
Population Influences on Tornado Reports

in the United States

Christopher J. Anderson
�
, Christopher K. Wikle

�
, Qin Zhou

�
, J. Andrew Royle

�
.�

Department of Agronomy, Iowa State University, Ames, Iowa�
Department of Statistics, University of Missouri, Columbia, Missouri�

U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, Maryland

28 April 2005

Abstract

The number of tornadoes reported in the United States is believed to be less

than the actual incidence of tornadoes, especially prior to the 1990s, because tor-

nadoes may be undetectable by human witnesses in sparsely populated areas. We

use a hierarchical Bayesian model to simultaneously correct for population-based

sampling bias and estimate tornado density using historical tornado report data.

The expected result is that F2-F5 compared to F0-F1 tornado reports would

vary less with population density. The results agree with this hypothesis for the
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following population centers: Atlanta, GA; Champaign, IL; Des Moines, IA. How-

ever, the results indicated just the opposite in Oklahoma. We speculate the result is

explained by misclassification of tornadoes that were worthy of F2-F5 Fujita scale

rating but were classified as F0-F1 tornadoes, thereby artificially decreasing the

number of F2-F5 and increasing the number of F0-F1 reports in rural Oklahoma.

1 Introduction

Tornado report data form messy datasets. Despite well intentioned efforts, many non-

meteorological influences have corrupted the data. Among these are inconsistent re-

porting standards, unreported tornadoes, and reports of fictitious tornadoes (Doswell

and Burgess 1988, Forbes and Wakimoto, 1983). A difficult analytical circumstance has

evolved in which human errors are a primary cause of spatial and temporal variability of

tornado report frequency (Grazulis and Abbey 1983, Brooks et al. 2003). Our interest

is in quantifying such factors with the ultimate goal of isolating, to the extent possible,

human and meteorological influences.

Direct measurement of tornadoes is unusual, since most tornadoes are short-lived

and have horizontal dimension smaller than the minimum resolvable length of opera-

tional measurement systems. Human eyes and human interpretation of landscape mis-

aligned by windy storms are the basis of our best tornado detection system. Since exact

measurements of tornadoes are not made, adjustments rather than exact corrections of
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tornado counts are applied to account for effects of nonstandard observing practices and

irregular errors. However, results depend on choices of adjustment model and explana-

tory variables. Many explanatory variables have been proposed (the most extensive list

is given in Tescon et al. 1983). Variable selection is governed by the common theme

that each variable quantifies some sort of hindrance to human detection of tornadoes

– lakes, trees, hills, absence of roads, and so on. Population density measures are the

most popular explanatory variables. Because these data are readily available from cen-

sus bureaus and relate directly to landscape measures, adjustment models based upon

population density measures are relatively simple and interpretable models that require

minimal data collection effort.

Model design is inspired by characteristics of the data set. Thus, a variety of mod-

els have been proposed (Tescon et al. 1983, King 1997, Nixon et al. 2000, Ray et al.

2003). It is less important to adopt a single modeling approach than it is to determine

whether conclusions and quantitative results are in agreement when different modeling

approaches are used. Results from Schaefer and Galway (1982), Nixon et al. (2000),

and Ray et al. (2003), which all use very different methodologies, suggest a conser-

vative estimate of the fraction of reported to actual tornadoes is about 0.6. Evidence

is presented in King (1997) and Nixon et al. (2000) that this fraction has geographic

variation.

This note describes a novel approach for estimating population influences on tor-

nado report frequency that uses the framework of Bayesian hierarchical models (BHMs;
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e.g., Berliner et al. 1999, Wikle 2003, Gelman et al. 2004). The advantage of BHMs is

that complex process models may be incorporated into statistical inference, while math-

ematically rigorous estimation procedures are retained. The methodology outlined in

subsequent sections permits separate, yet probabilistically linked, models for the prob-

ability of detection and climatological frequency of tornadoes. A fundamental assump-

tion of our model in this application is that the region under analysis is small enough to

presume homogeneous climatological tornado frequency. Variability of aggregated tor-

nado counts over relatively small spatial regions is modeled from two primary sources.

First, the variability associated with probability of detection is modeled via a nonlinear

dependence on population density. Second, the natural spatial variability of true tornado

intensity around its climatological mean is modeled via a homogeneous Poisson process.

The results shed new insight into how these different sources of variability contribute to

tornado report differences over relatively small spatial domains.

2 Data

We obtained tornado reports for the period 1953-2001 from the Storm Prediction Center

(SPC) archive of storm reports (http://www.spc.noaa.gov) and the Grazulis significant

tornado volumes (Grazulis 1993). We summed the reports by county and various subpe-

riods of the 1953-2001 period. We computed tornado report counts for large population

centers and the surrounding two tiers of counties (Table 1). Population centers in our
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analysis are Atlanta, GA; Champaign, IL; Des Moines, IA; Oklahoma City, OK; Om-

aha, NE; and Tulsa, OK. These population centers are located along the C-shaped axis

of relatively high tornado probability reported by Brooks et al. (2003).

Previous studies have measured county population with either county population

density or rural population density. County population density can be skewed by the

presence of a few cities and large towns and may not be representative of density of

humans and human built structures in rural areas. Changnon (1982) argues, therefore,

that rural population density rather than county population density is a more faithful

measure of capability for tornado detection. The central counties in our analysis contain

large metropolitan areas that cover a large fraction of the county area. Because the

population density is large over much of the county rather than concentrated in isolated

towns, rural population density is not a reasonable explanation of why tornado frequency

is expected to be observed well in the central counties. Therefore, we use population

density as an explanatory variable. We obtained population density data from the 1990

United States census (http://www.census.gov).

3 Methodology

Generally, we have counts of tornado reports ���
	�� for the 
 -th Fujita scale (F-scale) rating,


���������������� , aggregated over the � -th county, ����������������� and � -th year, � �����������!�#" .

However, because the number of annual counts for F4 and F5 tornadoes can be small,

5



we aggregate additionally over the F-scale rating and time. Thus, we have spatially

varying counts �$	 summed over ranges of F-scale ratings (F0-F1 or F2-F5) and years

(e.g., 1953-2001). However, we know that we have not observed the actual number

of tornadoes that have occurred in a particular county over the time period of interest.

We make the assumption that we have an “undercount”. That is, the true number of

tornadoes over the same level of aggregation ( %&	 , an unobservable quantity), is greater

than or equal to that reported ( %'	)(*�+	 ). In other words, we must account for the

fact that the probability of detecting a tornado is most likely not one. Furthermore, it

is likely that this probability of detection varies geographically according to population

density (Nixon et al. 2000). To motivate the nature of this relationship, we note that the

present problem bares a striking similarity to the problem of estimating animal density

in ecological applications, using “distance sampling” methods (Buckland et al. 2001;

Williams et al. 2002).

3.1 “Distance” Sampling Approach

In classical distance sampling methods, animals are counted by an observer from a sta-

tionary point or transect, and the distance from the point of observation to the animals

is measured. In some applications where it is difficult to obtain precise distance mea-

surements, animals are counted relative to � discrete distance classes ( ���,�-�/.0�������!��� )

from a point of observation. Let %'	-�/�1�2���������3��� be the number of animals in each

distance class available to be counted. In the vast majority of animal sampling problems,
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abundance is not observed directly. Instead, one observes a biased count �4	657%6	 , ow-

ing to the fact that animals are elusive and may go undetected even if they are present.

The most common assumption to express the relationship between the observed counts

�+	 and the population sizes %'	 , is the binomial sampling model

�+	98 Bin :;%6	<�>=?	-:;@-A#A3� (1)

where =?	B:C@�A is a function of the distance from the point of observation and some param-

eter @ . More precisely, when counts in discrete distance classes are collected, =+	�:C@�A is

an integral of some distance function. For example, a common distance function is the

half-normal D+:FEHG�@-AI�KJ�EB=4:ML9E �!N @�A , where E is the distance from the point of observa-

tion and @ is a scale parameter to be estimated. Thus, the probability that an individual

in distance class � is detected is equal to

=O	B:;@-A �7PRQCSUT�VQ S D+:FEHG�@-A�W�EH�
where X3	 and X3	�Y � are the lower and upper bounds, respectively, of distance class � .

We note that explicit in this development is the intuitive notion that animals are

more difficult to observe as their distance from the point of observation increases. The

parameter @ determines the relative detectability of animals as a function of distance.

Large values of @ indicate less of a decrease in detectability as distance increases, and
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vice versa. That is, @ is the effect of the covariate “distance from point of observation”.

Conceptually, however, there is no reason at all that E need be Euclidean distance. In the

present application, we suppose that the detectability of tornadoes is primarily affected

by population density. Thus, we equate EZ�2E+	 to the inverse of population density

for the � -th county, %'	 to actual (unobserved) tornado abundance in the county, and

�+	 the respective observed tornado counts. In the present application of adjusting for

imperfect detection in estimation of tornado density, the observations are not pooled into

distance classes. However, it is reasonable to assume that pooling according to county is

analogous, with differing population densities corresponding to distance. Thus, in this

case we equate =?	B:C@�A �[D+:FE\	<G�@�A .
Thus far, we have not specified additional model structure on %]	 . The assump-

tion made in classical distance sampling applications is that animals are uniformly dis-

tributed over the area being sampled. That is, animal locations are a homogeneous Pois-

son point process. Although clearly not the case with tornado frequency over large spa-

tial domains, this is a reasonable assumption over relatively small spatial areas in which

the climatology is the same. Under this assumption, we have that %]	]8 Poisson :;^B	`_aA
where ^B	 is the area of the � �cb distance class (in our case, the � �cb county). Note

also that % � d 	 %e:>�OA is Poisson with mean _fd 	 ^B	 . Then, the distribution of

%6	<�/�g� �-�������!��� conditional on the total % is multinomial with cell probabilities

^B	`_ N :>_ d ^B	`Ah� ^B	 N : d ^B	`A . Finally, the distribution of the sample counts ij��	jkml	�n �
conditional on the total population size % , under the binomial sampling assumption, is
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also multinomial of the form

o :Mij�p	<k l	�n ��q %rAtsvu lw	�n �yx ^B	�=?	�:;@�Ad ^B	{z | SB} x �~L�� 	 =O	B:;@-A zt�y� d S | S � (2)

where the last cell of this multinomial corresponds to those individuals not detected.

This is the distance sampling likelihood when data are recorded into distance intervals

(in our case, counties). Estimation of the unknown parameters @ and % may be based

on this likelihood.

In some cases, it is convenient to remove % from (2) by integrating over the distri-

bution of % (recall that % 8 Poisson :;_fd 	 ^B	�A ). In this case, the �+	 are, marginally,

independent Poisson random variables with mean ^0	�=?	-:;@-A#_ . A more complete discus-

sion of the integrated likelihood approach to estimation in distance sampling under the

Binomial-Poisson model can be found in Royle et al. (2004) (see Dorazio et al. 2005

for a related application). Thus, in our tornado count problem, for county �R�,���������!��� ,

we have

�p	I8 Poisson :;^B	�=?	�:;@-A#_aA3� (3)

with

=?	�:;@�Ay�[D$:�E\	<G�@�A ���/���4:ML�@jE\	jA3� (4)

where Ea	 is the inverse of the population density of the � -th county.
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3.2 Estimation

In this relatively simple case where we have assumed a constant _ and @ , we can deter-

mine numerically the maximum likelihood estimates (MLEs) for _ and @ as described

in Royle et al. (2004). However, for � relatively small, as in our case, the usual asymp-

totic theory that provides nice properties of the MLEs no longer holds. A consequence

of this is that one does not get good estimates of the variation in the estimates of _ and

@ .
Rather than use the MLE approach, we consider the problem from the Bayesian

perspective. That is, we simply let @ and _ have prior distributions of the form,

@�8Z�F�jD0%1:F�$���#� �� A3� (5)

where �F�`D�%e:HA refers to a log-normal distribution, and the associated mean and variance

are �+� and � �� , respectively. These “hyperparameters” are specified to be .5 and 10000,

respectively, corresponding to a non-informative prior (so our prior beliefs do not overly

affect the results). Furthermore, we let

_�8���^�����^a:F�0���-A3� (6)

where �6^B����^ refers to a gamma distribution with parameters � and � . In our case, we

let ���,������� and �f�,���-��� , again corresponding to a non-informative prior distribution.
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In this Bayesian case, rather than considering the point estimates of the parame-

ters of interest, we get their posterior distributions. That is, we get the distribution

=4:C@0�/_ q � � �������!��� l A . By Bayes’ rule, this posterior distribution is proportional to the

likelihood (3) times the prior distributions (6) and (5):

=4:;@��/_ q � � ���������#� l A s lw	�n � =4:F�+	 q _���@�A�=4:;@-AF=4:;_pA/� (7)

where the proportionality constant is given by the integral of the right-hand side of (7)

with respect to @ and _ (i.e., the marginal distribution of the data, =4:C� � ���������#� l A ). For

all but some very simple cases, one cannot find this proportionality constant analyti-

cally. However, one can use numerical procedures such as Markov Chain Monte Carlo

(MCMC) to obtain Monte Carlo samples from this posterior distribution (see Congdon

2001, Gelman et al. 2004, or Robert and Casella 2004 for discussions of Bayesian

estimation and numerical approaches).

3.3 Implementation

We use the freely available WinBUGS software (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml)

to perform the MCMC analysis of the BHM with these data. An example of the Win-

BUGS code for this analysis is given in the Appendix.
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4 Results

4.1 Sensitivity to Data Set

We examined sensitivity of model results to alternative reporting standards by com-

paring parameter estimates that were obtained from two distinct data sets: SPC severe

weather log and Grazulis volumes. We summed tornado reports for the entire period of

record 1953-2001. The Grazulis data set is unique in that a single person classified all

tornado reports, and, therefore, it is less susceptible to variability caused by inconsistent

reporting standards. The Grazulis significant tornado reports are comparable to F2-F5

tornado reports in the SPC log. We compared parameter estimates for the Oklahoma

City, OK region.

Comparison of _ (Table 2) reveals higher incidence of F2-F5 reports in the SPC

archive compared to significant tornado reports in the Grazulis volumes. This is con-

sistent with results reported in Brooks (2000) that show a higher incidence of national

F2-F5 reports in the SPC log compared to Grazulis’ frequency of significant tornadoes.

Despite this disparity, the probability of detection in high and low population density

counties is comparable in the two data sets. These results suggest that inconsistency of

reporting standards may have directly influenced overall frequency but had less impact

on spatial variability of reports. Thus, we present results derived from the SPC data set

only, and, unless otherwise stated, the results are valid for the entire period of record

1953-2001.
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4.2 Regional Dependence of Population Effects

The probability of detection may be interpreted as the frequency of tornado occurrences

that are reported and classified correctly. When a tornado occurs, there are four possible

report outcomes: correct classification, underestimated F-scale rating, overestimated F-

scale rating, or unreported. The SPC log may also include reports of things mistaken to

be tornadoes, which are unaccounted for in our stochastic model.

It has been argued that, since F2-F5 tornadoes are generally larger and longer-lived

than F0-F1 tornadoes, the reported incidence of F2-F5 tornadoes is less affected by un-

reported tornadoes (Concannon et al. 2000, Brooks 2004). In the context of our model,

this effect would be manifested as higher probability of detection in low population den-

sity counties for F2-F5 compared to F0-F1 tornadoes. However, in the Oklahoma City

and Tulsa regions, the results show the opposite – higher probability of detection in low

population density counties for F0-F1 compared to F2-F5 tornadoes. An alternative ef-

fect of population density that is consistent with this result is the possibility that some

tornadoes were underrated, possibly due to sparse buildings or poor construction, so that

the number of F0-F1 tornadoes reported was inflated by reports of tornadoes that would

have produced F2-F5 damage.

Brooks and Craven (2002) find evidence of an abrupt change in 1973 of proximity

sounding indices associated with F2-F5 tornadoes. This year is the first in which the

National Weather Service was responsible for tornado verification. They found F2-F5
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tornado reports prior to 1973 were sometimes associated with environments that are

more like environments of F0-F1 reports submitted since 1973. This implies the re-

ports were misclassified such that more F2-F5 tornadoes were reported prior to 1973

than might have been expected given the meteorological environment and contempo-

rary reporting standards. This could influence the results from our model such that the

disparity between high and low population density counties of probability of detection

for F2-F5 tornadoes may be smaller than it is for F0-F1 tornadoes during 1953-1973.

We examined this possibility by estimating model parameters using two subperiods:

1953-1973 and 1974-2001. Higher probability of detection in low population density

areas for F0-F1 compared to F2-F5 tornadoes occurred in both periods.

Parameter values for Champaign, IL, Atlanta, GA, and Des Moines, IA reflect the

expected relationship between population density and probability of detection. It is

possible that tornado statistics in Oklahoma might be different than elsewhere in part

because of the activities of the National Severe Storm Project, which sent scientific

teams in search of tornadic storms beginning in the late 1950’s (NSSP 1963). The

results from Omaha show almost no difference of (very high) probability of detection

for F0-F1 and F2-F5 tornadoes. The tornado density _ for the Omaha region is much

lower than in all other regions. This implies the report sample size may be too small to

estimate the effect of population density.

The primary purpose of statistical adjustment of tornado counts for unreported tor-

nadoes has been to improve estimates of tornado risk in hazard models (Tescon et al.
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1983, Schaefer et al. 1986, Nixon et al. 2000, Meyer et al. 2002, Ray et al. 2003).

Though the intended use of our model differs, it also may be used to estimate the num-

ber of unreported tornadoes. An advantage of our approach, in which model parameters

are considered random, is that a range of possible adjusted tornado counts is generated

for each county, reflecting uncertainty in both probability of detection and natural (me-

teorological) variability. We report for the Oklahoma City region a range of the ratio

of reported to adjusted tornado counts, using the adjusted counts at the 2.5 and 97.5

percentiles in the posterior distribution of % (Table 3). In Oklahoma county (highest

population density), the range is 0.97 to 1.00; whereas, in Major county (lowest pop-

ulation density), the range is 0.33 to 0.54. The ranges are consistent with results from

previous studies. Nixon et al. (2000) developed a population density adjustment of

tornado counts that suggests the ratio ranges 0.37 to 0.73 in the southern plains. A krig-

ing method developed by Ray et al. (2003) suggests the risk of tornado occurrence at

any given location in the central United States is only 62 percent of the expected value.

Thus, different statistical approaches have resulted in similar ranges, lending confidence

that our modeling approach provides a reasonable estimate of the actual range.

5 Conclusion

We have evaluated the relationship between probability of detection of tornadoes and

population density for regions around several large cities in the central and eastern
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United States. The results indicate that population density effects have regional vari-

ability. This may reflect one or many demographic factors including, but not limited

to, quality of construction, rural construction density, or regionally varying reporting

standards. The main conclusions are:

� In Oklahoma, probability of detection in rural areas of F0-F1 tornadoes exceeds

that of F2-F5 tornadoes. It appears that in rural areas F2-F5 tornadoes have been

underestimated on the Fujita scale, inflating the incidence of F0-F1 tornadoes in

rural areas. The ratio of reported to actual number of tornadoes varies between

0.97 to 1.00 in Oklahoma county and 0.33 to 0.54 in Major county, within the

range reported elsewhere.

� Near Atlanta, GA, Des Moines, IA, and Champaign, IL, probability of detection

in rural areas of F2-F5 tornadoes is greater than F0-F1 tornadoes, consistent with

the hypothesis that F2-F5 tornadoes are more faithfully detected due to their

comparatively large size and long duration.

� Near Omaha, tornado reports are too infrequent to estimate a population effect.

The results indicate that some of the spatial variability of tornado reports may be

modeled by a measure of human population density. In this pilot study, we limited the

domain of analysis to the vicinity of population centers, where we could reasonably

presume uniform climatological frequency of tornadoes over the analysis region. We

used population density to adjust tornado counts for population effects. The ability of
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the model to uncover different but sensible relationships between probability of

detection and population density lays the groundwork for more ambitious study of

population and meteorological effects in all regions. An extension of this work might

use climatological information of indices relevant to tornado frequency, such as those

identified in Brooks and Craven (2002), and examine alternative indices of human

density. It is a challenge to estimate statistical model parameters given the spatial and

temporal variability of climatological data. However, hierarchical Bayesian models

provide a rigorous estimation procedure and have been used effectively in similar

climatological studies (Wikle and Anderson 2003, Elsner and Jagger 2004, Elsner et al.

2004).

We find a population density effect that runs counter to results in Brooks and Craven

(2002) that suggest an effect possibly due to changes in reporting standards. Whereas

Brooks and Craven (2002) hypothesize from meteorological evidence that some F2-F5

tornado reports in 1953-1973 may have been overrated if contemporary rating

standards were applied, we hypothesize from report data that some F2-F5 tornadoes in

rural Oklahoma were underrated. The hypotheses are not necessarily at odds with one

another. They might simply reflect differences of samples, since our analysis is of

regional rather than national tornado reports. It would be interesting to adjust

simultaneously for meteorological conditions and underreporting due to variations in

population density to better understand regional variations in relative importance of

both factors. Furthermore, an adjusted tornado count that reflects both population
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density effects and meteorological conditions should provide a more realistic estimate

of climatological tornado frequency for tornado hazard models.
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Appendix: WinBUGS Code for Oklahoma City Counties

model
{

alpha˜dnorm(0.5,0.0001)
theta<-exp(alpha)
lambda˜dgamma(0.001,0.001)
for (i in 1:19) {
p[i]<-exp(-theta/x[i])
lambda1[i]<-lambda*area[i]
sn[i]˜dpois(lambda1[i]*area[i]*p[i])

}
}

Data

list(
sn=c( 33, 18, 12, 13, 23, 21, 18, 31, 6 , 9, 16,

6, 14, 18, 9 ,23, 19, 10, 22),

area=c(709.2, 899.9, 903.1, 744.6 ,958.6, 787.9, 536.2, 1278.4,
928.6, 956.8 ,1058.5, 732.0 ,686.4, 955.6 ,624.8 ,632.5,
719.7, 569.7, 1101.0),

x=c(788.297518, 61.235693, 14.354335, 34.413914, 26.322136 ,67.049118,
240.537486, 23.178504 ,13.086367, 8.300376, 53.983562 ,14.876503,
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83.629662 ,57.204897, 18.207106, 41.419447 ,43.856051, 34.306828,
33.732425)

)

Inits
list( alpha=0.5,

lambda=1 ,
bign=c( 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100)
)
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City Surrounding Counties
Atlanta, GA Fulton, Cherokee, Forsyth, Gwinnett, Dekalb,

Clayton, Fayette, Coweta, Carroll, Douglas,
Cobb, Pickens, Dawson, Hall, Jackson,
Barrow, Walton, Rockdale, Henry, Spalding,
Pike, Meriwether, Troup, Heard, Cleburne,
Cherokee, Haralson, Paulding, Bartow, Gordon

Champaign, IL Champaign, Ford, Vermilion, Douglas, Piatt,
McLean, Iroquois, Benton, Warren, Vermillion,
Edgar, Coles, Moultrie, Macon, De Witt,
Logan, Tazewell, Woodford, Livingston

Des Moines, IA Polk, Story, Marion, Warren, Madison,
Dallas, Boone, Hamilton, Hardin, Marshall,
Tama, Pottawattamie, Mahaska, Monroe, Lucas,
Clarke, Union, Adair, Guthrie, Greene, Webster

Oklahoma City, OK Oklahoma, Canadian, Kingfisher, Logan, Lincoln,
Pottawatomie, Cleveland, Caddo, Blaine, Major,
Garfield, Noble, Payne, Creek, Okfuskee,
Seminole, Pontotoc, McClain, Grady

Omaha, NE Douglas, Pottawattamie, Harrison, Shelby, Cass,
Montgomery, Mills, Sarpy, Saunders, Dodge,
Washington, Monona, Crawford, Carroll, Audubon,
Adair, Adams, Taylor, Page, Fremont,
Cass, Lancaster, Seward, Butler, Colfax,
Cuming, Burt

Tulsa, OK Tulsa, Creek, Osage, Washington, Rogers,
Wagoner, Okmulgee, Lincoln, Pawnee, Chautauqua,
Montgomery, Osage, Nowata, Craig, Mayes,
Cherokee, Muskogee, McIntosh, Hughes, Seminole

Table 1: Population centers and surrounding counties for which tornado reports were
pooled. The first county listed contains the population center.
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City @ _ =O� �M¡ =O�4� |Oklahoma City: F0-F1 4.161 0.0414 0.9947 0.6180
Oklahoma City: F2-F5 13.060 0.0314 0.9836 0.2164
Oklahoma City: Sig. 11.960 0.0176 0.9849 0.2558

Tulsa: F0-F1 9.920 0.0406 0.9880 0.2800
Tulsa: F2-F5 14.060 0.0260 0.9830 0.1700

Atlanta: F0-F1 22.010 0.0189 0.9880 0.4000
Atlanta: F2-F5 0.080 0.0080 1.0000 0.9970

Champaign: F0-F1 24.150 0.0644 0.8910 0.3400
Champaign: F2-F5 0.010 0.0099 1.0000 0.9950
Des Moines: F0-F1 17.410 0.0410 0.9687 0.3600
Des Moines: F2-F5 0.007 0.0115 1.0000 0.9960

Omaha: F0-F1 0.003 0.0253 1.0000 0.9998
Omaha: F2-F5 0.003 0.0193 1.0000 0.9998

Table 2: Population effect parameter ( @ ), tornado density parameter ( _ ), and maximum
and minimum probability of detection (=\� �M¡ , =O�4� | ) for each combination of population
center and F-scale grouping.
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Population County Reported Posterior
County Density Area Tornadoes Mean Std. Dev. (2.5, 97.5)� E � �	 ^B	 �+	 %�	 %6	 %6	

Oklahoma 788.298 709 74 74.49 0.7105 (74, 76)
Cleveland 240.537 536 45 46.22 1.1360 (45, 49)

Payne 83.630 686 38 42.33 2.2820 (39, 47)
Pottawatomie 67.049 788 47 53.14 2.7830 (48, 59)

Canadian 61.236 900 61 67.64 3.1960 (63, 76
Creek 57.205 956 46 54.62 3.4420 (49, 62)

Garfield 53.984 1058 56 66.07 3.7960 (60, 74)
Pontotoc 43.856 720 41 49.29 3.3310 (44, 57)
Seminole 41.419 632 40 47.68 3.1630 (42, 55)

Logan 34.414 745 37 47.64 3.9140 (41, 56)
McClain 34.307 570 35 43.18 3.2840 (38, 50)

Grady 33.732 1101 52 68.03 5.0990 (59, 79)
Lincoln 26.322 959 57 74.40 5.3700 (65, 86)
Caddo 23.179 1278 88 113.90 7.0880 (101, 129)

Okfuskee 18.207 625 29 44.46 4.8530 (36, 55)
Noble 14.877 732 28 49.11 5.9430 (38, 62)

Kingfisher 14.354 903 45 71.77 7.0100 (59, 87) )
Blaine 13.086 929 33 62.49 7.4890 (49, 78)
Major 8.300 957 30 71.29 9.0340 (55, 90)

Table 3: County population density ( E � �	 , =?J���¢`�j��¢&��
 � � ), county area ( ^�	 , ��
 � ), re-
ported number of tornadoes ( ��	 ), and mean, standard deviation, 2.5 and 97.5 percentiles
from posterior distribution of adjusted number of tornadoes ( %]	 ).
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