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ABSTRACT

Forecasting of wind speeds is necessary for the planning and operations of the wind

power generating plants. This research investigates the short term forecasting of wind

speeds at tall tower heights for stations within Missouri: Columbia, Neosho and Blan-

chard. The first objective was to characterize the chaotic nature of this parameter

using mono and multi fractal analysis using the Rescale Range Analysis (R/S Anal-

ysis) and the Multifractal Detrended Fluctuation Analysis respectively (MF-DFA).

It was determined that the system was fractal and there were no trends indicative

of increasing fractality and complexity with increasing height. The second objective

was the qualitative and quantitative chaotic characterization of the wind speeds using

phase-space portraits and the Largest Lyapunov Exponent (LLE) respectively. The

methods confirm the results of the fractal analyses. A simple non-linear prediction

algorithm, Empirical Dynamical Modeling (EDM) was then used to forecast the wind

speeds using a moving window. It was determined that the EDM was comparable to

persistence. It beats this benchmark model in the very short term range of one time

step or 10 minutes. The third objective was to cluster the data using Self-Organizing

Maps (SOMs), having identified the optimum number of clusters as 4 using the El-

bow and Silhouette Methods, among others. Three continuous intervals belonging

to a particular cluster, which represented approximately 50% and over of the input

vectors or rows from the data frame were identified. These intervals were then used

as inputs into a Long Short-Term Memory Network (LSTM) with variables, pressure

and wind speeds, as well as a lagged series LSTM with embedding dimension, d,

and time delay τ . These were compared to the Moving window Auto Regressive

Integrated Moving Average (ARIMA) and to persistence. It was determined that

the lagged series LSTM improved on the LSTM with wind speed and pressure series

inputs, and all models beat persistence. The lagged LSTM beats the Moving ARIMA

for at least 2 of the forecasting times of 60 and 120 minutes for all intervals.

xii



Chapter 1

Introduction

Clean energy resources are needed to mitigate the emission of green house gases in

the atmosphere due to human activities. One such greenhouse gas is carbon dioxide,

which accounted for approximately eighty percent of such emissions by human activ-

ities in the U.S. for the year 2019 (United State Environmental Protection Agency,

2021). The main source for the release of carbon dioxide in the United States, in the

year 2019, with approximately 35 percent of the total carbon dioxide emissions and

28 percent of the total green house gas emissions, is the combustion of fossil fuels

namely gasoline and diesel for the purpose of transportation (United State Environ-

mental Protection Agency, 2021). The second contributor is electricity generation,

which accounts for 31 percent of the total carbon dioxide emissions and 24 percent of

the total green house gas emissions (United State Environmental Protection Agency,

2021). The reduction of these emissions can come from fuel switching (United State

Environmental Protection Agency, 2021) which entails producing more energy from

renewable sources.

One such clean energy source is wind energy. Wind is caused by the uneven heating

of Earth’s surface and atmosphere from solar energy together with the planetary

rotation. This causes pressure gradients (which is the difference in this variable over

1



a given distance). Wind results from the flow of air from high to low pressure values.

If the high and low pressures are closer together, then the pressure gradients are

stronger and thus so too the winds. Wind can slow down near the surface or in areas

of wind shear due to friction. Friction is caused from impediments such as buildings,

forests, mountains and hills. Friction not only slows the wind but makes it traverse

in different directions with varying speeds thus creating turbulence; defined as the

rapid changes in wind speed velocities. Turbulence can also be caused by the rising

and sinking motions caused by the changes in temperature (thermal gradients) during

day time heating.

Missouri has a range of wind potentials which is above the required wind speeds for

operational turbines. Out of the total wind power capacity of 122,465 MW installed

in the US, Missouri has, as of the last quarter in 2020, 1987 MW (Office of Energy

Efficiency & Renewable Energy, 2020). This source is deemed feasible if the power

density is greater than 500 Wm2 . At a height greater than or equal to 50 m above the

ground, this implies having a wind speed of 7-8 ms−1. This requirement is satisfied

by thirteen percent of the Earth’s surface (Ferreira, Santos, and Lucio, 2019).

To harness this renewable energy source, forecasting of tall tower winds speeds is

necessary. The accurate prediction of this source implies improvements to planning

the wind power generating plants (Ferreira, Santos, and Lucio, 2019). Short term

prediction of this variable is needed for the operation of the wind turbine (Ferreira,

Santos, and Lucio, 2019). This dissertation thus examines the short term forecasting

of wind speeds within Missouri using tall tower data. The second chapter deals with

characterizing the fractal nature of the wind speeds; looking at its mono- and multi-

fractality. The third chapter also establishes the chaotic characteristics of the wind

speeds via the construction of phase space and the determination of the Largest

Lyapunov Exponent. Thereafter a simple non-linear algorithm, Empirical Dynamical

Modeling was conducted. The fourth chapter then investigates the clustering and

2



subsequent forecasting of wind speeds using Neural Networks. The final chapter

gives a summary of the previous chapters.
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Chapter 2

Fractal Characteristics of Tall Tower
Wind Speeds in Missouri

2.1 Abstract

The Hurst exponent H is used to determine the measure of predictability of a time

series. The value between 0 and 1 with 0.5 representative of a random or uncorrelated

series, H > 0.5 and H < 0.5 reflect a data set which is persistent and anti-persistent

respectively. The fractal dimension can be given from the Hurst exponent. The frac-

tal dimension is a factor of the complexity of which the system is being repeated

at various scales. If the fractal dimension does not change with scale it is deemed

monofractal if not, multifractal. The Hurst exponents were determined in this study

using the Rescale Range Analysis (R/S Analysis) and Multifractal Detrended Fluctu-

ation Analysis (MF-DFA) for monofractal and multifractal investigations respectively.

These methods were applied to daily 10 minute wind speed time series data for the

year 2009 from three locations within Missouri: Columbia, Neosho and Blanchard for

three tall tower stations. The results obtained from the monofractal analysis showed

minor variations in the Hurst exponents for the three stations and heights for all the

5



months in 2009. These values ranged from 0.7 to 0.9 and its corresponding fractal

dimension was ranged between 1.3 and 1.1. The results for the MF-DFA showed that

the wind speed time series were multifractal in nature as the Hurst exponents were

functions of the scaling parameters. Also, the plots of the Renyi Exponent were non-

linear for the stations and the various channels; this is representative of multifractal

signals. The fractal dimensions of the time series using multifractal analysis were

determined to be greater than these values determined using monofractal analysis.

However, there were no indications of consistent increases in the complexity of the

systems’ multifractality with increasing heights for the various stations’ tall towers.

Keywords: Hurst Exponents, Fractal Dimensions, Rescale Range Analysis, Mul-

tifractal Detrended Fluctuation Analysis, Wind speed time series

2.2 Introduction

The aim of this study is to determine the internal dynamics of the wind speed time

series for three different height levels for three towers in northern, central and south-

ern Missouri. The fractal characteristics of these records provides information on the

stochastic processes which generate temporal variations in the series. This informa-

tion is used in the development of predictive models which ultimately improves the

efficacy of wind power as an alternative form of energy.

The subsequent subsections will be an introduction to wind speeds in Missouri,

fractals and the relationship between the two. Thereafter, the paper gives a descrip-

tion of the data used in this study. Section 3 seeks to explain the monofractal and

multifractal methodologies used and section 4 delves into the analysis of the obtained

results for each of these procedures. The final section is the conclusion of the major

findings.
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2.2.1 Wind Speeds in Missouri

Missouri’s average wind speed is approximately 4.5 m/s (Division of Energy, 2019)

which is above the 3.5 m/s cut-in wind speed required for small turbines to be op-

erational. The wind speed value for Missouri is higher than some states associated

with the wind industry (Division of Energy, 2019). In 2018, six percent of Missouri’s

electric generation came from renewable energy. Approximately two-thirds of this

renewable generation came from wind energy. The wind power generation capacity

of 1000 megawatts was derived from 500 turbines (U.S Energy Information Admin-

istration, 2019). There is most wind energy potential in the North West regions of

Missouri, as seen in Figure 2.1 which is an 80 m average annual wind speed map

(Wind Energy Technologies Office, 2019).

Figure 2.1: AWS True Power and NREL’s Wind Resource Map of Missouri.

2.2.2 Fractals

Fractals are associated with objects that are self-similar, that is, they have the same

patterns which occur at different scales and sizes. Mandelbrot (Mandelbrot, 1989)
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stated that is a form of symmetry which is invariant under translations and dilations.

These have many details which occur at arbitrary small scales which are too complex

to be represented in Euclidean space. Classical geometry and calculus is not suitable

for studying fractals and fractal geometry (Falconer, 2004). According to Mandelbrot,

when the fractal or Hausdorff dimension is strictly greater than the topological or

Euclidean dimension, the set is considered to be fractal and have fractal geometry

(Falconer, 2004); the assigned fractal dimension measures the roughness of the surface

(Turcotte, 1997). In particular, fractal dimensions can be non-integers which reflects

the fact that fractals inhabit space in qualitatively and quantitatively different ways

than smooth geometric objects. For example, a smooth curve in the plane is well-

approximated by a straight tangent line at each point and hence one dimensional. A

fractal, by contrast, does not admit a linear approximation at each point and can have

a Hausdorff dimension between one and two. Since the fractal dimension measures the

irregularities of a set at various scales, a shape which has a higher fractal dimension

is more complex and rough than one that has a lower fractal dimension (Ribeiro and

Miguelote, 1998) (Breslin and Belward, 1999).

Fractals can be observed in nature, geometry and algebra as well as mathematical

physics. In nature fractals can be seen from small scales such as the scale of two to

three atomic diameters in metallic glass alloys (Technology, 2015) to large scales of

one hundred thousand light years in a spiral galaxy. Coastlines were characterized as

fractal in nature by Mandelbrot; the fractal dimension of a Norwegian coastline was

determined to be 1.52 and for a British coastline it was given as 1.31 (Ribeiro and

Miguelote, 1998) (Feder, 2013) whilst the fractal dimension of the space distribution

of galaxies less than fifty million light years is 1.23±0.04 (Peebles, 1989). Fractals can

also be seen in the nonlinear and chaotic behaviour of river and drainage networks as

well as hurricanes which is scale invariant (Turcotte, 1997).

In geometry, fractals are observed in for example, the triadic Koch Curve and the
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Sierpinski Triangle; these are intermediate shapes of Euclidean Geometry. The Koch

Curve is generated from a less detailed starting shape or initiator in which a similar

task is added on smaller scales thus making the curve more detailed (Mandelbrot,

1982) (Feder, 2013). That is, each segment of the generator shape is replaced by a

smaller copy of the generator itself. Its fractal dimension is 1.26 which is indicative

of its infinite length and its area being 0 (Falconer, 2004). The Sierpinski Triangle

is generated by the iterative removal of the middle triangle from the previous recon-

struction. The fractal dimension of the Sierpinski Triangle is larger than the Koch

Curve, its value is 1.58.

We also see fractals in algebra. They are seen in the beginning of modern

Mathematics with the middle third Cantor Sets. These sets display properties of

self-similarity and have fine structures in which there are details in arbitrary small

scales(Mandelbrot, 1982). This uncountably infinite set is formulated from removing

in an iterative manner, the middle third of each interval (Falconer, 2004) until the

limit of an infinite set of clustered points known as Cantor "dust" is reached (Tur-

cotte, 1997). Since from this process, there are 2n subsets for n iterations having

a magnification factor of 3n, the fractal dimension given by D = log(2n)/log(3n) is

0.631 (Turcotte, 1997). The Mandelbrot Set, which led to the development of com-

plex dynamics, is also fractal. This set is defined as all the complex numbers, c for

which the function fc(z) = z2 + c stays bounded (Mandelbrot, 2013). The image of

the Mandelbrot Set shows all the values of c for which the sequence is bounded and

all the values of c outside this set for which fc(z) goes to infinity. It also shows the

rate of which the function tends to infinity as seen in the depiction below, Figure 2.2

(c).

There are also fractal connections between non-linear differential equations such

as the Navier-Stokes equation (Mandelbrot, 1989). The linear methods of autocorre-

lation function analysis and spectral analysis are unreliable in the determination of
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the complex behaviours of non-stationary time series (Philippopoulos et al., 2019). In

fluid motion, turbulence is given as effects of singularities of the Navier–Stokes Equa-

tion (Mandelbrot, 1989). To study this equation, fractal and multifractal models were

developed in which the Hausdorff dimension was determined.

Figure 2.2: Fractals

2.2.3 Fractals and Wind Speed

To evaluate the wind power and wind potential energy, the analysis of the mean wind

speeds and frequency distribution need to be done. This is done to mitigate the prob-

lems associated with the intermittency of the wind speeds records, in terms of its the

spatial and temporal variations, when trying to integrate wind power into electrical

grids (de Figueirêdo et al., 2014). The internal dynamics of the wind speed time series,

that is, its monofractal and multifractal characteristics are used to give information

on the stochastic processes which are the generators of these temporal variations.

This information is useful in the development of predictive models both theoretical

and computational in nature (de Figueirêdo et al., 2014). These wind power forecast-

ing tools increase the efficiency of wind power as an alternative renewable source of

energy by reducing the unexpected variations in the wind energy conversions systems

(WECS) power generation, thus, reducing operational costs in the electricity genera-
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tion by reducing the requirements of larger primary reserve capacity (W.-Y. Chang,

2014).

2.3 Data

In this study, 10 minutes daily wind speed time series data measured in m/s was used

in Missouri, USA for the year of 2009 (Fox, 2011). Three stations were used in this

investigation; Columbia, Blanchard and Neosho. Their locations are 038◦53.270′N

latitude and 092◦15.820′W longitude, 040◦33.570′N latitude and 095◦13.470′W lon-

gitude, 036◦52.730′N latitude and 094◦25.570′W longitude respectively with corre-

sponding site elevations being 255, 328 and 373 m. These are located in North,

Central and South Missouri as seen in Figure 2.3. The anemometers were placed

on various heights and orientations on the towers. For Columbia, Blanchard and

Neosho, the anemometer orientations were 120◦and 300◦for each of the various sites’

tall tower heights of 68, 98, 147 m and 61, 97, 137 m and 50, 70 , 90 m respectively.

Channels 1, 3 and 5 are the wind speed times series of the three consecutive heights

at an orientation of 120◦and Channels 2, 4 and 6 are wind speed values obtained

when anemometers were oriented at 300◦. The larger of the wind speed values at

each time step for all the heights were taken for all of the stations. These were

labelled Columbia68,Columbia98 and Columbia147, Blanchard61, Blanchard97 and

Blanchard137, Neosho50, Neosho70 and Neosho90. These time series for January to

December of 2009 were used in the evaluation of the fractal characteristics of wind

speeds within Missouri.
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Figure 2.3: Study Locations within Missouri.

2.4 Methodology

2.4.1 Monofractal Analysis: Rescale Range Analysis (R/S Anal-
ysis)

There are multiple methods of determining the fractal dimensions of data sets which

include the box-counting method, variation method and the Hurst R/S method (Bres-

lin and Belward, 1999). The R/S method gives the scale free irregularity and the long

term memory or correlation of the series (Breslin and Belward, 1999). This method

was used by Hurst to compare observed ranges of natural phenomena including river

discharges, mud sediments and tree rings (Feder, 2013). The scale properties of geo-

physical variables such as precipitation, temperature, sea level and sunspots using

R/S analysis were investigated by Lovejov and Mandelbrot in 1985 and Rangarajan

and Sant in 2004 among others (Salomao, Campanha, and Gupta, 2009).
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This paper uses the R/S method. To explain the general idea, suppose there

is a time series xi, i = 1, 2, 3, . . . , N . The range Rn is defined to be the difference

between the maximum and the minimum accumulative departure from the mean of

some n < N points. The dimensionless ration (R/s)n is given by (2.1).

(R/S)n =
1

S

[
max

n

n∑
i=1

(xi − ⟨x⟩)−min
n

n∑
i=1

(xi − ⟨x⟩)

]
(2.1)

where

⟨x⟩ = 1

n

n∑
i=1

xi and S =

√√√√ 1

n

n∑
i=1

(xi − ⟨x⟩)2 (2.2)

From (2.1), as n −→ ∞, (R/S)n −→ CnH where C is a constant and H is the

Hurst Exponent. Thus, from this power law relationship,

ln(R/S)n = ln(C) +H ln(n). (2.3)

Given (2.3), a slope of the simple regression line of ln(R/S)n against ln(n) will give

the Hurst Exponent H or the degree of correlation. Various values of H corresponds

to the following characteristics wind speeds (Cadenas et al., 2019).

1. If H = 0.5, then wind speed is random or uncorrelated where future data is not

determined by current data. This series is called a Brownian time series or a

random walk. This series which display no memory is considered to have ’white

noise’.

2. If 0.0 < H < 0.5, then anti-persistence or mean reverting series: the wind

speeds have long term negative auto-correlation in adjacent pairs. That is a

long term switching between high and lows among adjacent pairs in the series

for a long time into the future. A high will be followed by a low and then a high

etc. Thus we will have a more rugged or less smooth time series. This occurs

because the future values have a tendency to return to the long-term mean.
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The time series is considered to have ’pink noise’ which is related to turbulence.

3. If 0.5 < H < 1.0, then persistence: the wind speeds have long term positive

auto-correlation in adjacent pairs. That is a high value in the series will be

followed by another high value for a long time into the future.

4. If H ≈ 1 or H = 1, then there is strong predictability wind speeds or the wind

speeds are predictable.

From (Mandelbrot, 1985)’s box argument, it is given that the local fractal dimen-

sion for self-affine records, D, is D = 2−H.

2.4.2 Multifractal Analysis: Multifractal Detrended Fluctua-
tion Analysis (MF-DFA)

The MF-DFA method was used to study turbulent signals. This procedure was ap-

plied to resistor network model, DNA sequences, satellite and microscopic images,

financial time series including stock price fluctuation, traffic time series, quantum

dynamical theory, weather records, cloud structure, geology and music among oth-

ers (Salat, Murcio, and Arcaute, 2017) (Kantelhardt et al., 2002) (Shang, Lu, and

Kamae, 2008) (Yuan, Zhuang, and Jin, 2009). The four principle methodologies re-

lating fractal theory to measures are the moment method, the histogram method, the

multifractal detrended fluctuation analysis method and wavelet transform modulus

maxima method (Salat, Murcio, and Arcaute, 2017). These analyses are done when

the fractal dimension changes with scale and when the time series is non-stationary.

There may be multiple scaling exponents which represents different fractal subsets

of the series (Kantelhardt et al., 2002). Unlike the R/S Analysis method, the MF-

DFA method can detect non-spurious long-range correlations of a time series when

there is non-stationary trends superimposed on it (Li et al., 2015)(Yuan, Zhuang,

and Jin, 2009) (Movahed et al., 2006). The scaling of these intrinsic fluctuation of
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the time series can be determined despite knowing the origin and the shape of the

trends present (Movahed et al., 2006). This is especially important for this study as

the time resolution of the wind speed data sets is 10 minutes and the analysis is done

for a time window of at most one year. Thus the annual trend cannot be estimated

and removed from these datasets and as such the trend removing capabilities of MF-

DFA is essential (Ludescher et al., 2011). Also, when compared to other multifractal

methodologies, the MF-DFA method is less sensitive to the length of the time series

and it gives more reliable results using a sample of over 4000 data points (Baranowski

et al., 2015).

In this paper the MF-DFA is done. To explain the general idea, consider a non-

stationary time series of length N , x(i), i = 1, 2, 3, . . . , N with compact support (i.e.

x(i) = 0 for an insignificant fraction of the series) (Kantelhardt et al., 2002). The

trajectory or profile preserves the variability of the time series whilst simultaneously

reducing the noise by removing the non-stationary effects (Feng et al., 2009). This

profile is given by Y (i), (2.4) (Kantelhardt et al., 2002).

Y (i) =
i∑

k=1

[
x(k)− x̄

]
(2.4)

This trajectory is partitioned into Ns non-overlapping intervals of equal length, s,

that is, Ns = ⌈N/s⌉. However, N need not be divisible by s thus part of the series

may be unaccounted for as the possibility exist that ⌈N/s⌉ < (N/s). To rectify this,

a subdivision is done on the right hand side of the sample. This gives a total of 2N

partitions or intervals (Kantelhardt et al., 2002). The local trend is determined by

using a polynomial of degree m to fit the trajectories in each of its partitions . The

variance is calculated from (2.5) for the two sets of partitions (Kantelhardt et al.,

2002).
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F 2(s, v) =


1

s

s∑
i=1

[
Y [(v − 1)s+ i]− yv(i)

]2
for v = 1, 2, 3, . . . , Ns

1

s

s∑
i=1

[
Y [(N − (v −Ns)s+ i)− yv(i)

]2
for v = Ns+1, . . . , 2Ns

(2.5)

where yv(i) is the fitting polynomial for that partition. Finally, the qth order fluctu-

ation, Fq(s), is calculated from the average of all the partitions (Kantelhardt et al.,

2002). Please see (2.6).

Fq(s) =
[ 1

2Ns

2Ns∑
v=1

[
F 2(s, v)

] q
2
] 1

q (2.6)

where q ̸= 0 and s ≥ m+ 2, m is the degree of the fitting polynomial. The scale was

chosen to be 10: 100 and m was chosen as 1. Thus the inequality for which Fq(s) was

defined, holds.

The multifractality of the time series is caused by different long term correlations

in the sample. MF-DFA can be used to determine multiple scaling exponents and

spectrum parameters to classify the complexity and dynamics of the time series unlike

monofractal analysis which characterizes the scaling property by one exponent for the

entire data set. The four multi-fractal analyses done in this paper are as follows:

1. log(Fq(s)) against log(s) where s is the scale and Fq is the qth order fluctuation

average. If q is negative then small fluctuations are enhanced and if q is positive

then it enhances large fluctuations. To determine if long term correlation exist

in the signal there should be a power law variation where Fq increases as a

power of s. Thus, the generalized Hurst Exponent is the slope of this log-log

plot as Fq ≈ shq (Kantelhardt et al., 2002) (Fortuna, Nunnari, and Guariso,

2014) (Kavasseri and Nagarajan, 2005) and there is a linear relation in log plot

for the various q values.
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2. hq against q or the dependence of the general Hurst Exponent on q. For

monofractal time series hq is independent of q (Fortuna, Nunnari, and Guariso,

2014). The local trend of each segment is calculated from the least square fit of

the series and the variance of each segment. Since the scaling does not change,

the trend over each segment is the same. For multifractal time series hq is de-

pendent on q. This dependence of h on q is caused by the fluctuations of scales

both large and small. For large positive q values, there will be larger deviations

from the least square fit thus larger variances F 2(s, v) (Fortuna, Nunnari, and

Guariso, 2014). These large variances are also reflected in the qth order fluctua-

tion and as such there is a relation between the large fluctuations and the Hurst

Exponent, hq. Large fluctuations for multifractal time series implies smaller

hq values (Kantelhardt et al., 2002). Similarly, for negative values of q, there

are smaller variances and small fluctuations are characterized by larger scaling

exponents hq (Kantelhardt et al., 2002). Thus we have for a monofractal data

set there will be one exponent for all scales where as for a multifractal time

series, hq monotonically decreases with increasing q.

3. τq against q or the qth order mass exponent. τq is called Rényi Exponent. If

τq varies linearly with q, then the time series is monofractal whilst the signal

is multifractal if it has non-linear variations with q (Kavasseri and Nagarajan,

2005) (de Figueirêdo et al., 2014) (Kantelhardt et al., 2002). The relationship

between this exponent and the Hurst Exponent is τq = qhq − 1. This relation-

ship between the two multifractal scaling exponents was proved in (Kantelhardt

et al., 2002) by considering a stationary positive and normalized sequence, sub-

stituting its simplified version of the variance, standard fluctuation analysis into

(2.6) and comparing it with the box probability for the standard multifractal

formalism for the normalised series.
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4. f(α) against α or the multifractal spectrum. If the signal is a single scale

fractal series then f(α) is a constant. A bell-like shape is given if the signal

displays multifractal tendencies (Fortuna, Nunnari, and Guariso, 2014). This

function is related to Rényi Exponent by the relation f(α) = qα − τq where α

is Hölder Exponent and α = dτq
dq

(Kantelhardt et al., 2002). Since, τq = qhq − 1,

α = hq + q dh
dq

and f(α) = q[α−hq] + 1. Some multifractal spectrum parameters

include position of max α0, width of spectrum W and skew parameter r. The

width of the spectrum is given by W = αmax −αmin and the skew parameter is

r = αmax−α0

α0−αmin
(de Figueirêdo et al., 2014). The width of the spectrum determines

the degree of the multifractality of the signal where a larger spectrum width

coincides with greater dynamics of the data set and stronger multifractality

(de Figueirêdo et al., 2014) (Laib et al., 2018). The skewness parameter is

classified as r = 0 for symmetry, r > 1 for a right skewed spectrum and r <

1 for a left skewed spectrum. The dominant fractal exponent describing the

scaling of small or large fluctuations is also determined by r. For a right skew

spectrum, the fractal exponent describes the scaling of small fluctuations whilst

large fluctuations are described by a left skew spectrum (de Figueirêdo et al.,

2014). The more complex and multifractal signals are signals where α0 and W

are large values as well as r > 1 or is right skewed (de Figueirêdo et al., 2014).

2.5 Analysis of Results

2.5.1 Raw Data

The monthly mean wind speeds for the various channels in Columbia, Blanchard and

Neosho were plotted in Figure 2.4. Average max wind speeds were recorded and

determined for January to December of 2009 in Columbia and for January to August
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and January to October in Blanchard and Neosho respectively. From the plot, we see

a similarity in terms of the wind speed patterns for all three stations. We see that the

months of January to April and October to December are peak months whilst there

is a decrease in average wind speeds during the period of May to September. From

the average wind speeds in Columbia and Neosho, it is evident that the maximum

to minimum wind speeds for each month coincided with the highest to lowest height

levels, Columbia147 to Columbia68 and Neosho90 to Neosho50. For Blanchard, this

holds true with the exception of intermediate height time series, Blanchard97, which

had the lowest monthly averages of all the stations.

It was observed that the maximum wind speeds of all the stations for all the

months came from the greatest tall tower heights of Blanchard137 and Columbia147.

Also, with the exception of Blanchard97, the lowest average wind speeds came from

the Columbia and Neosho stations at the lowest heights of 68 m and 50 m respectively.

Figure 2.4: Average Max Wind Speeds in Columbia, Blanchard and Neosho in 2009
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2.5.2 Monofractal Analysis

Figures 2.5, 2.6 and 2.7 show the monofractal Hurst Exponents for Columbia, Blan-

chard and Neosho respectively in 2009. From the results obtained there is no clear

distinction in the Hurst Exponent values from the various series for all the stations

thus indicating that the fractal dimensions of the wind speeds did not alter signifi-

cantly with increasing heights. The fractal dimensions were consistently in the range

of 1.1 to 1.3 for all the stations and months. This may have been as a result of similar

variations of wind speeds with height. As such we expect the Hurst exponents and

the fractal dimensions to be similar.

In Figure 2.7, it is observed that Neosho had the least monthly variations in the

fractal dimensions for all of the heights when compared to the other two stations; its

fractal dimensionality was determined to be 1.2 (to one decimal place). However of

all the tall towers, this station gives the wind speeds taken over the smallest range of

heights. It was determined that the numerically small variations in fractal dimensions

of the other two stations, given by Figures 2.5 and 2.6 were not similarly changing with

height and months when compared to Figure 2.4. For Columbia, the greatest fractal

dimensions occurred in February and December at the lowest height of 68 m and in

August at heights of 98 m and 147 m whilst the least fractal dimensions occurred

in January for all height levels. Similarly, for Blanchard the fractal dimension of

approximately 1.3 was observed for all heights in February. This was also noted in

July and August with the exception of Blanchard61 and Blanchard97 respectively.

The Hurst Exponents were determined to be in the range of 0.7 to 0.9. R/S

Analysis was used to show that the wind speeds investigated in this study does not

follow a random Gaussian process but rather a long term autocorrelation. Since 0.5 <

H < 1.0, this implies that the wind speed had a long term positive autocorrelation

in adjacent pairs where a high value will be followed by another high value for a long

time into the future. That is, its fluctuations are interconnected because there exist
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a statistical order in the dynamics of the system (Salomao, Campanha, and Gupta,

2009). There will be fewer peaks than a random series and it will be less rugged than

an anti-persistent system (Cadenas et al., 2019). This is consistent with a study done

by Fortuna and Guariso (Fortuna, Nunnari, and Guariso, 2014) in which daily and

monthly wind speed time series were analyzed from regions within the USA and Italy

using two methods, Box Counting Method, D and the Hurst Exponent R/S Range

Analysis Method,H. The wind speeds for these regions were determined to be fractal

also because the average D values were 1.19 and 1.41 for daily and hourly mean wind

speeds respectively. More complexity was discovered for hourly wind speeds than the

daily wind speeds as indicated from its higher fractal dimensions. This is indicative

of greater details and finer structures which the greater temporal resolution provides.

This numerical value is in agreement with our study even though different locations

and time scales were used.

Figure 2.5: Hurst Exponents for Columbia in 2009 (dark red - Columbia68, red-
Columbia98, green- Columbia147)
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Figure 2.6: Hurst Exponents for Blanchard in 2009 ( black- Blanchard61, blue- Blan-
chard97, purple- Blanchard137)

Figure 2.7: Hurst Exponents for Neosho in 2009 (pink-Neosho50, grey- Neosho70,
cyan-Neosho90)

2.5.3 Multifractal Analysis

As in Figures 2.8, 2.9 and 2.10, it is evident that for all of the heights, there were

increases in scaling function order, Fq as q values were increased from -5 to 0 to 5 for all

of the three tall tower stations. We see that ln(Fq) varies linearly with ln(s) for a scale
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of 10 to 100 days with the generalized Hurst Exponent being the slope; this indicates a

scale dependence which is characteristic of multifractality. Also, it is observed that as

s increases, the distances among the different q values decreases. This occurs because

for small segments (small s values), localized periods of small fluctuations given by

negative q values, can be differentiated from periods of large fluctuations given by

positive q values. This is unlike large segments (large s values) which includes both

small and large fluctuations where the tendency for the magnitude differences to

cancel occur (Philippopoulos et al., 2019). The hypothesis of the multifractal nature

of wind speeds were also supported by the study of Fortuna and Guariso (Fortuna,

Nunnari, and Guariso, 2014) for daily mean wind speeds recorded at Aberdeen from

2000 to 2012 in which the regression lines varied for differing q orders. Thus, the

Hurst Exponents given by the slope of the plots were changing also for these sets.

Similar results were also observed in another study in Northeastern Brazil, Petrolina

for both hourly wind speed and max wind speed (de Figueirêdo et al., 2014). Thus

we see that for temporal variations of data ranging from the ten minute to daily time

series, all showed multi-fractal characteristics.

As seen in Figures 2.11, 2.12 and 2.13, dependence of the Generalize Hurst Expo-

nent, it is seen that q increases as hq decreases monotonically for all height levels. This

is also noted in the slopes of Figures 2.8 to 2.10. Larger fluctuations corresponded

with smaller hq values and similarly, smaller fluctuations corresponded with larger

scaling exponents. It is observed that for Columbia68, Columbia98 and Columbia147

in the month of September, when q varied from -5 to 5, hq decreased from 1.7196 to

1.1730, 1.7171 to 1.2429 and 1.8055 to 1.3216 respectively. Since there is a range of

values for the various scales for all height levels then these are indicative of multifrac-

tal series. This is also in agreement with a study done by Kavasseri and Nagarajan

(Kavasseri and Nagarajan, 2005) for four sites with significant wind potentials in

North Dakota where hourly data was taken from a cup anemometer at a height of
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20 m. They determined that for one of the sites, when q increased from -6 to 6, the

slope decreased from 0.88 to 0.6989.

The Generalized Hurst hq is related to the Hurst Exponent, H, by h(2) = H for

stationary time series where 0 < h(q = 2) < 1 (Movahed et al., 2006). For non-

stationary time series, the scaling exponent of Fq(s) is characterized by h(q = 2) > 1

and the relationship between H and hq is given by H = h(q = 2)− 1. This is proved

in (Movahed et al., 2006). For September, h(2) values for Columbia68, Columbia98

and Columbia147 were determined to be 1.3536, 1.4290 and 1.4779 respectively. This

indicates a non-stationary process with long range correlation behaviour (Shang, Lu,

and Kamae, 2008). The corresponding Hurst exponents as well as fractal dimen-

sions, D, for this month and stations at the three heights are 0.3536, 0.4290, 0.4779

and 1.6464, 1.571, 1.5221. These results gives higher fractal dimensions than the

monofractal analysis for the time series data. It also showed that the wind speed

time series are displaying long-term anti-persistence correlations as in a study done

by (Zhang, Zeng, and Meng, 2018) in which the multifractality of multivariate wind

speed for both indoor and outdoor records were examined.

From Figures 2.14, 2.15 and 2.16, it is noted that Rényi Exponents τq have non-

linear variations with q. This is also characteristic of the wind speeds taken at the

three heights of each tall tower, being multifractal signals. This is also noted from

the hourly non-stationary time series MF-DFA by de Figueirêdo et al. (de Figueirêdo

et al., 2014) between the years 2008 and 2011.

The last of the analyses is the multifractal spectrum, Figures 2.17, 2.18 and 2.19.

The spectra of f(α) against α are not constant thus indicating that the series are not

single scale fractal signals for all the months and height levels in Columbia, Blanchard

and Neosho. The results obtained, the signals displayed multifractal tendencies by

producing spectra of single-hump like features or bell-shapes with the exception of

June C147, July C147, Aug C98 and Dec C68, C98, C147, Jan B97 and B137, Feb B97,
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Mar B97, Apr B61 and B97, July B137, Jan N50, N70 and N90, Mar N90, Sept N70

and N90, Oct N90. This may have been as a result of artifacts being contained in the

observational data which makes the determination of the long-term correlations and

multifractality of the records difficult. These artifacts may include additive random

noise and short term correlations. Additive random noise can be derived from the

limitations in the accuracy of the measuring instruments and short term correlations

can be given from the short time scale of our study. The latter induces a strong

persistence which is superimposed on the long-range correlations (Ludescher et al.,

2011). These artifacts have been proven in (Ludescher et al., 2011) to cause various

degrees of underestimation of hq for small and negative moments which are most

affected by noise. Ludescher et al. (Ludescher et al., 2011) also proved that that the

multifractality of the positive moments may be corrupted. These graphical anomalies

of hq were noted in our results corresponding with the spectra which did not depict a

bell-like shape. This is due to the fact that f(α) is obtained from Legendre transform

which utilizes information on the moments (Ludescher et al., 2011).

The MF-DFA parameters of W and r were determined from the singularity spec-

trum as given by Table 2.1. The width of the spectrum is a measure of multifractality

of the time series where a large width characterizes a finer signal structure which is

more multifractal in nature. A width which tends to zero, however, is representative

of a series that has one scaling exponent or one that is monofractal. From the results

of this study, there was no indication of a consistent trend showing that the multi-

fractality increases with increasing height from C69 to C147, B61 to B137 and N50

to N90. From the asymmetry parameter,r, for C68 to C147, some of the spectra are

left skewed whilst others are right, also indicating that there is no trend of a dom-

inant fractal exponent as the heights are increased. For Blanchard, predominantly,

the dominant scaling is of large fluctuations as described by left skew parameter r.

This is indicative of a the prevalence of a fractal exponent describing a structure that
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is less fine.

It was seen in Kavasseri and Nagarajan (Kavasseri and Nagarajan, 2005) that

the spectrum widths for their data taken at height of 20 m were 0.4475 - 0.4862.

In de Figueirêdo et al. (de Figueirêdo et al., 2014) the spectrum widths were 0.24

and 0.51 for average and maximum wind speed data taken from a meteorological

station of altitude 370.46 m. From this study, the spectral widths for Columbia’s

single humped multifractal spectra, at tower heights of 68, 98 and 147 m and site

elevation of 255 m were given by 0.33 ≤ W ≤ 1.05. This range is similar to the

spectral width parameter values obtained by Laib et al. (Laib et al., 2018) for 119

stations in Switzerland using 10 minute time series data; W ranged between 0.206

and 1.15. For Blanchard and Neosho, the single hump widths ranged between 0.53

to 1.09 and 0.56 to 0.99 with the exception of Mar B137 and June N50 whose width

values was 1.89 and 2.09 respectively. These differences in the widths from the three

stations do not show as much variations as the study done by (Feng et al., 2009)

in China using daily wind speed data. However, they represent the non-universal

multifractal characteristic of wind speeds due to varying space and time dynamics.

The parameters changes with location and heights levels and is as a result of different

atmospheric circulation patterns. This is especially valid for wind speeds as seen from

a climatic study of 31 years done by (Baranowski et al., 2015), using meteorological

variables of precipitation, global radiation, wind speed, relative air humidity and air

temperature, the greatest differences in the widths of the spectra were observed for

wind speeds between Polish sites. The irregular fluctuations and complexity of the

wind speeds is dependent on numerous factors which includes temperature, pressure

gradient, turbulence and topography of the various sites (Zhang, Zeng, and Meng,

2018) .
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Table 2.1: The Multifractal Spectrum Parameters for Columbia, Blanchard and
Neosho for the three height levels and months in 2009

Description Columbia, C Blanchard, B Neosho, N
Month Heights α0 αmax αmin w r w r w r
Jan C68 B61 N50 0.83 1.46 0.57 0.89 2.42 0.70 1.06 1.29 4.49
Jan C98 B97 N70 0.85 1.48 0.53 0.95 1.97 1.37 0.18 1.31 4.54
Jan C147 B137 N90 0.80 1.48 0.43 1.05 1.84 1.61 0.31 1.26 4.07
Feb C68 B61 N50 1.36 1.57 0.93 0.64 0.49 0.61 0.56 0.57 0.43
Feb C98 B97 N70 1.39 1.63 1.00 0.63 0.62 11.86 13.83 0.60 0.50
Feb C147 B137 N90 1.40 1.58 1.06 0.52 0.53 0.64 0.45 0.74 0.72
Mar C68 B61 N50 1.29 1.47 0.93 0.54 0.50 0.53 0.43 0.03 0.98
Mar C98 B97 N70 1.31 1.48 0.92 0.56 0.44 14.78 0.05 0.56 0.40
Mar C147 B137 N90 1.40 1.63 0.93 0.70 0.49 1.89 0.80 0.62 0.59
Apr C68 B61 N50 1.37 1.57 1.17 0.4 1.00 2.85 3.45 0.7 0.75
Apr C98 B97 N70 1.38 1.55 1.22 0.33 1.06 10.93 0.07 0.73 1.03
Apr C147 B137 N90 1.43 1.61 1.22 0.39 0.86 0.62 0.72 0.81 1.31
May C68 B61 N50 1.29 1.44 0.94 0.50 0.43 0.62 0.72 0.81 0.72
May C98 B97 N70 1.38 1.80 0.95 0.85 0.98 0.72 0.60 0.99 0.90
May C147 B137 N90 1.45 1.82 1.01 0.81 0.84 0.73 0.62 0.85 0.55
June C68 B61 N50 1.29 1.68 0.76 0.92 0.74 1.04 0.65 0.96 0.68
June C98 B97 N70 1.35 1.69 0.83 0.86 0.65 1.04 0.65 0.99 0.77
June C147 B137 N90 7.79 8.69 0.86 7.83 0.13 1.09 0.68 2.09 1.38
July C68 B61 N50 1.34 1.68 1.06 0.62 1.21 0.85 0.77 0.8 0.74
July C98 B97 N70 1.40 1.75 1.10 0.65 1.17 0.85 0.77 0.66 0.61
July C147 B137 N90 1.57 2.96 1.11 1.85 3.02 1.73 0.35 0.65 0.59
Aug C68 B61 N50 1.30 1.46 0.97 0.49 0.48 0.75 0.56 0.81 0.56
Aug C98 B97 N70 1.62 2.89 1.03 1.86 2.15 0.75 0.56 0.74 0.45
Aug C147 B137 N90 1.54 1.89 1.09 0.8 0.78 0.76 0.46 0.8 0.74
Sept C68 B61 N50 1.45 1.94 0.97 0.97 1.02 8.46 0.11
Sept C98 B97 N70 1.53 1.92 1.04 0.88 0.80 7.34 0.12
Sept C147 B137 N90 1.58 2.01 1.11 0.9 0.91 0.89 1.07
Oct C68 B61 N50 1.29 1.70 0.92 0.78 1.11 6.08 0.13
Oct C98 B97 N70 1.32 1.53 0.94 0.59 0.55 0.70 0.94
Oct C147 B137 N90 1.34 1.52 0.91 0.61 0.42 0.69 0.77
Nov C68 B61 N50 1.37 1.78 1.05 0.73 1.28
Nov C98 B97 N70 1.43 1.88 1.07 0.81 1.25
Nov C147 B137 N90 1.46 1.58 1.18 0.92 1.81
Dec C68 B61 N50 2.70 12.19 0.94 11.25 5.39
Dec C98 B97 N70 1.75 4.06 1.06 3.00 3.35
Dec C147 B137 N90 2.92 13.45 1.05 12.4 5.63
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Figure 2.8: MF-DFA performed on 10 minute wind speed data in Columbia for tower
height 68 m - Scaling function order Fq. Plot of Log(Fq) against log(s).

Figure 2.9: MF-DFA performed on 10 minute wind speed data in Columbia for tower
height 98 m - Scaling function order Fq. Plot of Log(Fq) against log(s).

Figure 2.10: MF-DFA performed on 10 minute wind speed data in Columbia for tower
height 147 m - Scaling function order Fq. Plot of Log(Fq) against log(s).
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Figure 2.11: MF-DFA performed on 10 minute wind speed data in Columbia for tower
height 68 m - Dependence of Gen Hurst Exp on q. Plot of hq against q.

Figure 2.12: MF-DFA performed on 10 minute wind speed data in Columbia for tower
height 98 m - Dependence of Gen Hurst Exp on q. Plot of hq against q.

Figure 2.13: MF-DFA performed on 10 minute wind speed data in Columbia for tower
height 147 m - Dependence of Gen Hurst Exp on q. Plot of hq against q.
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Figure 2.14: MF-DFA performed on 10 minute scaled wind speeds in Columbia for
tower height 68 m - q-order Mass exponent. Plot of τq against q.

Figure 2.15: MF-DFA performed on 10 minute scaled wind speeds in Columbia for
tower height 98 m - q-order Mass exponent. Plot of τq against q.

Figure 2.16: MF-DFA performed on 10 minute scaled wind speeds in Columbia for
tower height 147 m - q-order Mass exponent. Plot of τq against q.
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Figure 2.17: MF-DFA performed on 10 minute scaled wind speeds in Columbia for
tower height 68 m - Multifractal Spectrum. Plot of f(α) against α

Figure 2.18: MF-DFA performed on 10 minute scaled wind speeds in Columbia for
tower height 98 m - Multifractal Spectrum. Plot of f(α) against α

Figure 2.19: MF-DFA performed on 10 minute scaled wind speeds in Columbia for
tower height 147 m - Multifractal Spectrum. Plot of f(α) against α
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2.6 Conclusion

Winds speeds within Missouri, using monofractal analysis, were determined to be

persistent as the Hurst exponent was greater than 0.5 for the three stations at the

various height levels for all the months in 2009 using 10 minute data. There were no

consistent increases in the fractal dimensions as the height levels were increased nor

were they changes in the fractal dimension with months which corresponded with the

average max wind speeds for the three stations.

From the MF-DFA, the wind speeds in Columbia, Blanchard and Neosho were

determined to be multifractal in nature as there were changes in the fractal dimensions

with scales. The fractal dimensions of the time series using multifractal analysis were

determined to be greater than these values determined using monofractal analysis.

However, the multifractality of the data sets, determined from the widths of the

inverse parabolic shaped spectra, did not show any consistently increasing trend with

heights which would have been indicative of greater complexity and finer structures of

the wind speed records. The range of the widths which changed from various tower

locations, reflects the non-universal multifractal characteristics of wind speeds and

the different atmospheric circulation patters. From the asymmetry parameter there

was no evidence of a dominating fractal exponent as the heights were increased.

Future work entails forecasting using Empirical Dynamical Modelling (EDM), hav-

ing already established in this paper that the natural system of wind speeds from tall

towers within Missouri are complex, dynamical and chaotic. In EDM, the wind time

series will be used to construct the attractor from a mathematical theory developed

by Takens. The dynamics of the system can be determined by a single time series as

shown from Takens’ embedding theorem. From the embedding theorem, each variable

contains information about the other variables and thus, the wind speed time series

and its time lagged co-ordinates will be utilized to study the system (C.-W. Chang,

Ushio, and Hsieh, 2017).
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Chapter 3

Determining chaotic characteristics
and forecasting tall tower wind
speeds in Missouri using Empirical
Dynamical Modeling (EDM)

3.1 Abstract

The chaotic characteristics of the tall tower wind speed data within Missouri was

investigated using both quantitative and qualitative methodologies. The phase space

diagrams were constructed using the method of time delay. The two parameters

needed in the construction of the attractor are the embedding dimension and the

time delay. The former was determined using the Cao Algorithm and the latter by

Average Mutual Information (AMI). Qualitatively, the phase portraits display chaos

for all the wind speed time series for the various stations and height levels. They

did not illustrate periodicity nor were they random motions, rather, they depicted a

single attractor representative of chaos. Quantitatively the Largest Lyapunov Expo-

nent (LLE) was evaluated. It was determined that for the Columbia station the wind
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speeds display chaotic characteristics representative of the positive LLEs. However,

the increasing level of chaos characteristics did not coincide with the increasing height

levels of the tall tower. Thereafter, a simple non-linear prediction algorithm was used

to forecast wind speeds using a moving window. The attractor was constructed us-

ing the first 56 days and the subsequent 6 hours or 36 (10 minute) time steps were

predicted. The preceding forecast was done when the attractor was reconstructed

using the training data of 56 days starting from a 6-hour delay from the previous run.

The RMSE, MAE and Correlation were investigated for the model with the errors

evaluated cumulatively for all of the 1st through 36th predictions. It was determined

that the errors increase as the forecasting steps increased for all stations and height

levels. The RMSE plateaus at higher wind speeds for increasing height levels with

the exception of the station, Neosho, where it plateaued at all height levels at ap-

proximately 3.0 ms−1. For Columbia at all height levels, after the 20th time step or

3.33 hours, the model’s normalized errors exceeds 1 or 100%. However, using a 50%

normalized error cap, it was noted that these values occurred for Columbia’s height

levels after the 1st, 2nd and 3rd time steps respectively. For Blanchard, this value

was given by the 2nd time step for both heights whilst for Neosho, at all heights this

percentage occurred after at most, 2 time steps. From the Lyapunov exponent, the

prediction horizons or the time limits to obtain accurate predictions from the chaotic

system were determined to be 6 time steps for all the height levels in the Columbia

station using a 95% confidence band. When a range of confidence bands was used, it

was shown that for the 90% confidence, this value was decreased to 4 time steps. This

model was compared to the benchmark model of persistence where it was determined

that the EDM is comparable to persistence and it beats it in the very short-term

range of one time step for Columbia and Blanchard. Seasonality and diurnal cycle

analyses were also accomplished. Seasonality was investigated by slicing the results

every 6 hours or extracting every 36th forecast error. It was shown that four of the
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eight stations’ height levels had the season of summer incurring the lowest magnitude

of average errors and standard deviations. The diurnal cycle was examined by ex-

tracting every four of the 6 time slices done previously. The time of day was analysed

by lagging these slices by 6, 12 and 18 hours. It was determined that there was no

evident trend where a particular time of day the model incurred more errors and had

greater standard deviations for all stations and heights.

Keywords: Phase Space, Largest Lyapunov Exponent, Empirical Dynamical

Modeling

3.2 Introduction

The prediction of wind speeds can be categorised in either physical, statistical or

hybrid methods. The physical methodologies are mathematical models that utilize

large amounts of data from numerical weather prediction (NWP). The statistical

methods, however, can be classified as either time series, spatial correlations or arti-

ficial intelligence procedures whilst hybrid methods combine two or more approaches

(De Freitas, Silva, and Sakamoto, 2018). Alternative methodologies to conventional

predictive methods include the nearest neighbour method of chaos theory, artificial

intelligence’s neural nets as well as wavelets (Szpiro, 1997; Lisi and Villi, 2001).

Chaos theory methodologies are employed in the short-term prediction of forecast-

ing meteorological variables such as wind speed. Short-term wind speed prediction

is one of the four temporal ranges of forecast. It is where forecasts are made from

one hour to two days ahead and they are used for economic load dispatch planning

(De Freitas, Silva, and Sakamoto, 2018). This short term prediction is especially

important as the adjustments of power generation to a consistently changing load is

required and wind is a variable power source. This will ultimately contribute to a
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steady power supply (Kawauchi, Sugihara, and Sasaki, 2004). These methodologies

are sorted after when initial data, needed to build models from first principle is lacking

(Farmer and Sidorowich, 1987). Thus the time series must be established as chaotic.

That is, as defined in (De Domenico and Ghorbani, 2010) and (Lisi and Villi, 2001),

it is a simple non-linear deterministic system, which is sensitively dependent on its

initial conditions. Such systems display random and complex behaviours. Neural nets

use historical data and may use a back propagation technique to adjust its weights.

A forecast function is then used to predict future variables using past time series

inputs (Szpiro, 1997). Finally, wavelets decompose the time series into its various

components and then forecast using a weighted sum of these wavelets (Szpiro, 1997).

These methods have also been combined in complex dynamics forecasting (Szpiro,

1997).

Natural systems, however, are complex and dynamical, often involving many vari-

ables that cannot be measured with sufficient accuracy. If statistical time series mod-

els are utilized, these difficulties necessitate the use of non-linear approaches (Chang,

Ushio, and Hsieh, 2017) as classical regression analysis cannot fully represent the un-

derlying complex dynamics of especially a chaotic series (Szpiro, 1997). A property of

non-linear systems is state dependency, which can be defined as the changing relation-

ships among interacting variables with different states associated with the dynamical

system (Chang, Ushio, and Hsieh, 2017). The non-linear statistical methods origi-

nates from state space reconstruction which is the lagged co-ordinate embedding of

the time series. These methods recover the dynamics of the time series instead of us-

ing a set of governing equations. These methodologies are called empirical dynamical

modeling (Chang, Ushio, and Hsieh, 2017).

In a study by (Yu et al., 2019), many chaos identification methods are used in

the determination of a chaotic series. This is done because wind speed has complex

characteristics of deterministic and random signals. There are chaos identification
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methods that are based on phase space reconstruction, which include the phase di-

agram, correlation dimension and the largest Lyapunov exponent (Yu et al., 2019).

The phase space method is a qualitative direct chaos identifier method and the cor-

relation dimension and the Lyapunov exponent methodologies are quantitative and

direct procedures (Zeng et al., 2012). If an attractor is non-periodic (the motion of

the system never repeats), finite dimensional and generated by deterministic dynam-

ics, then it is a strange or chaotic attractor. Two points on this attractor at a time

will be arbitrarily apart from each other at a later time, that is, nearby points in

phase space separate at an exponential rate. This is given by the positive largest

Lyapunov exponent (Brandstäter et al., 1983). In this paper, some of these methods

will be employed to identify chaos before a non-linear prediction method, referred to

as "Lorenz’s method of analogues" (Kantz and Schreiber, 2004), is conducted.

The subsequent section, section 2, describes the data utilized in this study. Section

3 outlines the various methodologies used, which are the generation of the wind

speed duration curve, the reconstruction of phase space and the determination of

the parameters of the embedding dimension and the time delay, the determination

of the largest Lyapunov exponent, the forecasting of wind speeds using a non-linear

prediction algorithm and the examination of the seasonality and diurnal cycle of the

model runs. Section 4 provides the results of the various methods conducted before

concluding in section 5.

3.3 Data

This study uses ten-minute interval daily wind speed time series data recorded in

2009, in ms−1, for Columbia, Blanchard and Neosho, stations in Missouri (Fox, 2011).

Columbia is located in 038◦53.270′N latitude and 092◦15.820′W longitude and has a

site elevation of 255 m. Blanchard is located 040◦33.570′N latitude and 095◦13.470′W
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longitude and has a site elevation of 328 m. Neosho is located 036◦52.730′N latitude

and 094◦25.570′W longitude with a site elevation of 373 m. Please refer to Figure

3.1. The anemometers were placed on various heights and orientations on the towers.

For Columbia, Blanchard and Neosho, the anemometer orientations were 120◦and

300◦for each of the various sites’ tall tower heights of 68, 98, 147 m and 61, 97, 137

m and 50, 70 , 90 m respectively. Channels 1, 3 and 5 are the wind speed times

series of the three consecutive heights at an orientation of 120◦and Channels 2, 4

and 6 are wind speed values obtained when anemometers were oriented at 300◦. The

larger of the wind speed value at each time step for each height level were taken and

labelled as Columbia68,Columbia98 and Columbia147, Blanchard61, Blanchard97 and

Blanchard137, Neosho50, Neosho70 and Neosho90.

Figure 3.1: Study Locations within Missouri.
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3.4 Methods

3.4.1 Wind Speed Duration Curves

Wind speed duration curves (WSDC) provide a simple way to visualize the distribu-

tion of wind speeds recorded at the observation sites (Masseran et al., 2012). They

are essentially the graph of the wind speed’s cumulative distribution function over

the time interval. By convention, the independent variable is along the vertical axis

and the horizontal axis is scaled to be a percentage.

More precisely, suppose that {xi}ni=1 is a time series of wind speeds and let {zi}ni=1

be the rearrangement of these values so that they are in ascending order: z1 < z2 <

· · · < zn. Here it is assumed for simplicity that the readings are distinct and the

observation times are evenly spaced. Then the percentage of time in which the wind

speed is greater than or equal to zi can be approximated by Equation 3.1.

F (zi) = 100

(
n+ 1− i

n+ 1

)
(3.1)

The corresponding WSDC is constructed by plotting the points (F (zi), zi) for i =

1, . . . , n.

3.4.2 Takens’ Theorem and Reconstruction of the Phase Space

Assume that the weather patterns at the observation sites are governed by a deter-

ministic dynamical system set on a smooth D-dimensional compact manifold M (the

phase space). Let φt : M → M denote the corresponding flow map, so that, if the

system is initially in state m ∈ M , then φt(m) is its state after time t.

Weather forecasting is thus equivalent to determining φt. However, it is typically

difficult to do this directly as the dynamical system is hard to formulate explicitly

and it is likely to be non-linear, high dimensional, and chaotic. Accurately measuring
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the many variables involved may also prove impractical.

In the seminal paper (Takens, 1981), Takens gives a number of mathematical

results addressing this issue. Suppose that X : M → R is a scalar-valued observable

quantity; for the present study, this will be the wind speed. Under mild assumptions

on the regularity of X, Takens shows that it is possible to reconstruct φt from the

time evolution of the observable X(φt). Specifically, by (Takens, 1981, Theorem 2),

for a generic time delay τ ≥ 0 and time t, the mapping

Φt : m 7→ (X(φt), X(φt+τ ), . . . , X(φt+2Dτ )) |m (3.2)

constitutes a smooth embedding of M into R2D+1. Moreover, in (Takens, 1981, Corol-

lary 5) it is established that, for generic m ∈ M , the ω-limit sets of Φt(m) and φt(m)

are diffeomorphic. Stated more plainly: if the full system has an attractor, the topo-

logical and differential structure of that attractor can be inferred from the longtime

behavior of the time-delay mapping Φt.

Suppose now that {xi}ni=1 is a time series representing readings of the observable

X(φt) at equally spaced times t1 < t2 < · · · < tn. For candidate embedding dimension

d and time delay τ , in analogy to (3.2), one forms the Takens reconstruction vector

yi =
(
xi, xi+τ , . . . , xi+(d−1)τ

)
(3.3)

with index i = 1, 2, . . . , N and N = N(τ, d) = n− (d−1)τ . Note that in what follows

the dependence of N on τ and d is often suppressed for the sake of simplifying the

notation. Provided that d ≥ 2D + 1, Takens’ embedding theory can then be used to

predict the dynamics of the original system from the delayed time series {yi}Ni=1.

This leads to the statistical problem of choosing the parameters τ and d, which

has been the subject of considerable research. Even though Takens’ theorem holds for

a generic time delay, it is well known that some care is required in selecting τ when
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working with experimental data. If the time delay window is too narrow, then the

attractor will be projected into a dimension that is too small. Were this to occur, then

xi+1 will not contain substantially new information relative to xi, making predictions

based on the time series unreliable (Stark, 1994). Conversely, if the window is too

large, the components of yi become noisy (Camplani and Cannas, 2009; Kennel,

Brown, and Abarbanel, 1992) making accurate forecasting difficult (Stark, 1994).

The next two subsections outline the approach to these questions taken in this work.

Estimate of the Embedding Dimension via Cao’s Algorithm

Common technique for selecting the embedding dimension include the method of

False Nearest Neighbours (FNN) (Camplani and Cannas, 2009; Kliková and Raidl,

2011) and Cao’s Algorithm (Cao, 1997). FNN, which is used in (Kennel, Brown,

and Abarbanel, 1992), for example, involves tracking the number of points in the

reconstructed time series {yi} that appear to be nearby only because the embedding

space is too small. The embedding dimension is taken to be the minimal d so that

the number of these “false neighbours” is zero.

In this paper, Cao’s Algorithm was used to determine the embedding dimension.

Compared to FNN, it has the advantage of being less sensitive to the number of points

in the time series, and it does not introduce any subjective parameters (Cao, 1997).

Moreover, it can differentiate between deterministic (no uncertainty with respect

to time) and stochastic (random signals that cannot be written in mathematical

equation) time series (Cao, 1997).

The method can be described as follows. Given a time series {xi}ni=1, let {ydi }
N(τ,d)
i=1

and {yd+1
i }N(τ,d+1)

i=1 be the reconstructed time series given by equation (3.3) for the

candidate embedding dimensions d and d+1, respectively. For each 1 ≤ i ≤ N−dτ , let

ydn(i,d) be the nearest neighbor to ydi (that is distinct from ydi ) with distance measured
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in the max norm on Rd, and define n(i, d+ 1) accordingly. As in (Cao, 1997), we set

a(i, d) =
∥yd+1

i − yd+1
n(i,d)∥

∥ydi − ydn(i,d)∥
(3.4)

where ∥·∥ is the max norm, and consider the average of this quantity over i:

E(d) =
1

N − dτ

N−dτ∑
i=1

a(i, d). (3.5)

Two points that are close in d-dimensional reconstructed phase space and also close in

(d+1)-dimensional reconstructed phase space are called true neighbours (Cao, 1997).

This is measured by means of the function

E1(d) =
E(d+ 1)

E(d)
. (3.6)

Observe that E1(d) will be constant when d ≥ 2D + 1, and hence it can be used to

identify the minimum embedding dimension (Cao, 1997).

A second consideration that is important for applications is whether the data is

stochastic or deterministic. For this, Cao introduces the function

E2(d) =
E∗(d+ 1)

E∗(d)
(3.7)

where

E∗(d) =
1

N − dτ

N−dτ∑
i=1

|xi+dτ − xn(i,d)+dτ |.

If the data are deterministic then E2(d) is dependent on d and so one will observe

that E2(d) ̸= 1 for some choice of d. On the other hand, if the data is random,

then it must hold that E2(d) = 1 for all d. Computing both E1(d) and E2(d) allows

one to both find a reasonable embedding dimension and also offers evidence that the

underlying process is indeed deterministic (Cao, 1997).
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Time Delay Estimation via Average Mutual Information

An appropriate time delay can be determined through the use of an Autocorrelation

Function (ACF) or considering the Auto Mutual Information (AMI) (Camplani and

Cannas, 2009). This paper uses the latter technique, which was first introduced by

Fraser and Swinney (Fraser and Swinney, 1986). This method was used because of its

ability to measure the general rather than linear dependence of two variables (Fraser

and Swinney, 1986). It is also a common methodology used in the construction of

the phase space of the attractor (Zounemat-Kermani and Kisi, 2015).

Let A and B be discrete sets. For a random vector (A,B) with state space A×B

and discrete joint probability distribution PAB, the mutual information of the random

variables A and B is defined by

IAB =
∑
a∈A

∑
b∈B

PAB(a, b) log2

(
PAB(a, b)

PA(a)PB(b)

)
, (3.8)

where PA and PB are the marginal probabilities for A and B, respectively. Intuitively,

IAB measures on average how accurately one can determine B given knowledge of A

(or vice versa). The idea of AMI is to treat X(φt) and X(φt+τ ) as random variables,

then adjust τ so as to maximize their mutual information.

With that in mind, suppose {xi}ni=1 is a (portion of a) time series obtained from

experimental data. For a candidate time delay τ , we form the shifted series {xi+τ}ni=1

and introduce the sets A = {xi : i = 1, . . . , n} and B = {xi+τ : i = 1, . . . , n}. Let

(A,B) be the random vector taking values on A × B whose probability distribution

PAB is generated by a histogram of {(xi, xi+τ )}ni=1 with an appropriate bin size. The

mutual information of the components A and B as a function of τ is thus

I(τ) =
n∑

i,j=1

PAB(xi, xj+τ ) log2

(
PAB(xi, xj+τ )

PA(xi)PB(xj+τ )

)
. (3.9)
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We choose the value of τ to be the either the first local minimum of I or when the

AMI is monotonically decreasing to the ratio of I(τ)
I(0)

= 0.2 or 1
e

(Kliková and Raidl,

2011).

3.4.3 Largest Lyapunov Exponent (LLE)

The characterizing feature of chaotic systems is that future states are effectively

unpredictable despite the underlying dynamics being deterministic. This phenomenon

stems from the flow map φt exhibiting sensitive dependence on initial conditions

(SDOIC) (Kantz and Schreiber, 2004). Lyapunov exponents provide one way to

quantify this SDOIC (Rosenstein, Collins, and De Luca, 1993) and thereby gauge

how chaotic a system is (Kantz and Schreiber, 2004). Trajectories that are initially

close but lie on a chaotic attractor will diverge from one another exponentially fast; the

Lyapnuov exponent λ gives the average rate of this divergence (Garcia and Sawitzki,

2015; Rosenstein, Collins, and De Luca, 1993). Note that it is essential here to take

an average since the rate will potentially be different in different directions (Kantz

and Schreiber, 2004).

As Lyapunov exponents are insensitive to the choice of metric, they can be com-

puted through consideration of the Takens’ flow. For a point m ∈ M and time t,

we define the Lyapunov exponents to be the eigenvalues of the linearized flow map

there; the eigenvalue with largest real part is called the largest Lyapunov exponent

(LLE) and denoted λ. Note that the dynamics of the attractor — should one exist

— is dissipative and as such the sum of the Lyapunov exponents is negative there.

Conversely, in the applied literature, a positive Lyapunov exponent is often taken

as sufficient evidence that the system is chaotic (Rosenstein, Collins, and De Luca,

1993; De Domenico and Ghorbani, 2010; Bryant, Brown, and Abarbanel, 1990). By

contrast, if λ < 0, then there exists (asymptotically) stable fixed points to which one

will find trajectories converging exponentially. If one has trajectories that approach
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or separate from each other slower than an exponential rate, there must exists a limit

cycle that is marginally stable; in this case, the LLE is equal to zero (Kantz and

Schreiber, 2004). Finally, for random noise, the LLE can be thought of as infinite

(Kantz and Schreiber, 2004).

Let ∆(t) be the distance between two points in phase space for the embedded map

at time t. Then

S(t) = ln
∆(t)

∆(0)
(3.10)

provides an approximate upper bound on λt. To determine S(t) from the time series,

we construct a Takens vector, say, yN0 and construct a neighbourhood about this

vector of ϵ distance, Bϵ(yN0). For each of the nearby Takens vectors, yi, i = 1, . . . , N ,

the average error between a forward time step, δT , of both a nearby Taken vector

(xi+δT ) and the fixed Taken vector, yN0 (xN0+δT ) is determined. The logarithm of all

the average distances are taken to give a measure of the exponential rate of expansion.

The average of all N0 values are used to smooth out any noise (Kantz and Schreiber,

2004). From Kantz and Schreiber (Kantz and Schreiber, 2004), S(t) is given by

S(t) =
1

N

N∑
N0=1

ln

 1

|Bϵ(yN0)|
∑

i=1,...N :
yi∈Bϵ(yN0

)

|xN0+δT − xi+δT |

 . (3.11)

The largest Lyapunov exponent is estimated by the the slope of the linear region

of the curve of S(t) against t (Garcia and Sawitzki, 2015). After the linear region,

the curve saturates for large t values since the system is bounded in phase space

Rosenstein, Collins, and De Luca, 1993.

This method has been proven by (Rosenstein, Collins, and De Luca, 1993) to work

well with smaller time series as well as time series with white noise superimposed with

noise-free data. This is especially important, as shown in (Eckmann and Ruelle, 1992),

where the length of a series and quality are factors in the accuracy of the extraction
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of dynamical information.

If the system is chaotic and λ > 0, then the series can be predicted with a

prediction horizon given by

t∗ =
1

λ
ln 1.96 (3.12)

where t∗ is the maximum amount of samples with sampling time that can be predicted

with uncertainty; see, for example, (De Domenico and Ghorbani, 2010). The uncer-

tainty used is 1.96ϵ which represents a 95% confidence band. The confidence bands of

90% and 99% were also evaluated in this study. The forecasting error exponentially

increases with the forecasting time at a rate given by the LLE (De Domenico and

Ghorbani, 2010). Thus we see that even though chaos places a limit on long-term

prediction, it affords the ability of short term prediction (Farmer and Sidorowich,

1987).

3.4.4 Forecasting using simple non-linear prediction algorithm

The future state of the system is a function of the present state at some time say, t.

That is, there exists a deterministic forecasting function (Kantz and Schreiber, 2004).

Since there is no certainty of our present state, inaccuracies grow exponentially over

time in chaotic systems. However, the uncertainties increased over a finite rate,

even for chaotic systems, and as such, short term forecasts can be made (Kantz and

Schreiber, 2004).

Consider a scalar time series given by {xi}ni=1. Fixing a time delay τ and em-

bedding dimension d, we form the reconstruction vectors {yi}Ni=1 according to (3.3).

To predict some time δt ahead, we consider Bϵ(yN), the d-dimension ball centered

at yN with radius ϵ. In this analysis, ϵ was chosen to be half the smallest possible

reading of the anemometer, 0.05. For all the points yi lying in this ball, we find their
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corresponding individual prediction values δt ahead, then average the result. The

prediction is given by

xN+δt =
1

|Bϵ(yN)|
∑

i=1,...N :
yi∈Bϵ(yN )

xi+δt, (3.13)

which represents the average of these values (Kantz and Schreiber, 2004).

Thus we see that the feature of the attractor being a compact object in phase

space, and thus, having neighbours is utilized in the prediction of the time evolution

of new points on or nearby the attractor (Kennel, Brown, and Abarbanel, 1992).

3.4.5 Errors

In order to test the accuracy of the forecast, the root mean square error (RMSE)

and mean absolute error (MAE) were computed. These are given by the following

equations.

RMSE =
√

⟨(pn − xn)2⟩, MAE = ⟨|pn − xn|⟩,

where pn is the predicted observation whilst xn is the actual observation at the time

step n.

The normalized errors were also computed via

E =

√
⟨(pn − xn)2⟩√
⟨(xn − x̄)2⟩

=
RMSE

SD
. (3.14)

Here x̄ = 1
n

∑n
i=1 xi is the mean of the time series. If E = 0 or 0%, then the prediction

is perfect. At the other extreme, if E = 1 or 100%, then the prediction is no better

than the mean (Farmer and Sidorowich, 1987).
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3.4.6 Analysis of seasonality and the diurnal cycle

The seasonality effects on the forecast were investigated. For Columbia, Blanchard

and Neosho sites the results including the forecast error, found by subtracting the

predicted value from the actual value, were sliced for every 36th value. This represents

every 6th hour of data. Mathematically, this was given by 36n + 6. For Columbia

the sequence n = 0, 1, 2, 3, . . . , 1237 accounted for its time series of length 44568.

Thus, we had a slice of wind speed values, say xi whose subscript values i range from

i = 6, 42, 78, . . . , 44538. For Blanchard, n = 0, 1, 2, 3, . . . , 738 which ran through the

series with 26604 data points. Also Neosho has values n = 0, 1, 2, 3, . . . , 991 and a

series length of 35712.

The diurnal effects of the forecast were also examined in this study. This was

done by further slicing of every 4th 6 hour time slice given above. This is represented

as 4m + 1. It can also be established by slicing of the original data set, 144m + 6

where m = 0, 1, 2, 3, . . . , 309 for Columbia, m = 0, 1, 2, 3, . . . , 184 for Blanchard and

m = 0, 1, 2, 3, . . . , 247 for Neosho. Thus, for Columbia, the indices considered from

the wind speed error were 6, 150, 294, 438, . . . , 44502 (the last value can be given by

144× 309 + 6). For Blanchard and Neosho, the subscript sequence is the same with

the exception of the upper limit being 26502 for Blanchard and 35574 for Neosho.

This 144m + 6 slice of the data was then lagged 6, 12 and 18 hours using the

following algorithms 36+[144m+6],72+[144m+6] and 108[144m+6]. This was done

to investigate the relationship between the time of day and the errors in the forecast

for all height levels and stations within the forecast run of 2009. For Columbia station,

for the 6 hour (36 10-minute), 12 hour (72 10-minute) and 18 hour (108 10-minute)

shifts, the sequences are given by 42, 186, 330, 474, . . . ,44538 and 78, 222, 366, 510,

. . . , 44430 and 114, 258, 402, 546, . . . , 44466 respectively. The same sequences were

done for Blanchard and Neosho, however their upper limits were 26538, 26574, 26466

and 35610, 35646, 35682 for 6, 12 and 18 hour shifts correspondingly.
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3.5 Results

3.5.1 Wind Speed Duration Curve (WSDC)

The WSDC is a graphical analysis tool for the persistence of energy production for

a particular station (Masseran et al., 2012). Figures 3.2 to 3.4 depict the WSDC

for the various stations, Columbia, Blanchard and Neosho and their individual tower

heights for the year 2009. From the graphs we observe that there is more of a wind

speed variability among the height levels for Columbia when compared to Neosho.

This is expected as Columbia station’s tower spans greater height levels than Neosho.

It is also observed that Blanchard97 experiences a constant low value of wind speed

well below 5 ms−1 for approximately 50% of the time. For the various stations and

tall towers, if the WSDC is flatter, then the wind regime is more regular, if not it is

more irregular. From the results obtained, it can be noted that the wind regime is

more irregular as the heights are increased for both Columbia and Blanchard with the

exception of Blanchard97. From Table 3.1, the percentage of time the wind speeds

are greater than or equal to 4 ms−1, which is typically less than the turbine cut-in

wind speed (Smith et al., 2002), were higher than 70% excluding Blanchard97. This

indicates relatively significant energy persistence for the stations studied. The energy

persistence increased with height for stations Columbia and Blanchard neglecting

the intermediate height level of Blanchard, Blanchard97. This was not the case for

Neosho.
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Figure 3.2: WSDC for Columbia Station

Figure 3.3: WSDC for Blanchard Station
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Figure 3.4: WSDC for Neosho Station

Table 3.1: Wind Speed Values greater than or equal to 4 ms−1 from WSDC

y(m/s) Station x(%)
4 Columbia68 73.4

Columbia98 79.9
Columbia147 82.7

4 Blanchard61 77.1
Blanchard97 39.5
Blanchard137 82.5

4 Neosho50 77.2
Neosho70 77.1
Neosho90 72.5

3.5.2 Reconstruction of Phase Space

The two parameters, τ and d, for the various months and height levels for the year of

2009 at Columbia are given by Table 3.2. However, for illustrative purposes we show

the results of August consistently throughout the paper. This, as well as the other

results, depicts both qualitatively and quantitatively, the chaotic nature of the series.

From Figures 3.5, 3.6 and 3.7, we see that at Columbia for the month of August

at height levels 68, 98 and 147 m, the first local minima (τ) were observed at 5, 5
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and 6 respectively. Similarly, for the corresponding embedding dimensions in August,

given by Figures 3.8, 3.9 and 3.10 are 9, 9 and 8. It is observed that E1(d) attains

saturation at these values. Also, E2(d) is related to E1(d) and there exist some values

of d for which E2(d) ̸= 1. This implies that the data are deterministic rather than

random. From the results obtained we note that there are τ and d values that repeat

for this station. Such findings are indicative of required dimensional construction of

phase space to capture the underlying dynamics of the system (Zounemat-Kermani

and Kisi, 2015). Given that the values for d is for most cases 9, it indicates that the

ease of predictability will be similar for this station for all months as dynamics of

lower dimensions are easier to predict (Lisi and Villi, 2001).

The phase portraits or diagrams as seen in Figures 3.11, 3.12 and 3.13 depict

the non-linear variation of the state of the system with time for Columbia at three

different heights. It gives the attractor’s spatial structure (Yu et al., 2019). The axes

represent the first three time delayed co-ordinates used in the construction of the

attractor which can be shown diagrammatically. The number of time delayed, τ, co-

ordinates is determined by the embedding dimension, d. Since the trajectories from

the system phase space did not show periodicity nor were they random motion but

rather illustrated a single attractor, the time series displays chaotic characteristics.

These are deterministically chaotic systems. This is shown in also in a study by Zend

et al. (Zeng et al., 2012) in which the phase diagram of near surface winds were not

closed curves indicative of aperiodic trajectories. In another study done by Yu et al.

(Yu et al., 2019), the trajectories of the attractor were not as well-defined as that of

Lorenz’s because the interference of noise signals from the environment. For all of

the months in 2009 and height levels of the tall tower in Columbia, we observed the

chaotic characteristics of the wind speed from the phase portraits.
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Table 3.2: Values of the Parameters, time delays and embedding dimensions for
Columbia station

Month τ d Month τ d Month τ d
Jan C68 10 8 Feb C68 6 8 Mar C68 5 9
Jan C98 4 11 Feb C98 6 9 Mar C98 5 9
Jan C147 1 9 Feb C147 6 8 Mar C147 6 9
Apr C68 5 9 May C68 5 9 June C68 4 9
Apr C98 5 9 May C98 5 9 June C98 5 9
Apr C147 5 9 May C147 6 9 June C147 5 8
July C68 4 9 Aug C68 5 9 Sept C68 7 8
July C98 4 9 Aug C98 5 9 Sept C98 7 8
July C147 5 9 Aug C147 6 8 Sept C147 8 7
Oct C68 5 9 Nov C68 5 9 Dec C68 6 9
Oct C98 6 9 Nov C98 5 9 Dec C98 6 8
Oct C147 7 9 Nov C147 6 8 Dec C147 7 8

Figure 3.5: Time delay given by the method of AMI, Mutual Information against
Time Lag for Aug Columbia68
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Figure 3.6: Time delay given by the method of AMI, Mutual Information against
Time Lag for Aug Columbia98

Figure 3.7: Time delay given by the method of AMI, Mutual Information against
Time Lag for Aug Columbia147
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Figure 3.8: Embedding dimension given by Cao’s Algorithm, E1(d) and E2(d) against
d for Aug Columbia68

Figure 3.9: Embedding dimension given by Cao’s Algorithm, E1(d) and E2(d) against
d for Aug Columbia98
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Figure 3.10: Embedding dimension given by Cao’s Algorithm, E1(d) and E2(d)
against d for Aug Columbia147

Figure 3.11: Phase space reconstruction for Aug Columbia68 showing the first three
time delayed co-ordinates
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Figure 3.12: Phase space reconstruction for Aug Columbia98 showing the first three
time delayed co-ordinates

Figure 3.13: Phase space reconstruction for Aug Columbia147 showing the first three
time delayed co-ordinates
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3.5.3 Largest Lyapunov Exponent (LLE)

The wind speed at all heights of the tall tower display chaotic characteristics as the

LLE were positive (Kantz and Schreiber, 2004). This implies that the trajectories

diverge exponentially fast and there is an increase in the average exponent of the

trajectory divergence characteristic of a non-periodic system as also seen in the phase

diagrams of this study. From the graphs in Figures 3.14, 3.15 and 3.16, it can be

noted that even though it is not prominent, there is a linear region before the curve

saturates regardless of the embedding dimensions. It is also seen in a study done by

Yu et al. (Yu et al., 2019) that wind speeds display positive chaotic characteristics.

In this study however, the increasing level of chaos characteristics did not coincide

with the increasing height levels of the tall tower. This is noted quantitatively from

Table 3.3.

The average LLE of the various tall tower heights for the 2009 were 0.1133, 0.11305

and 0.11259 for Columbia68, Columbia98 and Columbia147 respectively. From equa-

tion (3.12), we obtain the prediction horizon to be approximately 6 times steps or one

hour for all height levels. However, changing the confidence band to 90% and 99%,

decreased and increased the prediction horizon to approximately 4 and 8 time steps

respectively. Thus, we note an incremental increase in the prediction horizon by 2

time steps when the confidence bands increased from 90 to 95 and to 99%. We expect

this increase as increasing the confidence causes an increase in the margin of error

thus resulting in a larger interval. If we consider the minimum of all the LLE of each

of the increasing height levels, we get the corresponding values of 0.07613, 0.06329

and 0.06452. The prediction horizon, using the 95% confidence band, is increased to

approximately 9, 11 and 10 time steps or 1.5, 1.8 and 1.6 hours respectively. Similarly

using these minimum LLE, it was determined that for the two largest height levels of

this station, for a confidence band of 99%, the prediction horizon increased to an esti-

mated 2.5 hours. Whilst using the lowest confidence band of 90% , the said value was
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decreased to approximately 1.3 hours. For the lowest height level, confidence bands

of 90 and 99% implied roughly 1.2 and 2 hours for the prediction horizon respectively.

Figure 3.14: Lyapunov Exponents for Aug Columbia68, S(t) against t
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Figure 3.15: Lyapunov Exponents for Aug Columbia98, S(t) against t

Figure 3.16: Lyapunov Exponents for Aug Columbia147, S(t) against t
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Table 3.3: Values of the Parameter, Lyapunov Exponent, for Columbia station

Month LLE Month LLE Month LLE
Jan C68 0.21850120 Feb C68 0.11124360 Mar C68 0.12129040
Jan C98 0.23026360 Feb C98 0.06329283 Mar C98 0.10560540
Jan C147 0.28907590 Feb C147 0.09144223 Mar C147 0.08357779
Apr C68 0.11611450 May C68 0.10797860 June C68 0.09807250
Apr C98 0.09545526 May C98 0.07794641 June C98 0.09980393
Apr C147 0.09965277 May C147 0.06451961 June C147 0.11250640
July C68 0.14193490 Aug C68 0.09708272 Sept C68 0.08012870
July C98 0.13593250 Aug C98 0.09956517 Sept C98 0.13722600
July C147 0.06720401 Aug C147 0.12664330 Sept C147 0.10288420
Oct C68 0.11155650 Nov C68 0.07613265 Dec C68 0.07952253
Oct C98 0.10451390 Nov C98 0.07777989 Dec C98 0.12927020
Oct C147 0.10715060 Nov C147 0.11311340 Dec C147 0.09325161

3.5.4 Forecasting using non-linear algorithm

For this forecasting analysis, all the height levels of each station were employed. The

attractor was constructed using the first 56 days of the year having determined the

embedding dimension and the time delay using that data as the training of the model.

Using the forecasting algorithm described in section 3.4, the next 6 hours or 36 time

steps (in 10 minute intervals) were predicted. The preceding forecast was done for

the next consecutive 6 hours but it was done using a moving window in which the

attractor was reconstructed for this run. The training data were assigned to be 56

days starting from a six hour delay of the previous run. This process was iterated until

the entire series in this moving window is accounted for. The forecasted data for each

run and the actual data were compared and its RMSE, MAE and Correlations were

calculated. These errors were determined cumulatively for all of the first predictions

or time step through the last prediction or 36th time step.

From the results given in Figures 3.17, 3.18 and 3.19 for all of the height levels in

Columbia, it is evident that both the RMSE and the MAE increases as the forecasting

time step is increased as expected. It should be noted that the correlation between
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the actual and the predicted wind speed values is greatest (almost 1) at the first

time step and it decreases to under 0.5 for the last time step. It is observed that the

RMSE plateaus to approximately 2.5 ms−1, 3.0 ms−1 and 3.5 ms−1for Columbia68,

Columbia98 and Columbia147 respectively. The errors are expected to increase as

the height level increases because the wind speeds are increasing with height.

Similar analyses were done in Figures 3.20 and 3.21. However, no results are pro-

vided for Blanchard97 because of its inoperability for approximately 50% of the time.

The max RMSE for Blanchard61 and Blanchard137 were greater than Columbia; their

values for the 36th forecasts were approximately 3.5 and 4.5 ms−1. For the Neosho

tall tower, as depicted in Figure 3.21, the RMSEs for the last prediction step were

3.17, 2.96 and 2.87 ms−1 for Neosho50, Neosho70 and Neosho90 respectively. This is

approximately 3.0 ms−1 for all heights. This as well as the similar numerical trends

from the other time steps, indicate that of all the stations, there is least variability be-

tween the actual and predicted values for this station. This coincides with Figure 3.4,

where Neosho had the least wind speed variability among all the height levels.

Figures 3.22, 3.23 and 3.24 show the normalized errors for the various stations.

All of the stations and at all heights follow the same increasing trend, which begins to

plateau. From the results of Columbia, for all of the heights, after the 20th time step

or after 3.33 hours of forecasting, the model normalized errors exceed 1 or 100%. As

such the forecast is no better than the mean of the data after this run. However using

a range of normalized errors, we note that for normalized errors exceeding 50 and

75% occurred after the 1st, 2nd, 3rd and the 7th, 7th, 9th time steps for Columbia68,

Columbia98 and Columbia147 respectively. From the Lyapunov analysis, the predic-

tion horizon was determined to be 4, 6 and 8 time steps for the various confidence

bands, which all gave normalized errors of less than 65, 75 and 80% correspondingly.

Similarly, for Blanchard61 and Blanchard137, the normalized error was below this

100% normalized error threshold at the 22nd and 19th time step respectively. The 8th
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and 2nd time steps corresponded to normalized errors of under 75 and 50% respec-

tively. Also for Neosho, this model is not better than the average projection after the

23rd, 24th and 27th 10-minute forecast for Neosho50, Neosho70 and Neosho90 corre-

spondingly. However the normalized errors of under 50 and 75%, for these respective

height levels, occurred at most for the time steps of 2 and 9.

This model was also compared to the benchmark model of persistence. Wind

speed persistence for a given site, as defined in, (Koçak, 2002),is a measure in which

the duration of the average wind speed persists. The average for every multiple of the

6th hour was recorded as the value of persistence for the next consecutive 6 hours or

36 time steps. This was done for the entire series of 2009 for all height levels for each

station. The results are shown also in Figures 3.17 to 3.21. It was determined that

for Columbia and Blanchard at all height levels, our model out performed persistence

for the first time step however for Neosho, persistence beat our model at all heights

of the tall tower. This is expected as Nesoho, of the three stations, had the least

annual mean friction velocity of 0.597 (Fox, 2011). Our model, as expected, does

better in more turbulent flow with greater roughness. It should be noted though,

that the difference in the average RMSE for the EDM and the persistence model at

all height levels of Columbia and Neosho did not exceed 0.5ms−1. This value was

approximately 0.6ms−1 for Blanchard. This, thus demonstrates that the EDM is

comparable to persistence. The model displays relatively good accuracy as for this

short-term range, persistence, autoregressive, moving average, autoregressive moving

average and autoregressive integrated moving average models all perform better than

the NWP models (De Freitas, Silva, and Sakamoto, 2018). However, the model

displays better accuracy within the very short-term scale, between a few minutes to

one hour. This is expected as persistence does well in the short term range. Another

reason is due to the chaotic system’s SDOIC (Lisi and Villi, 2001). The shorter

term forecasts will be more accurate for these deterministic non-linear systems. The
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degree of accuracy was also determined by the amount of noise in the data. Since

it is generally given that high wind speed implies high persistence (Koçak, 2002), it

would be expected that the model would not beat persistence for more time steps

with increasing heights, and this is seen. We also got the expected result of the

average difference between the two models for the 36 time steps to increase with

increasing tower height. We obtained this result for two of three stations, Columbia

and Blanchard. This small range in forecast where persistence can be beaten is also

captured from the prediction horizon given by the LLE. From the results obtained,

this is closest in agreement with the prediction horizon using the 90% confidence band

and using a normalized error cap of 50%.

For this very short term forecast interval, there are not many research papers avail-

able (Soman et al., 2010). However, another model used in a case study in Tasmania,

Australia beat persistence in this scale, 2.5 minutes ahead. This is a hybrid model,

Adaptive Neuro-Fuzzy Interface System (ANFIS) (Soman et al., 2010). This very

short term scale is utilized for efficient trading and optimal use of transmission lines

(Potter and Negnevitsky, 2006). There is no widespread acceptance in the industry

for a particular very short-term forecasting system as there is no reliable forecasting

technique for this scale where wind speeds have the most variations. Persistence is

often deemed sufficient for this time scale as historically predicting for this scale was

viewed as unnecessary (Potter and Negnevitsky, 2006).
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Figure 3.17: Errors and Correlations for Columbia68, RMSE (ms−1), MAE (ms−1)
and Correlations against Time Step for EDM and Persistence

Figure 3.18: Errors and Correlations for Columbia98, RMSE (ms−1), MAE (ms−1)
and Correlations against Time Step for EDM and Persistence
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Figure 3.19: Errors and Correlations for Columbia147, RMSE (ms−1), MAE (ms−1)
and Correlations against Time Step for EDM and Persistence

Figure 3.20: Errors and Correlations for Blanchard Tall Tower, RMSE (ms−1), MAE
(ms−1) and Correlations against Time Step for EDM and Persistence
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Figure 3.21: Errors and Correlations for Neosho Tall Tower, RMSE (ms−1), MAE
(ms−1) and Correlations against Time Step for EDM and Persistence

Figure 3.22: Normalized Errors for height levels of Columbia Tall Tower, Normalized
Errors (%) against Time Step
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Figure 3.23: Normalized Errors for height levels of Blanchard Tall Tower, Normalized
Errors (%) against Time Step

Figure 3.24: Normalized Errors for height levels of Neosho Tall Tower, Normalized
Errors (%) against Time Step

3.5.5 Analysis of seasonality and the diurnal cycle

From Table 3.4, it is clear that for the slices and shifts of the data, all stations

and height levels had a mean error of approximately 0 ms−1. This is due to a

roughly even distribution of negative and positive errors. They deviated from their

respective means, for most cases, by an estimated value of 2 ms−1. The exception

was Blanchard137 after the first 6 hour shift from 144m + 6 slicing of the data, its

deviation from the mean of approximately 0 ms−1 was an estimated wind speed value
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of 3 ms−1.

The seasonality analysis was done for all three stations with particular concentra-

tion on Columbia as this station had all of the monthly data for 2009. In the Northern

Hemisphere for the year of 2009, spring began on Friday 20th March. Summer started

Saturday June 20th while for fall and winter they commenced on September 22nd and

December 21st respectively. Spring corresponded to the 7272nd window. This coin-

cided with a numeric value of forecast 3276. The start of summer 2009 corresponded

with window 20520 which is numeric value 16524 whilst for fall and winter the win-

dows values were 34056 and 47016 which coincided with numerical values of forecast

30060 and 43020 respectively.

Figures 3.25, 3.26 and 3.27 show the various errors for the four seasons in the fore-

cast period in 2009 for Columbia68, Columbia98 and Columbia147 respectively. The

seasons of spring, summer and fall will be of focus as winter of 2009 was represented

as a few days in this analysis as data of 2010 were not included in this study. Also,

since the data spanned one year, the seasonality aspect of the model could not be

fully investigated. The average errors and standard deviations of these seasons were,

however, determined and compared to that of the entire model run for 2009. It was

given that for Columbia68, summer had the lowest magnitude of errors between model

run and actual values; its value was -0.03809 with standard deviation of 1.511631.

This is the only season whose average error was under the average error for the entire

model run for 2009. Fall average errors were a bit higher than for the summer; their

values were 0.064728 and 1.770366 respectively. Spring has the largest average errors

and standard deviations; its values were -0.19993 and 1.954639. This is expected as

from the average wind speeds for the various months, shown in (Balkissoon, Fox and

Lupo, 2020), summer had the least average wind speeds as well as incurred the least

monthly variations. For Columbia98, once again summer had the least average errors

in the simulation. The mean error was approximately the same as Columbia68 with
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Table 3.4: Means, Standard Deviations, Min Values and Max Values of errors, in
ms−1, for various analyses

Analyses Station Mean Standard Deviation Min Value Max Value
36n+6 Columbia68 -0.04976043 1.791448 -8.6 9.6

Columbia98 0.09388809 1.914046 -8.6 15
Columbia147 0.08977431 2.064804 -9.4 10

144m+6 Columbia68 -0.191192 1.679333 -5.05 6
Columbia98 0.2311889 1.670056 -5.4 6.9
Columbia147 0.1320323 2.066888 -8 6.7

36+144m+6 Columbia68 0.07817742 1.819659 -5.9 9.6
Columbia98 0.06601613 2.088458 -6.1 15
Columbia147 -0.04369969 1.976215 -5.6 8.25

72+144m+6 Columbia68 -0.1004072 1.800744 -7.9 5.3
Columbia98 0.08013061 1.946351 -6.9 7.4
Columbia147 0.1764266 2.11462 -9.4 10

108+144m+6 Columbia68 0.01442377 1.857963 6.2 -8.6
Columbia98 -0.002137463 1.929332 7.8 -8.6
Columbia147 0.09463323 2.102374 9.7 -7.8

36n+6 Blanchard61 -0.1574112 2.063242 -6.6 10.9
Blanchard137 -0.07311908 2.480952 -9.6 8.8

144m+6 Blanchard61 -0.1845045 2.071191 -6.6 4.8
Blanchard137 0.004801802 2.261244 -9.6 6.3

36+144m+6 Blanchard61 -0.1805598 2.129216 -5.1 10.9
Blanchard137 0.02518018 2.847701 -8.6 8.8

72+144m+6 Blanchard61 -0.2122522 1.995355 -5 8.1
Blanchard137 -0.5742613 2.379635 -9.05 7.1

108+144m+6 Blanchard61 -0.05175725 2.068112 6.6 -6.6
Blanchard137 0.2535688 2.335961 7.4 -6.05

36n+6 Neosho50 -0.007078053 2.050773 -9.8 12.5
Neosho70 0.006690188 1.937222 -7.8 10.5
Neosho90 -0.02743856 1.831548 -7.7 8.5

144m+6 Neosho50 0.2418952 2.111877 -7.1 8.1
Neosho70 0.01000672 2.003076 -7.8 7.7
Neosho90 -0.1898185 1.839123 -7.1 5.6

36+144m+6 Neosho50 -0.03209293 2.105925 -9.8 5.3
Neosho70 0.1394792 1.853771 -7.2 8.8
Neosho90 -0.07311972 1.724716 -7.7 5.25

72+144m+6 Neosho50 -0.2335916 1.950025 -6.65 7.2
Neosho70 -0.229328 1.865122 -6 6.9
Neoaho90 -0.0705506 1.879079 -5.9 6.3

108+144m+6 Neosho50 -0.004522849 2.015396 -6.7 12.5
Neosho70 0.1066028 2.01141 -4.8 10.5
Neosho90 0.2237346 1.864748 -5.23 8.5
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the standard deviation increasing by an estimated 0.21. Fall, for this height level, had

the highest error value of approximately 0.10 while spring had the lower value of 0.06.

The standard deviation of the errors in the model, for spring were higher than for fall

with an estimated value of 2.17 opposed to 1.82. Both summer and spring have lower

average errors than the year model run, which from Table 3.4 is around 0.09. For the

largest of the three height levels, Columbia147, all seasons considered were under the

entire 2009 model run. Spring and summer both had the same average error of 0.05

while fall had a slightly smaller mean error value of 0.04. The standard deviation

values were largest for spring (2.162856) and smallest for summer (1.896873). Thus,

it was observed that for the station at Columbia, with the exception of the last height

level in which all height levels incurred the same average deviations from the actual

wind speed values, the summer season was the most accurate from this model. Also,

for all heights on the tall tower, the standard deviations were largest for spring and

smallest for summer.

For Blanchard61 and Blanchard137, all of the spring season was in the model

run; however, for summer, 98 of the 376 readings of the slices representative of fall

2009 were missing. Similar statistics were calculated and it was observed that for the

lowest height level there was larger average error and a lower standard deviation value

for summer than spring, a magnitude difference of 0.2276 and 0.21228 respectively.

For Blanchard137, summer had lower average errors and deviations when compared

to spring. Considering station Nesoho at height level 50 m, once again, summer

incurred the least average error of 0.017019 with standard deviation 1.936593 when

compared to the other two seasons of spring and fall whose magnitude of average

error were estimated 0.03 and 0.05 respectively. However, it must be noted that the

fall season has 205 data slices missing from the 360 slices representative of fall 2009.

For Neosho70, spring, however, had the least magnitude in its average error whose

value is 0.00351 whilst the fall had the least standard deviation of 1.559813. For the
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Figure 3.25: Seasonality Analysis for Columbia68, Error (ms−1) against Time Step
every 36n+ 6

final height level of Neosho, it was determined that the modulus of the average error

for all the seasons considered were less than that value for the model run. This value

as well as the standard deviation were the smallest for the summer season. Thus,

four of the eight stations’ height levels had the season of summer incurring the lowest

magnitude of average errors and standard deviations. This is expected as the weakest

winds occur during this season whilst the strongest winds are observed from October

through spring. This is due to the passage of cyclones during these cooler periods.

There is also during the summer, more heating which causes more instability and

turbulence with less wind shear and near surface winds. The increased vegetation

cover during this season are responsible as well for the increased turbulence due to

its surface roughness and lower albedo and thus deeper boundary layer (BL) (Fox,

2011).

The diurnal analysis methodology, explained in Section 3.6, was investigated. The

model took 56 days to initialize and it began to forecast on February 26th for all sta-

tions and height levels. The 144m+6 slicing of the forecast represents the extraction

of the data every day at 6:50 am. The subsequent extracting of the data 6, 12 and 18

hours later represented times of 12:50 pm, 6:50 pm and 12:50 am respectively. The

results obtained for this slicing for the station of Columbia at height level 68 m are
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Figure 3.26: Seasonality Analysis for Columbia98, Error (ms−1) against Time Step
every 36n+ 6

Figure 3.27: Seasonality Analysis for Columbia147, Error (ms−1) against Time Step
every 36n+ 6
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shown in Figures 3.28 to 3.31. Statistical parameters for the entire forecast period

for all slices and stations can also be viewed in Table 3.4.

Two cases occurred where the hours of 6:50 am and 12:50 pm had the highest

standard deviation values when compared to the early morning and evening hours of

12:50 am and 6:50 pm. This occurred for the lowest heights of Neosho and Blanchard.

While for the highest levels of Columbia and Neosho we see the reverse occurrence

where 6:50 pm had the highest standard deviation followed by 12:50 am, 6:50 am and

12:50 pm. This might be as a result of the nocturnal low level jet and strong overnight

wind, which is common in the Midwest. This is due to the reduced convection and

turbulence during the cool night hours which causes more stability with larger wind

shear as a result of the reduced transfer of energy and momentum between the layers.

The boundary layer is shallower and as such the geostrophic winds are closer to the

surface (Fox, 2011). However, there is no evident trend where a particular time of the

day the model incurred more errors and greater standard deviations for all stations

and heights. This may imply that the lack of sensitivity to the diurnal cycle by the

stations height levels means that the model handles any transitions well.

Figure 3.28: Diurnal Analysis for Columbia68, Error (ms−1) against Time Step every
(144m+ 6)
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Figure 3.29: Diurnal Analysis for Columbia68, Error (ms−1) against Time Step every
[(144m+ 6) + 36]

Figure 3.30: Diurnal Analysis for Columbia68, Error (ms−1) against Time Step every
[(144m+ 6) + 72]
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Figure 3.31: Diurnal Analysis for Columbia68, Error (ms−1) against Time Step every
[(144m+ 6) + 108]

3.6 Conclusions

Chaotic characteristics were established for wind speeds within Missouri for various

height levels using both a qualitative method, phase space reconstruction, and a quan-

titative method, determination of the Lyapunov Exponent. Having established that

the time series were chaotic in nature, a non-linear prediction algorithm was applied.

Empirical Dynamical Modeling employed the dynamics of the time series instead of a

set of governing equations. It was determined that this non-linear statistical method,

which utilizes phase space reconstruction is relatively accurate as it is comparable

to persistence. It however, beats this benchmark model for a prediction horizon of

1 time steps (10 minutes). It thus works best in the very short term as expected

and predicted by prediction horizon given by the LLE. The normalized errors using a

50% cap also corroborate this time scale. This prediction model showed, as expected,

the errors are increasing as the prediction time step increases; the errors eventually

plateau. Seasonality and diurnal effects of the model were also investigated. It was

shown that for the summer, four of the eight height levels had the lowest magnitude

of average errors and standard deviations. This is expected, as there is less synoptic
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forcing in Missouri for the summer. It was also determined that the model handles

the transitions of the diurnal cycle well as there is no time of day considered for which

the model incurred more errors and had greater standard deviations for all stations

and height levels.

The limitations of this study are due to the chaotic system suitability context

that the data should be noise free and deterministic to fully capture the dynamics of

multi-dimensional system by one observation. Thus forecasting using this method is

not a simple task due to the non-linearity of the dynamical system and because the

noise hides this dynamic (Lisi and Villi, 2001).

It will be interesting to test this model with exogenous variables. Future work en-

tails comparing the results obtained from this model with the findings from Artificial

Intelligence (AI) methods such as Artificial Neural Network (ANN).
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Chapter 4

Classification of tall tower
meteorological variables and
forecasting wind speeds in Columbia,
Missouri

4.1 Abstract

Tall tower meteorological variables in Columbia, Missouri are clustered using Self-

Organizing Maps after the optimal number of clusters was determined using the

Elbow and Silhouette methods among others. The optimal number of clusters, k was

given as 4 for all methods. The data were then grouped into three Intervals which

consisted of approximately 50 percent and over of vectors or rows from the data

frame. These intervals were then used as training and testing for the forecast models

of Long Short-Term Memory Networks with pressure and wind speeds as inputs as

well as lagged wind speeds as inputs. Other models using these intervals in our

analyses include Moving Autoregressive Integrated Moving Average (ARIMA) and

persistence. From the results obtained from the ARIMA, the metric of the root mean
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square error (RMSE) ranged from approximately 0.6 to 1.0 ms−1 for forecast horizon

2 to 12 in increments of 2. Interval2 had the upper and lower values and thus showed

most variability in errors because it encompassed most of spring, all of summer and

the beginning of fall. The moving ARIMA showed lower errors than the LSTM with

pressure and wind speeds inputs for all the intervals. This may be attributed to the

difficulty in representing the system’s non-linearity and high dimensionality by using

just the wind speeds and pressure as inputs. The lagged co-ordinates of the wind

speed was then examined and used as inputs for the LSTM. The metric used for the

evaluation of prediction of the forecast horizons of 6, 12, 18, 24, 30 and 36 or 1, 2, 3,

4, 5 and 6 hours ahead is the Normalized Root Mean Square Error (NRMSE). These

models were compared to the benchmark model of persistence. It was determined

that all of the models beat persistence and the LSTM with the lag series outperforms

the LSTM with pressure and wind speed as inputs. The Moving ARIMA is now

beaten by the lagged series LSTM in all intervals for at least 2 time forecast horizons

of 6 and 12 or 1 and 2 hours.

Keywords: Self-Organizing Maps (SOMs), Autoregressive Integrated Moving

Average (ARIMA), Long Short-Term Memory (LSTM) Networks

4.2 Introduction

4.2.1 Wind speeds

Wind speeds closer to the ground are subjected to resistance and friction. Even

though these winds are highly positively correlated with each other, the correlations

grow weaker with height as noted in both this study and Cao et al.’s (Cao, Ewing,

and Thompson, 2012). Due to local surface characteristics and large scale forcing
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mechanisms such as pressure and temperature differences, wind is one of the most

difficult meteorological variables to forecast (Sfetsos, 2000). Also, since the atmo-

sphere is highly nonlinear and high dimensional, it is especially difficult to forecast

this variable in the much needed higher resolutions and longer time horizons (Hu et

al., 2019). The higher resolution shows more details of the faster variations in wind

speeds caused by turbulence and other factors. The importance of such forecasts

stems from the ability to aid in the scheduling, dispatching and adjusting electricity

reservations (Hu et al., 2019). In our work we are looking at short term forecasting

at high resolution (10 minute wind speeds at hub height).

4.2.2 Forecasting of wind speeds

Due to the stochastic nature of wind speeds, forecasting this variable is important

for its optimal integration into the power grids (Sandhu, Nair, et al., 2019). These

short term forecasts, can be used by plant managers to adjust turbine components

to achieve more efficiency. Another advantage of short term forecasts is the ability

to make turbines operable closer to extreme weather events before shutting down.

Daily short term forecasts are also important as they relate to the operability of the

turbines in terms of their cut-in and cut-off wind speeds as they aid in the reduction

of structural damage to infrastructure (Cao, Ewing, and Thompson, 2012).

There are numerous methods that have been used to forecast wind speed values,

some of which are illustrated in Figure 4.1. Please see the acronyms 1 associated

with this chart. The methods incorporated in this paper are Artificial Intelligence

(AI) methods which are compared to statistical models as well as the benchmark of

persistence. The significant difference between these two methods is that statistical

multiple linear regression is written in terms of a set of linear operators whilst Ar-
1AI-Artificial Intelligence, ANN-Artificial Neural Networks, ANFIS-Adaptive Neuro-Fuzzy In-

terface System, SVM-Support Vector Machine, AR-Auto-Regressive, MA-Moving Average, ARMA-
Auto-Regressive Moving Average, ARIMA-Auto-Regressive Integrated Moving Average
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tificial Neural Networks(ANNs) are representative of a linear combination of simple

nonlinear functions (Basheer and Hajmeer, 2000). A mapping is done from random

input vectors to output vectors without the assumption that there is a fixed relation-

ship between the two (Li and Shi, 2010). ANNs have the ability to learn from past

data by recognizing patterns among the observations and using these to forecast into

the future (Li and Shi, 2010). Research has indicated the superiority in prediction

accuracy of ANNs to statistical regression especially as the non-linearity of the prob-

lem increases (Basheer and Hajmeer, 2000). Previous studies, namely (Balkissoon,

Fox and Lupo, 2020) and (Balkissoon et al., 2021), done in Missouri, found the wind

speeds to be chaotic in nature, hence motivating the choice of this method to address

the complexity and non-linearity of the data.

4.2.3 Wind Power

From the relationship P = 1
2
ρAV 3 where P is the available power at the turbine,ρ is

the density of air, A is the area swept by the turbine and V is the wind speed, the

two meteorological variables which determines the available turbine power are ρ and

V . The latter variable has the greater influence as the power varies as the cube of V .

The air density is dependent on pressure and temperature as seen from the following

equation (Mabel and Fernandez, 2008)

ρ = D

(
273.15

T

)[
B − 0.3783e

760

]
(4.1)

where D is 1.168kg/m3 - the density of dry air at standard atmospheric temperature

(25◦C) and pressure (100kPa) and B is the barometric pressure in torr, e is the moist

air vapour pressure in torr. Hence, as seen in subsequent sections of the methods,

these two meteorological parameters, will be considered, together with wind speeds,

when determining the inputs to the Neural Network.
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Figure 4.1: Methods for wind speed forecasting
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4.3 Data

Columbia, Missouri is located in 038◦53.270′N latitude and 092◦15.820′W longitude

and has a site elevation of 255m as seen in Figure 4.2. Ten-minute tall tower wind

speed, wind direction and temperature data in 2009 from this region were used in

our study (Fox, 2011). The respective units are ms−1, degrees and degrees Celsius,

respectively. The anemometer orientations were 120◦and 300◦for the tall tower height

of 68 m. Channels 1 and 2 represent the respective wind speed times series. The larger

of the wind speed values at each time step were taken and labelled as Max1. The

wind direction time series at this height level was given from channel 7 and sine

of these angles was labelled as Direction1. The temperature time series from 2 m

logger height were also utilized in our analyses, taken from channel 11, it is referred

to as Temp. Hourly maximum pressure data was taken from University of Missouri,

Extension’s Missouri Historical Agricultural Weather Database. Each hourly pressure

value was repeated five times. This time series, labelled as Pressure, along with Max1,

Direction1 and Temp were combined and used in all of the analyses for Columbia68

as detailed in the Methods section below.
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Figure 4.2: Tall tower location

4.4 Methods

Artificial Neural Networks (ANN) have to date been applied to a multitude of fields

in solving complex problems. These data-driven models are utilized especially as

physically-based mathematical models are difficult to construct given the high non-

linearity of natural systems (Lin, Wang, and Chen, 2016). As defined by Basheer and

Hajmeer (Basheer and Hajmeer, 2000) and Ramasamy et al. (Ramasamy, Chandel,

and Yadav, 2015) , ANNs can be considered as a system of densely interconnected

processing elements, also called artificial neurons or nodes, which have the ability to

conduct parallel computations of input data .Complex relationships are derived from

the input and the output. The input variables are multiplied by weights and biases
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are added to these products. These are then passed through transfer functions for

the generation of the outputs (Ramasamy, Chandel, and Yadav, 2015).

ANNs, being abstractions of biological systems, have the advantages of processing

data that are highly nonlinear. These robust systems have the ability to learn and

generalize imprecise and fuzzy data (Basheer and Hajmeer, 2000). Data are allowed

to be processed faster and have a better fit amidst inaccuracies from measurement

errors. The system in its learning is self updating and has the ability to unlearn data

as well (Basheer and Hajmeer, 2000).

There are many applications of ANNs, which include modelling, classification,

pattern recognition and multivariate data analysis problems (Basheer and Hajmeer,

2000) (Ramasamy, Chandel, and Yadav, 2015). Here, we will focus our attention

on the clustering of the data into various clusters and then on subsequent mod-

elling and forecasting. Clustering as described by (Basheer and Hajmeer, 2000), is

formed by investigating the similarities and differences of the inputs based on their

inter-correlations. Kohonen networks or Self-Organizing Feature Maps (SOMs), the

unsupervised learning ANN where the actual values are not required for the training

set, are used in this study. Forecasting is also done by training the ANN using a

training set of historical data. A Recurrent Neural Network (RNN) is utilized espe-

cially for its dynamic memory capabilities where the outputs of neurons are fed as

inputs to the same neurons or other neurons in the preceding layers (Basheer and

Hajmeer, 2000). Details of these methods are given in the following sub-sections.

4.4.1 Methods determining the number of clusters

Clustering analyses as mentioned in (Nourani et al., 2012), are statistical methods

which are used to partition multivariate data into subsets. There are numerous meth-

ods that can be used to determine the optimal number of clusters to classify the data

into relatively homogeneous groups, such as the Elbow Method, Silhouette Analysis
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and Gap Statistic. These methods, which are used in this study, are outlined below.

We have considered in the analyses this multivariate data set (of length n) of variables

wind speed, direction, temperature and pressure. We denote these points as xi for

i = 1, . . . , n.

The Elbow Method is determined by plotting the within-cluster sum of squares

(WCSS) against the number of clusters, say k. The WCSS(k) gives the sum of the

squared distances between each data point, say xi, in all clusters and their associated

centroids denoted as x̄j (which is the geometric center or the arithmetic mean position

of all the points in the plane figure). This can be written as follows.

WCSS(k) =
k∑

j=1

∑
xiεclusterj

∥xi − x̄j∥2 (4.2)

The changes in WCSS with a range of k determines the optimal number of clusters

in accordance with the Elbow method. The value in which k elbows or the point where

the rate of decrease in WCSS is relatively minimal when compared to its previous k

values.

The Silhouette Clustering method was also used in our analysis. This method

examines the within cluster-consistency by comparing how similar objects from a

cluster are to another. Its value, S(i) range from -1 to 1 where the lower end of the

interval indicates that the configuration has too much or few clusters. The closer this

value is to 1 however, is indicative of an object that is well matched to its cluster or

poorly matched to the other clusters.

The mean similarity of point i and all other points in the same cluster, Ci, is given

by equation 4.3 where |Ci| denotes the number of elements in Ci and d(i, j) give the

distances between data points i and j in cluster Ci. In this average the distances,
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d(i, i) are not considered hence the consideration of |Ci|−1 in the formulation below.

ai =
1

|Ci| − 1

∑
jεCi,i ̸=j

d(i, j) (4.3)

The smallest mean dissimilarity of point i and all the other points of another

cluster, Ck, is given by bi in equation 4.4.

bi = mink ̸=i
1

|Ck|
∑
jεCk

d(i, j) (4.4)

This is the second best fit cluster for point i based on the distance metric. The

Silhouette value for point i, we define as Si, is given in terms of ai and bi as seen in

equation 4.5.

Si =


(bi)−(ai)
max{ai,bi} if |Ci| > 1

0 if |Ci| = 1

(4.5)

This can be further simplified as seen below, depending on the inequality relations

between the mean similarity and dissimilarity.

Si =


1− ai

bi
if ai < bi

0 if ai = bi

bi
ai
− 1 if ai > bi

(4.6)

The Gap Statistic, another consideration used in this paper, is outlined as follows.

As previously denoted, let Ci be the ith Cluster and |Ci| be representative of the

number of elements in this cluster. Let the pairwise distances between elements say

i and j in Ci, di, be given by equation 4.7.

di =
∑
i,jεCi

d(i, j) (4.7)
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For a given number of clusters k, the within cluster distance for that particular

partitioning Pk, is given by equation 4.8. A better classification is indicative of a

smaller Wk value.

Wk =
k∑

i=1

1

2 |Ci|
di (4.8)

Considering the data in which the ’true’ number of clusters is given by G, Wk

should drop as k increases until it reaches G where it will decrease at a much slower

rate. Thus, there will be an ’elbow’ point in Wk; this k value corresponds to the

optimal number of clusters. The Gap Method is used to compare the original data

with the expected curve, E∗
n {log(Wk)} where E∗

n gives the expectation of sample n

from the reference distribution. The Gap Statistic is the value of k which maximizes

Gapn(k) or from equation 4.9, the cluster value where Wk is at the furthest distance

from the expected curve (Yan and Ye, 2007).

Gapn(k) = E∗
n {log(Wk)} − log(Wk) (4.9)

4.4.2 Self Organizing Maps (SOM)

A Self Organizing Map (SOM) is an unsupervised clustering method as there is no

additional information being supplied to the model by a ’supervisor’ (Kalinić et al.,

2015). In this model, high-dimensional data sets are reduced to the two-dimensional

map in which nodes with most similarity are nearest to each other and vice-versa

(Pearce et al., 2014). It does this dimensionality reduction via the usage of cluster

centers which can then be interpreted as an ’abstract representation’ of any given

vector from that particular cluster (Kalinić et al., 2015). It preserves topology where

vectors that are near in input space are also mapped to nearby neurons in the SOM

(Nourani et al., 2012)(Pearce et al., 2014). This resulting map is a projection of a
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multidimensional space rather than a geographical space (Pearce et al., 2014). There

are two modes of operation, training which builds the map using input examples

through a method called vector quantization and mapping which classifies new input

vectors (Burguillo, 2014).

This Kohonen Neural Network is used in many applications (Wehrens, Buydens, et

al., 2007) such as Pearce et al.’s air quality classifications (Pearce et al., 2014) and in

geoscience for the extraction of climate and atmospheric circulation patterns (Kalinić

et al., 2015). Previous studies using SOMs also include Berkovic’s (Berkovic, 2017)

determination of the wind regimes, choosing from various map sizes, the number of

nodes in the rows and columns. However in our study, since we utilized SOMs for the

purposes for clustering our data to be later incorporated in our forecasting algorithm,

we defined our map size based on the formulation written in (Tian, Azarian, and

Pecht, 2014). The number of neurons, M of the map is determined from the number

of observations, N . It is given by the following expression (Burguillo, 2014).

M ≈ 5
√
N (4.10)

According to (Browell, Drew, and Philippopoulos, 2018), the methodology of the

SOM can be achieved via the processes of competition- where the Best Match Unit

(BMU) is identified, cooperation -where the topological neighbourhood of the ’excited’

neurons are identified and finally adaptation -where BMU and excited neurons are

updated in accordance to the input vector.

In more detail the methodology of the SOM is as follows (Tian, Azarian, and

Pecht, 2014).

1. The weight vector of each of the neurons in the map is initialized randomly.

2. The training observed data, say xt, is ’passed’ to the map as an input vector and

Euclidean distance between the all the neurons and this vector is calculated.
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The neuron with the smallest distance is termed the Best Matching Unit or

(BMU). For each input observation, the BMU is identified. We denoted this

unit as c henceforth.

3. A neighbourhood of c is selected and using a neighbourhood function given by

hci, the weighted vectors of the neighbouring neurons, i are updated.

hci(t) = a(t)e
−∥rc−ri∥2

2R2(t) (4.11)

Wi(t+ 1) = Wi(t) + hci(t) [xt −Wi(t)] (4.12)

Where, from equation 4.11, hci is the neighbouring function and t is an index of

iteration, a(t) is the learning rate, rc is vector of c, ri is the vector of the neuron

i and R is the radius around c. This function is a monotonically decreasing

function of t as the learning rate decreases with the iterations during the training

process and the radii around c decreases with t. This process ensures that

neurons i closest to c are being adjusted the most.

The neurons are updated in accordance to equation 4.12 where Wi(t + 1) and

Wi(t) represent the weighted vector of neuron i at the t + 1 and t indices of

iterations respectively, hci is the neighbourhood function above and xt is the

observed input vector.

4. This process is repeated in the iterative training until the clusters are identified

based on their distances.

The data described in Section 4.2, were normalized between 0 and 1 by subtracting

from each element in that particular column of the data frame, its mean. These values

are then divided by the standard deviation of the column to give the z or standard

scores. This standardizing of the variables was done using the scale command. These
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analyses were done in R studio (Wehrens, Buydens, et al., 2007). The SOM grid was

then created using the relation of 4.10 where N = 52, 560 data observations for each

variable. The grid size used was 41 by 28 of hexagonal nodes corresponding to the

factor pair of 1,148. This value was used instead of the calculated numeric of 1,146

because it had more factor pairs.

The following is a list of the metrics to be plotted and their description will be

shown in the results section.

1. Node Count- This map gives the number of samples that are mapped to each of

the nodes of the map. This value should be relatively uniform throughout the

SOM. Large values in some areas of the map is indicative for the need of a larger

map whilst empty nodes indicates that a smaller map may be more appropriate.

Generally, it is used to determine high density areas in the map where ideally

there should be a homogeneous distribution (Rakotomalala, 2005).

2. Neighbourhood Distance or U-Matrix- This map gives the distance between each

node and its neigbouring neurons. It represents the Euclidean distance amongst

the codebook vectors of the respective neighbourhoods (Rakotomalala, 2005).

Larger distances indicates dissimilarities and thus cluster boundaries as nodes

from the same cluster have the tendency to be closer.

3. Heat Maps - These maps separately give the distribution of each of the param-

eters throughout the map. These are done for the four variables, both scaled

and unscaled.

4. Clustering of the codebook vectors - This map consists of the codebook vectors

which is the data structure that carries the neuron’s weight vector in a 2D grid.

The number of clusters or groups is input as well as the specification to add the

cluster boundaries.
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After the clusters are identified, the cluster associated with each of the x(t) vectors

was determined. Continuous intervals of the clustered 2009 Columbia, MO data set,

representing approximately 50% and over of data points in that particular cluster,

were established. There were three intervals in which the majority of the vectors or

rows from the data frame belonged to two of the identified four clusters, denoted

Cluster1 to Cluster4 (we will explain more of this in the subsequent results section).

For example, Interval1 ranged from 1 to 16,000 rows in which Cluster3 consisted of

50.2% of the vectors. Interval2 which started at 16,001 and ended 40,500 inclusively,

comprised 78.92% of rows from Cluster2. Interval3 included vectors from 40,501 to

52,500 in which Cluster3 represented approximately 48% of this interval. It should

be noted that there were predominately two clusters which we will also show in

subsequent results of the clustering of the codebook vectors. Another note to mention

is that the entire time series of length was not used. Instead, 52,500 rows were utilized

in our analyses. There were 16,000, 24,500, and 12,000 points in Cluster1, Cluster2

and Cluster3 respectively.

These intervals are then separately trained and tested in time series forecasting

using the Recurrent Neural Network explained in the subsequent subsection.

4.4.3 Recurrent Neural Networks (RNN), Long Short- Term
Memory Networks (LSTM)

Recurrent Neural Networks (RNN) allow information to persist via one or more hid-

den states and loops that pass information from one step to another of the network.

However, for this, there exists the vanishing gradient problem as the gradients asymp-

totically reduce to 0 from the repeated multiplication of weights for various time steps.

Long Short-Term Memory networks (LSTMs) are a special type of RNN that can learn

these long-term dependencies. The LSTM has memory blocks called cells where in-

formation is stored in the cell state, ct and the hidden state, ht. A diagrammatic

99



representation of the architecture of such memory blocks or cells is seen in Figure

4.3. Information is regulated by gates by optionally allowing certain data through

using sigmoid and tanh activation functions. The output of the sigmoid function is a

number between 0 and 1, where 0 and 1 mean no and all information goes to the cell

state, respectively. Generally notated, the inputs to the gates are the output hidden

state from the previous step , ht−1, and the output cell state from the previous step,

ct−1 and current input, xt, which are pointwise multiplied by weight matrices, W ,

and then added to a bias, b.

There are three major gates: the forget, the input, and the output gates.

1. The forget gate: As seen in Figure 4.3, the input of this gate is xt and ht−1

for that time step. These inputs are multiplied by weight matricies and added

to a bias. This value is then inputted to the sigmoid function and a vector is

outputted which corresponds to each value in the cell state, ct−1. Please refer

to equation 4.13. This vector output is multiplied to the cell state. If a 0 is

output from the sigmoid function for a particular value, the forget gate wants

the cell state to disregard that information whilst if 1 is the sigmoid output, the

forget gate wants the cell state to remember this data.

ft = σ (Wf · [ht−1, xt] + bf ) (4.13)

2. The input gate: The gate determines the information being stored in the cell

state. The sigmoid layer decides the data to be updated and the tanh layer,

whose output values ranges from -1 to 1, creates a vector of possible values that

could be added to the cell state. Please refer to equations 4.14 and 4.15.
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it = σ (Wi · [ht−1, xt] + bi) (4.14)

gt = tanh (Wg · [ht−1, xt] + bg) (4.15)

The old cell state, ct−1 is then used to update the new cell state ct. This is done

representatively by equation 4.16. The old state is multiplied by ft to forget the

information decided upon earlier and then it is added to the product of it and

gt which is indicative of the new possible values scaled to the update amount

decided upon for each value. Note that ∗ is representative of the Hadamard or

entrywise product.

ct = (ft ∗ ct−1) + (it ∗ gt) (4.16)

3. The output gate: A vector is created from scaling the values in the cell state

using a tanh function. The sigmoid function is once again used as a filter to

regulate what is to be outputted from the vector mentioned previously. This

can be represented by equation 4.17. This is sent as the output and as the

hidden state of the next cell.

ot = σ (Wo · [ht−1, xt] + bo) (4.17)

ht = ot ∗ tanh (ct) (4.18)
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Figure 4.3: LSTM Architecture
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4.4.4 Moving AutoRegressive Integrated Moving Average Method
(ARIMA)

A moving AutoRegressive Integrated Moving Average Method (ARIMA) is used as

another model in our analysis. This is a statistical method which uses the relationship

within the time series data in its construction. Data cannot be white noise, that is,

purely random with mean = 0 and standard deviation being a constant as forecasting

into the future would not be possible. If this condition is met, AutoRegressive,

AR(p), Moving Average, MA(q) and AutoRegressive Moving Average, ARMA(p,q)

methods can be utilized. If the data are not stationary (that is not constant mean

and variances), differencing needs to be performed. An AutoRegressive Integrated

Moving Average, ARIMA (p,d,q) can be used where the Integrating part represents

the d or the differencing factor.

The AR method, a time series model, is regressed from its previous values up

to an order determined by the p parameter. This can be seen mathematically from

equation 4.19. The Partial Autocorrelation function (PACF) determines how many

lags are to be incorporated in the AR method; large PACF values gives the order of
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the model. For lag p, the relationship between xt and xt−p is determined, filtering all

the intermediate linear influence from xt−1, xt−2, . . . , xt−(p−1).

xt = β0 + β1xt−1 + β2xt−2 + . . .+ βpxt−p + εt (4.19)

Where xt and xt−1, . . . ,xt−p are the current and previous values respectively and β0

is a constant term and β1,. . . ,βp are the coefficient representing what part of xt−1,. . . ,

xt−p are relevant in explaining the current value etc.

The MA model is written in terms of a linear combination of past error. It gives

the extent the series is related to its past errors. Generally it can written as equation

4.20. The Autocorrelation function determines the number of lags for the MA model.

It is given by the lag value which is statistically different from 0 and above the error

band, followed by consecutive insignificant ACF values for subsequent lags.

xt = c+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (4.20)

Where xt is the current value, εt and εt−1, . . . , εt−q are errors from the current and pre-

vious predictions respectively and θ1, . . . , θq represent the corresponding part which

is relevant in explaining the current value.

The ARMA method is the linear combination of the linear models, AR and MA

as such they too are linear models. This method thus, takes into account past values

and errors in its formulation. Generally it can be written as equation 4.21.

xt = β0 + β1xt−1 + β2xt−2 + . . .+ βpxt−p + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (4.21)

The differencing parameter,d is introduced in the ARIMA models to remove trends

and seasonality. The first order difference is given by ∆1xt = xt − xt−1. This and
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higher orders can be written in terms of B, the backward shift operator where Bxt =

xt−1 and B (Bxt) = B (xt−1) = xt−2. Generally for shifting an observation some m

periods, Bmxt = xt−m. Thus, the first and second differences in terms of operator B

are ∆1xt = xt−xt−1 = xt−Bxt = (1−B)xt and ∆2xt = ∆1xt−∆1xt−1 = (1−B)2 xt

respectively. The second difference can be shown to be via expansion, xt−2−2xt−1+xt.

To determine the number of differencing to use we examine the autocorrelations.

If the series has positive autocorrelations out to a large number of lags then the

series may need differencing. If for lag 1, the autocorrelation is zero or negative

then the series does not need higher order differencing. However, if for lag 1 the

autocorrelation is less than or equal to -0.5, then the series may be over-differenced. A

model with no differencing implies that the series is stationary whilst the assumptions

are made that for the first and second differencing of the series, the original series has

a constant average trend and has time varying trends respectively. An ARIMA(1,1,0),

ARIMA(0,1,1) and ARIMA(1,1,1) can be written mathematically as equations 4.22a

and 4.22b, 4.23a and 4.23b, 4.24a and 4.24b respectively.

∆1xt = β0 + β1∆1xt−1 (4.22a)

⇒ xt = β0 + xt−1 + β1 (xt−1 − xt−2) (4.22b)

∆xt = c+Θ1εt−1 (4.23a)

⇒ xt = c+ xt−1 +Θ1εt−1 (4.23b)
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∆xt = β0 + β1∆1xt−1 +Θ1εt−1 (4.24a)

⇒ xt = β0 + xt−1 + β1 (xt−1 − xt−2) + Θ1εt−1 (4.24b)

4.4.5 Model Configuration

Model: LSTM (pressure and wind speeds as inputs) The Pytorch structure of the

codes for this model was motivated/developed by (Kent, n.d.).

• The data were loaded, preprocessed (by taking the larger wind speed of the

orientations at each time step) and plotted.

• The target variable was specified as wind speed along with the forecast lead (how

much we are forecasting ahead, h). The target was specified as the lag/shift of

the wind speed by the forecast lead. The features were given as wind speed and

pressure. The data were then split into the training (75%) and testing (25%) sets

from the observations. The train and test data were then standardized where

the values are not restricted to a particular bounding range like normalization.

• A sequence of observations from the train and test set were constructed. This

sequence was given as a block of data from some ith row - sequence length

through row i. For i less than the sequence length, the 1st row was padded

by repeating it as many times deemed necessary. Thus, the outputs have the

number of rows in the block equal to the sequence length.

• These sequences from data set was set in Pytorch’s dataloader to select mini-

batches. However, in our model the batch sizes selected were the entire re-

spective train and test data sets for the Intervals. Thus we had two features

(columns), fifty sequence length (rows) and one batch the length of the train
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and test sets.

• A shallow regression LSTM model was then utilized with one hidden layer of 100

hidden units. The loss function is used to calculate the error or the difference

between the predicted and the actual values. The loss function chosen was Mean

Square Error (MSE). The optimizer is used to make changes to the weights; it

does this to try to lower the model loss function. The optimizer chosen was the

Adaptive Moment Estimation (Adam) algorithm with a learning rate of 0.01.

An epoch is the number of times the algorithm traverses the training data. The

model was trained using 20 epochs and was then evaluated.

4.5 Results

From Figure 4.4, we can see that the elbow occurs at 4, indicative that this is the

optimal k. In figure 4.5, 4 has the largest S(i) value indicating that for k = 4, the

objects are well matched to their respective clusters. Similarly, from Figure 4.6, the

value which maximizes Gapn(k) is k = 4. From the analysis of multiple methods,

the bar chart in Figure 4.7 indicates that most of the methods result in an optimal

k of 4. This is an important consideration, as mentioned in Pearce et al. (Pearce

et al., 2014), because a grid with too few classes losses important information via

generalizations whilst too many classes will result in loss of statistical power as there

will exist smaller within class sample sizes.
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Figure 4.4: Elbow Method
Figure 4.5: Silhouette Clustering
Method

Figure 4.6: Gap Statistic
Figure 4.7: Methods determining
optimal k

The grid was a hexagonal structure consisting of 1148 nodes. This structure

consisted of no x and y axes but rather nodal positions, which were numbered as

bottom left having the least value, whose node numbering increases from left to right

(Lakshminarayanan, 2020). As mentioned in (Pearce et al., 2014), limitations of

SOMs include its grid having a finite structure, which imposes restrictions on the map

in the provision of precise information on clustering dissimilarity. Another restriction

is using set of numbers to define the grid that in turn generalize its shape, be it a

rectangle or a square (Pearce et al., 2014).

From the results of the SOMs, the node count plot can be seen in Figure 4.8.

Since the distribution of the counts is relatively uniform throughout the domain of

the SOM, the map size is appropriate. Figure 4.9 shows the neighbourhood distance in

which cluster boundaries can be identified via large nodal distances. From this map,

it is evident that there exist areas where there are greater distances representative of
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the upper end of the scale and the lighter colours. This is seen for example in the

north eastern portion of the map. From the clustering of the codebook vectors in

Figure 4.14, we do note that this is separated as part of a cluster. This is contained

in a smaller cluster whilst there are two major clusters where the adjacent nodes are

grouped in the same cluster. This grid also shows, for each node, all the variables (as

colour coded) in various sector representations. The radii of the sectors varies with

respect to its variable (Lakshminarayanan, 2020). The unscaled heat map for all of

the variables used in this study are seen from Figures 4.10 to 4.13.

Figure 4.8: Node Count Plot
Figure 4.9: Neighbourhood Distance
or U-Matrix

Figure 4.10: Heat Map- wind direction Figure 4.11: Heat Map- wind speed
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Figure 4.12: Heat Map- Temperature Figure 4.13: Heat Map- Pressure

Figure 4.14: Clustering of codebook vectors

From the clusters of the SOMs, continuous intervals belonging to a particular

cluster were identified. These intervals are representative of approximately 50% and

more of the rows from the data frame belonging to a particular cluster where Interval1,

Interval2 and Interval3 belonging to Cluster3, Cluster2, and Cluster3 ranged from 1

to 16,000, 16,001 to 40,500 and 40,501 to 52,500 rows respectively. The three intervals

identified by our clustering are graphed in Figures 4.15, 4.16 and 4.17 where both the

test and training sets are visualized. These clusters from the SOM were utilized to

optimize model performance in forecasting as done in Browell et al.’s article (Browell,
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Drew, and Philippopoulos, 2018). The forecast horizon is from 20 minutes to 2 hours.

As mentioned in (Browell, Drew, and Philippopoulos, 2018), for these time scales

which are used to balance the power systems by operators, statistical methodologies

inclusive of ARIMA are superior to that of results obtained from Numerical Weather

Predictions (NWP). This can be attributed to its low computational cost and ease of

including of new data (Browell, Drew, and Philippopoulos, 2018).

From table 4.1, the RMSE and the MAE for these intervals and various time steps,

h, using the moving ARIMA model, can be seen. These values ranged from approxi-

mately 0.6 to 1.0 ms−1. These results are somewhat comparable to that of (Browell,

Drew, and Philippopoulos, 2018). Browell et al. (Browell, Drew, and Philippopoulos,

2018) used vector autoregression in the spatial consideration of multiple locations and

for this model they obtained RMSEs of 0.96, 1.55, 2.00 ms−1 for one, three and six

hours ahead. Another study by (Sandhu, Nair, et al., 2019) using both hourly and 10

minute data in which 39 and 173 points were forecasted respectively for each data set,

have RMSEs of 1.27 ms−1 for the hourly dataset and 0.96 ms−1 for the 10 minute

dataset. For our time step or forecast horizon of h equal to 6 (one hour ahead), for

Interval1 and Interval3 this value was approximately 0.8 ms−1 whilst for Interval2, it

was an estimated 0.1 ms−1 less that the other two intervals.

In our analyses, the upper and lower values from this range resulted from the run

of Interval2. This is expected as this interval encompassed most of the spring, all

of the summer and the beginning of the fall. As such it is expected that the model

shows the most variability in errors for this interval. It is expected as well that this

interval has the lowest errors as it has highest learning ability of the neurons due to

its largest training set (Lin, Wang, and Chen, 2016). This can be seen graphically

in Figure 4.18. From Table 4.2, we see that the results were comparable to that of

the intervals defined by the SOMs. We note also that spring has the largest RMSE

from the moving ARIMA as expected due to the prevalence of convective storms.
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The moving ARIMA was also trained using three quarters of the entire data set,

despite having this advantage of more information variability in training/learning

phase, these results did not deviate significantly from the interval and the seasonal

analyses.

ANN are powerful and are frequently used in time series forecasting due to their

high parallelism, among other characteristics (Ramesh Babu and Arulmozhivarman,

2012). However, the ARIMA model is widely used and has given more accurate

results for very short term forecasts (Ramesh Babu and Arulmozhivarman, 2012).

Figure 4.15: Interval 1 Figure 4.16: Interval 2

Figure 4.17: Interval 3
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Table 4.1: Moving ARIMA Results for the Intervals

h Interval1 Interval1 Interval2 Interval2 Interval3 Interval3
(10-mins) RMSE MAE RMSE MAE RMSE MAE

2 0.7624309 0.5587051 0.6152723 0.4480265 0.738208 0.4980114
4 0.7817789 0.5783413 0.665906 0.5017876 0.756581 0.5186229
6 0.8008848 0.5957457 0.7360105 0.5666321 0.7666935 0.5284694
8 0.8154731 0.6082994 0.8106469 0.6321702 0.7712227 0.5328341
10 0.8257323 0.6171721 0.8831231 0.6938833 0.7727915 0.5341433
12 0.832471 0.622839 0.9509406 0.7507482 0.7735839 0.5348155

Table 4.2: Moving ARIMA Results for 2009 data set and the seasons

h 2009 data set- RMSE Spring- RMSE Summer- RMSE Fall- RMSE
2 0.6943994 0.763676 0.5139139 0.6625789
4 0.711852 0.7787825 0.5504232 0.68182
6 0.730347 0.7998983 0.5724217 0.7019841
8 0.7445687 0.8185765 0.5821634 0.7278857
10 0.7543516 0.8330311 0.5854124 0.7558021
12 0.7608936 0.8438839 0.5858682 0.7844518

Figure 4.18: ARIMA Errors for the In-
tervals

Figure 4.19: ARIMA Errors for
2009 data set and the seasons
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The LSTM methodology was applied for the wind speed and pressure time series.

Pressure was chosen because it had the greatest magnitude correlation with wind

speed when compared with the other meteorological variables of wind direction and

temperature. The RMSE results can be seen from Table 4.3. The test forecasted series

for the various intervals, together with the actual series, can be seen in Figures 4.20 to

4.22. From the results obtained, ARIMA incurs smaller RMSE than the LSTM model

for all intervals. Though there have been studies for which ARIMA outperforms ANN

and SVM as mentioned in (Sandhu, Nair, et al., 2019), there have been RNN methods

used in wind speed forecasting which performs better that ARIMA. In (Sandhu, Nair,

et al., 2019), the errors are approximately 11 to 14 percent less in the RNN model

compared to their ARIMA method. Another study, (Cao, Ewing, and Thompson,

2012), univariate ARIMA saw higher errors than univariate RNN. The same result

was observed when comparing multivariate ARIMA with a multivariate RNN.

The reason for such results can be attributed to the difficulty of representing the

high dimensional and non-linear system using the one-dimensional wind speed time

series (Hu et al., 2019). As such the series is lagged using the time delay τ and the

embedding dimension d for each of the intervals and these lagged co-ordinates were

input to the LSTM model. The τ value was determined to be 3 using Auto Mutual

Information (AMI) with the exception of Interval2 whose value was given by 2. The

d value was determined to be 6 using Cao Algorithm for all intervals. The τ value

was taken at the first local minimum for the AMI and the d value, as when E1(d)

attains saturation. Please refer to (Balkissoon et al., 2021) for more information

on the methodologies of these parameters as well as Figures 4.23 and 4.24. Another

study that uses the lags of the series in the training of the ANN as input variables was

(Cadenas and Rivera, 2009). It was determined in their study that the best model was

the simplest consisting of two layers and two input and one output neurons (Cadenas

and Rivera, 2009).
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The results obtained can be seen in Figures 4.25 to 4.27 for Interval1 to Interval3

respectively. The persistence model for each interval was constructed by calculating

the average for every multiple of the 6th hour and recording these as the values of

persistence for the next consecutive 6 hours or 36 time steps. The time forecast

horizon, h looked at for this analysis are 6, 12, 18, 24, 30 and 36. The models under

comparison are the LSTM with lagged wind speeds as inputs, the Moving ARIMA,

the LSTM with pressure and wind speeds as inputs and persistence. The Normalized

Root Mean Squared Error (NRMSE) metric for model evaluation was determined for

all of the models. For values of this metric exceeding 1 or 100% implies that the

forecast is no better than the mean of the data after this run.

It can be noted that all models performed better than the persistence model which

stayed consistently between 0.8 and approximately 1.0 for the three intervals. The h

value of 36 for Interval1 and Interval2 have values which are over 1.0 or representative

of a forecast no better than the mean. The LSTM with the lagged wind speeds as

inputs, denoted as Lagseries, outperformed the LSTM with the pressure and wind

speeds as inputs, denoted as Pressureandwind, for all of the intervals. The Moving

ARIMA method is now beaten by the lagged LSTMs for up to the 18th time step in

Interval2 and up to the 12th time forecast horizon in Interval1 and Interval3. The

second interval as mentioned previously has most of spring which have convective

storm events, so it is expected that if any interval is to do best in the non-linear

model of the LSTM when compared to the linear model of the ARIMA model, it

would have been Interval2. The NRMSE of the LSTM Pressureandwind tends to one

faster than the LSTM Lagseries for all of the intervals though up to the h value of

36, they do not exceed 1. As expected when the entire test set was forecasted for the

models (h= test set), the NRMSE for most of the intervals exceeded 1; for the other

cases, they were 0.97 and 0.98.

The tabulated results of the RMSE values for each of these models can be seen in
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Table 4.4. The forecasted and the actual series for h = 36 for LagSeries1 to LagSeries3

can be seen in Figures 4.28 to 4.30 respectively. Similarly, these plots for the ARIMA1

to ARIMA3 test set can be seen in subsequent figures whilst correspondingly the error

defined as the difference between the actual test data and the predicted test data can

be viewed in Figures 4.34 to 4.36. It can be noted, especially for the Moving ARIMA

results, there was a significant match between the predicted and the actual series. The

differences in the actual test data and the predicted test data were varying about the

zero marker thus indicating that the trends were well captured by the model.

Table 4.3: LSTM RMSE

h Interval1- RMSE Interval2- RMSE Interval3- RMSE
2 0.940142796 0.975498677 0.834158971
4 1.155461471 1.219467954 0.927660403
6 1.296958276 1.257914418 0.992396502
8 1.444971761 1.35340903 1.026433109
10 1.451004208 1.432323828 1.137951695
12 2.767638696 1.502783097 1.14651633

Figure 4.20: LSTM Interval 1

Figure 4.21: LSTM Interval 2 Figure 4.22: LSTM Interval 3
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Figure 4.23: Tau for Interval2
Figure 4.24: Embedding dimension for In-
terval2

Figure 4.25: NRMSE for Interval1
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Figure 4.26: NRMSE for Interval2

Figure 4.27: NRMSE for Interval3
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Table 4.4: Models’ RMSE Results for the Intervals

Interval h LagSeries ARIMA Pressureandwind Persistence
Interval1 6 0.372907494 0.8008848 1.307214932 1.331339773

12 0.352250278 0.832471 1.572144369 1.643609466
18 1.087379921 0.8412903 1.831567231 1.987401039
24 1.477212704 0.8436806 1.943241466 2.055514112
30 1.724707138 0.8443778 2.05444378 2.119308164
36 1.920543992 0.8444589 2.13412727 2.263135526

Interval2 6 0.238592146 0.7360105 1.276806808 1.538227218
12 0.242534049 0.9509406 1.53582464 1.734079072
18 1.067046011 1.117465 1.72837262 1.83946146
24 1.432849673 1.233804 1.822299134 1.875548504
30 1.649253577 1.312496 1.9014607 2.069048477
36 1.786658699 1.365862 1.961462493 2.284102311

Interval3 6 0.376359712 0.7666935 1.257796263 1.536880065
12 0.436734176 0.7735839 1.617069345 1.619311738
18 1.028754688 0.7734066 1.685952464 1.80858766
24 1.36522671 0.7698904 1.778578867 1.814853169
30 1.596357379 0.7602228 1.84599341 1.939363159
36 1.739204251 0.7602228 1.891493873 2.168188039

Figure 4.28: LagSeries LSTM1 for h = 36

Figure 4.29: Lagseries LSTM2 for h = 36 Figure 4.30: LagSeries3 LSTM for h = 36
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Figure 4.31: Forecasts for Moving ARIMA1 for
h = 36

Figure 4.32: Forecasts for Moving
ARIMA2 for h = 36

Figure 4.33: Forecasts for Moving
ARIMA3 for h = 36

Figure 4.34: Errors for Moving ARIMA1 for
h = 36

Figure 4.35: Errors for Moving ARIMA2
for h = 36

Figure 4.36: Errors for Moving ARIMA3
for h = 36
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4.6 Future Work and Additional Analyses

In the model runs, the forecast variable - in our case wind speed - can be further

processed to determine if there are any patterns in the wind speed forecast values

(in terms of its accuracy) when its actual values is less than or greater than some x

value or the difference between consecutive actual values rates are higher than some

y value.

Yearly analysis can be done to see if there are the same number of clusters and

accuracy in forecasting (seasonal analysis - using yearly data) is similar.

4.7 Conclusion

The optimal number of clusters was determined to be 4 using the Elbow and Silhou-

ette methods among others. SOMs were then used to cluster the data after which

three continuous intervals belonging to a particular cluster, which represented ap-

proximately 50% and over of the input vectors or rows from the data frame were

identified. These intervals were then inputs for the LSTMs with inputs pressure and

wind speeds, the lagged series LSTMs with embedding dimension d and time delay

τ , the Moving Window ARIMA and persistence models. It was determined that the

Moving ARIMA model is outperformed by the lagged LSTM for at most 180 minutes

from the runs of the defined intervals. The lagged series improved upon the LSTM

with the wind speed and pressure series. All of these models however, performed

better than the benchmark of persistence for all time steps.

120



References

Balkissoon, Sarah et al. (2021). “Determining chaotic characteristics and forecasting

tall tower wind speeds in Missouri using empirical dynamical modeling (EDM)”.

In: Renewable Energy 170, pp. 1292–1307.

Balkissoon, Fox and Lupo (2020). “Fractal characteristics of tall tower wind speeds

in Missouri”. In: Renewable Energy.

Basheer, Imad A and Maha Hajmeer (2000). “Artificial neural networks:

fundamentals, computing, design, and application”. In:

Journal of microbiological methods 43.1, pp. 3–31.

Berkovic, Sigalit (2017). “Winter wind regimes over Israel using self-organizing

maps”. In: Journal of Applied Meteorology and Climatology 56.10,

pp. 2671–2691.

Browell, Jethro, Daniel R Drew, and Kostas Philippopoulos (2018). “Improved very

short-term spatio-temporal wind forecasting using atmospheric regimes”. In:

Wind Energy 21.11, pp. 968–979.

Burguillo, Juan C (2014). “Using self-organizing maps with complex network

topologies and coalitions for time series prediction”. In: Soft Computing 18.4,

pp. 695–705.

Cadenas, Erasmo and Wilfrido Rivera (2009). “Short term wind speed forecasting in

La Venta, Oaxaca, México, using artificial neural networks”. In:

Renewable Energy 34.1, pp. 274–278.

Cao, Qing, Bradley T Ewing, and Mark A Thompson (2012). “Forecasting wind

speed with recurrent neural networks”. In:

European Journal of Operational Research 221.1, pp. 148–154.

Fox (2011). “A tall tower study of Missouri winds”. In: Renewable Energy 36.1,

pp. 330–337.

121



Hu, Rui et al. (2019). “High resolution wind speed forecasting based on wavelet

decomposed phase space reconstruction and self-organizing map”. In:

Renewable Energy 140, pp. 17–31.

Kalinić, Hrvoje et al. (2015). “Comparison of two meteorological models using

self-organizing maps”. In: OCEANS 2015-Genova. IEEE, pp. 1–6.

Kent, Brian (n.d.). “How to use PyTorch LSTMs for time series regression”.

https://www.crosstab.io/articles/time-series-pytorch-lstm.

Lakshminarayanan, Sivakkumaran (2020). “Application of self-organizing maps on

time series data for identifying interpretable driving manoeuvres”. In:

European transport research review 12.1, pp. 1–11.

Li, Gong and Jing Shi (2010). “On comparing three artificial neural networks for

wind speed forecasting”. In: Applied Energy 87.7, pp. 2313–2320.

Lin, Gwo-Fong, Tsung-Chun Wang, and Lu-Hsien Chen (2016). “A forecasting

approach combining self-organizing map with support vector regression for

reservoir inflow during typhoon periods”. In: Advances in Meteorology 2016.

Mabel, M Carolin and Eugene Fernandez (2008). “Analysis of wind power

generation and prediction using ANN: A case study”. In: Renewable energy 33.5,

pp. 986–992.

Nourani, V et al. (2012). “Classification of groundwater level data using SOM to

develop ANN-based forecasting model”. In: Int J Soft Comput Eng 2.1,

pp. 2231–07.

Pearce, John L et al. (2014). “Using self-organizing maps to develop ambient air

quality classifications: a time series example”. In: Environmental Health 13.1,

pp. 1–14.

Rakotomalala, Ricco (2005). “Tanagra Data Mining”. In: Version 1, p. 39.

122



Ramasamy, P, SS Chandel, and Amit Kumar Yadav (2015). “Wind speed prediction

in the mountainous region of India using an artificial neural network model”. In:

Renewable Energy 80, pp. 338–347.

Ramesh Babu, N and P Arulmozhivarman (2012). “Forecasting of wind speed using

artificial neural networks”. In: Int. Rev. Mod. Sim 5.5.

Sandhu, KS, Anil Ramachandran Nair, et al. (2019). “A

comparative study of ARIMA and RNN for short term wind speed forecasting”. In:

International Conference on Computing, Communication and Networking Technologies.

IEEE, pp. 1–7.

Sfetsos, Athanasios (2000). “A comparison of various forecasting techniques applied

to mean hourly wind speed time series”. In: Renewable energy 21.1, pp. 23–35.

Tian, Jing, Michael H Azarian, and Michael Pecht (2014). “Anomaly detection using

self-organizing maps-based k-nearest neighbor algorithm”. In:

PHM Society European Conference. Vol. 2. 1.

Wehrens, Ron, Lutgarde MC Buydens, et al. (2007). “Self-and super-organizing

maps in R: the Kohonen package”. In: Journal of Statistical Software 21.5,

pp. 1–19.

Yan, Mingjin and Keying Ye (2007). “Determining the number of clusters using the

weighted gap statistic”. In: Biometrics 63.4, pp. 1031–1037.

123



Chapter 5

Summary/Conclusion

The investigation of the fractal characteristics of wind speeds in Columbia, Neosho

and Blanchard for various height levels was conducted. The wind speeds showed frac-

tal characteristics, but there were no significant trends that showed that the fractality

of the wind speeds was increasing with height levels.

Chaotic characteristics were further investigated both quantitatively and qualita-

tively. The phase space diagrams all depicted evidence of a chaotic system. This was

also corroborated quantitatively by the Largest Lyapunov Exponent (LLE). The LLE

also showed that there was no increasing level of chaos which coincided with increas-

ing height levels. A simple non-linear prediction algorithm, Empirical Dynamical

Modeling, was then used to forecast every 6 hours ahead. This showed, as expected,

that the errors increase as the forecast horizon increased for each station and height

level. For Columbia, after the 20th time step, the model normalized error exceeds 1.

From the Lyapunov Exponent the prediction horizon was determined to be 6 time

steps using a 95% confidence band. But, when using a 90% confidence band, this

value decreased to 4 time steps. The model, however, beats persistence in Columbia

for the very short term range of one time step.

Another forecasting algorithm was employed, Neural Networks. Firstly Self-
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Organizing Maps were used to cluster the data. The optimal number of clusters

were determined by the Elbow and Silhouette methods. This value, k was given as 4.

The three intervals defined from these clusters were inputs into the Long Short-Term

Memory Network (LSTM). This model was compared to a Moving ARIMA and per-

sistence. The Moving ARIMA incurred less errors than the LSTM for all intervals.

However, the lagged wind speed LSTM, considering the forecasting times of 60, 120,

180, 240, 300 and 360 minutes, not only outperforms persistence and the LSTM with

wind speed and pressure inputs, but it beats the Moving ARIMA at most 180 min-

utes. The lagged LSTM may have outperformed the LSTM with pressure and wind

speeds inputs because the latter may encounter difficulty in representing the system’s

non-linearity and high dimensionality.
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