of the network layer and causes
degraded weights during fine-tuning. Inspired by [12] and motivated by the success
of £i-norm based low-rank decomposition for image restoration, in this work, we
propose a Lq-norm low-rank decomposition scheme to approximate high complexity
convolution layers and speed up the whole network in test-phase. Our experimen-
tal results demonstrate that this £;-norm based linear approximation significantly

reduces the approximate errors, especially with subsequent fine-tuning.

2.2.3 Other Related Methods

Besides low-rank approximation and connection pruning, quantization is another way
to achieve both network compression and acceleration. Hubara et al. [45] proposed
Quantized Neural Networks (QNNs). [13, 46, 47] demonstrated that converting the
neural networks into binary forms can obtain much smaller network models and im-
prove the inference speed. Instead of pruning weights in convolutional layers, Fig-
urnov et al. [48] only computed the important position of inputs, which was essentially
equivalent to pruning inputs. [49] developed four guidelines for light-weight networks
architecture design. MobileNets [50] developed a light-weight network for mobile de-
vices. SqueezeNet [51] designed a smaller network and shuffleNet [52] reduced the

computation cost based on pointwise group convoultion and channel shuffle. Shuf-
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fleNet V2 [49] analyzed major contributing factors of DCNN computation, such as

floating computation, memory access cost (MAC), and platform characteristics.

2.3 Method

In this section, we first analyze the computational complexity of convolution layers
in DCNNs and then explain how the low-rank approximation can speed up a con-
volutional layer. Based on this analysis, we propose our L£i-norm based low-rank

approximation of convolutional layers.

2.3.1 Matrix Formulation of Convolution

In deep convolutional neural networks, the convolution operation can be formulated

by the following matrix multiplication:
Y=WX+ B, (2.2)

where Y € R™hoxwo ig the output tensor, W € R™**x¢ is the weight tensor,
X € R(Fox(howo) g the input tensor, and B = {b:, b;, e ,b:l}T, B € Rx(howo) b_; €
R(owo)x1 s the bias tensor. Here, h, and w, are the height and width of the out-
put, ¢ is the number of input channels, n is the number of output channels (i.e. the
number of filters), and k is the convolution kernel size. The bias B and weight W
can be concatenated together into one matrix W &€ R* (K1) Tn this way, the input

X e R**etD)x(howo) jg formed by concatenating original input and a vector of all ones
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(i.e. 1e R1x(howo)) " Then, the convolution can be rewritten as:
Y =WX, (2.3)

where Y € Rx(howo) 17 ¢ Rnx(Wetl) gnd X € RFetD)x(howo)  Tgnoring the addition
operation on biases which has very small computatonal complexity, we can calculate

number of floating operations (FLOPs) of a convolutional layer, by

Corig = 1 X (how,) x (k*c). (2.4)

2.3.2 Low-rank Approximation of Convolutional Layers

The low-rank decomposition of the convolution layer builds upon the assumption
that there exists correlation among output channels or the output space is a low-
rank subspace, and they can be represented by a linear combination of fewer basic
channels. Let g; € R" be the i-th column of Y. According to the analysis in [12], we

have

g = Mg+, (2.5)

st.  rank(M) <n,

where M is an n x n low-rank matrix, and ¢’ is the bias vector. Then, M can be

written as M = PQT, P € R™™ and Q € R™™. Here m is the rank of M which is
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less than n. According to the above analysis, (2.5) can be written as

g = PW'a, + 1, (2.6)

st.  rank(M) < n,

where W’ = QTW is the new matrix of basic filters. P € R™ ™ is the weight matrix
for linear combination of these basic filters to form the approximation output. In this
way, the single convolutional layer is decomposed into two convolutional layers: one
convolutional layer with the basic filters and one linear combination convolutional
layer whose kernel size is 1 x 1. The computational complexity, measured by number
of floating operations (FLOPs), of these two decomposed small convolutional layers
is given by

Cdecomp =m X (howo) X (k2C) +n X (howo) X m. (27)

The acceleration of DCNNs requires that
Cdecomp < Corig (28)

This low-rank approximation reduces the convolution computation by decomposing
one convolutional layer with high computational complexity into two convolutional

layers with very low computational complexity.

2.3.3 L;-Norm Low-Rank Decomposition

In this section, we present our proposed L£i-norm based low-rank decomposition for

DCNNs speedup. Let X = {xy,29, -7, Zp,xw, } be the matrix of h, X w, input
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vectors to the convolution layer. Based on the assumption that the output YV =

{Y1, 92, ", Yn,xw, } lies in a low-rank subspace, we can rewrite (2.5) as
Y=MY+B MY +Y -MY=MY -Y)+Y, (2.9)

The equality = is obtained by set B’ = {l?, o, ,877} € Rrx(howo) and § = § — My,
where Y = {¢,7,--- , 7} € R*(hew) with i as the mean vector of the response Y.
From the above equation (2.9), it can be concluded that if the output space is one
low-rank subspace, then we can write Y —Y = M(Y —Y). But in fact, the output
space just located in an approximated low-rank subspace, so we try to find a low-rank
subspace, so that the error of |V —Y — M(Y — Y)|| as small as possible.
Mathematically, to find an approximated low-rank subspace for the response, we
can minimize the rank of matrix M, which is equivalent to minimizing its nuclear
norm. In addition, to make our model robust to outlier noise, we wish its error
matrix to be as sparse as possible, which can be evaluated by its £; norm. In addition,
when approximation is done in each layer independently, the error will be gradually
increased from shallower layers to deeper layers and finally affect the output layer.
We followed the asymmetric reconstruction method to alleviate this problem as [12]
and denote the approximated output to the current layer as Y. We can compute its
non-approximate responses as Y = WX for the training data. So we try to minimize
the error of ||[Y — Y — M(Y — {/)”1 in stead of [|[Y =Y — M(Y —Y)||;. In this way,

it can be reformulated as the following optimization problem:

in | M][. + NEI| }, 2.1
in {[|M]l. + A Ell } (2.10)

st. E=Y— (MY + B"),
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where || - ||« is the nuclear norm of matrix and || - ||; is the £; norm. Here, B” =

w1

{g”,g”, e ,l;”} € Rx(howo) and b = 7 — My, where ¢ is the mean vector of the
approximated responses Y = {41, Yo, - C s Unowy- Substituting B” into the constraint

E=Y — (MY + B"), we have

(2.11)

where Y € Rmx(howo) apd Y = {y?, gi e ,5} € R™*(howo)  Hence, we can rewrite the

optimization problem in (2.11) as:

in {||M]|, + \|E|, Y, 2.12
ain {[[M]l.+ X 2]} (2.12)

st. E=27-MH,

WhereZ:Y—YandH:Y—{/.

2.4 Solving the Optimization Problem

In this section, based on the alternating direction method (ADM), we aim to develop a
mathematical solution for the optimization problem in (2.12) to obtain £;-norm low-
rank approximation of the convolution layer. To this end, we introduce the following

augmented Lagrange function, which adds the constraint into the objective function
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of problem (2.12):

. H 2
{A%?L}{HMH* +A|E|\+ < L,Z—MH —E > +§\|Z — MH — E|}}, (2.13)

where Z=Y —V and H =V — V. L is the matrix of Lagrange multipliers. < -,- >
is the inner product of two matrices. It should be noted that it is very difficult to
obtain a close-form solution for the problem in (2.13). In this work, we propose
an iterative solution method base on the ADM, which optimizes the sub-problem
with one variable while fixing the rest variables. In this way, the complex prob-
lem of multiple variables can be divided into several reduced optimization problems
with one single optimization variable which can be solved analytically. Finally, we
demonstrate that this iterative method converges very fast for our convolution layer
approximation problem. Note that, in (2.13), there are three optimization variables
(M, E, L). In the following, we derive the mathematical solution to optimize each of
these three variables. It should be noted that the optimization problem in (2.13) for
low-rank decomposition of convolution layers is significantly different from those in
image restoration [41, 42]. Therefore, we need to drive new mathematical solutions
for this £;-based low-rank decomposition problem, which will be explained in detail

in the following sections.
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2.4.1 Optimizing the Low-Rank Matrix M

The first variable to be optimized is M, which is a low-rank matrix. In (2.13), if we

fix variables (E, L), then the matrix M can be optimized as follows:

arg min mMm+Mwm+<LZ—MH—E>+%Z—MH—E%}

£ arg min NMM+<LZ—MH—E>+%Z—MH—M@}
(2.14)
imy%1MMM+<L—MH>+%<Z—MH—EZ—MH—E>}

c . 1% L
:argmj\/}n {HM||*+§||MH—(Z—E+;)H%}

The equality = and L of (2.14) can be obtained by reducing those items without
M and expanding the squared item of the Frobenius norm. The equality = is obtained
by reconstructing the new squared item of the Frobenius norm. We recognize that this
problem (2.14) is hard to be solved directly. Generally, the target of the minimization
problem (2.14) is to find a low-rank matrix M because it contains the item ||M]|,,
otherwise it just finds a matrix M, which maybe have a higher rank. In our proposed
low-rank approximation for DCNNs acceleration, the speed is related with the rank
of M. Thus, to control the speed, the rank can be given at first. If the rank of
the matrix M is given, then the first item will not affect the solution. Hence this

optimization problem can be simplified as:

I (g lye
argmj\}n{2||MH (Z E+M)”F}

This problem in (2.15) is well known as the Reduced Rank Regression, which belongs

22



to a broader category of procrustes problems [53, 54]. This problem can be solved with
generalized singular value decomposition (GSVD) [12, 54]. The problem in (2.15) has
the full rank solution M = WHT(HH")™", where W = Z — E+ L. Let M = USV"
be its GSVD. The Reduced Rank solution is given by M = U,,S,,V.I', where U, and
V., are the first m columns of U and V', and S,, are the largest m singular values.

Thus, the low-rank matrix is given by:
M =U,S,, VI (2.16)

Now, the most important question is how to obtain the GSVD of M. To this end,

we use the method developed in [55]. First, we have the following Lemma.

Lemma 1. Let K and Q) be metric matrices. Let A be an matrix of rank m.
REARG = REUSVT Rg is the GSVD of A under metrics K and Q). Rk and Rg are
square root factors of K and Q, respectively. We have UTKU = I and VIQV = 1.
If the usual SVD of R ARq is presented as U*S*V*T | then the GSVD of A under
metrics K and Q can be computed as U = (Rf.)"'U*, V = (R5H)™'V* and S = S*.

Compared with the above Lemma 1, in our problem, K is an identity matrix I,
Q=H,and A =M = WHT(HHT)™!, so if we have the SVD of RTMRy to be
U*S*V*T | then we can compute the GSVD of M by setting U = U*, V = (R%)V*

and S = S*. In this way, the matrix M with rank m can be computed by (2.16).
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2.4.2 Optimizing the Error Matrix F

The second variable to be optimized is £, which is the error matrix. In (2.13), if we

fix variables (M, L), then the matrix £ can be optimized as follows:

argmin {[|M]|, + \| B+ < L, Z ~ MH — E > +%||Z — MH - E||%}

£ arg min (ME|+<L.Z-MH-E> +§||Z—MH—E||§,}
(2.17)

Largmin M|+ < L,—E > +g <Z-MH-EZ-MH-E>)

c . L
< arg min DUEL -+ SIE = (2 = MH + )}

The equality = and L of (2.17) are obtained by reducing the items without £ and
expanding the squared item of the Frobenius norm. The equality = is obtained by
reconstructing the new squared item of the Frobenius norm. Finally, the optimization
problem of (2.17) is transformed to a well known problem, which can be solved by
the iterative shrinkage-thresholding operator [56]. Let Q = Z — M H + %, matrix £

can be updated using the following formula:
E=8:(Q). (2.18)

where Sx (Q) has the solution sgn(q;;) - max{q;; — ﬁ, 0} [56].

m

2.4.3 Updating of the Lagrange Multiply Matrix L

L is the Lagrange multiplier matrix. If L is the optimization variable and the rest

variables are considered as constants, the first-order derivation of (2.13) equals to
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zero, then L can be updated as follows:

L=L+uZ—MH-E). (2.19)

2.5 Algorithm Summary

In this section, we summarize the proposed algorithm for solving the £;-norm low-
rank approximation of convolution layers in Algorithm 1. The relative error of the

observed matrices is used as the stopping criteria:

12— MH - E|r

E, =
1Z]|r

<e, (2.20)

where € is set to be a small positive number. In our experiments, inspired by [35] and

[57], to obtain better results, the parameter p is adjusted by § = 1.1 in each iteration.

Algorithm 1 Linear £;-Norm Low-Rank Approximation
Require: Y,Y € R™", \

Ensure: Set Z=Y —Y, H=Y —Y, M = Oy,

E = Opxn; L= =, 0 = L1, p =107,
Hmaz = 1010-

1: while % > ¢ do

2:  Compute M based on (2.16).

3:  Compute E based on (2.18).

4:  Compute L based on (2.19).

5. Compute p as p = min(Op, ftmaz )-

6: end while

7. Output M

We test the convergence of our method on a simple hand-written digit data. The

approximation is applied on the first layer of pre-trained LeNet [58] model. The
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convergence of the ADM algorithm for the smoothed objective function has been
generally proven in [59] and [60]. Up to the present, it is still difficult to generally
ensure the convergence of our proposed method. Since the objective function of (2.12)
is not smooth, it would be not easy to prove the convergence in theory. Fortunately,
there actually exist some guarantees for ensuring the convergence of Algorithm 1.
According to the theoretical results in [61], some conditions are sufficient (but may
not necessary) for Algorithm 1 to converge: one of the conditions is that the gap
produced in each iteration step is monotonically deceasing. As shown in Figure 2.2
and 2.3, the differences of M; with M;_; and E; with E,_; (¢ is the iterative step) are
both monotonically deceasing. Furthermore, the nuclear norm and £;-norm are both
convex functions. Thus, our proposed objective function is an convex optimization
problem. And our proposed method is global convergence.

The approximation is totally separated from the network test-phase computation.
Once low-rank approximation is done, the DCNNs test-phase computation complex-
ity is fixed. Although our £;-norm method may spend more time than the Lo-norm
method because of the iterative solution during approximation, our error is smaller
than the Lo-norm method. The high complexity of our method trades high perfor-
mance of the approximated network. Therefore, our optimization can achieve higher

classification accuracy with the same complexity of networks test-phase computation.

2.6 Experimental Results

In this section, we evaluate the performance of our LRAR algorithm on image classi-

fication tasks and compare its performance with existing £;-based non-linear approx-
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Figure 2.4: Computational complexity of different network layers measured in FLLOPs
of VGGNet at full rank, and with £;-norm low-rank decomposition of 1/2 rank and
1/4 rank.

imation [12] which is referred to as the NL2A algorithm. We compare the accuracy
of the approximated networks obtained by different methods. These networks have
the same computational complexity specified by the decomposition ratio, such as 1/2
or 1/4. To examine the approximation error of the convolution layer, we will com-
pute the Frobenius norm of the residual between the approximated output and the
original one. Two benchmark datasets are selected for performance evaluations: the

CIFAR-10 [62] consisting of 60,000 32 x 32 images and ILSVRC-2012 [63] consist-
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ing of 1,781,167 large scale images. We evaluate the approximation performance on
CIFAR-10 with a large network VGG [43]. But, on the large ILSVRC-2012 dataset,
we choose a relatively small network network AlexNet [3]. Otherwise, if the a large
network, such as the VGG, is being used, the amount of computing time is tremen-
dous. We use the above two different configurations to evaluate the performance of
the our proposed method with comparison against existing state-of-the-art method.
We aim to demonstrate that the linear £i-norm low-rank approximation is more
efficient than the non-linear Lo-norm low-rank approximation.

During low-rank approximation, we randomly take 100,000 output points from the
training data in each convolution layer to assemble the output matrix Y € R7x100,000
After low-rank decomposition of the convolution layers, we also perform fine-tuning of
the network and compare the performance. We observe that the fine-tuning process is
sensitive to the learning rate: a large learning rate may cause the training loss not to
converge and a small learning rate will result in slow convergence of the training loss.
In this work, we set the learning rate to be 1 x 107°. The network is retrained for 30
epochs after low-rank approximation and the learning rate is configured to decay by
a factor of 0.1 after 20 epochs. We set the batch-size as 128.

All algorithms are implemented using PyTorch [64] running on a desktop computer
with an Intel core i7-7800X 3.50 GHz CPU, two Nvidia GTX 1080 Ti GPUs, 64 GB
of RAM, and Ubuntu 18.04.
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Convolution Stage 2

Accuracy (%)

Accuracy (%)

without with
Rank Fine-Tuning Fine-Tuning
This This
NL2A [12] Work NL2A [12] Work
3/4 92.34 93.01 92.78 93.01
1/2 92.00 92.76 92.44 92.84
1/4 90.31 91.59 91.56 92.04
Convolution Stage 3
Accuracy (%) Accuracy (%)
without with
Rank Fine-Tuning Fine-Tuning
This This
NL2A [12] Work NL2A [12] Work
3/4 91.55 92.85 92.52 92.86
1/2 90.80 92.15 91.83 92.22
1/4 86.82 87.88 89.66 90.55
Convolution Stage 4
Accuracy (%) Accuracy (%)
without with
Rank Fine-Tuning Fine-Tuning
This This
NL2A [12] Work NL2A [12] Work
3/4 93.07 93.12 93.07 93.16
1/2 93.11 93.13 93.11 93.13
1/4 93.09 93.12 93.12 93.12

Table 2.1: Single Stage Results of VGG16 on CIFAR-10
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2.6.1 Performance Evaluations of Individual Convolution
Stages on CIFAR-10

First, we examine the performance of our algorithm on one single convolution layer
of the VGG16 network on the CIFAR-10 dataset. During the experiment, we only
apply the low-rank approximation to one convolution layer and fix the other layers.
We recognize that the contribution of one convolution layer in a deep neural network
is very small, which is hard for us to conduct effective performance comparisons.
Instead, we partition the convolution layers into multiple stages or groups. We then
apply the approximate to one stage of convolution layers and examine its performance.
In each stage, we perform low-rank approximation of the convolution stage at three
pre-defined ranks: m = (3/4)n, m = (1/2)n, and m = (1/4)n, and measure the
classification accuracy of the corresponding approximated network. For example,
suppose that the number of filters of the second convolution stage is 128, which
implies that the rank of original output matrix n is 128. After we perform low-rank
approximation of this stage with the above pre-defined ranks, the number of filters
of the approximated network will be 96, 64 and 32, respectively.

We train the VGG16 network on the CIFAR-10 dataset and the accuracy of this
baseline model is 93.13%. Table 2.1 summarizes the classification accuracy with and
without fine-tuning using the L£o-norm low-rank approximation developed by Zhang
et al. [12] and the linear £;-norm low-rank approximation developed in this work.
We report the accuracy for the approximation of three convolution stages, 2, 3 and 4.
We can see that our proposed method outperforms the £s-norm based method. We
can also see that the fine-tuning can further improve the classification accuracy. We

can also see that, although the complexity of the convolution layer has been reduced
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Rank

VGG16

VGG19

Full Rank
1/2 Rank
1/4 Rank

8.71ms (1.00x)
4.94ms (1.76x )
3.13ms (2.78x)

11.3ms (1.00x)
7.86ms (1.43x)
6.28ms (1.79%)

Table 2.2: Execution Time on CPU of VGG Whole-Model Approximation

Accuracy (%) | NL2A [12] This Work
1/2 Rank without | g, o0 92.14
Fine-Tuning
1/2 Rank with | g, 17 92.18
Fine-Tuning
1/4 Rank without | /g o 89.81
Fine-Tuning
1/4 Ranke with g0 a9 89.57
Fine-Tuning
This Work
Accuracy (%) VH2 [15] with
Iterative Two-step
1.76x Speed 88.48 92.25
2.78x Speed 88.38 89.81

Table 2.3: Results of VGG16 Whole-Model Approximation

CIFAR-10
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significantly, the amount of classification accuracy drop is very small, especially for
stages 2 and 4. Fig. 2.4 shows the computational complexity of each convolution layer
and their approximated versions at rank of 1/2 and 1/4. The top and bottom figures
are for VGG16 and VGG19 networks, respectively. We can see that our proposed

method is able to significantly reduce the approximation error for both networks.

2.6.2 Performance Evaluations of the Whole Network on

In the following experiments, we apply the £i-norm low-rank approximation to all

convolution layers simultaneously and evaluate its performance in terms of classifica-
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Figure 2.5: Linear approximation error ratio of VGG16 at 1/2 rank and 1/4 rank.
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Accuracy (%) | NL2A [12] | This Work

1/2 Rank without | o/ o 92.09

Fine-Tuning
1/2 Rank

with Fine-Tuning 90.82 92.26

1/4 Rank without | -, 87.74
Fine-Tuning

1/4 Rank with 86.86 88.86
Fine-Tuning

This Work
Accuracy (%) VH2 [15] with
Iterative Two-step
1.43x Speed 88.14 92.34
1.79x Speed 88.03 89.33

Table 2.4: Results of VGG19 Whole-Model Approximation

tion accuracy and network speed up. As we mentioned in the previous section, the
baseline accuracy of the VGG16 is 93.13%. And the baseline accuracy of the VGG19
is 93.29%. We recognize that it is not efficient to apply the low-rank approximation
to the first convolution layer, since the first layer deals directly with the input image.
Lhe last layer in the network is also not suitable for low-rank approximation, since
the correlation of features from previous deep layers is not obvious and the last layer
directly linked to the final output decision. Significant rank reduction on these two
layers is not cost-effective in terms of classification accuracy and network speed up.
Therefore, during approximation, the first and last layers in both VGG16 and VGG19
are skipped during low-rank approximation.

In the single convolution stage approximation, we minimize the difference be-
tween the output from non-approximated model Y = WX and the output from
approximated model Y = MWX. In the whole-model approximation, we sequen-

tially apply the approximation algorithm to each layer. Instead of Y = MWX , We
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use Y = MWX , where X is the approximation output from the previous layer. In
this case, the accumulative errors in the previous layers are taken into consideration.

We reduce the rank from 1 to 1/2 and 1/4 at each layer and show the approx-
imation errors measured by the Frobenius norm of the residual difference between
the reconstructed output Y and the original Y without approximation. In Fig. 2.5
and 2.6, we compare the linear approximation errors ratio (i.e. ||Y — Y||z/||Y|#)
at each convolution layer obtained by this work and NL2A [12]. Fig. 2.7 shows the
non-linear approximation error ratios (i.e. || max(Y,0)—max(Y,0)| /|| max(Y,0)| )
of the VGG16 network obtained by this work and NL2A [12]. The results for VGG19
are shown in Fig. 2.8. We can see that this work outperforms NL2A [12]. We can
see that our proposed method is able to significantly reduce the approximation error
in each convolution layer.

Table 2.2 shows the VGG16 and VGG19 execution time of each image on CPU,
which we run the forward inference for 10 times and compute the average time. Please
note that these two compared methods have the same network architecture and their
complexity and cost time is exactly the same.

Table 2.3 summarizes the classification accuracy of the approximated network of
VGG16 on the CIFAR-10 dataset at two different ranks, 1/2 and 1/4. We can see that
the proposed method improves the classification accuracy over the NL2A method by
1% at rank 1/2. At rank 1/4, the improvement become larger, about 16% without
fine-tuning. But, after fine-tuning, the difference is reduced to 1.2%. We also compare
our method with iterative two-step procedure with the scheme 2 decomposition in [15]
and refer it as VH2. Please note that we compare two algorithms under the same

execution time. Table 2.4 summarizes the results for VGG19. Similar performance
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Figure 2.7: Non-linear approximation error ratio of VGG16 at 1/2 rank and 1/4 rank.
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Figure 2.9: Single layer approximation accuracy on AlexNet

improvement has been achieved.

2.6.3 Performance Evaluations on the ImageNet

In this experiment, we evaluate our method on the large ILSVRC-2012 ImageNet
dataset. As mentioned in the above, we recognize that a large network such as
VGG16 will consume a huge amount time on this ILSVRC-2012 dataset. Instead,
to demonstrate the performance of our low-rank decomposition on this large dataset,
we choose the AlexNet which has relatively low computational complexity. The pre-
trained baseline model is obtained from PyTorch [64] and the baseline top-1 accuracy

and top-b accuracy are 56.52% and 79.07%, respectively. During fine-tuning, input
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Rank AlexNet
Full Rank | 11.04ms (1.00x)
1/2 Rank | 9.08ms (1.22x)
1/4 Rank | 6.90ms (1.60x)

Table 2.5: Execution Time on CPU of AlexNet Whole-Model Approximation

Complexity (FLOPs
AlexNet | Layer Original Approxima(ted Re)main Ratio ‘
Cl | 7.03x10" | 4.13x10° 0.59
C2 |2.24x10% 1.25 x 108 0.56
1/2 Rank | C3 | 1.21 x 10® 6.85 x 107 0.57
C4 | 1.50 x 10® 8.03 x 107 0.53
C5 | 9.97 x 107 5.54 x 107 0.56
Cl | 7.03x 107 2.07 x 107 0.29
C2 | 224 x10% 6.27 x 107 0.28
1/4 Rank | C3 | 1.21 x 10® 3.43 x 107 0.28
C4 | 1.50 x 10® 4.01 x 107 0.27
C5 |9.97 x 107 2.77 x 107 0.28

Table 2.6: Remained FLOPs of AlexNet

images are resized to 256 x 256. The resized images are randomly cropped to 224 x 224
images and randomly horizontally flipped for data argumentation. During network
inference, images are center cropped.

Fig. 2.9 shows the accuracy of the network when the low-rank approximation is
applied to one layer without fine-tuning on layers C2, C'3 and C4. Fig. 2.10 shows
the accuracy with fine tuning. Table 2.6 and 2.7 shows the original computational
complexity (in FLOPS) of the network in Column 3, the reduced complexity after
low-rank approximation by our algorithm in Column 4, and the complexity reduction
ratio in Column 5. We can see that the final complexity is very close to the target rank.
In Column 6 and 7, the table shows the linear approximation error ratio of each layer

when our algorithm and the NL2A method are applied, respectively. We can see that
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Linear Approximation | Non-linear Approximation
AlexNet | Layer Error Ratio Error Ratio
NL2A [12] | This Work | NL2A [12] | This Work
C1 0.63 0.04 0.23 0.08
C2 0.57 0.16 0.48 0.28
1/2 Rank | C3 0.51 0.19 0.43 0.33
C4 0.65 0.32 0.56 0.46
Ch 0.67 0.42 0.51 0.42
C1 0.67 0.09 0.43 0.21
C2 0.69 0.37 0.62 0.66
1/4 Rank | C3 0.57 0.38 0.51 0.58
C4 0.74 0.50 0.68 0.73
Ch 0.70 0.69 0.65 0.81

Table 2.7: Linear Approximation Error Ratio of AlexNet Whole Network Approxi-
mation

our method is able to significantly reduce the approximation error. Table 2.8 shows
the accuracy of the AlexNet after the whole network has been approximated using low-
rank approximation at ranks of 1/2 and 1/4. We can see that our method outperforms
the NL2A method by up to 3.1%. Note that, at rank 1/4, our method performs
worse than the NL2A without fine-tuning. But, after fine-tuning or iterative two-step
procedure with fine-tuning, our method can be significantly improved, outperforming
the NL2A method when the same fine-tuning is applied. The execution time is shown

in Table 2.5
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Accuracy (%)

(Top 1/Top 5) NL2A [12] This Work
1/2 Rank
without 50.28/74.21 53.68/77.30
Fine-Tuning
1/2 Rank
With 53.19/76.78 54.86/78.03
Fine-Tuning
1/4 Rank
without 41.28/65.63 36.40/61.06
Fine-Tuning
1/4 Rank
with 48.18/72.35 48.88/72.94
Fine-Tuning
This Work
Accuracy (%) VH2 [15] with
Iterative Two-step
1.22x Speed 53.21/76.41 55.19/78.37
1.60x Speed 50.23/74.09 50.92/74.56

Table 2.8: Results of AlexNet Whole-Model Approximation
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Chapter 3

Adversarial Attack Noise Removal
Based on Low-Rank Completion of
High-Sensitivity Points

3.1 Motivation

Existing noise removal-based methods suffer from performance degradation due to
damages on the original images. In order to remove the sophisticated attack noise,
the noise removal algorithm often applies heavy smoothing operations to the whole
image and cause significant damages to the non-attacked areas.

In this work, we observe that the adversarial attack noise is not uniformly dis-
tributed over the image. Attack noise at different image locations will have different
impact on the network prediction output.

Fig. 3.1 shows two examples of clean images of digits and their attacked version.

For example, the clean image of digit 5 in (a) is being attacked and becomes the
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) Clean digit 5 ) Adversarial digit 5
) Clean digit 8 ) Adversarial digit 8

Figure 3.1: Clean digit images and adversarial digit images.

image in (b). The clean image of digit 8 is attacked and becomes the image in (d).
We can see that those pixels that fills the gap in 5 cause the mis-classification. Also,
in (d), the attacker removes a group of pixels on the right edge of 8 and cause the

mis-classification into 6. This example demonstrates that different attack noise pixels
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have different impact on the network classification performance. In other words, some
image pixel locations are sensitive for image classification while other pixels are less
sensitive.

Based on this observation, in this work, we propose to develop a new approach to
defending image against adversarial noise. As illustrated in Fig. 3.2, we first develop
an approach to detect the high-sensitivity pixel locations. Attacks to these pixels
will have larger impact on the network prediction performance (e.g. classification
accuracy) than other low-sensitivity pixels. For the high-sensitivity pixels, we develop
a low-rank structure-preserving image completion algorithm to remove the attack
noise and restore the image. For other image regions, i.e., the low-sensitivity pixels,
we use the image de-noising method based on TV (total variation) norm minimization
[27]. Our extensive experimental resutls on benchmark datasets demonstrate that our
approach can achieve highly effective defense and outperforms existing noise removal-
based defense methods with powerful black-box, gray-box, and white-box attacks.

Major Contributions The major contributions of this work can be demonstrated

as follows:

We develop a new approach for defending image against adversarial attacks

based on high-sensitivity pixels selection and low-rank image completion.

We develop a high-sensitivity pixels detection and selection methods based on

back-propagated gradient information.

We develop a structure-preserving image completion algorithm based on reweighted

low-rank matrix recovery algorithm.

e We experimentally demonstrate our method can provide a more effective and
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Figure 3.2: Ilustration of our defense method.

robust defense than other image de-noising approaches because of the high-

sensitivity points information from the protected classifier.

3.2 Related Work

This is work is closely related to adversarial attacks of deep neural networks, defense

of deep neural networks, and image / matrix completion. In this section, we review
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existing work on these three topics.

3.2.1 Adversarial Attacks of Deep Neural Networks

There are two major approaches in generating adversarial attacks for deep neural
networks: signed gradient-based methods [20, 21, 28], and optimization-based methods
(65, 66]. The fast gradient sign method (FGSM) is the very first singed gradient-
based attack method proposed by Goodfellow et al. [20]. This method simulates
the network training process, assigns a wrong label to the input image, then back
propagates the error gradients through the network layers all the way to the input
image X. Specifically, let y be the wrong label, it generates the perturbation A by

simply taking the sign of the gradient for at each image pixel:

X* =X+ e-sign(VxL(X,y)), (3.1)

where, € is the perturbation magnitude and L(X,y) is the cross-entropy loss. The
basic iterative method (BIM) [21] is an iterative attack method based on the FGSM.

It is able to generate very strong image perturbation:

X2 = X2 4 e sign(Vxan-1 L(X2 1 ), (3:2)

where n = 1,...,N, N is the maximum iteration number and X2° = X which is
the original image. Athalye et al. [28] observed that current defense algorithms,
except adversarial training, are essentially masking gradients and developed a state-of-

the-art signed gradient-based Backward Pass Differentiable Approximation (BPDA)
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algorithm for attack:

X" = X221 4 ¢ sign(Vxan-1 L(IDEF(X®*™ 1) y)), (3.3)

where DEF(+) is the function of defense algorithms. It should be noted that this
BPDA algorithm only works under the white-box mode with full knowledge of and
access to the defense method. It has been recognized that fast-gradient based attack
methods often generate large perturbations, easily seen with human eyes. DeepFool
[65] aims to minimize the image perturbation. It finds the label with the minimal
distance [ (X) between the input and all classification boundaries except the true label
l;:(X) to generate the perturbation. This procedure is repeated until the classifier

yields the wrong result.

3.2.2 Defense Methods for Deep Neural Networks

As a counterpart to the adversarial attack methods, defense methods aim to defend
the neural networks against adversarial attacks by removing attack noise from im-
ages, improving the capability of the network to handle adversarial attacks. Various
approaches have been developed for network defense, including image de-noising [24]
and adversarial training [67, 68, 69]. Image de-noising algorithms pre-process the
input images to eliminate perturbations before forwarding the image to the classifier.
Adversarial training algorithms aim to train a robust classifier to resist attacks. Our
proposed method falls into the category of image de-noising.

Guo et al. [24] proposed two image transformations, total variance minimization

and image quilting, to remove attack noise for gray-box and black-box attacks. Mag-
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Net [70] is proposed to detect the perturbations and then reshape them according to
the difference between clean and adversarial images. Jia et al. [71] defend adversarial
examples by an image compression framework ComDefend. Xie et al. [72] introduced
the feature de-noising module in the intermediate layer for defending strong PGD
white-box attacks. Networks path is considered as a useful tool for adversarial im-
ages detection in [73, 74]. Buckman et al. [75] proposed a method using thermometer
encoding to defend against the adversarial images. Recently, some methods have been
developed to provide certification for the classifier to protect the classifier from any
adversarial perturbation within a certain range [76, 77, 78, 79].

Adversarial training [20] aims to improve the robustness of classifiers by training
the network with adversarial images. PGD attack (i.e. BIM attack with random
initial noise) is suggested for adversarial training in [67] due to its strong perturbation.
Kannan et al. [68] adds a regularization logits pair term in the training loss, which
aims to minimize the logits difference between the clean image and the attacked image.
An ensemble adversarial training in [69] is proposed to resist all kinds of attacks, and
is especially effective in black-box defenses. Recently, some works explore the deep
generative models, such as GANs, to recovery the clean image from adversarial attack.
Samangouei et al. [26] clean the adversarial images by a trained generative adversarial
network (GAN) with multiple iterations. Our proposed method can be coupled with

adversarial training to further improve the defense performance.

3.2.3 Low-Rank Completion of Matrices and Images

Matrix completion [80, 81, 82, 83, 84] aims to reconstruct a large low-rank matrix

with only a small number of known entries. This has been a critical study in many
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areas of science and engineering application such as computer vision, recommendation
systems, sparse coding, and machine learning [82, 84]. Let matrix M be the input
image with rank r, and only w entries can be observed. The matrix completion task
is to estimate the unknown entries in matrix M. The problem can be formulated as

follows:

n}}nrank(X), st. Xi; =M, (i,j) € Q, (3.4)

where X is the recovered matrix and €2 is the set of pixel locations with observed
values in M. The objective rank(X) is used to achieve a low-rank structure of
matrix X. However, the optimization problem in (3.4) is NP-hard [80] because of the
non-convexity of the rank function. Usually, this can be solved by replacing with the
nuclear norm [85]. With the nuclear norm, the above optimization problem can be

relaxed to the following convex problem:
m)}n ||X||* s.t. Xz‘,j = M@j, (Z,]) €, (35)

where || X ||, is the nuclear norm of matrix X, and it equals the sum of singular values

of matrix X [83].

3.3 Detection of High-Sensitivity Keypoints

In this section, we will present our method to defend against adversarial attacks based
on low-rank completion of high-sensitivity points (LRC-HSP).
By high-sensitivity, we mean that if they are attacked, the image analysis perfor-

mance will be severely affected, for example, the classification score will be decreased
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significantly. Or, for attacked images, if we successfully repair these high-sensitivity
keypoints, the image classification score will be improved significantly.

In the following, we use an example to explain our proposed method for high-
sensitivity keypoint detection. Let us consider one network perceptron. Let W be the
network weights at this layer, Z € [0, 1] and y € {0, 1} are the input and the output,
respectively:

y(&) = o(" ) (3.6)

where o(+) is the activation function. In a binary classification task, when the binary

cross-entropy

L(y(Z),t) = —y(7) - logt — [1 — y(2)] - log(1 — 1) (3.7)

is used as the loss function, the network update its weight @ using the gradient decent

algorithm based on the gradient of L(y(Z),t) with respect to the network weight :

Wy, = Wy—1 — aVgL(y(Z),1), (3.8)

where « is the learning rate. However, during adversarial attacks of images, the
attacker will modify the image 7 instead of the network weight w. Therefore, the
attacker computes the gradient of the loss function L(y(Z),t) with respect to the

input image ¥ and modifies the image as

7 =7—e¢ VzL(y(z),t), (3.9)

where t’ is the wrong label that the attacker aims to achieve, € controls the magnitude

of the adversarial attack noise. This formula suggests that the attacker wishes to
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modify a pixel of the image based on the value of VzL(y(Z),t") so as to achieve its
objective of falsifying the network. In other words, if the value VzL(y(Z),t') at pixel
x, is larger than the value at pixel x;, then pixel z, is more important or more sensitive
than x;, from the network performance perspective. In this case, we call pixel x, has
higher sensitivity than pixel ;. Based on this observation, we propose to classify the
image pixels into two categories: high-sensitivity keypoints and low-sensitivity pixels

based on the following criteria

M) = 1L [IVeL(y(Z),¢)]| > ao (310)

0, otherwise.

Here, M(Z) defines a binary mask which records the positions of all high-sensitivity
keypoints. «q is a threshold. In this work, we choose the top certain percentage of
pixels, for example, top 5% or 10% of pixels, as high-sensitivity keypoints. In this
case, g is determined by this percentage.

Figure 3.3 shows the masked clean image and masked adversarial image by their
B,.ore and By, respectively. The true label of this image is tench, and the adversarial
images generated by FGSM is classified as vestment. The more-related points on the
clean image are distributed on the fish, while the more-related points of the adversarial
image are distributed not only on the fish and but also on the human face. In the
case of less-related points on the fish, the number of the points on adversarial images

are larger than the number of the points on the clean images, especially on the edge.
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(a) Clean images (b) Adversarial images

Figure 3.3: Masked images (3% points removal): (a) the more-related points on clean
image, (b) the more-related points on adversarial image.

3.4 Structure-Preserving Image Completion
at Detected High-Sensitivity points

After locating the high-sensitivity keypoints, we will proceed to remove the attack
noise and recover the image. Specifically, in the low-sensitivity regions, we apply
existing noise removal and image smoothing algorithm to remove the adversarial
attack noise since these low-sensitivity pixels do not contribute as significantly as
those high-sensitivity keypoints to the overall image classification performance. In
this work, we use the image smoothing algorithm based on total variation (TV) norm
developed in [27] due to its capability of removing noise while preserving local image
structures. For the high-sensitivity keypoints, we found out that it is not efficient
to apply the same TV norm-based noise removal algorithm. Instead, we propose to

develop the following structure-preserving image completion algorithm.
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3.4.1 Structure-Preserving Image Completion

The task of matrix or image completion is to fill in missing elements of the matrix
or missing pixels of the image by exploring their low-rank structure [82, 84]. In this
work, we recognize that it is not efficient to apply this low-rank assumption to high-
sensitivity image points since they often contain significant amounts of distinctive
structure information for image classification or object detection. To address this
issue, we propose to incorporate the weighted nuclear norm into the image completion
analysis. In our previous work [86], we have demonstrated that the nuclear norm is
very effective in low-rank image restoration and noise removal. In this work, we
propose to extend this analysis to low-rank image completion for removing high-
sensitivity adversarial noise points. Let X* € R™*™ of size m X n be the image which
has been attacked with adversarial noise. Let M be the binary mask which indicates
the locations of high-sensitivity points. If the pixel at location(i, j) is selected as
the high-sensitivity point, then M(i, j) = 1, otherwise M(4,7) = 0 Then the matrix

completion problem can be formulated as:

n}}nz;wj‘ Giost. Xij=Xg for M(i,5) =0, (3.11)
p=

where WX = {w}} are weights for {7;}. {7,} are singular values of matrix X.
2;;1 w;X - 0; represents the weighted nuclear norm of X. To enhance the structural
smoothness and separating the low-rank component from the noisy image simulta-
neously, in our previous work [86], we incorporated the TV regularization into the

re-weighted low-rank matrix decomposition framework. It should be noted that this

method was developed for the low-rank decomposition of the whole image or ma-
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trix. In this paper, we propose to extend this method to image completion at the
high-sensitivity keypoints, which is a different and new problem.

Specifically, we incorporate the TV regularization into the low-rank matrix com-
pletion to ensure structural smoothness in the result image. We rewrite the constraint
X;; = X%, for M(i,j) = 0 as a penalty term based on the following £; norm of

weighted errors between the attacked image X and the original image X:

~

ey =|WoM®E|;, M=I-M, E=X°-X, (3.12)

where ® represents element-wise matrix multiplication, M is the binary mask
representing the locations of low-sensitivity pixels. I is the matrix with all elements
as one. The matrix W*¢ = {wy;} € R™" is the weights for the image completion
errors at each pixel location. With this, the low-rank image completion problem can

be formulated as

n

r)r(ug w;-X-5]'—1-)\”We@M®E“1+77HXHTV>
j=1

s.t. AL S X j S AU,

X*— X =E, (3.13)

where WX = {wX} is the weight for {5;}. If the 