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ABSTRACT

A point cloud is a 3D data representation that is becoming increasingly popular.

Recent significant advances in 3D sensors and capturing techniques have led to a surge

in the usage of 3D point clouds in virtual reality/augmented reality (VR/AR) content

creation, as well as 3D sensing for robotics, smart cities, telepresence, and automated

driving applications. With an increase in point cloud applications and improved capturing

technologies, we now have high-resolution point clouds with millions of points per frame.

However, due to the large size of a point cloud, efficient techniques for the transmission,

compression, and processing of point cloud content are still widely sought.

This thesis addresses multiple issues in the transmission, compression, and pro-

cessing pipeline for point cloud data. We employ deep learning solution to process 3D

dense as well as sparse point cloud data for both static as well as dynamic contents. Em-

ploying deep learning on point cloud data which is inherently sparse is a challenging task.

We propose multiple deep learning-based frameworks that address each of the following
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problems:

1. Point Cloud Compression Artifact Removal. V-PCC is the current state-of-the-

art for dynamic point cloud compression. However, at lower bitrates, there are

unpleasant artifacts introduced by V-PCC. We propose a deep learning solution for

V-PCC artifact removal by leveraging the direction of projection property in V-PCC

to remove quantization noise.

2. Point Cloud Geometry Prediction. The current point cloud lossy compression

and processing techniques suffer from quantization loss which results in a coarser

sub-sampled representation of the point cloud. We solve the problem of points lost

during voxelization by performing geometry prediction across spatial scale using

deep learning architecture.

3. Point Cloud Geometry Upsampling. Loss of details and irregularities in point

cloud geometry can occur during the capturing, processing, and compression pipeline.

We present a novel geometry upsampling technique, PU-Dense, which can process

a diverse set of point clouds including synthetic mesh-based point clouds, real-

world high-resolution point clouds, real-world indoor LiDAR scanned objects, as

well as outdoor dynamically acquired LiDAR-based point clouds.

4. Dynamic Point Cloud Interpolation. Dense photorealistic point clouds can depict
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real-world dynamic objects in high resolution and with a high frame rate. Frame in-

terpolation of such dynamic point clouds would enable the distribution, processing,

and compression of such content. We also propose the first point cloud interpolation

framework for photorealistic dynamic point clouds.

5. Inter-frame Compression for Dynamic Point Clouds. Efficient point cloud com-

pression is essential for applications like virtual and mixed reality, autonomous

driving, and cultural heritage. We propose a deep learning-based inter-frame en-

coding scheme for dynamic point cloud geometry compression.

In each case, our method achieves state-of-the-art results with significant improvement to

the current technologies.
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CHAPTER 1

INTRODUCTION

Recent significant advances in 3D sensors and capturing techniques have led to a

surge in the usage of 3D point clouds in virtual reality/augmented reality (VR/AR) content

creation and communications, as well as 3D sensing for robotics, smart cities, telepres-

ence [29], and automated driving applications [9]. A 3D point cloud can efficiently rep-

resent volumetric visual data such as 3D scenes and objects using a collection of discrete

points with 3D geometry positions and other attributes (e.g., color, reflectance). Point

cloud data offers advantages over polygonal meshes because it is more flexible and has

real-time processing potential, since there is no need to process, store, or transfer surface

topological information. With an increase in point cloud applications and improved cap-

turing technologies, we now have high-resolution point clouds with millions of points per

frame.

Based on their usage, point clouds can be categorized into point cloud scenes and

point cloud objects. Point cloud scenes are dynamically acquired and are typically cap-

tured by LIDAR sensors. One example of a dynamic point cloud would be LIDAR sensors

mounted atop a vehicle for mobile mapping and autonomous navigation purposes [45].

Point cloud objects can be further subdivided into static objects and dynamic objects. A

static point cloud is a single object, whereas a dynamic point cloud is time-varying, where

each instance of a dynamic point cloud is a static point cloud. Dynamic time-varying point
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clouds are used in AR/VR, volumetric video, and telepresence and can be generated using

3D models, i.e. CGI, or captured from real-world scenes using various methods such as

multiple cameras with depth sensors surrounding the object and capturing movement over

time.

A volumetric video such as a dynamic point cloud provides an immersive media

experience. A dynamic point cloud describes a 3D object using its geometry, respective

attributes, as well as any temporal changes. Temporal information in the dynamic point

cloud is included in the form of individual capture instances, much like 2D video frames.

A dynamic point cloud can be viewed from any angle or viewpoint because it includes

a complete 3D scene. This six degrees-of-freedom (6DoF) [2] viewing capability makes

the dynamic point cloud essential for any AR or VR application. A single instance of a

dynamic point cloud captured by 8i [59] could contain as many as one million points.

Point cloud data is inherently sparse. point cloud scenes are usually captured by

LiDAR which tend to be sparser than the volumetric point cloud objects. However, the

size of all these categories of point clouds are still really large and is one of the main

problems faced during the point cloud transmission and processing. Efficient techniques

for the transmission, compression and processing of point cloud content are still widely

sought.

In our work, we offer the following contributions in the compression, transmission

and processing pipeline:

Point cloud compression artifact removal. V-PCC encoding is the current state-

of-the-art method for dynamic point cloud compression that has been selected by MPEG

2



to be developed into a standard. However, quantization noise during V-PCC encoding

results in severe quality degradation because it introduces compression artifacts. V-PCC

is based on the projection of the point cloud patches to 2D planes and encoding the se-

quence as 2D texture and geometry patch sequences. However, the resulting quantization

errors from coding can introduce compression artifacts, which can be very unpleasant

for the quality of experience (QoE). We developed a novel out-of-the-loop point cloud

geometry artifact removal solution that can significantly improve reconstruction quality

without additional bandwidth cost. Our novel framework consists of a point cloud sam-

pling scheme, an artifact removal network, and an aggregation scheme. The point cloud

sampling scheme employs a cube-based neighborhood patch extraction to divide the point

cloud into patches. The geometry artifact removal network then processes these patches to

obtain artifact-removed patches. The artifact-removed patches are then merged together

using an aggregation scheme to obtain the final artifact-removed point cloud. We employ

3D deep convolutional feature learning for geometry artifact removal that jointly recovers

both the quantization direction and the quantization noise level by exploiting projection

and quantization prior. The simulation results demonstrate that the proposed method is

highly effective and can considerably improve the quality of the reconstructed point cloud.

Point cloud geometry prediction. During compression and transmission, point

cloud often suffer from quantization noise which results in lower Level-of-Detail (LoD)

point clouds. We solve the problem of points lost during voxelization by performing

geometry prediction across spatial scale using deep learning architecture. We perform an

octree-type upsampling of point cloud geometry where each voxel point is divided into 8
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sub-voxel points and their occupancy is predicted by our network. This way we obtain

a denser representation of the point cloud while minimizing the losses with respect to

the ground truth. Our results show that our geometry prediction scheme can significantly

improve the PSNR of a point cloud, therefore, making it an essential post-processing

scheme for the compression-transmission pipeline. This solution can serve as a crucial

prediction tool across scale for point cloud compression, as well as display adaptation.

Point Cloud Upsampling. Loss of details and irregularities in point cloud geom-

etry can occur during the capturing, processing, and compression pipeline. It is essential

to address these challenges by being able to upsample a low Level-of-Detail (LoD) point

cloud into a high LoD point cloud. Current upsampling methods suffer from several weak-

nesses in handling high-resolution large-scale photo-realistic point clouds. We present

a novel geometry upsampling technique, PU-Dense, which is specifically designed for

dense real-world high-resolution point clouds. PU-Dense employs a 3D multiscale archi-

tecture using sparse convolutional networks that hierarchically reconstruct an upsampled

point cloud geometry via progressive rescaling and multiscale feature extraction. The

framework employs UNet type architecture that downscales the point cloud to a bottle-

neck and then upscales it to a higher level-of-detail (LoD) point cloud. PU-Dense in-

troduces a novel Feature Extraction Unit that incorporates multiscale spatial learning by

employing filters at multiple sampling rates and field of views. Qualitative and quanti-

tative experimental results show that our method significantly outperforms the state-of-

the-art approaches by a large margin while having much lower inference time complexity.

Where most work struggles to operate on real-world data, our method efficiently learns
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the underlying surface and recreates a high level of detail upsampled point cloud.

Dynamic Point Cloud Interpolation. Dense photorealistic point clouds can de-

pict real-world dynamic objects in high resolution and with a high frame rate. Frame

interpolation of such dynamic point clouds would enable the distribution, processing, and

compression of such content. We propose a first point cloud interpolation framework

for photorealistic dynamic point clouds. Given two consecutive dynamic point cloud

frames, our framework aims to generate intermediate frame(s) between them. The pro-

posed deep learning framework has three major components: the encoder module, the

fusion network, and the multi-scale point cloud synthesis module. The encoder module

extracts multi-scale features from two consecutive frames. The fusion network employs

a novel 4D feature learning technique to merge the multi-scale features from consecutive

frames. Finally, the multi-scale point cloud synthesis module hierarchically reconstructs

the interpolated point cloud intermediate frame at different resolutions. We evaluate our

framework on high-resolution point cloud datasets used in MPEG, JPEG Pleno, and AVS

standards. The quantitative and qualitative results demonstrate the effectiveness of the

proposed method.

Deep Learning-based Point Cloud Compression . Efficient point cloud com-

pression is essential for applications like virtual and mixed reality, autonomous driving,

and cultural heritage. We propose a deep learning-based inter-frame encoding scheme

for dynamic point cloud geometry compression. We propose a lossy geometry compres-

sion scheme that predicts the latent representation of the current frame using the previous

frame by employing a novel prediction network. Our proposed network utilizes sparse
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convolutions with hierarchical multiscale 3D feature learning to encode the current frame

using the previous frame. We employ convolution on target coordinates to map the la-

tent representation of the previous frame to the downsampled coordinates of the current

frame to predict the current frame’s feature embedding. Our framework transmits the

residual of the predicted features and the actual features by compressing them using a

learned probabilistic factorized entropy model. At the receiver, the decoder hierarchically

reconstructs the current frame by progressively rescaling the feature embedding. We com-

pared our model to the state-of-the-art Video-based Point Cloud Compression (V-PCC)

and Geometry-based Point Cloud Compression (G-PCC) schemes standardized by the

Moving Picture Experts Group (MPEG). Our method achieves more than 91% BD-Rate

(Bjøntegaard Delta Rate) reduction against G-PCC, more than 62% BD-Rate reduction

against V-PCC intra-frame encoding mode, and more than 52% BD-Rate savings against

V-PCC P-frame-based inter-frame encoding mode using HEVC.
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CHAPTER 2

POINT CLOUD COMPRESSION ARTIFACT REMOVAL

2.1 Introduction

A 3D point cloud can efficiently represent volumetric visual data such as 3D

scenes and objects using a collection of discrete points with 3D geometry positions and

other attributes (e.g., color, reflectance). Point cloud data offers advantages over polygo-

nal meshes because it is more flexible and has real-time processing potential, since there

is no need to process, store, or transfer surface topological information. With an in-

crease in point cloud applications and improved capturing technologies, we now have

high-resolution point clouds with millions of points per frame.

A volumetric video such as a dynamic point cloud provides an immersive media

experience. A dynamic point cloud describes a 3D object using its geometry, respective

attributes, as well as any temporal changes. Temporal information in the dynamic point

cloud is included in the form of individual capture instances, much like 2D video frames.

A dynamic point cloud can be viewed from any angle or viewpoint because it includes

a complete 3D scene. This six degrees-of-freedom (6DoF) [2] viewing capability makes

the dynamic point cloud essential for any AR or VR application. A single instance of

a dynamic point cloud captured by 8i [59] could contain as many as one million points.

Approximately 30 bits are used to represent the geometry (x,y,z), and 24 bits represent

the color (r,g,b). The size of a single instance can be approximated as 6 Mbytes, which
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translates to a bitrate of 180 Mbytes per second without compression for a 30-fps dynamic

point cloud. The high data rate is one of the main problems faced by dynamic point

clouds, and efficient compression technologies to allow for the distribution of such content

are still widely sought.

The current state-of-the-art dynamic point cloud compression algorithm is the

video-based point cloud compression (V-PCC) method [38] which has been selected and

developed for standardization by MPEG for dynamic point clouds. Under the V-PCC

standard, a point cloud is first projected onto its bounding box patch by patch. Then,

the patches are packed into a video for compression. During the video compression, the

reconstructed geometry may suffer severe quality degradation due to the quantization er-

rors. Blocking artifacts or compression artifacts are often introduced in compressed media

due to distortion which is introduced by lossy compression techniques [94]. The V-PCC

coded point cloud yields excellent reproduction without noticeable artifacts at high or

moderate bitrates. However, at low bitrates, the reconstructed point cloud suffers from vi-

sually annoying artifacts due to coarse quantization. Fig. 1 shows two versions of a point

cloud encoded at different bitrates. As can be seen, there is no visible blocking artifact in

the point cloud coded at a higher bitrate, while severe blocking artifacts exist in the one

coded at a lower bitrate. Since blocking artifacts significantly degrade the visual quality

of the reconstructed point cloud, it is desirable to identify these artifacts and remove them

from the reconstructed point cloud.

This work proposes the first deep-learning-based geometry artifact removal algo-

rithm for the V-PCC standard for dynamic point clouds. Ours is a pioneering work in
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(a) Higher bitrate (b) Lower bitrate

Figure 1: Blocking effects in a point cloud coded at different bitrates using V-PCC en-

coding.

V-PCC artifact removal. The proposed framework offers the following contributions:

• We present a projection-aware 3D sparse convolutional neural network-based

framework for point cloud artifact removal. Our sparse convolutional network

learns an embedding and then regresses over this embedding to learn the quanti-

zation noise. Experimental results show that our method significantly improves the

quality of the V-PCC reconstructed point cloud in terms of both objective evalua-

tions and visual comparison.

• We observe that the geometry distortion of the V-PCC reconstructed point cloud ex-

ists only in the direction of the V-PCC projection. We exploit this prior knowledge

to learn both the direction and level of quantization noise by limiting the degree of

freedom of the learned noise. We employ Chamfer distance as our loss function
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and use MSE-PSNR as our quality evaluation metrics.

• We identify a patch correspondence mismatch problem that arises due to a differ-

ence in the number of points in the original geometry and the V-PCC reconstructed

geometry. To solve this, we propose a sampling and aggregation scheme using a

cube-centered neighbor search algorithm to find a better correspondence between

the reconstructed geometry (after V-PCC encoding) and the original geometry (be-

fore V-PCC encoding). The sampling and aggregation scheme makes our method

scalable to larger point clouds since the framework is not dependent on the number

of points in a point cloud.

2.2 Background

In 2017, MPEG issued a call for proposals on Point Cloud Compression (PCC)

to target an international standard for PCC [3]. As a result of this call, multiple pro-

posals were submitted to MPEG. Since then, MPEG has been evaluating and improving

the performances of the proposed technologies. MPEG has selected two technologies for

PCC: Geometry-based PCC (G-PCC) [4] for static point cloud data as well as for dy-

namically acquired LIDAR point cloud data, and video-based point cloud compression

(V-PCC) [5] for dynamic content. G-PCC employs octree in its coding scheme, whereas

V-PCC projects point clouds onto 2D surfaces and then uses state-of-the-art HEVC video

encoding to encode dynamic point clouds. However, V-PCC does introduce compression

artifacts, primarily when encoded with a low bitrate.

To the best of our knowledge, compression artifact removal in V-PCC has not been

10



studied so far. However, compression artifact removal techniques and deblocking have

been extensively studied in image and video coding. Since V-PCC also employs state-of-

the-art HEVC video coding, there is potential to learn from the video compression artifact

removal techniques and use them for V-PCC artifact removal. The current state-of-the-art

compression artifact removal techniques are based on deep learning. There have been

several previous studies using residual networks [133] and GANs [30], as well as efforts

employing memory-based deep learning architecture [101]. All of these works are lim-

ited to a single image and do not utilize information from previous frames. Recent works,

however, have exploited temporal information in restoration tasks to improve video com-

pression artifact removal [40, 72].

Point cloud deep learning has been attracting increasing attention, especially in

the last five years [43]. PointNet [84] was among the earliest deep learning architectures

for point cloud learning and employed pointwise fully connected layers followed by max

pooling. This architecture was further improved into PointNet++ [85] by adding hier-

archical learning that could learn local features with a better contextual scale. Wang et

al. [116] proposed an octree-based CNN for 3D shape classification that performs 3D

CNN operations on the octants of the octree data structure. PointCNN [67] achieved

state-of-the-art results using a convolutional neural network on raw 3D point clouds. To

perform convolution on raw point clouds, PointCNN makes the input permutation invari-

ant by learning a transformation matrix using fully connected layers. SparseConvNet [36]
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by Facebook was among the first sparse convolutional neural networks that achieved state-

of-the-art results on point clouds. SparseConvNet introduced submanifold sparse convo-

lutions that exploited the sparse nature of point clouds and ensured that the convolutions

would not “dilate” the data. Since sparse convolutions are memory-efficient and the data

remain sparse throughout the network, deeper architectures can be used for point clouds.

MinkowskiNet [20] is another such implementation that employs sparse convolutions for

3D point cloud learning. Recent works have also explored newer architectures for point

cloud learning [110, 134].

The problem of point cloud denoising is an active research field which originated

in the early 1990s. The works can be broadly divided into two categories: optimization-

based methods and deep-learning-based methods. The optimization-based methods

include techniques such as moving least squares (MLS)-based methods [42, 81], locally

optimal projection (LOP)-based methods [68], sparsity-based methods [74,94], non-local

similarity-based methods [21], and graph-based methods [24, 32]. However, the current

state-of-the-art solutions are all deep learning-based methods. PU-Net [129] employed

deep learning to learn multi-level features for point cloud denoising. This work was fur-

ther improved to EC-Net [127], which added edge-awareness to the network to further

improve the results, especially around the edges. PU-GAN [64] utilized generative ad-

versarial networks (GANs) with patch-based learning for point cloud denoising. PUGeo-

Net [87] incorporated discrete differential geometry into deep learning to learn underlying

geometric structures from given sparse point clouds. These methods work well for syn-

thetic noise (e.g. Gaussian noise), and some have even been tested on real-world noise
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Figure 2: System Model.

introduced during point cloud capture. However, these methods are not optimized to work

on compression artifact removal because of the nature of the quantization noise introduced

during V-PCC.

Similarly, some work focuses on point cloud inpainting [28, 48, 131], wherein

portions of point clouds lost during point cloud capture are completed. However, these

methods do not work for compression artifact removal in V-PCC. In the last year, there

has been notable work performed on deep learning solutions for point cloud compression

[52, 73, 108, 115]. However, these solutions are still immature, and the standardized V-

PCC is still widely used. There has also been some work conducted with respect to the

improvement of the V-PCC standard [62].

2.3 System Model

As described earlier, the quantization noise from V-PCC coding can result in

compression artifacts that can cause considerable degradation to the quality of the re-

constructed point cloud. Our goal is to perform deep learning-based geometry artifact

removal. We make our framework scalable to larger point clouds. We propose a sampling

and aggregation scheme in which the point cloud is divided into smaller patches, and

then these patches are passed through a geometry compression artifact removal network.
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(a) V-PCC projection onto ”bounded box” planes. Image from [1]

(b) V-PCC patch packing onto a 2D grid. Example of geometry (left)

and texture (right) images. Image from [97].

Figure 3: V-PCC: Example of 3D-to-2D projection. Although the figures show both

geometry and texture information, in our work we are only concerned with geometry

artifact removal.

Afterward, we combine the artifact-removed patches to form an artifact-removed point

cloud. The system model is shown in Fig. 2. Taking advantage of the sparse nature of

point clouds, we employ the sparse convolutional network [36] which uses submanifold

sparse convolutions [37] for our 3D learning.
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2.3.1 Problem Formulation

V-PCC attempts to leverage existing video compression codecs for point cloud

geometry and texture compression. V-PCC converts the point cloud into a set of differ-

ent video sequences, one for geometry and one for texture information. In our work, we

are only concerned with the noise introduced in the geometry compression. The video-

generated bitstreams and the metadata needed to interpret these videos are then multi-

plexed together to generate the final point cloud V-PCC bitstream. V-PCC maps the input

point cloud to a regular 2D grid by first decomposing the point cloud into a set of patches

and then mapping these patches independently to a 2D grid using orthogonal projection.

This process is shown in Fig. 3a. V-PCC iteratively divides the point cloud into smaller

patches to avoid auto-occlusions and to generate patches with smooth boundaries. To

generate these patches, the normal for each point is first estimated. An initial clustering is

obtained by associating each point to one of the six cube-oriented planes. More precisely,

each point is associated with the plane that has the closest normal (i.e., the dot product of

the point normal and the plane normal is maximum). This initial clustering is then refined

by iteratively updating the cluster index by taking into account the point’s normal and the

neighboring point’s cluster index. In this way, all the points in a refined patch are associ-

ated with a single plane. The majority of the points in the point cloud are projected to the

cube plane that is closest to the normal of that point. This projection is only along one of

the axes px, y, or zq. These patches are then projected onto the 2D grid using a process

called packing to obtain a frame with texture and another with geometry. The final video

sequence frames for geometry and texture are shown in Fig. 3b.
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(a) Gaussian Noise (b) V-PCC Quantization Noise

Figure 4: Comparison of two different types of noises in a point cloud.

Afterward, these projected video frames are encoded by leveraging video com-

pression techniques. Since these compression techniques are lossy, compression artifacts

are often introduced due to quantization noise affecting the point cloud geometry. How-

ever, the artifact noise introduced in V-PCC geometry is only in one direction, as shown in

Fig. 4. This is because each point is projected to only one plane, and therefore the artifact

noise in that point is only in the direction of that plane. This means that quantization

noise introduced in each point is only along one of the axes (x, y, or z). We leverage this

property to learn the quantization noise level and quantization noise direction introduced

by the V-PCC codec in the point cloud geometry. Since the quantization noise is along

one of the axes, we make sure that our learned quantization noise for each point is also

along a single axis. We exploit this prior knowledge of quantization noise direction to

limit the degree of freedom of the learned quantization noise. We use the learned quanti-

zation noise to remove geometry artifacts from the reconstructed point cloud and improve

its PSNR.
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2.3.2 Sampling

The size of a point cloud can vary greatly, from point clouds with only a few thou-

sand points to point clouds with millions of points. We propose a patch-based sampling

and aggregation scheme to make our framework scalable to all sizes of point clouds. We

sample a large point cloud into smaller neighborhood patches to ensure efficiency for

practical application by offering affordable memory consumption on a cube basis, along

with parallel processing.

For each extracted patch, we need to find the patch in the original/ground-truth

point cloud and the corresponding patch in the V-PCC reconstructed/noisy point cloud. A

lossy low bitrate V-PCC reconstructed point cloud usually has fewer points than the orig-

inal point cloud, consequently making the reconstructed point cloud sparser. Traditional

patch-based point cloud deep learning models employ k-nearest neighbor (k-NN) search

algorithms to obtain patches. However, when the number of points in the reconstructed

point cloud differs from the number of points in the original point cloud, the k-NN search

for extracting a neighborhood patch would not work because it would result in a different

patch surface area for the two point clouds. Consider the example of k “ 61: using k-NN

to extract a patch of 61 points would occupy a much larger area in a sparser point cloud

as compared with a dense point cloud. We call this the patch correspondence mismatch

problem and show an example of it in Fig. 5.

To solve the patch correspondence mismatch problem, we propose a cube-

centered neighborhood search algorithm wherein we extract all the points inside a fixed

cube volume. We employ farthest point sampling (FPS) [26] to sample points on the
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(a) Dense surface (b) Sparse surface

Figure 5: Patch correspondence mismatch problem for k “ 61. The k-NN search covers

a smaller surface on a denser point cloud as compared to a sparser point cloud.
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Figure 6: An example sampling and aggregation scheme. The red point is the input

point that is sampled into three patches. These three patches are processed to obtain three

processed green points. The three green points are then aggregated to form the blue output

point.

noisy point cloud and then extract cube patches around the sampled points. We obtain the

noisy point cloud patch and the associated ground truth patch of the same cube volume
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extracted from the same location from both point clouds.

Farthest point sampling is employed to sample N points over the point cloud, and

a cube neighborhood around these points is used to extract neighborhood patches. N

patches are extracted using the formula:

N “
n ˚ C

k
(2.1)

where n represents the total number of points in the point cloud, k is the approximate

average number of points in the neighborhood patch, and C is a variable used to control

the average number of overlapping patches per point. More points can be sampled by

increasing the value of C, which would result in a larger average number of overlapping

patches per point. Each of the sampled points is used as a center point for a cube and

all the points inside the cube are extracted to form an input neighborhood patch. The

geometry of the points inside the patch is zero-centered and then normalized between

zero and the length of the cube side. These smaller input patches are fed to our 3D U-Net

architecture as shown in Fig. 7. Depending on the value of C, each point is sampled

into multiple input patches and processed to obtain output patches. Therefore, we obtain

multiple processed points for each point. We employ an aggregation scheme to merge the

output patches to obtain the final output point cloud. An example of this can be found in

Fig. 6.

2.3.3 Aggregation

Once we have the artifact-removed output patches, we aggregate them back to-

gether to form the final point cloud. Post-processing is performed on the output patches
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Figure 7: Overview of the proposed point cloud artifact removal scheme. The input point

cloud is divided into smaller patches that are fed into a sparse U-Net, which produces

the projection vector and the scalar weights for each patch. The projection vector and

the scalar weights are used to calculate the quantization noise that is then removed from

the reconstructed point cloud patch. The output patches are then aggregated to obtain the

artifact-removed point cloud.

for which the normalization is removed, and they are moved back to their original loca-

tions as shown in Fig. 7. Depending on the value of C, we obtain many overlapping

patches: therefore, each point receives multiple geometry values from different patches.

Each input point is sampled into multiple patches, resulting in multiple clean point outputs

for each input point. The geometries of these clean output points are mean aggregated to

obtain the final clean output point.

One example sampling and aggregation scheme is shown in Fig. 6. The number

of input points is n “ 5, the number of patches sampled is N “ 3, and each patch is of

size k “ 3. For reference, we can examine the red input point. This input point is sampled

into three patches and processed to obtain three processed green points. We then take the
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mean of the three green processed points to obtain the blue aggregated output point.

2.3.4 Network Architecture

As explained in the previous section, we employ a cube-based patch sampling

algorithm, so the number of points in the input patch varies. Traditional deep-learning-

based point cloud processing networks work on a fixed number of input points to the

network. We propose a fully convolutional 3D network that functions for variable input

patch size. We employ sparse convolutional networks to create a fully convolutional

network that offers the advantage of using a different number of points per patch, making

the cube neighborhood patch extraction viable. Recall that our goal is to take in a 3D

input patch of a V-PCC reconstructed point cloud and learn the per point quantization

noise. The output of our 3D deep learning architecture is per point scalar weights and a

per point projection vector. We use these to calculate the quantization noise.

3D U-Net. We employ submanifold sparse convolutions [37] that use a 3D sparse

convolutional network [36]. Sparse convolutions exploit the sparse nature of a point cloud

and are much more memory efficient. Furthermore, sparse submanifold convolutions

make sure the network does not “dilate” the sparse data and maintain the same sparsity

level throughout the network. This helps us build and train deeper architectures like U-

Net [93].

U-Net architecture has been widely used in biomedical image segmentation tasks

and usually employs 2D convolutions. We implemented a sparse convolution-based 3D

U-Net architecture, the details of which are shown in Fig. 8. The architecture takes in a

21



Input

PC

16 163

32 32

64 64

128 128

256

128256

64128

3264

32 16 1+3

 33 Submanifold Sparse Conv
 copy

 23 Sparse Conv with stride 2

 23 Sparse Deconvolution

13 Submanifold Sparse Conv

Figure 8: 3D U-Net Network Architecture.

3-dimensional geometry input patch, and the output is 4-dimensional: 3 dimensions for

the projection vector and 1 dimension as a scalar weight. We use 3x3x3 p33q submani-

fold sparse convolutions in each layer. We employ 2x2x2 p23q convolutions with a stride

of 2 for each downsampling, whereas 2x2x2 p23q deconvolution is used for upsampling.

The U-Net architecture typically consists of two paths: the encoder path and the decoder

path. The encoder path captures the context of the point cloud, producing feature maps

using strided convolutions to downsample. In the encoder path, with each downsampling,

the number of points decreases but the feature dimension is doubled. The decoder path

employs 3D deconvolution to upsample the point cloud. U-Net combines the information
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from the encoder path with that of the decoder path to obtain both the contextual infor-

mation and localized information. U-Net only contains convolutional layers and does not

employ any dense layers, making the network fully convolutional. This offers the added

advantage of working with patches of variable input size.

Quantization Noise Calculation. The projection vector yields the direction of

the quantization noise, whereas the scalar weight provides the level of the quantization

noise. In V-PCC, a point is typically projected in one direction (x, y, or z); therefore, the

quantization noise for each point is in a specific direction. Hence, it makes more sense

to use a one-hot encoded projection vector for each point. We convert the projection

vector into a one-hot vector by performing one-hot encoding using the maximum of the

projection vector:

Zipjq “

$

’

&

’

%

1 if j “ argmax
j

Vipjq

0 else
(2.2)

Where i is the point number, j is the dimension, i.e. j P tx, y, zu-axis, and Zipjq is the

one-hot vector, whereas Vipjq is the projection vector.

Once we have the one-hot vector, we multiply it with the scalar weight to learn

the quantization noise. The per point quantization noise is then removed from the input

patch to obtain an artifact-removed output patch. This is also illustrated in Fig. 7.

Loss Function. Our loss function is calculated by comparing the artifact-removed

output patch to the ground truth patch. The loss function is applied to each patch before
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aggregation. We use Chamfer distance as the loss function in our architecture:

LCDpPO, PGq “
ÿ

xPPO

min
yPPG

||x ´ y||
2
2 `

ÿ

yPPG

min
xPPO

||x ´ y||
2
2 (2.3)

Where LCD is the Chamfer distance loss function, PG is the ground truth patch and PO

is the output artifact-removed patch calculated using input patch, projection vector, and

scalar weights. Intuitively, the first term measures an approximate distance between each

output point to the target surface, whereas the second term rewards even coverage of the

output point cloud and penalizes any gaps.

2.4 Simulation Results

We perform extensive simulations and show both the objective results and the vi-

sual comparison of our framework. Since this is the first work on V-PCC artifact removal,

we have nothing with which to compare our work. However, we do show considerable

improvement in the quality of the point cloud and perform multiple ablation studies to

gain insight into the problem and explore alternative methods. For our simulation, we use

the values of k “ 10000 and C “ 20.

2.4.1 Dataset

We use the 8i voxelized full bodies dataset from 8i labs [59], which contains up to

one million points per point cloud and is widely used by MPEG. The 8i dataset includes

multiple sequences of point clouds. Each sequence has multiple point clouds representing

10 seconds of video captured at 30 fps for a total of 300 frames. We use two sequences

for training (longdress, loot) and three sequences for testing (redandblack, soldier, queen).
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We use three different bitrates to encode these point clouds using V-PCC, shown in Table

1. We label these bitrates as br1, br2, and br3 from the highest bitrate to the lowest bitrate,

respectively.

2.4.2 Objective Evaluation

We use mean-squared-error (MSE) point-to-point PSNR (dB) as well as point-to-

point Hausdorff PSNR (dB) as our objective metrics, which are calculated using MPEG’s

PC error tool [106]. We refer to MSE PSNR as simply PSNR in the rest of the section. We

also measure the BD-Rate (Bjöntegaard Delta Rate) [15] improvement to determine how

much savings our method achieves. The PSNR of the reconstructed point clouds obtained

from the V-PCC encoder is measured before and after our artifact removal technique. The

results are shown in Table 2. As can be determined for all three bitrates, our artifact

removal technique considerably improves the PSNR as well as Hausdorff PSNR of the

reconstructed point cloud.

We follow the MPEG common test condition to calculate the BD-rate using the

PSNR metric. We compute the point-to-point distance for each frame of a sequence and

obtain a total score by averaging across all frames. The final objective score was obtained

by averaging across all three test sequences. We obtain a BD-rate savings of 11.3%. We

also show the PSNR results for each 8i point cloud sequence separately for each bitrate

in Table 3. We can also observe PSNR improvement for the bitrates for each point cloud

sequence. From the results, we observe that higher PSNR improvement is achieved at a

lower bitrate. This is because lower bitrates suffer from higher quantization noise, which
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our system can efficiently remove.

Table 1: Different bitrates used in simulation

Bitrate label Actual bitrate

br1 0.01866 bpp

br2 0.01632 bpp

br3 0.01502 bpp

Table 2: Average PSNR results tested on three 8i sequences

PSNR (dB) Hausdorff PSNR (dB)

Bitrate Noisy PC Cleaned PC Noisy PC Cleaned PC

br3 59.62 60.47 37.02 37.21

br2 61.84 62.36 39.58 39.64

br1 64.20 64.53 41.15 41.20

BD-rate savings: 11.3 %

2.4.3 Visual Results

Visual results for point cloud artifact removal are shown in Fig. 9 and Fig. 10

for two different sequences: queen and soldier. We show the original (ground truth)

point cloud, V-PCC reconstructed point cloud, and the artifact-removed point cloud for

three different bitrates of V-PCC encoding. To visualize the point cloud, we first compute

the normals for each point using 100 neighboring points; then, we set the shading to

vertical and view the point cloud as a mesh. In this way, we can observe the point cloud

geometry, which is more intuitive than vertex-color rendered images. However, since we

use normals to visualize the point cloud, some points might appear black due to flipped
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Table 3: Simulation Results For Each Individual Sequence

PSNR (dB)

Test PC Bitrate Noisy PC Cleaned PC Improvement

Queen br3 60.23 60.79 0.56

br2 62.35 62.90 0.55

br1 64.94 65.21 0.27

RedAndBlack br3 59.44 60.38 0.94

br2 61.62 62.18 0.56

br1 63.90 64.27 0.37

Soldier br3 59.20 60.25 1.05

br2 61.53 62.01 0.48

br1 63.76 64.12 0.36

normals, as shown from the right foot in Fig. 9. We also plot the error map based on the

point-to-point (P2point) D1 distance between decoded point clouds and ground truth to

visualize the error distribution.

We can see that our method improves the quality of the point cloud, especially on

the edges and surface of the point cloud. Although V-PCC performs well in quantitative

objective comparison, its reconstructed point clouds contain noticeable artifacts when the

bitrate is low. Our method removes these artifacts and considerably improves the visual

quality of the point cloud. An interesting observation is that our artifact-removed point

cloud compensates for some broken parts in the V-PCC reconstructed point cloud.
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Figure 9: Visual comparison of ’queen’ showing ground truth, three different V-PCC

reconstructed point clouds, and their corresponding artifact-removed point cloud. We

show the geometry as well as point-to-point error map.

2.4.4 Quantization Noise Calculation

In this section, we compare our quantization noise calculation method with al-

ternative methods. We use the V-PCC encoded bitrate of br3 for this experiment. Our

current structure outputs 1-dimensional scalar weights and a 3-dimensional projection

vector. We convert the projection vector to a one-hot encoded vector and multiply it by

the scalar weights to calculate the quantization noise. After removing the quantization
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Figure 10: Visual comparison of ’soldier’ showing ground truth, three different V-PCC

reconstructed point clouds, and their corresponding artifact-removed point clouds. We

show the geometry as well as point-to-point error map.

noise from the input patch, Chamfer loss is used to train the network. We label this Our

Method and compare it with two alternative methods. Method 1: The network outputs

3-dimensional quantization noise that is directly removed from the input patch without

any post-processing, and then Chamfer loss is used to train the network. Method 2:

The network outputs 1-dimensional scalar weights and a 3-dimensional projection vector.

Projection vectors are directly multiplied by the scalar weights to find quantization noise
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without converting them to a one-hot vector first. After removing the quantization noise

from the input patch, Chamfer loss is used to train the network.

To summarize, in Method 1 the network directly outputs the quantization noise,

whereas in Method 2 we remove the one-hot encoding part from our original architecture.

The results of Our Method, Method 1, and Method 2 are compared in Table 4.

Table 4: Different quantization noise calculation methods

PSNR (dB)

Test PC Noisy PC Our Method Method 1 Method 2

Queen 60.23 60.79 60.35 60.41

RedAndBlack 59.44 60.38 59.92 60.02

Soldier 59.20 60.25 59.76 59.93

Average 59.62 60.47 60.01 60.12

The results of Method 1 show that learning quantization noise directly from the

network yields poor results. Similarly, comparison of our method with Method 2 shows

that converting the projection vector to a one-hot vector before calculating the quanti-

zation noise considerably improves our results. This also shows that utilizing the prior

knowledge of quantization noise which is only in the direction of the projection is benefi-

cial to the learning of quantization noise.

2.4.5 Sampling and Aggregation Schemes

Currently, we employ the Farthest Point Sampling technique to sample points

and extract a neighborhood around these points using cube extraction. Since there are

overlapping neighborhood patches, we perform a mean aggregation scheme to obtain the
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final artifact-removed point cloud. We compare our method to a non-overlapping octree-

based [8] cube division method. In the octree-based method, the point cloud is partitioned

into cube nodes, and artifact removal is applied to each node. The differences between

our method and the octree-based method are: 1) the patch sampling is performed using an

octree; 2) there is no aggregation scheme, since the sampled patches are non-overlapping.

The results of the comparison are shown in Table 5. We can observe from the results that

our overlapping cubes-based sampling method substantially outperforms the octree-based

sampling method.

Table 5: Different sampling and aggregation schemes

PSNR (dB)

Test PC Noisy PC Our Method Octree-based

Queen 60.23 60.79 60.38

RedAndBlack 59.44 60.38 59.97

Soldier 59.20 60.25 59.80

Average 59.62 60.47 60.05

2.4.6 Choosing the Value of C

As described earlier, C is the variable used to control the average number of over-

lapping patches per point. A higher value of C would result in a larger number of ran-

domly sampled patches. To further study our sampling scheme, we perform a hyper-

parameter optimization experiment for the parameter C. We perform the simulation on

the three test sequences of our 8i dataset (redandblack, soldier, queen) and then plot the

combined results. We vary the value of C and measure the PSNR results as well as the
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Figure 11: PSNR (dB) and Time (s) complexity for different values of C.

computation time. Results of this experiment are shown in Fig. 11. As can be observed,

the PSNR increases with the value of C: PSNR is maximal at C “ 18 and starts to slightly

decrease after that. The computation time is calculated as the average time to process a

single 8i point cloud on an NVIDIA GeForce GTX 1080 Ti GPU. The computation time

includes sampling, forward propagation through the network, and aggregation. As Fig.

11 shows, the computation time increases linearly with the value of C.

2.5 Conclusion

V-PCC encoding is the current state-of-the-art method for dynamic point cloud

compression that has been selected by MPEG to be developed into a standard. However,

quantization noise during V-PCC encoding results in severe quality degradation because

it introduces compression artifacts. This work presents a first-of-its-kind deep learning-

based point cloud geometry compression artifact removal framework for V-PCC encoded
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dynamic point clouds. We leverage the prior knowledge that during V-PCC, the quanti-

zation noise is introduced only in the direction of the point cloud projection. We employ

a 3D sparse convolutional neural network to learn both the direction and the magnitude

of geometry quantization noise. To make our work scalable, we propose a cube-centered

neighborhood extraction scheme with a sampling and aggregation method to extract small

neighborhood patches from the original point cloud. These patches are passed through the

network to remove compression artifacts and then aggregated to form the final artifact-

removed point cloud. Experimental results show that our method considerably improves

the V-PCC reconstructed point cloud’s geometry quality in both objective evaluations and

visual comparisons.
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CHAPTER 3

POINT CLOUD GEOMETRY PREDICTION

3.1 Introduction

Point clouds are being readily used in augmented and virtual reality experiences,

as well as 3D sensing for smart cities, robotics, and automated driving applications [9].

Therefore, point cloud capturing, transmission, and processing are essential for these use

cases. However, point cloud representation requires a large amount of data which is not

always feasible for transmission. Efficient compression technologies are in high demand

to make point cloud transmission, storage, and processing more proficient [8]. There-

fore, in 2017 MPEG issued a call for proposals on Point Cloud Compression (PCC), and

since then MPEG has been evaluating and improving the performances of the proposed

technologies [97].

For natural captured 3D sensor signals, scene geometry needs an efficient repre-

sentation that is scalable in Level-of-Detail (LoD) as well as efficient in compression.

MPEG has selected two technologies for PCC: Geometry-based PCC (G-PCC) for dy-

namically acquired LiDAR point cloud data and for static point cloud data, and video-

based point cloud compression (V-PCC) for dynamic content [97]. G-PCC employs oc-

tree in its coding scheme, whereas, V-PCC projects point cloud into 2D cube surfaces and

then uses state-of-the-art HEVC video encoding to encode dynamic point clouds. Octree

has been widely used in processing as well as compression of point clouds [95, 135]. In
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(a) (b)

Figure 12: (a) Original (uncompressed) point cloud, (b) Reconstructed point cloud suf-

fering from quantization noise.

Octree a node is subdivided into eight child-nodes and the occupancy of each child-node

is decided by whether it has points or not. A linear model based PCC approach has been

proposed in [136].

Deep learning for point cloud solutions have also matured with PointNet [84]

among the earlier works utilizing fully connected layers. This work was further extended

into PointNet++ [85] by introducing hierarchical feature learning. Octree based voxelized

deep learning solutions have also been proposed that remained state-of-the-art in the past
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[116]. Recently, sparse tensors and sparse convolutions have been explored in point cloud

deep learning [37]. Sparse convolution leverages the inherent sparsity of point cloud

which makes them memory efficient and enables deeper architecture to be built for point

cloud learning. Submanifold sparse convolutional network [36] was the first to use sparse

convolutions followed by Minkowski Engine [20].

The current compression and transmission schemes often suffer from quantization

noise resulting in a lower LoD reconstructed point cloud as shown in Fig. 12. Due to

quantization, the neighboring points in a voxelized point cloud are merged to form a

single voxel resulting in a coarser point cloud with fewer points as shown in Fig. 13a.

Leveraging this fact, we use octree voxel subdivisions to predict the occupancy of the

empty neighboring voxels with a deep learning model as shown in Fig. 13b. This makes

our architecture a point cloud geometry prediction scheme to upsample a lower Level-

of-Detail (LoD) point cloud into a higher LoD point cloud without any overhead to the

compression-transmission pipeline. We use sparse convolution by employing Minkowski

Engine with a UNet like structure employing inception-residual network blocks. To the

best of our knowledge, this is the only work on point cloud upsampling that specifically

targets the quantization loss during the compression-transmission pipeline.

Both the objective and subjective results show that we significantly improve the

quality of the point cloud. Since our technique is a post-processing step, there is no

transmission overhead or a bit rate cost to achieve this gain. Another use case for this

technique is in display adaptation, when zooming in a point cloud this technique can help

super resolve details for display adaptation.
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(a) (b)

Figure 13: (a) Voxel merging due to quantization. (b) Upsample using voxel prediction.

3.2 System Model

3.2.1 Problem Formulation

Quantization is a necessary step in most compression-transmission pipelines. As a

consequence of quantization, the neighboring voxelized points get merged into one voxel.

Depending on the compression rate, the quantization step-size (qs) can determine the

number of points lost and the LoD of the reconstructed point cloud. The quantization loss

is modeled by:

X̂ “

Z

X

qs

^

ˆ qs (3.1)

where qs is the quantization step-size, X is the original point cloud and X̂ is the quan-

tized point cloud. This quantization results in duplicate points that are removed during the

compression process. One example of qs “ 2 is shown in Fig. 13a. Our goal is to repro-

duce these lost points by predicting the occupancy of the neighboring empty voxels given

the coarser low LoD point cloud. An example of how each voxel would be upsampled

using voxel prediction is shown in Fig. 13b.
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Figure 14: System Model.

3.2.2 Network Architecture

Our system model is shown in Fig. 14. Generally, a point cloud can be large with

millions of points. To feed the point cloud to the network and make our system scalable,

we subdivide the point cloud into smaller cube patches and feed each cube patch to the

network. The input patch is a voxelized geometry and is of dimension N ˆ 3, where N is

the number of voxels in the input cube patch and 3 are the x,y,z coordinates. The output

of our network is a N ˆ 8 occupancy map for the 2ˆ 2ˆ 2 “ 8 voxels encompassing the

input voxel. We use this occupancy map to generate a denser point cloud N̂ ˆ 3, where

N ď N̂ ď N ˆ 8. It should be noted that our output predicted occupancy map can be

more than 8 voxels depending on the qs and amount of upsampling needed. e.g. For

qs “ 4 we can employ an occupancy map of 4 ˆ 4 ˆ 4 “ 64. We aggregate the output

patches back together to form the upsampled point cloud.

We use sparse tensors and sparse convolution using Minkowski Engine [20]. We

employ UNet type architecture [93] with three Inception-residual network blocks (IRB)
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Figure 15: Network Architecture.

[100] per layer as shown in Fig. 15. We use a binary cross-entropy classification loss to

compare the occupancy map prediction from the network and the ground truth (original)

point cloud.

3.3 Simulation Results

An input cube patch size of 128 ˆ 128 ˆ 128 voxels is used. Dataset: the system

model is simulated on 8i voxelized full bodies dataset [59] that is being used in the MPEG

standardization. The training is performed on two sequences (longdress, loot) and testing

on the 3 sequences (redandblack, soldier, queen). Each sequence has hundreds of point

clouds with each point cloud having up to a million points each.

We perform both objective and subjective evaluations. We ran experiments for
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(a) (b) (c)

Figure 16: (a) Original point cloud, (b) Quantized point cloud with qs = 2, (c) Upsampled

point cloud.

three qs “ 4{3, 2, 4. These qs are being used in both MPEG PCC. For qs “ 4{3 and

qs “ 2, we predict 8 neighboring voxels. However, for qs “ 4, we increased our receptive

field to include 4 ˆ 4 ˆ 4 “ 64 neighboring voxels. Which means the output of the

network for qs “ 4 is N ˆ 64. We use D1 geometry PSNR quality metric that is adopted

by MPEG [106].

The results of the simulations are shown in Table 6. Input PC is the reconstructed

point cloud after compression pipeline with a specific quantization step and the Output

PC is the output of our network. As can be seen from the table, we see a significant

improvement in the PSNR of the point cloud. Since our method is a post-processing and

adds no overhead on the compression-transmission pipeline. We get on average a 8.8678

dB improvement in the quality of a reconstructed point cloud of qs “ 2 without any
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(a) (b) (c)

Figure 17: (a) Original point cloud, (b) Quantized point cloud with qs = 4, (c) Upsampled

point cloud.

bit-rate cost.

Table 6: Average PSNR (dB) results.

qs Input PC Output PC Difference

4/3 64.6646 73.8630 9.1984

2 63.2080 72.0758 8.8678

4 58.0077 65.1890 7.1813

The visual results are shown in Fig. 16 and Fig. 17 for qs “ 2 and qs “ 4

respectively. As can be seen our approach significantly improves the quality of the point

cloud both objective as well as in subjective evaluations.
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3.4 Conclusion

Point cloud compression is a necessary step for point cloud transmission, stor-

age, and processing. However, during compression and transmission, point cloud suffers

from quantization noise which results in lower Level-of-Detail (LoD) point clouds. In

this work, we propose a deep learning-based point cloud geometry prediction scheme that

takes a lower LoD point cloud and upsamples it into a higher LoD point cloud. We use

octree to encompass each voxel and its neighboring voxels from the lower LoD point

cloud into 8 voxels (or more). Then we learn an occupancy map for each of these voxels

using a deep learning architecture. Based on the occupancy map, we generate a higher

LoD point cloud by populating the empty voxels. The simulation results show that our

method significantly improves the PSNR of the reconstructed point cloud geometry with-

out adding any transmission overhead to the compression-transmission pipeline. This

makes our method highly efficient and ideal post-processing step in decoding, as well as

super-resolving point cloud for display adaptation.
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CHAPTER 4

PU-DENSE: SPARSE TENSOR-BASED POINT CLOUD GEOMETRY

UPSAMPLING

4.1 Introduction

There has been a surge in the usage of 3D point clouds in augmented/virtual real-

ity (AR/VR), telepresence [29, 80], surveillance and autonomous driving [8, 9] which has

been accompanied by significant advances in 3D sensors and capturing techniques [63].

With the rapid advancement of 3D point cloud acquisition technologies, such as LiDAR

(Light Detection And Ranging) sensors, high precision point cloud representations have

become affordable. Moreover, the recent advances in GPU power capabilities have en-

abled real-time rendering and visualization of dense 3D point clouds. Recent advances in

point cloud compression by groups like MPEG [97] and JPEG Pleno [82] have enabled

the efficient transfer of larger point clouds. These developments have now allowed the

capture and utilization of very high definition real-world point clouds with millions of

points per frame.

Based on their usage, point clouds can be categorized into point cloud scenes

and point cloud objects. Point cloud scenes are dynamically acquired and are typically

captured by LiDAR sensors. LiDAR sensors mounted on top of a vehicle for mobile

mapping and autonomous navigation [45] are examples of a dynamically acquired point

cloud scene. Point cloud objects can be further subdivided into static objects and dynamic
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objects. A static point cloud is a single object, whereas a dynamic point cloud is time-

varying, where each instance of a dynamic point cloud is a static point cloud. Dynamic

time-varying point clouds are used in AR/VR, volumetric video, and telepresence and

can be generated using 3D models, i.e., CGI, or captured from real-world scenes using

various methods such as multiple cameras with depth sensors surrounding the object and

capturing movement over time. Advancement in sensor technologies has allowed the

capture of photo-realistic point clouds with millions of points per object. These real-

world high-resolution point clouds tend to be dense and pose complicated challenges in

point cloud processing due to their size. In this paper, we introduce a novel point cloud

geometry upsampling technique that does not just work on synthetic point clouds but can

also process a diverse set of point clouds including dense high-resolution photo-realistic

point clouds, real-world LiDAR scanned objects, as well as dynamically acquired outdoor

LiDAR point clouds.

Recently, there have been considerable advances in point cloud upsampling along

with advances in problems closely resembling point cloud upsampling like point cloud

completion [54, 103, 117, 120] and point cloud denoising [25, 47, 132, 137]. Point

cloud upsampling methods can be broadly categorized as optimization-based methods

[10,49,50,68,83] and deep learning-based methods [7,65,88,125,128,130]. Optimization-

based methods usually fit local geometry by utilizing geometry priors that only work well

for low precision smooth surfaces. Optimization-based methods are computationally in-

tensive and are difficult to scale to larger point clouds. Deep learning-based methods like

PU-Net [130], 3PU [125], and PU-GAN [65] can effectively learn point cloud structures
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from data. However, these methods use kNN search-based patch selection for neighbor-

hood feature aggregation. Raw points within the patch can be in any order and are pro-

cessed directly by fully connected layers without considering the relative point location

in the overall 3D representation or the point’s distance from its neighbors. Furthermore,

these methods are also memory hungry and computationally intensive, which is why they

are limited to fixed small input sizes. Therefore, the current state-of-the-art in point cloud

upsampling fails to build deeper architectures with large receptive fields that can effec-

tively learn discriminative features, and be able to efficiently work on denser point clouds

that have a large number of points.

To resolve these issues, we propose a novel PU-Dense architecture that can up-

sample synthetic point clouds, real-world scanned sparse point clouds as well as dense

photo-realistic point clouds. The proposed framework offers the following contributions:

• PU-Dense employs a UNet [93] type encoder-decoder architecture that hierarchi-

cally reconstructs an upsampled point cloud via progressive rescaling and multi-

scale feature extraction. PU-Dense introduces a novel feature extraction (FE) unit

with Inception-Residual Block (IRB) and a 3D Dilated Pyramid Block (3D-DPB)

to extract 3D multiscale features with different field-of-views in a computationally

efficient manner.

• PU-Dense is a fully convolutional geometry upsampling network that is translation

invariant and has a variable input size that takes advantage of the sparse nature of

point clouds and employs sparse convolutions [20] that tend to be memory efficient.

Rather than a distance-based loss function, PU-Dense employs a memory-efficient
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binary voxel classification loss and utilizes 3D data representation that enables ef-

ficient learning of 3D point features. While the previous state-of-the-arts limit their

input to a fixed number of points between a few hundred and a few thousand points,

our method can process millions of points per iteration with variable input size.

• Rather than creating our own synthetic dataset like the previous works, we intend

to use a standardized dataset. We train our network on ShapeNet while testing on

ShapeNet as well as real-world photo-realistic point cloud datasets like MPEG’s 8i

Voxelized Surface Light Field (8iVSLF), JPEG Pleno’s 8i Voxelized Full Bodies

(8iVFB), Queen by technicolor, real-world LiDAR scanned objects from ScanOb-

jectNN dataset, and dynamically acquired outdoor LiDAR dataset from KITTI.

Experimental results show that our method considerably outperforms the previous

works in not just synthetic point cloud upsampling but also dense photo-realistic

point clouds as well as sparse LiDAR-based datasets. We show that the proposed

method is robust against noise. Moreover, the results show that PU-Dense is faster

as well as more memory efficient when compared with the other state-of-the-art

point cloud upsampling.

4.2 Related Work

4.2.1 Optimization-based Upsampling Methods

Earlier works formulated point cloud upsampling as an optimization problem. A

pioneering solution proposed by Alexa et al. [10] computed a Voronoi diagram on the
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moving least squares (MLS) surface. Lipman et al. [68] developed a parametrization-

free method using a locally optimal projection operator (LOP) to resample points and

reconstruct surfaces based on an L1 norm. This work was subsequently improved to

weighted LOP [49] and continuous LOP [83] methods to consolidate point sets with noise,

outliers, and nonuniformities. However, LOP-based methods’ performance suffers when

upsampling sharp edges and corners because they assume points are sampled from smooth

surfaces. Huang et al. [50] introduced an edge-aware (EAR) approach that is designed

to preserve sharp features by first resampling away from edges and then progressively

approaching edges and corners. These optimization-based methods are not data-driven,

assume insufficient priors, and often require additional attributes. Furthermore, these

methods are computationally intensive so they are not scalable to high-resolution point

clouds with a large number of points.

4.2.2 Deep Learning in Point Clouds

Recent advances in deep learning have seen a lot of success in point cloud pro-

cessing using deep learning models [43]. The raw format of point cloud lacks point order

and has an irregular structure which brings new challenges in employing deep learning

solutions for point cloud processing.

Grid-based architectures. Pioneer works [102, 122] have tried to extend 2D

convolutional neural networks to 3D space by voxelizing the point cloud into uniform

voxels and applying 3D convolutions to them. However, due to the sparsity of point

clouds, most of the computations are wasted on empty voxels. Projection methods [57,
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61, 98, 99] project 3D data onto 2D planes and then process these 2D planes. However,

these projection-based methods are not as effective as processing the 3D point cloud.

Point-based methods. Raw point cloud data acquired from 3D sensors are in the

form of unordered points. Point-based methods process raw point cloud data using permu-

tation invariant feature extraction networks. PointNet [84] was among the first deep learn-

ing solutions that can directly process raw 3D point cloud data. They employed pointwise

fully connected layers and symmetric max-pooling to make the process permutation in-

variant. This work was subsequently improved to PointNet++ [85] that introduced hierar-

chical learning to learn more meaningful and discriminative features. PointCNN [67] was

among the first works to use the convolutional layers on raw point cloud data. PointCNN

proposed a permutation invariant X -Conv that employs MLP layers to learn the permu-

tation followed by a convolutional layer. The VoxelNet [138] divides point clouds using

voxel partition and then uses PointNets to learn point-wise features. However, point-based

methods are computationally expensive, which imposes severe constraints on building

larger networks or their applicability on point clouds with a large number of points.

New point cloud data representation. There has been significant work on graph-

based models which can operate on unordered 3D data. Graphs can be constructed from

3D point clouds in a variety of ways [58, 60, 118] which have shown promising results

in point cloud processing. Octree-based convolutional neural networks were introduced

in [116] that converted the data into an octree data representation and employed convo-

lutions on octants of the octree data structure. SparseConvNet [36] by Facebook was

among the first sparse convolutional neural networks that achieved state-of-the-art results
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on point clouds. SparseConvNet employed submanifold sparse convolutions [37] that

exploited the sparse nature of point clouds and ensured that the convolutions would not

“dilate” the data. MinkowskiNet [20] is another such implementation that employs sparse

convolutions for 3D point cloud learning. Sparse convolutions exploit the inherent spar-

sity of point cloud data and store point cloud data in sparse tensors where convolutions

are only performed on the voxels that are occupied. This makes the sparse convolutions

much more computationally efficient allowing for a much deeper architecture to be built

and the ability to process hundreds of thousands of points in a single inference time. We

employ sparse convolutions using Minkowski Engine in our work.

4.2.3 Deep Learning-based Upsampling Methods

PU-Net [130] was the pioneer deep learning upsampling work on point cloud that

uses PointNet++ for feature extraction. PU-Net uses multi-branch MLPs to expand fea-

tures with a joint reconstruction and repulsion loss to generate uniform point clouds. PU-

Net operates on small patch level and does not consider the spatial relations among the

points which results in the output lacking fine-grained high-resolution geometry struc-

tures. EC-Net [128] intended to improve PU-Net work and introduced a point-to-edge

distance loss, which can help preserve the edges. However, EC-Net requires the tedious

work of labeling the point cloud data with annotated edge and surface information. Wang

et al. [125] proposed 3PU-Net which introduced a patch-based progressive upsampling

inspired by image super-resolution methods. 3PU learns point-wise features similar to

the methods before and employs cascaded 2x upsampling networks. Each subnet in 3PU
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appends a 1D code to the features which limits each subnet upsampling to a factor of

2. However, multiple subnets can be progressively employed to get a large upsampling

factor, say 16 times. 3PU only supports an upsampling factor in powers of 2 and also

requires careful step-by-step training. PU-GAN [65] introduced a generative adversar-

ial network for point cloud upsampling. Their performance improvement mainly comes

from the introduction of a discriminator. PUGeo-Net [88] introduced a geometric-centric

approach where they upsample point clouds by learning the first and second fundamental

forms of the local geometry. However, their method needs additional supervision in the

form of normals, which many point clouds like those generated by LiDAR sensors do not

come with.

However, these deep learning-based upsampling methods use PointNet++ type

architecture where the raw unordered points are stored in 2D arrays and kNN search is

employed for neighborhood feature aggregation without considering the point location in

the overall 3D representation. Point-based approaches perform upsampling by splitting

scenes into smaller chunks, effectively restricting the model’s ability to learn from global

context. These methods employ deep learning operations that are usually used for 2D

images to learn 3D features, which tends to be an inefficient approach. Furthermore, all

these methods are limited to a small fixed input size and employ patch-based scaling to be

able to process larger point clouds. Additionally, even after using smaller patches, these

methods suffer from memory issues and are computationally intensive, especially their

loss functions. This limits these architectures to a relatively shallower network which

decreases their ability to learn discriminative features. Due to these reasons, the previous
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upsampling methods are often limited to and tested on small mesh-based point clouds and

give poor results when applied on dense high-resolution real-world scanned point clouds

such as the ones used in AR/VR or the MPEG standards.

Note that recently there has been some point cloud upsampling work that has

emerged in parallel to our work. Recently, Qian et al. [86] proposed PU-GCN that uses

a multi-level feature extraction using an inception-based graph convolutional network.

They employ shuffling rather than duplicating features to expand the feature space for

upsampling. Dis-PU [66] proposes to disentangle the upsampling task using two cas-

caded sub-networks, a dense generator, and a spatial refiner, to obtain both distribution

uniformity and proximity-to-surface. Inspired by Meta-SR from image super-resolution,

Meta-PU [124] was proposed to support point cloud upsampling of arbitrary scale factors

with a single model. Meta-PU proposes a meta-subnetwork to dynamically adjust the

weights of their residual graph convolution (RGC) upsampling network for different scal-

ing factors. The upsampling network outputs a dense maximum points point cloud which

is downsampled using farthest point sampling (FPS) to the desired ratio. However, this

whole process is computationally intensive and inefficient when employed to point clouds

with a large number of points. More recently, Flexible-PU [89] has been proposed that can

also work for an arbitrary upsampling ratio using a lightweight neural network. Flexible-

PU explicitly involves the local neighborhood information in the learning process. They

generate new samples by an affine combination of neighboring points projected onto the

tangent plane which are further refined by a self-attention-based refinement module.
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FE Unit, C=32

Conv: 32×33/2↓ 

T-Conv: 64×33/2↑  

TG-Conv: 32×ks3/2↑  

Pruning

=   Convolution with same in/out coordinates.

=   Feature Extraction Unit with 32 channels.

=   Downscaling: convolution with stride 2.

=   Upscaling: Transpose convolution with stride 2.

=   Upscaling: Transpose convolution generating new coordinates.

=   Classify: Choosing topk coordinates .

Binary 
Classification 

Loss

Output

Input

Figure 18: PU-Dense network architecture consisting of encoder and decoder branches

with skip connections in the middle. Ei is the input to the network that gets downscaled

in the encoder branch by using convolutions of stride 2. The decoder side upscales the

tensor by using transpose convolutions. TG-Conv: Transpose convolution generating new

coordinates is employed in the last upscaling layer of the decoder side to populate ad-

ditional coordinates around the existing coordinates. PU-Dense employs a voxel-based

binary cross-entropy loss to compare decoder output D0 with ground truth GT . Finally,

pruning is applied to classify D0 by choosing top k coordinates with the largest features.

For convolutions, the terminology 32 ˆ 33 denotes a kernel size of 33 with a channel size

of 32. An example of tensor sizes throughout the network is shown in Table 7.
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4.3 PU-Dense

Given a lower level-of-detail (LoD) point cloud X “ txi P R3uMi“1 with M points

and an upsampling ratio R, we seek to generate a denser higher LoD point cloud XR “

txr
i P R3u

M,R
i,r“1 that is distributed uniformly over the underlying surface.

4.3.1 Preprocessing

Converting a point cloud from its raw format to a 3D volumetric representation is

called voxelization. PU-Dense employs voxelization that allows it to use 3D convolutions

to learn 3D features, which are more consistent and accurate in feature representation

compared to the previous works where kNN is employed on unordered points to aggregate

neighborhood features. Since we are only working with geometry and not other attributes,

we assign feature f to each coordinate where fpx, y, zq “ 1, if the voxel is occupied, and

fpx, y, zq “ 0 otherwise. We represent each input point cloud using a data tensor with a

set of coordinates C “ tpxi, yi, ziqui and their associated features F “ tfpxi, yi, ziqui.

4.3.2 The Network

PU-Dense is the first fully convolutional geometry upsampling network which

makes it translation-invariant with variable input size. PU-Dense employs a multiscale

U-Net [93] encoder-decoder type architecture built on Minkowski engine [20] utilizing

sparse convolutions. Sparse convolutions exploit the inherent sparsity of point cloud data

and are much more memory efficient. Sparse convolution is defined in [20] as:

f out
u “

ÿ

iPN3pu,Cinq

Wif
in
u`i for u P Cout, (4.1)
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Figure 19: FE Unit: Feature Extraction Unit. Each FE Unit consists of two Inception-

Residual Blocks (IRB) and one 3D Dilated Pyramid Block (3D-DPB). FE Unit efficiently

learns 3D multiscale spatial features by employing multiple sampling rates and receptive

field.

where N3 is a set of offsets that define the shape of a kernel and N3pu,C
inq “ ti|u ` i P

Cin, i P N3u is the set of offsets from the current center, u, that exists in Cin. Cin and

Cout are the input and output coordinates. f in
u and f out

u are the input and output features

at location u. Wi denotes the kernel value at offset i.

The proposed network architecture, shown in Fig. 18, has an encoder downscal-

ing network and a decoder upscaling network, with residual connections in between. For

convolutions, the terminology 32 ˆ 33 denotes a kernel size of 33 with a channel size

of 32. The PU-Dense architecture employs a total of four different types of sparse con-

volutions: (i) Convolution, (ii) Downscaling Convolution, (iii) Transpose Convolution,
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and (iv) Transpose Convolution generating new coordinates. Employing these four dif-

ferent kinds of sparse convolutions, PU-Dense builds a 3D multiscale spatial architecture

employing hierarchical learning using an encoder-decoder architecture.

Convolution (Referred as Conv). PU-Dense employs sparse convolutions with

the same in/out coordinates (Cin “ Cout). The coordinates of the sparse tensor stay the

same after passing through these kernels and only the feature changes.

Downscaling convolution (Referred as Conv{2 Ó): PU-Dense employs sparse

convolution with stride of two to halve the scale of each geometric dimension.

Transpose convolution (Referred as T-Conv{2 Ò): Sparse transpose convolution

with a stride of two is used to map the tensor coordinates back to their previous upscaled

coordinates.

Transpose convolution generating new coordinates (Referred as TG-Conv{2Ò):

This is a special case of sparse transpose convolution where the convolution generates

new coordinates before aggregating features [44]. The new coordinates are generated

on the voxels the kernel covers during convolution around the input coordinates. PU-

Dense employs TG-Conv in the last upscaling layer of the decoder with a variable kernel

size of ks. Variable kernel size is used here to optimize the architecture according to the

resolution of the point cloud and the upsampling ratio. A larger ks is suitable for a sparser

point cloud and would result in a larger number of output coordinates (Cout) generated.

In this work, we employ a kernel size of ks “ 5 for upsampling ratios of 4x and 8x.

Table 7 shows an example of sparse tensor sizes in the PU-Dense network dur-

ing 4x upsampling. Since a ks “ 5 is used in TG-Conv, the size of the new generated

55



Table 7: An example of tensor sizes in PU-Dense architecture (Fig. 18) for 4x upsampling

using ks “ 5 for longdress PC from 8i.

Tensor Size of coordinates (C) Size of features (F )

GT 830,397 1
Ei 207,599 1
E1 207,599 32
E2 139,244 32
E3 52,612 64
E4 14,440 128
E5 3,623 256
D4 14,440 256
D3 52,612 128
D2 139,244 64
D1 4,379,676 32
D0 4,379,676 1
O 830,397 1

coordinates in D1 is 4,379,676. PU-Dense employs Pruning to choose the topk features

and their corresponding coordinates from D0 to form the final output tensor O, where k

is 830,397 in this particular example. Pruning is implemented on D0 which has a feature

length of 1 making it easier to choose the topk features and their corresponding coordi-

nates to create the output tensor O.

4.3.3 Feature Extraction Unit

We introduce a novel feature extraction unit containing two Inception-Residual

Blocks and a single 3D Dilated Pyramid Block as shown in Fig. 19.

Inception-Residual Block (IRB) is inspired by Inception-ResNet architecture
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[100] which was originally proposed for 2D images. IRB has been implemented with

great success using 3D sparse convolutions in earlier works [113]. Similar to 2D

Inception-ResNet architecture, IRB employs filters of different sizes on the same fea-

ture scale while squeezing the feature domain and adding a residual link to the inception

block. The IRB block employs 1x1x1 convolutions which do not learn any spatial patterns

but do learn patterns across the depth (cross channel) of each occupied voxel in the sparse

tensor. Combining kernels of different sizes (1x1x1 and 3x3x3) allows the block to learn

patterns across the depth (channel) as well across spatial patterns. This combined with a

residual link leads to a computationally efficient layer which much like its 2D counterpart,

Inception-ResNet architecture, is more discriminative and converges faster [100].

3D Dilated Pyramid Block (3D-DPB) is inspired by the success of spatial pyra-

mid pooling [46] as well as pyramid blocks in image segmentation tasks [18] which

showed that it is effective to resample features at different scales for accurately and effi-

ciently classifying regions of an arbitrary scale. In 3D-DPB, we employ multiple parallel

3D sparse convolutions with different dilation rates to implement a 3D pyramid archi-

tecture. Dilation convolution, also called atrous convolution [19], allows us to arbitrarily

enlarge the field-of-view of filters at any convolutional layer. A 3D global pooling is also

implemented, which is followed by broadcasting the pooled feature to all the occupied

coordinates. The features from all 3D-DPB layers are then concatenated followed by a

1x1x1 convolution to refine the features. 3D-DPB probes the incoming sparse tensors

with filters at multiple sampling rates and effective fields-of-views, thus capturing objects
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as well as geometric context at multiple scales. 3D-DPB with different dilation rates ef-

fectively captures multi-scale information, allowing us to extract denser feature maps by

arbitrarily enlarging the receptive field.

4.3.4 Loss Function

The loss functions used in previous works usually employ distance-based metrics

like chamfer distance, reconstruction loss, or repulsion loss, which tend to be memory

inefficient and fail to learn accurate reconstruction. This is one of the reasons why the

previous works are limited to processing small point clouds or small patches (usually

less than 1024 points). PU-Dense implements an efficient voxel-based binary occupancy

classification loss [56, 113] that allows us to process millions of points at a time. During

training, PU-Dense applies Binary Cross Entropy (BCE) loss on the output of the decoder

(D0) and compares the occupied voxels to the ground truth point cloud (GT ) as shown in

Fig. 18. BCE loss during training is calculated using the following formula:

LBCE “ ´
1

N

ÿ

i

pxilogppiq ` p1 ´ xiqlogp1 ´ piqq (4.2)

where xi is the voxel label that is either occupied p1q or empty p0q in the GT point cloud.

pi is the probability of the voxel being occupied and is calculated using a sigmoid function

applied to the decoder output D0.

4.3.5 Scalability

To the best of our knowledge, all current deep learning-based point cloud upsam-

pling models are constrained to a fixed number of input points and suffer from memory
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issues. These models can typically process a fixed number of points at one moment,

e.g., PU-Net: 1024 points, EC-Net: 1024 points, PU-GAN: 256 points, PUGeo-Net: 256

points. All these methods employ patch-based point cloud processing methods. How-

ever, PU-Net is limited to smaller point clouds. EC-Net, PU-GAN, and 3PU have ex-

tended their patch-based approaches to partition larger point clouds into smaller overlap-

ping patches to operate on the individual patch separately. These patches are upsampled

independently, then merged together. The merged pointset is then resampled using far-

thest point sampling to obtain uniform point distribution despite overlapping regions. Be-

cause of all the pre-processing and post-processing involved, these methods work well

on smaller point clouds but are very inefficient when applied to point clouds with a large

number of points.

Our method is the first fully convolutional upsampling method and, therefore, has

variable input point cloud size. Moreover, since we employ efficient sparse convolutions

and also have a memory-efficient loss function, we can process a much larger number of

points. To make the network further scalable to even bigger point clouds, we employ a

simple kd-tree partition that divides the point cloud into smaller non-overlapping point

clouds that can be processed separately as well as in parallel.

4.4 Experimental Results

We performed extensive experiments, quantitatively and qualitatively, compared

our methodology with state-of-the-art point cloud upsampling methods, and evaluated

various aspects of our model. We perform comprehensive experiments to test PU-Dense
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on different scenarios: (1) Test the proposed method on real-world scanned objects, (2)

Show visual results for mesh surface reconstruction of the upsampled point clouds, (3)

Test the robustness of our method against Gaussian noise, (4) Show comparative results

for inference time and trainable parameters for different methods, (5) Perform ablation

study to show the effectiveness of different components of PU-Dense. Further experimen-

tal details, extended results, and additional visual results can be found in the supplemental

material.

4.4.1 Dataset

We train our network on ShapeNet dataset [17] while test it on ShapeNet, 8iVFB

v2 [23], 8iVSLF [59], Technicolor, ScanObjectNN [109], and KITTI [34] datasets. We

evaluate the performance of our approach on a diverse set of point clouds in terms of spa-

tial density and content type. ShapeNet is a mesh-based dataset, ScanObjectNN dataset is

a real-world scanned object dataset containing sparse point cloud objects, KITTI is a dy-

namically acquired outdoor LiDAR dataset, whereas 8iVFB v2, 8iVSLF, and Technicolor

are real-world captured dense photo-realistic dynamic point cloud datasets for immersive

communication used in MPEG [96] and JPEG [82] point cloud compression standardiza-

tion.

• ShapeNet. We randomly select «24000 3D mesh models from the core dataset of

ShapeNet. We sampled the mesh model into point clouds by randomly generating

points on the surfaces of the mesh, then randomly rotated and quantized the point

cloud to 7-bit precision. The size of the point cloud in this dataset is between 5 000
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to 50 000 points per point cloud.

• 8iVFB v2. JPEG Pleno’s 8i Voxelized Full Bodies dataset [23]. This is a dynamic

voxelized point cloud dataset where each sequence represents a 10 second long

video captured at 30 fps with a total of 300 frames. Each frame has a resolution of

1024 with 10-bit precision. We use four sequences from this dataset: Longdress,

Loot, Red and Black, and Soldier containing about 770 000, 790 000, 730 000, and

1 060 000 points per frame respectively.

• 8iVSLF. MPEG’s 8i Voxelized Surface Light Field dataset [59] of dynamic point

clouds. It has a resolution of 4096 with 12-bit precision. We use two sequences

from this dataset Boxer and Thaidancer containing about 3 130 000 and 3 490 000

points respectively.

• Technicolor. We employ the dynamic point cloud sequence Queen produced

by Technicolor (https://www.technicolor.com/fr) with about 1 million points per

frame.

• ScanObjectNN. [109] This is a real-world scanned object dataset which contains

« 15, 000 objects that are categorized into 15 categories with 2902 unique object

instances. Compared with other datasets, this is a low-resolution sparse point cloud

dataset with 2048 points per point cloud. We compare visual results for ScanOb-

jectNN later in this section.

• KITTI. [34] This is a dynamically acquired dataset captured by LiDAR for au-

tonomous driving. This is a sparse dataset that captures outdoor scenes. We perform
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visual comparisons between different methods when evaluated on KITTI dataset

and show the results later in this section.

4.4.2 Implementation Details

We use kernel size, ks “ 5 in our experiments. Unlike previous work where

small patches had to be extracted from the training dataset and fed into the network, we

trained our network with a batch size of 8 by feeding eight ShapeNet point clouds into

our network each iteration. We implemented the proposed framework in PyTorch with

Minkowski Engine [20].

4.4.3 Evaluation Metrics

Previous works have employed different quality assessment metrics; some works

have even introduced their novel evaluation metrics. We consider commonly-used evalu-

ation metrics that compare the reconstructed point cloud to the ground truth point cloud to

quantitatively evaluate the performance of different methods. These methods are Cham-

fer distance (CD), point-to-point (D1) based mean squared error peak signal-to-noise ratio

(D1 PSNR), point-to-plane (D2) based mean squared error peak signal-to-noise ratio (D2

PSNR), and point-to-point (D1) based Hausdorff PSNR. MSE D1 PSNR, MSE D2 PSNR,

and Hausdorff PSNR has been adopted by both MPEG and AVS standards as an evaluation

metric for point cloud quality [106]. We obtain the geometry PSNRs using the pc error

MPEG tool [107].
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Table 8: Extended comparative results (CD (10´2) and MSE PSNR).

Dataset
Upsampling

Method

4x 8x

CD (10´2) Ó PSNR (dB) Ò CD (10´2) Ó PSNR (dB) Ò

ShapeNet

Downsampled PC 108.18 64.63 199.94 61.96

3PU 76.36 68.65 149.20 65.37
PU-GAN 49.41 70.64 174.58 64.88
PU-GCN 48.15 70.90 65.81 69.59
Dis-PU 36.23 72.19 55.62 70.23
PU-Dense (Ours) 18.82 75.24 30.52 73.11

8iVFB

Downsampled PC 114.63 64.38 222.91 61.49

3PU 67.04 69.41 105.43 66.83
PU-GAN 45.60 70.92 117.66 66.19
PU-GCN 46.30 70.96 63.71 69.78
Dis-PU 32.47 72.72 51.68 70.59
PU-Dense (Ours) 19.38 75.05 33.18 72.57

8iVSLF

Downsampled PC 286.67 73.17 600.34 70.00

3PU 135.41 78.98 202.82 76.78
PU-GAN 121.52 79.58 231.39 76.34
PU-GCN 103.84 80.28 138.81 79.17
Dis-PU 91.99 81.16 129.79 79.52
PU-Dense (Ours) 58.38 83.93 102.82 81.79

Queen

Downsampled PC 106.69 64.69 196.46 62.04

3PU 57.13 70.19 90.90 67.55
PU-GAN 41.67 71.43 110.42 66.36
PU-GCN 42.67 71.24 59.47 70.01
Dis-PU 30.29 73.08 47.32 70.90
PU-Dense (Ours) 15.76 75.93 25.45 73.76
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We define the Chamfer distance between PC A and PC B as:

dCDpA,Bq “
ÿ

xPA

min
yPB

||x ´ y||22`
ÿ

yPB

min
xPA

||x ´ y||22 (4.3)

Intuitively, the first term measures an approximate distance from each upsampled point to

the target surface, and the second term rewards an even coverage of the upsampled surface

and penalizes gaps.

The geometry quality metrics point-to-point MSE PSNR is obtained from a nor-

malization factor and the mean squared error (MSE), as defined in (4.4) which is com-

puted from PC A to PC B as well as in the opposite direction. The PSNRs of the two

directions are then combined to obtain a single symmetric PSNR value with the maxi-

mum pooling function, as defined in (4.5).

PSNRMSE
A,B “ 10 log10

˜

p2s
dMSE
A,B

¸

(4.4)

PSNRMSE
“ minpPSNRMSE

A,B , PSNRMSE
B,A q (4.5)

In (4.4), ps is signal peak and dMSE
A,B is the average squared error (i.e., MSE) between all

points in PC A and their corresponding nearest neighbor point in PC B. The point-to-point

MSE is computed from the point-to-point distance or error ÝÑe pi, jq between each point in

PC A and its nearest neighbor in PC B, dPo2Po
A,B ;

dMSE
A,B “

1

NA

ÿ

@aiPA

dPo2Po
A,B piq ,with (4.6)

dPo2Po
A,B “ ||ÝÑe pi, jq||22 (4.7)

As far as the signal peak ps in (4.4) is concerned, the largest diagonal (LD) distance of

the PC bounding box is typically used for non-voxelized data. For ShapeNet, 8iVFB
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and Queen datasets we use ps “ 1024. For 8iVSLF dataset we use ps “ 4096. In the

D2 PSNR, MSE is still based on the distance between each point to its nearest neighbor

but this distance is now computed from the projection of the point-to-point error vector

ÝÑe pi, jq along the normal vector of the underlying surface at point j in PC B.

Hausdorff PSNR is derived in a similar symmetrical manner but instead of using

point-to-point MSE distance, the Hausdorff distance is employed. The Hausdorff distance

is defined as the largest distance between all the points in point cloud A and their nearest

neighbor in reference point cloud B, thus defining the Hausdorff distance as:

dHaus
A,B “ max

@iPA
dA,B

piq (4.8)

4.4.4 Comparison with State-of-the-arts

We were unable to run optimization-based methods like EAR on large point

clouds like the 8iVFB dataset. PU-Net [130] is an earlier work, the code of which is

not scalable to larger point clouds, so we did not include it in our comparisons. We chose

four state-of-the-art upsampling methods that were scalable to larger point clouds and

have so far shown the best results in point cloud upsampling: PU-GAN [65], 3PU [125],

PU-GCN [86] and Dis-PU [66]. Their models are trained with the author-released code,

and all settings are the same as stated in their papers. These networks were originally

trained on relatively sparser point clouds generated from small synthetic mesh-based ob-

jects. To make the comparison fairer, we retrained these networks on the same data as

our model, i.e., ShapeNet, and then tested them on our test datasets. We generated about

24000 patches from ShapeNet dataset for training purposes. For 3PU a patch size of 1024
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Table 9: Quantitative comparison with state-of-the-art approaches using D2 PSNR for 4x

and 8x upsampling.

Dataset Upsampling Method
D2 PSNR (dB)

4x 8x

8iVFB

3PU 72.71 69.02
PU-GAN 74.21 67.96
PU-GCN 75.66 74.05
Dis-PU 76.70 74.79
PU-Dense (Ours) 79.05 76.45

was used for 8x upsampling and 2048 for 4x upsampling, For PU-GAN, PU-GCN, and

Dis-PU a patch size of 256 was used for 4x as well as 8x upsampling.

4.4.5 Objective Evaluation

For Chamfer Distance (CD), lower values are better whereas for D1 PSNR, D2

PSNR and Hausdorff PSNR higher values are better. We compare our work with other

state-of-the-art methods and display the results in Table 8, Table 9, and Table 10. In Table

8 we show the Chamfer Distance (CD) and D1 PSNR comparison results on four differ-

ent datasets for both 4x as well as 8x upsampling for all five compared methods. The

comparative results show that PU-Dense outperforms other state-of-the-arts by substan-

tially decreasing the CD while significantly improving the D1 PSNR. Among the previ-

ous methods, PU-GCN and Dis-PU perform decently well on all the datasets. Dis-PU

performs the best among the previous works. PU-GCN and Dis-PU perform similarly for

8x upsampling, however, Dis-PU performs much better than PU-GCN at 4x upsampling.

Overall, PU-Dense outperforms all of these methods.
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Table 10: Quantitative comparison with state-of-the-art approaches using Hausdorff

PSNR for 4x and 8x upsampling.

Dataset Upsampling Method
Hausdorff PSNR (dB)

4x 8x

8iVFB

Downsampled PC 51.95 49.10

3PU 45.56 45.51
PU-GAN 46.97 41.38
PU-GCN 52.29 49.48
Dis-PU 52.86 49.63
PU-Dense (Ours) 52.97 49.65

We measure the point-to-plane D2 PSNR using the normals of the ground truth

point clouds using 8iVFB dataset and show the results in Table 9. We can see that PU-

Dense outperforms the state-of-the-art on D2 metric also. The Hausdorff PSNR is also

calculated on 8iVFB dataset, the results of which are shown in Table 10. Hausdorff dis-

tance tends to be sensitive to outliers because the metric distance corresponds to the great-

est of all the distances from a point in one point cloud to the closest point in the other point

cloud (original to reconstructed, and vice-versa) [55]. The Hausdorff PSNR decreases for

both PU-GAN and 3PU whereas PU-GCN, Dis-PU, and PU-Dense improve the Haus-

dorff PSNR. We see that PU-Dense outperforms the state-of-the-arts in this metric too.

While the distance-based distortion loss function tends to add outliers in the upsampling

process, PU-Dense generates points closest to the actual point cloud surface with limited

outliers. This is because the new points generated by PU-Dense are generated using TG-

Conv, which generates new points in the neighborhood of the already occupied voxels.

This neighborhood is determined by the kernel size ks.
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Figure 20: 4x upsampling visual results on sequence Red and Black.

4.4.6 Visual Comparisons

To visualize large photo-realistic point clouds like 8i sequences, it is not possible

to show point-level visual upsampling results. Therefore, for these point clouds, we vi-

sualize their geometry by calculating their normals and with vertical shading. We also

plot the error map based on the point-to-point (P2point) D1 distance between the point

cloud and its ground truth to visualize the error distribution. We show the visual results
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of our experiments for 4x upsampling in Fig. 20 and for 8x upsampling in Fig. 21 us-

ing a point cloud frame from sequence Red and Black and Longdress respectively. We

can see that our method generates limited outliers while populating points very close to

the surface of the ground truth point cloud. This results in a high-resolution point cloud

with considerably better quality than the other state-of-the-arts. Since PU-Dense uses

TG-Conv to generate new points around the currently occupied voxels, there are limited

outliers generated as is evident in Fig. 20 and Fig. 21. We also show the zoomed-in point

cloud geometry views. The results of our proposed method are more precise, sharper,

and cleaner, especially around key positions, such as corners and edges. We show further

visual results on different datasets later in this section. We show further visual results on

additional datasets in the next sections. Additional visual results and a description of how

these figures are generated are also provided in the supplemental materials.

4.4.7 Evaluation on Real-World Scanned Objects

We also examined the performance of the proposed method on real-world scanned

object dataset with 2048 points from ScanObjectNN. We show the comparative visual re-

sults of upsampling a point cloud from ScanObjectNN dataset in Fig. 22. ScanObjectNN

dataset is captured through LiDAR and consists of sparse point clouds. We visualize the

upsampled point cloud as well as the reconstructed mesh surface using the ball-pivoting

algorithm for the input point cloud and each of the upsampled point clouds. As can be

seen in Fig. 22, the proposed method (PU-Dense) works well on even sparse object point
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Figure 21: 8x upsampling visual results on sequence Longdress.

cloud datasets. In the upsampled point cloud generated by PU-Dense, the points gener-

ated are a lot more structured. This is due to the generation of new points using TG-Conv

with binary voxel classification and pruning that generates newer points around the pre-

viously occupied voxels. We can notice that the holes in the point cloud get inpainted by

the other methods, whereas, PU-Dense keeps the original shape of the point cloud. The

reconstructed mesh surface quality for PU-dense is also better compared with the state-

of-the-art. We can see PU-GCN and Dis-PU performs better than 3PU and PU-GAN on
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Figure 22: Visual comparison for 4x upsampling on ScanObjectNN dataset. Input is the

real-scanned point cloud object with 2048 points. The rest of the five are the output for

each of the methods: 3PU, PU-GAN, PU-GCN, Dis-PU, and PU-Dense (Ours). The top

row shows the zoomed-in regions from the point cloud. The third row is the zoomed-in

mesh surface from the mesh reconstructed surface from corresponding point clouds using

the ball-pivoting algorithm.

this dataset.

4.4.8 Dynamically Acquired Outdoor LiDAR Dataset

We examine the performance of PU-Dense, as well as 3PU, PU-GAN, PU-GCN,

and Dis-PU on dynamically-acquired outdoor LiDAR dataset from KITTI [34] used for

autonomous driving. This dataset is much more sparse compared to 8iVFB, 8iVSLF,
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Figure 23: Visual comparisons for outdoor LiDAR dataset from KITTI for 4x upsampling.

and Queen datasets and also has non-uniform point distribution. We show the visual re-

sults from four street point clouds in Fig. 23. Even for sparse and non-uniform point

clouds from the real-world LiDAR dataset, our proposed method can significantly im-

prove the quality by upsampling these point clouds. In our experiments, all five methods

are trained on regularly sampled and relatively dense ShapeNet dataset. Therefore, it is a
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considerable achievement for PU-Dense to be able to generalize to a sparse non-uniform

dataset. Whereas the performance of the other methods suffers when evaluated on the

KITTI dataset. This is because PU-Dense is fully convolutional making it translation-

invariant that can process point clouds with a different number of points and sparsity

levels. Whereas the other methods are patch-based solutions where the sparsity of the

patch greatly influences the results. When the networks were trained on ShapeNet, the

patch size was much smaller compared to an outdoor LiDAR point cloud. We can see

that the patch-based upsampling results in the clustering of the points together within the

patch. We believe this might be due to uneven sampling because of the farthest point

sampling employed in these patch-based methods where not enough patches are sampled

closer to the LiDAR resulting in clustering. PU-GCN and Dis-PU perform better than

3PU and PU-GAN on the KITTI dataset when trained on ShapeNet.

4.4.9 Mesh Generation

Fig. 24 shows the visualized results of 3D surface reconstruction using the ball-

pivoting algorithm for the ground truth, input point cloud, and the upsampled point clouds

from 3PU, PU-GAN, PU-GCN, Dis-PU, and PU-Dense on ShapeNet dataset. In the 3D

mesh reconstruction task, the result is greatly influenced by the density as well as the qual-

ity of the upsampled point cloud. We can see the effectiveness of our proposed upsam-

pling method by surface reconstruction in Fig. 24. For both 4x and 8x upsampling, sur-

faces reconstructed from PU-Dense upsampled point clouds are a lot more structured and

exhibit richer geometry details. PU-Dense can recover more details and better preserve
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Figure 24: Visual comparisons for mesh reconstruction using ball-pivoting algorithm for

4x and 8x upsampling on ShapeNet dataset.
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the smoothness of smooth regions as well as preserve the sharp edges without creating

outliers. Although we notice that PU-GCN, and Dis-PU surface reconstruction qualities

are much better compared to 3PU and PU-GAN. We also notice that PU-GAN produces

a lot more outliers when it comes to 8x upsampling as seen in both Fig. 21 and Fig. 24.

4.4.10 Evaluation on Noisy Data

In this section, we evaluate the robustness of different methods to noise. Fig. 26

quantitatively compares the PU-Dense, 3PU, and PU-GAN on different levels of noise us-

ing ShapeNet dataset for 4x upsampling. We plot D1 MSE PSNR for each method under

7 levels of Gaussian noise. It can be seen that the performance of all methods decreases

as the noise level increases. Nevertheless, the proposed method consistently achieves the

best performance under each noise level. For PU-Dense, we notice the sharpest decrease

when the noise is initially added and then the quality consistently decreases with an in-

crease in noise. The robustness against noise can be further increased by augmenting

noise during training of PU-Dense, something that was not employed during our train-

ing. We further show visual upsampling results for the PU-Dense on various noisy point

clouds in Fig. 25. We visualize both 4x and 8x upsampling with 0%, 1%, and 2% Gaus-

sian noise. We observe that even after adding noise, the upsampled point clouds visually

look similar to the noise-free upsampled point cloud, demonstrating the robustness of the

proposed method against noise.
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Figure 25: Visual results for PU-Dense on noisy data for 4x and 8x upsampling. Left:

(a1), (b1), and (c1) are the sparse inputs with 0%, 1%, and 2% Gaussian noise, respec-

tively. Right: (a2), (b2), and (c2) are the upsampled results from (a1), (b1), and (c1)

respectively.

Figure 26: Quantitative comparisons on data with various levels of noise for 4x upsam-

pling using ShapeNet dataset.

4.4.11 Inference Time and Trainable Parameters

We compare the average computational time as well as average inference time to

4x upsample a single 8iVFB point cloud in Table 11. The time in the experiments is cal-

culated as the average time to process a single 8iVFB point cloud on NVIDIA GeForce
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GTX 1080 Ti GPU. The computation time includes the whole end-to-end pipeline in-

cluding the pre-processing and post-processing while the inference time includes the time

required by the network to infer on all the patches. Note that the implementation of 3PU,

PU-GAN, PU-GCN, and Dis-PU is not optimized for larger point clouds. Since 3PU, PU-

GAN, PU-GCN, and Dis-PU are patch-based solutions, most of the computational time is

spent in pre-processing and post-processing. This includes employing farthest point sam-

pling to sample smaller overlapping patches from the surface of the point cloud and then

processing these individual patches. After the processing, these patches are merged and

then downsampled by again employing farthest point sampling. PU-Dense is a lot faster

compared to other state-of-the-art in processing point clouds, because it employs effi-

cient sparse convolutions, has limited pre-processing and post-processing, and employs

an efficient binary voxel-classification loss all of which enables PU-Dense to process a

large point cloud (up to 1 million points) in a single iteration without running out of GPU

memory (NVIDIA GeForce GTX 1080 Ti).

We also compare the number of trainable parameters in each of the upsampling

methods in Table 12. We can see that PU-Dense has many more trainable parameters and

is much larger than the other networks. This is partly because the loss functions in other

methods often employ very large matrix multiplications (e.g., Chamfer loss) that consume

a lot of memory. Another advantage of PU-Dense is that it utilizes sparse convolution

which takes advantage of the sparse nature of the point cloud and is, therefore, memory

efficient. This allows PU-Dense to build a much deeper and wider model which was

not possible in the previous works. PU-Dense is the first deeper point cloud upsampling
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Table 11: Quantitative comparison: Average evaluation time per point cloud for 4x up-

sampling on 8iVFB dataset.

Upsampling Method Inference Time (sec) Computation Time (min)

3PU 123.76 24.49
PU-GAN 31.55 23.60
PU-GCN 19.64 23.20
Dis-PU 34.13 23.77
PU-Dense (Ours) 40.76 00.79

Table 12: Quantitative comparison: Number of trainable parameters.

Upsampling Method Trainable parameters

3PU 152,054
PU-GAN 541,601
PU-GCN 75,971
Dis-PU 1,046,966
PU-Dense (Ours) 13,172,441

network whereas all the previous methods are much shallower. This makes PU-Dense

more powerful, with higher discriminative power, as well as a larger receptive field. PU-

Dense can process up to a million points per inference due to its memory efficiency.

4.4.12 Ablation Study

We perform a quantitative comparison of different versions of PU-Dense by re-

moving specific components from the PU-Dense pipeline and tabulating the results in

Table 13. First, we removed the 3D-DPB from our FE Unit and replaced it with another

IRB. This network is shown as PU-Dense w/o 3D-DPB in Table 13 and contains three IRB
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Table 13: Ablation Study: removing specific components from the PU-Dense pipeline for

4x upsampling.

Dataset Upsampling Method CD (10´2) MSE PSNR (dB)

8iVFB

PU-Dense w/o IRB, 3D-DPB 26.14 74.01
PU-Dense w/o IRB 23.88 74.50
PU-Dense w/o 3D-DPB 23.99 74.42

PU-Dense 19.38 75.05

units in each FE Unit. Then, in the second method, we removed the IRB units from the FE

Unit and replaced them with 3D-DPB. We call this PU-Dense w/o IRB. Then, in the third

method, we removed both the IRB unit as 3D-DPB unit from the FE Unit and replaced

them with multiple ResNet blocks with approximately the same number of parameters

as in the original FE Unit. This network is shown as PU-Dense w/o IRB, 3D-DPB in

Table 13 and contains three ResNet blocks per FE Unit. We can see that the complete

PU-Dense pipeline gives the best performance and removing any one individual compo-

nent greatly reduces the results, meaning that each component contributes to PU-Dense’s

efficacy. This also shows that employing both 3D-DPB as well as IRB units for feature

extraction yields the best results.

4.5 Limitations

In this section, we discuss the limitations of our proposed method and the future

improvements that could be made to PU-Dense. We employ sparse tensors with 3D sparse
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convolutions along with a binary voxel classification loss. This makes PU-Dense compu-

tationally efficient allowing us to build a much larger network, process a dynamic number

of input points, as well as allow PU-Dense to process high-resolution dense photo-realistic

point clouds with millions of points. However, there is a downside to this approach. As a

preprocess, we convert point clouds into sparse tensors by converting them into a 3D vol-

umetric representation through voxelization. Sparse tensors allow us to only operate 3D

convolutions on the occupied voxels while ignoring the empty voxels. We can populate

the empty voxels using TG-Conv around an already occupied voxel and then prune them

using binary voxel classification loss. The size of the kernel (ks) determines how far the

newly occupied voxel could be from an already occupied voxel. This method works well

for upsampling dense photo-realistic point clouds as well as sparse point clouds. How-

ever, this method would not be able to fill out larger holes that cannot be covered by the

kernel size (ks). PU-Dense is not able to produce points at a location that has no nearby

points within ks distance. For this reason, the current architecture would not work for

inpainting tasks. However, this limitation can be easily rectified by employing multiple

TG-Conv and pruning layers. We can simply replace all the T-Conv with TG-Conv +

Pruning to be able to adapt this architecture for inpainting tasks.

4.6 Conclusion

In this paper, we propose a novel point cloud upsampling method called PU-Dense

that can upsample both synthetic as well as real-world captured point clouds including
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LiDAR scanned as well as dense high-resolution point clouds. PU-Dense incorporates hi-

erarchical learning via progressive rescaling and multiscale feature extraction. PU-Dense

utilizes a voxelized 3D representation with sparse convolutions backbone and introduces

a novel feature extraction (FE) unit that contains Inception-Residual Blocks and a 3D

Dilated Pyramid Block to extract 3D multiscale features with different field-of-view in

a computationally efficient manner. PU-Dense employs a memory-efficient voxel-based

binary occupancy classification loss that can better reconstruct point clouds from fea-

tures. Experimental results show that PU-Dense outperforms other state-of-the-arts by a

significant margin on synthetic datasets, real-world LiDAR scanned datasets, as well as

dense photo-realistic point clouds for immersive communication. While the other state-

of-the-arts struggle to efficiently process high-resolution point clouds with a large number

of points, PU-Dense can effectively learn 3D features and produce higher level-of-detail

upsampled point clouds for both synthetic as well as real-world datasets. PU-Dense gen-

erates limited outliers while populating points very close to the surface of the ground truth

point cloud resulting in a high-resolution point cloud with considerably better quality than

the other state-of-the-arts. Furthermore, PU-Dense is more robust against Gaussian noise

compared to other methods.
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CHAPTER 5

DYNAMIC POINT CLOUD INTERPOLATION

5.1 Introduction

Point clouds can be categorized as point cloud scenes and point cloud objects.

Point cloud scenes are typically dynamically acquired using LiDAR (light detection and

ranging) sensors and are commonly used in autonomous vehicles [8]. Point cloud objects

can be further subdivided into static objects and dynamic objects. A static object is a

single object, whereas a dynamic object is time-varying, where each instance of a dynamic

point cloud is a static point cloud. Dynamic time-varying point clouds are used in AR/VR,

volumetric video, and telepresence and can be generated using 3D models, i.e., CGI, or

captured from real-world scenes using various methods such as multiple cameras with

depth sensors surrounding the object and capturing movement over time. Frame rates of

LiDARs are generally 10 to 20 Hz, resulting in a lower resolution, spatially and temporally

sparse point cloud [9]. However, dynamic point clouds are denser photo-realistic point

clouds that contain a lot more points with high data rates. For example, a single instance

of dynamic point cloud captured by 8i [59] contains between 1 million to 4 million points

per frame which translates to a bitrate of around 1 Gbytes per second without compression

for a 30 fps dynamic point cloud. The high data rate is one of the main problems faced

by dynamic point clouds, and efficient interpolation techniques to synthesize intermediate

frames would help in the distribution, processing, and compression of such content [6].
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Video frame interpolation is commonly utilized in frame rate conversion, novel

view synthesis, video streaming, and video compression pipeline to generate high frame

rate videos from low frame rate ones (e.g. from 30 Hz to 240 Hz). Typical video frame

interpolation methods [13, 77–79] perform two tasks: motion estimation, usually optical

flow, and pixel synthesis. However, these methods cannot be directly applied to point

clouds since 3D point clouds are unstructured and unordered. There are no direct corre-

spondences between points in two point clouds like pixels in two images. The sparsity and

large size of point clouds further complicate the point cloud interpolation problem. There

has been limited work on 3D point cloud interpolation and all work has been performed on

dynamically acquired LiDAR-based point cloud scenes. While optical flow represents 2D

pixel movements on the image plane, 3D scene flow represents per point 3D movement.

Optical flow can be considered the projection of scene flow into 2D. FlowNet3D [70] is a

pioneering work of deep learning-based 3D scene flow estimation. FlowNet3D proposed

a flow embedding layer to model the motion of points in different point cloud scenes.

Following FlowNet3D, FlowNet3D++ [119] proposed geometric constraints in the form

of point-to-plane distance and angular alignment to further improve the accuracy of scene

flow estimation. There have been further works [39, 76, 121] that explore point cloud

scene flow estimation or interpolation. PointINet [71] estimates bi-directional 3D scene

flows, performs frame warping, followed by point fusions and intermediate point cloud

generation. Even though these methods make a decent baseline in point cloud scene flow

estimation, they are only limited to LiDAR-based point cloud scenes and are not applica-

ble to photo-realistic dynamic point clouds.
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Compared to dense dynamic point clouds, LiDAR point clouds tend to be sparser,

with a lower frame rate and a smaller number of points. Since point cloud scenes are dy-

namically acquired, there is more scene rigidity as well as point correspondences. How-

ever, photo-realistic dynamic point clouds tend to be denser where the object moves and

changes shape making the point correspondences difficult and thus the scene flow methods

are inapplicable to dynamic point clouds. Moreover, the large size of the photo-realistic

dynamic point clouds makes the task further challenging [7]. To address these issues

we propose a first of its kind dynamic point cloud interpolation framework. Given two

consecutive dynamic point cloud frames, our framework aims to generate intermediate

frame(s) between them. We propose three different modules: the encoder network, the

fusion network, and the multi-scale point cloud synthesis module. The encoder module

extracts features from frames at four different scales. The fusion network takes features at

different scales from consecutive frames, concatenates them into 4D features, then utilizes

4D convolutions to merge consecutive frame features. Finally, the multi-scale point cloud

synthesis module hierarchically interpolates the target frame at different resolutions.

5.2 Point Cloud Interpolation

In this section, we first introduce the overall architecture of the proposed point

cloud interpolation network and then explain the details of the key components of our

framework. The overall system model is shown in Fig. 27. Given two point cloud frames

F 1 P RNˆ3 and F 3 P RNˆ3, the goal is to predict the intermediate point cloud frame F̂ 2.
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Figure 27: System Model. F 1 and F 3 are the input frames while F̂ 2 is the interpolated

frame.

5.2.1 Network

The proposed framework contains three different modules: the encoder network,

the fusion network, and the multi-scale point cloud synthesis module. We use sparse

tensors and sparse convolution using Minkowski Engine [20]. The input frames are pre-

processed where they are voxelized and converted into sparse tensors.

The Encoder Module. We employ the encoder module for multi-scale point

cloud feature extraction. This module learns the point cloud features at four different

scales for both frames F 1 and F 3. Both encoder modules shown in Fig. 27 are identical

and share the same weights. As shown in the evaluation results, a pre-trained encoder

module performs much better than learning the weights of the encoder along with the rest
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of the network. We pre-train our encoder module in a typical encoder-decoder architec-

ture using reconstruction loss (binary voxel occupancy loss) on a static point cloud objects

dataset (ShapeNet).

The Fusion network. The fusion network utilizes a novel 4D fuse block that

merges features from two consecutive point cloud frames into a single feature. The fusion

module takes features at four different scales from frames F 1 and F 3. Different scale

features are processed individually by a fuse block as shown in Fig. 27. The goal here is

to merge features at the same scale together. The individual fuse block is shown in Fig.

28. In the fuse block, the features pass through 3D convolutions and then are concatenated

in the 4th dimension resulting in the feature size of px, y, z, 2q. Where x, y, z is the size

of the x, y and z coordinates respectively. The 4D features are then passed through 4D

convolutions so the inter-frame features could be learned. Afterward, a 4D convolution

with stride in only the 4th dimension pstride “ r1, 1, 1, 2sq is applied. This convolution

acts as a learnable pooling in a single dimension where the resulting feature size becomes

px, y, z, 1q. This is converted back into 3D features so the 3D convolutions can be applied.

Since 4D convolutions tend to have higher computational complexity and extra memory

consumption, we tend to limit the amount of 4D convolutions we employ.

Multi-scale Point Cloud Synthesis Module. The fused features at four different

scales are fed into the multi-scale point cloud synthesis module that hierarchically inter-

polates the intermediate frame F̂ 2. Sparse transpose convolutions are used to upscale the

features. After each upscaling, the features from the fuse block of the same scale are

added to the synthesis module network. Upscaling using transpose convolution generates
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Figure 28: A single fuse block from the fusion network.

a lot of new points. To choose the best points and dispose of invalid points, pruning is

performed. The pruning layer implements classification by converting N ˆ C features to

N ˆ 1 features and choosing the best features above a threshold.

5.2.2 Loss Function

Rather than upscaling the features directly to the full scale, our network synthe-

sizes the interpolated point cloud at different resolutions by employing multiple loss func-

tions. The multi-scale synthesis module produces the interpolated point cloud at three

different resolutions. As shown in Fig. 27, we train our network using three different loss

functions:

L “ L1 ` L2 ` L3 , (5.1)

We perform voxel classification using binary cross-entropy loss to compare the
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voxel occupancy prediction from the network and the ground truth (original) point cloud.

The ground truth point cloud is downscaled to three resolutions, one for each loss func-

tion.

5.3 Evaluation Results

In this section, we will go over our datasets, the training environment, evaluation

metrics employed, and both the quantitative and visual results of our dynamic point cloud

interpolation framework.

5.3.1 Datasets

The encoder network is pretrained before being utilized in the framework. The

encoder is pretrained on ShapeNet dataset which is a static objects dataset. We randomly

selected «24000 3D mesh models from the core dataset of ShapeNet. The mesh model

is sampled into point clouds by randomly generating points on the surfaces of the mesh,

then randomly rotated and quantized the point cloud to 7-bit precision. For dynamic point

clouds we employed sequences loot, longdress and redandblack from JPEG Plenos 8i

Voxelized Full Bodies dataset (8iVFB v2) [23] with about a million points per frame.

We also used sequences basketball and exercise from MPEGs 8i Voxelized Surface Light

Field dataset (8iVSLF) [59] with about 2.6 million points per frame. Finally we used the

sequence Queen produced by Technicolor (https://www.technicolor.com/fr) with about 1

million points per frame. We train on loot and longdress sequences and test on the rest of

the four sequences.
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5.3.2 Training

The encoder architecture is pretrained on ShapeNet dataset. We train the rest of

the framework on loot and longdress sequences. To be able to feed our network three

frames each containing about a million points per frame, we subdivide the point cloud

using kd-tree partitioning. Points are extracted from the same locations within the cube

across multiple frames. In our training, we use a kd-tree depth of 4 to divide each frame

into 16 cubes. During evaluation, the whole point cloud can be fed into the network.

5.3.3 Evaluation Metrics

We consider two commonly-used evaluation metrics that compare the recon-

structed point cloud to the ground truth point cloud to quantitatively evaluate the per-

formance of our method. These metrics are Chamfer distance (CD) and point-to-point

(D1) based mean squared error peak signal-to-noise ratio (MSE PSNR). MSE PSNR has

been adopted by both MPEG and AVS standards as an evaluation metric for dynamic

point cloud quality [106]. We obtain the point-to-point geometry PSNRs using MPEG’s

pc error tool [107].

5.3.4 Objective Evaluation and Visual Results

We compare our method with different variations of our framework as well as

with Identity where we simply duplicate the first point cloud frame as the intermediate

point cloud. The objective results of our evaluations are shown in Table 14. Ours is

the framework described in this paper. Ours-w/o Pretrained is the framework where
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Method
redandblack queen basketball exercise Avg

CDÓ PSNRÒ CDÓ PSNRÒ CDÓ PSNRÒ CDÓ PSNRÒ CDÓ PSNRÒ

Identity 1623.69 53.68 45.29 70.75 113.65 71.73 146.54 71.19 482.29 66.84

Ours 386.22 56.88 30.44 76.08 80.96 74.54 110.20 75.48 151.96 70.75
Ours-w/o Pretrained 502.86 55.44 35.64 74.81 90.37 73.30 117.62 74.34 186.63 69.47
Ours-Single Loss 575.91 55.40 36.64 74.00 89.74 73.03 121.54 73.37 205.96 68.95
Ours-Fuse3D 865.72 54.64 37.01 73.64 100.18 72.14 125.47 73.12 282.10 68.39

Table 14: Evaluation results of our interpolation method using Chamfer Distance (CD

(10´2)) and MSE PSNR (dB).

the Encoder is not pretrained on ShapeNet. Ours-Single Loss framework employs only

a single loss (L3) and no longer employs losses L1 and L2. Ours-Fuse3D framework

utilizes 3D convolutions in the fuse block rather than the 4D convolutions. In this method,

the features are simply added and 3D convolutions are employed. As can be seen, our

method considerably performs better than Identity. Furthermore, the results show that

each sub-component of our framework is essential and improves the results considerably.

The results show that the fusion using 4D convolutions is much more efficient in learning

the intermediate frame features compared to 3D convolutions.

An example of visual results for sequence redandblack is shown in Fig. 29. We

can see that our method generates limited outliers while populating points very close to

the surface of the ground truth point cloud. This results in a high-resolution point cloud

with considerably better quality than the Identity where the previous frame is used.

5.4 Conclusion

In this work, we propose the first dynamic point cloud interpolation framework for

dense high-resolution point clouds. While the previous point cloud interpolation methods
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Figure 29: Visual Results on Redandblack dataset.

are limited to point cloud scenes, our framework is able to process and interpolate frames

on a high-resolution dynamic point cloud. We employ a pretrained multi-scale encoder

module to extract features at multiple scales. The encoder module is pre-trained on a static
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object dataset (ShapeNet). We introduce a novel 4D feature fusion module that utilizes

4D learning to merge 3D features from two consecutive frames at multiple scales. Finally,

our multi-scale point cloud synthesis module hierarchically reconstructs the interpolated

point cloud frame at different resolutions. We test our framework on a diverse set of high-

resolution dynamic point cloud sequences. The evaluation results validate our network

design and demonstrate the effectiveness of our method.
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CHAPTER 6

INTER-FRAME COMPRESSION FOR DYNAMIC POINT CLOUD GEOMETRY

CODING

6.1 Introduction

A point cloud (PC) is a 3D data representation that is essential for tasks like virtual

reality (VR) and mixed reality (MR), autonomous driving, cultural heritage, etc. PCs

are a set of points in 3D space, represented by their 3D coordinates (x, y, z) referred

to as the geometry. Each point may also be associated with multiple attributes such as

color, normal vectors, and reflectance. Depending on the target application and the PC

acquisition methods, the PC can be categorized into point cloud scenes and point cloud

objects. Point cloud scenes are typically captured using LiDAR sensors and are often

dynamically acquired. Point cloud objects can be further subdivided into static point

clouds and dynamic point clouds. A static PC is a single object, whereas a dynamic PC

is a time-varying PC where each instance of a dynamic PC is a static PC. Dynamic time-

varying PCs are used in AR/VR, volumetric video streaming, and telepresence and can be

generated using 3D models, i.e., CGI, or captured from real-world scenarios using various

methods such as multiple cameras with depth sensors surrounding the object. These PCs

are dense photo-realistic point clouds that can have a massive amount of points, especially

in high precision or large-scale captures (millions of points per frame with up to 60 frames

per second (FPS)). Therefore, efficient point cloud compression (PCC) is particularly
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important to enable practical usage in VR and MR applications.

The Moving Picture Experts Group (MPEG) has approved two PCC standards

[38, 97]: Geometry-based Point Cloud Compression (G-PCC) [4] and Video-based Point

Cloud Compression (V-PCC) [5]. G-PCC edition 1 includes octree-geometry coding as

a generic geometry coding tool and a predictive geometry coding (tree-based) tool which

is more targeted toward LiDAR-based point clouds. G-PCC is still developing a triangle

meshes or triangle soup (trisoup) based method to approximate the surface of the 3D

model. V-PCC on the other hand encodes dynamic point clouds by projecting 3D points

onto a 2D plane and then uses video codecs, e.g., High-Efficiency Video Coding (HEVC),

to encode each frame over time. MPEG has also proposed common test conditions (CTC)

to evaluate test models [96]. For quantitative evaluations, CTC employs point-to-point

(D1) and point-to-plane (D2) quality metrics.

Deep learning solutions for image and video encoding have been widely success-

ful [69]. Recently, similar deep learning-based PCC methods [14, 27, 31, 41, 51, 90–

92, 112–114, 126] have been shown to provide significant coding gains over traditional

methodologies. Point cloud compression represents new challenges due to the unique

characteristics of PC. For instance, the unstructured representation of PC data, the sparse

nature of the data, as well as the massive number of points per PC, specifically for dense

photo-realistic PC, makes it difficult to exploit spatial and temporal correlation. The cur-

rent deep learning-based PCC solutions are all intra-prediction methods for static point

clouds and fail to utilize inter-prediction coding gains by predicting the current frame us-

ing previously decoded frames. Following MPEG’s PCC category guidelines, our work
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seeks to target dense dynamic point clouds used for VR/MR and immersive telecommu-

nications. Sparse dynamically acquired LiDAR-based point clouds are a very different

point cloud category that is out of the scope of this work. Ours is the first solution for

inter-prediction for lossy point cloud geometry encoding using deep learning and has the

following novelties:

• We propose a novel deep learning-based framework for point cloud geometry inter-

frame encoding similar to P-frame encoding in video compression.

• We propose a novel predictor module that learns a feature embedding of the current

PC frame from the previous PC frame. The network utilizes hierarchical multiscale

feature extractions and employs ”convolution on target coordinates” to map latent

features from the previous frame to the downsampled coordinates of the current

frame to learn the current frame’s feature embedding.

• To the best of our knowledge, our method is the first deep learning-based method

to outperform V-PCC inter-frame mode across all bitrates. Experimental results

show our method achieves more than 91% BD-Rate gains against G-PCC (octree),

more than 84% BD-Rate gains against G-PCC (trisoup), more than 34% BD-Rate

gains against state-of-the-art deep learning-based point cloud geometry compres-

sion method, more than 62% BD-Rate gains against V-PCC intra-frame mode, and

more than 52% BD-Rate gains against V-PCC P-frame-based inter-frame mode

which uses HEVC.
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6.2 Background

Our research is most closely related to three research topics: point cloud geome-

try compression, deep learning-based video inter-frame coding, and deep learning-based

point cloud compression.

Prior non-deep learning-based point cloud geometry compression mostly in-

cludes octree-based, triangle mesh-based, and 3D-to-2D projection-based methodolo-

gies. Octree-based methods are the most widely used point cloud encoding meth-

ods [75, 95, 111]. Octree provides an efficient way to partition the 3D space to represent

point clouds and is especially suitable for lossless coding. In these methods, the volu-

metric point cloud is recursively divided into octree decomposition until it reaches the

leaf nodes. Then the occupancy of these nodes can be compressed through an entropy

context modeling conditioned on neighboring and parent nodes. Thanou et al. [104, 105]

implemented octree-based encoding for time-varying point clouds that can predict graph-

encoded octree structures between adjacent frames. MPEG’s G-PCC standard [97] also

employs an octree-based compression method known as octree geometry codec and is

specifically devoted to sparse point clouds. G-PCC encoding can further be comple-

mented by triangle meshes (a.k.a., triangle soups) which are locally generated together

with the octree to terminate the octree decomposition prematurely. This helps reconstruct

object surfaces with finer spatial details and is known as the trisoup geometry codec [16].

3D-to-2D projection-based methods. Traditional 2D image and video coding

have demonstrated outstanding efficiency and have been widely used in standards which

have motivated works to project 3D objects to multiple 2D planes and leverage popular
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image and video codecs for compact representation. MPEG’s V-PCC [38] standard is

one such 3D-to-2D projection-based solution that is specifically designed for dense, as

well as, dynamic PCs. The V-PCC standard projects the points and the corresponding

attributes onto planes and then uses a state-of-the-art video codec, such as HEVC, to

encode point clouds. V-PCC has both intra-frame coding as well as inter-frame coding

where the previously decoded frames are employed to encode the next frames. We have

also had some other works specifically for dynamic point cloud compression [22,33,35].

However, their results are still lacking and not comparable to V-PCC.

Deep learning-based models for image and video encoding can learn an op-

timal non-linear transform from data along with the probabilities required for entropy

coding the latent representation into a bitstream in an end-to-end fashion. For image com-

pression, autoencoders [11] were initially adopted and the best results were achieved by

employing variational autoencoders with side information transmission and applying an

autoregressive model [12]. Deep learning solutions for video compression methods usu-

ally employ 3D autoencoders, frame interpolation, and/or motion compensation via opti-

cal flow. 3D autoencoders are an extension of deep learned image compression. Frame

interpolation methods use neural networks to temporally interpolate between frames in

a video and then encode the residuals [79]. Motion compensation via optical flow is

based on estimating and compressing optical flow which is applied with bilinear warp-

ing to a previously decoded frame to obtain a prediction of the frame currently being

encoded [78]. Current deep learning-based PCC takes inspiration from the deep learning-

based image compression methods but so far has not been able to implement inter-frame
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prediction models commonly used in video encoding. Our work is the first method that

takes inspiration from the frame interpolation-based methods in video encoding to per-

form inter-frame encoding for dynamic point clouds.

Deep learning-based Geometry PCC can be broadly categorized into:

voxelization-based methods, octree-based methods, point-based methods, and sparse

tensors-based methods. Voxelization-based methods were employed in the earlier ap-

proaches, including Quach et al. [90], Wang et al. [114], Guarda et al. [41] and Quach et

al. [91]. These methods voxelizes the PC and then divide it into smaller blocks typically

of 64ˆ64ˆ64 voxels. Then 3D convolutions are applied using autoencoder architectures

to compress these blocks into latent representations. These methods usually employ a

focal loss or a weighted binary cross-entropy loss to train their model. However, these

methods also have to process empty voxels which are usually the majority of the voxels

and are, therefore, computational and memory inefficient.

Octree-based methods employ octree representation to encode the PCs leading

to better consumption of storage and computation. These methods employ entropy con-

text modeling to predict each node’s occupancy probability conditioned on its neighbor-

ing and parent nodes. MuSCLE [14] and OctSqueeze [51] employ Multi-Layer Percep-

trons (MLPs) to exploit the dependency between parent and child nodes. VoxelContext-

Net [92] employs both neighbors and parents as well as voxelized neighborhood points

as context for probability approximation. Recently, OctAttention [27] has been intro-

duced that increases the receptive field of the context model by employing a large-scale

transformer-based context attention module to estimate the probability of occupancy code.
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All of these methods encode the point cloud in a lossless manner and show promising re-

sults, particularly on sparse LiDAR-based point clouds.

Point-based methods directly process raw point cloud data without changing

their representation or voxelizing them. They typically employ PointNet [84] or Point-

Net++ [85] type architectures that process raw point clouds using point-wise fully con-

nected layers. These methods are typically patch-based methods that employ farthest

point sampling to subsample and a knn search to find per point feature embedding to

build an MLP-based autoencoder. However as seen in some of these works [31, 53, 126],

the coding efficiency of such point-wise models is still relatively low and fails to general-

ize to large-scale dense point clouds. Furthermore, these methods require a lot of pre and

post-processing making the encoding process computationally inefficient.

Recent sparse convolution-based methods [112, 113] have shown really good

results especially for denser photo-realistic point clouds. Sparse convolutions exploit the

inherent sparsity of point cloud data for complexity reduction allowing for very large

point clouds to be processed by a deeper sparse convolutional network. This allows the

network to better capture the characteristics of sparse and unstructured points and better

extraction of local and global 3D geometric features. However, all of these works em-

ploy intra-frame encoding for static point clouds. We employ sparse convolution-based

autoencoder architecture similar to [113] and design a sparse convolutional inter-frame

prediction module that encodes the next PC frame using the previously decoded PC frame

similar to P-frame prediction in video encoding.
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Figure 30: System Model. The previously decoded frame ĂP 1 is employed to encode

a feature embedding of the current frame P 2. Multiscale features from ĂP 1 and three-

times downsampled coordinates C2
3ds from P 2 are passed to the Predictor network to

learn a feature embedding yP 2
3ds “ tC2

3ds,
yF 2
3dsu. Current frame’s three-times downsampled

coordinates C2
3ds are transmitted in a lossless manner using octree encoder. The predicted

downsampled features yF 2
3ds and the original downsampled features F 2

3ds are subtracted to

obtained the residual features R2
3ds. The residual is transmitted in a lossy manner using a

learned entropy model. The same Encoder and Predictor module is used throughout the

system.

6.3 Proposed Method

The proposed lossy inter-frame point cloud geometry compression framework is

illustrated in Fig. 30. We employ sparse tensors and sparse convolutions to decrease the

computational complexity of the network so it can process two PC frames. The solution

is inspired by the PCGCv2 [113] multiscale point cloud geometry compression (PCGC)

work. PCGCv2 is an intra-frame point cloud compression scheme suitable for static point

clouds. Our inter-frame prediction scheme uses an encoder and decoder network similar

to PCGCv2 along with a novel prediction network to predict a feature embedding for the

current PC frame from the previous PC frame. We calculate the residual between the
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predicted and ground truth features and transmit the residuals along with the three-times

downsampled coordinates. The three-times downsampled coordinates are losslessly en-

coded by an octree encoder using G-PCC [4], whereas the residual features are encoded in

a lossy manner using factorized entropy model to predict the probability distribution for

arithmetic coding. It should be noted that in our system, the encoder and prediction net-

work is present both at the transmitter as well as the receiver. We train the networks with

joint reconstruction and bit-rate loss to optimize rate distortion. We provide a detailed

description of all our modules in subsequent discussions.

6.3.1 Problem Formulation and Preprocessing

We adopt sparse convolutions for low-complexity tensor processing and build our

system using Minkowski Engine [20]. Each point cloud frame is converted into a sparse

tensor P . Each point cloud tensor P “ tCn, Fnun is represented by a set of coordi-

nates C “ tpxn, yn, znqun and their associated features F “ tfpxn, yn, znqun. Only the

occupied coordinates are kept in a sparse tensor. To initialize the input point cloud as

geometry only, we assign feature fpx, y, zq “ 1 to each occupied coordinate. Given a

dynamic point cloud with multiple frames, P i, our goal is to convert them into a latent

representation with the smallest possible bitrate. We use P-frame encoding where the

current frame is encoded using the prediction from the previous frame. We denote the

Encoder network as E, and the Decoder network as D.
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Decoder Network
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P3ds

Encoder Network

Figure 31: Encoder and Decoder Network. The encoder network takes the original point

cloud sparse tensor P , and creates sparse features at four different scales: P0ds, P1ds,

P2ds, and P3ds. Where 3ds denotes three-times downsampled sparse tensor. The decoder

network takes the three-times downsampled sparse tensor and hierarchically reconstructs

the original point cloud by progressively rescaling. The decoder upsamples the sparse

tensor followed by a pruning layer to prune false voxels.

6.3.2 Encoder, Decoder, and Pruning

Our encoder and decoder network is shown in Fig. 31. We utilize the Inception-

Residual Block (IRB) from PCGCv2 [113] for feature extraction in all our networks. We

employ a multiscale re-sampling with downscaling at the encoder and upscaling at the

decoder. This helps exploit the sparsity of the PC while encoding 3D geometric structural

variations into feature attributes of the latent representation. The encoder helps us obtain

PC tensors at four different scales capturing multiscale features at different level of details:

P0ds, P1ds, P2ds, P3ds “ EpP q. Where Pids represents a sparse tensor P that has been

downsampled i times. The decoder receives a three-times downsampled PC tensor and

upsamples it hierarchically to reconstruct the original PC tensor by employing a different
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reconstruction loss at each scale: rP “ DpP3dsq. Decoder employs transpose convolution

to upsample the PC tensor. Encoder and decoder architecture can on their own be used

for intra-frame PC compression, the details of which are available from PCGCv2 [113].

The geometry at the decoder is reconstructed by employing a pruning layer to

prune false voxels and extract true occupied voxels using binary classification after each

upscaling. One example of a pruning layer is shown in Fig. 32. In this example, the input

sparse tensor Pa has coordinates Ca of shape 139,244ˆ3 and their corresponding features

of shape 139,244ˆ64. We pass Pa through a convolution of channel size 1 to obtain sparse

tensor Pb with features Fb of shape 139,244 ˆ 1. From Fb we select the topk features (in

this example k “ 52,612) and their corresponding coordinates using binary classification.

The false coordinates and their corresponding features are then pruned from Pa to obtain

Pc. During training, the binary voxel classification loss is applied to Pb to learn the proper

point cloud reconstruction.

6.3.3 Overall System Model

The overall working of the proposed method is shown in Fig. 30. In our work, we

denote the current PC frame as P 2 while the previously decoded PC frame is denoted by

ĂP 1. The same encoder and prediction module are used throughout the system to decrease

the number of parameters. Previously decoded frame ĂP 1 is passed through the encoder

to obtain multiscale features P 1
0ds, P

1
1ds, P

1
2ds, P

1
3ds. The current frame P 2 is also passed

through the encoder to obtain three-times downsampled tensor containing coordinates and

features: P 2
3ds “ tC2

3ds, F
2
3dsu. Current frame’s three-times downsampled coordinates and
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Figure 32: Example of pruning layer with input sparse tensor Pa and output sparse tensor

Pc. Binary classification is applied to Pb to chose the top voxels and prune false voxels

from Pa to obtain Pc.

the multiscale features from the previous frame are passed to the prediction network to

obtain current frame’s predicted three-times downsampled tensor yP 2
3ds “ tC2

3ds,
yF 2
3dsu.

The predicted downsampled features yF 2
3ds and the original downsampled features F 2

3ds are

subtracted to obtain the residual features R2
3ds. The residual is transmitted in a lossy man-

ner using a factorized entropy model [11]. The current frame’s three-times downsampled

coordinates C2
3ds are transmitted in a lossless manner using an octree encoder like G-

PCC [4]. Three-times downsampled coordinates C2
3ds is much smaller than the original

geometry (e.g. for the 8iVFB dataset, the C2
3ds is about 16 times smaller than C2). At the

receiver, the previously decoded frame ĂP 1 and the three-times downsampled coordinates

C2
3ds are used to predict yP 2

3ds. The residual yR2
3ds is added with yP 2

3ds to obtain the current

frame’s three-times downsampled tensor representation ĚP 2
3ds. The decoder progressively

rescales ĚP 2
3ds to obtain the current decoded frame ĂP 2.
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Figure 33: Prediction network. Takes in four multiscale features from previous frame

and the three-times downsampled coordinates of the current frame pC2
3dsq to learn current

frame’s feature embedding yP 2
3ds.

6.3.4 Prediction Network

We propose a novel deep learning-based inter-frame prediction network that can

predict the latent representation of the current frame from the previously reconstructed

frame as shown in Fig. 33. This way the network performs motion estimation between

consecutive frames to measure the current frame’s feature embedding. The multiscale

features from the previous frame, P 1
0ds, P

1
1ds, P

1
2ds, P

1
3ds, and the three downsampled coor-

dinates from the current frame, C2
3ds, are fed to the prediction network to obtain current

frame’s predicted three-times downsampled tensor yP 2
3ds “ tC2

3ds,
yF 2
3dsu. The prediction

network downscales the input three times while concatenating it with the corresponding
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Figure 34: Example of convolution on target coordinates in 2D. Where the blue are the

input cooridnates and the green are the output coordinates. (figure taken from [20]).

scale features. Finally we employ a convolution on target coordinates to obtain features

for yP 2
3ds. Convolution on target coordinates help us translate the latent features from the

downsampled coordinates of P 1, i.e., C1
3ds to the downsampled coordinates of P 2, i.e.,

C2
3ds. Convolution on target coordinates can be viewed as a convolution with arbitrary in-

put and output coordinates where the features from input coordinates get convolved with

the convolutional kernel and the output is only retained at the output coordinates. An

example of Convolution on target coordinates is shown in Fig. 34. During convolution on

target coordinates, the features are mapped from the input coordinates C1
3ds to the output

coordinates C2
3ds after applying sparse convolution. We use a kernel size of 3 ˆ 3 ˆ 3 for

the convolution on target coordinates.
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6.3.5 Training

During training, we optimize the Lagrangian loss, i.e.,

Jloss “ R ` λD (6.1)

Where R is the compressed bit rate and D is the distortion loss. We employ binary

cross-entropy loss for voxel occupancy classification as the distortion loss at the decoder.

We employ three binary cross-entropy losses at three different scales such that the total

distortion loss is:

D “ L1p rP2ds, P2dsq ` L2p rP1ds, P1dsq ` L3p rP , P q (6.2)

Where the ground-truth P2ds and P1ds are obtained by voxel or quantization-based down-

sampling of the original point cloud P .

The three downsampled coordinates C2
3ds are transmitted losslessly using Octree

encoder in G-PCC [4] and consumes a very small amount of bits (i.e., around 0.024 bpp

for 8iVFB dataset). We subtract the three downsampled predicted features yF 2
3ds from

the original three downsampled features F 2
3ds to obtain the residual features R2

3ds. The

residual features are quantized during inference, while during training, uniform noise is

used to approximate the quantization [11]. Quantized residual features are encoded by

an arithmetic encoder where a fully factorized probabilistic entropy model [12] is used to

learn the probability distribution of each feature where the bitrate pRq is lower bounded

by its information entropy.
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6.4 Experimental Results

6.4.1 Dataset and Training

We used a total of eight different sequences for dynamic point cloud datasets:

longdress, loot, redandblack, and soldier sequences from JPEG Plenos 8i Vox-

elized Full Bodies dataset (8iVFB v2) [23], queen sequence from Technicolor

(https://www.technicolor.com/fr), and basketball, exercise, and model sequences from

MPEGs Owlii Dynamic Human Textured Mesh Sequence Dataset [123]. We converted

all the dynamic datasets to a voxel depth of 10 bits. The 8iVFB and queen datasets have

about 300 frames whereas Owlii dataset has 64 frames.

We train the proposed inter-frame encoding method in an end-to-end manner using

dynamic point cloud datasets. During training, longdress, loot and queen sequences were

used; while sequences redandblack, soldier, basketball, exercise, and model were used

during testing. To decrease computational complexity during training, we divide the PC

frames into smaller chunks by applying the same kd-tree partition on two consecutive

frames. During inference time we used whole point clouds. We use seven different λ

values to cover a wide range of bit rates.

6.4.2 Performance Evaluation.

For a fair comparison, we closely follow MPEG’s common test conditions (CTC)

[96]. We compare our method to the state-of-the-art deep learning intra-frame encod-

ing PCGCv2 [113], MPEG’s G-PCC (octree as well as trisoup) [4] methods, as well as
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MPEG’s video-based V-PCC method (inter and intra-frame encoding) [5]. We utilize G-

PCC’s latest reference implementation TMC13-v14 and for V-PCC the latest implementa-

tion TMC2-v17 is employed that uses HEVC video codec. We employ V-PCC inter-frame

low-delay setting which involves P-frame encoding for a fair comparison to our P-frame

encoding scheme. We employ MPEG’s point-to-point distance (D1) mean squared er-

ror (MSE) based Peak Signal-to-Noise Ratio (PSNR) as our evaluation metrics. Bits per

point (bpp) is used to measure the compression ratio. We plot rate-distortion curves and

calculate the BD-Rate (Bjøntegaard Delta Rate) [15] gains over different methods.

Table 15 shows the BD-Rate gains of the proposed method over the state-of-the-

art. The lower the BD-Rate value, the more the improvement is. Our method achieves

significant gains compared to G-PCC with an average of 91.68% BD-Rate gains against

G-PCC (octree), 84.41% BD-Rate improvement over G-PCC (trisoup). Compared to the

deep learning-based model PCGCv2, we achieve a 34.08% BD-Rate improvement. Com-

pared to the V-PCC, we achieve a 62.69% BD-Rate improvement over intra-frame en-

coding mode and 52.44% BD-Rate improvement over inter-frame encoding mode. To the

best of our knowledge, our method is the first deep learning-based method to outperform

V-PCC inter-frame mode across all rates for dense photo-realistic point clouds.

The rate-distortion curves for each test sequence and their average is plotted in Fig.

36. Fig. 37 shows the zoomed-in version of Fig. 36. As can be seen, our method performs

considerably better than G-PCC (octree) and G-PCC (trisoup) and has significant coding

gains compared with the deep learning-based model PCGCv2. It should be noted that

compared with PCGCv2, our method performs much better at higher PSNR and still
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Table 15: BD-Rate gains against the state-of-the-art methods using D1 distortion mea-

surements.

G-PCC (octree) G-PCC (trisoup) PCGCv2 [113] V-PCC intra V-PCC inter

basketball -92.01 -87.80 -32.45 -60.46 -48.82

exercise -91.70 -87.02 -35.44 -62.08 -48.30

model -89.86 -83.24 -33.69 -61.93 -51.80

redandblack -91.42 -81.25 -28.31 -59.33 -55.58

soldier -92.75 -82.61 -40.16 -66.51 -43.60

Average -91.68 -84.41 -34.08 -62.69 -52.44

performs better than PCGCv2 at lower PSNRs. This is because both the proposed method

and PCGCv2 transmit the three downsampled coordinates in a lossless manner and their

corresponding features in a lossy manner. However, at lower PSNRs, most of the bits are

consumed by coordinates (i.e., around 0.024 bpp) which constitutes the majority of the

bitrate. At higher PSNR values most of the bitrates are due to features. Our inter-frame

prediction network transmits only the residual of the features and, hence, can significantly

decrease the feature bits transmitted leading to much higher gains at higher PSNR and

bitrates.

Compared with V-PCC, we can see that we achieve a much higher PSNR for the

same bitrate for all of the sequences and bitrates. As expected, the V-PCC inter-frame en-

coding mode performs better than V-PCC intra-frame encoding mode. The sequences that
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Figure 35: Qualitative visual comparison of sequence “soldier” for different methods. The

color error map describes the point-to-point distortion measured in mm, and the numbers

above represent the bitrate, mean error measured in mm, and D1 PSNR.

have the most movement (i.e., redandblack) the V-PCC inter and V-PCC intra modes per-

form pretty similarly whereas the sequence with the least amount of movement (i.e., sol-

dier) the V-PCC inter-frame encoding method performed much better than V-PCC intra-

frame encoding method. We can see a similar pattern between our proposed inter-frame

method and PCGCv2 which is an intra-frame method. We see that our proposed inter-

frame method has the most improvement over PCGCv2 on soldier sequence and the least

improvement over PCGCv2 on redandblack sequence. Our Prediction module maps the
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Figure 36: Rate-distortion curves comparison with the state-of-the-arts plotted for five

different sequences and their average.
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Figure 37: Zoomed-in version of Fig. 36.

features extracted from the previous frame to the coordinates extracted from the current

frame. In this way, when the motion between adjacent frames is small, the performance

is significantly improved.

Qualitative comparison with G-PCC and our proposed method is presented in Fig.
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Table 16: Average runtime of different methods using 8iVFB v2 PCs.

G-PCC (O) G-PCC (T) PCGCv2 [113] Ours

Enc (s) 1.13 6.15 0.258 0.364
Dec (s) 0.44 5.01 0.537 0.714

35, using point clouds colored by reconstruction error.

6.4.3 Runtime Comparison

We compare the runtime of different methods in Table 16. We use an Intel Core

i9-11900F CPU and an Nvidia GeForce GTX 3090 GPU. G-PCC runtime is computed

for the highest bitrate on a CPU. While both PCGCv2 and Our method utilize the GPU.

Due to the diversity in platforms, e.g., CPU vs. GPU, Python vs. C/C++, etc, the running

time comparison only serves as the intuitive reference to have a general idea about the

computational complexity. As can be seen, our method experiences a slight increase in

runtime due to processing two PC frames at a time. However, the increased complex-

ity is still minimal given that our network is an inter-frame prediction scheme. PCGCv2

has about 778 thousand parameters, whereas, the proposed method has about 2,033 thou-

sand parameters which is still a relatively small network. The runtime complexity can be

optimized by migrating to a C++ implementation and simplifying the framework.

6.4.4 Ablation Study: Block Size

Even though in our evaluations, we have used the full point cloud during inference.

We wanted to see the effects on PSNR and bitrate of dividing the point cloud into smaller
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Table 17: Partitioning the point cloud into smaller number of blocks. Tested on soldier

sequence

# of blocks PSNR bpp

1 74.56 0.1944

2 74.52 0.1987

4 74.48 0.2055

8 74.35 0.2158

blocks for encoding. The purpose is to demonstrate that if needed, a large point cloud can

be partitioned into blocks for processing. During the encoding, we save the coordinate

bitstream, feature bitstream, number of points, and the entropy model header information

into four different files. Overall bitrate is decided by the collective size of these files.

Once we divide the point cloud into blocks, each block would be encoded separately

into four different files so we should expect to see a higher overhead involved. kd-tree

partitioning is employed to divide each point cloud into multiple blocks and encoded

the blocks independently. The results of this experiment on soldier sequence are shown

in Table 17. We notice that partitioning the point cloud into smaller blocks decreases

the PSNR slightly. However, the difference is minimal. We also notice that the bitrate

increases a bit but that could possibly be from the overhead of saving the information in

lots of files (e.g. for 8 # of blocks, we have a total of 24 files encoded, whereas, for 1

block, we have a total of 4 files encoded). It is possible to merge these files into a single

file to decrease the overhead. However, that is out of the scope of the current work.
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6.5 Conclusion

In this work, we propose a deep learning-based inter-frame compression scheme

for dynamic point clouds that encodes the current frame using the previously decoded

previous frame. We employ an encoder to obtain multi-scale features and a decoder to

hierarchically reconstruct the point cloud by progressive scaling. We introduce a novel

prediction network module that predicts the latent representation of the current frame by

mapping the latent features of the previous frame to the downsampled coordinates of the

current frame using convolution on target coordinates. We encode and transmit the resid-

ual of the predicted features and the actual features. We employ sparse convolutions to

reduce the space and time complexity which allows our network to process two consec-

utive point cloud frames. Experimental results show more than 91% BD-Rate gains over

the state-of-the-art MPEG G-PCC (octree), more than 84% BD-Rate gains over G-PCC

(trisoup), more than 34% BD-Rate gains over intra-frame network PCGCv2, more than

62% BD-Rate improvement over MPEG V-PCC intra-frame encoding mode, and more

than 52% BD-Rate improvement over MPEG V-PCC inter-frame encoding mode.
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[81] Öztireli, A. C., Guennebaud, G., and Gross, M. Feature preserving point set sur-

faces based on non-linear kernel regression. In Computer Graphics Forum (2009),

vol. 28, Wiley Online Library, pp. 493–501.

[82] Perry, S. JPEG Pleno Point Cloud Coding Common Test Conditions v3. ISO/IEC

JTC1/SC29/WG1 N 86044 (2020).

[83] Preiner, R., Mattausch, O., Arikan, M., Pajarola, R., and Wimmer, M. Continuous

projection for fast L1 reconstruction. ACM Trans. Graph. 33, 4 (2014), 47–1.

[84] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep learning on point sets

for 3d classification and segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2017), pp. 652–660.

[85] Qi, C. R., Yi, L., Su, H., and Guibas, L. J. PointNet++: Deep hierarchical fea-

ture learning on point sets in a metric space. In Advances in Neural Information

Processing Systems (2017), pp. 5099–5108.

[86] Qian, G., Abualshour, A., Li, G., Thabet, A., and Ghanem, B. PU-GCN: Point

Cloud Upsampling using Graph Convolutional Networks. In Proceedings of

128



the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021),

pp. 11683–11692.

[87] Qian, Y., Hou, J., Kwong, S., and He, Y. PUGeo-Net: A Geometry-centric Network

for 3D Point Cloud Upsampling. arXiv (2020), arXiv–2002.

[88] Qian, Y., Hou, J., Kwong, S., and He, Y. PUGeo-Net: A Geometry-Centric Net-

work for 3D Point Cloud Upsampling. In European Conference on Computer

Vision (2020), Springer, pp. 752–769.

[89] Qian, Y., Hou, J., Kwong, S., and He, Y. Deep Magnification-Flexible Upsampling

Over 3D Point Clouds. IEEE Transactions on Image Processing 30 (2021), 8354–

8367.

[90] Quach, M., Valenzise, G., and Dufaux, F. Learning convolutional transforms for

lossy point cloud geometry compression. In 2019 IEEE International Conference

on Image Processing (ICIP) (2019), IEEE, pp. 4320–4324.

[91] Quach, M., Valenzise, G., and Dufaux, F. Improved deep point cloud geometry

compression. In 2020 IEEE 22nd International Workshop on Multimedia Signal

Processing (MMSP) (2020), IEEE, pp. 1–6.

[92] Que, Z., Lu, G., and Xu, D. VoxelContext-Net: An Octree based Framework

for Point Cloud Compression. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (2021), pp. 6042–6051.

129



[93] Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention (2015), Springer, pp. 234–241.

[94] Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz, M. Towards 3D

point cloud based object maps for household environments. Robotics and Au-

tonomous Systems 56, 11 (2008), 927–941.

[95] Schnabel, R., and Klein, R. Octree-based Point-Cloud Compression. Proc. IEEE

Eurographics Symp. Point-Based Graphics (PBG 06) 6 (2006), 111–120.

[96] Schwarz, S., Martin-Cocher, G., Flynn, D., and Budagavi, M. Common Test

Conditions for Point Cloud Compression. Document ISO/IEC JTC1/SC29/WG11

w17766, Ljubljana, Slovenia, [Online] (2018).

[97] Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar, P., Chou, P. A., Co-
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