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ABSTRACT

In the past few years, we have witnessed a rapid development of deep neural

networks in computer vision, from basic image classification tasks to some more ad-

vanced applications e.g. object detection and semantic segmentation. Inspire of its

great success, there exists two challenges of deep neural networks real-world applica-

tions: its computational cost and vulnerability. Thus we are aimed to deal with these

two problems in this thesis.

To speed up deep networks, we propose a L1-Norm based low-rank approximation

method to reduce float operations based on the alternating direction method (ADM)

in Chapter 2. Our experimental results on public datasets, including CIFAR-10 and

ImageNet, demonstrate that this new decomposition scheme outperforms the recently

developed L2-norm based nonlinear decomposition method.

To defend against adversarial examples, we develop a novel pre-processing alogrithm

based on image restoration to remove adversarial attack noise in Chapter 3. We de-

tect high-sensitivity which have significant contributions to the image classification

performance. Then we partition the image pixels into the two groups: high-sensitivity

and low-sensitivity keypoints. For the low-sensitivity pixels, we use the existing total

variation (TV) norm-based image smoothing. For the high-sensitivity pixels, we de-

velop a structure-preserving low-rank image completion methods. Based on matrix

analysis and optimization, we have derived an iterative solution for this optimiza-

tion problem. This high-sensitivity points detection helps us to improve the defense

against white-box attack BPDA.

However, in our keypoints defense we only remove and recover a few part of pixels,

xii



which indicates there are still many perturbation over the whole image. In Chapter 4,

we propose a novel image completion algorithm structure-preserving progressive low-

rank image completion (SPLIC ) based on smoothed rank function (SRF) in which

we can reconstruct a image with over 50% removed pixels. In SPLIC, we randomly

remove over 50% pixels on the image and then do matrix completion by low-rank

approximation to remain the global structure of the image. Differ from other low-

rank methods, we replace nuclear norm by smoothed rank function (SRF) for its closer

rank function approximation. We introduce total variance (TV) regularization to

improve image reconstruction, and then combine total variance (TV) norm de-noising

to further remove the perturbation over the whole image. Then we train the network

on the SPLIC images. The experimental results show our SPLIC outperforms other

pre-processing methods in image reconstruction, gray-box and black-box scenario.
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Chapter 1

Introduction

1.1 Background

First of all, a brief background knowledge of image representations including Deep

Convolutional Neural Networks (DCNNs) and low-rank Approximation will be intro-

duced as follow.

1.1.1 Deep Convolutional Neural Networks

Recently, deep learning, as a branch of machine learning based on artificial neural

networks with multiple functional layers including non-linear transformations, has

become the baseline approach in various computer vision tasks. Inspired by biological

neural networks, researchers created artificial neural networks (ANN) in 1940s and the

theory was completely developed well in 1970s. Due to recent development of digital

electronics hardware and the huge data emergence, deep learning has achieved a great
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success in both academia and industry. Convolutional neural network (CNN), as the

most commonly used network model, has played a very important roles in almost all

computer vision tasks.

Convolutional Layers

The convolutional layer is the most important functional component of a convolutional

neural network which has most of the computational complexity. It contains a set of

filters with learnable parameters. Each of these filters is small spatially, but extends

through the full depth of the input tensor. A typical first layer convolutional filter

has size of 7×7×3 (i.e. 7 pixels width and height, 3 for RGB color channels). In the

forward operation, we slide each filter across the width and height of the input and

compute dot products of the entries of the filter and the input at all position. Then

we can obtain a 2D feature map that gives the responses of the sliding filter at every

spatial position. In the backward operation, the filter parameters will be updated

by the gradients of the loss function. Intuitively, filters can be activated when they

see some visual features. For examples, the first layer filters might recognize some

local features like an edge of some orientation or a blotch of some color, and filters on

higher layers might recognize some global patterns like entire honeycomb or wheel.

Fully-connected Layers

Unlike convolutional layer, fully connected layers connect every neuron on the current

layer to every neuron in the next layer. It is in principle the same as the traditional

multi-layer perceptron neural network (MLP). Usually, the neurons’ activation will

be computed with a matrix multiplication followed by a bias offset.
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1.1.2 Low-rank Approximation

In the low rank approximation, a given matrix M can be approximated by a low-rank

matrix M̂ , i.e. ‖M − M̂‖ ≈ 0. This area is also known as principal component

analysis. A high dimensional data can be represented as a much lower dimensional

data. But the point of low-rank approximation is not necessarily just for performing

dimension reduction. In the ideal case where the entries of matrix M are not affected

by noise, corruption, missing values etc. But in reality, the observed matrix typically

will have much higher rank. Low-rank approximation is thus a way to recover the

original (the ”ideal” matrix before it was corrupted by noise) low-rank matrix, i.e.

find the matrix that is most consistent with the current matrix and is low-rank so that

it can be used as an approximation to the ideal matrix. Low-rank approximation is

a minimization problem in mathematics. It’s cost function measures the fit between

a given matrix and an approximated matrix, which is subject to a constraint that

the approximated matrix has reduced rank. The low-rank approximation technique

is usually used in mathematical modeling and data compression.

1.2 Deep Neural Networks Acceleration

During the past several years, deep neural networks, especially deep convolutional

neural networks (DCNNs), have achieved remarkable success in various computer vi-

sion tasks including classification [3, 4], detection [5, 6] and segmentation [7, 8]. The

continuously improving performance often builds upon increasingly huge volume of

labeled data, deeper networks, and massive numbers of network parameters, often

in the range of tens or even hundreds of millions, which result in prohibitively high

3



computational complexity [4, 9]. This creates significant challenges in deploying these

high-performance networks in real-world devices, platforms, and applications. For ex-

ample, portable devices such as smart phones and tablets have limited computational

power. Cloud service platforms have access to very powerful GPUs. But, each cloud

service needs to handle a large number of concurrent requests, which results in very

limited computational resources for each deep neural network task. In this case, the

available computing resource for each deep neural network task becomes very limited.

Therefore, accelerating the deep neural networks has become an urgent research task.

In a deep convolutional neural networks (DCNNs), convolutional layers contribute

to the most computational complexity [10, 11]. Therefore, most of the existing meth-

ods for accelerating the DCNNs have been focusing on optimizing the convolution

layers of the network [12, 13].

A set of approaches have been developed in the literature, including connection

pruning and low-rank approximation [14, 12]. Normal connection pruning produce

non-structured network connections, resulting in irregular memory access that of-

ten degrades the performance of network speed optimization, especially in practical

implementations on parallel computing devices, such as GPUs [13, 14].

Low-rank approximation has emerged as a promising approach for speeding up

DCNNs. Typical high-performance DCNNs have large numbers of network filters and

channels, whose parameters are to be learned during the training process. The low-

rank approximation approach aims to explore the redundancy or correlation existing

between different network channels and filters, approximate and speed up the network

using low-rank decomposition [15, 16]. All these approximations are based on L2-

norm. Whereas, many recent low-rank approximation and image reconstruction works

4



[17, 18, 19] show L2-norm approximation is very sensitive to outliers and will cause

large approximation error.

To deal with the outliers problem, we propose a new L1-norm based method

to reduce the rank of filters for DCNNs acceleration and develop a mathematical

solution for this optimization problem. We also develop a iterative two-step procedure

to fine-tune the whole network after each decomposition and further improve the

performance. We demonstrate that the linear L1-norm decomposition is more efficient

than the non-linear L2-norm decomposition in accelerating deep neural networks in

our experimental results.

1.3 Deep Neural Networks De-noising

Recently, researchers have realized that deep neural networks are very sensitive to

adversarial attacks [20]. A little changes of input image can easily fool the deep

neural network image classifier. Because this small error at the input layer can be

gradually increased along the network inference layers, finally exceed the decision

boundary at the last layer, and result in the false decision [20, 21]. This vulnerability

of deep neural networks has become a critical threat in many real-world applications of

deep neural networks, such as face recognition, security monitoring, and autonomous

driving [22].

There exists three different adversarial attack modes: white-box, gray-box and

black-box. In white-box attacks, the attacker knows all details of the classifier network

including the network architecture and model parameters, and the details of defense

strategy as well. While gray-box attack can only access the classifier. In the case of

5



black-box attack [23], neither the classifier and the defense strategy are visible, but

a substitute classifier can be trained to mimic the real classifier behavior and then

generates adversarial perturbations by applying attack algorithms on the substitute

classifier.

The adversarial attacks can be considered as a special type of image noise. Re-

cently, a number of image de-noising methods [24, 25, 26] have been developed to

remove adversarial attack noise and recover the image. These noise removal-based

approaches are attractive because they do not introduce any changes to the network.

More importantly, unlike other defense methods based on deep neural network design

or adversarial training, they cannot be easily attacked by existing white-box attack

methods. This is because most of existing white-box attacks are based on gradient

back propagation and the gradient cannot be easily propagated through the highly

complicated image de-noising algorithms.

Adversarial attacks generate the perturbation on every point of the image. But

impacts of those perturbations at each point are not equal. We propose a hyper-thesis

that even in the case of FGSM [20], in which magnitudes of all perturbations are the

same, the impacts of different points can not be consistent.

Based on this hyper-thesis, we a new approach to defending image against ad-

versarial noise in Chapter 3. Firstly, we rank all points in the input image by their

contributions to the classification result. Based on this ranking result, we can obtain a

mask which differentiates the high-sensitivity keypoints and low-sensitivity keypoints.

To address them discriminately, low-sensitivity keypoints are processed by TV norm

minimization de-noising [27], while the high-sensitivity keypoints are removed and a

new image will be recovered by our reweighted low-rank matrix approach. Our exten-
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sive experimental resutls on benchmark datasets demonstrate that our approach can

achieve highly effective defense and outperforms existing noise removal-based defense

methods with powerful black-box, gray-box, and white-box attacks.

1.4 Deep Neural Networks Robustness

As mentioned in 1.3, many image pre-processing studies [24, 25, 26] are naturally

considered to be the strategy for perturbations removal. However, they are challenged

by the BPDA attack [28], since these defenses essentially provide obfuscated gradients

and can be broken by approximated gradients. Then Yang et al. [29] points out that

human recognize images by the global structure, while image processing by computers,

especially deep neural networks, are more likely affected by the local structure. They

develop ME-Net to randomly discard over 50% pixels and then reconstruct the image

by matrix completion. The matrix completion in ME-Net is formulated as a rank

minimization problem. In this way, computers can learn the images global structure

by the reconstructed images.

The completion algorithm in ME-Net is based on nuclear norm, which is the

tightest convex relaxation of the rank minimization problem. Recently, many studies

replace nuclear norm by smoothed rank function (SRF). SRF methods have the ad-

vantage that smooth term lie much closer than nuclear norm to rank function, which

results in the better reconstruction. However, the original SRF performance often

degrades due to the yielded noise and the reconstructed image is lack of structure

smoothness. Another weakness of ME-Net is that there still remains some adversar-

ial perturbation because of the preserved pixels.
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To deal with this problem. We propose a novel TV-regularization constrain into

the SRF and develop the mathematical solution for this optimization problem. With

the help of the TV-regularization the image reconstruction performance is further

improved. We also exploit the TV-norm to smooth the whole image, which not

only benefits the image reconstruction but also increase the resistance of adversarial

perturbations. Our experiment demonstrates our TVSRF reconstruction outperforms

the ME-Net on almost all situation and we achieve a much better defense than other

data pre-processing methods.

1.5 Summary

We recognize deep learning real-world implementation still faces two challenges: the

speed and the security. Low-rank approximation, as a effective and robust data dimen-

sion reduction method, can be explored to solve deep learning application problems.

In this thesis, we study the deep learning acceleration and adversarial robustness

problems and provide solutions by exploiting low-rank approximation. In the first

part of our work, we introduce our layer decomposition algorithm which is based on

L1-norm and show its speedup result. In the second part of our work, we present a de-

fending strategy against adversarial attacks based on high-sensitivity points detection

and demonstrate the significant improvement. This defending strategy only involves

image de-noising. In the third of our work, we propose a novel image pre-processing

method by introducing TV smoothness to train a robust deep convolutional neural

network classifier, which achieve a great success against many kinds of adversarial

attacks.

8



The rest of this thesis is organized as follows. In Chapter 2, we introduces the

deep neural networks acceleration algorithm. In Chapter 3, we presents our de-noising

defense based on high-sensitivity keypoints selection. In Chapter 4, we show our new

smoothed rank function method with TV smoothness and discuss the future work.

9



Chapter 2

L1-Norm Low-Rank Linear
Approximation for Accelerating
Deep Neural Networks

2.1 Motivation

Recently, to accelerate the test-phase computation of DCNNs, Zhang et al. [12] devel-

oped a network speed optimization method which decomposes the convolution layer

into two convolution layers using L2-norm based low-rank approximation. They also

considered the joint approximation of the convolution and nonlinear activation (e.g.

ReLU) layers so that the method can be applied to deeper networks. However, recent

studies on low-rank matrix approximation and image recovery have demonstrated that

L2-norm approximation is sensitive to outliers, which may result in a large approxi-

mation error. To address this issue, many efficient low-rank approximation methods

developed for image recovery often resort to L1-norm [17, 18, 19] analysis. Motivated
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by its success in image recovery, in this work, we propose to develop an L1-norm

based low-rank decomposition method for approximating the convolution layers so as

to speed up the DCNN.

Specifically, in this paper, we propose a linear Low-Rank Approximation of Re-

sponses (LRAR) algorithm based on L1-norm for accelerating the test-phase compu-

tation of deep convolutional neural networks to improve the accuracy of accelerated

networks in [12]. As illustrated in Fig. 2.1. We decompose one pre-trained convolu-

tional layer’s filters into two groups: the first one is the basic filters and the second

one is linear combination filters. Once the decomposition of the trained network is

finished, the decomposed network can be used directly in the test-phase. During

our L1-norm based low-rank decomposition, we aim to minimize the approximation

error between the original output Y without decomposition and the output Ŷ after

decomposition. This new L1-norm based low-rank decomposition problem can be

solved by an augmented Lagrange method. After the decomposition of the convolu-

tion layer, we fine-tune the network to improve its accuracy. Our experimental result

demonstrates that this new low-rank decomposition can significantly reduce the com-

putational complexity of the convolution layers and speed up the whole network. We

also demonstrate that the proposed L1-norm decomposition is more efficient than the

L2-norm based decomposition recently developed in the literature [12].

2.2 Related Work

Convolution layers are the most time-consuming component in deep convolutional

neural networks [30]. Currently, the most widely-used method to implement convolu-
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Figure 2.1: (a) Conventional convolution layer before decomposition; (b) convolu-
tional layer after decomposition. The weight shape of the original layer is n×c×k×k.
It is decomposed as two layers: Wbasic is the weight of the basic filter and its shape
is m × c × k × k, and Wcomb is the weight of the linear combination filter and its
shape is n ×m × 1 × 1, where m < n. Yinter is the intermediate output of the basic
convolutional layer and Ŷ is the approximated output. Then the complexity can be
reduced from n× (howo)× (k2c) to m× (howo)× (k2c) + n× (howo)×m.
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tion is based on matrix multiplication, which is often accelerated by the Basic Linear

Algebra Subprograms (BLAS) libraries, such as Intel MKL and OpenBLAS [31]. To

further speed up the convolution layers, connection pruning and low-rank approxima-

tion are two commonly used approaches. Connection pruning exploits matrix sparsity

to save computations [30]. Low-rank approximation reduces the rank of the matrix

to save computations [12]. In the following, we provide a detailed review of these two

approaches and other related methods.

2.2.1 DCNNs Acceleration by Connection Pruning

Connection pruning was firstly proposed by Han et al. to reduce the DCNN param-

eters [30]. Deep compression [10] introduced a DCNN model compression algorithm

with three stages: pruning, trained quantization, and Huffman coding. These meth-

ods focused on fully connected layers for model compression. Many recent methods

shift the focus to convolution layers by pruning their connections to achieve compu-

tation reduction. Wen et al. [11] exploited group-lasso regularization during DCNN

training to obtain filters with structured sparsity. Lebedev et al. developed a similar

idea in [32]. ThiNet [9] introduced a filter-level pruning method and argued that the

pruning criteria should be the output of its next layer instead of the current layer.

Yu et al. [14] developed a three-step method for pruning: first, it scored every neuron

in the final response layer for its importance; the importance scores were then prop-

agated through the whole network; finally, the method pruned the neurons based on

these importance scores. Zhao et al. [33] leverage the batch normalization layer to

prune the channels with small coefficient. Generative adversarial learning (GAL) is

proposed to solve the pruning optimization problem in [34].
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2.2.2 DCNNs Acceleration by Low-rank Approximation

Low-rank approximation has been extensively used in matrix recovery, matrix com-

pletion, and low-rank representation [35, 36, 37]. The traditional principal component

analysis (PCA) [38, 39] evaluated the approximation error based on Frobenius norm,

which was effective for Gaussian additive noise. [35, 40] demonstrated that L1-norm

based low-rank decomposition, or called robust PCA, is robust to large and sparse

noise or outliers. Recent studies on low-rank matrix theory [41, 42] mostly focus

on L1-norm analysis. The main objective of these methods was to decompose the

noisy matrix into a low-rank matrix and a sparse error matrix. Specifically, it can be

formulated into the following minimization problem:

min
X,E

{
‖X‖∗ + λ‖E‖1

}
, (2.1)

s.t. E = D −X,

where ‖ · ‖∗ is the nuclear norm, the sum of singular values of the matrix.

Recently, researchers are exploring various applications of low-rank approximation

in DCNN optimization [43] by decomposing one single high-complexity convolutional

layer into several low-complexity convolutional layers. Jaderberg et al. [15] demon-

strated that the redundancy between feature channels and filters can be exploited to

speed up the convolutional neural networks. [15] designed two simple schemes and two

optimization functions to reduce redundant channels and filters. Denton et al. [44]

proposed two alternative methods: monochromatic approximation and bi-clustering

approximation. Force regularization developed in [16] exploited the correlation among

filters during the DCNNs training stage to ensure the low-rank properties of filters.
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Zhang et al. [12] considered both convolution layers and nonlinear layers, such as

the ReLU layers of DCNN, and solved the nonlinear low-rank approximation prob-

lem so as to optimize deep neural networks. They exploited the ideas of multi-layer

asymmetric reconstruction, rank selection, higher-dimensional decomposition, and

fine-tuning. During our experiments, we observed that this non-linear approxima-

tion often destroys the well-learned feature pattern of the network layer and causes

degraded weights during fine-tuning. Inspired by [12] and motivated by the success

of L1-norm based low-rank decomposition for image restoration, in this work, we

propose a L1-norm low-rank decomposition scheme to approximate high complexity

convolution layers and speed up the whole network in test-phase. Our experimen-

tal results demonstrate that this L1-norm based linear approximation significantly

reduces the approximate errors, especially with subsequent fine-tuning.

2.2.3 Other Related Methods

Besides low-rank approximation and connection pruning, quantization is another way

to achieve both network compression and acceleration. Hubara et al. [45] proposed

Quantized Neural Networks (QNNs). [13, 46, 47] demonstrated that converting the

neural networks into binary forms can obtain much smaller network models and im-

prove the inference speed. Instead of pruning weights in convolutional layers, Fig-

urnov et al. [48] only computed the important position of inputs, which was essentially

equivalent to pruning inputs. [49] developed four guidelines for light-weight networks

architecture design. MobileNets [50] developed a light-weight network for mobile de-

vices. SqueezeNet [51] designed a smaller network and shuffleNet [52] reduced the

computation cost based on pointwise group convoultion and channel shuffle. Shuf-
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fleNet V2 [49] analyzed major contributing factors of DCNN computation, such as

floating computation, memory access cost (MAC), and platform characteristics.

2.3 Method

In this section, we first analyze the computational complexity of convolution layers

in DCNNs and then explain how the low-rank approximation can speed up a con-

volutional layer. Based on this analysis, we propose our L1-norm based low-rank

approximation of convolutional layers.

2.3.1 Matrix Formulation of Convolution

In deep convolutional neural networks, the convolution operation can be formulated

by the following matrix multiplication:

Y = WX +B, (2.2)

where Y ∈ Rn×ho×wo is the output tensor, W ∈ Rn×k2×c is the weight tensor,

X ∈ R(k2c)×(howo) is the input tensor, and B = {~b1, ~b2, · · · , ~bn}T , B ∈ Rn×(howo), ~bi ∈

R(howo)×1, is the bias tensor. Here, ho and wo are the height and width of the out-

put, c is the number of input channels, n is the number of output channels (i.e. the

number of filters), and k is the convolution kernel size. The bias B and weight W

can be concatenated together into one matrix W ∈ Rn×(k2c+1). In this way, the input

X ∈ R(k2c+1)×(howo) is formed by concatenating original input and a vector of all ones
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(i.e. ~1 ∈ R1×(howo)). Then, the convolution can be rewritten as:

Y = WX, (2.3)

where Y ∈ Rn×(howo), W ∈ Rn×(k2c+1), and X ∈ R(k2c+1)×(howo). Ignoring the addition

operation on biases which has very small computatonal complexity, we can calculate

number of floating operations (FLOPs) of a convolutional layer, by

Corig = n× (howo)× (k2c). (2.4)

2.3.2 Low-rank Approximation of Convolutional Layers

The low-rank decomposition of the convolution layer builds upon the assumption

that there exists correlation among output channels or the output space is a low-

rank subspace, and they can be represented by a linear combination of fewer basic

channels. Let ~yi ∈ Rn be the i-th column of Y . According to the analysis in [12], we

have

~yi = M~yi + ~b′, (2.5)

s.t. rank(M) < n,

where M is an n× n low-rank matrix, and b′ is the bias vector. Then, M can be

written as M = PQT , P ∈ Rn×m and Q ∈ Rn×m. Here m is the rank of M which is
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less than n. According to the above analysis, (2.5) can be written as

~yi = PW ′~xi + ~b′, (2.6)

s.t. rank(M) < n,

where W ′ = QTW is the new matrix of basic filters. P ∈ Rn×m is the weight matrix

for linear combination of these basic filters to form the approximation output. In this

way, the single convolutional layer is decomposed into two convolutional layers: one

convolutional layer with the basic filters and one linear combination convolutional

layer whose kernel size is 1× 1. The computational complexity, measured by number

of floating operations (FLOPs), of these two decomposed small convolutional layers

is given by

Cdecomp = m× (howo)× (k2c) + n× (howo)×m. (2.7)

The acceleration of DCNNs requires that

Cdecomp < Corig (2.8)

This low-rank approximation reduces the convolution computation by decomposing

one convolutional layer with high computational complexity into two convolutional

layers with very low computational complexity.

2.3.3 L1-Norm Low-Rank Decomposition

In this section, we present our proposed L1-norm based low-rank decomposition for

DCNNs speedup. Let X = { ~x1, x2, · · · , xho×wo} be the matrix of ho × wo input
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vectors to the convolution layer. Based on the assumption that the output Y =

{ ~y1, y2, · · · , yho×wo} lies in a low-rank subspace, we can rewrite (2.5) as

Y = MY +B′
a
= MY + Ȳ −MȲ = M(Y − Ȳ ) + Ȳ , (2.9)

The equality
a
= is obtained by set B′ = {~b′, ~b′, · · · , ~b′} ∈ Rn×(howo) and ~b′ = ȳ −Mȳ,

where Ȳ = {~̄y, ~̄y, · · · , ~̄y} ∈ Rn×(howo) with ~̄y as the mean vector of the response Y .

From the above equation (2.9), it can be concluded that if the output space is one

low-rank subspace, then we can write Y − Ȳ = M(Y − Ȳ ). But in fact, the output

space just located in an approximated low-rank subspace, so we try to find a low-rank

subspace, so that the error of ‖Y − Ȳ −M(Y − Ȳ )‖ as small as possible.

Mathematically, to find an approximated low-rank subspace for the response, we

can minimize the rank of matrix M , which is equivalent to minimizing its nuclear

norm. In addition, to make our model robust to outlier noise, we wish its error

matrix to be as sparse as possible, which can be evaluated by its L1 norm. In addition,

when approximation is done in each layer independently, the error will be gradually

increased from shallower layers to deeper layers and finally affect the output layer.

We followed the asymmetric reconstruction method to alleviate this problem as [12]

and denote the approximated output to the current layer as Ŷ . We can compute its

non-approximate responses as Y = WX for the training data. So we try to minimize

the error of ‖Y − Ȳ −M(Ŷ − ¯̂
Y )‖1 in stead of ‖Y − Ȳ −M(Y − Ȳ )‖1. In this way,

it can be reformulated as the following optimization problem:

min
{M,E}

{
‖M‖∗ + λ‖E‖1

}
, (2.10)

s.t. E = Y − (MŶ +B′′),
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where ‖ · ‖∗ is the nuclear norm of matrix and ‖ · ‖1 is the L1 norm. Here, B′′ =

{~b′′,~b′′, · · · ,~b′′} ∈ Rn×(howo), and ~b′′ = ~̄y − M
¯̂
~y, where

¯̂
~y is the mean vector of the

approximated responses Ŷ = { ~ŷ1, ŷ2, · · · , ŷhowo}. Substituting B′′ into the constraint

E = Y − (MŶ +B′′), we have

E = Y − (MŶ + Ȳ −M ¯̂
Y )

= Y − Ȳ −M(Ŷ − ¯̂
Y )

(2.11)

where Ŷ ∈ Rn×(howo) and
¯̂
Y = {~̄̂y, ~̄̂y, · · · , ~̄̂y} ∈ Rn×(howo). Hence, we can rewrite the

optimization problem in (2.11) as:

min
{M,E}

{
‖M‖∗ + λ‖E‖1

}
, (2.12)

s.t. E = Z −MH,

where Z = Y − Ȳ and H = Ŷ − ¯̂
Y .

2.4 Solving the Optimization Problem

In this section, based on the alternating direction method (ADM), we aim to develop a

mathematical solution for the optimization problem in (2.12) to obtain L1-norm low-

rank approximation of the convolution layer. To this end, we introduce the following

augmented Lagrange function, which adds the constraint into the objective function
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of problem (2.12):

min
{M,E,L}

{
‖M‖∗ + λ‖E‖1+ < L,Z −MH − E > +

µ

2
‖Z −MH − E‖2

F

}
, (2.13)

where Z = Y − Ȳ and H = Ŷ − ¯̂
Y . L is the matrix of Lagrange multipliers. < ·, · >

is the inner product of two matrices. It should be noted that it is very difficult to

obtain a close-form solution for the problem in (2.13). In this work, we propose

an iterative solution method base on the ADM, which optimizes the sub-problem

with one variable while fixing the rest variables. In this way, the complex prob-

lem of multiple variables can be divided into several reduced optimization problems

with one single optimization variable which can be solved analytically. Finally, we

demonstrate that this iterative method converges very fast for our convolution layer

approximation problem. Note that, in (2.13), there are three optimization variables

(M,E,L). In the following, we derive the mathematical solution to optimize each of

these three variables. It should be noted that the optimization problem in (2.13) for

low-rank decomposition of convolution layers is significantly different from those in

image restoration [41, 42]. Therefore, we need to drive new mathematical solutions

for this L1-based low-rank decomposition problem, which will be explained in detail

in the following sections.
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2.4.1 Optimizing the Low-Rank Matrix M

The first variable to be optimized is M , which is a low-rank matrix. In (2.13), if we

fix variables (E,L), then the matrix M can be optimized as follows:

arg min
M

{
‖M‖∗ + λ‖E‖1+ < L,Z −MH − E > +

µ

2
‖Z −MH − E‖2

F

}
a
= arg min

M

{
‖M‖∗+ < L,Z −MH − E > +

µ

2
‖Z −MH − E‖2

F

}
b
= arg min

M

{
‖M‖∗+ < L,−MH > +

µ

2
< Z −MH − E,Z −MH − E >

}
c
= arg min

M

{
‖M‖∗ +

µ

2
‖MH − (Z − E +

L

µ
)‖2
F

}
.

(2.14)

The equality
a
= and

b
= of (2.14) can be obtained by reducing those items without

M and expanding the squared item of the Frobenius norm. The equality
c
= is obtained

by reconstructing the new squared item of the Frobenius norm. We recognize that this

problem (2.14) is hard to be solved directly. Generally, the target of the minimization

problem (2.14) is to find a low-rank matrix M because it contains the item ‖M‖∗,

otherwise it just finds a matrix M , which maybe have a higher rank. In our proposed

low-rank approximation for DCNNs acceleration, the speed is related with the rank

of M . Thus, to control the speed, the rank can be given at first. If the rank of

the matrix M is given, then the first item will not affect the solution. Hence this

optimization problem can be simplified as:

arg min
M

{µ
2
‖MH − (Z − E +

L

µ
)‖2
F

}
= arg min

M

{
‖MH − (Z − E +

L

µ
)‖2
F

}
.

(2.15)

This problem in (2.15) is well known as the Reduced Rank Regression, which belongs
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to a broader category of procrustes problems [53, 54]. This problem can be solved with

generalized singular value decomposition (GSVD) [12, 54]. The problem in (2.15) has

the full rank solution M̂ = WHT (HHT )−1, where W = Z −E + L
µ

. Let M̂ = USV T

be its GSVD. The Reduced Rank solution is given by M = UmSmV
T
m , where Um and

Vm are the first m columns of U and V , and Sm are the largest m singular values.

Thus, the low-rank matrix is given by:

M = UmSmV
T
m . (2.16)

Now, the most important question is how to obtain the GSVD of M . To this end,

we use the method developed in [55]. First, we have the following Lemma.

Lemma 1. Let K and Q be metric matrices. Let A be an matrix of rank m.

RT
KARQ = RT

KUSV
TRQ is the GSVD of A under metrics K and Q. RK and RQ are

square root factors of K and Q, respectively. We have UTKU = I and V TQV = I.

If the usual SVD of RT
KARQ is presented as U∗S∗V ∗T , then the GSVD of A under

metrics K and Q can be computed as U = (RT
K)−1U∗, V = (RT

Q)−1V ∗ and S = S∗.

Compared with the above Lemma 1, in our problem, K is an identity matrix I,

Q = H, and A = M̂ = WHT (HHT )−1, so if we have the SVD of RT
I M̂RH to be

U∗S∗V ∗T , then we can compute the GSVD of M̂ by setting U = U∗, V = (RT
H)−1V ∗

and S = S∗. In this way, the matrix M with rank m can be computed by (2.16).
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2.4.2 Optimizing the Error Matrix E

The second variable to be optimized is E, which is the error matrix. In (2.13), if we

fix variables (M,L), then the matrix E can be optimized as follows:

arg min
E

{
‖M‖∗ + λ‖E‖1+ < L,Z −MH − E > +

µ

2
‖Z −MH − E‖2

F

}
a
= arg min

E

{
λ‖E‖1+ < L,Z −MH − E > +

µ

2
‖Z −MH − E‖2

F

}
b
= arg min

E

{
λ‖E‖1+ < L,−E > +

µ

2
< Z −MH − E,Z −MH − E >

}
c
= arg min

E

{
λ‖E‖1 +

µ

2
‖E − (Z −MH +

L

µ
)‖2
F

}
.

(2.17)

The equality
a
= and

b
= of (2.17) are obtained by reducing the items without E and

expanding the squared item of the Frobenius norm. The equality
c
= is obtained by

reconstructing the new squared item of the Frobenius norm. Finally, the optimization

problem of (2.17) is transformed to a well known problem, which can be solved by

the iterative shrinkage-thresholding operator [56]. Let Q = Z −MH + L
µ

, matrix E

can be updated using the following formula:

E = Sλ
µ
(Q), (2.18)

where Sλ
µ
(Q) has the solution sgn(qij) ·max{qij − λ

µ
, 0} [56].

2.4.3 Updating of the Lagrange Multiply Matrix L

L is the Lagrange multiplier matrix. If L is the optimization variable and the rest

variables are considered as constants, the first-order derivation of (2.13) equals to

24



zero, then L can be updated as follows:

L = L+ µ(Z −MH − E). (2.19)

2.5 Algorithm Summary

In this section, we summarize the proposed algorithm for solving the L1-norm low-

rank approximation of convolution layers in Algorithm 1. The relative error of the

observed matrices is used as the stopping criteria:

Er =
‖Z −MH − E‖F

‖Z‖F
< ε, (2.20)

where ε is set to be a small positive number. In our experiments, inspired by [35] and

[57], to obtain better results, the parameter µ is adjusted by δ = 1.1 in each iteration.

Algorithm 1 Linear L1-Norm Low-Rank Approximation

Require: Y, Ŷ ∈ Rm×n, λ

Ensure: Set Z = Y − Ȳ , H = Ŷ − ¯̂
Y , M = Om×n,

E = Om×n, L = H
‖H‖F

, δ = 1.1, µ = 10−3,

µmax = 1010.
1: while ‖Z−MH−E‖F

‖Z‖F
> ε do

2: Compute M based on (2.16).
3: Compute E based on (2.18).
4: Compute L based on (2.19).
5: Compute µ as µ = min(δµ, µmax).
6: end while
7: Output M

We test the convergence of our method on a simple hand-written digit data. The

approximation is applied on the first layer of pre-trained LeNet [58] model. The
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(a) M 1/2 rank

(b) E 1/2 rank

Figure 2.2: Convergence analysis at 1/2 rank: the top two show the difference between
Mt and Mt−1, and the bottom two show the difference between Et and Et−1
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(a) M 1/4 rank

(b) E 1/4 rank

Figure 2.3: Convergence analysis at 1/4 rank: the top two show the difference between
Mt and Mt−1, and the bottom two show the difference between Et and Et−1
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convergence of the ADM algorithm for the smoothed objective function has been

generally proven in [59] and [60]. Up to the present, it is still difficult to generally

ensure the convergence of our proposed method. Since the objective function of (2.12)

is not smooth, it would be not easy to prove the convergence in theory. Fortunately,

there actually exist some guarantees for ensuring the convergence of Algorithm 1.

According to the theoretical results in [61], some conditions are sufficient (but may

not necessary) for Algorithm 1 to converge: one of the conditions is that the gap

produced in each iteration step is monotonically deceasing. As shown in Figure 2.2

and 2.3, the differences of Mt with Mt−1 and Et with Et−1 (t is the iterative step) are

both monotonically deceasing. Furthermore, the nuclear norm and L1-norm are both

convex functions. Thus, our proposed objective function is an convex optimization

problem. And our proposed method is global convergence.

The approximation is totally separated from the network test-phase computation.

Once low-rank approximation is done, the DCNNs test-phase computation complex-

ity is fixed. Although our L1-norm method may spend more time than the L2-norm

method because of the iterative solution during approximation, our error is smaller

than the L2-norm method. The high complexity of our method trades high perfor-

mance of the approximated network. Therefore, our optimization can achieve higher

classification accuracy with the same complexity of networks test-phase computation.

2.6 Experimental Results

In this section, we evaluate the performance of our LRAR algorithm on image classi-

fication tasks and compare its performance with existing L1-based non-linear approx-
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Figure 2.4: Computational complexity of different network layers measured in FLOPs
of VGGNet at full rank, and with L1-norm low-rank decomposition of 1/2 rank and
1/4 rank.

imation [12] which is referred to as the NL2A algorithm. We compare the accuracy

of the approximated networks obtained by different methods. These networks have

the same computational complexity specified by the decomposition ratio, such as 1/2

or 1/4. To examine the approximation error of the convolution layer, we will com-

pute the Frobenius norm of the residual between the approximated output and the

original one. Two benchmark datasets are selected for performance evaluations: the

CIFAR-10 [62] consisting of 60,000 32 × 32 images and ILSVRC-2012 [63] consist-
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ing of 1,781,167 large scale images. We evaluate the approximation performance on

CIFAR-10 with a large network VGG [43]. But, on the large ILSVRC-2012 dataset,

we choose a relatively small network network AlexNet [3]. Otherwise, if the a large

network, such as the VGG, is being used, the amount of computing time is tremen-

dous. We use the above two different configurations to evaluate the performance of

the our proposed method with comparison against existing state-of-the-art method.

We aim to demonstrate that the linear L1-norm low-rank approximation is more

efficient than the non-linear L2-norm low-rank approximation.

During low-rank approximation, we randomly take 100,000 output points from the

training data in each convolution layer to assemble the output matrix Y ∈ Rn×100,000.

After low-rank decomposition of the convolution layers, we also perform fine-tuning of

the network and compare the performance. We observe that the fine-tuning process is

sensitive to the learning rate: a large learning rate may cause the training loss not to

converge and a small learning rate will result in slow convergence of the training loss.

In this work, we set the learning rate to be 1× 10−5. The network is retrained for 30

epochs after low-rank approximation and the learning rate is configured to decay by

a factor of 0.1 after 20 epochs. We set the batch-size as 128.

All algorithms are implemented using PyTorch [64] running on a desktop computer

with an Intel core i7-7800X 3.50 GHz CPU, two Nvidia GTX 1080 Ti GPUs, 64 GB

of RAM, and Ubuntu 18.04.
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Convolution Stage 2

Rank

Accuracy (%)
without

Fine-Tuning

Accuracy (%)
with

Fine-Tuning

NL2A [12]
This
Work

NL2A [12]
This
Work

3/4 92.34 93.01 92.78 93.01
1/2 92.00 92.76 92.44 92.84
1/4 90.31 91.59 91.56 92.04

Convolution Stage 3

Rank

Accuracy (%)
without

Fine-Tuning

Accuracy (%)
with

Fine-Tuning

NL2A [12]
This
Work

NL2A [12]
This
Work

3/4 91.55 92.85 92.52 92.86
1/2 90.80 92.15 91.83 92.22
1/4 86.82 87.88 89.66 90.55

Convolution Stage 4

Rank

Accuracy (%)
without

Fine-Tuning

Accuracy (%)
with

Fine-Tuning

NL2A [12]
This
Work

NL2A [12]
This
Work

3/4 93.07 93.12 93.07 93.16
1/2 93.11 93.13 93.11 93.13
1/4 93.09 93.12 93.12 93.12

Table 2.1: Single Stage Results of VGG16 on CIFAR-10
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2.6.1 Performance Evaluations of Individual Convolution
Stages on CIFAR-10

First, we examine the performance of our algorithm on one single convolution layer

of the VGG16 network on the CIFAR-10 dataset. During the experiment, we only

apply the low-rank approximation to one convolution layer and fix the other layers.

We recognize that the contribution of one convolution layer in a deep neural network

is very small, which is hard for us to conduct effective performance comparisons.

Instead, we partition the convolution layers into multiple stages or groups. We then

apply the approximate to one stage of convolution layers and examine its performance.

In each stage, we perform low-rank approximation of the convolution stage at three

pre-defined ranks: m = (3/4)n, m = (1/2)n, and m = (1/4)n, and measure the

classification accuracy of the corresponding approximated network. For example,

suppose that the number of filters of the second convolution stage is 128, which

implies that the rank of original output matrix n is 128. After we perform low-rank

approximation of this stage with the above pre-defined ranks, the number of filters

of the approximated network will be 96, 64 and 32, respectively.

We train the VGG16 network on the CIFAR-10 dataset and the accuracy of this

baseline model is 93.13%. Table 2.1 summarizes the classification accuracy with and

without fine-tuning using the L2-norm low-rank approximation developed by Zhang

et al. [12] and the linear L1-norm low-rank approximation developed in this work.

We report the accuracy for the approximation of three convolution stages, 2, 3 and 4.

We can see that our proposed method outperforms the L2-norm based method. We

can also see that the fine-tuning can further improve the classification accuracy. We

can also see that, although the complexity of the convolution layer has been reduced
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Rank VGG16 VGG19
Full Rank 8.71ms (1.00×) 11.3ms (1.00×)
1/2 Rank 4.94ms (1.76×) 7.86ms (1.43×)
1/4 Rank 3.13ms (2.78×) 6.28ms (1.79×)

Table 2.2: Execution Time on CPU of VGG Whole-Model Approximation

Accuracy (%) NL2A [12] This Work
1/2 Rank without

Fine-Tuning
90.68 92.14

1/2 Rank with
Fine-Tuning

91.47 92.18

1/4 Rank without
Fine-Tuning

73.87 89.81

1/4 Rank with
Fine-Tuning

88.39 89.57

Accuracy (%) VH2 [15]
This Work

with
Iterative Two-step

1.76× Speed 88.48 92.25
2.78× Speed 88.38 89.81

Table 2.3: Results of VGG16 Whole-Model Approximation

significantly, the amount of classification accuracy drop is very small, especially for

stages 2 and 4. Fig. 2.4 shows the computational complexity of each convolution layer

and their approximated versions at rank of 1/2 and 1/4. The top and bottom figures

are for VGG16 and VGG19 networks, respectively. We can see that our proposed

method is able to significantly reduce the approximation error for both networks.

2.6.2 Performance Evaluations of the Whole Network on
CIFAR-10

In the following experiments, we apply the L1-norm low-rank approximation to all

convolution layers simultaneously and evaluate its performance in terms of classifica-
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(a) VGG16 1/2 rank linear residual

(b) VGG16 1/4 rank linear residual

Figure 2.5: Linear approximation error ratio of VGG16 at 1/2 rank and 1/4 rank.
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(a) VGG19 1/2 rank linear residual

(b) VGG19 1/4 rank linear residual

Figure 2.6: Linear approximation error ratio of VGG19 at 1/2 rank and 1/4 rank.
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Accuracy (%) NL2A [12] This Work

1/2 Rank without
Fine-Tuning

87.45 92.09

1/2 Rank
with Fine-Tuning

90.82 92.26

1/4 Rank without
Fine-Tuning

71.60 87.74

1/4 Rank with
Fine-Tuning

86.86 88.86

Accuracy (%) VH2 [15]
This Work

with
Iterative Two-step

1.43× Speed 88.14 92.34
1.79× Speed 88.03 89.33

Table 2.4: Results of VGG19 Whole-Model Approximation

tion accuracy and network speed up. As we mentioned in the previous section, the

baseline accuracy of the VGG16 is 93.13%. And the baseline accuracy of the VGG19

is 93.29%. We recognize that it is not efficient to apply the low-rank approximation

to the first convolution layer, since the first layer deals directly with the input image.

Lhe last layer in the network is also not suitable for low-rank approximation, since

the correlation of features from previous deep layers is not obvious and the last layer

directly linked to the final output decision. Significant rank reduction on these two

layers is not cost-effective in terms of classification accuracy and network speed up.

Therefore, during approximation, the first and last layers in both VGG16 and VGG19

are skipped during low-rank approximation.

In the single convolution stage approximation, we minimize the difference be-

tween the output from non-approximated model Y = WX and the output from

approximated model Ŷ = MWX. In the whole-model approximation, we sequen-

tially apply the approximation algorithm to each layer. Instead of Ŷ = MWX, we
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use Ŷ = MWX̂, where X̂ is the approximation output from the previous layer. In

this case, the accumulative errors in the previous layers are taken into consideration.

We reduce the rank from 1 to 1/2 and 1/4 at each layer and show the approx-

imation errors measured by the Frobenius norm of the residual difference between

the reconstructed output Ŷ and the original Y without approximation. In Fig. 2.5

and 2.6, we compare the linear approximation errors ratio (i.e. ‖Y − Ŷ ‖F/‖Y ‖F )

at each convolution layer obtained by this work and NL2A [12]. Fig. 2.7 shows the

non-linear approximation error ratios (i.e. ‖max(Y, 0)−max(Ŷ , 0)‖F/‖max(Y, 0)‖F )

of the VGG16 network obtained by this work and NL2A [12]. The results for VGG19

are shown in Fig. 2.8. We can see that this work outperforms NL2A [12]. We can

see that our proposed method is able to significantly reduce the approximation error

in each convolution layer.

Table 2.2 shows the VGG16 and VGG19 execution time of each image on CPU,

which we run the forward inference for 10 times and compute the average time. Please

note that these two compared methods have the same network architecture and their

complexity and cost time is exactly the same.

Table 2.3 summarizes the classification accuracy of the approximated network of

VGG16 on the CIFAR-10 dataset at two different ranks, 1/2 and 1/4. We can see that

the proposed method improves the classification accuracy over the NL2A method by

1% at rank 1/2. At rank 1/4, the improvement become larger, about 16% without

fine-tuning. But, after fine-tuning, the difference is reduced to 1.2%. We also compare

our method with iterative two-step procedure with the scheme 2 decomposition in [15]

and refer it as VH2. Please note that we compare two algorithms under the same

execution time. Table 2.4 summarizes the results for VGG19. Similar performance
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(a) VGG16 1/2 rank non-linear residual

(b) VGG16 1/4 rank non-linear residual

Figure 2.7: Non-linear approximation error ratio of VGG16 at 1/2 rank and 1/4 rank.
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(a) VGG19 1/2 rank non-linear residual

(b) VGG19 1/4 rank non-linear residual

Figure 2.8: Non-linear approximation error ratio of VGG19 at 1/2 rank and 1/4 rank.
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Figure 2.9: Single layer approximation accuracy on AlexNet

improvement has been achieved.

2.6.3 Performance Evaluations on the ImageNet

In this experiment, we evaluate our method on the large ILSVRC-2012 ImageNet

dataset. As mentioned in the above, we recognize that a large network such as

VGG16 will consume a huge amount time on this ILSVRC-2012 dataset. Instead,

to demonstrate the performance of our low-rank decomposition on this large dataset,

we choose the AlexNet which has relatively low computational complexity. The pre-

trained baseline model is obtained from PyTorch [64] and the baseline top-1 accuracy

and top-5 accuracy are 56.52% and 79.07%, respectively. During fine-tuning, input
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Figure 2.10: Single layer approximation accuracy with fine-tuning on AlexNet
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Rank AlexNet
Full Rank 11.04ms (1.00×)
1/2 Rank 9.08ms (1.22×)
1/4 Rank 6.90ms (1.60×)

Table 2.5: Execution Time on CPU of AlexNet Whole-Model Approximation

AlexNet Layer
Complexity (FLOPs)

Original Approximated Remain Ratio

1/2 Rank

C1 7.03× 107 4.13× 107 0.59
C2 2.24× 108 1.25× 108 0.56
C3 1.21× 108 6.85× 107 0.57
C4 1.50× 108 8.03× 107 0.53
C5 9.97× 107 5.54× 107 0.56

1/4 Rank

C1 7.03× 107 2.07× 107 0.29
C2 2.24× 108 6.27× 107 0.28
C3 1.21× 108 3.43× 107 0.28
C4 1.50× 108 4.01× 107 0.27
C5 9.97× 107 2.77× 107 0.28

Table 2.6: Remained FLOPs of AlexNet

images are resized to 256×256. The resized images are randomly cropped to 224×224

images and randomly horizontally flipped for data argumentation. During network

inference, images are center cropped.

Fig. 2.9 shows the accuracy of the network when the low-rank approximation is

applied to one layer without fine-tuning on layers C2, C3 and C4. Fig. 2.10 shows

the accuracy with fine tuning. Table 2.6 and 2.7 shows the original computational

complexity (in FLOPS) of the network in Column 3, the reduced complexity after

low-rank approximation by our algorithm in Column 4, and the complexity reduction

ratio in Column 5. We can see that the final complexity is very close to the target rank.

In Column 6 and 7, the table shows the linear approximation error ratio of each layer

when our algorithm and the NL2A method are applied, respectively. We can see that
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AlexNet Layer
Linear Approximation

Error Ratio
Non-linear Approximation

Error Ratio
NL2A [12] This Work NL2A [12] This Work

1/2 Rank

C1 0.63 0.04 0.23 0.08
C2 0.57 0.16 0.48 0.28
C3 0.51 0.19 0.43 0.33
C4 0.65 0.32 0.56 0.46
C5 0.67 0.42 0.51 0.42

1/4 Rank

C1 0.67 0.09 0.43 0.21
C2 0.69 0.37 0.62 0.66
C3 0.57 0.38 0.51 0.58
C4 0.74 0.50 0.68 0.73
C5 0.70 0.69 0.65 0.81

Table 2.7: Linear Approximation Error Ratio of AlexNet Whole Network Approxi-
mation

our method is able to significantly reduce the approximation error. Table 2.8 shows

the accuracy of the AlexNet after the whole network has been approximated using low-

rank approximation at ranks of 1/2 and 1/4. We can see that our method outperforms

the NL2A method by up to 3.1%. Note that, at rank 1/4, our method performs

worse than the NL2A without fine-tuning. But, after fine-tuning or iterative two-step

procedure with fine-tuning, our method can be significantly improved, outperforming

the NL2A method when the same fine-tuning is applied. The execution time is shown

in Table 2.5
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Accuracy (%)
(Top 1/Top 5)

NL2A [12] This Work

1/2 Rank
without

Fine-Tuning
50.28/74.21 53.68/77.30

1/2 Rank
With

Fine-Tuning
53.19/76.78 54.86/78.03

1/4 Rank
without

Fine-Tuning
41.28/65.63 36.40/61.06

1/4 Rank
with

Fine-Tuning
48.18/72.35 48.88/72.94

Accuracy (%) VH2 [15]
This Work

with
Iterative Two-step

1.22× Speed 53.21/76.41 55.19/78.37
1.60× Speed 50.23/74.09 50.92/74.56

Table 2.8: Results of AlexNet Whole-Model Approximation
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Chapter 3

Adversarial Attack Noise Removal
Based on Low-Rank Completion of
High-Sensitivity Points

3.1 Motivation

Existing noise removal-based methods suffer from performance degradation due to

damages on the original images. In order to remove the sophisticated attack noise,

the noise removal algorithm often applies heavy smoothing operations to the whole

image and cause significant damages to the non-attacked areas.

In this work, we observe that the adversarial attack noise is not uniformly dis-

tributed over the image. Attack noise at different image locations will have different

impact on the network prediction output.

Fig. 3.1 shows two examples of clean images of digits and their attacked version.

For example, the clean image of digit 5 in (a) is being attacked and becomes the
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(a) Clean digit 5 (b) Adversarial digit 5

(c) Clean digit 8 (d) Adversarial digit 8

Figure 3.1: Clean digit images and adversarial digit images.

image in (b). The clean image of digit 8 is attacked and becomes the image in (d).

We can see that those pixels that fills the gap in 5 cause the mis-classification. Also,

in (d), the attacker removes a group of pixels on the right edge of 8 and cause the

mis-classification into 6. This example demonstrates that different attack noise pixels
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have different impact on the network classification performance. In other words, some

image pixel locations are sensitive for image classification while other pixels are less

sensitive.

Based on this observation, in this work, we propose to develop a new approach to

defending image against adversarial noise. As illustrated in Fig. 3.2, we first develop

an approach to detect the high-sensitivity pixel locations. Attacks to these pixels

will have larger impact on the network prediction performance (e.g. classification

accuracy) than other low-sensitivity pixels. For the high-sensitivity pixels, we develop

a low-rank structure-preserving image completion algorithm to remove the attack

noise and restore the image. For other image regions, i.e., the low-sensitivity pixels,

we use the image de-noising method based on TV (total variation) norm minimization

[27]. Our extensive experimental resutls on benchmark datasets demonstrate that our

approach can achieve highly effective defense and outperforms existing noise removal-

based defense methods with powerful black-box, gray-box, and white-box attacks.

Major Contributions The major contributions of this work can be demonstrated

as follows:

• We develop a new approach for defending image against adversarial attacks

based on high-sensitivity pixels selection and low-rank image completion.

• We develop a high-sensitivity pixels detection and selection methods based on

back-propagated gradient information.

• We develop a structure-preserving image completion algorithm based on reweighted

low-rank matrix recovery algorithm.

• We experimentally demonstrate our method can provide a more effective and
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Figure 3.2: Illustration of our defense method.

robust defense than other image de-noising approaches because of the high-

sensitivity points information from the protected classifier.

3.2 Related Work

This is work is closely related to adversarial attacks of deep neural networks, defense

of deep neural networks, and image / matrix completion. In this section, we review
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existing work on these three topics.

3.2.1 Adversarial Attacks of Deep Neural Networks

There are two major approaches in generating adversarial attacks for deep neural

networks: signed gradient-based methods [20, 21, 28], and optimization-based methods

[65, 66]. The fast gradient sign method (FGSM) is the very first singed gradient-

based attack method proposed by Goodfellow et al. [20]. This method simulates

the network training process, assigns a wrong label to the input image, then back

propagates the error gradients through the network layers all the way to the input

image X. Specifically, let y be the wrong label, it generates the perturbation ∆ by

simply taking the sign of the gradient for at each image pixel:

Xa = X + ε · sign(∇XL(X, y)), (3.1)

where, ε is the perturbation magnitude and L(X, y) is the cross-entropy loss. The

basic iterative method (BIM) [21] is an iterative attack method based on the FGSM.

It is able to generate very strong image perturbation:

Xa,n = Xa,n−1 + ε · sign(∇Xa,n−1L(Xa,n−1, y)), (3.2)

where n = 1, ..., N , N is the maximum iteration number and Xa0 = X which is

the original image. Athalye et al. [28] observed that current defense algorithms,

except adversarial training, are essentially masking gradients and developed a state-of-

the-art signed gradient-based Backward Pass Differentiable Approximation (BPDA)
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algorithm for attack:

Xa,n = Xa,n−1 + ε · sign(∇Xa,n−1L(DEF(Xa,n−1), y)), (3.3)

where DEF(·) is the function of defense algorithms. It should be noted that this

BPDA algorithm only works under the white-box mode with full knowledge of and

access to the defense method. It has been recognized that fast-gradient based attack

methods often generate large perturbations, easily seen with human eyes. DeepFool

[65] aims to minimize the image perturbation. It finds the label with the minimal

distance l̂(X) between the input and all classification boundaries except the true label

k̂(X) to generate the perturbation. This procedure is repeated until the classifier

yields the wrong result.

3.2.2 Defense Methods for Deep Neural Networks

As a counterpart to the adversarial attack methods, defense methods aim to defend

the neural networks against adversarial attacks by removing attack noise from im-

ages, improving the capability of the network to handle adversarial attacks. Various

approaches have been developed for network defense, including image de-noising [24]

and adversarial training [67, 68, 69]. Image de-noising algorithms pre-process the

input images to eliminate perturbations before forwarding the image to the classifier.

Adversarial training algorithms aim to train a robust classifier to resist attacks. Our

proposed method falls into the category of image de-noising.

Guo et al. [24] proposed two image transformations, total variance minimization

and image quilting, to remove attack noise for gray-box and black-box attacks. Mag-
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Net [70] is proposed to detect the perturbations and then reshape them according to

the difference between clean and adversarial images. Jia et al. [71] defend adversarial

examples by an image compression framework ComDefend. Xie et al. [72] introduced

the feature de-noising module in the intermediate layer for defending strong PGD

white-box attacks. Networks path is considered as a useful tool for adversarial im-

ages detection in [73, 74]. Buckman et al. [75] proposed a method using thermometer

encoding to defend against the adversarial images. Recently, some methods have been

developed to provide certification for the classifier to protect the classifier from any

adversarial perturbation within a certain range [76, 77, 78, 79].

Adversarial training [20] aims to improve the robustness of classifiers by training

the network with adversarial images. PGD attack (i.e. BIM attack with random

initial noise) is suggested for adversarial training in [67] due to its strong perturbation.

Kannan et al. [68] adds a regularization logits pair term in the training loss, which

aims to minimize the logits difference between the clean image and the attacked image.

An ensemble adversarial training in [69] is proposed to resist all kinds of attacks, and

is especially effective in black-box defenses. Recently, some works explore the deep

generative models, such as GANs, to recovery the clean image from adversarial attack.

Samangouei et al. [26] clean the adversarial images by a trained generative adversarial

network (GAN) with multiple iterations. Our proposed method can be coupled with

adversarial training to further improve the defense performance.

3.2.3 Low-Rank Completion of Matrices and Images

Matrix completion [80, 81, 82, 83, 84] aims to reconstruct a large low-rank matrix

with only a small number of known entries. This has been a critical study in many
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areas of science and engineering application such as computer vision, recommendation

systems, sparse coding, and machine learning [82, 84]. Let matrix M be the input

image with rank r, and only ω entries can be observed. The matrix completion task

is to estimate the unknown entries in matrix M. The problem can be formulated as

follows:

min
X

rank(X), s.t. Xi,j =Mi,j, (i, j) ∈ Ω, (3.4)

where X is the recovered matrix and Ω is the set of pixel locations with observed

values in M. The objective rank(X) is used to achieve a low-rank structure of

matrix X. However, the optimization problem in (3.4) is NP-hard [80] because of the

non-convexity of the rank function. Usually, this can be solved by replacing with the

nuclear norm [85]. With the nuclear norm, the above optimization problem can be

relaxed to the following convex problem:

min
X
‖X‖∗ s.t. Xi,j =Mi,j, (i, j) ∈ Ω, (3.5)

where ‖X‖∗ is the nuclear norm of matrix X, and it equals the sum of singular values

of matrix X [83].

3.3 Detection of High-Sensitivity Keypoints

In this section, we will present our method to defend against adversarial attacks based

on low-rank completion of high-sensitivity points (LRC-HSP).

By high-sensitivity, we mean that if they are attacked, the image analysis perfor-

mance will be severely affected, for example, the classification score will be decreased

52



significantly. Or, for attacked images, if we successfully repair these high-sensitivity

keypoints, the image classification score will be improved significantly.

In the following, we use an example to explain our proposed method for high-

sensitivity keypoint detection. Let us consider one network perceptron. Let ~w be the

network weights at this layer, ~x ∈ [0, 1] and y ∈ {0, 1} are the input and the output,

respectively:

y(~x) = σ(~wT~x) (3.6)

where σ(·) is the activation function. In a binary classification task, when the binary

cross-entropy

L(y(~x), t) = −y(~x) · log t− [1− y(~x)] · log(1− t) (3.7)

is used as the loss function, the network update its weight ~w using the gradient decent

algorithm based on the gradient of L(y(~x), t) with respect to the network weight ~w:

~wn = ~wn−1 − α∇~wL(y(~x), t), (3.8)

where α is the learning rate. However, during adversarial attacks of images, the

attacker will modify the image ~x instead of the network weight ~w. Therefore, the

attacker computes the gradient of the loss function L(y(~x), t) with respect to the

input image ~x and modifies the image as

~x′ = ~x− ε · ∇~xL(y(~x), t′), (3.9)

where t′ is the wrong label that the attacker aims to achieve, ε controls the magnitude

of the adversarial attack noise. This formula suggests that the attacker wishes to
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modify a pixel of the image based on the value of ∇~xL(y(~x), t′) so as to achieve its

objective of falsifying the network. In other words, if the value ∇~xL(y(~x), t′) at pixel

xa is larger than the value at pixel xb, then pixel xa is more important or more sensitive

than xb from the network performance perspective. In this case, we call pixel xa has

higher sensitivity than pixel xb. Based on this observation, we propose to classify the

image pixels into two categories: high-sensitivity keypoints and low-sensitivity pixels

based on the following criteria

M(~x) =


1, ||∇~xL(y(~x), t′)|| > α0

0, otherwise.

(3.10)

Here, M(~x) defines a binary mask which records the positions of all high-sensitivity

keypoints. α0 is a threshold. In this work, we choose the top certain percentage of

pixels, for example, top 5% or 10% of pixels, as high-sensitivity keypoints. In this

case, α0 is determined by this percentage.

Figure 3.3 shows the masked clean image and masked adversarial image by their

Bmore and Bless respectively. The true label of this image is tench, and the adversarial

images generated by FGSM is classified as vestment. The more-related points on the

clean image are distributed on the fish, while the more-related points of the adversarial

image are distributed not only on the fish and but also on the human face. In the

case of less-related points on the fish, the number of the points on adversarial images

are larger than the number of the points on the clean images, especially on the edge.
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(a) Clean images (b) Adversarial images

Figure 3.3: Masked images (3% points removal): (a) the more-related points on clean
image, (b) the more-related points on adversarial image.

3.4 Structure-Preserving Image Completion

at Detected High-Sensitivity points

After locating the high-sensitivity keypoints, we will proceed to remove the attack

noise and recover the image. Specifically, in the low-sensitivity regions, we apply

existing noise removal and image smoothing algorithm to remove the adversarial

attack noise since these low-sensitivity pixels do not contribute as significantly as

those high-sensitivity keypoints to the overall image classification performance. In

this work, we use the image smoothing algorithm based on total variation (TV) norm

developed in [27] due to its capability of removing noise while preserving local image

structures. For the high-sensitivity keypoints, we found out that it is not efficient

to apply the same TV norm-based noise removal algorithm. Instead, we propose to

develop the following structure-preserving image completion algorithm.
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3.4.1 Structure-Preserving Image Completion

The task of matrix or image completion is to fill in missing elements of the matrix

or missing pixels of the image by exploring their low-rank structure [82, 84]. In this

work, we recognize that it is not efficient to apply this low-rank assumption to high-

sensitivity image points since they often contain significant amounts of distinctive

structure information for image classification or object detection. To address this

issue, we propose to incorporate the weighted nuclear norm into the image completion

analysis. In our previous work [86], we have demonstrated that the nuclear norm is

very effective in low-rank image restoration and noise removal. In this work, we

propose to extend this analysis to low-rank image completion for removing high-

sensitivity adversarial noise points. Let Xa ∈ Rm×n of size m×n be the image which

has been attacked with adversarial noise. Let M be the binary mask which indicates

the locations of high-sensitivity points. If the pixel at location(i, j) is selected as

the high-sensitivity point, then M(i, j) = 1, otherwise M(i, j) = 0 Then the matrix

completion problem can be formulated as:

min
X

n∑
j=1

wXj · σ̃j, s.t. Xi,j = Xa
i,j for M(i, j) = 0, (3.11)

where WX = {wXj } are weights for {σ̃j}. {σ̃j} are singular values of matrix X.∑n
j=1 w

X
j · σ̃j represents the weighted nuclear norm of X. To enhance the structural

smoothness and separating the low-rank component from the noisy image simulta-

neously, in our previous work [86], we incorporated the TV regularization into the

re-weighted low-rank matrix decomposition framework. It should be noted that this

method was developed for the low-rank decomposition of the whole image or ma-
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trix. In this paper, we propose to extend this method to image completion at the

high-sensitivity keypoints, which is a different and new problem.

Specifically, we incorporate the TV regularization into the low-rank matrix com-

pletion to ensure structural smoothness in the result image. We rewrite the constraint

Xi,j = Xa
i,j for M(i, j) = 0 as a penalty term based on the following L1 norm of

weighted errors between the attacked image Xa and the original image X:

~eM = ‖W e � M̂� E‖1, M̂ = I−M, E = Xa −X, (3.12)

where � represents element-wise matrix multiplication, M is the binary mask

representing the locations of low-sensitivity pixels. I is the matrix with all elements

as one. The matrix W e = {weij} ∈ Rm×n is the weights for the image completion

errors at each pixel location. With this, the low-rank image completion problem can

be formulated as

min
X,E

n∑
j=1

wXj · σ̃j + λ‖W e � M̂� E‖1 + η‖X‖TV ,

s.t. ∆L ≤ xi,j ≤ ∆U ,

Xa −X = E, (3.13)

where WX = {wXj } is the weight for {σ̃j}. If the weight weij is set as the inverse

of the absolute value of E(i, j), i.e., weij = 1/|E(i, j)| (suppose E(i, j) 6= 0), we have

‖W e�E‖1 = ‖E‖0, where the L0-norm ‖·‖0 is the number of nonzero entries in matrix

E. In our experiments, we find that the weighted sparse error matrix ‖W e�E‖1 can

better approximate ‖E‖0 than ‖E‖1. This is helpful for enhancing the sparsity of

the error matrix E. The constraint ∆L and ∆U represent that the lower and upper
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bounds of each pixel. For example, in an image, the pixel value has a range of [0, 255].

Using the above procedure, we have converted the matrix completion problem

in (3.11) into a matrix decomposition problem when the constraint Xi,j = Xa
i,j for

low sensitivity pixels with M(i, j) = 0 is replaced by a L0-norm of weighted errors.

We will use augmented Lagrange method to solve this low-rank matrix decomposition

problem. To simplify the optimization problem, we introduce a new auxiliary variable

Z to the model as follows:

min
Z,X,E

n∑
j=1

wZj · σj + η‖X‖TV + λ‖W e � M̂� E‖1

s.t. ∆L ≤ xi,j ≤ ∆U ,

Xa − Z = E,Z = X, (3.14)

where WZ = {wZj } are the weights for {σj}, {σj} are the singular values of matrix

Z, and wZj = wXj , j = 1, · · · , n. Thus, the augmented Lagrangian function of (3.14)

is constructed as:

f(Z,X,E, Y1, Y2)

=
n∑
j=1

wZj · σj + η‖X‖TV + λ‖W e � M̂� E‖1

+ 〈Y1, X
a − Z − E〉+ 〈Y2, X − Z〉

+
µ

2
(‖Xa − Z − E‖2

F + ‖X − Z‖2
F ),

s.t. ∆L ≤ xi,j ≤ ∆U , (3.15)

where 〈·, ·〉 is the inner product of two matrices. To simplify the objective function,

we consider WZ and W e as constants.

58



3.4.2 An Iterative Solution

Different from the image restoration problem in [83], the above optimization prob-

lem for structure-preserving low-rank image completion is new and challenging. This

requires us to derive a new mathematical analysis and solution. We solve this prob-

lem by the iterative alternating direction method (ADM). By optimizing one vari-

able while fixing the other variables in an iterative manner, the original complicated

multi-variable optimization problem can be converted to several simple single-variable

optimization problems. In this way, solutions can be obtained analytically. There are

five major sets of variables (Z,X,E, Y1, Y2) in this problem. We will show how each

of these variables can be optimized in the following.

(1) Optimizing the auxiliary varilable Z. Z can be optimized by minimizing

f(Z,X,E, Y1, Y2) with respect to Z while fixing variables (X,E, Y1, Y2). Specifically,

arg min
Z
f(Z,X,E, Y1, Y2)

a
= arg min

Z

n∑
j=1

wZj · σj

+〈Y1, X
a − Z − E〉+ 〈Y2, X − Z〉

+
µ

2
(‖Xa − Z − E‖2

F + ‖X − Z‖2
F )

b
= arg min

Z

n∑
j=1

wZj · σj

+µ‖Z − 1

2
(Xa +X − E +

Y1

µ
+
Y2

µ
)‖2
F

c
= arg min

Z

n∑
j=1

wZj · σj + µ‖Z − L‖2
F , (3.16)
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where

L =
1

2
(Xa +X − E +

Y1

µ
+
Y2

µ
). (3.17)

The equality
a
= of (3.16) is obtained by reducing the items without Z, and equality

b
= and

c
= are obtained by expanding the squared item of the Frobenius norm and

reconstructing the new squared item of the Frobenius norm. Based on this conversion,

the minimization problem in (3.16) can be solved by the non-uniform singular value

thresholding (NSVT) method [87], whose solution is given by :

Z = D(2µ)−1WZ (L), (3.18)

where D is the non-uniform singular value thresholding operator.

(2) Optimizing the low-rank and smoothness varilable X. If variables

(Z,E, Y1, Y2) are fixed, then X can be optimized by minimizing f(Z,X,E, Y1, Y2)

with respect to X. Specifically,

arg min
X

f(Z,X,E, Y1, Y2)

a
= arg min

X
η‖X‖TV + 〈Y2, X − Z〉+

µ

2
‖X − Z‖2

F

b
= arg min

X
η‖X‖TV +

µ

2
‖X − (Z − Y2

µ
)‖2
F

= arg min
X

η‖X‖TV +
µ

2
‖X −R‖2

F , (3.19)

where ∆L ≤ xi,j ≤ ∆U and

R = (Z − Y2

µ
). (3.20)

The equality
a
= of (3.19) is obtained by reducing the items without X, and equality

b
= is obtained by expanding and reconstructing the squared item of the Frobenius
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norm. This minimization problem for X in (3.19) can be solved by the Fast Gradient

Projection (FGP) algorithm [27].

Algorithm 2 ADM Algorithm for computing the Smoothed Low-Rank Matrix X

Require: Data matrix Xa ∈ Rm×n, M̂ ∈ Rm×n, WX ∈ R1×n, W e ∈ Rm×n, λ, η and
δ.

Ensure: Initialize WZ = WX , X0 ∈ Rm×n, E0 ∈ Rm×n, Z0 ∈ Rm×n, Y1,0 ∈ Rm×n,
Y2,0 ∈ Rm×n, µ0 > 0, ξ = 10−7, t = 0 and inneriter = 100.
while ‖Xa − Zt − Et‖F/‖Xa‖F > ξ and t < inneriter do

step 1: Let Lt+1 = Xa +Xt−Et +Y1t/µt +Y2t/µt, then, Zt+1 = Dµ−1
t WZ (Lt+1);

step 2: Let Rt+1 = Zt+1 − Y2,t, ρ = η/µt; using the FGP Algorithm [27] to
compute Xt+1 based on (3.19) ;
step 3: Et+1 = Sλµ−1

t W e�M̂[Xa − Zt+1 + Y1,t/µt];

step 4: Y1,t+1 = Y1,t + µt(X
a − Zt+1 − Et+1);

step 5: Y2,t+1 = Y2,t + µt(Xt+1 − Zt+1);
step 6: µt+1 = δµt, t← t+ 1;

end while
Output X∗.

(3) Optimizing the sparse error matrix variable E. We discuss how to

optimize E while the other variables (Z,X, Y1, Y2) are fixed. This can be achieved by

minimizing f(Z,X,E, Y1, Y2) with respect to E. Specifically,

arg min
E
f(Z,X,E, Y1, Y2)

a
= arg min

E
λ‖W e � M̂� E‖1

+〈Y1, X
a − Z − E〉+

µ

2
‖Xa − Z − E‖2

F

b
= arg min

E
λ‖W e � M̂� E‖1

+
µ

2
‖E − (Xa − Z +

Y1

µ
)‖2
F . (3.21)

Similar with above method, the equality
a
= of (3.21) is also obtained by reducing the

items without E, and equality
b
= is obtained by expanding and reconstructing the
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squared item of the Frobenius norm. This minimization problem can be solved using

the non-uniform soft thresholding (NST) [88] as follows:

E = Sλµ−1W e�M̂[Xa − Z +
Y1

µ
]. (3.22)

where S is the non-uniform soft thresholding opterator. Y1 and Y2 are the Lagrange

multiplier matrices of the original optimization problem. They should be updated

when the other variables have been updated. Y1 can be updated as follows if the

other variables are fixed:

Y1 = Y1 + µ(Xa − Z − E). (3.23)

Similarly, Y2 can be updated as follows if the other variables are fixed:

Y2 = Y2 + µ(X − Z). (3.24)

Algorithm 3 Reweighted Low-rank Keypoints Completion

Require: Xa ∈ Rm×n, M̂ ∈ Rm×n, l, u, λ, η, and δ.
Ensure: initialize WX = (wXj ) ∈ Rm, W e = (weij) ∈ Rm×n, k = 0, X0 = Om×n,
E0 = Om×n, maxiter = 3, µ = 10−6, µmax = 1010.
Using IALM [89] to compute low-rank matrix X1 = UΣV T and sparse error matrix
E1 by Xa′ = Xa � M̂.
Set wXj = 1

diag(Σ)j+εX
, wei j = 1

|E1,ij |+εE
, εE = 10−3.

while
‖Xk+1,(i,j)∈Ω−Xk,(i,j)∈Ω‖F

mn
> ε and k < maxiter do

Using Algorithm 2 with parameter WX and W e to Compute Xk+1 based on Xa′ .
set Xa′ = Xa′ � M̂ +Xk+1 � (I−M).
k = k + 1.

end while
Output X = Xk
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Although the above matrix completion problem (3.11) can be simplified as matrix

decomposition (3.13), the corresponding elements of X(i,j) for pixels M(i, j) = 0 were

different from their original values in Xa
(i,j). To address this issue, we use fixed points

iterative method to solve our proposed optimization problem. Our proposed iterative

algorithm, referred to as Reweighted Low-rank Keypoints Completion (RLKC), is

summarized in Algorithm 2. Algorithm 1 summaries this algorithm for solving the

inner optimization problem of smoothed and reweighted low-rank matrix recovery,

which obtains the smoothed low-rank matrix X by iterative alternating direction

method.

3.4.3 Algorithm Convergence Analysis

We recognize that it is challenging to obtain a theoretical analysis of the algorithm

convergence since the objective function is non-convex. Instead, we study its con-

vergence experimentally. In our proposed iterative alternating solution, each variable

is updated within one iteration, and the updated variables will be used for the next

iterations. To study its convergence, we monitor the relative error Er

Er =
‖Xa − Z − E‖F + ‖X − Z‖F

‖Xa‖F
(3.25)

In Fig.3.4, we plot this relative error as the number of iteration increases for four

sample images. We can see that our algorithm converges very fast after few iterations.
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Figure 3.4: Convergence analysis of our iterative alternating algorithm over 4 masked
images.
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3.5 Experimental Results

In this section, we present experimental results to evaluate our defense method based

on low-rank completion of high-sensitivity points and compare its performance with

state-of-the-art methods.

3.5.1 Experimental Setup

In this work, we compare our defense method against two state-of-the-art network

defense methods based on image noise removal or pre-processing: total variance min-

imization [24] and image quilting [24]. We choose these two because, similar to our

paper, they all fall into the category of image denoising, aiming to remove the ad-

versarial attack noises and recover the original image. Unlike many other defense

methods [72, 68, 26], they do not introduce any modification to the target network

or add additional network to the target network. In order to provide a fair com-

parisons, we do not take the results from [24] directly, but reproduce their defense

instead via the code released by [28] in the comparison. This is because the baseline

models in [24] are not provided, and the difference of the baseline models will result

in different adversarial images and defense performance. In this work, we refer to

the total variance minimization and image quilting as TVM and QUILT algorithms,

respectively.

We evaluate and compare all defenses on the CIFAR-10 and SVHN (Street View

House Number) datasets [62, 90]. The CIFAR-10 dataset consists of 60,000 natural

images in 10 classes, with 32 × 32 image size and the Street View House Numbers

(SVHN) dataset consists of about 200K street numbers images.
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We evaluate these defenses against gray-box attacks, black-box attacks, and white-

box attacks. In our gray-box and black-box experiments, two fast-gradient attack

methods and one optimal attack method are selected: FGSM, BIM, and DeepFool.

We use the L∞ norm to measure the strength of adversarial perturbations in FGSM

and BIM, the maximum perturbation range is denoted as ε = 8. Following other

papers, we set the maximum iteration of BIM attacks to be 10. In DeepFool, the

maximum iteration is set as 5 and the overshoot is set as 0.02. In white-box attacks,

we apply the BPDA and normalized L2 loss (referred to as NL2) attack algorithm to

evaluate all defenses. In BPDA, ε is set as 2 and maximum number is set as 10.

Figure 3.5: Accuracy of removed selected points on clean CIFAR-10 images.

We implement all attacks and defenses using TensorFlow [91]. FGSM, BIM and

DeepFool images are generated by the CleverHans [92] and we utilize the code from

[28] to generate BPDA-attacked images. All the algorithms run on a desktop com-

puter with an Intel core i7-7800X 3.50 GHz CPU, one Nvidia GTX 1080 Ti GPU, 64
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GB of RAM, and Ubuntu 18.04.

3.5.2 Evaluating the Performance of High-Sensitivity Key-
points Detection Algorithm

In the following experiments, we aim to further understand the behavior and per-

formance of our high-sensitivit keypoint detection algorithm. Our experiments are

performed on the CIFAR-10 dataset. A pre-trained VGG16 model with is used as the

baseline model whose classification accuracy is 88.46%. We compare three different

keypoints selection methods: (a) random selection, (b) selecting the high-sensitivity

keypoints, and (c) selecting the low-sensitivity keypoints. Once the keypoints are se-

lected, they are removed from the original image and repaired with Gaussian smooth-

ing. We then pass these repaired images into the classification network. In Fig. 3.5,

we plot the classification accuracy of the result image with respect to the percentage

of removed keypoints using the above three keypoint selection methods. We can see

that, by removing the high-sensitivity keypoints, the image classification accuracy has

the largest drop when compared to the other two methods. This indicates that the

selected keypoints have larger contribution to the image classification performance

than other image pixels.

Next, we study how the keypoint selection methods affect the classification accu-

racy of attacked images. During the experiments, using the above three methods, we

select high-sensitivty keypoints from the attacked images and replace them using te

corresponding pixels from their original images. In this way, we have removed the

adversarial attack noise at these selected keypoints. We then pass the result images

into the classification network. Fig. 3.6 shows the classification accuracy results with
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(a) Accuracy of FGSM images

(b) Accuracy of BIM images

Figure 3.6: Accuracy of removed selected points on signed gradient-based adversarial
CIFAR-10 images.
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two gray-box attack methods, FGSM (top) and BIM (bottom). We can see that, if we

remove the adversarial attack noise at locations selected by the high-sensitivity key-

points method, the classification accuracy is much higher than the other two methods.

This indicates that our method is able to identify those image pixels which have the

most contribution to the classification accuracy. If these pixels are corrupted by the

adversarial attack, the image classification accuracy has the largest drop.

3.5.3 Evaluating the Defense Performance on the CIFAR-10
Dataset

We train two network models, VGG-16 [43] and ResNet-18 [4] for image classification

on the CIFAR-10 dataset which achieve classification accuracy of 88.46% and 87.06%,

respectively. In the gray-box and black-box attack and defense experiments, we select

the top 5% of image pixels as high-sensitivity keypoints. The hyper-parameters λ and

η are set as 8 and 0.2 respectively.

Defense Against Gray-Box Attacks

The defense results against gray-box attacks are summarized in Table 3.1. We com-

pare our method against two image restoration-based defense methods: TVM and

QUILT. We can see that our algorithm is competitive with these two state-of-the-art

methods. For the BIM attack method, our algorithm performs the best. TVM intro-

duces the least damage to the original clean image and can provide good protection

for those adversarial images with small perturbation, such as DeepFool. But its per-

formance degrades significantly with large attack noise. QUILT and our algorithm

can defend large attacks more effectively. Fig. 3.7 shows some example images from
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Methods No Defense TVM [24] QUILT [24] Ours
Clean 87.06 82.71 77.49 77.60
FGSM 14.18 25.51 32.43 34.25
BIM 7.56 16.18 25.33 28.03

DeepFool 8.64 76.60 71.60 71.00

Table 3.1: Gray-box Defenses on CIFAR-10

the CIFAR-10 dataset and the subjective performance of their defense results with

these three defense methods. The first row shows the attacked image by the BIM

method. The second, third, and fourth rows show the restored images by the TVM,

QUILT, and our defense methods. The last row shows the original clean images. We

can see that our algorithm is able to successfully remove the attack noise, maximally

restore the visual quality, and match the original images best. In the result images

obtained by TVM and QUILT, we can still clearly see artificial image noise.

Figure 3.7: CIFAR-10 Samples: the first raw is the BIM images, the second row is
the TVM images, the third row is QUILT images, the fourth raw is our keypoints
completed images and the last row is the clean images.
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Defense Against Black-Box Attacks

The black-box attack and defense results are summarized in Table 3.2. Our method

outperforms the other two methods for both FGSM and BIM attacks. Our high-

sensitivity low-rank image completion defense shows the much stronger generalization

ability than other the twos in black-box attack experiment because the high-sensitivity

points are obtained by the test model instead of the attack model.

Methods No Defense TVM [24] QUILT [24] Ours
Clean 87.06 82.71 77.49 77.60
FGSM 17.75 52.33 50.56 57.77
BIM 7.54 42.57 50.11 55.40

Table 3.2: Black-box defenses on CIFAR-10

Defense Against White-Box Attacks

We evaluate the performance of our defense method with white-box attacks on the

CIFAR-10 dataset using the ResNet-18. We choose the BPDA attack method which

is one of the most powerful white-box attack methods developed in the literature [28].

Table 3.3 summarizes the defense results under the BPDA attacks with and without

the NL2 loss function. We can see that our algorithms significantly outperforms the

TVM and QUILT defense methods by a large margin of more than 24%.

Table 3.3: White-box defenses on CIFAR-10

Methods TVM [24] QUILT [24] Ours
BPDA [28] 33.67 36.31 61.60

BPDA with NL2[28] 34.08 36.91 61.63
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3.5.4 Evaluating Defense Performance on the SVHN Dataset

In this experiment, we evaluate the performance of our algorithm on the SVHN

dataset. The baseline accuracy of the VGG-16 [43] and ResNet18 [4] models on

this dataset are 92.63% and 93.82%, respectively. We select top 10% pixels as the

high-sensitivity points in all experiments on SVHN.

Figure 3.8: SVHN Samples: the first raw is the BIM images, the second raw is
the TVM images, the third raw is QUILT images, the fourth raw is our keypoints
completed images and the last raw is the clean images.

Table 3.4 summarizes the the defense results with the ResNet-18 model. On this

dataset, the QUILT method has the least damage to the original clean image. Our

algorithm drops the classification accuracy by about 2%. For all attack methods, our

algorithm consistently outperforms the other two methods by large margins.

Fig. 3.8 shows some image examples and their defense results from the SVHN

dataset. The first row shows the images being attacked by the BIM method. Rows

2, 3, and 4 show the result images obtained by the TVM, QUILT, and our defense
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methods. The last row shows the clean images. We can see that our algorithm

can effectively remove the adversarial noise and restore the image visual quality, and

match the original images best.

Methods No Defense TVM [24] QUILT [24] Ours
Clean 93.82 92.59 93.30 91.52
FGSM 18.03 27.09 21.73 35.75
BIM 10.32 20.35 13.84 31.11

DeepFool 3.89 70.77 53.37 76.48

Table 3.4: Gray-box Defenses on SVHN

We use the same black-box defense setting as those experiments on the CIFAR-10

dataset, i.e. ResNet18 model as the attack model and VGG16 as the test model.

Defense results is shown in Table 3.5. The QUILT algorithm still performs the best

on clean images. But, on the attacked images, our method significantly outperforms

the other two methods by a large margin. For example, for the FGSM attack, our

method has improved the accuracy by about 10% over the TVM method and 20%

over the QUILT method.

Table 3.6 summarizes the defense results under the white-box BPDA attacks with

and without NL-2 loss. Our defense method obtains 72.00% accuracy against BPDA

attack only and 72.01% accuracy against BPDA with NL2 attack, which shows a

significant improvement as it does on CIFAR-10. We can see that our proposed

method achieves the most performance gain over strong attacks, such as the BPDA

white-box attackes.
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Table 3.5: Black-box defenses on SVHN

Methods No Defense TVM [24] QUILT [24] Ours
Clean 93.82 92.59 93.30 91.56
FGSM 38.93 48.17 42.47 54.48
BIM 31.36 46.55 36.99 56.80

Table 3.6: White-box defenses on SVHN

Methods TVM [24] QUILT [24] Ours
BPDA [28] 32.02 29.90 72.00

BPDA with NL2[28] 31.84 29.46 72.01

Figure 3.9: Ablation study on CIFAR-10.
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3.5.5 Ablation Studies

In the following ablation study, we conduct experiments to analyze the contribution of

major algorithm components. Specifically, we evaluate the following three methods:

(1) no defense, (2) TV-norm based image smoothing without high-sensitivity keypoint

selection and (3) with keypoint selection. We perform experiments on the CIFAR-10

dataset. We use VGG-16 as the attack and test model and set the magnitude of the

FGSM and BIM perturbation as ε = 8. Fig. 3.9 shows the results of the defense

with or without our high-sensitivity points. Although the accuracy of clean images

and DeepFool images is a little bit lower, our completion indeed improve the most

defenses performances, especially on defense against the BPDA.
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Chapter 4

Structure-Preserving Progressive
Low-Rank Image Completion for
Defending Adversarial Attacks

4.1 Motivation

Deep neural networks map the input image pixels into a decision output to classify

images, recognize objects, and achieve many other vision analysis tasks. Based on

local filtering and pooling, it analyzes pixel values and texture details in each image

neighborhood, gradually summarizes the information over the network layers, and

produces the final decision at the output layer. Recently, researchers have recognized

that deep neural networks are often bias towards image textures instead of semantic

structures and global visual cues [1]. For example, Figure 4.1 (a) shows an image

of dog and (b) shows a texture patch of an Indian elephant. (c) is synthesized from

(a) and (b). Deep neural networks, for example, those pre-trained on ImageNet, will
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: (a) a dog image; (b) an India Elephant skin image; (c) the synthesized
image of dog from (a) and (b) which is classified as an Indian Elephant [1]; (d) the
original dog image; (e) the adversarial attack noise generated by the FGSM white-box
attack [2]; and (f) the attacked image being classified as goose.

often mis-classify image (c) as an Indian elephant. However, human eyes can easily

tell that it is still a dog. This suggests that deep neural networks often build their final

decision largely upon local image textures, instead of the global object structures, for

example, shapes.

Figure 4.1 shows another classic example in adversarial attacks [2]: (d) is the

original dog image and (e) is the adversarial noise pattern generated by the attack

method [2]. The maximum change to each pixel is controlled under 0.7% of the

pixel value range. If we add this very small noise onto the original dog image, the
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deep neural network will classify the result image (f) as goose which is a totally

different animal. However, our human eyes have no problem at all in recognizing

(f) as a dog since the overall semantic structures are the same. This is because, the

adversarial noise is uniquely designed so that the error will accumulate along the

network inference path, exceed the final decision threshold, and produce a wrong

output.

This example suggests that there is a significant semantic gap between deep neural

networks and human visual systems; the emphasis on and bias towards local image

texture details cause the network to be prone to adversarial attacks. In the meantime,

it also suggests a very interesting approach for defending deep neural networks against

adversarial attacks: making the network focus more on semantic structures and global

visual cues, instead of local details since the adversarial attacks operate on local pixels

and modify their detailed values.

To implement this idea, one possible approach is to develop a structure-preserving

image smoothing method to pre-process the image. At the training side, these im-

ages are added to the training set to improve the network’s capability in capturing

global structures. At the test side, this structure-preserving image smoothing will

largely remove the adversarial noise hidden in local image textures. Coupled with

the structure-oriented training, this method will be able to successfully defend deep

neural networks against adversarial attacks.

In this work, we propose to develop a structure-preserving progressive low-rank

image completion (SPLIC) method to remove unneeded texture details from the in-

put images and let the deep neural network focus more on global object structures

and semantic cues. We formulate the problem into a low-rank matrix completion
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problem with progressively smoothed rank functions to avoid local minimums during

the optimization process. We include total variation constraint to further enhance

the capability of our method to capture object structures. Our experimental results

demonstrate that the proposed method is able to successfully remove the insignificant

local image details and let the network learning focus on global object structures dur-

ing the learning process. On black-box, gray-box, and white-box attacks, our method

outperforms existing defense methods and significantly improve the adversarial ro-

bustness of the network.

4.2 Related Work

Adversarial examples has already been described in Chapter 3: fast-gradient based

attack methods (i.e. FGSM, BIM and PGD), optimal attack methods (i.e. DeepFool

and CW ) and the state-of-the-art white-box attack BPDA [28]. We classify the

defending method into two categories: image de-noising based defenses (i.e. image

transforms in [93], PixelDefend [25] and Defense-GAN[26]), and adversarial training

methods (i.e. [94, 69]).

Recently, some new adversarial attacks and many new defending works are pro-

posed to overcome the vulnerability of deep neural networks. Our new proposed

method belongs to image pre-processing as well.

4.2.1 Recent adversarial attacks

A finding that convolutional networks are sensitive to the directions of Fourier basis

functions is revealed in [95]. They develop a new adversarial attack method to create
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shift-invariant universal adversarial perturbations available in black-box condition. A

interesting application on face recognition [96] is proposed in black-box setting, which

can model the local geometries of the search directions and reduce the dimension

of the search space. Beside the transfer-based black-box attacks by the substitute

model, boundary attack [97] is proposed, which seeks to reduce the perturbation

from a relatively large adversarial. This attack is conceptually simple and close to

no hyperparameter tuning. Its black-box attack doesn’t need the substitute model

and is competitive with the best gradient-based attacks in standard computer vision

tasks. A state-of-the-art SPSA attack [98] experimentally validate the ”security by

obscurity” nature of recently proposed defense methods and dramatically reduce the

performance of these defenses.

4.2.2 Recent de-noising methods

Sun et al. [99] firstly exploits convolutional sparse coding and develops the Sparse

Transformation Layer (STL) to project images to the quasi-natural image space. En-

semble image transforms strategy is applied to defend against adversarial attacks in

[100, 101]. A multi-channel randomization is exploited in [100]. Each channel intro-

duces its own randomization in a special transform domain, including DCT transform,

and a secret key is shared between the training and test. For the defender side, the

shared key keeps the gradients in key-defined sub-spaces, but for the attacker side it

stops gradient back propagation and the creation of various bypass systems. Another

advantage is the reliability increasing by the aggregation that fuses soft-outputs from

all channels. Yang et al. [29] proposes a viewpoint that human categorize images

by the main structure while the perturbation can not change the main structure of
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images. Then they develops ME-Net [29] by low-rank approximation to train a model

with main image structure. However, ME-Net ignores the finer details and will cause

inaccurate results. Our method improves the low-rank based images reconstruction

and achieve a better adversarial defense. ShieldNets [102] exploits probabilistic ad-

versarial robustness (PAR) to neutralize adversarial attacks by concentrating sample

probability to adversarial-free zones. D3 [103] algorithm divide the input image into

multiple patches, de-noising each patch independently, and then reconstructing the

image. It is also a non-differentiable defense mechanism which makes it non-trivial for

gradient-based attacks. Moreover, it does not use adversarial examples to fine-tune

the network.

4.2.3 Recent Adversarial Training

For adversarial training, Feature Scattering [104] uses an unsupervised adversarial

training method to scatter features in the latent space to improve the robustness

of deep neural networks. Metric learning is also introduced in adversarial training

by [104]. It utilizes triplet loss to increase the distance between anchor adversarial

samples and positive clean samples but reduce the distance between anchor samples

and negative clean samples. Hu et al. [105] present a novel viewpoint, which regards

the omnipresence of adversarial perturbations as a strength rather than a weakness.

Their work shows that if an image has been perturbed, these adversarial directions

either become harder to find with gradient methods or have substantially higher den-

sity than for natural images. It utilize this property to achieve a much better defense

against white-box attack. An fast adversarial training algorithm [106] is presented

to eliminate the overhead cost of generating adversarial examples. It recycles the
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gradient information computed when updating model parameters and is much faster

than other adversarial training methods. It is believed that it is hard to improve

networks adversarial robustness unless making networks larger. Xie et al. [107] pro-

vide evidence to challenge these common beliefs by a careful study about adversarial

training. They show that widely-used ReLU activation function’s non-smooth nature

significantly weakens adversarial training. In their work a smooth adversarial train-

ing (SAT) method is proposed by replacing ReLU with its smooth approximations to

enhance network robustness. SAT allows networks training procedure to find harder

adversarial examples and compute better gradient updates.

4.2.4 Matrix Completion by Smoothed Rank Function

Matrix completion try to reconstruct an unknown large matrix and only a small subset

of entries can be observed. Usually, recovery of a matrix is possible if the matrix

is low-rank and the number of known entries are sufficient. In this case, the matrix

completion problem is to set a matrix with minimum rank to the given entries. Instead

of rank function, nuclear-norm function [108, 109] are used due to the non-convexity of

rank function. Recently, matrix completion based on smoothed rank function (SRF)

is presented in [110, 111]. There are two advantages in comparison to the methods

based on nuclear norm: 1. SRF algorithms are faster if the rank of the matrix is known

and high; 2. SRF algorithms achieve more accurate results in almost all situations.

Generally, SRF methods lie much closer than nuclear norm to rank function due to

the smoothing term and is much faster then the nuclear norm. But these iterative

algorithms need to decompose the matrix by singular value decomposition (SVD) in

each iteration. Furthermore, if the number of unknown entries in the matrix are too
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large, these algorithms could not get a good performance. Wang et al. [112] propose a

faster SRF algorithm to improve the running time significantly and outperform most

of matrix completion methods.

4.3 Methods

As illustrated in Figure 4.2, we formulate this problem as a structure-preserving low-

rank image completion problem. For each input image X in both training and test

sets, we generate a random mask M to select half of the pixels as anchor pixels and

the rest as target pixels. We then develop a structure-preserving low-rank image

completion (SPLIC) method with total variation constraint to complete the image at

target pixel locations using the anchor pixels as constraints. To avoid being trapped

into local minimums during rank minimization, we use the method of smoothed rank

functions with progressive scale control δ which can adapt to local object structure at

different scales. After the target pixels are completed or smoothed with adversarial

noise being largely removed, we alternate the anchor and target pixels, and then apply

the above SPLIC method remove the adversarial noise at anchor pixels. This SPLIC

pre-processing step is applied to all training images and each test image. We expect

that the learned deep neural network will focus more on semantic structures instead

of local texture details, improving its robustness to adversarial attack noise. In the

following section, we explain our proposed SPLIC method in more detail.
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4.3.1 Low-Rank Image Completion Based on Nuclear Norm
Minimization

Semantic structures of objects and images are inherently low rank [86]. Recently,

methods for low-rank matrix approximation have been developed to characterize the

low-rank structures in images [112]. In this paper, we propose to formulate the prob-

lem of removing adversarial noise from attacked images while preserving important

semantic structure information for successful recognition as a low-rank matrix com-

pletion problem. Specifically, let X = [xij]m×n ∈ Rm×n be the original image of size

m × n. M = [mij]m×n is the random binary mask. If mij = 1, the corresponding

image pixel xij is chosen as the anchor pixel. Otherwise, it is considered as a target

pixel. We denoted the set of anchor pixels by Ω. During low-rank image comple-

tion, we attempt to estimate and revise the values of target pixels with the fixed

anchor pixels as constraints so that the rank of the recovered image X̂ = [x̂ij]m×n is

minimized. Specifically, the problem is formulated as

min rank(X̂),

s.t. xij = x̂ij, (i, j) ∈ Ω.

(4.1)

It should be noted that the rank as a function of the matrix is a highly nonlinear

and non-convex function [86], which poses significant challenges for obtaining efficient

solutions for the problem in (4.1). More importantly, the solution is often trapped into

local minimums. To address this issue, the nuclear norm ||X̂||∗ of matrix X is often

used to approximate the rank of matrices, which leads to a convex minimization

problem with highly efficient solutions available. Let {σk(X̂)}, 1 ≤ k ≤ l, l =

min(m,n), be the set of singular values of matrix X̂. Then, the rank of X̂ is the
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number of non-zero entries in {σk(X̂)}. However, the nuclear norm is the summation

of all singular values. The nuclear norm approximation of the optimization problem

in (4.1) is given by

min ||X̂||∗ =
K∑
k=1

σk(X̂),

s.t. xij = x̂ij, (i, j) ∈ Ω.

(4.2)

4.3.2 Progressive Smoothed Rank Functions with Total Vari-
ation Constraint

In this work, we have found that the nuclear norm does not provide an effective

approximation of the original rank function, especially for images or objects with

complex semantic structures at different spatial scales. We observe that, geomet-

rically, smooth terms generally lie much closer to the essential rank function than

nuclear norm. In the meantime, we wish to take advantage of the convex nature of

the nuclear norm so that the optimization process will not be trapped into local min-

imums. To address this issue, we propose to use the smoothed rank function method

developed in [110] to better preserve the important structure information. Given a

matrix X̂, its smoothed rank function is defined based on Gaussian smoothing of its

singular values:

Fδ(X̂) = l −
l∑

k=1

e−
σ2
k(X̂)

2δ2 (4.3)

This smoothed rank function well approximates the original rank of the matrix, when

δ approaches 0. For example, considering a matrix X̂ with a rank of k0. The first k0

singular values are positive, σk(X̂) > 0 for k ≤ k0. The rest singular values are zeros,
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σk(X̂) = 0 for k0 < k ≤ l. In this case, when δ → 0, we have

e−
σ2
k(X̂)

2δ2 =

 0, 0 ≤ k ≤ k0,

1, k0 < k ≤ l,
(4.4)

Therefore, according to (4.3), Fδ(X̂) = k0. Figure 4.2 (right) shows the smoothed

rank function with progressive control δ. When δ is large, it is a convex function.

Based on this rank function, the algorithm can guide the optimization towards the

region of global minimum. Then, the method gradually reduces the value of δ and

refines the scale of gradient search. This progressive optimization can successfully

avoid the local minimum while enjoying the advantage of local convex optimization.

This gradual tuning technique for minimizing non-convex functions is referred to as

graduated non-convexity [110].

In this work, we observe that the smoothed rank function can obtain better per-

formance in matrix completion than nuclear norm which was used in the ME-Net

method [29]. However, it still suffers from performance degradation when the image

has high intrinsic rank structures or has noise density. It is not able to efficiently

remove sparse adversarial noise with high density due to the absence of an proper

regularization scheme. Furthermore, they cannot effectively maintain the smooth-

ness of local neighborhood pixels in the smooth regions affected by adversarial noise.

To address this issue, we propose to incorporate the total variation (TV) constraint

[113] into the progressive smoothed rank optimization problem. Mathematically, our
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SPLIC optimization problem can be formulated as:

min
X̂

Fδ(X̂) + λ · C(X̂)

s.t. xij = x̂ij, (i, j) ∈ Ω.

(4.5)

where λ is a weighting parameter which will be analyzed in our ablation studies.

C(X̂) is the TV constraint. Since the original TV-norm is hard to compute the

gradient directly, we rewrite the TV constraint function as follows:

C(X̂)=
m−1∑
i=1

n−1∑
j=1

(x̂i,j−x̂i+1,j)
2+(x̂i,j−x̂i,j+1)2

2

+
m−1∑
i=1

(x̂i,n−x̂i+1,n)2

2
+

n−1∑
j=1

(x̂m,j−x̂m,j+1)2

2
,

(4.6)

where the first entry in the summation are variations for pixels inside the image and

the last two entries are for pixels on the horizontal and vertical edges.

4.3.3 Solution to the SPLIC Optimization Problem

In this section, we derive a gradient descent-based numerical solution for the SPLIC

optimization problem in (4.5). To this end, we need to determine the derivatives of

Fδ(X̂) and C(X̂) with respect to X̂.

We first introduce the definition of absolutely symmetric function [114].

Given a vector γ in Rq, we sort its vector elements in a non-increasing order to

form a new vector γ̂. A function f : Rq → R is absolutely symmetric if f(γ) = f(γ̂)
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for any vector γ in Rq. For matrix X̂, its singular value decomposition (SVD) is

X̂ = U · diag{σ1(X̂), · · · , σl(X̂)} · V T , (4.7)

where U and V are right and left singular vector matrices. We can see that the

following function

Fδ(z) = l −
l∑

k=1

e−
z2l
2δ2 (4.8)

is absolutely symmetric. According to the Theorem 3.1 of [114] and [110], the sub-

gradient of Fδ(X̂) can be calculated as follows:

∇Fδ(X̂) = U · diag{σ1

δ2
e−

σ2
1

2δ2 , · · · , σl
δ2
e−

σ2
l

2δ2 } · V T . (4.9)

For the total variation term C(X̂) in equation (4.6), its derivative with respect to X̂

is given by

∇C(X̂)=


2x̂i,j−x̂i+1,j−x̂i,j+1, inside pixels

x̂i,j−x̂i,j+1, i=m

x̂i,j−x̂i+1,j, j=n

(4.10)

With the gradient of Fδ(X̂) and the gradient of C(X̂) being obtained by equations

(4.9) and (4.10), we are ready to use gradient descent algorithm to solve the problem

(4.5).
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4.3.4 Alternated SPLIC and Algorithm Summary

In our SPLIC method, we randomly select 50% of pixels as anchor points. At these

anchor points, the pixel values are fixed as constraints in the optimization problem

(4.5). We observe that these constraints are very important for the robustness of our

SPLIC method to avoid algorithm divergence. Once the rest 50% pixels have been

re-estimated by our SPLIC method, we will alternate the SPLIC process, using them

as the anchor points, and re-estimate the values of the original anchor points. The

SPLIC algorithm is summarized in Algorithm 4.

Algorithm 4 structure-preserving progressive low rank image completion (SPLIC)

Require: X ∈ Rm×n, M ∈ Rm×n, pre-defined rank r ≤ l, criteria ε and the maxi-
mum iteration number maxiter.

1: Initialize: X̂t = X �M , λ = 0.02, ρ = 0.45, µ = 0.5, t = 0, and δ is set as the
largest singular value of X̂t.

2: while ‖X̂t+1−X̂t‖F
mn

> ε and t < maxiter do
3: for i = 1 to 7 do
4: Compute SVD of X̂t;

X̂t = USV T ,S = diag{σ1, · · · , σl};
5: Set σr+1, · · · , σl to zeros,

S = diag{σ1, · · · , σr, 0, · · · , 0};
6: Compute the gradient of Fδ(X̂t) by equation (4.9);
7: Compute the gradient of C(X̂) by equation (4.10);

8: Update X̃t+1:

X̃t+1 = X̂t − µ(∇Fδ(X̂t) + λ∇C(X̂t));
9: Compute the projection:

X̂t+1 = (1 −M )� X̃t+1 +M �X;
10: t = t+ 1;
11: end for
12: Update the smoothness parameter: δ = ρδ;
13: end while
Ensure: X̂ = X̂.
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4.4 Experimental Results

In this section, we follow the procedures in existing papers to evaluate the performance

of our SPLIC method and compare its performance with the state-of-the-art methods.

4.4.1 Experimental Settings

We evaluate all defense performance in the following three attack scenarios: (1) white

box attackers where the attacker has full knowledge about the network and the defense

method, (2) black-box attackers where the attacker has no knowledge about the

network and the defense network, and (3) gray-box attackers where the attacker

knows the network but does not know the defense method. In our experiments, we

conduct performance comparison with existing papers on four attack methods, the

FGSM, PGD and BPDA, and CW [115] methods, as reviewed in the Related Work

section. We use the publicly available package FoolBox [116] for implementation of

these attackers. Following prior papers, we conduct performance comparisons on two

benchmark datasets, the CIFAR-10 [62] and the SVHN datasets [90].

All the algorithms run on a desktop computer with an Intel core i7-7800X 3.50

GHz CPU, one Nvidia GTX 1080 Ti GPU, 64 GB of RAM, and Ubuntu 18.04. The

perturbation in all adversarial attacks are constrained within an ε-ball based on the

L∞ distance and we set ε = 8/255. In iterative attack methods of PGD and BPDA,

we set the single step size to 2/255 and set the number of iterations to 7. In the CW

attack, we fix the confidence level κ = 20 and the binary search step size as 5. The

learning rate and the number of iterations are set as 0.005 and 1000 respectively.
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4.4.2 Performance Comparison with Existing Methods

In the following, we evaluate our SPLIC methods under three different attack scenar-

ios and compare its performance with existing methods.

(1) Defense against black-box attackers.

Table 4.1 summarizes the defense performance of our SPLIC methods under three

different black-box attacks: FGSM, PGD, and CW on the CIFAR-10 and SVHN

datasets, and performance comparisons with existing methods. We also include the

results on the clean images without any attacks. The Vanilla method means no de-

fense is applied. We can see that on these black-box attacks, our SPLIC method

outperforms the current best method, ME-Net [29]. It should be noted that perfor-

mance gain is not very significant because the defense accuracy is already very high,

very close to the accuracy on the clean images without any attack. For example, on

the CIFAR-10, the best accuracy on the clean images is 94.9%. Under the powerful

CW attack, our SPLIC method can achieve the accuracy of 93.6%. On the SVHN

dataset, this gap is even smaller. We can also see that on the clean images, our

method is able to maintain the important semantic structure information for recog-

nition, achieving near the best accuracy. Some methods do not report the results of

FGSM and CW, thus we represent them by − in the table.

(2) Defense against white-box attacks.

Table 4.2 summarizes the performance of our SPLIC method under the white-box

BPDA attack on the CIFAR-10 and SVHN datasets. The attack method knows

both the network and the defense methods. We can see that our SPLIC method
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Table 4.1: Defense performance under black-box attacks.

CIFAR-10

Method Clean FGSM PGD CW

Vanilla 93.4% 24.8% 7.6% 9.3%
Madry [94] 79.4% 67.0% 64.2% 78.7%

Thermometer [75] 87.5% − 77.7% −
TLA-RN [117] 81.0% − 66.0% −
TLA-SA [117] 86.2% − 61.7% −
TLA [117] 86.2% − 70.6% −
ME-Net [29] 94.9% 92.2% 91.8% 93.6%

SPLIC-Net (Ours) 94.0% 91.0% 92.2% 93.6%

SVHN

Vanilla 95.0% 31.2% 8.6% 20.4%
ME-Net [29] 96.0% 91.8% 91.1% 95.5%

SPLIC (This Work) 95.8% 92.9% 93.0% 95.7%

outperforms existing state-of-the-art methods by a large margin. For example, on

the CIFAR-10 dataset, it improves the accuracy by 8.7%. On the SVHN dataset,

the performance gain is 6.1%, which is quite significant. We can also see that the

white-box BPDA attack is very powerful, making it much more challenging to defend.

This is because the white-box attack has full knowledge about the defense method

and has the opportunity to learn the behavior of the defense method and re-adjust

the adversarial attack noise.

(3) Defense against gray-box attacks.

Table 4.3 summarizes the results on the CIFAR-10 and SVHN under gray-box attacks

without network training. We compare our method against three defense methods

under the gray-box attack scenarios. Since the ME-Net [29] only reported the results

after the training on reconstructed images. We used their released code to obtain

the results in Table 4.3. We can see that our SPLIC method outperforms existing
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Table 4.2: Defense performance under white-box attacks.

Dataset Method BPDA

CIFAR-10

Vanilla 0.0%
TV Mnimization [24] 14.7%

TLA-RN [117] 52.5%
TLA-SA [117] 53.5%

TLA [117] 53.9%
ME-Net [29] 59.8%

SPLIC (This Work) 68.5%
Gain +8.7%

SVHN

Vanilla 0.0%
Madry [94] 52.5%

ME-Net [29] 74.7%
SPLIC (This Work) 80.8%

Gain +6.1%

methods by large marings. On the CIFAR-10 and SVHN datasets, the performance

gains under the PGD attack are 12.6% and 9.1%, respectively.

Table 4.3: Defense performance under gray-box attacks without network training.

Dataset Method FGSM PGD

CIFAR-10

USVT 12.1% 12.1%
Soft-Imp 30.1% 27.3%
ME-Net 31.2% 31.3%
SPLIC 40.9% 43.6%
Gain +9.7% +12.6%

SVHN

USVT 36.7% 34.2%
Soft-Imp 56.1% 55.6%
ME-Net 55.4% 54.5%
SPLIC 59.8% 63.6%
Gain +3.6% +9.1%
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(4) Comparison with existing smoothing methods.

Structure-preserving image smoothing has been studied in the image de-noising lit-

erature [118]. In this work, we have developed the SPLIC method for structure-

preserving image completion. In the following experiment, we compare our SPLIC

method with two existing image smoothing methods based on bilateral image filtering

[119] and edge-guided image de-noising [118]. After processed by these methods, we

retrain the network and evaluate the defense performance on the CIFAR-10 under

white-box attacks. Figure 4.4 shows their classification accuracy comparison. We

can see that, under FGSM, PGD and CW attacks, our method outperforms existing

image smoothing methods. On the clean images, it can preserve the original image

semantic structures much better than other methods. This is because our progressive

smoothed rank function with total variation constraint can successfully capture and

preserving the multi-scale semantic structures in the image, which are very important

for network learning and image recognition.

4.4.3 Ablation Studies

In the following, we provide ablation studies to further understand our SPLIC method.

4.4.4 (1) Impact of the weighting parameter λ.

The SPLIC optimization problem in (4.5) has two objective functions weighted by

the control parameter λ. Figure 4.5 shows the classification accuracy obtained by

our SPLIC method with different λ on the CIFAR-10 dataset under white-box BPDA

attack. We can see that the best performance is achieved for λ within the range of
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[0.01, 0.05]. In our experiment, we set λ to be 0.02.

(2) Visualization of image samples in the learned feature space.

The proposed SPLIC method is able to remove local image texture details, encour-

age the network to focus on more discriminative semantic features, and improve the

robustness of the network to adversarial noise. We expect that, in the learned fea-

ture space, images from different classes will have much better separation or larger

margins since a small perturbation will not push the image sample across the de-

cision boundary. To demonstrate this, we use the t-SNE method [120] to visualize

the learned features on the CIFAR-10 dataset. Figure 4.6 (left) shows the visualiza-

tion of image features without the SPLIC method. The right figure shows the result

for the SPLIC method. We can see that, with the SPLIC pre-processing and train-

ing, images from different classes are much better separated, indicating significantly

improved robustness against adversarial attacks.

(3) Performance on the clean images.

In this part, we compare the performance of our SPLIC algorithm on clean images

with three low-rank approximation methods that have been implemented in [29] with

source code publicly available. These methods are Universal Singular Value Thresh-

olding (USVT), Soft Impute (Soft-Imp) and Nuclear Norm (NUC-Norm). The the

classification accuracy are shown in Figure 4.7. We test these reconstruction methods

with different percentages of pixels used for anchor points. We can see that, on the

clean images without attack noise, our algorithm can maintain very good accuracy

at different percentages of anchor points. This suggests that our method is able to
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preserve the important semantic structures in the original images.

(4) Subjective examples of SPLIC results.

Figure 4.8 shows seven examples of SPLIC processing results. The first row shows

the original images from CIFAR-10. The second row shows the attacked images by

the white-box PGD method. The attack noise is clearly visible. The third row shows

the restored images by our SPLIC method. We can see that the attack noise has been

largely removed, the detailed image textures which are not important for recognition

has been smoothed out, while important semantic structures are well preserved.

4.5 Conclusion

In this work, we observed that the adversarial attack operates at local image textures

as a special noise while the human visual system focuses on semantic structures and

global visual cues. Motivated by this, we developed a structure-preserving progres-

sive low-rank image completion (SPLIC) method to remove unneeded texture details

from the input images and let the deep neural network focuses more on global object

structures and semantic cues. We formulate the problem into a low-rank matrix com-

pletion problem with progressively smoothed rank functions to avoid local minimums

and total variation constraint to enforce local smoothness during the optimization

process. Our experimental results demonstrate that the proposed method is able to

successfully remove the insignificant local image details and let the network learning

focus on global object structures. On black-box, gray-box, and white-box attacks,

our method outperforms existing defense methods and significantly improves the ad-
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versarial robustness of the network.
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Figure 4.2: Illustration of the proposed structure-preserving low-rank image comple-
tion method for defending against adversarial attacks.
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Figure 4.3: Example results by SPLIC: (a) the noise images and (b) the final SPLIC
results.
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Figure 4.4: Comparison with existing image smoothing method.
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Figure 4.5: SPLIC accuracy with different λ.

Figure 4.6: Visualization of the samples in the learned feature space with the SPLIC
method (right) and without defense (left).
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Figure 4.7: Reconstructions comparison on CIFAR-10 clean images with different
probabilities of remained pixels.

Figure 4.8: Image Samples: the first row are original images, the second row are
adversarial images, and the last row are SPLIC images.
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