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DISSERTATION ABSTRACT 

 

Planters with mounted proximal soil sensing systems can densely quantify seed zone soil 

variability. Technology now allows for real-time sensor information to control multiple 

row-unit functions on-the-go (e.g., planting depth). These and other developing sensor-

based control systems have the potential to greatly improve correctness when planting, 

and therefore row-crop performance. For sensor-based control to be widely adopted, 

practitioners must understand the precision and utility of the systems.  Therefore, 

research was conducted to: (i) determine how well commercially available sensors can 

estimate soil organic matter (OM) and whether sensor output was repeatable among 

sensing dates; (ii) evaluate OM prediction accuracy across selected soils and soil 

volumetric water contents with both a commercially-available, planter-mounted sensor, 

and machine learning techniques applied to multiple combinations of soil reflectance 

bands within the visible and near infrared spectrum; and (iii) investigate if planter and 

other proximal soil sensor data, in combination with topographic features, could predict 

field-scale corn emergence rate at varying planting depths. Results found that commercial 

sensors could estimate general trends in spatial variability of OM, but that some 

inconsistencies were associated with a “global” calibration that appeared susceptible to 

temporal variations in soil water content. In the controlled environment, results for sensor 

estimation of OM were similar to the field study. Further, results showed that spectral 

information within the entire range used by the commercial systems evaluated was 

required to consistently predict OM at varying volumetric water contents. Lastly, the 
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field-scale agronomic analysis found that inherent soil and landscape variability drove the 

emergence rate response at the site. However, planter metrics were still useful 
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DISSERTATION INTRODUCTION 

In the past decade, technology has allowed for the incorporation of proximal soil 

sensor systems onto commercial row-crop equipment. Primarily through optical visible 

and near-infrared (VNIR) reflectance, these systems can estimate important agronomic 

soil properties in situ, such as soil moisture and organic carbon or matter (OC/OM). 

Sensing these and other properties on-the-go during grain-crop planting may improve 

planter performance and seedling emergence uniformity, an outcome that has been shown 

to optimize yield potential.  

Although relatively new to production-scale agricultural equipment, sensing 

techniques, such as VNIR spectroscopy, have been evaluated for soil physical and 

chemical property estimation across a range of environments both in laboratory and field 

settings, and to a lesser extent, through stand alone on-the-go sensing. The recent 

integration of proximal sensing of the seed furrow and/or rooting zone into commercial 

row-crop implements allows for spatial quantification of these soil properties. If properly 

equipped, commercial planters with these sensors also have the capability to control 

planting depth, insecticide, fertilizer, seeding rate, and seed hybrid or variety on-the-go. 

However, challenges from environmental factors such as ambient light, soil moisture, 

texture, and residue can all impact reflectance and subsequently, soil sensor estimations. 

Further, factors such as dust, soil smearing, and variable distance between the sensor and 

the soil can all introduce error.  

Although promising, little is known about the performance and consistency of 

these sensors across a range of environmental and management conditions. Therefore, the 
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first objective of this research project explored the field-scale accuracy, precision, and 

repeatability of the sensors at estimating soil OM (Chapter 2). Additionally, the second 

objective was to evaluate the ability of a commercially available sensor system to 

estimate OM under varying soil water contents in a controlled environment, as well as 

how to improve OM estimates from visible and near-infrared spectra using advanced 

analytical techniques (Chapter 3). Lastly, the third objective was to determine the extent 

these sensor metrics can be used in making agronomic decisions at planting for optimum 

crop performance (Chapter 4).  
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CHAPTER 1: LITERATURE REVIEW AND SENSOR SYSTEM OVERVIEW 

Introduction 

 

Recent technology has allowed for the integration of soil sensors, utilizing diffuse 

reflectance spectroscopy in the visible and near-infrared reflectance (VNIR) region, into 

commercially available equipment. These sensor platforms can prediction important 

agronomic soil properties in situ that are critical for crop production, such as soil water 

and organic carbon or matter (OC/OM). In some scenarios, the predictions can be in real-

time, allowing for the potential to vary crop inputs and/or make on-the-go adjustments to 

row-crop production equipment (i.e., seeding depth). In order to use VNIR for real-time 

control or to estimate OC stocks, it is important for practitioners to recognize the 

capabilities and the limitations of VNIR sensing technology. Extensive laboratory 

research has illustrated the capabilities of VNIR to estimate soil properties (i.e., soil water 

and OM) across a range of soils and environments (Brown et al., 2006; Rienzi et al., 

2014; Zhou et al., 2020), illustrating strong opportunity for VNIR proximal sensing 

platforms. However, sensor accuracy has been found to decrease in circumstances where 

field-moist soils were evaluated, as opposed to dry and ground soil (Minasny et al., 2010; 

Bricklemeyer and Brown 2010). This has been largely attributed to the complex response 

of soil reflectance to varying volumetric water contents and interactions with other soil 

properties that affect spectral features (Lee et al., 2009; Rienzi et al., 2014). Additionally, 

sensitivity to moisture has been found to vary within the VNIR region, with greater 

sensitivity found in longer wavelengths (>1400 nm; Lobell and Asner, 2002).  

Sensing these and other properties on-the-go during grain-crop planting may 

improve planter performance and seedling emergence uniformity, an outcome that has 
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been shown to help optimize yield (Carter et al., 1992; Nafziger et al, 2009). The recent 

integration of proximal sensing of the row-crop seed zone and/or the seed furrow into 

commercial row-crop planters allows for spatial quantification of agronomically 

important soil properties. Commercial planters equipped with these sensors also have the 

capability to control planting depth, insecticide, fertilizer, seeding rate, and seed hybrid or 

variety on the go. Although promising, little is known about the performance and 

consistency of these sensors across a range of environmental and management conditions.  

Visible and Near-infrared Reflectance Spectroscopy  

In order to collect soil spectra, emission from a subset or continuum of 

frequencies (e.g., 400 to 2500 nm) are directed towards a soil sample. Depending on the 

soil components, radiation will cause molecular bonds to bend or stretch (vibrate). These 

molecules will absorb light at different levels, allowing for a characteristic spectrum to be 

used for analytical purposes (Stenberg et al., 2010; Miller, 2010). The wavelength where 

absorption occurs depends on the chemical matrix and environmental factors, such as 

neighboring functional groups, which allows for the detection of molecules that contain 

similar types of bonds (Stenberg et al., 2010). When near infrared radiation interactions 

with soil, the overtones and combinations of fundamental vibrations in the mid-infrared 

region are detected. The present study focused on primarily on the estimation soil 

OC/OM, as well as the influence of soil water content and texture on prediction accuracy.   

Organic Carbon  

 

A large number of studies have evaluated using VNIR for soil OC estimation. The 

ability to estimate OC is possible because the fundamental vibrations of organic 

molecules occur in the mid-IR and their overtones occur in the Vis-NIR region. These 
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occurrences are due to stretching and bending of N-H, C-H, and C-O bonds. In the visible 

spectrum, wavelengths near 410, 520, 540, 550, and 570 nm have all been found useful 

when predicting OC (Daniel et al., 2004; Brown et al., 2006; Viscarra-Rossel et al., 

2006). In the NIR region, wavelengths near 960, 1100, and 1400 nm have been identified 

as sensitive to different levels of OC (Palacio-Orueta and Ustin, 1998; Daniel et al., 

2004). Additional wavelengths (>1400 nm) have also been found useful, although out of 

the range used by commercially available sensors. Some examples are 1600 and 2200 

nm, which have been found significant for OC prediction by several researchers (Cho et 

al., 2018, Zhou et al., 2022, Rienzi et al., 2014), and have been attributed to aliphatic 

compounds. Studies utilizing continuous spectra that includes longer wavelengths (1500-

2500 nm) have illustrated strong OC predictive capability, with RMSE below 3.1 g kg-1 

(Dunn et al., 2002; Sepherd and Walsh, 2002). However, these results were achieved with 

air-dried soils. In comparison, accuracies have been found to degrade when field-moist 

soils were evaluated (Minasny et al., 2010; Bricklemeyer and Brown, 2010). This has 

been largely attributed to the complex response of soil reflectance to varying soil water 

contents and interactions with other soil properties that affect spectral features (Lee et al., 

2009; Rienzi et al., 2014). Additionally, sensitivity to moisture has been found to vary 

within the VNIR region, with greater sensitivity found at longer wavelengths (>1400 nm; 

Lobell and Asner, 2002). 

Soil texture has also been found to influence OC prediction accuracy. In general, 

RMSE of OC predictions decreases with increasing clay content (Stenberg et al., 2002). 

This has been attributed to the scattering of light by coarser-textured soils, resulting in an 

overestimation of OC. Another hypothesis for this trend is that OM is the stronger 
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absorbent in the soil matrix, and therefore dominates the spectra (Clark, 1999). 

Collectively, research has illustrated that soil texture can influence OC prediction.   

Specific wavelength assignments are difficult, however, as other organic and 

inorganic molecules may also influence absorption in useful regions. Although results 

have been poor when using the visible region alone, performance has improved when 

including the visible region and NIR for calibration (Fystro, 2002). However, this method 

can still be influenced by other soil properties such as texture, moisture, and mineralogy 

(Hummel et al., 2001).  

Accuracies are generally found to decrease when calibrations are conducted 

across a wide geographic range or when few wavelength bands are used (Ladoni et al., 

2009). Reduction in accuracy often occurs because reflectance values are influenced by 

moisture, texture, mineralogy, parent material, and SOM (Hummel et al., 2001).  

Soil Water Content 

 

The ability for VNIR to detect soil moisture occurs because of strong water 

absorption in the NIR region due to O-H stretching and bending (Hunt, 1977). However, 

because porosity and the refractive index of soils vary, a standard relationship between 

reflectance and soil water content (volumetric or gravimetric) cannot be established 

(Whalley et al., 1991). Water exposed on surfaces as well as free water filling pore spaces 

generally decreases reflection. Wavelength assignments for these relationships are 

typically at or near 1400 or 1900 nm (Viscarra Rossel et al., 2005). Between these 

wavelengths, 1900 nm has been found to be the best at quantifying soil water content 

(Baumgardner et al., 1985) because 1400 nm coincides with hydroxyl ions. Weaker 

absorption occurs near 970, 1200, and 1780 nm (Baumgardner et al., 1985). Research has 
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shown that the use of only 1 or 2 wavebands has resulted in reduced accuracy of soil 

moisture predictions when compared to 4 or more wavebands (Hummel et al., 2001; 

Bullock et al., 2004).  

Although the influence of soil water content in soil spectra is clear, published 

RMSE values are surprisingly high when compared to properties such as OC (Hummel et 

al., 2001; Christy, 2008). In relative terms, the RMSE are only as good as OC, which has 

a more subtle impact on spectral reflectance when compared to soil water content. In 

some cases, the erosion of accuracy may be caused by on-the-go measurements 

(Mouazen et al., 2006). For example, Hummel et al., (2001) found under-estimation 

occurred on the wettest soils due to the potential presence of a layer of water on the 

sample, possibly causing specular reflectance.  

Spectral Pre-Processing 

 

Several spectral smoothing techniques have been employed to reduce signal 

noise. These can include averaging, moving averages, or Savitsky-Golay transformations 

(Savitzky and Golay, 1964). Subsequent pre-treatment and processing techniques have 

also been explored to improve predictive capability across a wide range of soils or soil 

water contents. These transformations have included standard normal variate, first or 

second derivative, detrending, and/or mean centering (Minasny et al., 2011; Cho et al., 

2017; Zhou et al., 2022). Because derivates generally increase noise, they are often used 

in conjunction with one of the aforementioned smoothing approaches.  

The best pre-treatment or combination of pre-treatment techniques is soil or 

dataset-specific. However, the first and second derivatives are most widely used. They 

allow for a baseline correction and can enhance subtle signals (Stenberg et al., 2010). Not 
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surprisingly, this technique has been found effective on soils with varying water contents, 

and is helpful due to the significant and non-linear effect of soil water on reflectance 

(Lobell and Asner, 2002). Research has shown this technique effective, with similar 

prediction accuracies among varying soil water contents (Rienzi et al., 2014) 

Machine Learning  

 

In many analyses, VNIR-based OM predictions have been derived from statistical 

methods such as principal component regression (PCR) or partial least squares regression 

(PLSR) techniques (Sudduth and Hummel, 1993; Brown et al., 2006). However, recent 

advancements in statistical and machine learning have allowed for new approaches, such 

as decision trees, support vector machine regression (SVMR), and artificial neural 

networks. Several researchers have found similar or improved performance from the 

advanced techniques compared to traditional methodology on dry, ground soil (Viscarra 

Rossel and Behrens, 2010; Mouazen et al., 2010). Results reported by Morellos et al. 

(2016) on field-moist soils determined that Cubist and SVMR approaches outperformed 

PCR and PLSR modelling in one field in Premslin, Germany. Although these past studies 

are encouraging, more research is needed to understand how these modeling techniques 

could be applied to on-the-go sensors across varying soils and soil water contents. 

Proximal Sensing 

 

In the past decade, technology has allowed for the incorporation of proximal soil 

sensor systems onto commercial row-crop equipment. These systems can estimate, 

through optical visible and near-infrared reflectance (VNIR) sensing, important 

agronomic soil properties in situ, such as soil moisture and organic carbon or matter 

(OC/OM). Although relatively new to production-scale agricultural equipment, VNIR 
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spectroscopy for soil physical and chemical property estimation has been evaluated 

across a range of environments through stand alone on-the-go sensing (Nawar and 

Mouazen, 2019; Christy, 2008). Using VNIR can be practical due to the cost of 

instrumentation when compared to laboratory analyses, ability to integrate into necessary 

field operations, and potential to estimate multiple soil properties from a single sensing 

operation. However, challenges from environmental factors such as ambient light, soil 

moisture, texture, and residue can all impact reflectance and result in low-quality in situ 

soil sensor data (Stenberg et al., 2010). Further, factors such as dust, soil smearing, and 

variable distance between the sensor and the soil can introduce measurement error 

(Sudduth and Hummel, 1993). These factors require careful sensor system design and 

engineering for reproducible data.    

In the late 1980s, several prototype VNIR on-the-go and in-situ spectrometers 

were developed (Shonk et al., 1991; Sudduth and Hummel, 1993). Evaluation of more 

recently developed systems has demonstrated the accuracy of OC estimations using on-

the-go sensing (Christy, 2008; Bricklemyer and Brown, 2010; Nawar and Mouazen, 

2019).  Most of these studies used full-spectrum sensing, spectral pre-processing 

techniques, and calibration procedures to develop spatial OC estimates. One example was 

research conducted by Nawar and Mouazen (2019) which aimed to compare real-time 

and to laboratory sensing of OC. Their study also evaluated several calibration methods 

that ranged from regional to field specific. The results showed that, in two of the three 

calibration techniques, real-time sensing predictions of OC were comparable to 

laboratory results. Additionally, including regional data in the calibration method resulted 

in an improved OC estimation (coefficient of determination (R2) = 0.74) when compared 
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to the single field technique (R2 = 0.65). These results suggest that accuracies from real-

time sensing can be comparable to analyses performed in a laboratory setting. 

Additionally, they suggest that including regional information prior to sensing could 

improve real-time estimations of OC.  

A similar study was performed in central Kansas, USA across 8 fields within two 

counties, covering nearly 300 ha (Christy, 2008). This study utilized a shank-mounted 

spectrometer with a sensing range from 920 to 1718 nm attached to a tractor-mounted 

toolbar. Several cross-validation schemes were evaluated, and predictions of gravimetric 

water content and OM varied with each method. Performance was poorest when an entire 

field (“one-field-out”) was excluded from the training dataset. This method resulted in 

cross-validation R2 values of 0.40 and 0.67 for soil moisture and OM, respectively. The  

highest accuracies were observed when the “leave-one-out” method was used, where a 

single sample was omitted at each training iteration. This method used the entire dataset 

for training and validation, where one sample was removed for prediction at each 

iteration. The cross-validation R2 values were 0.67 and 0.80 for soil moisture and OM, 

respectively. The “one-field-out” results would be most representative of real-time sensor 

estimation with no field-specific calibration. Therefore, this research illustrates the 

limitations of real-time sensors that have the capability to guide on-the-go control of 

planter functions.  

Sensor and Control Systems 

Active Hydraulic Downforce 

 During planting operations, the row-unit depth-gauge wheels roll on the soil 

surface to establish planting depth, and subsequently apply a load to the soil surface 
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(Hanna et al., 2010). This impact is the remaining load after the downforce systems have 

applied enough force to engage the disk openers to the target planting depth, and is 

referred to as gauge wheel load (GWL).  In general, downforce systems aim to apply 

downforce that allows enough GWL for disk openers to penetrate the soil to the desired 

planting depth, while not causing excessive compaction to the seed zone. The latest 

active downforce systems sense GWL and subsequently transfer the correct amount of 

force from the planter toolbar to the row-unit in order to maintain a certain GWL (e.g., 

445 N). Assuming there is enough weight on the toolbar, this value remains relatively 

static with only the amount of force varying within the field.  

Commercially available active hydraulic downforce systems originally became 

available in 2016. Since then, research has evaluated the ability of these and static 

systems to be a surrogate for estimation soil properties (Brune et al., 2018), as well as the 

impact of downforce on row-crop emergence and yield (Badua et al., 2021; Drewry et al., 

2021; Poncet et al., 2019). Results from Brune et al. (2018) found that planter row-unit 

downforce was correlated to soil physical properties, such as shear strength, penetration 

resistance, and bulk density. However, correlations were not strong between downforce 

and OM or clay content. Therefore, other sensor systems (i.e., VNIR spectroscopy) are 

likely better alternatives for estimating these soil properties. 

Relationships between downforce and corn emergence have been mixed. In some 

cases, no response of corn emergence to downforce was observed (Poncet et al., 2019). 

Conversely, other studies have found differences among varying GWL. Specifically, 

results from Hanna et al. (2010) found that the rate of corn emergence was greater in wet 

conditions and low GWL. These results suggest that the optimum GWL is likely to vary 
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with soil moisture levels. However, current systems only target a single GWL, and 

simply vary the amount of applied force throughout a field. Therefore, potential exists to 

implement other sensor metrics (i.e., soil moisture) to determine a soil-specific target 

GWL.  

Implement-Mounted Sensors  

Since 2018, two commercially available implement-mounted optical sensing 

systems have been released. These included the Veris iScan (Veris Technologies, Salina, 

KS, USA) and Precision Planting SmartFirmer (Precision Planting, Tremont, IL, USA). 

The iScan is designed to mount on common toolbars, such as a row-crop planter or 

equipment. It includes soil-engaging sensors that measured apparent soil electrical 

conductivity (ECa; 0-61 cm), volumetric soil water content (through capacitance), 

temperature, and reflectance at two wavelength bands centered at 660 (20 nm width) and 

940 nm (30 nm width). The moisture and optical sensing components of the iScan are 

positioned to press against the bottom of the slot created by the runner (Lund and 

Maxton, 2019). Prior to sensing, the soil ECa, optical and capacitance sensors are 

calibrated following procedures provided by Veris Technologies. The data are logged at 1 

Hz to Veris Technologies Soil Viewer real-time mapping software.  

The SmartFimers are designed to mount to a planter row-unit behind the seed 

tube, replacing traditional seed firming devices. They can be instrumented on all or a 

subset of row units. Data collected with the SmartFirmer is recorded at 1 Hz with a 

Precision Planting second or third generation 20|20 monitor. Data layers from the 

SmartFirmer consist of Furrow Moisture (%), Temperature (°C), OM (%), Cleanness 

(%), and Uniformity (%). These metrics, aside from Temperature, are derived from the 
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optical portion of the sensor that measures reflectance from five wavelength bands in the 

VNIR region (peak wavebands: 468, 592, 858, 1198, and 1468 nm). The waveband 

widths vary from 20 nm at shorter wavelengths (i.e, 468 nm) to 50 nm at longer 

wavelengths (i.e., 1468 nm).  

Early Corn Stand and Emergence Uniformity  

Factors Affecting Emergence  

 

Research has found that corn seedling emergence is highly dependent upon seed-

to-soil contact, soil moisture, aeration, and soil temperature (Alessi and Power, 1971; 

Gupta et al., 1988, Elmore et al., 2014). Additionally, studies have found optimum corn 

germination to occur at soil temperatures greater than 20 C, at field capacity, and with 

good seed-to-soil contact (Schneider and Gupta, 1985). Generally, operators of row-crop 

seeding equipment target a planting depth, downforce, row-closing, and residue 

management strategy that optimizes these parameters. Across landscapes, however, 

spatial variability in seed zone soil properties often exist due to variations in soil texture, 

crop residues, and landscape position. 

Seeding Depth  

 

Agronomic research has evaluated the impact of seeding depth on corn 

emergence, emergence rate, and yield across landscapes. Studies have aimed to determine 

whether the optimum planting depth should vary with soil type. Results from these 

studies are mixed, but have collectively illustrated that the optimal corn planting depth 

can vary from 2.5 to 7.6 cm based upon soil texture, moisture, temperature, and other 

factors (Stewart et al., 2021; Coronel et al., 2018; Thomison et al., 2013; Cox and 

Cherney, 2015; Thomason et al., 2008). In general, however, research agrees that 



14 

 

planting at depths less than 3.8 cm can negatively affect corn emergence due to poor 

seed-to-soil contact and susceptibility of the seed to moisture and temperature flux. 

Additionally, poor nodal root development at shallow planting depths can result in yield 

loss and lodging susceptibility (Elmore and Abendroth, 2007). Further research is needed 

to determine whether within-field soil moisture or estimations of seed-to-soil contact can 

give insight to growers to determine the optimum seeding depth for uniform emergence. 

In an effort to improve seeding management across variable landscapes, precision 

agriculture research has explored varying seeding depths within a given field based upon 

changes in soil moisture (René-Laforest et al., 2015). Soil moisture estimated through a 

capacitance sensor was used as the guiding parameter because of the influence of soil 

moisture on germination, as well as the access to on-the-go soil moisture sensors. This 

recent study illustrated that varying planting depth within a field has potential to improve 

corn root development and yield. The improvement was attributed to planting shallower 

in relatively wet conditions, and deeper in relatively dry conditions. Further research is 

needed to apply these results to more local environments in the U.S. Midwest. In addition 

to sensor technologies, topographic features can give insight into soil water availability, 

movement, and accumulation across landscapes (Pachepsky et al., 2001). High-resolution 

elevation is now available through digital elevation models, as well as from machine data 

collected during field operations.  

Overview of Precision Planting Sensor Systems 

 

Background 

 

In 2018, Precision Planting released a seed firmer (similar to a Keeton seed 

firmer) with an integrated optical and thermopile sensor located on the side of the firmer 
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(Fig. 1; Koch et al., 2018). The electro-optical portion of the sensor suite consists of 

emitters and detectors that collect reflectance from five different wavebands of light 

ranging from the visible spectrum (467 and 592 nm) to the NIR region (850, 1200, and 

1465 nm). This technology is commonly referred to as VNIR reflectance, and can be used 

to estimate soil physical and chemical properties.  

In 2018, the optical portion of the sensor produced output data layers consisting of 

furrow moisture (%), organic matter (OM; %), cleanness (%), and uniformity (%). All 

metrics, except for organic matter, were collected on a row-by-row basis at 5 Hz with no 

inter-row interpolation. Exported data, however, were averaged across SmartFirmers on 

the planter at a frequency of 1 Hz for data collected with a 2nd generation 20|20 

Seedsense monitor (.DAT file format). Organic matter estimations were interpolated 

across SmartFirmers, resulting in some smoothing of the data across the planter row units 

(Koch et al., 2018). Like the other metrics, a single value for OM was recorded at 1 Hz. 

In 2019, Precision Planting added cation exchange capacity (CEC; meq/100 g) to the 

SmartFirmer’s suite of measurements. Additionally, data collected with 3rd Generation 

20|20 monitors can be exported on a row-by-row basis (.2020 file format). Like the 

previous monitor, data are recorded at 1 Hz.  

Precision Planting SmartFirmer 

 The SmartFirmer system utilizes several metrics to help guide planter row-unit 

management, either in real-time or manually by the operator. The following describes 

each metric, as well as the description of each by the manufacturer (Precision Planting, 

2019).  
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Furrow Moisture 

The percent of water weight that a corn seed is projected to absorb in a 3 day time period. 

It is recommended to keep this value above 30% for adequate moisture conditions  

- Can be used to control planting depth real-time with SmartDepth system. 

Organic Matter 

 The portion of the soil that consists of plant material in various stages of decomposition. 

SmartFirmer measurement of OM includes all of this except for visible crop residue.  

- Can be used to control population, hybrid/variety, fertilizer rates, and insecticide rates.   

Cation Exchange Capacity 

The soil’s capacity to hold and exchange cations. This represents the ability for soil to 

hold onto fertilizers and liming agents, the higher the number indicates a higher holding 

capacity”]. 

Clean Furrow 

 A measure of the crop residue in the furrow. (Precision Planting, 2019). Acceptable = 

90%; Goal=95%. Used to guide residue management decisions (row cleaners, tillage, 

etc.).  

Uniform Furrow 

 Any variation in the furrow (light, cloddiness, moisture changes). Can indicate row unit 

mechanical problems, tillage patterns, opportunity to adjust row cleaners, windrowed 

residue, etc.; Goal = above 95%. 

Furrow Temperature 

Real time temperature at seeding depth; Goal = above 50 F. This metric is estimated with 

a thermopile sensor for temperature measurements.  
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Precision Planting DeltaForce 

Planter opening discs require a certain amount of force to create a seed trench 

down to the desired planting depth (Hanna, 2016; Fig.  2). This can vary from 222 to over 

1779 N depending on soil conditions, speed, moisture, tillage practice, opening disc wear, 

etc (Sharda et al., 2016). The force to create the trench comes from the deadweight mass 

of the row unit (890-1556 N), plus the additional force transferred from the frame to the 

parallel arms through spring, pneumatic, or hydraulic mechanisms. If additional force is 

leftover after the seed trench has been created, the leftover force gets transferred to the 

gauge wheel. This is referred to as gauge wheel load (GWL).  

In 2013 Precision Planting released DeltaForce, an automated hydraulic row-unit 

downforce system (Sauder et al., 2013). DeltaForce senses GWL and adjusts downforce 

on each row to maintain a target GWL (e.g., 444 N). The system was an improvement on 

the previous pneumatic systems because adjustments were made at each row rather than 

across the planter toolbar. Additionally, the hydraulic reaction time (1-2 sec) was much 

quicker than the slower (10-15) sec response of pneumatic systems. The hydraulic system 

also allowed for lifting of the row unit under wet or soft conditions.  

The two main components of the system are the instrumented load sensing pin for 

sensing GWL, and the hydraulic cylinder for applying lift or downforce (Fig. 3). The load 

pin measures GWL at 200 Hz, resulting in two metrics displayed to the operator: 

Downforce (lbf) and Margin (lbf). The load pin sensor contains a strain gauge and is 

located where gauge wheel depth adjusting arm pivots. The pin has two inner and two 

outer lobes. Force is transferred from the gauge wheel arm to the depth adjustment (inner 

lobes), while the weight of the shank is pushing down and is carried on to the two outer 
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lobes. This applies a bending stress to the pin, and allows the strain gauge to estimate 

total weight carried by the gauge wheels. It is important to note that downforce data 

contains a low signal to noise ratio and that large amounts of smoothing are required for 

practical interpretation (Hanna et al., 2010; Badua et al., 2018).  

Load pin readings are used for calculating the amount of additional lift or 

downforce required to maintain a target GWL. The force adjustments at each cylinder are 

controlled by an electronic solenoid. The system can go from maximum lift force (2000 

N) to maximum applied force (2670 N) in 2 seconds. Currently, applied downforce is 

displayed and mapped on the 20|20 monitor, but does not exist in the exported data.  

Downforce Related Metrics 

Downforce: Gauge wheel load (N) measured from load pin. Measured at 200 Hz and 

recorded at 1 Hz. 

Margin: The minimum downforce value recorded from the load pin in a 3 sec period. 

Normal condition target = 444 (N) 

Ground Contact: The percentage of time that there is some weight (> 1 lbf) carried on 

the gauge wheel (measured with load pin). Target is 100%.  

Applied Downforce: The amount force applied to the row unit by the cylinder. 

Calculated from the command pressure sent to each hydraulic cylinder.  

Good Ride: Measures vertical movement of the row unit from an accelerometer within 

each row unit’s module. It is defined as the percent of time that the row unit ride is 

sufficient enough to not interfere with seed spacing  
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Figures 

 

 

Fig. 1. Precision Planting SmartFirmer labeled with optical sensor (A) and temperature 

sensor (B).  

 

 

 

 

 

 

 

 

 

Fig. 2. Diagram of a typical planter row unit, with select mechanical forces identified 

(adapted from Brune et al., 2018). DW = Dead weight; ADF = Applied downforce; GW 

= Gauge wheel; OD = Opening Disc.  
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Fig. 3. Precision Planting’s load sensing pin (A) and downforce cylinder used with the 

DeltaForce System.  
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CHAPTER 2: REPEATABILITY OF COMMERCIALLY AVAILABLE VISIBLE 

AND NEAR INFRARED PROXIMAL SOIL SENSORS  

Abstract 

 

Integration of reflectance sensors into commercial planter or tillage components 

have allowed for dense quantification of spatial soil variability. However, little is known 

about sensor performance and reproducibility. Therefore, research was conducted in 

Missouri in 2019 to determine (i) how well sensors can estimate soil organic matter (OM) 

and (ii) whether sensor output could be repeatable among sensing dates. Soil sensor data 

were collected across three weeks on an alluvial soil with the Precision Planting 

SmartFirmer and Veris iScan. Output layers used in analyses included OM and Furrow 

Moisture from the SmartFirmer, as well as OM, reflectance, and soil apparent electrical 

conductivity from the iScan. Ground-truthing soil samples were collected at 0-50 mm on 

the first date to determine OM and on all dates to determine soil gravimetric water 

content. Results showed OM estimations by the iScan, which included the manufacturer’s 

specified field-specific calibration, were reproducible among the three sensing dates, with 

coefficient of determination (R2) ranging from 0.95 to 0.97. Similarly, root mean square 

error (RMSE) values were between 1.60 and 2.41 g kg-1. SmartFirmer results showed 

OM was overestimated in areas of low OM, and underestimated in areas of high OM 

when compared to laboratory-measured data (R2 = 0.34; RMSE = 6.90 g kg-1). 

Additionally, variability existed in OM estimations between dates in areas that were 

lower in laboratory-measured OM, soil moisture, and clay content. These results suggest 

real-time estimations of OM may be subject to variability, and local information is likely 

necessary for consistent soil reflectance-based OM estimations.  
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Introduction 

 

In the past decade, technology has allowed for the incorporation of proximal soil 

sensor systems onto commercial row-crop equipment. Through optical visible and near-

infrared reflectance (VNIR), these systems can estimate important agronomic soil 

properties in situ, such as soil moisture and organic carbon or matter (OC/OM). Although 

relatively new to production-scale agricultural equipment, VNIR spectroscopy for soil 

physical and chemical property estimation has been evaluated across a range of 

environments both in laboratory settings (Rienzi et al., 2014) and, to a lesser extent, 

through stand alone on-the-go sensing (Nawar and Mouazen, 2019). Using VNIR can be 

practical due the ability to integrate into necessary field operations, and potential to 

estimate multiple soil properties from a single sensing operation. Further, the systems are 

inexpensive when compared to the equipment they are integrated into (i.e., row-crop 

seeder). However, challenges from environmental factors such as ambient light, soil 

moisture, texture, and residue can all impact reflectance and result in low-quality in situ 

soil sensor data (Stenberg et al., 2010). Further, factors such as dust, soil smearing, and 

variable distance between the sensor and the soil can introduce measurement error 

(Sudduth and Hummel, 1993). These factors require careful sensor system design and 

engineering for reproducible data.    

In the late 1980s, several prototype VNIR on-the-go in situ spectrometers were 

developed (Shonk et al., 1991; Sudduth and Hummel, 1993). Evaluation of more recently 

developed systems has demonstrated the accuracy of OC estimations using on-the-go 

sensing (Christy, 2008; Bricklemyer and Brown, 2010; Nawar and Mouazen, 2019).  

Most of these studies used full-spectrum sensing, spectral pre-processing techniques, and 
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calibration procedures to develop spatial OC estimates. One example was research 

conducted by Nawar and Mouazen (2019) which aimed to evaluate how real-time 

compared to laboratory sensing of OC. Their study also evaluated several calibration 

methods that ranged from regional to field specific. The results showed that, in two of the 

three calibration techniques, real-time sensing predictions of OC were comparable to 

laboratory results. Additionally, including regional data in the calibration method resulted 

in an improved OC estimation (coefficient of determination (R2) = 0.74) when compared 

to the single field technique (R2 = 0.65). These results suggest that accuracies from real-

time sensing can be comparable to analyses performed in a laboratory setting. 

Additionally, they suggest that including regional information prior to sensing could 

improve real-time estimations of OC.  

A similar study was performed in central Kansas, USA across 8 fields within two 

counties, covering nearly 300 ha (Christy, 2008). This study utilized a shank-mounted 

spectrometer with a sensing range from 920 to 1718 nm attached to a tractor-mounted 

toolbar. Several cross-validation schemes were evaluated, and predictions of gravimetric 

water content and OM varied with each method. Performance was poorest when an entire 

field (“one-field-out”) was excluded from the training dataset. This method resulted in 

cross-validation R2 values of 0.40 and 0.67 for soil moisture and OM, respectively. The 

greatest accuracies were observed when the “leave-one-out” method was used, where a 

single sample was omitted at each training iteration. This method used the entire dataset 

for training and validation, where one sample was removed for prediction at each 

iteration. The cross-validation R2 values were 0.67 and 0.80 for soil moisture and OM, 

respectively. The “one-field-out” results would be most representative of real-time sensor 
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estimation with no field-specific calibration. Therefore, this research illustrates the 

limitations of real-time sensors that have the capability to guide on-the-go applications of 

seed or soil amendments, but do not have field-specific data for calibration.   

Reproducibility at a given location under varying environments should also be 

considered when assessing performance of proximal soil sensors. Soil moisture is a 

dynamic factor, and changes could influence repeatability of reflectance, and thus OC or 

OM estimations. Laboratory research has been conducted to evaluate the effect of soil 

moisture on the prediction of OC (Sudduth and Hummel, 1991; Nocita et al., 2012; 

Rienzi et al., 2014). In all studies, results showed the influence of soil moisture on 

reflectance of a given soil to be nonlinear. This factor makes accounting for moisture 

challenging. Therefore, different forms of spectral pre-processing were performed in the 

studies to account for the influence of moisture on reflectance, and subsequently OC 

prediction. Although specific moisture contents varied between studies, results were 

consistent in that OC prediction was not equal across moisture contents. For example, 

Rienzi et al. (2014) found prediction R2 to vary from 0.64 to 0.88 and RMSE to vary from 

4.02 to 7.13 g kg-1 among soil moisture contents. Generally, prediction accuracies 

decreased with increasing moisture content. These and other similar studies suggest that 

accounting for moisture when proximally sensing OC or OM on-the-go will be required 

for reproducible results.  

In addition to varying moistures, clay type and amount have also been found to 

influence reflectance (Viscarra Rossel et al., 2009). In general, studies have found the 

accuracy of OC prediction decreases with increasing sand content (Stenberg; 2010; 

Stenberg et al., 2010). This research found OC to be overestimated by VNIR in very 
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sandy soils due to the smaller surface area of the sand particles, which resulted in OM 

dominating the spectra. Interestingly, similar work found that clay content could have a 

positive or negative effect on OC prediction accuracy, dependent upon soil sample 

condition. When air-dry samples were used, clay content had a negative effect on 

accuracy, with the opposite occurring with rewetted samples (Stenberg et al., 2010).    

Collectively, previous research conducted utilizing VNIR reflectance suggests 

that the interaction of OM, clay, and moisture creates a challenging environment for 

consistent VNIR estimates of soil properties. How this challenge is met in commercially 

available proximal soil sensor systems is not well understood over diverse environments, 

but understanding is needed if these sensors are to be used with confidence in agronomic 

decision making. Therefore, research was conducted to evaluate OM estimations 

produced by two commercially available sensor systems, as well as the influence of soil 

moisture and texture on the repeatability of OM estimations by these systems.  

Materials and Methods 

 

Site Information 

 

Research was conducted in September and October of 2019 near Claysville, MO 

(lat. 38.6582, long. -92.2436). The site was located on an alluvial soil directly adjacent to 

the Missouri River. The soil was classified as a Peers silty clay loam (fine-silty, mixed, 

superactive, mesic Fluvaquentic Hapludolls). However, textural analysis (methodology 

below) showed portions of the field were classified as a sandy loam, suggesting the Peers 

silty clay loam did not encompass the entire site. The area used in the study consisted of 5 

ha and was chosen because it included a stark contrast in both soil texture and OM. 

Surface soil ranged in clay content from 47.2 to 326 g kg-1, and OM varied from 12.8 to 
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37.1 g kg-1. Historically corn (Zea mays L.), soybean (Glycine Max [L.]), and wheat 

(Triticum) had been grown on the field, with tillage occurring prior to corn planting and 

following corn harvest. In the spring of 2019, flooding inhibited planting of a grain crop 

and the land was fallowed. Prior to sensor data collection, the site was tilled two times at 

a depth of 100 to 150 mm with a 6 m wide disk.  

Data collection occurred at three dates in 2019 (Sep 17, 24, and Oct 1), hereafter 

referred to as date 1, 2, and 3, respectively. Prior to date 1, rainfall had not occurred in 

nine days, resulting in the driest of the three dates. On Sep 22 13 mm of precipitation was 

received, which resulted in the wettest conditions for the Sep 24 sensing event. 

Additional precipitation (14 mm) occurred on Sep 28 prior to the final sensing date. 

Collectively, average gravimetric water content values based upon soil samples collected 

at the site were 16.1, 19.5, and 19.2 g 100 g-1, respectively. Details about soil sample 

collection can be found below. Lastly, ambient air temperatures at the time of sensing 

were between 24 and 28 °C at all three dates.  

Proximal Sensing Data Collection 

 

Proximal soil sensor data were collected on all three dates with two commercially 

available sensor systems. The first was the Precision Planting SmartFirmer (Precision 

Planting, Tremont, IL, USA). The SmartFimer is designed to mount to a planter row-unit 

behind the seed tube, replacing traditional seed firming devices. For this study, they were 

instrumented on each row of a 4-row planter. All data from the SmartFirmer were 

recorded at 1 Hz with a Precision Planting Seedsense monitor. Data layers from the 

SmartFirmer consisted of Furrow Moisture (%), Temperature (°C), OM (%), Cleanness 

(%), and Uniformity (%). All OM values were converted from percent to mass basis (g 
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kg-1) for ease of comparison among soil sensors and laboratory data. These metrics, aside 

from Temperature, were derived from the optical portion of the sensor that measures 

reflectance from five wavelength bands in the VNIR region (468, 592, 858, 1198, and 

1468 nm). 

The two metrics used in our investigation were Furrow Moisture and OM. Furrow 

Moisture is defined by Precision Planting as the percent of water weight a corn seed is 

projected to imbibe over a three-day period (Precision Planting, 2018). As such, it is an 

index of water availability and is not equivalent to volumetric or gravimetric water 

content. Furrow Moisture was estimated by each SmartFirmer, but data were logged as an 

average across the four sensors. The manufacturer’s calibration relating OM to 

reflectance was based on OM data derived from the loss on ignition test (Nelson and 

Sommers, 1996; Precision Planting, 2018). SmartFirmer OM was also estimated by row, 

but values were derived through an interpolation method using data from other row units 

(Strnad, 2018). This method allowed for leveling of sensor output across the planter, each 

of which measured distinct values. These OM estimates were also averaged across rows 

in the export. Therefore, OM data used in the study were an average across the four rows 

of the interpolated measurements. 

The planter used in the study had MaxEmerge XP (Deere & Co., Moline, IL, 

USA) row units and an automated hydraulic downforce system (Precision Planting 

DeltaForce®). The hydraulic downforce system automatically adjusted row unit 

downforce or uplift to maintain a target gauge wheel load of 445 N. This improved the 

consistency of disk-opener operating depth (set to 50 mm) across the site. The lens of the 
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SmartFirmer pressed against the sidewall, approximately 6 mm above the bottom of the 

slot created by the disk-openers. 

The other sensing platform used in the study was the Veris iScan (Veris 

Technologies, Salina, KS, USA). This system is designed to mount on common toolbars, 

such as a row-crop planter or tillage implement. For our study, the iScan was attached to 

the middle of a pull-type toolbar, directly behind the centerline of the tractor. It included 

soil-engaging sensors that measured apparent soil electrical conductivity (ECa; 0.61 m), 

volumetric soil water content (through capacitance), temperature, and reflectance at two 

wavelength bands (660 and 940 nm). The moisture and optical sensing components of the 

iScan are positioned to press against the bottom of the slot created by the runner (Lund 

and Maxton, 2019). The operating depth of these sensors was set to 50 mm. Prior to all 

data collection events, the soil ECa, optical, and capacitance sensors were calibrated 

following procedures provided by Veris Technologies. Data were logged at 1 Hz to Veris 

Technologies Soil Viewer real-time mapping software.  

The metrics from the iScan used in this study consisted of soil ECa, moisture, 

visible reflectance (660 nm), infrared reflectance (940 nm), and OM. The OM estimates 

were derived from optical sensor reflectance, through a calibration process that included 

laboratory-measured samples and is further described below.  

The 4-row planter and toolbar-mounted iScan were both pulled by a John Deere 

6110R (Deere & Co., Moline, IL, USA) equipped with automated machine guidance. The 

steering was controlled through John Deere’s integrated automatic steering system 

(AutoTrac) and utilized StarFire 2 differential correction, providing ±100 mm pass-to-

pass accuracy. Data were all collected at an operating speed of 2.2 m s-1. Data collection 
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with the 4-row planter occurred first at each date, immediately followed by the iScan. At 

date 1, the transect spacing for the planter and the iScan were 3 and 6 m, respectively. At 

dates 2 and 3, a 6 m transect spacing was used for both systems. At date 2, the transects 

used for the automated guidance were shifted 100 mm north of the transect used on date 

1. The transects were shifted 100 mm south of the original transects on date 3. The tractor 

and toolbar-mounted iScan followed the same transect as the tractor and planter at all 

three dates, centered between rows 2 and 3, so that the iScan was not running in soil 

disturbed by the planter.   

Manual Sample Data Collection 

 

Soil samples were collected after the first sensing date (n=13) and were targeted 

based upon the OM maps created by the SmartFirmer. Areas of high, medium, and low 

OM were chosen targeted for the sampling locations. At each georeferenced location, six 

25 mm diameter soil cores were taken within 1 m of the location and split into 0 to 50 

and 50 to 150 mm depth increments, and then combined to represent the location. For 

OM analyses in this study, only data from the 0-50 mm depth were used to maintain 

consistency with the optical sensor operating depth. Soil samples were analyzed for soil 

physical properties and OC at the University of Missouri’s Soil Health and Assessment 

Center following established procedures (Nelson and Sommers, 1996). The OC estimates 

were developed through the loss on ignition test, and were multiplied by a constant of 

1.72 to convert to OM.  

Soil moisture samples were collected during or immediately following the sensing 

operation for all three dates. The first set of samples (n=13) were georeferenced and 

based upon SmartFirmer Furrow Moisture and iScan soil moisture. Subsequent samples 
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were taken at the same locations on dates 2 and 3. One soil sample was collected from 

each location at each date from 0 to 50 mm with a 50 mm inner diameter core. For 

gravimetric water content calculations, sample moist weights were recorded immediately 

after sampling and dry weights after drying for 48 hours at 105 °C.  

Sensor Data Pre-Processing, Calibration, and Analysis 

 

Data collected with the iScan were filtered to ensure adequate quality, where 

global field outliers were removed if data were greater than two standard deviations from 

the mean of the entire field. To determine OM, laboratory (loss on ignition) results from 

four soil sampling locations, selected based upon reflectance values from the two 

wavelength bands emitted by the iScan, were obtained and submitted to Veris 

Technologies, who developed the calibration of reflectance to OM. Areas ranging from 

high to low reflectance were chosen to capture the range in soil variability at the site. Due 

to consistencies in the spatial structure of reflectance over dates, the same four sample 

locations were used for all three dates.  

All planter sensor data from 20|20 Seedsense monitor that contained a downforce 

margin of <1 N were removed due to uncertainty of operating depth. The SmartFirmer 

system processes the reflectance data into a real-time estimated OM, and no further 

adjustments were performed. As previously mentioned, these OM estimates were 

interpolated values calculated from a combination of all four SmartFirmer sensors present 

on the planter.  

SmartFirmer and iScan data from all three dates were merged with laboratory 

measured data collected through manual sampling using ArcGIS (Esri, Redlands, CO, 

USA). The merged dataset consisted of the point (manually sampled) measurements and 
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all sensor data within a 4.5 m radius of the sample location. This resulted in a total of 3 to 

5 sensor data points, which were subsequently averaged and used in the statistical 

analysis. Linear regression models were examined using R Studio (RStudio Team, 2021) 

to evaluate the relationship of SmartFirmer or iScan metrics to results from laboratory 

measured soil samples. Independent variables were SmartFirmer or iScan OM. Likewise, 

the dependent variables were laboratory-measured OM. Regression models were 

considered significant at P ≤ 0.05 and were compared using R2 and RMSE.  

For an evaluation of sensor metric repeatability over the entire investigation area, 

both SmartFirmer and iScan point data were converted to a 6 m grid using Ag Leader’s 

Spatial Management Software (SMS; Ag Leader, Ames, IA). Inverse distance weighting 

was used due to the spatially dense nature of the dataset (Wilson et al., 2005). The 

maximum sampling distance used for interpolation was 9 m, and 0.6 was used as the 

distance or weight ratio. Data from both sensor systems at all three dates were merged to 

a common grid to allow for statistical analysis of changes in moisture and OM over dates. 

Collectively, these data allowed for a statistical analysis of spatial and temporal changes 

in moisture and OM for each system. Linear regression was used following the 

aforementioned procedures in R Studio, where the independent variable was SmartFirmer 

Furrow Moisture, iScan soil moisture, or laboratory measured OM, and the dependent 

variable was sensor-based OM or the coefficient of variation (CV) of sensor-based OM.  

Soil apparent electrical conductivity (ECa) has been utilized as a source for 

estimating within-field spatial variability of soil texture (Sudduth et al., 2005). Therefore, 

soil ECa from the Veris iScan was used to develop a soil clay content map of the study 

site using the laboratory measured samples (0-150 mm) in conjunction with soil ECa. 
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Similar to methodology presented above, all soil ECa data within 5 m of each sampling 

location were spatially merged using ArcGIS. Subsequently, a regression model was 

developed (using aforementioned procedures) where laboratory measured clay content 

was the dependent variable, and soil ECa was the independent variable. After the model 

was developed, the regression equation was applied to the entire field of ECa 

measurements so estimated clay content could be analyzed across the site.  

Results and Discussion 

 

Veris iSCAN 

 

Soil Texture 

 

Soil ECa showed strong spatial structure across the study site, where the highest 

ECa was observed in the northwest portion of the field, and lowest ECa observed in the 

southeast portion. A transitional zone of medium ECa existed in the center of the field, 

dissecting the site from northeast to southwest. Since a strong positive linear relationship 

was found between clay content and soil ECa at the soil sampling locations (R2 = 0.90), 

soil ECa could be meaningfully transformed to estimate clay content across the field (Fig. 

1). This soil ECa derived clay content map illustrated greater clay content on the northern 

and western-most portions of the field (>250 g kg-1). In contrast, the eastern and 

southern-most portions were lower in clay content (<100 g kg-1). This ability to predict 

soil texture was consistent with previous research estimating soil texture with soil ECa on 

alluvial soils in Missouri, USA (Kitchen et al., 1996).  

Soil Reflectance and Organic Matter 

 

Reflectance across the site at 660 nm (visible) averaged 162, 165, and 164 

decimal counts for dates 1, 2, and 3, respectively. Likewise, reflectance at 940 nm (IR) 



38 

 

averaged 439, 442, 435 decimal counts for dates 1, 2, and 3, respectively (Fig. 2). 

Interestingly, date 2 had the greatest mean reflectance at both wavelengths despite the 

highest moisture content. This may have been due to slight differences in sensor and soil 

engagement between the dates. Spatial variation in soil reflectance at both wavelength 

bands was clearly defined, with greater reflectance on the eastern portion, lower 

reflectance on the western portion, and a transitional area in the middle of the field (Fig. 

2). Further, the spatial structure and relative trends were consistent between all three 

sensing dates. In general, reflectance values were lower in areas with greater clay content. 

Although increasing sand content has been found to decrease reflectance, greater soil 

moisture was likely the driving factor that resulted in lower reflectance on the finer 

textured soil (Cierniewski and Kusnierek, 2010). The map illustrating the difference in 

reflectance between dates showed that the decrease in reflectance was greatest on the 

coarser textured soil from dates 1 to 2. This was likely due to water being adsorbed by the 

finer textured soil for those portions of the field following the rain event between sensing 

dates. Contrary, the coarser textured area of the field likely had more water present on 

soil particles which lowered the reflectivity (Twomey et al., 1986). Similar to dates 1 and 

2, reflectance also varied spatially between dates 2 and 3. The inverse occurred when 

compared to date 1 to 2, with reflectance increasing on the eastern portion of the field. 

The increase may have been caused by slightly drier soil conditions at date 3 than date 2. 

However, the cause of the decrease in reflectance on the western portion of the field is 

unknown.   

Mean OM varied little between the three sensing dates and averaged 24.0 g kg-1 

across sensing dates. The OM maps created were based upon reflectance, and therefore 
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followed the same spatial structure (Fig. 2; Fig. 3). Areas of greater reflectance (east 

portion) were estimated by the linear model developed by Veris Technologies to have a 

lower OM when compared to the western portion. This relationship was observed across 

all three sensing dates. Additionally, areas of high OM corresponded with areas of high 

estimated soil moisture content (Fig. 3). Together, these layers help illustrate the spatial 

trends between soil properties across the field. Areas of greater clay content (Fig. 1) also 

exhibited greater OM and soil moisture across all three dates. Also, a positive and linear 

response between sensor-based OM and laboratory-measured OM were observed at each 

of the dates (Fig 4; Table 1). The R2 values were very high (≥0.95) and RMSE were low 

(≤2.41 g kg-1). These accuracies were as good or better than other similar published 

laboratory or field studies (Christy, 2008; Kweon and Maxton, 2013; Rienzi et al., 2013; 

Nawar and Mouazen 2019). This was attributed to the inclusion of calibration samples, 

strong contrast in OM at the site, and the relatively small study area. Collectively, these 

results illustrate that the sensor system could consistently and accurately estimate OM at 

this highly-variable site, despite changes in average reflectance between sensing dates. 

Further, these results suggest that a local calibration for each sensing date resulted in 

repeatable spatial representation of soil OM at varying soil moisture levels.  

Precision Planting SmartFirmer  

 

Soil Organic Matter 

 

Over the three sampling dates, some inconsistencies were observed in OM 

estimates. At the first date, sensor OM averaged 26.1 g kg-1 across the study site, ranging 

from around 20 to 36 g kg-1. Additionally, clear spatial variation in sensor-estimated OM 

was observed within the field (Fig. 5). Estimates were greater on the northwestern portion 
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when compared to the central and eastern portions. In general, OM followed similar 

spatial structure to clay content, where the greatest OM coincided with areas of greater 

clay content (Fig 1 and 5). At the second date, average sensor OM across the site 

increased slightly when compared to date 1 (27.1 g kg-1), and the range was smaller 

(22.5-34.5 g kg-1). Similar to date 1, OM estimates were greatest on the western portion 

of the field. However, the lowest OM estimates (~23 g kg-1) were observed throughout 

the center of the field. Further, sensor OM increased on the eastern portion where 

previous estimates at date 1 were lowest. At the last sensing date, mean OM across the 

site was 26.2 g kg-1. Average sensor OM was similar to the first date, although the range 

in OM was smaller (23-33 g kg-1). Therefore, areas of very low and very high OM were 

not as low or as high as date 1. Spatial patterns on the western portion were similar to 

dates 1 and 2. However, OM estimates were low in both the central and eastern portions 

of the field.  

Across dates, results showed a positive relationship of SmartFirmer OM to 

laboratory measured OM (Table 2). This illustrated that the sensor system could, at this 

site, detect general trends of high and low OM (R2=0.52). However, the slope of the of 

the regression equation was not close to 1 (0.23), and the intercept was 20.8 g kg-1. This 

response suggested that areas of low OM were consistently overestimated by the system, 

while areas of greater OM were underestimated. Similar linear responses have also been 

reported by similar research (Wijewardane and Morgan, 2016; Rienzi et al., 2013; 

Bricklemyer and Brown , 2010). The overall accuracy of the model was slightly poorer 

when compared to data published by Christy et al. (2008), who simulated real-time NIR-

based OC estimates through their “one-field-out” validation procedure. Their R2 and 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Wijewardane%2C+N+K
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RMSE values were 0.67 and 5.2 g kg-1, respectively. However, their work highlighted 

that this method was the least accurate when compared to models that included field-

specific calibration.  

Among dates, responses were similar at the first and third sensing date, where a 

positive linear response between laboratory measured and sensor-estimated OM was 

observed (Fig 6; Table 2). At the second date, however, no response was observed and 

the average OM across the site was 27.8 g kg-1. Collectively, OM estimations were 

consistent across the three dates in areas of the field with OM >20 g kg-1. However, 

estimations in areas of lower OM were more variable. These areas with the greatest 

variation, or greatest CV, in OM coincided with the coarser textured portion of the field 

(Fig. 7), and can be visualized through the CV of OM among dates (Fig. 7; Fig. 8). Thus, 

it was hypothesized that the coarser texture alone or in combination with soil moisture 

influenced the OM estimation by the SmartFirmer. Research has shown that OM 

prediction error generally increases as clay content decreases (Stenberg et al., 2002).  

Soil Moisture and Texture Influence on OM 

 

SmartFirmer Furrow Moisture averaged 44.2, 57.8, and 54.0% across the site at 

dates 1, 2, and 3, respectively. These values follow similar trends to the aforementioned 

gravimetric water content collected at the three dates. In general, Furrow Moisture was 

greater on the west half of the field when compared to the east (Fig. 5). Although average 

Furrow Moisture at the site increased from date 1 to date 2, the increase (~12-20%) was 

more dramatic on the coarser textured (eastern) portion of the field.  On the finer textured 

soil (western portion), Furrow Moisture increase was <12%. This suggests that the 

rainfall event that occurred between the two sensing dates had a greater influence on 
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Furrow Moisture estimation in the coarser textured than the finer textured soil. From date 

2 to 3, Furrow Moisture decreases were greatest in the north-central portion of the field. 

The spatial structure was less defined, indicating that the moisture variations were not as 

variable between dates 2 and 3.  

Across the study site, changes in OM were related to changes in Furrow Moisture 

between dates 1 and 2, as well as dates 2 and 3 (Fig. 9). This suggests that soil moisture 

may have influenced the SmartFirmer estimation of OM. From sensing date 2 to date 3, 

the range of the change in OM was lower than date 1 to 2. Additionally, OM decreased as 

Furrow Moisture increased across the study site. Differing responses among soil textures 

were observed from date 1 to 2, where OM increased as Furrow Moisture increased in 

areas of lower clay content. Conversely, the opposite occurred in the finer textured soil, 

and the response was more similar to date 2 to 3. These results from date 1 to 2 suggest 

that both soil texture and soil moisture affected the OM estimation by the SmartFirmer. 

The direct cause of this is unknown, but could have been due to the difference between 

the wetting and drying effects and/or sensor-to-soil engagement between sensing dates.   

Conclusions 

 

Research conducted with two commercial sensor systems showed that spatial 

variability in soil OM could be captured by both at our study site. However, this study 

also demonstrated some of the challenges associated with the reproducibility of OM 

estimates based upon real-time VNIR reflectance sensing. Specifically, the results 

showed that inconsistencies could occur due to temporal variations in soil moisture and 

spatial variability in soil texture. Therefore, our results showed that real-time estimations 

using a single “global” calibration were subject to variability and not as consistent as 
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systems employing a field-specific calibration that includes laboratory-measured results. 

This highlights an example tradeoff between superior accuracy and the ability to use 

sensor data for real-time control. Practitioners should consider the accuracy required to 

make useful input management decisions. Further research is also needed to determine 

whether accuracy could be improved with calibration information (e.g., soil survey map) 

to make region or field-specific estimations in real-time.  
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Tables 

 

 Table 1. Linear regression parameters describing Veris iScan soil organic matter 

(OM) response to laboratory measured OM at all three sensing dates at the study site 

near Claysville, MO.  

 

Intercept Slope R2 RMSE (g kg-1) 

Date 1 (17 Sep 2019) 1.58 0.88 0.95 2.41 

Date 2 (24 Sep 2019) 1.33 0.90 0.97 1.98 

Date 3 (1 Oct 2019) 0.73 0.97 0.97 1.60 

All Dates 1.21 0.92 0.96 2.02 

 
 

Table 2. Linear regression parameters describing SmartFirmer soil organic matter 

(OM) response to laboratory measured OM at all three sensing dates at the study site 

near Claysville, MO.  

 

Intercept Slope R2† RMSE (g kg-1) 

Date 1 (17 Sep 2019) 17.5 0.34 0.82 5.82 

Date 2 (24 Sep 2019) 27.8 - - - 

Date 3 (1 Oct 2019) 20.1 0.25 0.81 6.52 

All Dates 20.8 0.23 0.52 6.90 

†R2 values are not shown for nonsignificant regression models. 
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Figures 

 
Fig. 1. Modeled clay content based upon soil apparent electrical conductivity and 

laboratory-measured soil samples at the study site in Claysville, MO. 

 

 

Fig. 2. Near-Infrared Reflectance (left; NIR) from the Veris iScan at all sensing dates, 

and NIR change from Dates 1 to 2, and Dates 2 to 3 at the study site in Claysville, MO.  
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Fig. 3. Soil moisture (left) and soil organic matter (OM) estimates from the Veris iScan 

on sensing dates 1, 2, and 3 at the study site in Claysville, MO.  
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Fig.4. Veris iScan soil organic matter (OM) in relation to laboratory measured OM at the 

study site in Claysville, MO.   
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Fig.5. Precision Planting SmartFirmer Furrow Moisture (left) and soil organic matter 

(OM; right) at all three sensing dates at the study site in Claysville, MO.  

 

 

Fig.6. Precision Planting SmartFirmer soil organic matter (OM) in relation to laboratory 

measured OM at the study site in Claysville, MO.  
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Fig. 7. SmartFirmer organic matter (OM) across-date coefficient of variation (CV) in 

relation to laboratory-measured OM (left) and clay content (right) at the study site in 

Claysville, MO.  

 

 

Fig.8. Precision Planting SmartFirmer soil organic matter (OM) coefficient of variation 

(CV) across the three sensing dates at the study site in Claysville, MO.  

 



52 

 

 

Fig. 9. Precision Planting SmartFirmer soil organic matter change (OM) in relation to the 

change in SmartFirmer Furrow Moisture at the study site near Claysville, MO.  
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CHAPTER 3: IMPROVING SOIL ORGANIC MATTER ESTIMATION WITH 

PLANTER-BASED OPTICAL REFLECTANCE SENSING APPROACHES  

 

Abstract 

 

 Proximal soil sensing technologies have the ability to densely quantify soil 

organic matter (OM) variability utilizing visible and near infrared (VNIR) reflectance 

technology. However, issues such as soil texture, soil water content, and sensor-to-soil 

engagement can all affect OM prediction accuracy. Therefore, research was conducted to 

determine OM prediction accuracy across selected soils and soil volumetric water 

contents (VWC) with (i) a commercially-available, planter-mounted sensor and (ii) 

machine learning techniques applied to multiple combinations of soil reflectance bands 

within the VNIR spectrum. A total of 90 soils collected across several counties in 

Missouri and Illinois, USA were used in the modeling procedures for the study. Data 

were collected at three selected VWC with the Precision Planting SmartFirmer and a 

benchtop spectrometer. Spectral pre-processing and machine learning techniques were 

utilized for prediction of OM in all modeling approaches. Results found that SmartFirmer 

OM predictions were affected by soil VWC with OM predictions decreasing with 

increasing VWC. Additionally, accuracies degraded with increasing VWC (RMSE = 

10.2-13.8 g kg-1). Findings from three modeling approaches showed that a continuous 

spectrum (i.e., 400-1500 nm) greatly improved performance (RMSE = 5.25 g kg-1) over 

the targeted wavebands used by the SmartFirmer. Furthermore, including the entire 

VNIR region (400-2500 nm) resulted in the best predictive capability (RMSE = 1.42 g 

kg-1). However, because a full-spectrum approach may not be practical due to economic 

and computational expense, utilizing continuous reflectance from 400 to 1500 nm in 

conjunction with spectral pre-processing and machine learning may be an acceptable 
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method for estimating OM. These findings contribute to the development and 

improvement of commercially available proximal soil sensors that may be used to 

monitor soil carbon stocks, assess changes in soil health, or for other precision agriculture 

applications. 

Introduction 

 

Recent technology has allowed for the integration of soil sensors utilizing diffuse 

reflectance spectroscopy in the visible and near-infrared reflectance (VNIR) region into 

commercially available equipment. These sensor platforms can predict important 

agronomic soil properties that are critical for row crop production in situ, such as soil 

water and organic carbon or matter (OC/OM). In some scenarios, the predictions can be 

available in real-time, allowing for the potential to vary crop inputs and/or make on-the-

go adjustments to row-crop production equipment (i.e., seeding depth). In order to use 

VNIR for real-time control or to estimate OC stocks, it is important for practitioners to 

recognize the capabilities and the limitations of VNIR sensing technology. Extensive 

laboratory research has illustrated the capabilities of VNIR sensing to estimate soil 

properties (i.e., soil water and OM) across a range of soils and environments (Brown et 

al., 2006; Rienzi et al., 2014; Zhou et al., 2022), illustrating strong opportunity for VNIR 

proximal sensing platforms. However, sensor accuracy has been found to decrease in 

circumstances where field-moist soils were evaluated, as opposed to dry and ground soil 

(Minasny et al., 2010; Bricklemeyer and Brown 2010). This has been largely attributed to 

the complex response of soil reflectance to varying VWC and interactions with other soil 

properties that affect spectral features (Lee et al., 2009; Rienzi et al., 2014). Additionally, 



55 

 

sensitivity to moisture has been found to vary within the VNIR region, with greater 

sensitivity found in longer wavelengths (>1400 nm; Lobell and Asner, 2002).  

Several approaches have been evaluated to increase OM prediction accuracy for 

soils varying in soil water contents. Generally, adjustments have been made through one 

or more reflectance preprocessing techniques, such as standard normal variate (SNV), 

first or second derivative, detrending, and/or mean centering (Minasny et al., 2011; Cho 

et al., 2017; Zhou et al., 2022). Some of these techniques, such as the first derivative, 

require full spectrum sensing. However, current commercially-available, implement-

mounted systems, such as Precision Planting’s SmartFirmer (Precision Planting, 

Tremont, IL) or the Veris iScan (Veris Technologies, Salina, KS), target specific 

wavelength bands (e.g., 660 (±20) and 940 (±30) nm). The discrete waveband approach 

subsequently limits the application of some preprocessing techniques, such as derivatives, 

that have been found to aid in accounting for soil water. Thus, some platforms employing 

discrete waveband sensing require laboratory-measured OM from each field to develop a 

field-specific calibration (Lund and Maxton, 2019). This approach has been found 

accurate and repeatable across sensing dates where soil moisture varies (Chapter 1). 

However, it requires manual input, and does not allow the real-time predictions needed 

for variable-rate control. In contrast, commercial systems that predicts OM on-the-go 

have been found to be limited in accuracy and repeatability (Chapter 1).  

Several prototype on-the-go diffuse reflectance spectroscopy sensors utilizing 

large portions of the VNIR or NIR spectral regions have been assessed for predicting OC, 

the primary constituent of OM (Christy, 2008, Bricklemeyer and Brown, 2010; Nawar 

and Mouazen, 2019). Generally, these studies demonstrated acceptable accuracy, with 
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some attaining RMSE near 5.0 g OC kg-1. However, these results were generally 

achieved within a relatively small geography and limited number of fields (<10). Further, 

accuracy has been found to degrade if local (e.g., field-specific) OC information is not 

included in the modeling approach. Additional challenges exist with on-the-go 

measurements, from factors such as dust, soil smearing, light illumination angle, and 

variable distance between the sensor and the soil that can all introduce measurement error 

(Sudduth and Hummel, 1993; Mouazen et al., 2009). Collectively, these studies illustrate 

the complexity that would be required of systems deploying sensors for real-time OC/OM 

predictions.  

In many analyses, VNIR-based OM predictions have been derived from statistical 

methods such as principal component regression (PCR) or partial least squares regression 

(PLSR) techniques (Sudduth and Hummel, 1991; Brown et al., 2006). However, recent 

advancements in statistical and machine learning have allowed for new approaches, such 

as decision trees, support vector machine regression (SVMR), and artificial neural 

networks. Several researchers have found similar or improved performance from the 

advanced techniques compared to traditional methodology on dry, ground soil (Viscarra 

Rossel and Behrens, 2010; Mouazen et al., 2010). Results reported by Morellos et al. 

(2016) on field-moist soils determined that Cubist and SVMR approaches outperformed 

PCR and PLSR modelling in one field in Premslin, Germany. Although these past studies 

are encouraging, more research is needed to understand how these modeling techniques 

could be applied to on-the-go sensors across varying soils and soil water contents. 

Together, previous research illustrates the complexity and promising utility of 

OM predictions based on diffuse reflectance spectroscopy. However, investigation is still 
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needed to determine the optimum methodology for real-time sensing across a wide 

geography and varying soil water content. Therefore, research was conducted to 

determine OM prediction accuracy across varying soils and soil volumetric water 

contents with (i) a commercially-available, planter-mounted sensor and (ii) machine 

learning techniques applied to multiple combinations of soil reflectance within the VNIR 

spectrum. 

Materials and Methods 

 

Soil Information and Sample Preparation 

 

Surface soils were obtained for the research project from the University of 

Missouri Soil Health Assessment Center (SHAC; n = 75). The soils ranged in parent 

material and were obtained in 2020 from throughout 17 counties within Missouri (MO), 

USA (Fig. 1). At each sampling site, three soil cores were taken to a 7.6 cm depth with a 

7.6 cm i.d. tube. Soil from all three cores was composited into a single sample and 

submitted to the SHAC. They were then air-dried, ground to pass through a 2 mm sieve, 

and analyzed for texture and OC at the SHAC following established procedures (Burt, 

2011; Nelson and Sommers, 1996). Combustion analyses was used to measure OC, and 

estimates were multiplied by the van Bemmelen factor of 1.72 to convert to OM 

(Cambardella et al. 2001). Analyses showed OM ranged from 14 to 60 g kg-1, and clay 

content ranged from 98 to 376 g kg-1.  

An additional set of surface soils from Illinois (IL), USA were used as a testing 

dataset (n=15). These were archived, air-dried soils that were collected in the mid-1980s. 

They were originally selected to represent Illinois’ agricultural soils and varied greatly in 

OM and clay content. Detailed analyses of the soil samples can be found in Sudduth and 
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Hummel (1991). In order to ensure consistency among datasets, these soils were re-

analyzed for OC using the aforementioned procedures, and these results were used in the 

study. Similar to the MO set, OC estimates were multiplied by 1.72 to convert to OM. 

Analyses showed OM ranged from 5 to 59 g kg-1, and clay content ranged from 36 to 315 

g kg-1. 

Bulk density (BD) was measured on each soil after it had been ground and air-

dried. To determine BD, soils were weighed in a container with a known volume (V = 

344 cm3). Established procedures were then used to estimate field capacity and wilting 

point of each soil utilizing the measured BD (Saxton and Rawls, 2006). Three target 

volumetric water content (VWC) values were used in the study. The first was that of the 

original air-dried soil (VWC 1). The second target (VWC 2) was the soil-specific field 

capacity minus 0.15 cm3 cm-3, which was near but not exactly equal to the wilting point 

plus 0.05 cm3 cm-3 (Fig. 2). The third target was soil-specific field capacity minus 0.05 

cm3 cm-3 (VWC 3). These VWC levels were chosen to best represent a realistic range in 

field conditions a proximal soil sensor might encounter.  

Data Collection and Processing: SmartFirmer 

 

Data were collected from all soils (MO and IL) with Precision Planting’s 

SmartFirmer at the three target VWC levels. Soils were placed in a section of steel 

channel that was 5 cm deep, 10 cm wide, and 61 cm long. The SmartFirmer was placed 

on the soil surface and lightly pressed against the soil during data collection. The sensor 

was engaged with the soil for 30 seconds to allow for time-series smoothing to occur 

within the system, and soils were scanned three times at each VWC. After the three scans 

were completed for a given soil, the steel channel was cleaned using compressed air.  
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The output from the SmartFirmer was logged at 1 Hz to the Precision Planting 

20|20 display. These data consisted of OM, cation exchange capacity, furrow moisture, 

clean furrow, furrow uniformity, and temperature. The metrics, aside from temperature, 

were derived from the optical portion of the SmartFirmer that measures reflectance from 

five wavelength bands, centered at 468, 592, 858, 1198, and 1468 nm. Only the OM 

metric was used in the present study, and all OM values were converted from percent to 

mass basis (g kg-1) for ease of comparison among SmartFirmer OM and laboratory data. 

The manufacturer’s calibration relating OM to reflectance was based on OM data derived 

from the loss on ignition test (Nelson and Sommers, 1996; Precision Planting, 2018). The 

OM predictions from each of the three scans were averaged from the SmartFirmer. The 

last three logged observations from each of the three 30 second scans were included in 

the average (n = 9 observations per soil VWC).   

Data Collection and Processing: Bench-top Spectrometer  

 

Similar to the SmartFirmer, data were collected from the MO and IL soils at all 

three VWC with a FieldSpec Pro FR spectrometer (Analytical Spectral Devices (ASD) 

Inc., Boulder, CO). Spectral data were collected between 350 and 2500 nm at a 1 nm 

spacing. The ASD “mug lamp” high intensity light source was used to provide 

illumination. Measurements were collected through a 33 mm diameter glass-bottomed 

dish. At each VWC, three spectra were collected from each soil (rotating the dish 90° 

clockwise between each replication) and were subsequently averaged for analyses. Data 

were transformed to reflectance using a Spectralon (Labsphere, Inc., North Sutton, N.H.) 

white reference measurement repeated every fifteen scans (5 soil samples). Reflectance 

data from 350 to 399 nm were removed from the ASD dataset due to low signal to noise 
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ratio. Subsequently, the remainder of the spectra were smoothed using a 10 nm average to 

reduce the dimensionality of data for statistical modeling.  

Modeling Procedures for Organic Matter Prediction 

 

SmartFirmer 

 

Linear regression models were examined using R Studio (RStudio Team, 2022) to 

evaluate the 1:1 relationship of SmartFirmer OM to laboratory measured OM at each of 

the three VWC levels. An additional regression model explored SmartFirmer OM 

prediction error as a function of laboratory-measured OM content. Regression models 

were considered significant at P ≤ 0.05 and were compared using R2 and RMSE. 

Commercial Wavelength Bands (Targeted Bands) 

 

Two modeling approaches similar to those used in commercially-available sensor 

systems were evaluated for estimating OM from soil reflectance in the VNIR region. The 

first approach evaluated data from the bands used by the SmartFirmer. Reflectance values 

for these wavelength bands were obtained from the 10 nm averaged data collected with 

the ASD at VWC 2 and VWC 3. These two VWC were chosen to best represent a range 

in water contents likely to be encountered in a field setting by a proximal soil sensor. To 

improve prediction capability, reflectance was converted to absorbance (eq. 1). 

Subsequently, the standard normal variate transformation (SNV) was applied to the 

absorbance spectra at the previously mentioned wavelengths (Pei et al., 2019). The 

transformed data were used as explanatory variables in the modeling of laboratory-

measured OM.  

                                      𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 = 𝑙𝑜𝑔 (
1

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒
)                                      (1) 
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Commercial-Range Spectra  

 

A second modeling strategy utilized reflectance data collected with the ASD from 

400 to 1500 nm. This wavelength range was selected to encompass the full range of 

spectra used by commercially-available sensors (e.g., Precision Planting SmartFirmer, 

Veris iScan). This range is common in commercial sensors due to the affordability of the 

sensor systems. Extending into longer wavebands (>1500 nm) increases cost of the 

optical fibers required for instrumentation, and may not be practical for production 

agriculture equipment. The first derivative of reflectance was used as a preprocessing 

technique and was calculated from the 10-nm averaged spectra using the ‘deriv’ function 

within the ‘stats’ package in R Studio. This transformation technique has previously been 

found to be useful when evaluating soils at varying soil water contents (Rienzi et al., 

2014; Zhou et al., 2022). 

Full VNIR Spectra 

 

The final approach utilized the first derivative of the full VNIR reflectance 

spectrum (400 to 2500 nm) for predicting OM. The only difference between the 

Commercial-Range Spectra and Full VNIR Spectra modeling approaches was the 

inclusion of spectral data from 1510 to 2500 nm. This full-spectrum analysis served as a 

benchmark of the maximum prediction capability of the dataset. Further, this analysis 

was included in order to provide insight into whether full spectra, rather than targeted 

wavelengths or partial spectra, could improve predictive ability.  

Machine Learning Approach 

 

A machine learning approach was utilized in all modeling strategies. Several 

machine learning algorithms were evaluated (e.g., ridge regression, random forest), but 
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the support vector machine regression (SVMR) algorithm was chosen due to consistent 

performance in all modeling approaches. The SVMR was fit in all scenarios using the 

‘caret’ package in R Statistical Software (R Core Team, 2022). The SVM is a kernel-

based method that was originally developed for binary classification and was later 

extended to multivariate regression (Drucker et al., 1997). The SVMR is based on the 

computation of linear regression in a multidimensional feature space. In the present 

study, the ‘Linear’ and ‘Gaussian Radial Basis Function’ kernel functions were 

evaluated. For our dataset, the ‘Linear’ kernel function best fit the data. Optimization of 

model parameters [cost (C) and epsilon(ε)] for each SVMR model were accomplished 

through a tenfold cross-validation procedure. The optimal C range was determined 

between 1-10, and the optimal ε was determined within the range of 0.01-0.1. The final, 

tuned models (optimal C and ε) were selected based upon the lowest RMSE observed 

from the optimization procedure. 

The MO dataset was used for model fitting, with the data normalized and 

randomly split into training (70%) and testing (30%) datasets in R Studio. Once models 

were developed, they were tested on the 30% of data withheld from the MO dataset, as 

well as the entire IL dataset. Thus, the models were tested on data from two geographic 

areas, one from within the region where the models were trained (MO) and one from a 

separate geography (IL). Each was evaluated through the R2 and the RMSE of the models 

fit on the training datasets.  

Variable importance was evaluated for the Commercial-Range Spectra and Full-

VNIR Spectra models to determine useful wavebands for prediction. Because all data 

were normalized, the coefficients at each waveband represented relative significance in 
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the model. Additionally, the sign of the coefficients represented a positive or negative 

relationship between predictor and response variables. The absolute value of each 

coefficient was used for determining waveband significance.  

Results and Discussion 

 

Precision Planting SmartFirmer 

 

SmartFirmer OM predictions on the MO soils averaged 32, 28, and 27 g kg-1 at 

VWC 1, 2, and 3, respectively. This suggests that overall, for a given soil, an increase in 

VWC decreased SmartFirmer predictions of OM. Across all VWC, a positive relationship 

between SmartFirmer OM predictions and laboratory-measured OM was observed (R2 = 

0.15 to 23; Fig. 3; Table 1). Therefore, the sensor system was able to detect general 

trends in OM in the dataset. Additionally, the slopes of the regression equations were not 

significantly different among VWCs, indicating no influence of VWC on the relative 

response of SmartFirmer OM to laboratory-measured OM (Table 1).  

In MO soils, SmartFirmer prediction error increased with VWC. Specifically, 

RMSE increased by 35% as VWC increased from air-dried to VWC 3 (Table 1). These 

findings align with field research that found no correlation between SmartFirmer OM and 

laboratory-measured OM at the wettest of three sensing dates (Conway et al., 2022). That 

study also suggested that soil texture may influence the repeatability of SmartFirmer OM, 

especially in sandy soils. In contrast, the present study found no relationship between the 

prediction error and clay content (data not shown), suggesting instead that differences 

could be due to other factors such as sensor-to-soil engagement in a field setting that the 

present study did not capture. A relationship was observed, however, between 

SmartFirmer prediction error and laboratory-measured OM (Fig. 4). More specifically, as 
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laboratory-measured OM decreased below 25 g kg-1, SmartFirmer prediction error 

increased. In general, OM was underpredicted by the SmartFirmer, with greater 

underprediction occurring at higher levels of OM. In contrast, OM levels were 

overpredicted at OM < 25 g kg-1. Overall, within the range of the present study (~10-60 g 

kg-1), the largest error occurred at the highest levels of OM.  

The average SmartFirmer OM among VWC was similar for the IL soils, 

averaging 34 g kg-1. Further, a positive relationship between SmartFirmer OM and 

laboratory-measured OM was also observed across VWC (R2 = 0.52), with no significant 

differences between the slope or intercept of the regression equations (Table 1; Fig 3). 

Interestingly, the SmartFirmer OM prediction was more accurate (lower RMSE and 

greater R2) with the IL than the MO dataset, despite the similar ranges in OM. This could 

be due to the geography of the soils used to develop the SmartFirmer OM algorithm. If 

those soils were more similar to the IL soils than the MO soils, then the SmartFirmer 

might be expected to perform better on the IL soils compared with the MO soils. 

Research has found that including local or field-specific calibration data improves VNIR-

based OM predictions, which is likely due to other soil characteristics (e.g., mineralogy) 

influencing spectral features (Christy, 2008; Lee et al., 2009; Nawar and Mouazen, 

2019). 

Similar to the MO soils, a negative relationship was observed between 

SmartFirmer prediction error and laboratory-measured OM in the IL soils (Fig. 4). 

However, the response was more centered around zero, with about an equal amount of 

over- and under-prediction. These results also suggest that the SmartFirmer may be better 
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calibrated to the IL soils, with the error deviating equally in positive and negative 

directions.  

Spectrometer-Based Data Analyses 

 

Commercial Sensor Wavebands  

 

The primary goal of this analysis was to compare the SmartFirmer OM 

predictions with models developed using the same 5 targeted wavebands, but with the 

application of advanced modelling techniques and regionally-based calibration models. 

When utilizing the SNV-transformed reflectance from the five targeted wavebands used 

by the SmartFirmer, the SVMR prediction capability was mediocre (Table 2; Fig. 5). A 

positive correlation was observed in the 1 to 1 comparison in both MO datasets, with no 

clear influence of VWC on OM prediction. In each scenario, lower laboratory-measured 

OM values (<38 g kg-1) were overpredicted while higher values were underpredicted. The 

error, however, was larger in the testing than the training dataset. Further, when the 

model was tested on the IL soils, no relationship was observed between laboratory-

measured and predicted OM. Collectively, the testing results show poor predictive 

capability for soils outside of the training dataset.  

The RMSE values observed in the Commercial Sensor Waveband (i.e., targeted 

waveband) approach were only slightly lower than those observed with the SmartFirmer 

data. The main difference between these two approaches was the calibration of the 

targeted wavebands. The Commercial Sensor Waveband set was calibrated to a subset of 

the regional data, whereas the SmartFirmer results relied on the internal calibration 

algorithm. These results suggest that a targeted waveband approach could be slightly 

improved if the model was exposed to soils from throughout the region where the sensor 
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was deployed (i.e., soil-specific algorithm). Additionally, findings demonstrated that 

when only using five wavebands within the VNIR region, little improvement in 

prediction performance was achieved even with advanced modelling techniques. In 

contrast, other researchers have successfully predicted OC through a discrete waveband 

approach (Henderson et al, 1992; Lee et al., 2009). However, the discrete bands chosen in 

those studies were generally at longer wavelengths than those utilized by the 

SmartFirmer. Therefore, a discrete approach may be improved with the addition of data 

from longer wavelengths. 

Commercial-Range Spectra  

 

The Commercial-Range Spectra approach, utilizing the 400-1500 nm range 

commonly found in commercial sensors, showed a strong relationship between predicted 

and laboratory-measured OM in the training and testing MO datasets (Fig. 6). 

Additionally, the R2 and RMSE of the cross-validated training and testing MO datasets 

were very similar (Table 2), suggesting the model was robust and not overfit. No 

distinction was observed between the OM predictions at the varying VWC (Fig. 6). This 

suggests that the approach was able to compensate for the bimodal distribution of VWC 

present in the dataset. Similar results at varying VWC have been observed, where 

gravimetric water content, ranging from 150 to 250 g kg-1, did not greatly affect OC 

predictions (Rienzi et al., 2014). Similar to our approach, their study also used the first 

derivative of reflectance as a preprocessing technique.  

When the model was applied to the IL testing set, deviation from the 1 to 1 

relationship and the RMSE increased relative to the MO testing set (Table 2; Fig 6). 

However, considering that the IL soils came from a separate geography and were not 
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represented in the model training dataset, these results could be considered successful. 

Accuracies (i.e., RMSE) in the testing datasets were within similar ranges to studies 

evaluating OC across a range of water contents within a cross-validation dataset (Nocita 

et al., 2011; Chaudhary et al., 2012; Rienzi et al., 2014). Additionally, these previous 

studies utilized reflectance at longer wavelength bands (e.g., 1500-2500 nm) than used in 

this analysis.  

The results from the testing datasets improved considerably (higher R2 and lower 

RMSE) in this analysis over the Commercial Sensor Waveband approach using only 

targeted wavebands. This suggests that information additional to that in the five targeted 

bands added significant predictive capability to the model. Peak wavelength bands 

similar to those used in commercial systems were influential in prediction (Fig. 7). For 

example, 450, 990, 1230, and 1450 nm were within the top ten of 110 most important 

variables for prediction in the Commercial Spectra approach (Fig. 7). These are at or near 

wavelength bands used in commercial systems (e.g., SmartFirmer, iScan) and were 

important for OC prediction in previous studies (Vohland et al., 2014; Ribeiro et al., 

2021). The top five wavelengths for prediction were (in order from higher to lower 

importance) 1160, 1230, 610, 990, and 1450 nm. Wavelengths 1160 and 1450 nm are 

associated with carbon-oxygen bonds, such as carbonyl groups and wavelengths 990 and 

1230 nm are associated with carbon-hydrogen bonds common to organic compounds. 

(Workman and Weyer, 2008; Rienzi et al, 2014). Collectively, the wavebands found 

useful for prediction in the present study, as well as those used by commercial sensors, 

have all been shown to relate to OC or be significant in predicting OC.  
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However, results from this study suggest that the targeted bands alone are not 

sufficient for robust prediction of OM, as illustrated by the Commercial Waveband 

analysis. To investigate targeted wavelength analysis further, the top five wavelengths 

selected in the Commercial-Range Spectra model were evaluated. Little improvement 

was observed over the Commercial Waveband approach (data not shown). This was 

attributed to consistencies between wavelengths used in the analysis and those utilized by 

the SmartFirmer (e.g., 1450 nm).   

Full VNIR Spectra 

 

The Full VNIR Spectra (400 to 2500 nm) modeling approach was evaluated as a 

benchmark to determine the maximum prediction capability present in the spectral 

dataset. Similar to the commercial approaches, VWC 2 and 3 were used in the model to 

represent field conditions. The results from the SVMR found excellent prediction 

capability for the MO training and testing datasets (Table 2; Fig. 8). The RMSE values 

for both datasets were much lower than those observed with the SmartFirmer or the 

Commercial Waveband and Commercial-Range Spectra approaches. For example, in the 

MO testing dataset, the RMSE was less than half of the Commercial-Range Spectra 

model RMSE (Table 2). This high level of performance has also been observed in other 

studies utilizing full-spectrum VNIR sensing and machine learning approaches (Brown et 

al., 2006; Cho et al., 2017; Liu et al., 2020). Interestingly, accuracy declined on the IL 

testing set, where RMSE increased to levels similar to the Commercial-Range Spectra 

model (~8 g kg-1; Table 2). This suggests that the model may have been overfit on the 

MO training dataset, and therefore was not robust enough to predict a similar range of 

OM on soils from a different geography.  
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Some similarities in peak waveband significance were found between the 

Commercial-Range and Full VNIR Spectra analyses (Fig 7; Fig 9). For example, 

wavelengths 610, 1160, and 1450 nm were within the top 10 variables for prediction in 

both modeling scenarios. This supports the utility of collecting spectra from throughout 

the Full VNIR Spectra range used in the analysis for maximum predictive capability.  

For example, wavelengths 450, 1160, and 1450 were all within the top 5 most useful 

variables for the Full VNIR Spectra model within the aforementioned range. This 

suggests that despite the spectral range used in the modeling approach, significant 

spectral features within 400 to 1500 nm remained consistent.  

These results suggest that the implementation of full-spectrum sensing could 

result in more accurate predictions in a globally-calibrated, on-the-go OM sensing 

system. However, the improved prediction capability comes, at least in part, due to 

information obtained from longer wavelengths (Fig. 9). These longer wavebands (e.g., 

1600 and 2200 nm) have also been found to be highly significant in other studies 

(Stenberg et al., 2010; Cho et al., 2017; Zhou et al., 2022) and organic bonds are known 

to produce spectral features at these wavebands (e.g., Rienzi et al., 2014). However, the 

cost and complexity of sensing would increase when compared to systems including only 

shorter wavelength bands (< 1500 nm).  

Conclusions 

 

 Results from this study showed that the commercial sensor system (SmartFirmer) 

detected general trends in OM from low to high across a wide range of soils from MO 

and IL. Depending on the application, this performance level may be sufficient, for 

example for determining relative differences in soil productivity or soil health. However, 
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OM predictions and accuracy were influenced by VWC. Thus, practitioners must realize 

that predictions could be temporally variable. If more consistent and accurate predictions 

are required (e.g., for carbon stock monitoring), additional spectral or soil information 

may be required. This could include full or partial spectra, local calibration samples, 

and/or publicly available soil information to improve OM prediction. 

Results were not greatly improved when the five SmartFirmer wavebands were 

used to train and evaluate a model (Commercial Sensor Waveband analysis) on soils 

within a given region (i.e., MO.) Like the SmartFirmer algorithm, the model could detect 

relative differences between low and high OM. However, accuracy was mediocre. One 

notable benefit of the Commercial Sensor Waveband approach was that predicted OM 

did not vary with VWC.  

Results from the Commercial-Range Spectra approach, which implemented 

wavelengths from 400 to 1500 nm, spectral pre-processing, and machine learning 

resulted in a significant increase in prediction capability. These results were considered 

robust due to the performance on both testing sets (MO and IL) and indicate that this 

approach likely would deliver the best combination of accuracy and practicality. 

Although this type of sensor system is more complex and costly than a discrete waveband 

approach, it is cheaper than a full spectrum system and provides a balance between 

performance and cost. Further research will be needed to determine how this approach 

performs under real world, in-field sensing conditions.  
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Tables 

 

Table 1. Coefficient of determination (R2) and root mean squared error (RMSE) from 

soil organic matter (OM) prediction by the Precision Planting SmartFirmer on soils 

from Missouri (MO) and Illinois (IL) at three differing volumetric water contents 

(VWC). Regression relationships (slopes and intercepts) were not significantly 

different among VWC sets for IL soils, so only results for the aggregate relationship 

are presented. 

 MO Soils IL Soils 

Soil VWC  R2 RMSE (g kg-1) R2 RMSE (g kg-1) 

VWC 1 0.19 10.22 -  -  

VWC 2 0.15 12.42 - - 

VWC 3 0.23 13.80 - - 

All VWC 0.17 12.25 0.52 11.2 

  

 

 

 

Table 2. Prediction results for the three modeling approaches for the Missouri (MO) 

training, MO testing, and Illinois (IL) testing datasets. 

 MO Train Set MO Test Set IL Test Set 

Model R2 

RMSE 

(g kg-1) R2 

RMSE 

(g kg-1) R2 

RMSE 

(g kg-1) 

Commercial Sensor Wavebands 
0.41 7.41 

0.2

5 
9.23 

N/

A 
17.2 

Commercial-Range Spectra 

(400-1500 nm) 
0.76 4.95 

0.6

9 
5.25 

0.6

4 
7.92 

Full-Spectra (400-2500 nm) 
0.98 1.34 

0.9

8 
1.42 

0.6

6 
7.76 
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Figures 

 
Fig. 1. Map of counties within Missouri and Illinois, USA that were the source of soil 

samples used in the study.  
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Fig 2. Target volumetric water content (VWC) for the two simulated moist soil 

conditions used in the study (VWC 2 and VWC 3) from Missouri (MO) and Illinois (IL), 

USA. Soils were sorted in sequence from smallest to largest VWC 3. For reference, best-

fit curves are also shown for estimated field capacity and estimated permanent wilting 

point.   
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Fig. 3. SmartFirmer soil organic matter (OM) predictions across varying soil volumetric 

water content (VWC) in relation to laboratory-measured OM on soils obtained from 

Missouri (MO; left) and Illinois (IL; right). Regression relationships (slopes and 

intercepts) were not significantly different among VWC sets for IL soils. Therefore, only 

the aggregate relationship is presented.  

 

 

Fig. 4. SmartFirmer prediction error averaged across varying soil volumetric water 

content (VWC) in relation to laboratory-measured OM on soils obtained from Missouri 

(MO; left) and Illinois (IL; right).  
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Fig 5. Predicted soil organic matter (OM) in relation to laboratory-measured OM for the 

Commercial Sensor Waveband approach at varying target soil volumetric water content 

(VWC) as shown in Fig 2. Results are shown for the Missouri (MO) training (left), MO 

testing (center), and Illinois (IL) testing (right) datasets.  

 

 

Fig 6. Predicted soil organic matter (OM) in relation to laboratory-measured OM for the 

Commercial-Range Spectra approach at varying target soil volumetric water content 

(VWC) as shown in Fig 2. Results are shown for the Missouri (MO) training (left), MO 

testing (center), and Illinois (IL) testing (right) datasets.  
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Fig. 7. Variable importance for prediction of organic matter as determined by support 

vector machine regression implemented in the Commercial-Range Spectra model, which 

utilized data from 400 to 1500 nm. SmartFirmer and iScan wavebands are indicated at the 

bottom. 

 

 

 

Fig 8. Predicted soil organic matter (OM) in relation to laboratory-measured OM for the 

Full VNIR Spectra approach at varying target soil volumetric water content (VWC) as 

shown in Fig 2. Results are shown for the Missouri (MO) training (left), MO testing 

(center), and Illinois (IL) testing (right) datasets. 
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Fig. 9. Variable importance for prediction of organic matter as determined by support 

vector machine regression implemented in the Full VNIR Spectra model, which utilized 

data from 400 to 2500 nm.    
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CHAPTER 4: PREDICTING CORN EMERGENCE RATE WITH 

TOPOGRAPHIC FEATURES AND ON-THE-GO SENSING TECHNOLOGY 

 

Abstract 

 

Real-time sensor output during row-crop planting operations has the potential to 

improve control of multiple row-unit functions on-the-go. However, research is lacking 

on how best to maximize the utility of these new sensor systems across varying 

landscapes. Therefore, an investigation was conducted to determine if planter and other 

proximal soil sensor data, in combination with topographic features, could predict within-

field variation in corn (Zea mays L.) emergence rate (ER) across multiple planting depth 

treatments. Research was conducted in Missouri, USA on a highly variable claypan soil 

field in 2020. Corn was planted with a four-row planter equipped with Precision Planting 

DeltaForce and SmartFirmer systems on each row unit. Four field-length strips of seed 

planting depth (3.8, 5.1, 6.4, and 7.6 cm) replicated three times were treatments to induce 

emergence variation. Machine learning approaches were applied to determine the 

predictive capability of planter sensors, soil apparent electrical conductivity (ECa), and 

topographic features (slope, flow direction, and topographic wetness index) in estimating 

corn ER. Field-scale results from the planting depth treatments showed that planting 

depth had a marginal influence on corn stands, with stand densities decreasing slightly at 

6.4 and 7.6 cm. Additionally, a suite of predictors could effectively estimate ER across 

the study site, with the highest accuracies observed at the 7.6 cm planting depth. Planter 

sensor variables representing estimates of inherent soil variability (i.e., OM and texture) 

were most useful in the ER prediction model, and were superior to estimates of furrow 

moisture and seed-to-soil contact. These results illustrate the ability to predict ER at a 
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field scale, and can be used as a framework for further research and development of 

planter sensor systems targeting uniform corn emergence.  

Introduction 

 

Research has found that corn seedling emergence is highly dependent upon seed-

to-soil contact, soil moisture, aeration, and soil temperature (Alessi and Power, 1971; 

Gupta et al., 1988, Elmore et al., 2014). Studies have found optimum corn germination to 

occur at soil temperatures greater than 20 °C, at field capacity, and with good seed-to-soil 

contact (Schneider and Gupta, 1985). Generally, operators of row-crop seeding 

equipment target a planting depth, downforce, row-closing, and residue management 

strategy that optimizes these parameters. Across landscapes, however, spatial variability 

in seed zone soil properties often exists due to variations in soil texture, crop residues, 

and landscape attributes such as slope and aspect (Sudduth et al., 2005). In Missouri, 

USA (MO), many productive alluvial soils contain large within-field variations of 

texture, ranging from soils with high sand to high clay content (Miller and Krusekopf, 

1918). Similarly, claypan soils in the same region possess landscape attributes and topsoil 

depth variations that result in complex hydrologic features (Jamison et al., 1968; Sadler et 

al., 2015).  

Agronomic research has evaluated the impact of seeding depth on corn 

emergence, emergence rate, and yield across landscapes. Studies have aimed to determine 

whether the optimum planting depth should vary with soil type. Results from these 

studies are mixed, but have collectively illustrated that the optimal corn planting depth 

can vary from 2.5 to 7.6 cm based upon soil texture, moisture, temperature, and other 

factors (Stewart et al., 2021; Coronel et al., 2018; Thomison et al., 2013; Cox and 
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Cherney, 2015; Thomason et al., 2008). In general, however, research agrees that 

planting at depths less than 3.8 cm can negatively affect corn emergence due to poor 

seed-to-soil contact and vulnerability of the seed to moisture and temperature flux. 

Additionally, poor nodal root development at shallow planting depths can result in yield 

loss and lodging susceptibility (Elmore and Abendroth, 2007). Further research is needed 

to determine whether within-field soil moisture or estimations of seed-to-soil contact can 

give insight to growers to determine the optimum seeding depth for uniform emergence. 

In an effort to improve seeding management across variable landscapes, precision 

agriculture research has explored varying seeding depths within a given field based upon 

changes in soil moisture (René-Laforest et al., 2015). Soil moisture estimated through a 

capacitance sensor was used as the guiding parameter because of the influence of soil 

moisture on germination, as well as the access to on-the-go soil moisture sensors. They 

found varying planting depth within a field improved corn root development and yield, a 

result attributed to planting shallower in relatively wet conditions and deeper in relatively 

dry conditions. Further research is needed to apply these results to more environments in 

the U.S. Midwest. In addition to sensor technologies, topographic features can give 

insight into soil water availability, movement, and accumulation across landscapes 

(Pachepsky et al., 2001). High-resolution elevation is now available through digital 

elevation models, as well as from machine data collected during field operations. An 

example often used is combining these landscape features into a calculated topographic 

wetness index that then can be related to crop performance (Kyveryga et al., 2011). 

Many studies have applied machine learning to investigate agronomic questions 

(Gonzalez-Sanchez et al., 2014, Ransom et al., 2019; Qin et al., 2018). However, 
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machine learning approaches have not been widely applied for estimating corn 

emergence parameters. Due to recent technology that allows for dense quantification of 

soil variability by planter sensor systems, as well as through data collected with 

unmanned aerial vehicle (UAV) imagery, high-resolution field-scale datasets can now be 

collected, which subsequently allow for the application of machine learning techniques to 

help answer agronomic questions related to crop emergence performance. 

Commercially-available planting technology now exists that allows for varying 

seed depth on-the-go during row-crop planting. However, emergence performance 

information is needed to show how seed zone soil sensors can be best utilized to guide 

row-unit automation. Therefore, this study was conducted to determine if soil sensor data 

and topographic features could be used in a machine learning approach to predict corn 

emergence rate (ER).  

Materials and Methods 

 

Study Site and Treatment Layout 

 

 Research was conducted in 2020 in central Missouri (38°56’45.7” N 92°07’57.4” 

W) on a 14-ha production agriculture field. The western portion (2.6 ha) of the field was 

used for this study. The site was located within the major land resource area 113, also 

known as the Central Claypan Area. The soil across the site was classified as a Mexico 

silt loam (fine, smectitic, mesic Vertic Epiaqualf). The field was chosen due to the 

inherent landscape variability that represented a typical claypan soil toposequence 

(summit, backslope, and footslope). Specifically, near the center of the field the slope 

was minimal, representing a more stable soil landscape (summit; Fig. 1). Moving N and S 

from the center of the field, the slope increased and was more representative of a 
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backslope position. The N and S facing slopes also supplied aspect variability, which can 

be visualized through flow direction (Fig. 1c). Lastly, slope decreased and areas of 

upslope accumulation of soil and water existed at the northernmost and southernmost 

portions of the field (footslope; Fig. 1b).  

Mechanical variability was induced at the study site through three replications of 

four planting depth treatments (3.8, 5.1, 6.4, and 7.6 cm). All depth treatments were 8 

rows wide (two planter widths) and were imposed across the entire transect length. In 

order to determine depth, closing wheels were tied up for trench inspection, and depth 

was measured from the top of the seed to the soil surface. The soil surface was 

determined by laying a flat stake perpendicular to the measuring tape, which stretched 

from the top of the seed to the soil surface. Subsequently, specific “T” handle settings 

were determined for each target planting depth. The target seeding rate for the study was 

75,820 seeds ha-1, and the corn hybrid used was Pioneer 0589 (Corteva Agriscience, 

Wilmington, DE, USA). The hybrid had an emergence rating of “7” on Pioneer’s scale 1 

to 9 scale, where a rating of 9 equated to the highest emergence rating. Corn was no-till 

planted into soybean stubble on 20 April 2020 with a four-row planter (0.76 m rows).   

Seeding Equipment  

 

The planter used in the study was equipped with MaxEmerge XP row units 

(Deere & Co., Moline, IL, USA). The row units did not include a residue management 

system (i.e., row cleaners, no-till coulters). The planter was attached to the three-point 

hitch of a John Deere 6110R tractor. The planter was ground-driven, and equipped with 

Precision Planting finger-pickup seed meters, an active hydraulic downforce system 

(DeltaForce®), and SmartFirmers (Precision Planting, LLC., Tremont, IL, USA) on each 
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row unit. No additional aftermarket components were present on the planter, and OEM 

rubber closing wheels were used.   

The 6110R was equipped with automated machine guidance, where the steering 

was controlled through Deere’s integrated automatic steering system (AutoTrac). This 

system utilized the StarFire 2 differential correction, which provided ±10 cm pass-to-pass 

accuracy. The average speed of the tractor during the seeding operation was 1.9 m s-1. 

The “A-B” method of machine guidance was used, resulting in straight transects with a 

heading of 184 or 4°.  

Planter Sensor Systems 

 

Data from all Precision Planting sensor systems were logged to the Precision 

Planting 20|20 display (Generation 3) at 1 Hz. The GNSS position was derived from the 

StarFire 3000 receiver, allowing georeferencing of all data. The two systems providing 

data for analyses were DeltaForce and SmartFirmer. Data from the DeltaForce system 

consisted of ground contact (%), gauge wheel load (downforce; N), and downforce 

margin (N). Downforce margin is described as the minimum gauge wheel load (GWL) 

observed over a three second period. The hydraulic downforce system automatically 

adjusted row unit downforce or uplift to maintain a target gauge wheel load of 445 N. 

This technology improved the consistency of disk-opener operating depth at each of the 

targeted planting depth treatments.  

The Precision Planting SmartFirmer used in the study is designed to mount to a 

planter row-unit behind the seed tube. This sensor replaces traditional seed firming 

devices. For this study, they were installed on each row of a 4-row planter. The lens of 

the SmartFirmer pressed against the sidewall, approximately 0.6 cm above the bottom of 
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the slot created by the disk-openers. Data layers from the SmartFirmer consisted of by-

row furrow moisture (%), temperature (°C), OM (%), CEC (cmol 100 kg-1), clean furrow 

(%), and uniform furrow (%). These metrics, aside from temperature, were derived from 

the optical portion of the sensor that measures reflectance from five wavelengths in the 

visible and near infrared (VNIR) region (468, 592, 858, 1198, and 1468 nm). The furrow 

moisture metric is defined by Precision Planting as the percent of water weight a corn 

seed is projected to imbibe over a three-day period (Precision Planting, 2018). As such, it 

is an index of water availability and is not equivalent to volumetric or gravimetric soil 

water content. The manufacturer’s calibration relating OM to reflectance was based on 

OM data derived from the loss on ignition test (Nelson and Sommers, 1996; Precision 

Planting, 2018). SmartFirmer OM values were exported by-row from the 20|20, but row-

level estimates were derived through an interpolation method using data from other row 

units (Strnad, 2018). 

Emergence Monitoring 

 

After planting and before corn emergence, emergence monitoring sites were 

identified and flagged in areas two rows wide by 6.0 m long. Two locations were chosen 

for each planting depth treatment within each replication (n = 24). In order to capture the 

maximum amount of variability in landscape attributes and soil moisture at the site, one 

area of high and one area of low furrow moisture were chosen within each planting depth 

treatment (8-rows) for the monitoring sites. These were selected based on the as-applied 

planter data obtained from the 20|20 display that was connected to an iPad (Apple, 

Cupertino, CA, USA) with the Climate Fieldview Cab application (The Climate 

Corporation, San Francisco, CA, USA) for data visualization. The locations were 



88 

 

georeferenced and marked by flagging using a handheld Trimble Geo 7x (Trimble, Inc., 

Sunnyvale, CA, USA). Throughout the emergence period, plants were marked with a 

unique colored plastic garden stake to differentiate between days of emergence (DOE). 

This staking occurred throughout the emergence period (12 to 22 days after planting 

(DAP)). These data were subsequently used to train and validate the unmanned aerial 

vehicle (UAV) estimated stand density and DOE.  

UAV Data Collection 

 

 UAV image data were collected on 22 May 2020, which was 32 DAP and 20 d 

after the first emergence. Plants were between vegetative growth stages V2 and V4 at the 

time of data collection. The aerial images were collected from a Phantom 4 Advanced 

UAV imaging system (DJI, Shenzhen, Guangdong, China) with an onboard RGB camera. 

Images were taken sequentially for the entire study site at 0.5 frames per second, at a 

flight height of 10 m, and a speed of 2 m s-1. More in-depth detail of the UAV data 

collection has been provided in Vong et al. (2022).  

Stand Density and Day of Emergence  

 

 All emergence parameters were estimated based upon a deep learning model 

(ResNet18) trained with UAV imagery as detailed in Vong et al. (2022). Output from 

these models was used to create field-scale maps of stand density (plants m-1) and days to 

imaging from emergence (d). Estimates of stand density and days to imaging from 

emergence estimates were considered successful with R2 of >0.95. 

 The days to imaging from emergence parameter was converted to days from 

planting, then to growing degree days (GDD; °C) to account for temperature variations 

throughout the emergence period (Fig. 2). This was performed by summing the GDD 
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accumulated from planting to DOE. Others have shown that relating emergence to GDD 

is more helpful than chronological days when assessing agronomics of corn germination 

and emergence (Nemergut et al., 2021; Gupta et al., 1988). 

Daily precipitation and temperature prior to and through the emergence period 

were obtained from a University of Missouri weather station, located at Bradford 

Research and Extension center approximately 9 km from the field 

(http://agebb.missouri.edu/weather). Growing degree days from planting through the 

emergence period were calculated based on temperature data collected from the 

aforementioned weather station. The GDD for each day were computed using the 

following equation:  

                                            𝐺𝐷𝐷 =
𝑇𝑚𝑖𝑛+𝑇𝑚𝑎𝑥

2
− 10 °C                                     (1) 

where GDD = growing degree days (°C); Tmin = daily minimum temperature (°C); Tmax 

= daily maximum temperature (°C)            

Subsequently, the GDD from planting to DOE were summed to determine the required 

GDD for emergence (GDDE).   

Emergence Rate and Uniformity 

 

 Field-scale emergence rate relative to planting depth (ER) was derived using 

UAV-estimated GDDE. The ER was calculated by subtracting the observed GDDE from 

the mean GDDE at each planting depth. Therefore, positive values represent a delayed 

ER relative to the mean for a given planting depth. Likewise, negative values represent a 

quicker-than-average ER. These ER values were calculated for each 1 m length of each 

row across the entire site.    

Soil Sensing and Terrain Features 

 

http://agebb.missouri.edu/weather
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 Soil apparent electrical conductivity (ECa) from 0 to 0.3 and 0 to 0.9 m depths 

were measured across the entire site prior to corn planting using a Veris 3100 sensing 

system (Veris Technologies, Salina, KS, USA). In this study, only the 0 to 0.3 m data 

were used. The previously mentioned 6110R tractor and guidance system was used to 

pull the 3100, and data were collected at speeds of 2.2 m s-1 on a 9 m transect spacing. 

 Soil terrain features were calculated from the elevation data collected from the 

StarFire 3000 receiver and logged to the 20|20 display during planting. The elevation data 

were interpolated using inverse distance weighting (IDW) to a 6.1 m grid for analysis in 

Ag Leader’s Spatial Management Software (SMS; Ag Leader Technology, Ames, IA, 

USA). Two metrics were subsequently calculated, and included slope and flow direction. 

These features were derived from the Spatial Analysis Toolbox in ArcGIS Pro (ESRI, 

Redlands, CA, USA).   

Statistical Analysis  

 

 In order to understand the general effects of planting depth across the site, an 

analysis of variance (ANOVA) test (α = 0.05) was performed to evaluate differences in 

ER at the different planting depths. When ANOVA results were found significant, the 

Tukey’s Honest Significant Difference test was performed to determine differences 

between depths. These statistical analyses were all performed in RStudio using the “stats” 

package.  

 A machine learning approach was applied in all modeling strategies that utilized 

the field-scale data. The predictor variables for modeling the response variable of ER 

included all planter sensor metrics listed above (furrow moisture, OM, downforce 

margin, etc.), as well as soil ECa, slope, and flow direction.  
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 Predictor and response variables were at varying spatial resolutions and needed to 

be joined for data analysis. Planter sensor data layers recorded to the 20|20 display were 

first merged with the gridded ECa and topographic features using the ‘join and relates’ 

feature in ArcGIS Pro. The join retained the row-level resolution of the data from the 

20|20, which consisted of a grid cell that was one row wide (0.76 m) by 1 sec of travel 

(~2 m). Subsequently, the newly merged layer, consisting of all predictor variables, was 

joined to the to the UAV data layer containing ER. The ER data were in a vector format 

at a 1-m spacing down each row and were overlaid over the one-row wide grid of 

predictor variables. The spatially joined data typically resulted in two observations of ER 

data per one cell of joined predictor variables.   

Multiple machine learning algorithms were evaluated (e.g., ridge regression, 

support vector machine regression, artificial neural network), but the random forest 

algorithm (RF) was chosen due to consistent performance and the ability for model 

interpretation. The RF models were fit and interpreted with the ‘randomForest’, 

‘randomForestExplainer’, and ‘ICEbox’ packages in R Statistical Software (R Core 

Team, 2022). The RF algorithm is a supervised ensemble learning technique that can be 

used for classification or regression problems. It uses a bagging technique, where the data 

are split and regression trees are created in parallel (Leo et al., 2021). Within each tree, 

the RF randomly selects features to create a prediction model. In our scenarios, the 

number of variables evaluated at each split in the decision tree (mtry) was set to 3. The 

final (bagged) model, in our scenario, was an average of 500 separate regression trees. 

These trees were developed on 80% of the data and tested on the remaining 20%. The 

Pearson correlation coefficient (r), coefficient of determination (R2) and root mean 
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squared error (RMSE) were calculated to interpret performance of the model in the 

training and testing datasets.  

 Predictor significance was analyzed using the minimal tree depth distribution 

from the ‘randomForestExplainer’ package in R. These values represent the average 

depth within the ensemble of decision trees that each variable was used to partition the 

dataset. Therefore, smaller values correlated to more significant variables, as they were 

used more often at shallow tree depths. In addition to the minimal depth distribution, the 

individual conditional expectations (ICE) algorithm was applied to covariates of interest, 

and subsequent plots were created using the ‘ICEbox’ package in R (Goldstein et al., 

2015). This feature allowed for the interpretation of how each variable was used in 

prediction by the RF model. Specifically, the ICE plots displayed the estimated 

conditional expectation curves, each of which reflected the predicted response as a 

function of the covariate of interest, conditional on the distribution of additional 

covariates. Because the curve intercepts varied, model predictions were “centered” in 

ICE plots for improved interpretation among the varying intercepts. In the centering 

process, each curve was “pinched” at the minimum observation of the given predictor 

variable of interest. In each plot, 10 percent of the entire training dataset was used for 

visualization.   

Results and Discussion 

 

 On the day of planting adequate soil moisture was observed for seed germination 

among the planting depths. This was attributed to a timely planting date and the 1.4 cm of 

precipitation that occurred in the 10 days prior to planting. On April 20, approximately 25 

percent of the corn had been planted in MO according to the National Agricultural 
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Statistics Service (USDA, 2020). Approximately 48-hr after planting, 0.7 cm of 

precipitation was received at the study field (Fig. 2). This precipitation event was 

followed by an additional 5.4 cm of rainfall between 4 and 7 DAP. Other precipitation 

events also occurred at 9 and 15 DAP. Due to precipitation and moderate temperatures 

throughout the emergence period, no significant surface soil crusting was observed.  

 During planting, soil temperatures were measured between 13 and 18 °C by the 

SmartFirmer. Planting started in the morning, and soil temperatures warmed throughout 

the operation. For the first seven DAP, daily maximum air temperatures were typically 

near 20 °C, and minimum temperatures were between 3 and 10 °C. Temperatures 

moderated starting at about 15 DAP, with minimum temperatures nearing 0 °C. At this 

point, most of the corn plants had emerged from shallow depths, with some plants still 

emerging at the deeper planting depths. The decrease in temperature increased the total 

number of days for the deeper depths to emerge.  

Spatial Variability in SmartFirmer Metrics and Soil Apparent Electrical 

Conductivity 

 

 Data collected with the SmartFirmers showed strong spatial structure in several of 

the metrics, such as OM and furrow moisture (Fig. 3). In general, OM estimates were 

greatest where the slope was also the greatest (Fig. 1; Fig. 3). The correlation of higher 

OM to areas of greater slope and erosion aligns with findings from data collected from 

other similar soil types in the region (Conway et al., 2019). Spatial variability in furrow 

moisture was observed in the study field, with the highest estimates observed in the 

northern, central, and southern portions of the field. The largest area of high furrow 

moisture was observed in the middle of the field, coinciding with high elevation and low 

slope. In the north portion, high values coincided with areas with of high ECa (Fig 3). 
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Some visible N-S striping aligning with the planting depth treatments was apparent in the 

furrow moisture maps, where deeper planting depths coincided with greater furrow 

moisture (Fig. 4). Similarly, clear differences in clean furrow and furrow uniformity 

values were observed between planting depths. In general, both clean furrow and furrow 

uniformity decreased with increasing planting depth. The response of these metrics was 

attributed to larger amounts of residue present in the furrow at the shallow planting 

depths.  

 Soil ECa showed similar spatial structure to furrow moisture. In most cases, high 

ECa coincided with areas of high furrow moisture (Fig. 3). This was not surprising, as 

ECa has been found to correlate to soil texture and water content (Corwin and Lesch, 

2003; Sudduth et al., 2005). The two layers did deviate however, in the southwest corner, 

where a high furrow moisture was observed but a low soil ECa. The deviations could 

have been caused by differences in the sensing depth of the systems. In some portions of 

the field, the ECa estimates did not align with previous studies that have found ECa to 

increase in areas of high propensity of erosion (Kitchen et al., 2005). In our study, areas 

with the highest slope (south central) corresponded to lower ECa values. The cause of this 

phenomena was unknown, but could have been caused by the influence of soil water 

content and texture on ECa.  

Stand Density and GDDE 

 

 The mean number of plants observed at the monitoring sites did not differ by 

planting depth (mean = 64 plants or 69,200 plants ha-1). Thus, stand densities were 91% 

of the applied seeding rate. This emergence rate was considered high for no-tillage 

conditions (Drury et al., 1999), and was attributed in part to adequate soil moisture, 
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temperature, and the technology present on the planter (i.e., hydraulic downforce). 

Contrary to the monitoring sites, the UAV-estimated stand density showed a slight 

decrease at the 6.4 and 7.6 cm seeding depths. When compared to the 3.8 cm depth the 

decrease was 1,300 and 2,400 plants ha-1 for the 6.4 and 7.6 cm depths, respectively. 

These results suggest that at our study site, seeding at depths greater than 5.1 slightly 

decreased corn stand densities. However, the effects were considered minimal and did not 

have a significant impact on corn yield (data not shown).  

 Visual inspection of the GDDE map (Fig. 5) of the study site showed clear 

distinctions between planting depths (Fig. 5). Specifically, the results found GDDE to 

average 60, 62, 64, and 65 °C for the 3.8, 5.1, 64, and 7.6 cm planting depths, 

respectively (Fig. 6). Thus, more GDD were generally required for deeper planting 

depths to emerge. This response was similar to results found by Stewart et al. (2021) and 

Nemergut et al. (2021). At our site, these results support the observation of adequate soil 

moisture for germination within all the planting depths. For example, no delay in 

emergence was observed with seeds planted at shallow planting depth. Although average 

GDDE was delayed with depth, some overlap still existed among planting depths (Fig. 5). 

This suggests that some seed zone soil variability of factors such as surface residue or 

soil moisture also affected DOE. 

Emergence Rate  

 

 The clear effect of planting depth that was observed in GDDE was not as 

prevalent in the ER (Fig. 6). This was expected, as the ER calculation was performed to 

mask the effect of planting depth for analysis across the site. Additionally, the ER maps 

also aid in visualizing spatial variability across the site. For example, the southern portion 
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of the field had generally smaller ER than the central and northern portions, a feature that 

is not clear in the map of GDDE. Additionally, a cluster of high ER was observed in the 

north-central and north-western portions of the field, which coincided with areas of high 

furrow moisture, OM, and ECa. This zone was also north-facing and at a low-lying 

position in the landscape (Fig 1, Fig. 3). These results do not align with those presented 

by Stewart et al. (2021) on a similar soil type, who found more rapid emergence at 

footslope positions (higher soil moisture environment). The difference may have been 

caused by drier and warmer condition observations at planting in the years evaluated in 

their study. Collectively, these studies highlight the complex dynamic of soil, weather, 

and landscape effects on corn ER of a given soil type.  

 Additional mechanical variability was also observed through N-S “striping” of ER 

(Fig. 6). However, the striping did not align directly with row-level data collected by the 

planter sensor systems, suggesting that prior field operations were likely the cause. 

Throughout the field’s history, field operations have typically occurred N-S. Because of 

this, and because the field has been in no-tillage, these effects were likely caused by the 

influence of historical field traffic and residue distribution. These operations potentially 

caused variability in compaction and residue distribution across the field.  

Field-scale Results  

 

The field-scale modeling of ER was performed to evaluate the impact of soil, 

machine, and landscape across the study site. The results from the ER model developed 

across planting depths showed positive relationships between predicted and UAV-

estimated ER in the testing datasets (Table 1; Fig 7). At all depths, results from the 

testing datasets were similar (RMSE = 1.25to 1.38°C). This suggests that despite 
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differences in planter-based metrics, such as clean furrow, the random forest algorithm 

was able to decipher between areas of smaller (quicker) and larger (longer) ER at each 

planting depth.   

Variable Significance 

 

Not surprisingly, the most important variables for prediction varied among 

planting depth (Fig. 8). This was attributed to differences in seed zone properties at each 

depth, which influenced sensor metrics (e.g., clean furrow; Fig 8). Despite the variation, 

several variables were consistently useful in the models. At each planting depth, flow 

direction was one of the top four predictors. This was likely due to the N-S aspect of the 

field. The response of ER to aspect as discussed above is noted, where clusters of smaller 

ER were observed on the southern portion and higher ER observed on the northern 

portion of the field. In addition to flow direction, slope, OM and, soil ECa were also 

consistently top variables for prediction. This was likely due to these metrics capturing 

inherent soil spatial variation at the site, and can be observed in Figure 3.  

Interestingly, metrics such as clean furrow (indication of seed-to-soil contact) or 

furrow moisture were useful at some depths, but were not typically the most important 

variables for prediction. This indicates that furrow moisture was likely adequate to 

initiate germination at all planting depths. Additionally, although more residue was 

present in the furrow at the shallow planting depths, it did not have a large impact on ER 

when compared to terrain features and other soil sensor data (e.g., SmartFimer OM and 

ECa). Collectively, the results suggest that inherent soil variability associated with 

landscape variation was the driving factor for ER. These results are promising, because 

many of these inherent variables could be estimated prior to planting, allowing for a 
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depth, residue management, or GWL prescription prior to the actual planting operation. 

Subsequently, these prescriptions could then be “fine-tuned” by real-time sensing of seed 

zone soil properties.  

Variable Use in Random Forest Models  

Temporally Variable Predictors 

 

The ICE plots allowed for an interpretation of how specific variables were used 

by the model. Three planter sensor-based metrics were assessed (furrow moisture, clean 

furrow, downforce margin; Fig. 9). Furrow moisture was evaluated due to the known 

impact of soil moisture on germination, and because commercially available equipment 

controls planting depth based upon furrow moisture (e.g., Precision Planting 

SmartDepth). Clean furrow was evaluated because it was a proxy for seed-to-soil contact, 

another important factor for seed germination. Additionally, potential exists to guide 

residue management in real-time with this or a similar estimate of furrow residue. Lastly, 

downforce margin was assessed because in our study, downforce margin was the most 

useful metric from the DeltaForce system for estimation of ER. Further, a significant 

percentage of planters are equipped with active or static downforce systems that can 

sense GWL, allowing for high resolution quantification of variability in soil resistance.  

Results found that, at all depths except 7.6 cm, estimates of emergence rate 

increased with furrow moisture. An example of the 3.8 and 7.6 cm depth can be found in 

Fig. 9. The lack of clear response observed at 7.6 cm was attributed to smaller amounts of 

variability in furrow moisture present at the 7.6 cm depth. These results suggest that 

targeting a lower furrow moisture generally decreased ER at our study site. These results 

would likely invert under drier conditions (e.g., late planting date). Therefore, a soil 
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moisture-driven variable depth system likely should have a dynamic target that 

incorporates a low and high soil moisture threshold.  

The ICE for clean furrow at varying ER predictions showed a negative response 

at shallow and deep planting depths, illustrating that ER predictions decreased as clean 

furrow increased irrespective of depth. These results would align with recommendations 

from Precision Planting, which suggest targeting a clean furrow value of greater than 

95%, which would result in an estimate of less than 5% residue in the furrow. Therefore, 

these results suggest that clean furrow estimates could be used to guide residue 

management systems to optimize seed-to-soil contact at shallow planting depths in no-

tillage conditions.  

In our study, downforce margin (minimum GWL) was the most useful metric 

from the DeltaForce system in estimating ER. However, the significance in the model 

was low compared to the other predictor variables. At the shallowest depth, a negative 

correlation was observed between downforce margin and model predictions (Fig. 9). This 

may indicate that seeds planted in areas with low margin may not have been at the target 

planting depth, were dropped during row-unit bounce, and/or were placed in soil with 

high amounts of resistance (Badua et al., 2021; Brune et al., 2018). Collectively, these 

factors could result in seeds planted at a depth less than the target of 3.8 cm, in little 

contact with the soil, and/or into compacted soils. A similar, negative relationship was 

observed at the deeper planting depth although the magnitude of the response decreased. 

This could have been due to seeds planted in areas of low margin emerging quicker in 

some cases because they were closer to the soil surface. At shallow depths, lower margin 

values may have correlated to areas where the row-unit was bouncing out of the soil, and 
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subsequently misplacing seed. On the contrary, at deeper planting depths, low margin 

values may have simply been caused by planter row-units not reaching the target depth 

(i.e., no GWL).  

Temporally Stable Predictors  

 

In addition to planter-sensor metrics, ICE plots of three inherent soil properties 

were also evaluated (flow direction, ECa, and SmartFirmer OM). Each of these variables 

were highly significant in all ER planting depth models, with the exception of OM at the 

6.4 cm planting depth. In general, the relative relationship of ER to these three inherent 

soil properties were similar among depths. Thus, for simplicity, ICE plots were created 

from predictor variables at the 7.6 cm depth. This depth was chosen because the 

temporally variable metrics (e.g., furrow moisture and clean furrow) were low in 

significance, which was attributed to the lack of variability in these metrics at the deeper 

depth. Therefore, the responses to the temporally stable variables were more clearly 

defined.  

The lowest ER was estimated in areas with high flow direction values (Fig. 10), 

which generally corresponded to south-facing slopes at the site (Fig. 3). Thus, the 

southern aspect of the field may have stayed warmer throughout the emergence period, 

resulting in a quicker emergence. The use of ECa in modeling showed smaller ER 

estimates in areas of low ECa (Fig. 10). On the contrary, higher OM was associated with 

a decrease in estimated ER. Collectively, these responses show that corn emerged 

quickest on soils that were south-facing, high in OM, and exhibited low ECa. However, 

significant variability still existed in these responses, suggesting there were complex 

interactions and potential areas to improve row-unit management to minimize corn ER.  
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Conclusions 

 

Results from the planting depth analyses illustrated that planting depth influenced 

corn emergence parameters, such as stand density and GDDE. Interestingly, planting at 

the deepest depth (7.6 cm) had little to no effect on corn stand density. This further 

illustrates the resiliency of corn to emerge from a range of planting depths. Additionally, 

planting at deeper depths resulted in less variability in ER, suggesting it may be more 

advantageous to plant corn slightly deeper than traditional recommendations to avoid 

seed zone variability of moisture, temperature, and residue. However, this conclusion is 

based on this one no-till case study field; verifying this in other environments is needed. 

Although deeper planting has been advocated for coarser textured soils, our results found 

it also to be advantageous on a fine textured claypan soil. This may have been caused by 

the lack of bare soil present over the seed trench (due to no residue management system) 

to help reduce soil crusting.  

 Outcomes from the ER analysis show the potential for combining multiple spatial 

data layers, both sensor and terrain-based, to predict corn ER. Factors important for 

predicting ER varied with depth, but these findings showed that a variety of layers were 

often useful in prediction, including SmartFirmer and DeltaForce metrics, as well as 

topographic features like surface water flow direction. Therefore, further work is needed 

to determine whether automated row-unit control could utilize these parameters to adjust 

in real-time and improve ER, and likely increase emergence uniformity.  

Although this research was only conducted on one soil type in one year, it 

provides a framework for future research evaluating precision seeding technologies at the 

field scale. Additionally, the results give insight into potential significant and dynamic 
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planter and soil landscape variables that influence emergence performance. As these are 

better understood and predicted, they can more reliably be used in planting operations to 

optimize corn emergence uniformity.  
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Tables and Figures 

 

 

Table 1. Prediction statistics of emergence rate by the soil sensor and 

terrain data layers at the four planting depths. The results represent 

model performance on the testing dataset used at each planting depth. 

Model r R2 RMSE (°C) 

3.8 cm planting depth 0.86 0.75 1.25 

5.1 cm planting depth 0.84 0.67 1.36 

6.4 cm planting depth 0.85 0.71 1.27 

7.6 cm planting depth 0.84 0.74 1.38 
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Fig. 1. Elevation (a), slope (b), flow direction (c) for the study site in central Missouri, 

USA.  
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Fig. 2. Cumulative precipitation and growing degree days at the study site in central 

Missouri, USA from the time of planting through the corn emergence period.  
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Fig. 3. Interpolated illustrations of Precision Planting SmartFirmer soil organic matter 

(OM; a), furrow moisture (b), and Veris soil apparent electrical conductivity (0-0.3 m; c) 

at the study site central Missouri, USA.  
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Fig. 4. Row-level illustrations of planting depth (a), Precision Planting SmartFirmer clean 

furrow (b), uniform furrow (c), and furrow moisture (d) across the study site in central, 

Missouri, USA.  
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Fig. 5. Field-scale growing degree days from planting to corn emergence (GDDE) by 

planting depth at the study site in central Missouri, USA.  
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Fig 6. Corn stand density (a), growing degree days from planting to emergence (GDDE; 

b), and emergence rate (ER; c) estimated through unmanned aerial imagery at the study 

site in central Missouri, USA.  
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Fig. 7. The UAV-estimated emergence rate in relation to predicted emergence rate for the 

testing data sets at each planting depth in central Missouri, USA. Model predictions were 

calculated independently for each planting depth.  
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Fig. 8. Distribution of minimal depth for each predictor variable at the 3.8 cm (top left), 

5.1 cm (top right), 6.4 cm (bottom left) and 7.6 cm (bottom right) depths in the random 

forest modeling approaches.  
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Fig. 9. The individual conditional expectation plot for SmartFirmer clean furrow (%; 

top), furrow moisture (%; middle), and downforce margin (lbf; bottom) in the random 

forest model predicting emergence rate at the 3.8 cm planting depth (left column) and 7.6 

cm depth (right column).  
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Fig. 10. The individual conditional expectation plot for surface water flow direction (°; 

top), soil apparent elecetrical conductivity (mS m-1, middle), and SmartFirmer OM (%; 

bottom) in the random forest model predicting emergence rate at the 7.6 cm planting dept
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DISSERTATION CONCLUSIONS 

 

Field-scale research conducted with two commercial sensor systems showed that 

spatial variability in soil organic matter (OM) could be captured by both systems. 

However, results showed that inaccuracies with the system employing a “global” 

calibration occurred due to temporal variations in soil moisture and spatial variability in 

soil texture. Therefore, my results showed that a field-specific calibration was required 

for consistent estimates of OM. This outcome highlights the tradeoff between accuracy 

and the ability to use sensor data for real-time control.   

Assessment performed in a controlled environment showed that the commercial 

sensor system detected general trends in OM from low to high across a wide range of 

soils. These results aligned with the aforementioned field-scale study. Depending on the 

application, this performance level may be sufficient, for example for determining 

relative differences in soil productivity or soil health. However, OM predictions and 

accuracy were influenced by volumetric water content. Thus, practitioners must realize 

that estimates could be temporally variable. If more consistent and accurate estimates are 

required (e.g., for carbon stock monitoring), additional spectral or soil information may 

be required. This could include full or partial spectra, local calibration samples, and/or 

publicly available soil information to improve OM prediction. 

Results from the planting depth analyses illustrated that planting depth influenced 

corn emergence parameters, such as stand density and growing degree days from planting 

to emergence (GDDE). Interestingly, planting at the deepest depth (7.6 cm) had little to 

no effect on corn stands. This further illustrates the resiliency of corn to emerge from 

deeper planting depths. Outcomes from the ER analysis showed the potential for 
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combining multiple spatial data layers, both sensor and terrain-based, to predict corn 

emergence rate (ER). Factors important for predicting ER varied with depth, but findings 

showed that a variety of layers were often useful in prediction, including SmartFirmer 

and DeltaForce metrics, as well as topographic features like surface water flow direction. 

Therefore, further work is needed to determine whether automated row-unit control could 

utilize these parameters to adjust in real-time and improve ER, and likely increase 

emergence uniformity.  

Collectively, the work from this dissertation determined:  

• Global calibration models of OM will require local information for accurate 

and consistent implementation due to impacts of factors such as soil texture or 

water content on spectral features.  

• Continuous spectral information in the visible and near infrared spectrum can 

improve OM estimations across varying soil water contents. 

• Topographic features in conjunction with planter-sensor metrics have 

potential to guide real-time and/or prescriptive management decisions during 

corn seeding operations.  

Further research should be performed to expound upon these findings to determine the 

maximum utility of commercial proximal soil sensors for row-crop producers.   
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APPENDIX A:  

 

Supplemental Material for Chapter 2 

 

 

 

Fig. 1. Image of Veris iScan attached to a vertical tillage implement.  

 

Fig. 2. Soil moisture estimation by the Precision Planting SmartFirmer (left) and the 

Veris iScan (right) in relation to laboratory measured gravimetric soil moisture.  
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Fig. 3. Laboratory measured gravimetric soil moisture (top), SmartFirmer furrow 

moisture (center), and Veris iScan soil moisture (bottom) at each of the three sensing 

dates at the site in Central, MO.  
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Fig. 4. SmartFirmer organic matter estimation (OM) in relation to laboratory-measured 

OM (0-15 cm) across 200 ha in west-central Missouri, USA.  
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APPENDIX B: 

Supplemental material for Chapter 3 

 

Fig. 1. SmartFirmer reflectance and furrow moisture (left) and reflectance and organic 

matter (OM; right) response to varying soil moisture levels of a given soil. Results show 

a clear impact of soil moisture on OM, as well as a smoothing affect present within the 

system. On the contrary, furrow moisture response was shorter and similar to that of 

reflectance.   
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APPENDIX C 

Supplemental material for Chapter 4 

 

 

Fig. 1. Corn emergence rate at the summit (left), backslope (center) and footlsope (right) 

on a claypan soil in 2019 near Columbia, Missouri, USA.  

 

 
 

Fig. 2. Emergence window relation to SmartFirmer Furrow Moisture in 2018 (left) and 

2019 (right) across riverbottom (alluvial) and upland (claypan) soils.   
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Fig. 3. Corn grain yield response to SmartFirmer OM in 2019 on a claypan soil site in 

Centralia, Missouri, USA.  
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Fig. 4. Transect data of corn grain yield, SmartFirmer organic matter, and elevation 

across a claypan soil landscape in Centralia, Missouri, USA in 2019.  
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