
Moving Object Localization Using Frequency Measurements

A Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Musaab M. Ahmed

Dr. Dominic K. C. Ho, Dissertation Supervisor 

December 2021



The undersigned, appointed by the dean of the Graduate School, have examined the

thesis entitled

MOVING OBJECT LOCALIZATION USING FREQUENCY MEASUREMENTS

presented by Musaab Mohammed Ahmed,

a candidate for the degree of Doctor of Philosophy, and hereby certify that, in their

opinion, it is worthy of acceptance.

Professor Dominic Ho

Professor Naz Islam

Professor Justin Legarsky

Professor Giovanna Guidoboni



DEDICATION

To my beloved father,

Mohammed Ahmed Abdullah Al-Obaidi



ACKNOWLEDGMENTS

First of all, I would like to thank my Lord, the Sustainer, the All-Knowing, the

Wise and the Generous for all the blessings that I cannot count. ”And if you would

count the favours of Allah, never could you be able to count them. Truly! Allah is

Oft-Forgiving, Most Merciful”. Quran(16:18)

” O mankind! If you are in doubt about the Resurrection, then verily We have

created you (i.e. Adam) from dust, then from a Nutfah (mixed drops of male and

female sexual discharge i.e. the offspring of Adam), then from a clot (a piece of thick

coagulated blood) then from a little lump of flesh - some formed and some unformed

(as in the case of miscarriage) - that We may make (it) clear to you (i.e. to show you

Our Power and Ability to do what We will). And We cause whom We will to remain

in the wombs for an appointed term, then We bring you out as infants,[1] then (give

you growth) that you may reach your age of full strength. And among you there is he

who dies (young), and among you there is he who is brought back to the miserable

old age, so that he knows nothing after having known. And you see the earth barren,

but when We send down water (rain) on it, it is stirred (to life), and it swells and

puts forth every lovely kind”. Quran(22:5)

Throughout the work of my PhD degree I have received a great deal of support

and assistance.

I would like to acknowledge with gratefulness the Higher Committee for Education

Development in Iraq (HCED) for supporting me during my master degree and giving

me the permission to stay in U.S. and complete the PhD degree. Thanks a lot HCED

ii



for your offer, it truly changed my life!

I would like to thank my supervisor, Professor Dominic Ho, whose expertise was

invaluable in formulating the research directions and methodology. Prof. Ho has

helped me to develop ideas and to become an outstanding researcher. He has always

been available to extend his hands and help me to overcome my academic and personal

issues. His insightful feedback pushed me to sharpen my thinking and brought my

work to a higher level.

Also, I would like to thank Prof. Naz Islam, Prof. Justing Legarsky, and Prof.

Giovanna Guidoboni for serving in my PhD committee. Your efforts are highly ap-

preciated. Special thanks go to my teachers at MU who made my PhD studying

successful and fruitful.

In addition, I would like to thank my parents for their wise counsel and sympa-

thetic ear. Your love and care are priceless. Finally, I could not have completed this

dissertation without the support of my wife, Maryam Al-Sabbagh, who provided me

with love and compassion as well as happy distractions to rest my mind outside of

my research.

iii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Acoustic Sensor Networks . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Airborne Target Positioning . . . . . . . . . . . . . . . . . . . 10

1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Contribution of the Research . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Content Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Localization Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Chan Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Carrier Frequency Unknown . . . . . . . . . . . . . . . . . . . 21

2.2.2 Carrier Frequency Known . . . . . . . . . . . . . . . . . . . . 22

iv



2.3 Shames Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Semidefinite Programming Method . . . . . . . . . . . . . . . . . . . 25

2.5 Maximum Likelihood Estimator(MLE) . . . . . . . . . . . . . . . . . 27

2.6 CRLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 2-D Object Localization . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Carrier Frequency Available . . . . . . . . . . . . . . . . . . . 35

3.1.2 Carrier Frequency Unavailable . . . . . . . . . . . . . . . . . . 43

3.2 Solution: Carrier Frequency Available . . . . . . . . . . . . . . . . . . 44

3.2.1 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 SDR Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Solution: Carrier Frequency Unavailable . . . . . . . . . . . . . . . . 57

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Carrier Frequency Available . . . . . . . . . . . . . . . . . . . 62

3.4.2 Carrier Frequency Unavailable . . . . . . . . . . . . . . . . . . 64

3.4.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Single-Time Observation . . . . . . . . . . . . . . . . . . . . . 68

3.5.2 Multiple-Time Observations . . . . . . . . . . . . . . . . . . . 72

3.5.3 Number of Sensors . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

v



4 3-D Object Localization . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.1 Carrier Frequency Available . . . . . . . . . . . . . . . . . . . 85

4.1.2 Carrier Frequency Unavailable . . . . . . . . . . . . . . . . . . 87

4.2 Single-Time Observation . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.2 SDP Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Multiple-Time Observations . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 SDP Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 carrier frequency unavailable solution . . . . . . . . . . . . . . . . . . 103

4.5 Sequential Multiple-Time Solution . . . . . . . . . . . . . . . . . . . . 105

4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6.1 Carrier Frequency Available . . . . . . . . . . . . . . . . . . . 108

4.6.2 Carrier Frequency Unavailable . . . . . . . . . . . . . . . . . . 109

4.6.3 Sequential Algorithm . . . . . . . . . . . . . . . . . . . . . . . 111

4.6.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.7.1 Performance w.r.t. Measurement Noise . . . . . . . . . . . . . 115

4.7.2 Performance w.r.t. Sensor Position and Carrier Frequency Errors119

4.7.3 Sequential Estimation for Multiple-Time as Time k Increasing 122

4.7.4 Sensor Number . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vi



4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Moving Sensors Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1.1 Single-Time Measurement . . . . . . . . . . . . . . . . . . . . 134

5.1.2 Multiple-Time Measurements . . . . . . . . . . . . . . . . . . 138

5.2 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3 SDP Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.4 CRLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.6.1 2-D Single-Time . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.6.2 2-D Multiple-Time . . . . . . . . . . . . . . . . . . . . . . . . 167

5.6.3 3-D Single-Time . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.6.4 3-D Multiple-Time . . . . . . . . . . . . . . . . . . . . . . . . 172

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 178

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

APPENDIX

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

vii



D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.1 Algebraic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.2 SDP Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.3 Sequential Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 190

E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

viii



LIST OF TABLES

Table Page

1.1 Doppler Effect Applications . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Relations Among the Elements of ϕϕϕ for the Single-Time Measurement

Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Relations Among the Elements of ϕϕϕ for the Multiple-Time Measure-

ments Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Constraints Among the Elements of ϕϕϕ and ΦΦΦ for the SDR Solution of

the Single-Time Measurement Case . . . . . . . . . . . . . . . . . . . 54

3.4 Constraints on ϕϕϕ and ΦΦΦ for the SDR Solution of the Multiple-Time

Measurements Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Relative Processing Times of Different Algorithms . . . . . . . . . . . 70

4.1 Relations Among the Elements of ϕϕϕ for the Single-Time Case . . . . . 90

4.2 Constraints of the SDP Solution for the Single-Time Case . . . . . . 95

4.3 Constraints on ϕϕϕ and ΦΦΦ for the SDP solution of the multiple-time Case 103

4.4 Complexity of the Algebraic Solution CFS and the SDP Solution in

terms of the number of multiplications. . . . . . . . . . . . . . . . . . 113

4.5 Parameter values for Table IV. . . . . . . . . . . . . . . . . . . . . . . 113

ix



4.6 Processing Times at different values of σ relative to that of CFS at

σ = 0.01 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Processing Times for the sequential and batch algorithms at different

k values relative to that of S-CFS at k=2. . . . . . . . . . . . . . . . 117

5.1 The Elements of ϕϕϕ and The 15 Constraints for The 2-D Single-Time

Measurement Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 The Elements of ϕϕϕ and The 28 Constraints for The 3-D Single-Time

Measurement Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 The Elements of ϕϕϕ and The 21 Constraints for The 2-D Multiple-Time

Measurements Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4 The Elements of ϕϕϕ and The 36 Constraints for The 3-D Multiple-Time

Measurements Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 The indices of the data vector for the four different cases corresponding

to each code index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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ABSTRACT

This research investigates the ability of locating a moving object using the Doppler

shifts of a carrier frequency signal sent or reflected by the object and observed by

several fixed or moving sensors spatially distributed in the 2-D or 3-D space. The

idea was previously studied and several solutions are proposed based on exhaustive

grid search or numerical polynomial optimization. We shall formulate the problem as

a constrained optimization and propose two efficient solutions. The first is by using

linear optimization method to reach a closed-form solution and the second is through

semi-definite relaxation technique to achieve a noise resilient estimate. The solutions

are derived first for the single-time measurement and then developed to multiple-

time observations collected during a short time interval in which the object motion is

linear. Several scenarios are considered including 2-D and 3-D localization geometry,

the sensors are fixed or moving along nonlinear trajectory with random speed, the

presence of errors in the carrier frequency and the sensor positions, and the non-

cooperative object scenario where the frequency of the carrier signal is completely not

known. Analysis validates the algebraic closed-form solution in reaching the Cramer-

Rao Lower Bound accuracy under Gaussian noise within the small error region. The

simulations show good performance for the proposed algorithms and support the

theoretical analysis.

xiv



Chapter 1

Introduction

1.1 Background and Motivation

Localizing a moving object in a network of sensors finds interest in a wide area of

applications including airborne surveillance, navigation, search and rescue, air traffic

control, unmanned aerial vehicle and many others [1, 2, 3, 4, 5, 6, 7, 8]. The objec-

tive of a positioning system is to determine the location of one or multiple objects

in the two-dimensional (2-D) or three-dimensional (3-D) space. A positioning system

can appear in various forms having different configurations, usages, reliability, perfor-

mance, complexity and other attributes. The location information of a stationary or

moving object can be extracted from the interaction between the object and the time,

frequency, energy or bearing signals collected by spatially distributed sensors during

single or multiple time instants. In all these measurements, the object location pa-

rameters are non-linearly related to the available observations [9, 10, 11]. In the past

1



few years, huge amount of researches have been done making use of the technology

advancement to develop new solutions with better accuracy and lower computational

complexity [12, 13, 14, 15, 16].

In general, the most common strategy is to measure the time information of the

signal. Time measurements such as time of arrival (TOA) or time difference of arrival

(TDOA) are used to form a set of circle or hyperbolic equations and solutions to

these nonlinear equations have been proposed over the years that are computationally

efficient and able to achieve the optimal accuracy. Some of these solutions are based on

iterative methods [17, 18, 19, 20], algebraic closed-form solution (CFS) [21, 22, 23, 24],

numerical search [25, 26, 27] and semi-definite relaxation SDR [28, 29, 30, 31]. Similar

approaches were proposed based on bearing measurements such as angle of arrival

(AOA) [32, 33, 34, 35, 36], energy measurements such as received signal strength

(RSS) [37, 38, 39], or a combination of these measurements [40, 41, 42]. Frequency

measurements like Doppler shifted frequency (DSF) or frequency difference of arrival

(FDOA) can also be exploited to improve the localization performance when there is

relative motion between the object and sensors. Including frequency measurements in

addition to time, several algorithms have been developed in closed-form [9, 10, 43, 44].

Localizing an object using frequency only measurements has attracted considerable

interests over the past few years. It has been driven by the technology advancement

capable of acquiring high precision frequency observations [45, 46, 47, 48, 49], as well

as the increasing demand of innovative approaches to cover a wide range of localization

applications that have been largely expanded to indoor positioning, dynamic routing,

self-driving vehicle and others [50, 51, 52].

Frequency measurement contains important information regarding the velocities of

2



both the transmitter and the receiver. Such property is quite unique and is in demand

to be studied in depth. However, because the frequency measurement depends on the

radial velocity between the object and sensor, it is required at least one of the two

nodes (object or sensor) to be in a moving status. It is also important to know that

the position and velocity are related in a highly nonlinear fashion with the observed

frequency. This made the problem difficult to be addressed by many researchers and

the usual assessment was to join the frequency with another type of measurement to

simplify the model and make it solvable through various solution approaches [9, 10].

Under some conditions, it might be difficult, costly, unreliable, or even impossi-

ble to have another sort of measurement besides the frequency. For example, TOA

measurements require an accurate timestamp of the transmitted signal and all the

sensors in the network need to be synchronized [53]. The timestamp information is

dropped when using TDOA measurements, but one of the observations should be

used as a reference, which degrades the overall performance [54]. Depending on the

nature of the emitted signal, frequency measurement can have a much higher resolu-

tion than time observation when it has a long pulse duration and narrow bandwidth

[55, 56]. Acquiring both time and frequency measurements could be computationally

demanding due to the evaluation of the ambiguity function [57] or the signal time

scaling [58]. Furthermore, when the emitted signal is very narrow band that is close to

a pure tone, time measurements can be highly inaccurate, which renders their useful-

ness for localization. In the underwater environment, the accuracy of frequency-based

localization algorithms can be increased at a very low cost and their transmit-receive

devices are less complicated compared to those used with time measurements [59].

DOA measurements need the object to be static and their performance is highly de-
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graded in shallow water because of the signal interaction with the surface and bottom

of the sea [60]. RSS based localization algorithms are affected by the inaccuracies of

the theoretical, roughly calibrated or imperfect channel models used to compute the

location [61]. It may be more direct to use frequency measurements only for localiza-

tion in such circumstances. Thereby, It is the subject of this research to investigate

the positioning of a moving object by utilizing the DSF measurements observed at a

number of spatially distributed sensors.

From the algorithm perspective, positioning a moving object by frequency obser-

vations only can be more challenging than using time, angle or energy measurements

because frequency observation depends not only on the object position as in other

observations but also on the object velocity, and the two unknowns are coupled to-

gether. It is also more complicated than using the frequency observation together

with the time measurement where the model can be simplified by exploiting the time

measurement [1]. To limit the scope of this study, we shall focus on single object

positioning using Doppler shifts observed at a number of distributed sensors. The

moving object will be considered as a point-source since it is relatively small in size

compared to the localization region.

1.2 Doppler Effect

The Doppler effect first proposed in 1842 by the Austrian mathematician, Christian

Doppler, it is the change in the frequency of a wave when the transmitter and the

receiver are in relative motion [62]. Doppler specifically raised the idea that the

change in the color of stars is due to their relative motion with respect to earth not
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Figure 1.1: Doppler Effect Illustration.

because of the change in their temperature [63]; he also assumed that this exploration

is applicable to all kinds of waves. Fig. 1.1 illustrates Doppler effect on sound waves.

In 1845, Buys Ballot proved Doppler’s theory on sound waves by using two sets of

trumpeters that have the same note with perfect pitch match, one set on a moving

train and the other kept stationary at the train station [64]. Ballot noticed that the

frequency of the two notes was not the same when the train passed the station. In

1868, Doppler effect began to have enormous significance to astronomy when William

Huggins showed that the dark spectral lines of the brighter stars are slightly shifted

from their normal position in the spectrum of the sunlight to the red or blue color

due to the star’s motion towards or away from the earth. Because the wavelengths of

the spectral lines can be measured precisely, this technique helped later to measure

the velocities of the solar prominence, double stars and rings of Saturn [65]. In 1958,

The Applied Physics Laboratory of Johns Hopkins University (APL) developed the

first satellite positioning system that uses Doppler effect to localize a receiver on the

earth. The system uses the received carrier frequencies to determine the velocity of

a moving receiver [66].

Nowadays, Doppler effect is used in many different fields ranging from medical

applications, such as ultrasound imaging, to weather forecasting, traffic control and
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military usages, such as target tracking. Table 1.1 lists several outstanding Doppler

applications. Due to the technology advancement of digital processors, Doppler shift

can be measured very precisely with relatively low cost for both microwave signals in

radars and acoustic waves in sonars [67, 59]. This helped to expand the frequency-

based usages to other applications like wireless sensor networks (WSN). The accuracy

of estimating Doppler shift depends on many factors including the operating carrier

frequency and the bandwidth of the signal. In general, we can achieve better Doppler

shift resolution by using higher carrier frequencies; however, each frequency has its

own advantages and weaknesses. As an example, every application is limited by a

specific frequency band for operation; also, higher frequencies usually require more

complex devices which increase the total system cost.

Another way to enhance the accuracy of Doppler measurement is by using narrow-

band signals with the developed discrete Fourier transform algorithms. Narrowband

radars/sonars can be implemented with much lower complexity and hence, lower cost.

On the other hand, the high power of single-frequency carriers creates significant in-

terference to the environment in addition to increasing transmitter detectability by

the adversary intelligent systems. Nevertheless, new techniques like the narrowband

frequency hopping (NB-FH) can help to combat the peak power spectral density and

still maintaining the narrowband advantage [68].
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Table 1.1: Doppler Effect Applications

Stars motion

Astronomers use Doppler effect to measure
the movement of stars relative to Earth.
Approaching stars shift the light spectrum
towards shorter wavelengths whereas re-
ceding stars shift it towards longer wave-
lengths.

 

Doppler
echocardiogram

Physicians and medical technicians apply
Doppler effect in the medical field to mea-
sure the direction and speed of blood cells
inside the artery of the patient using ultra-
sound waves.  

Radar gun Police officers use radar gun that rely on
Doppler effect to check for speeding cars.

 

Weather
forecasting

In storm systems, meteorologists use
Doppler technology to detect the direction
and velocity of raindrops. These measures
are used then to predict the weather pat-
terns for the next minutes or hours.

 

Target tracking

Continuous wave (CW) and pulsed
Doppler radars use Doppler effect to
discriminate between a moving and sta-
tionary targets. In addition, these radars
provide accurate range and angle tracking
of a moving target in the presence of
ground clutter.
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1.3 Applications

1.3.1 Acoustic Sensor Networks

Underwater systems are growing fast to support the applications of both civilian and

military needs. Underwater communications depend mainly on acoustic signals be-

cause of the physical constraints that limit the propagation ability of electromagnetic

waves [69]. The acoustic signals have better transmission characteristics in water than

in air. They can travel over larger distances because they undergo less attenuation,

their speed is four to five times higher, and they can reach much higher intensity

levels [70]. Underwater acoustics is essential and indispensable in mastering most of

the human activities at sea. However, these advantages are mitigated by the high

ambient noise level and undesirable echoes that perturb the useful signals. Compared

to electromagnetic waves used in free space, the acoustic signal has a much higher

latency characteristic and thus, it can only support limited underwater distances.

The frequency-dependent propagation loss limits the bandwidth of the underwater

channel to a few kilohertz [71]. Furthermore, underwater devices are expensive and

energy consumers [69]. These challenges in addition to the medium variability in both

time and space, lowered the performance of underwater communication systems.

New technologies helped to lessen the above challenges and facilitate the difficul-

ties to produce more efficient communication systems. These include the small size

and high-speed processing unit, which increases the accuracy of the sensor measure-

ments, the design of the autonomous underwater vehicle (AUV) that brought mobility

property into network designs to enhance the accuracy [72] and the implementation

of multiple sensor nodes which raises the information rates and enlarge the coverage
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Figure 1.2: Acoustic positioning system.

area [73].

Target detection and location systems using acoustic signals are commonly called

sonars. These systems use either echo of the transmitted signals (active sonar) or the

direct signal received from a target (passive sonar). In the underwater environment,

the accuracy of frequency-based localization algorithms can be increased at a very

low cost compared to those use time measurements. Also, the time measurements

transmit-receive devices are more complicated than those used to produce frequency

measurements [59]. Furthermore, DOA measurements need the target to be static and

their performance is highly degraded in shallow water because of the signal interaction

with the surface and bottom of the sea [60]. Under some circumstances and when

there is a relative motion between an object and a network of sensors, the DSF

measurements might be preferred to be used for the object positioning service. Fig.

1.2 illustrates typical acoustic positioning system.
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1.3.2 Airborne Target Positioning

Detecting and Tracking an airborne target has been continuously developing over the

last 80 years since the radar was first introduced in the late of 1930s. Radar uses

electromagnetic (EM) waves for detection and ranging. EM waves travel very fast,

around 300,000 kilometers (186,000 mi) per second through the atmosphere. Unlike

the acoustic signals that need molecules of solid, liquid or gas for their propaga-

tion, EM waves do not require molecules and can travel not only through a material

medium but also through a vacuum of space. Because EM waves travel much faster

than acoustic signals, radars can cover a much larger geometrical region compared

with that covered by sonars when considering both are working on their intended

environments. Regarding the frequency of operation, radar systems support a wide

range of frequencies that extend to few gigahertz, while sonar systems can only work

within tens of kilohertz.

In the last two decades, multiple-input multiple-output (MIMO) radar has been

introduced as a newly emerging technology in the design of radar systems. The

essence of the MIMO radar is to employ multiple, spatially distributed transmitters

and receivers for emitting several orthogonal waveforms and capturing their echoes

reflected by a moving target. One of the main problems of the conventional radar

system is the target fading resulted from the low coherent gain obtained from the

processing of the echos received by the array elements. In the MIMO radar system,

the independent signals received at the widely separated antennas are exploited to

improve the radar performance [74]. The spatial variations of the target’s radar cross

section (RCS) associated with the noncoherent processing of the signals can be used

to obtain the diversity gain for the estimation of several parameters like the direction
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of arrival and Doppler [75]. The Doppler shifts included in the reflected echos have

information about both the position and velocity of the target. Fig. 1.3 illustrate the

operation of MIMO radar system.

 
Figure 1.3: Illustration of MIMO radar system.

1.4 Literature Review

Localizing an object in the 2-D or 3-D space based on frequency only measurements

has been widely discussed in the literature with different scenarios and different ways

of intercepting the signals sent by or reflected from the object. A less complex sce-

nario for frequency-based localization is that the source is stationary and the sensors

are moving with known positions and velocities. Such a scenario has found many ap-

plications related to radar and indoor localizations [76, 77, 78]. Some considered using

only one moving receiver that intercepts the transmitted signal at multiple short in-

tervals along the receiver’s trajectory and others investigate several moving receivers
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with each of them intercepts the transmitted signal only once for a one-time solution.

Many solutions of different complexity and performance have been developed over

the years and encouraging results have been reported [79, 80, 56, 81, 82, 11]. Numer-

ical search solutions are proposed with different levels of computational complexities

[79, 80, 56, 76, 78], some of these argued that their approach can work better than

two-step algebraic solutions under high level noise situations [80, 76]. A low cost CFS

is proposed by [59] for a proactive scenario to localize an underwater vehicle using

only one moving sensor. In [81], another CFS estimator is proposed with special

treatment to the bias problem associated with the pseudo linearization method. [82]

derives two solutions based on CFS and SDR and provides treatment to the sensor

locations uncertainty.

Another scenario is that the source is moving and the sensors are stationary. The

source velocity is an unknown parameter in addition to the position. 2-D localization

by DSF under this situation was considered in [83, 84, 85] by using computationally

demanding numerical grid search to reach a solution. To reduce the computational

complexity, [83] took the rate of change in DSF as additional measurements such

that the search dimension is three. Besides the low computational efficiency of this

method, it uses the DSF rate, which is not a very reliable quantity and rarely to

be used. [85] presented a different formulation by introducing some intermediate

variables, which are products of some of the unknowns without using the rate of fre-

quency change and the search dimension is two. The method can be easily developed

to 3-D localization with an increment of one in the search dimension. The method

suffers from ghost solutions when a limited number of measurements are used. [84]

addressed the problem by using the extra measurement of DSF derivative in addition
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to DSF, where one dimensional grid search is sufficient for localization in 2-D by

three sensors. [86] extended the application to a MIMO scenario for the tracking of

a moving object through the signal reflections associated with different transmitter

and receiver combination pairs. [87] discusses the ability to locate multiple moving

targets using several fixed receivers in the 2-D space. The approach was to do an

extensive four dimentional grid search to find all the points that regenerate the re-

ceived frequency. This procedure is repeated for each one of the frequencies measured

at the different receivers. The locations of targets can then be estimated from the

intersection points of the surfaces generated by each receiver with the help of pattern

recognition techniques.

Recently, [88] expressed the DSF measurement model in a polynomial optimization

form and applied a software optimization package to obtain a solution. This method

assumes the source frequency is known and the performance is suboptimal as it did

not include proper weightings for the error and the algorithm will need to convert

the polynomial model to a sum of square and then to a semi-definite programming

(SDP) formulation.

1.5 Contribution of the Research

This research advances further the method of locating a moving source by DSF mea-

surements. Different from the previous methods where exhaustive grid search or

numerical optimization is necessary, we propose a novel formulation to the problem

that enables the development of a computationally attractive algebraic closed-form

solution or a noise tolerant convex optimization solution. Furthermore, we provide
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comprehensive treatment to the problem where the source frequency has errors or

is unknown, sensor position errors can be present, successive-time measurements are

available to improve localization, and sensors are moving along nonlinear trajectory

with random speed.

At the beginning, we consider the less complex scenario where the localization

geometry is 2-D. The development starts assuming the source frequency is known

but subject to random errors. We propose a novel nonlinear transformation of the

frequency measurement model to a pseudo-linear form by introducing some nuisance

variables. The localization problem is then converted to a quadratic optimization un-

der a set of quadratic constraints relating the independent unknowns and the auxiliary

variables. Solutions to the constrained optimization are derived using the linear opti-

mization method that leads to an algebraic closed-form solution or the semi-definite

relaxation (SDR) technique that yields a noise-resilient solution. The algebraic so-

lution is analyzed and shown to reach the optimum accuracy level described by the

Cramer-Rao Lower Bound (CRLB) over the small error region under Gaussian noise.

Both solutions are next extended to the situation that the frequency measurements

at successive times are available to improve performance, where the source is in linear

motion. After that, we consider the non-cooperative scenario in which the source

frequency is completely not known. Taking advantage of the solution for the case of

known but erroneous source frequency, a new approach is proposed for joint estima-

tion of the source frequency, position and velocity that is computationally attractive

and able to achieve the CRLB performance.

Then, we consider the development to 3-D positioning scenario where the measure-

ment model is more complex as the number of unknown variables increased by two
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compared with the 2-D case. Assuming the carrier frequency is inaccurately known,

we transformed the nonlinear DSF equation to a pseudo linear one by introducing

some nuisance variables and then, we built the quadratic cost function with several

quadratic constraints that relate the independent unknowns and their polynomials.

Two solutions are proposed to minimize the constrained cost function and deliver the

object location estimate. The first one is by using a linear algebraic method that

yields a CFS , and the second one is by transforming the cost function to an SDP

problem and solve it using the SDR technique. Then, we extended the methods to

the multiple time measurements model in which each sensor collects several measure-

ments during the non-maneuvering status of the object. Also, we discussed the case

when the carrier frequency is completely unknown and derive a new estimator that

jointly estimates the frequency and the object location by making use of the two

solutions to the case of the inaccurately known carrier frequency.

Later, we investigate the moving sensors scenario where each sensor moves along

nonlinear trajectory with random speed and collects frequency measurement from

the object. Based on the same derivation approach, the CFS and SDP solutions are

derived for 2-D single-time , 2-D multiple-time, 3-D single-time and 3-D multiple-time

localization cases. Analysis of the algebraic solution is done to obtain the additional

conditions, due to the sensor movement, that are needed to be fulfilled for achieving

optimum accuracy.

The CFS is proved theoretically and by simulation to reach the CRLB accuracy

under a low level of Gaussian noise. The SDP can tolerate higher noise levels and

work with a fewer number of measurements. Although the 2-D and 3-D solutions idea

is the same, the derivations for the 3-D case have a lot of differences with the 2-D one.
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These differences came from the fact that the CFS and the SDR derivations highly

depend on the number of unknown polynomial terms and the relations among. The

details of 2-D and 3-D localization problems and the proposed solutions are presented

on Chapter 3 and Chapter 4 respectively. In Chapter 5, we presented the solutions

when the sensors are moving.

1.6 Content Organization

The dissertation is organized as follows. Chapter 2 introduces the problem scenario

and several existed solutions from the literature. It also includes the derivation of

the iterative maximum likelihood and the Cramer-Rao lower bound (CRLB) for the

problem. Chapter 3 explains the localization problem in 2-D case and the proposed

solutions. Chapter 4 extends the investigations and the proposed solutions to the

3-D case. Chapter 5 presents the scenario of moving sensors. Chapter 6 gives the

conclusion of this research.
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Chapter 2

Background

This chapter introduces the localization problem that we are going to investigate in

this research and summarizes other researchers works that have been done on closely

related problems. In addition, we shall derive a generic maximum likelihood estimator

that can be used for different scenarios of the problem, and also derive the Cramer-

Rao lower bound that will be used to evaluate the performance of different solution

methods.

2.1 Localization Scenario

Fig. 2.1 illustrates the localization scenario. An object starting at unknown position

uo ∈ Rd in the d-dimensional space is traveling at an unknown velocity u̇o ∈ Rd. It

emits a tonal at frequency f oo during the linear trajectory. The emitted signal is re-

ceived by M spatially distributed sensors at known positions soi ∈ Rd, i = 1, 2, . . . ,M ,

in each of N consecutive time steps. The observation period is not long, so that the
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velocity remains the same over the duration. Each sensor is capable of determining the

received signal frequency, giving a total of MN frequency observations. We shall con-

sider the time step between every two successive observations as unity for simplicity

where the actual time step can be absorbed into u̇o as a multiplication factor. For 2-D

localization, we define uo = [xo , yo]T , u̇o = [ẋo , ẏo]T and soi = [xoi , y
o
i ]
T whereas for

3-D localization, we use uo = [xo , yo , zo]T , u̇o = [ẋo , ẏo , żo]T and soi = [xoi , y
o
i , z

o
i ]
T .

In each observation time k, the object is at the unknown position

uok = uo + ku̇o , k = 0, 1, . . . , N − 1. (2.1)

The observed frequency in sensor i at instant k is [80]

fk,i = f oo −
f oo (uok − soi )

T u̇o

c ‖uok − soi‖
+ nk,i , (2.2)

where c is the speed of signal propagation and nk,i is the observation noise. Putting

together the frequency measurements from all M sensors at time k gives the vector

fk = [ fk,1, fk,2, . . . , fk,M ]T = fok + nk , (2.3)

and fok is the true value of fk without noise. nk is modeled by a zero-mean Gaussian

vector with covariance matrix Qk. Over the N observation times, we have

f = [ fT0 , fT1 , . . . , fTN−1 ]T = fo + n. (2.4)

The covariance matrix of n is denoted by Qn, which is block diagonal with diagonal

blocks Qk, k = 0, 1, . . . , N − 1, assuming the noise is uncorrelated at different times.
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The carrier frequency f oo is not fully known. There is some knowledge from the

past so that the known value fo is modeled by

fo = f oo + ∆fo , (2.5)

and the error ∆fo follows a zero-mean Gaussian distribution with variance σ2
fo

.

The available sensor positions are also not accurate and they are corrupted by the

additive noise ∆si,

si = soi + ∆si . (2.6)

The sensor position vector is

s = [ sT1 , sT2 , . . . , sTM ]T = so + ∆s . (2.7)

∆s is zero-mean Gaussian distributed with the covariance matrix equal to Qs. For

simplicity, the measurement noise, carrier frequency error and sensor position errors

are uncorrelated and the covariance matrices Qn and Qs and the variance σ2
fo

are all

assumed known.

The localization scenario described is for the general case. In the particular situ-

ation that the measurements are from a single time instant only, N is equal to 1. In

addition, if the carrier frequency is completely not known, σ2
fo

will correspond to ∞.

Qs will be zero if the sensor positions are accurate.

The objective is that given the MN frequency measurements together with the

available carrier frequency fo and sensor positions s, we would like to estimate the

object initial position uo and its velocity u̇o. In the situation where multiple frequency

observations over a time period are used, the problem is indeed more appropriate to
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Figure 2.1: Localization scenario of a moving object.

be referred to as target motion analysis (TMA).

2.2 Chan Method

In [85], Chan assumes the carrier frequency is unknown, the geometry of localization

is 2-D and the scenario is single-time measurement. Since the observation model

described in (2.2) is highly nonlinear, the numerical grid search over some of the

unknowns is considered. Usually, It would require five dimensional search to solve the

problem, which is computationally expensive. Instead, Chan proposed introducing
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intermediate variables that are products of some of the unknowns to reduce the search

dimension to only two, over the position coordinates. The resultant intermediate

model becomes linear and solvable through the ordinary least square (LS). For each

grid point, the corresponding intermediate variables can be computed and then, the

measurement vector is reconstructed and compared with the actual one obtained form

the sensors. Among the trial grid points, the one that gives the best fit is selected for

the object location estimate.

We shall present Chan’s solution for the unknown carrier frequency case, followed

by the modified solution for the known carrier frequency case. The solutions can be

applied for both 2-D and 3-D localization when the variables are defined accordingly.

2.2.1 Carrier Frequency Unknown

The measurement model in (2.2) can be expressed in vector form as

Ho

[
f oo (u̇of oo )T

]T
= f − n , (2.8)

where Ho is M × (d+ 1) matrix constructed as

Ho =



1 − (uo−so1)T

c‖uo−so1‖
1 − (uo−so2)T

c‖uo−so2‖
...

...

1 − (uo−soM )T

c‖uo−soM‖


. (2.9)
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The LS solution of f oo and u̇of oo is

 fo
u̇fo

 = (HTH)−1HT f , (2.10)

where H is evaluated at the trial object position u and the available sensor positions

s. The reconstructed measurement vector is

f̂ = H(HTH)−1HT f . (2.11)

Subtracting f from (2.11) will give the error vector associated with that particular

grid point and the cost function of it is

(u) =
∥∥∥f̂ − f

∥∥∥2

= fT
(
I−H(HTH)−1HT

)
f . (2.12)

Minimizing (2.12) gives the solution to uo and the corresponding object velocity u̇o

is found from (2.10) with H constructed at the solution of uo.

2.2.2 Carrier Frequency Known

When the carrier frequency is known, the model is slightly changed to account only

for the location parameters. Let di be the range rate between the object and sensor

i expressed as

di = c (fo − fi)/fo =
(uo − soi )

T u̇o

‖uo − soi‖
− c

fo
ni , (2.13)
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and collecting the rang rates of all sensors in one vector to get

d = [d1, d2, . . . , dM ]T = H̃o u̇o − c

fo
n , (2.14)

where H̃o is M × d matrix constructed as

H̃o =

[
(uo − so1)

‖uo − so1‖
,

(uo − so2)

‖uo − so2‖
, . . . ,

(uo − soM)

‖uo − soM‖

]T
. (2.15)

The cost function at any object position u in this case will be

̃(u) = dT
(
I− H̃(H̃T H̃)−1H̃T

)
d . (2.16)

Thus, the estimation of object position is found from the grid search process that

minimizes (2.16) and the velocity of object is determined by the following LS opera-

tion,

u̇ = (H̃T H̃)−1H̃Td . (2.17)

2.3 Shames Method

Shames explained the scenario for locating a moving target using several fixed sensors

working on the active mode based on the frequency shift of the received signals [88].

Each sensor transmits a signal with a distinct carrier frequency fc,i , i = 1, 2, . . . ,M ,

and measure the Doppler shift of the reflected one. The localization here is to be

achieved instantaneously without envisioning collecting information from sensors at
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a number of successive time instants. The Doppler shift measured by sensor i is

wi = 2
fc,i(u

o − soi )
T u̇o

c ‖uo − soi‖
− ei , (2.18)

where the constant 2 comes from the two-way signal propagation and ei is the mea-

surement noise. Since c and fc,i are constants and assumed known; it is more conve-

nient to deal with the range rate quantity similar to the one described in (2.13),

di =
(uo − soi )

T u̇o

‖uo − soi‖
− c

2 fc,i
ei , (2.19)

and di here is cwi/(2 fc,i), i = 1, 2, . . . ,M . To solve for the unknowns, Shames

converted (2.19) to a polynomial equation (excluding the noisy terms) by multiplying

its both sides by ‖uo − soi‖ and then squaring it to get

(uo−soi )
T (uo−soi )d

2
i = ((uo−soi )

T u̇o)2+
c ‖uo − soi‖

fc,i

(
c ‖uo − soi‖

fc,i
ei − (uo − soi )

T u̇o
)
ei.

(2.20)

The second term on the right side of (2.20) is only noise and the idea is to find u

and u̇ that make this noise as small as possible. Thus, the solution to (2.20) can be

found by minimizing the following cost function

(uo, u̇o) =
M∑
i=1

(
(uo − soi )

T (uo − soi )d
2
i − ((uo − soi )

T u̇o)2
)2
. (2.21)

(2.21) is polynomial in the unknowns and can be minimized using some modern

polynomial optimization packages such as GloptiPoly 3 [89]. The typical approach

followed in the polynomial optimization packages is to first transform the sum of
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squared polynomial functions to a hierarchy of semidefinite programming (SDP) re-

laxations whose associated optimal values converge to the global optimum and then

solve them using the available SDP solvers like SeDuMi [90] and SDPT3 [91]. The

size of the hierarchical SDP-relaxations grows fast with the number of unknowns and

the order of the polynomials, which limits the applicability of the approach to only

small or medium size problems [92].

The target location estimate proposed by Shames is

[
uT , u̇T

]T
= min

u,u̇
(uo, u̇o) . (2.22)

Any solution of (2.19) is also a solution of (2.22) but not vice versa as both u̇o and

−u̇o give the same cost value in (2.21). To remove the sign ambiguity of the velocity

parameters, Shames used the same LS formula described in (2.17) with d constructed

from the di’s defined below (2.19) and H̃ is found using (2.15) with u obtained from

the solution of (2.22).

The solution presented by Shames method can be used for both 2-D and 3-D

localization; however, for 3-D, the number of polynomial terms in (2.21) will be

excessive and GloptiPoly 3 will take much longer time to converge, as we shall see in

chapter 4.

2.4 Semidefinite Programming Method

Semidefinite programming (SDP) is an extension of linear programming (LP) and

share many features and characteristics of the corresponding LP algorithms, such as

the duality theory and solvability in polynomial time. Typically, it intends to mini-
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mize a linear objective function subject to nonlinear, but convex, matrix inequality

constraint. SDP can also be viewed as a special case of cone programming, which

has useful applications in combinatorial optimization, control theory, statistics and

others. The matrix inequality constraint is written in the form that all eigenvalues of

the matrix are non-negative; thus the matrix is positive semidefinite. Mathematically,

we can express the SDP problem as [93]

minimize A •ΦΦΦ ,

s.t. Lj •ΦΦΦ = hj , j = 1, 2, . . . , q ,

ΦΦΦ � 000 ,

(2.23)

where ΦΦΦ is the variable matrix that must lie in the cone of positive semidefinite

symmetric matrices, A•ΦΦΦ =
∑ν

a=1

∑ν
b=1 A(a, b)Φ(a, b) is the linear objective function

that need to be minimized and Lj •ΦΦΦ = hj , j = 1, 2, . . . , q are linear equations of ΦΦΦ

that must be satisfied. Note that A, L1, . . . ,Lq, and h1, . . . , hq are the data for the

SDP problem and they are assumed known and constant.

The idea is to convert the localization model of (2.2) into SDP problem similar to

(2.23) and solve it efficiently using some available SDP packages like CVX [94]. This

approach will be further elaborated and explained in chapters 3, 4 and 5. Similar

to this approach for other localization problems has been reached, to name but few

[95, 96, 97, 43].

SDP solutions are robust and can achieve optimum accuracy under harsh local-

ization environments in which the measurements are limited in number and/or highly

disturbed by noise. However, on the other side, the computational complexity of SDP
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limits its usages to only problems that are not highly sensitive to time. The famous

interior-point method [98] that are commonly used to solve the SDP problems is an

iterative method that depends mainly on solving a least-squares problem of the same

size as the original problem at each iteration. Theoretically, the interior-point method

according to the worst-case analysis, can solve the SDP problems to a given accuracy

within time grows no faster than a polynomial of the problem size [99]. In practice,

the observations to the behavior of the interior-point method are very optimistic as

it shows much better computational efficiency than predicted by theoretical analysis

[100].

2.5 Maximum Likelihood Estimator(MLE)

The idea of the MLE estimator is to choose a value in the parameter space that

maximizes the likelihood for a data set as the estimate of the unknown parameter.

Given a set of data g, the likelihood function for an unknown parameter vector φφφo is

denoted by £(φφφo; g). The maximum likelihood estimation is to choose the estimate

of φφφo at which the value of g is most likely to happen.

The method of maximum likelihood is very well-known in statistics. In general,

for a fixed set of data with a specific statistical model, the method of maximum

likelihood finds a set of values for the model parameters that maximize the probability

of observed data under its statistical distribution. For our localization problem, we

define the data vector g as

g =
[
fT , fo , sT

]T
, (2.24)
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and the unknown vector φφφo as

φφφo =
[
uoT , u̇oT , f oo , soT

]T
, (2.25)

We assume that the measurement noise vector n, the carrier frequency error ∆fo and

the sensor position error vector ∆s are independent and identically distributed such

that the probability density function of g can be given by

p(g|φφφo) = p(f |φφφo)× p(fo|f oo )× p(s|so) . (2.26)

We also assume that f , fo and s are normally distributed and their density functions

are respectively given by

p(f |φφφo) =
1

(2π|Qn|)
MN
2

exp

(
−1

2
(f − fo(φφφo))TQ−1

n (f − fo(φφφo))

)
, (2.27)

p(fo|f oo ) =
1√

2πσfo
exp

(
−(fo − f oo )2

2σ2
fo

)
, (2.28)

p(s|so) =
1

(2π|Qs|)
M
2

exp

(
−1

2
(s− so)TQ−1

s (s− so
)
. (2.29)

Inserting (2.27), (2.28) and (2.29) in (2.26) and looking at it from different perspective

by considering f is fixed and φφφo is variable, this equation is called the likelihood

function,

£(φφφo; g) = (2 π)
−M(N+1)−1

2 |Qn|
−MN

2 |Qs|
−M
2 σ−1

fo
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× exp

(
−(f − fo(φφφo))T Q−1

n (f − fo(φφφo))

2
− (fo − f oo )2

2σ2
fo

− (s− so)T Q−1
s (s− so)

2

)
.

(2.30)

To continue derivation, it is more convenient to deal with the log-likelihood function

which is obtained by taking the natural logarithm of both sides of (2.30) as shown

below,

ln£(φφφo; g) = κ− 1

2
(f − fo(φφφo))T Q−1

n (f − fo(φφφo))− 1

2
σ−2
fo

(fo − f oo )2

− 1

2
(s− so)T Q−1

s (s− so) , (2.31)

where κ is constant and does not depend on φφφo. Maximizing (2.31) is equivalent to

minimizing the following cost function

C(φφφo) = (f − fo(φφφo))T Q−1
n (f − fo(φφφo)) + σ−2

fo
(fo − f oo )2 + (s− so)T Q−1

s (s− so) .

(2.32)

The idea is to find φφφo that gives minimum cost function. The minimum point of

the cost function is equivalent to the point where the slope of (2.32) is zero. Since

fo(φφφo) is nonlinearly related to φφφo, the MLE will not have direct closed-form solution.

However, the MLE is still possible if there is an initial guess φφφo sufficiently close to

φφφo. The nonlinear function fo(φφφo) can be linearized and then iterative method can be

used to find the MLE. Consider φφφo is a point sufficiently close to the point that gives

minimum cost function value; the frequency measurement vector can be expanded
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using Taylor series as

fo(φφφo) = fo(φφφo) + G(φφφo)(φφφ
o − φφφo) + o(‖φφφo − φφφo‖) , (2.33)

where G(φφφo) is referred to the Jacobean matrix of fo(φφφo) given by

G(φφφo) =
∂fo

∂φφφoT
=

[
∂fo

∂uoT
,
∂fo

∂u̇oT
,
∂fo

∂f oo
,
∂fo

∂soT

]
. (2.34)

The partial derivatives in (2.34) can be found in Appendix A. Substituting (2.33) in

(2.32) will result in

C(φφφo) = (f − fo(φφφo)−G(φφφo)(φφφ
o − φφφo))T Q−1

n (f − fo(φφφo)−G(φφφo)(φφφ
o − φφφo))

+ σ−2
fo

(fo − f oo )2 + (s− so)T Q−1
s (s− so) + o(‖φφφo − φφφo‖) . (2.35)

Taking the derivative of the right side of (2.35) with respect to φφφo and equating it to

zero give

000 = −2G(φφφo)
TQ−1

n (f − fo(φφφo) + G(φφφo)φφφo −G(φφφo)φφφ
o)− 2σ−2

fo
bTfo(fo − bfoφφφ

o)

− 2BT
s Q−1

s (s−Bsφφφ
o) + o(‖φφφo − φφφo‖) , (2.36)

where bfo and Bs are the partial derivatives of f oo and so with respect to φφφo respectively

and both are derailed in Appendix A. Neglecting the nonlinear terms of ‖φφφo − φφφo‖

and solving (2.36) for φφφo will give the iterative MLE solution.

φφφl+1 =
(
G(φφφl)

TQ−1
n G(φφφl) + σ−2

fo
bTfobfo + BT

s Q−1
s Bs

)−1
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×
(
G(φφφl)

TQ−1
n (f − fo(φφφl) + G(φφφl)φφφl) + σ−2

fo
bTfofo + BT

s Q−1
s s
)
. (2.37)

The MLE in (2.37) is for the general case in which the localization geometry can be

2-D or 3-D, the scenario is for single-time or multiple-time measurements, the carrier

frequency is available or unavailable and the sensor positions are accurate or have

error. We set σ−2
fo

to zero when the carrier frequency is unavailable. When ∆fo or

∆s are absent, we set their corresponding variances to very small values to avoid the

computation of zero inverse.

2.6 CRLB

We shall establish the CRLB for the localization problem and use it as a benchmark

to examine the performance of different estimators. The object location vector for

estimation is

θθθo = [ uoT , u̇oT ]T . (2.38)

The nuisance variable vector is αααo =
[
f oo , soT

]T
. The parameter vector for evaluating

the CRLB is the two together, φφφo =
[
θθθoT , αααoT

]T
. Considering the observation vector

is g =
[
fT , fo , sT

]T
, the logarithm of the probability density function under the

Gaussian data model is

ln£(φφφo; g) = ln£(φφφo; f) + ln£(φφφo; s) + ln£(φφφo; fo)

= κ− 1

2
(f − fo)T Q−1

n (f − fo)− 1

2
σ−2
fo

(fo − f oo )2 − 1

2
(s− so)T Q−1

s (s− so) , (2.39)
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where κ is a constant not dependent on φφφo, and fo is a function of φφφo implicitly.

Applying matrix inversion on the expectation after taking derivatives with respect

to φφφo twice, the CRLB can be partitioned into a 2× 2 block matrix with the blocks

corresponding to the estimation performance for θθθo and αααo,

CRLB (φφφo) = −E
[
∂2lnf(g;φφφo))

∂φφφo∂φφφoT

]−1

=

 X Y

YT Z


−1

. (2.40)

The blocks are

X = −E
[
∂2lnf(g;φφφo)

∂θθθo∂θθθoT

]
=
∂foT

∂θθθo
Q−1
n

∂fo

∂θθθoT
, (2.41a)

Y = −E
[
∂2lnf(g;φφφo)

∂θθθo∂αααoT

]
=
∂foT

∂θθθo
Q−1
n

∂fo

∂αααoT
, (2.41b)

Z = −E
[
∂2lnf(g;φφφo)

∂αααo∂αααoT

]
=
∂foT

∂αααo
Q−1
n

∂fo

∂αααoT
+ Q−1

α , (2.41c)

and Qα = diag(σ2
fo
,Qs). Appendix A gives the expressions of the partial derivatives

in (2.41). Invoking the partitioned matrix inversion formula [101] yields from the

upper left block

CRLB (θθθo) = (X−YZ−1YT )−1 = X−1 + X−1Y
(
Z−YTX−1Y

)−1
YTX−1. (2.42)

Recognizing X−1 is the CRLB in the absence of carrier frequency and sensor position

errors, the second term is the performance loss resulted from the presence of ∆fo and

∆s.
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2.6.1 Summary

This chapter explains the scenario of the localization problem that we are going to

discuss in this research and define the mathematical model with all the variables and

constants associated with it. The chapter also presents a summary of several solution

methods that have been proposed by other researchers, along with some adjustments

for the scenarios to match the model of our problem. After that, we derived the

maximum likelihood estimator that can iteratively solve the problem when an initial

start point close to the actual object location is available. We end the chapter by

deriving the Carmar-Rao lower bound, which is an important benchmark for the

variance of any unbiased estimator.
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Chapter 3

2-D Object Localization

3.1 Formulation

The unknowns uo and u̇o are coupled together and related to the frequency observa-

tions in a highly nonlinear and complicated fashion in the measurement model (2.2).

In order to solve for the unknowns, we shall derive a formulation of the localiza-

tion problem under the assumption that the errors are not significant in which the

second and higher order error terms are negligible. The proposed formulation can

yield an object location estimate by algebraic evaluation for a closed-form solution

or by SDR for a convex optimization solution. The cases of available and unavailable

carrier frequency, and single-time and multiple-time measurements will be addressed

separately.
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3.1.1 Carrier Frequency Available

The available carrier frequency is related to the actual by (2.5). We shall express the

frequency measurement model (2.2) in terms of the inaccurate carrier frequency and

the available sensor positions. Let rk,i = ‖uok− si‖ be the Euclidean distance between

the object at instant k and the i-th sensor at noisy position si, and ρρρk,i = (uok−si)/rk,i

be the unit length vector pointing from si to uok. Applying the Taylor-series expansion

with respect to ∆si gives

1

‖uok − (si −∆si)‖
=

1

rk,i
− 1

r3
k,i

(uok − si)
T∆si + o(‖∆si‖) . (3.1)

Using (2.5)-(2.6) and (3.1), (2.2) becomes

fk,i = fo −
fo(u

o
k − si)

T u̇o

c rk,i
+ εk,i + ∆fo o(1) + o(‖∆si‖) . (3.2)

The composite noise term εk,i is

εk,i =

(
ρρρoTk,iu̇

o

c
− 1

)
∆fo +

−f oo
c rok,i

u̇oTP⊥ok,i∆si + nk,i , (3.3)

where P⊥ok,i = I − ρρρok,iρρρoTk,i is the orthogonal projection matrix of ρρρok,i. We shall define

df,k as the M × 1 vector whose i-th element is −1 + ρρρoTk,iu̇
o/c, and Ds,k as the M ×

2M matrix whose i-th row is zero except the elements Ds,k(i, 2(i − 1) + 1 : 2i) =

−u̇oTP⊥ok,if
o
o /(c r

o
k,i). Collecting the composite errors from different sensors at time k

gives

εεεk = df,k∆fo + Ds,k∆s + nk . (3.4)
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Defining the vector df = [ dTf,0, dTf,1, . . . ,d
T
f,N−1 ]T and the matrix Ds = [ DT

s,0, DT
s,1,

. . . ,DT
s,N−1 ]T , the error vector of all MN measurements εεε = [εεεT0 , . . . , εεε

T
N−1]T is

εεε = df∆fo + Ds∆s + n . (3.5)

εεε remains Gaussian and has the covariance matrix equal to

Qε = E[εεεεεεT ] = σ2
fodfd

T
f + DsQsD

T
s + Qn . (3.6)

To proceed further, it is more convenient to work with a scaled version of the

normalized Doppler shift

dk,i = c(fk,i − fo)/fo . (3.7)

It has the meaning of the object range rate at time k observed by sensor i. Rearranging

(3.2) gives

(dk,i − εk,ic/fo) rk,i = − (uok − si)
T u̇o + ∆fo o(1) + o(‖∆si‖). (3.8)

Recall that rk,i = ‖uok − si‖ which is defined before (3.1), squaring both sides yields

− 2(c/fo)dk,ir
2
k,iεk,i + d2

k,i

(
‖si‖2 − 2sTi uok + ‖uok‖

2) =
(
sTi u̇o

)2 − 2sTi u̇ou̇oTuok

+
(
uoTk u̇o

)2
+ o(εk,i) + ∆fo o(1) + o(‖∆si‖) . (3.9)

In terms of coordinate components, we have

(
sTi u̇o

)2
= x2

i ẋ
o2 + y2

i ẏ
o2 + 2xiyiẋ

oẏo , (3.10)
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and (3.9) turns into

2(c/fo)dk,ir
2
k,iεk,i + o(εk,i) + ∆fo o(1) + o(‖∆si‖) = d2

k,i ‖si‖
2− 2d2

k,is
T
i uok + d2

k,i ‖uok‖
2

− x2
i ẋ

o2 − y2
i ẏ

o2 − 2xiyiẋ
oẏo + 2sTi u̇ou̇oTuok −

(
uoTk u̇o

)2
. (3.11)

uok is the object position at the time k. It is dependent on uo and u̇o only. Expressing

it by (2.1) leads (3.11) to

2(c/fo)dk,ir
2
k,iεk,i+o(εk,i)+∆fo o(1)+o(‖∆si‖) = d2

k,i ‖si‖
2−2d2

k,is
T
i uo−2nd2

k,is
T
i u̇o

+ d2
k,i ‖uo‖

2 + 2nd2
k,iu

oT u̇o +
(
k2d2

k,i − x2
i

)
ẋo2 +

(
k2d2

k,i − y2
i

)
ẏo2 − 2xiyiẋ

oẏo

+ 2sTi u̇ou̇oTuo + 2nsTi u̇o ‖u̇o‖2 − (uoT u̇o)2 − k2 ‖u̇o‖4 − 2nuoT u̇o ‖u̇o‖2 . (3.12)

(3.12) is a rather involved nonlinear equation for the unknowns. The following

considers the observations from single-time snapshot first and continues for multiple

instants next.

Single-Time Observation

Each sensor has only one measurement. Setting k = 0 and dropping the time zero

index for simplicity, (3.12) reduces to the simpler expression

2(c/fo)dir
2
i εi + o(εi) + ∆fo o(1) + o(‖∆si‖) = d2

i ‖si‖
2− 2d2

i s
T
i uo + d2

i ‖uo‖
2− x2

i ẋ
o2

− y2
i ẏ

o2 − 2xiyiẋ
oẏo + 2sTi u̇ou̇oTuo −

(
uoT u̇o

)2
. (3.13)

(3.13) remains to be a highly nonlinear equation with respect to uo and u̇o. We
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shall formulate the localization problem as a constrained optimization. Let the un-

known vector be

ϕϕϕo =
[
uoT , ‖uo‖2 , ẋo2, ẏo2, ẋoẏo, uoT u̇ou̇oT ,

(
uoT u̇o

)2
]T

. (3.14)

Also, define the M × 9 matrix

A =



2d2
1s
T
1 −d2

1 x2
1 y2

1 2x1y1 −2sT1 1

2d2
2s
T
2 −d2

2 x2
2 y2

2 2x2y2 −2sT2 1

...
...

...
...

...
...

...

2d2
MsTM −d2

M x2
M y2

M 2xMyM −2sTM 1


, (3.15)

the M × 1 vector

h =
[
d2

1 ‖s1‖2 , d2
2 ‖s2‖2 , . . . , d2

M ‖sM‖
2 ]T , (3.16)

and the M ×M matrix

B = 2
c

fo
diag

{[
d1r

2
1 , d2r

2
2 , . . . , dMr

2
M

]}
. (3.17)

Over i = 1, 2, . . . ,M , (3.13) forms the matrix equation after dropping the second and

higher order error terms,

Bεεε ' h−Aϕϕϕo. (3.18)

The approximation is valid when the error is small. ϕϕϕo has 9 elements but the number

of independent variables is only 4. Five constraints are necessary to relate the elements

of the variable ϕϕϕ for the estimation of ϕϕϕo. Based on ϕϕϕo defined in (3.14), Table 3.1
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Table 3.1: Relations Among the Elements of ϕϕϕ for the Single-Time Measurement
Case

Elements Relations
ϕ(1) = x ϕ(3) = ϕ(1)2 + ϕ(2)2

ϕ(2) = y ϕ(6)2 = ϕ(4)ϕ(5)
ϕ(3) = x2 + y2 ϕ(7) = ϕ(1)ϕ(4) + ϕ(2)ϕ(6)
ϕ(4) = ẋ2 ϕ(8) = ϕ(1)ϕ(6) + ϕ(2)ϕ(5)
ϕ(5) = ẏ2 ϕ(9) = ϕ(1)ϕ(7) + ϕ(2)ϕ(8)
ϕ(6) = ẋẏ
ϕ(7) = ẋ(xẋ+ yẏ) ϕ(4)ϕ(9) = ϕ(7)ϕ(7)
ϕ(8) = ẏ(xẋ+ yẏ) ϕ(5)ϕ(9) = ϕ(8)ϕ(8)
ϕ(9) = (xẋ+ yẏ)2 ϕ(6)ϕ(9) = ϕ(7)ϕ(8)

shows the individual components of ϕϕϕ and lists the relations among the elements.

Let the weighting matrix W be an approximation of the covariance matrix inverse

for the equation error of (3.18) that is equal to

W = B−TE
[
εεεεεεT
]−1

B−1 = B−TQ−1
ε B−1, (3.19)

where Qε is given by (3.6) with N = 1. The localization problem can be cast as a

weighted least-squares (WLS) optimization under a set of constraints as follows:

min
ϕϕϕ

J = (h−Aϕϕϕ)T W (h−Aϕϕϕ) , (3.20a)

s.t. ϕ(3) = ϕ(1)2 + ϕ(2)2, (3.20b)

ϕ(6)2 = ϕ(4)ϕ(5), (3.20c)

ϕ(7) = ϕ(1)ϕ(4) + ϕ(2)ϕ(6), (3.20d)

ϕ(8) = ϕ(1)ϕ(6) + ϕ(2)ϕ(5), (3.20e)

ϕ(9) = ϕ(1)ϕ(7) + ϕ(2)ϕ(8). (3.20f)
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The 5 quadratic constraints (3.20b)-(3.20f) come from the first five entries in the

right column of Table 3.1. The remaining three relations in the Table are redundant

in the formulation (3.20). They can be exploited to improve the tightness of the

optimization when it is approximated with SDR.

The constrained optimization problem (3.20) will be solved using unconstrained

minimization or convex optimization that will be described in Section 3.2.

Multiple-Time Observations

The transformed observation equation at a certain time instant k is (3.12). By col-

lecting in each term the lumped variable involving the object position and velocity,

we define the unknown vector as

ϕϕϕo(1 : 13) =
[
uoT , u̇oT , ‖uo‖2 , uoT u̇o , ẋo2 , ẏo2 , ẋoẏo , uoT u̇ou̇oT , ‖u̇o‖2 u̇oT

]T
,

ϕϕϕo(14 : 16) =
[

(uoT u̇o)2 , ‖u̇o‖4 , uoT u̇o ‖u̇o‖2 ]T .
(3.21)

ϕϕϕo in this case has 16 elements and the individual variables are shown in Table 3.2.

The number of actual unknowns is only 4 and the elements are related to each other.

Table 3.2 tabulates all possible first and second order relations for the elements of the

estimation variable ϕϕϕ.

Let Ak be the M × 16 matrix having the i-th row

Ak(i, 1 : 9) =
[

2d2
k,is

T
i , 2kd2

k,is
T
i , −d2

k,i , −2kd2
k,i , x

2
i − k2d2

k,i , y
2
i − k2d2

k,i , 2xiyi
]
,

Ak(i, 10 : 16) =
[
− 2sTi , −2ksTi , 1 , k2 , 2k

]
,

(3.22)
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Table 3.2: Relations Among the Elements of ϕϕϕ for the Multiple-Time Measurements
Case

Elements Relations
ϕ(1) = x ϕ(7) = ϕ(3)2 ϕ(7)ϕ(15) = ϕ(12)ϕ(12)
ϕ(2) = y ϕ(8) = ϕ(4)2 ϕ(7)ϕ(16) = ϕ(10)ϕ(12)
ϕ(3) = ẋ ϕ(9) = ϕ(3)ϕ(4) ϕ(8)ϕ(14) = ϕ(11)ϕ(11)
ϕ(4) = ẏ ϕ(10) = ϕ(3)ϕ(6) ϕ(8)ϕ(15) = ϕ(13)ϕ(13)
ϕ(5) = x2 + y2 ϕ(11) = ϕ(4)ϕ(6) ϕ(8)ϕ(16) = ϕ(11)ϕ(13)
ϕ(6) = xẋ+ yẏ ϕ(14) = ϕ(6)ϕ(6) ϕ(9)ϕ(14) = ϕ(10)ϕ(11)
ϕ(7) = ẋ2 ϕ(9)ϕ(15) = ϕ(12)ϕ(13)
ϕ(8) = ẏ2 ϕ(5) = ϕ(1)2 + ϕ(2)2 ϕ(9)ϕ(16) = ϕ(10)ϕ(13)
ϕ(9) = ẋẏ ϕ(6) = ϕ(1)ϕ(3) + ϕ(2)ϕ(4) ϕ(9)ϕ(16) = ϕ(11)ϕ(12)
ϕ(10) = ẋ(xẋ+ yẏ) ϕ(10) = ϕ(1)ϕ(7) + ϕ(2)ϕ(9) ϕ(10)ϕ(15) = ϕ(12)ϕ(16)
ϕ(11) = ẏ(xẋ+ yẏ) ϕ(11) = ϕ(1)ϕ(9) + ϕ(2)ϕ(8) ϕ(10)ϕ(16) = ϕ(12)ϕ(14)
ϕ(12) = ẋ(ẋ2 + ẏ2) ϕ(12) = ϕ(3)ϕ(7) + ϕ(4)ϕ(9) ϕ(11)ϕ(15) = ϕ(13)ϕ(16)
ϕ(13) = ẏ(ẋ2 + ẏ2) ϕ(13) = ϕ(3)ϕ(9) + ϕ(4)ϕ(8) ϕ(11)ϕ(16) = ϕ(13)ϕ(14)
ϕ(14) = (xẋ+ yẏ)2 ϕ(14) = ϕ(1)ϕ(10) + ϕ(2)ϕ(11) ϕ(14)ϕ(15) = ϕ(16)ϕ(16)
ϕ(15) = (ẋ2 + ẏ2)2 ϕ(15) = ϕ(3)ϕ(12) + ϕ(4)ϕ(13)
ϕ(16) = (xẋ+ yẏ)(ẋ2 + ẏ2) ϕ(16) = ϕ(1)ϕ(12) + ϕ(2)ϕ(13) ϕ(3)ϕ(12) = ϕ(7)(ϕ(7) + ϕ(8))

ϕ(16) = ϕ(3)ϕ(10) + ϕ(4)ϕ(11) ϕ(3)ϕ(15) = ϕ(12)(ϕ(7) + ϕ(8))
ϕ(3)ϕ(16) = ϕ(10)(ϕ(7) + ϕ(8))

ϕ(3)ϕ(8) = ϕ(4)ϕ(9) ϕ(4)ϕ(13) = ϕ(8)(ϕ(7) + ϕ(8))
ϕ(3)ϕ(9) = ϕ(4)ϕ(7) ϕ(4)ϕ(15) = ϕ(13)(ϕ(7) + ϕ(8))
ϕ(3)ϕ(10) = ϕ(6)ϕ(7) ϕ(4)ϕ(16) = ϕ(11)(ϕ(7) + ϕ(8))
ϕ(4)ϕ(11) = ϕ(6)ϕ(8) ϕ(6)ϕ(15) = ϕ(10)ϕ(12) + ϕ(11)ϕ(13)
ϕ(7)ϕ(8) = ϕ(9)ϕ(9) ϕ(6)ϕ(16) = ϕ(14)(ϕ(7) + ϕ(8))

ϕ(7)ϕ(14) = ϕ(10)ϕ(10)
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the length M vector hk be

hk = [d2
k,1 ‖s1‖2 , d2

k,2 ‖s2‖2 , . . . , d2
k,M ‖sM‖

2]T , (3.23)

and the size M matrix Bk be

Bk = 2
c

fo
diag

{[
dk,1r

2
k,1, dk,2r

2
k,2, . . . , dk,Mr

2
k,M

]}
. (3.24)

Putting together Ak, hk and Bk for k = 0, 1, . . . , N − 1 separately such that

A =
[
AT

0 , AT
1 , . . . , AT

N−1

]T
, (3.25)

h =
[
hT0 , hT1 , . . . , hTN−1

]T
, (3.26)

B = diag {B0 , B1 , . . . , BN−1 } , (3.27)

we can represent all MN equations over i = 1, . . . ,M and k = 0, . . . , N − 1 of (3.12)

in a matrix form as

Bεεε ' h−Aϕϕϕo, (3.28)

where the second and higher order errors terms have been ignored and the approxima-

tion is reasonable when the errors are small. The optimization for the multiple-time

measurements case, using the weighting matrix in (3.19) with N larger than one, is

min
ϕϕϕ

J = (h−Aϕϕϕ)T W (h−Aϕϕϕ) , (3.29a)

s.t. ϕ(5) = ϕ(1)2 + ϕ(2)2, (3.29b)

ϕ(6) = ϕ(1)ϕ(3) + ϕ(2)ϕ(4), (3.29c)
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ϕ(7) = ϕ(3)2, (3.29d)

ϕ(8) = ϕ(4)2, (3.29e)

ϕ(9) = ϕ(3)ϕ(4), (3.29f)

ϕ(10) = ϕ(1)ϕ(7) + ϕ(2)ϕ(9), (3.29g)

ϕ(11) = ϕ(1)ϕ(9) + ϕ(2)ϕ(8), (3.29h)

ϕ(12) = ϕ(3)ϕ(7) + ϕ(4)ϕ(9), (3.29i)

ϕ(13) = ϕ(3)ϕ(9) + ϕ(4)ϕ(8), (3.29j)

ϕ(14) = ϕ(1)ϕ(10) + ϕ(2)ϕ(11), (3.29k)

ϕ(15) = ϕ(3)ϕ(12) + ϕ(4)ϕ(13), (3.29l)

ϕ(16) = ϕ(1)ϕ(12) + ϕ(2)ϕ(13). (3.29m)

We have taken the first 12 relations in Table 3.2 to impose constraints among the

16 elements of ϕϕϕ, for the purpose to fix the number of independent variables to 4.

The remaining relations in Table 3.2 are not needed in the formulation. They will be

used to improve the optimization when (3.29) is approximated with SDR.

3.1.2 Carrier Frequency Unavailable

When the carrier frequency is not known, f oo is an additional unknown. In terms of

the available noisy sensor positions, (2.2) becomes after using (2.6) and (3.1),

fk,i = f oo −
f oo (uok − si)

T u̇o

c rk,i
+ εk,i + o(‖∆si‖) . (3.30)
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The composite noise term εk,i is

εk,i =
−f oo
c rok,i

u̇oTP⊥ok,i∆si + nk,i , (3.31)

where P⊥ok,i is given below (3.3). The covariance matrix of the composite noise vector

from all measurements is

Qε = DsQsD
T
s + Qn , (3.32)

and Ds is defined below (3.3) and (3.4).

Rather than constructing a pseudo-linear formulation that would result in a large

number of auxiliary variables and constraints, we shall utilize the formulation for the

known but erroneous carrier frequency case for joint estimation of the object location

and emitted frequency. The methodology will become clear in Section 3.3 for finding

the solution.

3.2 Solution: Carrier Frequency Available

We shall present two methods to solve the constrained WLS problems for localization.

One is based on the unconstrained successive minimization that results in an algebraic

closed-form solution. The other is the convex optimization method using SDR. The

former is computationally attractive and is suitable in the small noise environment.

The other is more computationally demanding but can yield better results when the

noise level is high. Both methods will be able to achieve the CRLB performance

in their intended operating environment. This section presents the solutions for the

single-time and multiple-time observations when the carrier frequency is available.
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The solutions when the carrier frequency is unavailable will be described in the next

section.

3.2.1 Algebraic Solution

This solution assumes the elements of ϕϕϕ are independent variables to obtain the WLS

solution, and the constraints are exploited next through nonlinear transformation to

refine the estimate [12]. Albeit the matrix and vector variables A, B, h and W are

defined differently, both the single-time and multiple-time observation cases share the

common form that the solution to (3.20a) or (3.29a) when ignoring the constraints is

ϕϕϕ =
(
ATWA

)−1
ATWh . (3.33)

The covariance matrix of the WLS solution ϕϕϕ can reasonably be approximated by

[12],

cov (ϕϕϕ) '
(
ATWA

)−1
, (3.34)

when the noise in A is not significant to be neglected.

The weighting matrix W is given by (3.19) and it is unavailable since B and

Qε involve the true object location. Nevertheless, we can construct W through

approximating the true values needed with the least-squares solution of ϕϕϕ by using

W = I in (3.33). The resulting error for the solution of ϕϕϕ is often negligible as the

WLS optimization is not sensitive to the error in the weighting matrix [9, 10].

The refinement steps for the single-time and multiple-time observation scenarios

are not the same, due to the differences in the definitions of ϕϕϕ and the constraints.

They are elaborated separately below.
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Single-Time Observation

We shall utilize the relations (3.20b)-(3.20f) among the elements of ϕϕϕ to improve the

estimation accuracy. Let us introduce the separate unknown vector

ϕ̃ϕϕo =
[
uoT , u̇oT ⊗ u̇oT

]T
, (3.35)

that has independent variables. It consists of the first, second, fourth and fifth ele-

ments of ϕϕϕo in (3.14). Also, let the pseudo data vector constructed from the WLS

solution (3.33) be

h̃ =
[
ϕϕϕT (1 : 5) , ϕ2(6) , ϕϕϕT (7 : 9)

]T
. (3.36)

Expressing ϕϕϕ = ϕϕϕo+∆ϕϕϕ where ∆ϕϕϕ is the estimation error of the WLS solution, every

element in h̃ can be expressed in terms of the elements of ϕϕϕ and ϕ̃ϕϕo. In particular,

h̃(1 : 2) = ϕ̃ϕϕo(1 : 2) + ∆ϕϕϕ(1 : 2) , (3.37a)

h̃(4 : 5) = ϕ̃ϕϕo(3 : 4) + ∆ϕϕϕ(4 : 5) . (3.37b)

Moreover, from the five constraints in (3.20),

h̃(3) = ϕ(1)ϕ̃o(1) + ϕ(2)ϕ̃o(2)− ϕ(1)∆ϕ(1)− ϕ(2)∆ϕ(2) + ∆ϕ(3) + ∆ϕ(1)2 + ∆ϕ(2)2,

(3.38a)

h̃(6) =
1

2
ϕ(5)ϕ̃o(3) +

1

2
ϕ(4)ϕ̃o(4)− 1

2
ϕ(5)∆ϕ(4)− 1

2
ϕ(4)∆ϕ(5) + 2ϕ(6)∆ϕ(6)

+ ∆ϕ(4)∆ϕ(5)−∆ϕ(6)2, (3.38b)

h̃(7) = ϕ(4)ϕ̃o(1) + ϕ(6)ϕ̃o(2)− ϕ(1)∆ϕ(4)− ϕ(2)∆ϕ(6) + ∆ϕ(7) + ∆ϕ(1)∆ϕ(4)

+ ∆ϕ(2)∆ϕ(6), (3.38c)
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h̃(8) = ϕ(6)ϕ̃o(1) + ϕ(5)ϕ̃o(2)− ϕ(2)∆ϕ(5)− ϕ(1)∆ϕ(6) + ∆ϕ(8) + ∆ϕ(1)∆ϕ(6)

+ ∆ϕ(2)∆ϕ(5), (3.38d)

h̃(9) = ϕ(7)ϕ̃o(1) + ϕ(8)ϕ̃o(2)− ϕ(1)∆ϕ(7)− ϕ(2)∆ϕ(8) + ∆ϕ(9) + ∆ϕ(1)∆ϕ(7)

+ ∆ϕ(2)∆ϕ(8). (3.38e)

In (3.38), we have avoided the true values appearing in the error terms by as-

sociating the elements of ϕ̃ϕϕo with those of ϕϕϕo. For instance, (3.38a) has applied

ϕ̃o(1)∆ϕ(1) = ϕo(1)∆ϕ(1) = ϕ(1)∆ϕ(1)−∆ϕ(1)2 and ϕ̃o(2)∆ϕ(2) = ϕo(2)∆ϕ(2) =

ϕ(2)∆ϕ(2) − ∆ϕ(2)2; (3.38b) has used ϕ̃o(4)∆ϕ(4) = ϕo(5)∆ϕ(4) = ϕ(5)∆ϕ(4) −

∆ϕ(4)∆ϕ(5), ϕ̃o(3)∆ϕ(5) = ϕo(4)∆ϕ(5) = ϕ(4)∆ϕ(5)−∆ϕ(4)∆ϕ(5) and ϕo(6)∆ϕ(6) =

ϕ(6)∆ϕ(6)−∆ϕ(6)2, etc. Accordingly, we construct the 9× 4 matrix

Ã =



1 0 0 0

0 1 0 0

ϕ(1) ϕ(2) 0 0

0 0 1 0

0 0 0 1

0 0 ϕ(5)/2 ϕ(4)/2

ϕ(4) ϕ(6) 0 0

ϕ(6) ϕ(5) 0 0

ϕ(7) ϕ(8) 0 0



, (3.39)
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and the 9× 9 matrix

B̃ = diag{[1T5 , 2ϕ(6), 1T3 ]T} −C . (3.40)

C is a sparse matrix with the non-zero elements given by

C(3, 1 : 2) = ϕϕϕT (1 : 2) , C(9, 7 : 8) = ϕϕϕT (1 : 2) ,

C(6 : 8, 4 : 6) =


ϕ(5)/2 ϕ(4)/2 0

ϕ(1) 0 ϕ(2)

0 ϕ(2) ϕ(1)

 .
(3.41)

(3.38) in matrix form, after dropping the second and higher order error terms, is

B̃∆ϕϕϕ ' h̃− Ãϕ̃ϕϕo . (3.42)

The WLS solution for ϕ̃ϕϕo is

ϕ̃ϕϕ = (ÃTW̃Ã)−1ÃTW̃h̃ . (3.43)

W̃ is set as

W̃ = B̃−T (ATWA)B̃−1 , (3.44)

which is an approximation of E[B̃∆ϕϕϕ∆ϕϕϕT B̃T ]−1 where (3.34) has been used.

At last, we obtain the object position and velocity estimates from ϕ̃ϕϕ using (3.35)

by

θθθ =

u

u̇

 =

 ϕ̃ϕϕ(1 : 2)

P
√
ϕ̃ϕϕ(3 : 4)

 . (3.45)
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The matrix P has four possible choices:

P =

±1 0

0 ±1

 , (3.46)

whose purpose is to resolve the sign ambiguity after the square-root operation. The

correct choice of P is determined by trying all four possibilities of θθθ and selecting

the one that gives the smallest approximate Maximum Likelihood (ML) cost function

deduced from (3.2), which is defined by (3.58)-(3.59) with Qε equal to (3.6).

Multiple-Time Observations

The refinement step in this case uses the same unknown vector in (2.38). It is the first

four elements of ϕϕϕo defined in (3.21). From the constraints (3.29b)-(3.29m), following

similar procedure as in the single-time observation case by expressing ϕϕϕ as ϕϕϕo + ∆ϕϕϕ

and dropping the second and higher order error terms, the associated set of linear

equations is

B̃∆ϕϕϕ ' ϕϕϕ− Ãθθθo. (3.47)
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The matrices Ã and B̃ are

Ã =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ϕ(1) ϕ(2) 0 0

ϕ(3) ϕ(4) 0 0

0 0 ϕ(3) 0

0 0 0 ϕ(4)

0 0 ϕ(4)/2 ϕ(3)/2

ϕ(7) ϕ(9) 0 0

ϕ(9) ϕ(8) 0 0

0 0 ϕ(7) ϕ(9)

0 0 ϕ(9) ϕ(8)

ϕ(10) ϕ(11) 0 0

0 0 ϕ(12) ϕ(13)

ϕ(12) ϕ(13) 0 0



, (3.48)

and

B̃ = I16×16 −C . (3.49)
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The elements of C are zeros except for those in (3.50),

C(5, 1 : 2) = ϕϕϕT (1 : 2) , C(14, 10 : 11) = ϕϕϕT (1 : 2) ,

C(6 : 9, 3 : 4) =



ϕ(1) ϕ(2)

ϕ(3) 0

0 ϕ(4)

ϕ(4)/2 ϕ(3)/2


, C(10 : 13, 7 : 9) =



ϕ(1) 0 ϕ(2)

0 ϕ(2) ϕ(1)

ϕ(3) 0 ϕ(4)

0 ϕ(4) ϕ(3)


,

C(15 : 16, 12 : 13) =

ϕ(3) ϕ(4)

ϕ(1) ϕ(2)

 .

(3.50)

The WLS solution for θθθo is

θθθ = (ÃTW̃Ã)−1ÃTW̃ϕϕϕ , (3.51)

and the weighting matrix is set to (3.44) where B̃ is now given by (3.49)-(3.50). The

covariance matrix of the estimate over the small error region can be approximated by

[12]

cov(θθθ) ' (ÃTW̃Ã)−1 , (3.52)

where the noise in Ã and W̃ are small enough to be neglected.

The Algorithm 1 Table summarizes the proposed algebraic solution for the single-

time observation case and Algorithm 2 Table for the multiple-time observation sce-

nario. In Algorithm 2, we have repeated steps 8 and 9 several times to improve the

weighting matrix W̃ as we approximate the true object location it requires by an

estimate. Repeating such processing is not needed for Algorithm 1 unless the object
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Algorithm 1: Algebraic Solution for Single-Time Observation

Input: f - frequency measurement vector.
s - sensor position vector.
Qn, Qs, σ

2
fo

- noise covariance matrices.

Output: θθθ - object location estimate.
Implementation:
1. Construct A and h according to (3.15)-(3.16).
2. Set W = I.
3. Solve for ϕϕϕ using (3.33).
4. Obtain an initial estimate of θθθ using (3.55).
5. Find P using (3.46) and the procedure below it.
6. Update W using (3.6), (3.17) and (3.19) by approximating

the true values needed for ri, df and Ds from the
initial estimate of θθθ.

7. Repeat steps 3-6.

8. Construct Ã and h̃ according to (3.39) and (3.36).

9. Form W̃ using (3.40)-(3.41) and (3.44).
10. Solve for ϕ̃ϕϕ using (3.43).
11. Obtain the final estimate θθθ using (3.45)-(3.46) and the

procedure below them.

is found located near the sensors.

3.2.2 SDR Solution

This solution transforms the constrained optimization to a semi-definite programming

(SDP) problem [102, 103] through SDR, so that it can be solved efficiently by some

convex optimization package such as CVX [94].

52



Algorithm 2: Algebraic Solution for Multiple-Time Observations

Input: f - frequency measurement vector.
s - sensor position vector.
Qn, Qs, σ

2
fo

- noise covariance matrices.

Output: θθθ - object location estimate.
Implementation:
1. Construct A and h according to (3.22)-(3.23) and (3.25)-(3.26).
2. Set W = I.
3. Solve for ϕϕϕ using (3.33).
4. Set an initial estimate of θθθ as ϕϕϕ(1 : 4).
5. Update W using (3.6), (3.19), (3.24) and (3.27) by approximating

the true values with those computed from the initial
estimate of θθθ.

6. Repeat steps 3-5.

7. Construct Ã according to (3.48).

8. Form W̃ by (3.44), (3.49)-(3.50) using θθθ to obtain ϕϕϕ from (3.21).
9. Generate the final estimate θθθ using (3.51).
10. Repeat steps 8-9 a few times.

Single-Time Observation

The optimization problem is (3.20). Expanding the cost function J and dropping the

constant term hTWh that does not depend on the unknown ϕϕϕ, it becomes

J̄(ϕϕϕ,ΦΦΦ) = tr
(
ATWAΦΦΦ

)
− 2hTWAϕϕϕ , (3.53)

where ΦΦΦ = ϕϕϕϕϕϕT and has rank one.

We form the SDP by considering both ϕϕϕ and ΦΦΦ are variables and relaxing the rank

of ΦΦΦ to be larger than one, resulting in

min
ϕϕϕ,ΦΦΦ

J̄(ϕϕϕ,ΦΦΦ) , (3.54a)
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Table 3.3: Constraints Among the Elements of ϕϕϕ and ΦΦΦ for the SDR Solution of the
Single-Time Measurement Case

ϕϕϕ and ΦΦΦ ΦΦΦ
ϕ(3) = Φ(1, 1) + Φ(2, 2) Φ(4, 9) = Φ(7, 7)
ϕ(7) = Φ(1, 4) + Φ(2, 6) Φ(5, 9) = Φ(8, 8)
ϕ(8) = Φ(1, 6) + Φ(2, 5) Φ(6, 6) = Φ(4, 5)
ϕ(9) = Φ(1, 7) + Φ(2, 8) Φ(6, 9) = Φ(7, 8)

ϕ(3) ≥ 0
ϕ(4) ≥ 0
ϕ(5) ≥ 0
ϕ(9) ≥ 0

s.t.

ΦΦΦ ϕϕϕ

ϕϕϕT 1

 � 0 , (3.54b)

All constraints specified in Table 3.3. (3.54c)

In the SDP, (3.54b) comes from relaxing the rank of ΦΦΦ. The constraints in Table

3.3, which includes those of (3.20b)-(3.20f), are directly deduced based on Table 3.1,

by realizing from the definition of ΦΦΦ below (3.53) that its (i, j)-th element is simply

related to those of ϕϕϕ by Φ(i, j) = ϕ(i)ϕ(j). All constraints are linear, except the

four non-negative constraints from the definition of ϕϕϕo. In addition to the five con-

straints (3.20b)-(3.20f), including the remaining constraints from Table 3.1 improves

the solution, due to the rank-1 relaxation of ΦΦΦ in the SDP.

The relaxed optimization problem can be solved by a convex optimization package.

The object localization estimate is

θθθ =

u

u̇

 =

 ϕϕϕ(1 : 2)

P
√
ϕϕϕ(4 : 5)

 , (3.55)
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where P is given by (3.46) whose correct choice is elaborated below (3.46).

Multiple-Time Observations

The equivalent objective function of (3.29) has the same form as (3.53). After SDR,

the relaxed SDP is

min
ϕϕϕ,ΦΦΦ

J̄(ϕϕϕ,ΦΦΦ) , (3.56a)

s.t.

ΦΦΦ ϕϕϕ

ϕϕϕT 1

 � 0 , (3.56b)

All constraints specified in Table 3.4. (3.56c)

The constraints listed in Table 3.4 is deduced directly from Table 3.2. Due to the

expansion of the number of variables from the original 4 unknowns to the 16 inϕϕϕ, using

only the 12 constraints (3.29b)-(3.29m) is found not sufficient after relaxation. We

include all constraints from the first and second order relations among the elements

of ϕϕϕ. Exploiting all of the constraints not only improves the tightness of the SDP

optimization to the original, but also increases the noise tolerance.

After solving (3.56), the object location estimate is the first four elements of the

ϕϕϕ solution from the relaxed SDP,

θθθ = ϕϕϕ(1 : 4). (3.57)

The Algorithm 3 Table summarizes the proposed SDR solution for the single-

time observation case, and the Algorithm 4 Table for the multiple-time observation
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Table 3.4: Constraints on ϕϕϕ and ΦΦΦ for the SDR Solution of the Multiple-Time Mea-
surements Case

ϕϕϕ and ΦΦΦ ΦΦΦ
ϕ(5) = Φ(1, 1) + Φ(2, 2) Φ(3, 8) = Φ(4, 9)
ϕ(6) = Φ(1, 3) + Φ(2, 4) Φ(3, 9) = Φ(4, 7)

ϕ(7) = Φ(3, 3) Φ(3, 10) = Φ(6, 7)
ϕ(8) = Φ(4, 4) Φ(4, 11) = Φ(6, 8)
ϕ(9) = Φ(3, 4) Φ(7, 8) = Φ(9, 9)
ϕ(10) = Φ(3, 6) Φ(7, 14) = Φ(10, 10)

ϕ(10) = Φ(1, 7) + Φ(2, 9) Φ(7, 15) = Φ(12, 12)
ϕ(11) = Φ(4, 6) Φ(7, 16) = Φ(10, 12)

ϕ(11) = Φ(1, 9) + Φ(2, 8) Φ(8, 14) = Φ(11, 11)
ϕ(12) = Φ(3, 7) + Φ(4, 9) Φ(8, 15) = Φ(13, 13)
ϕ(13) = Φ(3, 9) + Φ(4, 8) Φ(8, 16) = Φ(11, 13)

ϕ(14) = Φ(6, 6) Φ(9, 14) = Φ(10, 11)
ϕ(14) = Φ(1, 10) + Φ(2, 11) Φ(9, 15) = Φ(12, 13)
ϕ(15) = Φ(3, 12) + Φ(4, 13) Φ(9, 16) = Φ(10, 13)
ϕ(16) = Φ(1, 12) + Φ(2, 13) Φ(9, 16) = Φ(11, 12)
ϕ(16) = Φ(3, 10) + Φ(4, 11) Φ(10, 15) = Φ(12, 16)

Φ(10, 16) = Φ(12, 14)
ϕ(5) ≥ 0 Φ(11, 15) = Φ(13, 16)
ϕ(7) ≥ 0 Φ(11, 16) = Φ(13, 14)
ϕ(8) ≥ 0 Φ(14, 15) = Φ(16, 16)
ϕ(14) ≥ 0 Φ(3, 12) = Φ(7, 7) + Φ(7, 8)
ϕ(15) ≥ 0 Φ(3, 15) = Φ(7, 12) + Φ(8, 12)

Φ(3, 16) = Φ(7, 10) + Φ(8, 10)
Φ(4, 13) = Φ(7, 8) + Φ(8, 8)

Φ(4, 15) = Φ(7, 13) + Φ(8, 13)
Φ(4, 16) = Φ(7, 11) + Φ(8, 11)
Φ(6, 15) = Φ(7, 16) + Φ(8, 16)
Φ(6, 16) = Φ(7, 14) + Φ(8, 14)
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Algorithm 3: SDR Solution for Single-Time Observation

Input: f - frequency measurement vector.
s - sensor position vector.
Qn, Qs, σ

2
fo

- noise covariance matrices.

Output: θθθ - object location estimate.
Implementation:
1. Create A and h according to (3.15)-(3.16).
2. Set W = I.
3. Construct the SDP problem as follows:

a. Define ϕϕϕ as a 9× 1 vector and ΦΦΦ as a 9× 9 symmetric
matrix.

b. Set the objective function as (3.53).
c. Set the constraints according to (3.54b) and Table 3.3.

4. Use an SDP solver to find ϕϕϕ and ΦΦΦ.
5. Form an estimate of θθθ using (3.55).
6. Determine P using (3.46) and the procedure below it.
7. Update W using (3.6), (3.17) and (3.19) by approximating the

true values with those computed from the estimate of θθθ.
8. Repeat Steps 3-6.

scenario.

3.3 Solution: Carrier Frequency Unavailable

When the carrier frequency is not available or the error ∆fo is not zero mean, fo

becomes an unknown in addition to θθθo = [ uoT , u̇oT ]T . While it is possible to create

a formulation for constrained optimization in this case as what we did when it is

available, the number of elements in ϕϕϕo and the number of constraints would be

excessive. We shall propose an approach for obtaining a location estimate in this

case, by making use of the solution when the carrier frequency is available.

When accounting for sensor position errors, the measurement model for the un-

known carrier frequency case is (3.30), where the covariance matrix of the composite
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Algorithm 4: SDR Solution for Multiple-Time Observations

Input: f - frequency measurement vector.
s - sensor position vector.
Qn, Qs, σ

2
fo

- noise covariance matrices.

Output: θθθ - object location estimate.
Implementation:
1. Create A and h according to (3.22)-(3.23) and (3.25)-(3.26).
2. Set W = I.
3. Construct the SDP problem as follows:

a. Define ϕϕϕ as a 16× 1 vector and ΦΦΦ as a 16× 16
symmetric matrix.

b. Set the objective function as (3.53).
c. Set the constraints according to (3.56b) and Table 3.4.

4. Use an SDP solver to find ϕϕϕ and ΦΦΦ.
5. Form an estimate of θθθ using (3.57).
6. Update W using (3.6), (3.19), (3.24) and (3.27) by approximating

the true values with those computed from the estimate of θθθ.
7. Repeat steps 3-5.

error resulting from the frequency measurement noise and sensor position errors is

(3.32). The composite error is Gaussian distributed since the two components are and

the ML cost function of (3.30) can be approximated by the following after dropping

o(‖∆s‖),

J(fo, θθθ) =
(
f − f̂(fo, θθθ)

)T
Q−1
ε

(
f − f̂(fo, θθθ)

)
. (3.58)

f̂(fo, θθθ) is the reconstructed frequency vector using the model (2.2) with f oo replaced

by fo and soi by si, i.e.,

f̂k,i(fo, θθθ) = fo −
fo(θθθ(1 : 2) + k θθθ(3 : 4)− si)

Tθθθ(3 : 4)

c ‖θθθ(1 : 2) + k θθθ(3 : 4)− si‖
. (3.59)

J(fo, θθθ) is a highly nonlinear complicated function of the unknowns. For a given fo,

a solution of θθθ has been derived in Section 3.2, where σ2
fo

is set to zero in (3.6) when

forming the weighting matrix W. Hence we can interpret (3.58) as a function of
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single unknown fo,

J(fo) =
(
f − f̂(fo)

)T
Q−1
ε

(
f − f̂(fo)

)
. (3.60)

The fo that minimizes (3.60) can be found by a simple sequential search within an

interval. Essentially, with a certain fo, we (i) find the corresponding θθθ using a solution

method in Section 3.2, (ii) obtain the elements of f̂(fo) by f̂k,i(fo) = f̂k,i(fo, θθθ) from

(3.59), and (iii) evaluate J(fo) by (3.60). Among the trial fo values, the one that

yields the smallest J(fo) is the solution for f oo . The associated θθθ is the solution for

θθθo.

In practice, the range of possible values of fo is known, based on some prior

knowledge or derived from the observed frequency values [84]. The sequential search

can be accomplished through a coarse grid search followed by the Newton-Raphson

iteration for better efficiency and higher accuracy. The difference between the case

where fo is completely not known and the case where fo is available but ∆fo has a

non-zero mean will be only the size of the grid search. The number of grid points can

be reduced to account only for the small region around the available fo taking into

consideration that σfo plays an important role in controlling the size of this region.

The Newton-Raphson iteration is [104]

f (l+1)
o = f (l)

o −
(
∇2J(f (l)

o )
)−1∇J(f (l)

o ) , (3.61)

where l = 0, 1, . . . , lmax − 1 represents the iteration count and f
(0)
o is the carrier fre-

quency value obtained from the coarse grid search process. ∇J(•) and ∇2J(•) are

the first and second derivatives of J(•) with respect to fo. Obtaining the explicit
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expressions of ∇J(•) and ∇2J(•) is prohibitive. We resort to the numerical approxi-

mations

∇J(f (l)
o ) ' J(f

(l)
o + δ)− J(f

(l)
o )

δ
, (3.62)

∇2J(f (l)
o ) ' ∇J(f

(l)
o + δ)−∇J(f

(l)
o )

δ
, (3.63)

and δ is a small value. The maximum number of iterations lmax is chosen to satisfy

the required accuracy. Algorithm 5 summarizes the processing steps for localizing the

object when the carrier frequency is not available.

Before closing this section, we would like to comment on the number of sensors

needed for the proposed solutions. The closed-form algebraic solution considers all 9

variables in (3.14) are independent in the first WLS optimization step. As a result it

requires at least 9 sensors to operate. The SDR solution, on the other hand, imposes

constraints among the elements of ϕϕϕ during the optimization process and thereby

requiring less sensors. Simulations show that 6 sensors are sufficient for SDR to

produce a reasonable estimate and 7 sensors to yield the CRLB performance. The

sensor requirements are the same regardless the carrier frequency fo is available or

not. For multiple-time observations, the number of sensors required for both the

algebraic and SDR solutions are less. The last subsection in Section 3.5 examines

further the number of sensors needed of the proposed algorithms.

3.4 Analysis

Under the first order analysis where the second and higher order noise terms are

negligible, we shall derive the theoretical covariance matrix of the proposed algebraic
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Algorithm 5: Algorithm for Localization when Carrier
Frequency Unavailable

Input: f - frequency measurement vector.
s - sensor position vector.
Qn, Qs, σ

2
fo

- noise covariance matrices.

fo,min , fo,max - minimum and maximum values of fo.
µ - step-size.
δ - small value for obtaining gradient.
lmax - maximum num. of Newton-Raphson iterations.

Output: θθθ - object location estimate.
Implementation:
1. For fo,tst = fo,min to fo,max stepping by µ,

1.1. Find θθθ by Algorithm (∗) using fo,tst as the carrier
frequency.

1.2. Obtain f̂(fo,tst) from (3.59).
1.3. Determine Qε using (3.32) by approximating the true

values with fo,tst and those computed from θθθ.
1.4. Obtain J(fo,tst) using (3.60).

end For

2. Set f
(0)
o to the trial fo,tst value having J(fo,tst) the smallest.

3. Set l = 0.

4. Find ∇J(f
(l)
o ) and ∇2J(f

(l)
o ) using (3.60), (3.62)-(3.63).

5. Determine f
(l+1)
o using (3.61).

6. Repeat steps 4-5 for l = 1, 2, . . . , lmax − 1 or reaching
required accuracy.

7. Obtain the final solution of θθθ using f
(lmax)
o and

Algorithm (∗).

Algorithm (∗) in steps 1.1 and 7 is Algorithm 1, 2, 3 or 4
according to the scenario (single-time or multiple-time
measurements) and the solution method.
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solution and examine the conditions needed for achieving the CRLB performance.

The analysis presented is for the more general case of multiple-time observations.

The analytical result and conclusion are valid for the single-time observation scenario

as well when the variables are defined accordingly.

3.4.1 Carrier Frequency Available

The covariance matrix of the proposed solution for the multiple-times observation

case having fo available is (3.52). Using (3.19) and (3.44), its inverse over the small

error region is

cov(θθθ)−1 ' ÃT B̃−TATB−T cov(εεε)−1B−1AB̃−1Ã. (3.64)

Let D = [ df , Ds ] for convenience so that (3.6) can be written as cov(εεε) = Qn +

DQαD
T , where Qα is defined below (2.41). Applying the matrix inversion lemma

[104] gives

cov(εεε)−1 = Q−1
n −Q−1

n D(Q−1
α + DTQ−1

n D)−1DTQ−1
n . (3.65)

Inserting it to (3.64) yields

cov(θθθ)−1 ' ÃT B̃−TATB−TQ−1
n B−1AB̃−1Ã− ÃT B̃−TATB−TQ−1

n D(Q−1
α

+ DTQ−1
n D)−1DTQ−1

n B−1AB̃−1Ã . (3.66)

(3.66) has the same structural form as (2.42) with (2.41) inserted. B in (3.27) is

diagonal and B̃ in (3.49) is sparse, their inverses can be evaluated analytically. Using

the true values in A, B, Ã and B̃, direct algebraic evaluation with the gradients
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shown in Appendix A gives

Bo−1AoB̃o−1Ão =
∂fo

∂θθθoT
, (3.67a)

D =
∂fo

∂αααoT
. (3.67b)

Let us introduce a few small noise conditions:

nk,i
f ok,i − f oo

' 0 ,
∆fo

f ok,i − f oo
' 0 , i = 1, 2, . . . ,M , (3.68a)

∆xi ' 0 or
∆xi
xoi
' 0 , i = 1, 2, . . . ,M ,

∆yi ' 0 or
∆yi
yoi
' 0 , i = 1, 2, . . . ,M , (3.68b)

∆xi ' 0 or
∆xi
rok,i
' 0 , i = 1, 2, . . . ,M, k = 1, 2, . . . , N ,

∆yi ' 0 or
∆yi
rok,i
' 0 , i = 1, 2, . . . ,M, k = 1, 2, . . . , N , (3.68c)

∆ϕ(j)

ϕo(j)
' 0 for j = 1, 2, . . . , 4, 7, 8, . . . , 13 , (3.68d)

∆ϕ(j)

rok,i
' 0 for j = 3, 4 , k = 1, 2, . . . , N . (3.68e)

(3.68a) simply means that the frequency measurement noise and carrier frequency

error are small relative to the Doppler shift, which is expected to be the case in

order for localization using frequency observation possible. (3.68b)-(3.68c) require

the position coordinate errors of sensor i be small compared to the true coordinate

values and relative to its distance from the object at time k, i = 1, 2, . . . ,M and k =

1, 2, . . . , N . (3.68d)-(3.68e) demand the errors in the first stage solution sufficiently

small compared to the true values and to the object-sensor distances for two of its

values. (3.68d)-(3.68e) should be satisfied when (3.68a)-(3.68c) are fulfilled unless for
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some unfavorable nearly degenerated localization geometry.

When the small noise conditions (3.68) are satisfied, we can validate that A ' Ao,

B ' Bo, Ã ' Ão and B̃ ' B̃o. Hence

B−1AB̃−1Ã ' ∂fo

∂θθθoT
. (3.69)

As a result, when (3.68) is fulfilled,

cov(θθθ) ' CRLB(θθθ) . (3.70)

The proposed algorithms utilize the Taylor-series expansion and contain some

approximations. Nevertheless, the Taylor-series expansions are applied with respect

to the measurement noise or sensor position errors, and the approximations come from

maintaining in the expansions up to the first order error terms that are valid under the

small noise conditions specified in (3.68). Albeit the expansions and approximations,

the proposed algorithms are able to attain the lower bound performance over the

small error region where the small noise conditions are satisfied.

3.4.2 Carrier Frequency Unavailable

The cost function for minimization in this case is (3.58). Expanding the function

f̂k,i(fo, θθθ) through the Taylor-series at the true value (f oo , θθθ
o) gives

f̂k,i(fo, θθθ) = f̂ ok,i +
∂f̂k,i
∂fo

∣∣∣∣∣
foo ,θθθ

o

(fo − f oo ) +
∂f̂k,i
∂θθθT

∣∣∣∣∣
foo ,θθθ

o

(θθθ − θθθo) + o(fo − f oo )

+ o(‖θθθ − θθθo‖) , (3.71)
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where f̂ ok,i = f̂k,i(f
o
o , θθθ

o). Up to the first order error, putting (3.71) in (3.58) and

setting to zero the gradients with respect to fo and θθθ, the deviation of the solution

from the true value isfo − f oo
θθθ − θθθo

 =

[ ∂ f̂o

∂f oo
,
∂ f̂o

∂θθθoT

]T
Q−1
ε

[
∂ f̂o

∂f oo
,
∂ f̂o

∂θθθoT

]−1 [
∂ f̂o

∂f oo
,
∂ f̂o

∂θθθoT

]T
Q−1
ε (f − f̂o) .

(3.72)

Under (3.68a)-(3.68c), f − f̂o, ∂ f̂o/∂f oo and ∂ f̂o/∂θθθo can reasonably be approxi-

mated by εεε, ∂fo/∂f oo and ∂fo/∂θθθo. Thus, multiplying (3.72) by its transpose and

taking expectation yield, up to the first order error,

cov(fo, θθθ) =

([
∂fo

∂f oo
,
∂fo

∂θθθoT

]T
Q−1
ε

[
∂fo

∂f oo
,
∂fo

∂θθθoT

])−1

. (3.73)

After applying the block matrix inversion formula [104], substituting (3.6) with

σ2
fo

= 0 and simplifying, the lower right block is the same as the right side of

(2.42). Thus, the minimization of the cost function (3.58) will give an estimate having

the CRLB accuracy, under the first order analysis where the small noise conditions

(3.68a)-(3.68c) hold.

The proposed method finds the minimizer of (3.58) efficiently as follows. First,

for a certain trial fo, it minimizes (3.58) over θθθ. The corresponding solution has been

derived in Section 3.2, with the setting that σ2
fo

= 0 for Qε when forming W. The

resulting cost is obtained by (3.60). Second, a simple sequential search on fo is able to

yield the final solution that gives the smallest value of (3.60). This process essentially

reaches the global minimizer of (3.58). As the global minimizer of (3.58) achieves the

CRLB, the proposed solution is able to yield the CRLB accuracy. This conclusion
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is based on the first order analysis under all small noise conditions in (3.68) when

obtaining θθθ by the algebraic solution, or under the conditions (3.68a)-(3.68c) when

finding it by the SDR solution.

The proposed method handles the unknown carrier frequency scenario by a coarse

one-dimensional grid search to locate the region where the global minimum of the cost

function (3.58) lies and followed with the Newton-Raphson (NR) iteration. The NR

method, perhaps, one of the most common iterative methods used in optimization.

It converges at quadratic rate which is much faster than other methods with linear

convergence [105]. The NR iteration will reach a minimum and achieve global con-

vergence if the coarse grid search locates the global minimum region correctly. Using

sufficiently small step-size in the grid search can take care of the global convergence

issue. Having a too fine step-size, however, may result in unnecessary computation

and increase processing time. Tradeoff between maintaining global convergence and

reducing processing time should be considered when choosing the step-size for the

grid search of the proposed method. In our simulation study, 300 grid points are used

for the 1-D search to obtain the solution for the unavailable carrier frequency case

with a strong convergence behavior.

3.4.3 Complexity

While both the algebraic closed-form and SDR estimators are based on the same WLS

formulation, the computational complexity of the closed-form estimator is much lower

than that of the SDR. The closed-form estimator applies unconstrained optimization

in two stages to solve the constrained problem where explicit solutions of both stages

exist. Albeit matrix inversion is needed, efficient implementation is commonly avail-
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able. The SDR estimator solves the constrained optimization problem directly by

SDR. The relaxed problem is convex and guarantees the global optimum solution,

which, nevertheless, does not have an explicit solution. Finding the solution requires

iterative numerical optimization procedure typically based on gradient or subgradi-

ent with the constraints imposed. Scaling of the values and parameters may also be

needed to improve numerical accuracy. Consequently, the SDR estimator demands

much larger amount of computation than the closed-form estimator. Using the generic

convex optimization toolbox CVX, obtaining the SDR solution is at least 1300 times

slower than using the closed-form estimator as shown in Table V from the simula-

tion. Having said, the SDR estimator has the attractive aspect on performance where

it outperforms the closed-form estimator considerably when the noise level becomes

large, which will be demonstrated in the simulations.

3.5 Simulations

This section supports performance of the proposed methods by simulations. The

scenario is for underwater acoustic application in which the object is moving at a

constant speed of vo = ‖u̇o‖ = 10 m/s and radiates a single tone at f oo = 15 kHz

[1, 81]. The signal propagation speed c is 1500 m/s [1, 83, 81]. The covariance

matrices of frequency measurements are Qk = σ2IM , k = 0, 1, . . . , N − 1, and the

unit of σ is Hz.

We shall use 10 different localization configurations. Each configuration places the

sensors within a square area of 1.5×1.5 km2 and the object inside 4×4 km2 [1, 85, 84],

both are centered at the origin, and their Cartesian coordinates are chosen randomly

by following uniform distribution. The velocity direction is also created randomly
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and it is different in each configuration. The performance measure is mean-square

error (MSE) of the object location estimate that is computed by averaging over a

number of ensemble runs and the 10 randomly created geometries. The number of

ensemble runs is 1,000 for the carrier frequency available case and 100 for the carrier

frequency unavailable situation, unless specified otherwise.

The proposed closed-form and SDR solutions will be denoted by CFS and SDP in

the figures shown. The SDR solution is obtained using the CVX toolbox [94], where

two different scaling factors, s1 and s2, are applied to the sensor position vector s

defined in (2.6) and di given by (3.7), to handle the numerical aspect of CVX for

achieving better accuracy.

3.5.1 Single-Time Observation

We use M = 10 sensors. For each random geometry generated, their positions sat-

isfy ‖si − sj‖ > 150 m for i, j = 1, 2, . . . ,M and i < j to avoid near degenerated

geometries. The scaling factors s1 and s2 for using CVX are 0.0018 and 0.15. When

the carrier frequency is unavailable, a sequential search of 300 frequency points fol-

lowed by the Newton-Raphson iteration with δ = 0.03 is used. For comparison, the

figures include the solutions from [88] that is denoted by Shames and [85] that is

represented by Chan. Both are slightly modified to match the our problem scenario.

The Shames method assumes the carrier frequency is known and accurate, and it is

changed slightly to include some conditions from the measurement equations to im-

prove performance of the polynomial optimization package used. The Chan method

assumes the carrier frequency is unknown and it is modified to work with the case

when the carrier frequency is known as well. The grid size of Chan method is adjusted
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so that it takes comparable computation time as the proposed SDR solution. The

CRLB derived in Section 2.6 is presented as a performance reference.

Fig. 3.1 shows the estimation accuracy of the proposed methods as the frequency

measurement noise level σ increases when fo is known exactly and the sensor position

noise is absent. The MSE of the proposed CFS and SDP methods follow the CRLB

performance well for both position and velocity estimation when σ is at a small to

moderate level. CFS leaves the CRLB early and SDP is able to stay further with the

CRLB as the noise level increases. Shames is unable to produce solutions for some

ensemble runs as the noise level increases and its performance shown is by excluding

those runs. Even so, it has subsoptimal performance and cannot reach the CRLB

regardless of the measurement noise level. Beyond the noise level of σ = 10−1.25 Hz,

it fails to provide a solution of a configuration in all ensemble runs. Chan has poor

performance due to insufficient grid resolution for maintaining close computational

complexity with SDP. In term of the relative processing times among the algorithms

for this simulation that are obtained by Matlab implementation, Table 3.5 indicates

that they do not vary much with respect to the noise level. Most importantly, it shows

that CFS outperforms all the other methods significantly by a big margin. SDP and

Chan follow next and they require almost half the time needed for Shames. The

relative computation time of SDP in Table 3.5 is obtained from the universal solver,

i.e., the CVX implementation. When the code for the SDP problem is specially

designed, the computation time could be considerably reduced.

Fig. 3.2 illustrates the performance when the carrier frequency fo is completely

not known, where the other settings remain the same as in Fig. 3.1. The absolute

performance drops compared to Fig. 3.1 as we have an additional unknown of the
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Table 3.5: Relative Processing Times of Different Algorithms

Relative Processing Time

σ (Hz) CFS SDP Shames Chan

0.001 1 1317 2665 1460
0.01 0.98 1414 3238 1541
0.05 1.05 1416 3169 1508
0.1 1.05 1314 3215 1545

carrier frequency for estimation. Nevertheless, the relative performance among the

algorithms remains similar.

We next examine in Fig. 3.3 the estimation performance with respect to the

amount of sensor position error, where the measurement noise and carrier frequency

error are absent to highlight its effect on localization. The covariance matrix of sensor

positions is diagonal with the elements randomly set as

Qs = σ2
sdiag{[0.638, 0.675, 0.927, 1.028, 0.949, 0.624, 0.359, 0.401, 0.559, 0.933,

0.641, 0.971, 0.872, 0.383, 0.818, 1.082, 0.694, 0.339, 1.081, 0.622 ]} , (3.74)

and the unit of σs is m.

Without accounting for the sensor position error by setting σs = 0 in the CFS

algorithm, the MSE is nearly 4 dB higher than the CRLB before the accuracy deviates

significantly from the bound. When accounting for the sensor position error, both

CFS and SDP yield the CRLB performance and the latter remains close to the bound

even when the sensor position error is large.

Fig. 3.4 evaluates the performance as the accuracy of the available carrier fre-

quency decreases, where the measurement noise is at a low level of σ = 0.001 Hz and
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Figure 3.1: Performance of the proposed methods at different σ levels for single-time
measurement when fo is available. (a) position estimation, (b) velocity estimation.

the sensor position noise is absent to emphasize the effect of the carrier frequency

error. Both CFS and SDP achieve the CRLB accuracy over the small error region

and have close performance. If we always assume the available carrier frequency is

accurate by setting σfo = 0 in CFS, the performance is much worse and the degrada-

tion is more significant for velocity estimation, unless the frequency error is very small

so that the accuracy is dominated by the measurement noise. The results indicate

the importance of taking the error of the carrier frequency into consideration when
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Figure 3.2: Performance of the proposed methods at different σ levels for single-time
measurement when fo is unavailable. (a) position estimation, (b) velocity estimation.

designing a localization algorithm.

3.5.2 Multiple-Time Observations

We use M = 7 sensors and the minimum distance among the sensors in each randomly

generated geometry is 350 m. The number of successive measurements for each sensor

is N = 35. The processing steps 8 and 9 in Algorithm 2 of CFS are repeated 5 times.

The scaling factors s1 and s2 for use with CVX in obtaining the SDR solution are
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Figure 3.3: Performance of the proposed methods at different σs levels for single-time
measurement when fo is available. (a) position estimation, (b) velocity estimation.

0.0175 and 0.001. In the case of unavailable carrier frequency, the grid search has

about 300 frequency points and the Newton-Raphson iteration uses δ = 0.001.

Fig. 3.5 gives the estimation performance as the noise level σ increases when

the carrier frequency is exactly known and the sensor position error is absent. SDP

appears to deviate from the CRLB performance in the velocity estimate when the

measurement noise is very small, possibly due to the relaxation. As σ increases, CFS

leaves the CRLB while SDP remains to follow the bound much further for larger σ.
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Figure 3.4: Performance of the proposed methods at different σfo levels for single-time
measurement. (a) position estimation, (b) velocity estimation.

The results for the unknown carrier frequency case are shown in Fig. 3.6, where

the sensor positions are exact. The observations have close agreement with Fig. 3.5.

As the absolute localization performance reduces when the carrier frequency is not

known, SDP can reach the CRLB in velocity even when the carrier frequency error

is small in this simulation.
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3.5.3 Number of Sensors

We examine the number of sensors needed for the proposed CFS and SDR algorithms

in reaching the optimal accuracy. The number of ensemble runs for this simulation

is 10,000. Fig. 3.7 illustrates the performance for the single-time measurement case

as the number of sensors increases. The setting follows that of Fig. 3.1, except the

object is placed in the same area as the sensors [88] for generating the 10 randomly

formed geometries. The measurement noise level is kept at σ = 0.1 Hz. When

applying Algorithm 1 for CFS, steps 9-11 are repeated 5 times to improve W̃ using

θθθ from step 11 to form ϕϕϕ by (3.14), as the object can be near the sensors in some of

the 10 geometries. CFS requires at least 9 sensors to operate properly as expected

by theory. SDP attains the CRLB performance starting at 7 sensors. The Shames

algorithm is able to give reasonable results if we have 6 sensors. Even so, it is not able

to produce a solution 131 times, 1 time, 1 time and 2 times when using 6, 7, 8 and 9

sensors, and those are excluded when obtaining its MSE performance. Furthermore,

it cannot reach the CRLB when the number of sensors increases and has twice the

complexity of SDP (see Table 3.5). Performance of the Chan method is limited by

the insufficiently small grid size for the solution search, although it is expected to

function with 5 sensors [85].

Fig. 3.8 shows the results for the case of multiple-time observations with setting

that corresponds to Fig. 3.5, except the object is placed in the same area as for

the sensors. The measurement noise level is fixed at σ = 0.1 Hz. Steps 8 and 9 in

Algorithm 2 for CFS is repeated 5 times. CFS now only needs 6 sensors to operate.

SDP also reduces the number of sensors needed for functioning well to 4.
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A minimum of two sensors can be sufficient for localization in the multiple-time

measurements case when analyzing the CRLB. It appears the proposed closed-form

and SDR estimators require more sensors than needed for localization. It is our next

research investigation to improve the algorithms by reducing the number of sensors

they need to yield an accurate solution.

Both the closed form solution CFS and the semi-definite relaxation SDP algo-

rithm are based on the same WLS formulation with a set of constraints. In terms

of complexity, the CFS estimator is far more attractive than the SDR, as discussed

in Section 3.4.3 and validated by Table 3.5. It works better with more regular local-

ization geometry such as those having near optimum sensor placement [106]. CFS

has the limitation that it requires additional sensors and high SNR (small frequency

observation noise) to function well and it can only reach the CRLB performance

under the small noise conditions specified in (3.68). In terms of performance, the

SDR estimator is much better in handling poorer localization geometry, operating

with fewer sensors and working at lower SNR. While the SDR solution yields better

performance, careful scaling of the input values and parameters may be needed to im-

prove the numerical accuracy in which the scaling adjustment could be dependent on

the SDP solver used. Incorporating an SDP solver may require certain hardware and

software that could be prohibitive in some practical applications. Generally speak-

ing, the CFS algorithm should be used under an environment where the localization

geometry is typical, the number of sensors is sufficient and the SNR is high, or when

the computation complexity is an important factor for consideration. In the situation

where the number of sensors is limited or the SNR is low while the complexity is not

a crucial factor, the SDR solution is recommended.
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The proposed algorithms appear to require small frequency measurement errors

to operate well, especially for CFS. CFS can serve as an effective initialization to

the iterative implementation of the ML Estimator, especially in the single-time mea-

surement case where the deviation from the CRLB seems gradual. The low noise

requirement, to some extent, comes from the frequency only localization problem it-

self, which has been illustrated in the prior research studies [85, 84, 88]. The recent

publication [59] has shown that frequency estimation error σ in the order of 10 mHz

is achievable for the sonar scenario with a carrier frequency of 15 kHz, a data length

of 0.2 sec and an SNR of 0 dB. We shall continue to improve the proposed algorithms,

and evaluate their applicability in practical environments where high SNR for having

low frequency error may not be guaranteed.

3.6 Summary

This chapter develops several algorithms and investigates their performance for pas-

sive localization of a moving object using the Doppler shifted frequency measurements

in the 2-D space. We take a comprehensive treatment to the problem by considering

the carrier frequency is known but having errors or is completely not known, and the

sensors may have position errors. Moreover, the cases of single-time measurements

and multiple-time observations are studied. We propose a novel transformation for

the localization problem to become a quadratic optimization with a set of quadratic

constraints. Two methods are derived to solve the constrained optimization problem,

one is the computationally efficient closed-form solution and the other is the noise

resilient SDR solution. The closed-form solution is shown theoretically to reach the

CRLB performance under small Gaussian noise while the SDR solution can include
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many additional constraints to increase the robustness against noise. Simulations

support the proposed solutions in reaching the optimal performance, and the better

accuracy and computational efficiency than the existing methods from the literature.
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Figure 3.5: Performance of the proposed methods at different σ levels for multiple-
time measurements when fo is available. (a) position estimation, (b) velocity estima-
tion.
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Figure 3.6: Performance of the proposed methods at different σ levels for multiple-
time measurements when fo is unavailable. (a) position estimation, (b) velocity esti-
mation.
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Figure 3.7: Performance of the proposed methods using different number of sensors
for single-time measurement when fo is available. (a) position estimation, (b) velocity
estimation.
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Figure 3.8: Performance of the proposed methods using different number of sensors
for multiple-time measurements when fo is available. (a) position estimation, (b)
velocity estimation.
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Chapter 4

3-D Object Localization

This Chapter study the problem of moving object localization in the 3-D space. 2-D

and 3-D localization problems are different in many aspects. First, 2-D scenario is

much simpler and has fewer unknowns than the 3-D situation. Second, the number

of auxiliary variables associated with the solution formulation in 3-D is increased

by five for the localization case and by seven for the multiple-time case compared

to the 2-D situation. The consequence is a considerable increase in the number of

relations among the independent unknowns and the nuisance variables, resulting in

a significant jump in the number of constraints that are far more complex to handle,

especially in the SDP solution. We find all the constraints, select those that are

relevant for improving performance and provide them in this Chapter. Third, the

investigation on sequential analysis, the proposed sequential estimator and its analysis

for the multiple-time case are new and they were not considered in Chapter 3 at all.

Additionally, this Chapter examines the effectiveness of the proposed CFS solution

as an initialization to the iterative Maximum Likelihood Estimator (MLE). Fig. 4.1
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illustrates the localization scenario in 3-D space.

Figure 4.1: 3-D localization scenario of a moving object.

4.1 Formulation

The frequency measurement model (2.2) is nonlinear with respect to the unknowns.

Direct evaluation of (2.2) to estimate the location parameters of the object is difficult.

While it is possible to use numerical grid search to obtain the solution based on (2.2),

it will be time consuming and the accuracy is limited by the grid resolution.

We shall transform the measurement model to a pseudo linear form under the

assumption that the noise is not significant in which the second and higher order

noise terms are negligible. The new model enables the formulation of a weighted

least-squares (WLS) optimization problem with several quadratic constraints relating

the unknowns. Two solutions will be proposed to solve the WLS problem. The first is
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by algebraic evaluation to reach a CFS and the second is through convex optimization

by SDR. Each of them shall be derived separately for the single-time and multiple-

time cases. Also, a separate approach and solutions for the scenarios of available and

unavailable carrier frequency shall be considered.

4.1.1 Carrier Frequency Available

We shall first express the measurement model (2.2) in terms of the available carrier

frequency and sensor positions. Let

rk,i = ‖uok − si‖ , (4.1)

be the Euclidean distance between the object at time k and the inaccurate sensor

position si, and

ρρρok,i = (uok − soi )/‖uok − soi‖, (4.2)

be a unit vector pointing from soi to uok. Using (2.5) and (2.6), the Taylor-series

expansion of the frequency shift term in (2.2) at (fo, si) is, up to the first order error

terms

f oo (uok − soi )
T u̇o

c ‖uok − soi‖
' fo(u

o
k − si)

T u̇o

c rk,i
−
ρρρoTk,iu̇

o

c
∆fo +

fou̇
oTP⊥ok,i
c rok,i

∆si , (4.3)

where rok,i = ‖uok− soi‖ is the true value of rk,i and P⊥ok,i = I−ρρρok,iρρρoTk,i is the orthogonal

projection matrix of ρρρok,i.

In terms of the range rate dk,i rather than the observed frequency fk,i, it is after

using (2.5) and (4.3),

dk,i =
c(fk,i − fo)

fo
= −(uok − si)

T u̇o

rk,i
+

c

fo
εk,i , (4.4)
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where the equality is used instead of approximation by assuming the higher order

error terms are too small to be considered further. εk,i is the total error equal to

εk,i =

(
ρρρoTk,iu̇

o − c
c

)
∆fo +

−fo u̇oTP⊥ok,i
c rok,i

∆si + nk,i . (4.5)

For all measurements, we have

d = [ dT1 , dT2 . . . ,dTN ]T , (4.6)

in which dk = [dk,1, . . . , dk,M ]T and εεεk = [εk,1, . . . , εk,M ]T , k = 0, 1, . . . , N − 1. From

(4.5), εεεk is

εεεk = df,k∆fo + Ds,k∆s + nk , (4.7)

where df,k is the M × 1 vector whose i-th element is (ρρρoTk,iu̇
o − c)/c, and Ds,k is the

M × 3M matrix whose i-th row is zero except the elements Ds,k(i, 3(i− 1) + 1 : 3i) =

−fo u̇oTP⊥ok,i/(c r
o
k,i). Hence

εεε = df∆fo + Ds∆s + n , (4.8)

in which the vector df = [ dTf,0, dTf,1, . . . ,d
T
f,N−1 ]T and the matrix Ds = [ DT

s,0, DT
s,1,

. . . ,DT
s,N−1 ]T . εεε is zero-mean Gaussian distributed with the covariance matrix equal

to

Qε = E[εεεεεεT ] = σ2
fodfd

T
f + DsQsD

T
s + Qn . (4.9)

Rearranging (4.4) gives

(dk,i − c εk,i/fo) rk,i = − (uok − si)
T u̇o . (4.10)
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If we square (4.10), apply (4.1) and neglect the second order error term,

−2 c dk,i r
2
k,iεk,i/fo+d

2
k,i

(
‖si‖2 − 2sTi uok + ‖uok‖

2) =
(
sTi u̇o

)2−2sTi u̇ou̇oTuok+
(
uoTk u̇o

)2
.

(4.11)

Let us define

siQ = [x2
i , y

2
i , z

2
i , 2xiyi, 2xizi, 2yizi ]

T , (4.12)

vQ = [ ẋo2, ẏo2, żo2, ẋoẏo, ẋożo, ẏożo ]T , (4.13)

such that (
sTi u̇o

)2
= sTiQvQ . (4.14)

Thus, (4.11) can be expressed as

2cdk,ir
2
k,iεk,i/fo = d2

k,i ‖si‖
2−2d2

k,is
T
i uok +d2

k,i ‖uok‖
2−sTiQvQ+2sTi u̇ou̇oTuok−

(
uoTk u̇o

)2
.

(4.15)

Section 4.2 proposes two methods to solve (4.15) for the localization case and Section

4.3 for the multiple-time situation.

4.1.2 Carrier Frequency Unavailable

The carrier frequency f oo is regarded as an additional unknown. The Taylor-series

expansion of (2.2) at si is, after keeping only the first order error term,

fk,i = f oo −
f oo (uok − si)

T u̇o

c rk,i
+ εk,i , (4.16)
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where the composite error term εk,i is now

εk,i = −
f oo u̇

oTP⊥ok,i
c rok,i

∆si + nk,i , (4.17)

and P⊥ok,i is given below (4.3). The covariance matrix of the zero-mean error vector εεε

from all MN measurements is

Qε = DsQsD
T
s + Qn , (4.18)

and Ds is shown under (4.7) and (4.8). Section 4.4 presents the solution in this case.

4.2 Single-Time Observation

Having one set of measurement at a given time, setting k = 0 and dropping this

subscript in (4.15) give

2cdir
2
i εi/fo = d2

i ‖si‖
2−2d2

i s
T
i uo+d2

i ‖uo‖
2−sTiQvQ+2sTi u̇ou̇oTuo−(uoT u̇o)2 . (4.19)

Let ϕϕϕo be the unknown vector constructed as

ϕϕϕo =
[
uoT , ‖uo‖2 , vTQ , uoT u̇ou̇oT ,

(
uoT u̇o

)2
]T

. (4.20)

Also, define

B = 2
c

fo
diag

{[
d1r

2
1 , d2r

2
2 , . . . , dMr

2
M

]}
, (4.21)
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A =


2d2

1s
T
1 −d2

1 sT1Q −2sT1 1

...
...

...
...

...

2d2
MsTM −d2

M sTMQ −2sTM 1

 , (4.22)

h =
[
d2

1 ‖s1‖2 , d2
2 ‖s2‖2 , . . . , d2

M ‖sM‖
2 ]T , (4.23)

where B is M ×M , A is M × 14 and h is M × 1. (4.19) can be expressed in a matrix

form over i = 1, 2, . . . ,M as

Bεεε = h−Aϕϕϕo. (4.24)

The weighting matrix of (4.24) is set as the covariance matrix inverse of Bεεε,

W = B−TE
[
εεεεεεT
]−1

B−1 = B−TQ−1
ε B−1, (4.25)

where Qε is given by (4.9) with N = 1.

Although the number of elements in ϕϕϕo is 14, it has only 6 independent variables.

To build an estimator that solves for the actual unknowns u and u̇ and maintains the

same degrees of freedom in finding them, we shall have eight constraints to relate the

elements of ϕϕϕo. The constraints can be used along with (4.24) and (4.25) to form a

WLS optimization problem given by:

min
ϕϕϕ

J = (h−Aϕϕϕ)T W (h−Aϕϕϕ) , (4.26a)

s.t. ϕ(4) = ϕ(1)2 + ϕ(2)2 + ϕ(3)2, (4.26b)

ϕ(8)2 = ϕ(5)ϕ(6), (4.26c)

ϕ(9)2 = ϕ(5)ϕ(7), (4.26d)
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Table 4.1: Relations Among the Elements of ϕϕϕ for the Single-Time Case

Elements Relations

ϕ(1) = x ϕ(4) = ϕ(1)2 + ϕ(2)2 + ϕ(3)2

ϕ(2) = y ϕ(8)2 = ϕ(5)ϕ(6)
ϕ(3) = z ϕ(9)2 = ϕ(5)ϕ(7)
ϕ(4) = x2 + y2 + z2 ϕ(10)2 = ϕ(6)ϕ(7)
ϕ(5) = ẋ2 ϕ(11) = ϕ(1)ϕ(5) + ϕ(2)ϕ(8) + ϕ(3)ϕ(9)
ϕ(6) = ẏ2 ϕ(12) = ϕ(1)ϕ(8) + ϕ(2)ϕ(6) + ϕ(3)ϕ(10)
ϕ(7) = ż2 ϕ(13) = ϕ(1)ϕ(9) + ϕ(2)ϕ(10) + ϕ(3)ϕ(7)
ϕ(8) = ẋẏ ϕ(14) = ϕ(1)ϕ(11) + ϕ(2)ϕ(12) + ϕ(3)ϕ(13)
ϕ(9) = ẋż
ϕ(10) = ẏż ϕ(5)ϕ(10) = ϕ(8)ϕ(9)
ϕ(11) = ẋ(xẋ+ yẏ + zż) ϕ(5)ϕ(12) = ϕ(8)ϕ(11)
ϕ(12) = ẏ(xẋ+ yẏ + zż) ϕ(5)ϕ(13) = ϕ(9)ϕ(11)
ϕ(13) = ż(xẋ+ yẏ + zż) ϕ(5)ϕ(14) = ϕ(11)ϕ(11)
ϕ(14) = (xẋ+ yẏ + zż)2 ϕ(6)ϕ(9) = ϕ(8)ϕ(10)

ϕ(6)ϕ(11) = ϕ(8)ϕ(12)
ϕ(6)ϕ(13) = ϕ(10)ϕ(12)
ϕ(6)ϕ(14) = ϕ(12)ϕ(12)
ϕ(7)ϕ(8) = ϕ(9)ϕ(10)
ϕ(7)ϕ(11) = ϕ(9)ϕ(13)
ϕ(7)ϕ(12) = ϕ(10)ϕ(13)
ϕ(7)ϕ(14) = ϕ(13)ϕ(13)
ϕ(8)ϕ(13) = ϕ(9)ϕ(12)
ϕ(8)ϕ(14) = ϕ(11)ϕ(12)
ϕ(9)ϕ(12) = ϕ(10)ϕ(11)
ϕ(9)ϕ(14) = ϕ(11)ϕ(13)
ϕ(10)ϕ(14) = ϕ(12)ϕ(13)

ϕ(10)2 = ϕ(6)ϕ(7), (4.26e)

ϕ(11) = ϕ(1)ϕ(5) + ϕ(2)ϕ(8) + ϕ(3)ϕ(9), (4.26f)

ϕ(12) = ϕ(1)ϕ(8) + ϕ(2)ϕ(6) + ϕ(3)ϕ(10), (4.26g)

ϕ(13) = ϕ(1)ϕ(9) + ϕ(2)ϕ(10) + ϕ(3)ϕ(7), (4.26h)

ϕ(14) = ϕ(1)ϕ(11) + ϕ(2)ϕ(12) + ϕ(3)ϕ(13). (4.26i)

Table 4.1 shows the individual components of ϕϕϕ and lists all linear and quadratic re-

lations among them. The first eight constraints on the right of Table 4.1 are taken for
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the optimization problem (4.26) and the rest are redundant for the WLS formulation.

They will be used when we obtain the SDP solution later in this section. We continue

and develop two solutions to solve the constrained optimization problem (4.26).

4.2.1 Algebraic Solution

In this solution method, we assume the elements of ϕϕϕo are independent and find its

estimate using the direct WLS solution first. Then, the eight quadratic constraints

(4.26b)-(4.26i) are used to build another WLS problem through nonlinear transfor-

mation to refine the first solution estimate [12].

The WLS solution to (4.26) when ignoring the constraints is

ϕϕϕ =
(
ATWA

)−1
ATWh . (4.27)

The weighting matrix W is given by (4.25). It requires the true object location to

evaluate B and Qε. WLS optimization is not sensitive to small error in the weighting

matrix [9, 10] and we can approximate W using the object location obtained from

the least-squares solution by setting W = I in (4.27).

The estimation error ∆ϕϕϕ = ϕϕϕ − ϕϕϕo of (4.27) has the covariance matrix that can

be approximated by [12, 104]

cov (∆ϕϕϕ) =
(
ATWA

)−1
, (4.28)

where the noise in A is assumed too small and can be neglected.

We next incorporate (4.28) and the constraints (4.26b)-(4.26i) to perform the

refinement process ofϕϕϕ through the second WLS optimization. Let ϕ̃ϕϕo be the unknown
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vector that contains the six independent object location parameters,

ϕ̃ϕϕo =
[
uoT , u̇oT ⊗ u̇oT

]T
, (4.29)

and h̃ be the pseudo data vector constructed from ϕϕϕ,

h̃ =
[
ϕϕϕT (1 : 7) , ϕ2(8) , ϕ2(9) , ϕ2(10) , ϕϕϕT (11 : 14)

]T
. (4.30)

The nonlinear transformation is done through relating the elements of h̃ with those

of ϕ̃ϕϕo. It is recognized that

h̃(1 : 3) = ϕ̃ϕϕo(1 : 3) + ∆ϕϕϕ(1 : 3) ,

h̃(5 : 7) = ϕ̃ϕϕo(4 : 6) + ∆ϕϕϕ(5 : 7) .

(4.31)

From (4.26b)-(4.26i) and dropping the second error terms, we are able relate the rest

of the elements of h̃ to ϕ̃ϕϕo that are shown in Appendix B. Putting (4.31) and (B.1)

in matrix form yields

h̃ ' Ãϕ̃ϕϕo + B̃∆ϕϕϕ , (4.32)
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where the 14× 6 matrix Ã and the 14× 14 matrix B̃ are

Ã =



I3 03×3

ϕ(1) ϕ(2) ϕ(3) 01×3

03×3 I3

ϕ(6)/2 ϕ(5)/2 0

03×3 ϕ(7)/2 0 ϕ(5)/2

0 ϕ(7)/2 ϕ(6)/2

0 ϕ(8) ϕ(9) ϕ(1) 0 0

ϕ(8) 0 ϕ(10) 0 ϕ(2) 0

ϕ(9) ϕ(10) 01×3 ϕ(3)

ϕ(11) ϕ(12) ϕ(13) 01×3



, (4.33)

B̃ = diag{[1T7 , 2ϕϕϕT (8 : 10), 1T4 ]T} −C . (4.34)

C(4, 1 : 3) = ϕϕϕoT (1 : 3) , C(14, 11 : 13) = ϕϕϕoT (1 : 3) ,C(11 : 13, 1 : 3) = diag{ϕϕϕo(5 : 7)} ,

C(8 : 10, 5 : 7) ==
1

2


ϕo(6) ϕo(5) 0

ϕo(7) 0 ϕo(5)

0 ϕo(7) ϕo(6)

 , C(11 : 13, 8 : 10) =


ϕo(2) ϕo(3) 0

ϕo(1) 0 ϕo(3)

0 ϕo(1) ϕo(2)

 ,
(4.35)

and the rest of the elements of C are zero.

The WLS solution for ϕ̃ϕϕo is

ϕ̃ϕϕ = (ÃTW̃Ã)−1ÃTW̃h̃ , (4.36)
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in which W̃ approximates E[B̃∆ϕϕϕ∆ϕϕϕT B̃T ]−1 by using (4.28),

W̃ = B̃−T (ATWA)B̃−1 . (4.37)

The covariance matrix, after neglecting the noise in Ã under small noise assumption,

is

cov(ϕ̃ϕϕ) = (ÃTW̃Ã)−1 . (4.38)

The matrix B̃ needs the true object location for C in (4.35) and it is not known.

Using the solution of (4.27) can approximate B̃ to obtain ϕ̃ϕϕ. To increase the accuracy,

we can iterate (4.36) a few times by using the last update of ϕ̃ϕϕ for C in (4.35).

Since ϕ̃ϕϕ contains only the squared velocity parameters, further processing is needed

to fix the sign of u̇. This is done by trying all eight possible sign permutations and

select the one that gives the smallest approximate ML cost function having f oo and

soi replaced by fo and si. The final solution is

θθθ =

u

u̇

 =

 ϕ̃ϕϕ(1 : 3)

P
√
ϕ̃ϕϕ(4 : 6)

 , (4.39)

where P is a diagonal matrix that has the chosen signs.

4.2.2 SDP Solution

The solution is obtained by transforming the constrained optimization in (4.26) to a

semi-definite program [102] by the SDR. This solution is computationally demanding

but it is robust against noise and requires less number of sensors. The expanded form
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Table 4.2: Constraints of the SDP Solution for the Single-Time Case

ϕϕϕ and ΦΦΦ ΦΦΦ

ϕ(4) = Φ(1, 1) + Φ(2, 2) + Φ(3, 3) Φ(8, 8) = Φ(5, 6)
ϕ(11) = Φ(1, 5) + Φ(2, 8) + Φ(3, 9) Φ(9, 9) = Φ(5, 7)
ϕ(12) = Φ(1, 8) + Φ(2, 6) + Φ(3, 10) Φ(10, 10) = Φ(6, 7)
ϕ(13) = Φ(1, 9) + Φ(2, 10) + Φ(3, 7) Φ(5, 10) = Φ(8, 9)
ϕ(14) = Φ(1, 11) + Φ(2, 12) + Φ(3, 13) Φ(5, 12) = Φ(8, 11)

Φ(5, 13) = Φ(9, 11)
Φ(5, 14) = Φ(11, 11)
Φ(6, 9) = Φ(8, 10)

ϕ(4) ≥ 0 Φ(6, 11) = Φ(8, 12)
ϕ(5) ≥ 0 Φ(6, 13) = Φ(10, 12)
ϕ(6) ≥ 0 Φ(6, 14) = Φ(12, 12)
ϕ(7) ≥ 0 Φ(7, 8) = Φ(9, 10)
ϕ(14) ≥ 0 Φ(7, 11) = Φ(9, 13)

Φ(7, 12) = Φ(10, 13)
Φ(7, 14) = Φ(13, 13)
Φ(8, 13) = Φ(9, 12)
Φ(8, 14) = Φ(11, 12)
Φ(9, 12) = Φ(10, 11)
Φ(9, 14) = Φ(11, 13)
Φ(10, 14) = Φ(12, 13)

of the objective function (4.26a) is

J̄(ΦΦΦ,ϕϕϕ) = tr
(
ATWAΦΦΦ

)
− 2hTWAϕϕϕ , (4.40)

where hTWh is dropped since it does not depend on the unknown ϕϕϕ. ΦΦΦ = ϕϕϕϕϕϕT is

a matrix of rank one. The SDP problem is formed by considering both ΦΦΦ and ϕϕϕ are

variables and relaxing the rank of [ [ΦΦΦ ϕϕϕ]T , [ϕϕϕT 1]T ] for the minimization of (4.40).

The relaxed SDP problem is

min
ΦΦΦ,ϕϕϕ

J̄(ΦΦΦ,ϕϕϕ) , (4.41a)

s.t.

ΦΦΦ ϕϕϕ

ϕϕϕT 1

 � 0 , (4.41b)
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All constraints listed in Table 4.2. (4.41c)

It is crucial to impose all the constraints in Table II that are derived from the

necessary and extra relations from Table I when solving the SDP. The SDP in (4.41)

has been relaxed by SDR and the extra optimization variable ΦΦΦ has been added. The

constraints enable the tightening of the relaxed SDP for reaching a solution that will

be close to that of the original WLS optimization problem.

(4.41a) is a convex function and can be minimized efficiently using some optimiza-

tion packages such as CVX [94]. The linear constraints in Table 4.2 are constructed

according to the relations listed on the right of Table 4.1 and by exploiting the defi-

nition of ΦΦΦ in which Φ(i, k) = ϕ(i)ϕ(k). The other five non-negative constraints are

directly from the definition of ϕϕϕo. The object location estimate is

θθθ =

u

u̇

 =

 ϕϕϕ(1 : 3)

P
√
ϕϕϕ(5 : 7)

 , (4.42)

where P is found by the procedure at the end of Section 4.2.1. W in (4.40) requires

the true object location. It is set to the identity matrix for solving an initial solution

to approximate W before obtaining the final solution by repeating the SDP.

4.3 Multiple-Time Observations

This section presents solutions to the scenario in which multiple snapshots are col-

lected by each sensor during a period of time when the object motion is linear. As

the object position changes over the period, more auxiliary variables will appear to
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relate the initial object position u at k = 0 with the other position uk. The algebraic

and SDP solutions for this case will need a different development from the single-time

case.

Inserting (2.1) that expresses uok in terms of uo and u̇o to (4.15) gives

2cdk,ir
2
k,iεk,i/fo = d2

k,i ‖si‖
2 − 2d2

k,is
T
i u

o − 2kd2
k,is

T
i u̇

o + d2
k,i ‖uo‖

2 + 2kd2
k,iu

oT u̇o

+
(
k2d2

k,i1̃− siQ
)T

vQ+2sTi u̇
ou̇oTuo+2ksTi u̇

o ‖u̇o‖2−(uoT u̇o)2−k2 ‖u̇o‖4−2kuoT u̇o ‖u̇o‖2 ,

(4.43)

where 1̃ = [ 1T3 , 0T3 ]T . Although (4.43) remains highly non-linear with the unknowns

uo and u̇o, it is pseudo linear with respect to the unknowns and their product terms.

We shall set the unknown vector as

ϕϕϕo(1 : 20) =
[
uoT , u̇oT , ‖uo‖2 , uoT u̇o , vTQ , uoT u̇ou̇oT , ‖u̇o‖2 u̇oT

]T
,

ϕϕϕo(21 : 23) =
[
‖u̇o‖4 , uoT u̇o ‖u̇o‖2 , (uoT u̇o)2

]T
.

(4.44)

The independent object location variables are ϕϕϕo(1 : 6), and the other 17 elements

ϕϕϕo(7 : 23) are auxiliary. Let the M ×M diagonal matrix Bk, the M × 23 matrix Ak

and the M × 1 vector hk be

Bk = 2
c

fo
diag

{[
dk,1r

2
k,1, rk,2r

2
k,2, . . . , rk,Mr

2
k,M

]}
, (4.45)

Ak(i, 1 : 14) =
[

2r2
k,is

T
i , 2kr2

k,is
T
i , −r2

k,i ,−2kr2
k,i , −

(
k2r2

k,i1̃− siQ
)T ]

,

Ak(i, 15 : 23) =
[
− 2sTi , −2ksTi , k

2 , 2k , 1
]
,

(4.46)

hk =
[
r2
k,1 ‖s1‖2 , r2

k,2 ‖s2‖2 , . . . , r2
k,M ‖sM‖

2 ]T . (4.47)
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Collecting Ak, hk and Bk for k = 0, 1, . . . , N − 1 give

A =
[
AT

0 , AT
1 , . . . , AT

N−1

]T
, (4.48)

h =
[
hT0 , hT1 , . . . , hTN−1

]T
, (4.49)

B = diag {B0 , B1 , . . . , BN−1 } . (4.50)

In matrix form, (4.43) for i = 1, . . . ,M and k = 0, . . . , N − 1, after neglecting the

second and higher error terms under small noise assumption, is

Bεεε = h−Aϕϕϕo. (4.51)

The constrained optimization problem for the multiple-time case is

min
ϕϕϕ

J = (h−Aϕϕϕ)T W (h−Aϕϕϕ) , (4.52a)

s.t. (C.1) , (4.52b)

where W is given by (4.25). To fix the number of independent variables in (4.52) to

only 6, we have imposed 17 constraints (C.1a)-(C.1q) listed in Appendix C, by using

the relations among the auxiliary variables and the independent unknowns. They can

be verified directly by substituting the elements of ϕϕϕo in (4.44). Interestingly enough,

each constraint can be expressed in a quadratic form in terms of the elements of ϕϕϕo.

We next derive the algebraic and SDP solutions from (4.52).
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4.3.1 Algebraic Solution

The problems (4.26) and (4.52) have similar form when ignoring the constraints.

Pretending the elements of ϕϕϕo are independent, the WLS solution and its covariance

matrix have expressions (4.27) and (4.28), with the matrices A, B and the vector h

defined differently in (4.45)-(4.50) and W given by (4.25).

Similar to the procedure for single-time scenario, the solution of ϕϕϕ from (4.27)

is nonlinearly transformed to obtain the final object location θθθo = [uoT , u̇oT ]T by

making use of the relations among the elements of ϕϕϕ described in Appendix C. Let

the data vector h̃ of the second WLS be

h̃ =
[
ϕϕϕT (1 : 7) , 2ϕ(8) , ϕϕϕT (9 : 11) , 2ϕϕϕT (12 : 17) , ϕϕϕT (18 : 21) , 2ϕ(22), ϕ(23)

]T
,

(4.53)

We can write h̃ in terms of ∆ϕϕϕ and ϕϕϕo(1 : 6) or equivalently θθθo by using similar

manipulation for obtaining (B.1). Neglecting the second and higher order error terms,

we reach

h̃ = Ãθθθo + B̃∆ϕϕϕ , (4.54)
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where Ã and B̃ are

Ã =



I3 03×3

03×3 I3

ϕ(1) ϕ(2) ϕ(3) 01×3

ϕ(4) ϕ(5) ϕ(6) ϕ(1) ϕ(2) ϕ(3)

ϕ(4) 0 0

03×3 0 ϕ(5) 0

0 0 ϕ(6)

ϕ(5) ϕ(4) 0

03×3 ϕ(6) 0 ϕ(4)

0 ϕ(6) ϕ(5)

ϕ(9) ϕ(12) ϕ(13) ϕ(8) 0 0

ϕ(12) ϕ(10) ϕ(14) 0 ϕ(8) 0

ϕ(13) ϕ(14) ϕ(11) 0 0 ϕ(8)

ϕ(9) ϕ(12) ϕ(13)

03×3 ϕ(12) ϕ(10) ϕ(14)

ϕ(13) ϕ(14) ϕ(11)

01×3 ϕ(18) ϕ(19) ϕ(20)

ϕ(18) ϕ(19) ϕ(20) ϕ(15) ϕ(16) ϕ(17)

ϕ(15) ϕ(16) ϕ(17) 01×3



, (4.55)

B̃ = diag{[1T7 , 2,1T3 , 2, 2, 2, 2, 2, 2,1T4 , 2, 1]T} −C , (4.56)
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C(7, 1 : 3) = C(8, 4 : 6) = C(22, 18 : 20) = C(23, 15 : 17) = ϕϕϕoT (1 : 3) ,

C(8, 1 : 3) = C(21, 18 : 20) = C(22, 15 : 17) = ϕϕϕoT (4 : 6) ,

C(9 : 11, 4 : 6) = C(18 : 20, 9 : 11) = diag{ϕϕϕo(4 : 6)} ,

C(12 : 14, 4 : 6) =
[
C(18 : 20, 12 : 14)

]T
,

C(15 : 17, 9 : 11) = diag {ϕϕϕo(1 : 3)} ,C(15 : 17, 8) = ϕϕϕo(4 : 6) ,

C(15 : 17, 12 : 14)
[
C(18 : 20, 12 : 14)

]T

=


ϕo(2) ϕo(3) 0

ϕo(1) 0 ϕo(3)

0 ϕo(1) ϕo(2)

 , =


ϕo(5) ϕo(4) 0

ϕo(6) 0 ϕo(4)

0 ϕo(6) ϕo(5)

 ,

(4.57)

and the other elements of C are zero.

The WLS solution to (4.54) after setting the weighting matrix to (4.37) with B̃

given by (4.56)-(4.57) is

θθθ = (ÃTW̃Ã)−1ÃTW̃h̃ , (4.58)

It has a covariance matrix approximately equal to

cov(θθθ) ' (ÃTW̃Ã)−1. (4.59)

4.3.2 SDP Solution

Expanding the objective function J in (4.52) gives (4.40) after dropping the term

hTWh that is independent of the unknown vector ϕϕϕ. Using the same methodology
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as in the single-time case, the relaxed SDP is

min
ΦΦΦ,ϕϕϕ

J̄(ΦΦΦ,ϕϕϕ) , (4.60a)

s.t.

ΦΦΦ ϕϕϕ

ϕϕϕT 1

 � 0 , (4.60b)

All constraints listed in Table 4.3. (4.60c)

The constraint (4.60b) relaxes the rank of ΦΦΦ = ϕϕϕϕϕϕT . The other constraints listed

in Table 4.3 are directly deduced from the relations among the elements of ϕϕϕ and also

from the relation between ϕϕϕ and ΦΦΦ. The object location estimate is extracted from

the first 6 elements of the solution ϕϕϕ after solving the SDP,

θθθ = ϕϕϕ(1 : 6). (4.61)

Table 4.3 comes with considerable amount of optimization effort. The first and

second order relations are over several hundreds. We have carefully investigated each

and eliminated those that are not doing much to improve the tightness of SDP. The

relations in Table III are those that will make a difference to improve the performance

when included as constraints for solving (4.60). It is a big distinction with the 2-D case

SDP solution [107] in which the number of relations are not as many and optimization

is not needed to reduce the number of constraints.
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Table 4.3: Constraints on ϕϕϕ and ΦΦΦ for the SDP solution of the multiple-time Case

ϕ(9) = Φ(4, 4) ϕ(11) = Φ(6, 6) ϕ(13) = Φ(4, 6) ϕ(15) = Φ(4, 8) ϕ(17) = Φ(6, 8)
ϕ(10) = Φ(5, 5) ϕ(12) = Φ(4, 5) ϕ(14) = Φ(5, 6) ϕ(16) = Φ(5, 8) ϕ(23) = Φ(8, 8)

ϕ(7) = Φ(1, 1) ϕ(16) = Φ(1, 12) ϕ(19) = Φ(4, 12) ϕ(22) = Φ(1, 18)
ϕϕϕ and ΦΦΦ +Φ(2, 2) + Φ(3, 3) +Φ(2, 10) + Φ(3, 14) +Φ(5, 10) + Φ(5, 11) +Φ(2, 19) + Φ(3, 20)

ϕ(8) = Φ(1, 4) ϕ(17) = Φ(1, 13) ϕ(20) = Φ(4, 13) ϕ(22) = Φ(4, 15)
+Φ(2, 5) + Φ(3, 6) +Φ(2, 14) + Φ(3, 11) +Φ(5, 14) + Φ(6, 11) +Φ(5, 16) + Φ(6, 17)
ϕ(15) = Φ(1, 9) ϕ(18) = Φ(4, 9) ϕ(21) = Φ(4, 18) ϕ(23) = Φ(1, 15)

+Φ(2, 12) + Φ(3, 13) +Φ(5, 12) + Φ(6, 13) +Φ(5, 19) + Φ(6, 20) +Φ(2, 16) + Φ(3, 17)

Φ(4, 10) = Φ(5, 12) Φ(5, 16) = Φ(8, 10) Φ(9, 20) = Φ(13, 18) Φ(11, 18) = Φ(13, 20) Φ(14, 22) = Φ(16, 20)
Φ(4, 11) = Φ(6, 13) Φ(5, 17) = Φ(6, 16) Φ(9, 21) = Φ(18, 18) Φ(11, 19) = Φ(14, 20) Φ(14, 23) = Φ(16, 17)
Φ(4, 12) = Φ(5, 9) Φ(5, 20) = Φ(6, 19) Φ(9, 22) = Φ(15, 18) Φ(11, 21) = Φ(20, 20) Φ(15, 19) = Φ(16, 18)
Φ(4, 13) = Φ(6, 9) Φ(5, 22) = Φ(8, 19) Φ(9, 23) = Φ(15, 15) Φ(11, 22) = Φ(17, 20) Φ(15, 20) = Φ(17, 18)
Φ(4, 14) = Φ(5, 13) Φ(5, 23) = Φ(8, 16) Φ(10, 11) = Φ(14, 14) Φ(11, 23) = Φ(17, 17) Φ(15, 21) = Φ(18, 22)
Φ(4, 15) = Φ(8, 9) Φ(6, 15) = Φ(8, 13) Φ(10, 13) = Φ(12, 14) Φ(12, 17) = Φ(13, 16) Φ(15, 22) = Φ(18, 23)
Φ(4, 16) = Φ(5, 15) Φ(6, 16) = Φ(8, 14) Φ(10, 15) = Φ(12, 16) Φ(12, 20) = Φ(13, 19) Φ(16, 20) = Φ(17, 19)

ΦΦΦ Φ(4, 17) = Φ(6, 15) Φ(6, 17) = Φ(8, 11) Φ(10, 17) = Φ(14, 16) Φ(12, 21) = Φ(18, 19) Φ(16, 21) = Φ(19, 22)
Φ(4, 19) = Φ(5, 18) Φ(6, 22) = Φ(8, 20) Φ(10, 18) = Φ(12, 19) Φ(12, 22) = Φ(15, 19) Φ(16, 22) = Φ(19, 23)
Φ(4, 20) = Φ(6, 18) Φ(6, 23) = Φ(8, 17) Φ(10, 20) = Φ(14, 19) Φ(12, 23) = Φ(15, 16) Φ(17, 21) = Φ(20, 22)
Φ(4, 22) = Φ(8, 18) Φ(9, 10) = Φ(12, 12) Φ(10, 21) = Φ(19, 19) Φ(13, 16) = Φ(14, 15) Φ(17, 22) = Φ(20, 23)
Φ(4, 23) = Φ(8, 15) Φ(9, 11) = Φ(13, 13) Φ(10, 22) = Φ(16, 19) Φ(13, 19) = Φ(14, 18) Φ(21, 23) = Φ(22, 22)
Φ(5, 11) = Φ(6, 14) Φ(9, 14) = Φ(12, 13) Φ(10, 23) = Φ(16, 16) Φ(13, 21) = Φ(18, 20)
Φ(5, 13) = Φ(6, 12) Φ(9, 16) = Φ(12, 15) Φ(11, 12) = Φ(13, 14) Φ(13, 22) = Φ(15, 20)
Φ(5, 14) = Φ(6, 10) Φ(9, 17) = Φ(13, 15) Φ(11, 15) = Φ(13, 17) Φ(13, 23) = Φ(15, 17)
Φ(5, 15) = Φ(8, 12) Φ(9, 19) = Φ(12, 18) Φ(11, 16) = Φ(14, 17) Φ(14, 21) = Φ(19, 20)

4.4 carrier frequency unavailable solution

The proposed method estimates the unknowns θθθo = [ uoT , u̇oT ]T and f oo together by

taking advantage of the solution when the carrier frequency is available.

The measurement model when f oo is an unknown is (4.16). The error term has

Gaussian distribution since it is a linear combination of Gaussian random variables.

Let f̂(fo, θθθ) be the parametric form of the frequency vector in fo and θθθ, having soi

replaced by si. From (2.2), the elements of f̂(fo, θθθ) are

f̂k,i(fo, θθθ) = fo −
fo(θθθ(1 : 3) + k θθθ(4 : 6)− si)

Tθθθ(4 : 6)

c ‖θθθ(1 : 3) + k θθθ(4 : 6)− si‖
. (4.62)
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The approximated maximum likelihood (ML) cost function is

J̄(fo, θθθ) =
(
f − f̂(fo, θθθ)

)T
Q−1
ε

(
f − f̂(fo, θθθ)

)
, (4.63)

where Qε is defined in (4.18). (4.63) is nonlinear with respect to the unknowns.

Obtaining the solution by minimizing (4.63) directly is not trivial. The gradient-

based iterative solution requires a good initial guess, in which pseudo linearization

can be a possible approach to obtain an initial guess [108, 109] to start the iteration.

The grid search solution will be very time consuming since there are 7 unknowns. We

shall resort to a hybrid solution that uses a search over f oo and the proposed solution

for the available carrier frequency case.

For a given fo, θθθ is found by the algebraic or SDP solution derived in Section 4.2

for single-time case or Section 4.3 for multiple-time scenario, where σ2
fo

is set to zero

in (4.9) to obtain Qε for the weighting matrix W. Inserting this fo and the resulting

θθθ solution to (4.63) gives the cost for this fo. We repeat this process for several fo

trial values and identify the one that has the minimum cost. The corresponding θθθ

will be the location estimate of the object.

The range of possible fo values is often known in practice [79]. We can improve

the performance and efficiency by searching fo with a coarse grid size, followed by

the Newton-Raphson iteration to refine the value. Interpreting (4.63) as a function

of single unknown fo, that is

J̄(fo) =
(
f − f̂(fo)

)T
Q−1
ε

(
f − f̂(fo)

)
, (4.64)
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the Newton-Raphson iteration is [104]

f (l+1)
o = f (l)

o − ξ
(
∇2J̄(f (l)

o )
)−1∇J̄(f (l)

o ) . (4.65)

l = 0, 1, . . . , lmax−1 represents the iteration index with lmax set to achieve the required

accuracy level, f
(0)
c is the estimate from the coarse grid search and ξ is the step-size

constant between 0 and 1 to stabilize the iterative process. ∇J̄(•) and ∇2J̄(•) are

the first and second derivatives of J̄(•) with respect to fo and they can be obtained

using the finite-difference approximations

∇J̄(f (l)
o ) ' J̄(f

(l)
o + δ)− J̄(f

(l)
o )

δ
, (4.66)

∇2J̄(f (l)
o ) ' ∇J̄(f

(l)
o + δ)−∇J̄(f

(l)
o )

δ
, (4.67)

where δ is a small constant.

4.5 Sequential Multiple-Time Solution

The CFS and SDP methods presented in Section 4.3 for multiple-time scenario are

suitable for batch processing where N observations are collected before estimation can

take place. It would be desirable to have a sequential solution for the multiple-time

scenario that provides the timely improved object motion parameters upon a new

observation arrives. It could also reduce complexity without redoing the estimation

entirely when we have a new snapshot observation.

The proposed multiple-time sequential algorithm first uses the single-time case
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solution, either CFS or SDP, to obtain the object location parameters for the newly

arrived observation. It next combines this single snapshot solution with the estimate

from all the past observations.

Let θθθk be the single-time case solution from the newly received k-th observation

and θθθ{k−1} be the estimate from all the past observations up to time k-1. They are

related to the true value of the updated estimate θθθo{k} by, after using (2.1),

 θθθk

θθθ{k−1}

 = H{k} θθθ
o
{k} +

 ∆θθθk

∆θθθ{k−1}

 , (4.68a)

H{k} =

 Hk

I6

 , Hk =

 I3 kI3

03×3 I3

 . (4.68b)

The WLS solution by minimizing the weighted L2-norm of [ ∆θθθTk , ∆θθθT{k−1} ]T is

θθθ{k} =
(
HT
{k}W{k}H{k}

)−1
HT
{k}W{k}

[
θθθTk , θθθ

T
{k−1}

]T
, (4.69a)

W{k} = diag
{

cov(θθθk)
−1
∣∣∣Hkθθθ{k−1} , cov(θθθ{k−1})

−1
∣∣∣θθθ{k−1}

}
. (4.69b)

In W{k}, cov(θθθk) is given by (4.59) with θθθ replaced with θθθk and cov(θθθ{k−1}) is given

in (4.70) with k − 1 instead of k. cov(•)−1|∗ stands for obtaining cov(•)−1 with •

replaced by ∗. The accuracy of θθθ{k}, k = 1, 2, . . ., from the WLS optimization is

cov(θθθ{k}) '
(

HT
{k}W{k}H{k}

)−1
, (4.70)

where the approximation comes from the randomness of θθθ{k} in W{k}.

In summary, the sequential algorithm operates as follows. (i) Set θθθ{0} = θθθ0 at the
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start; (ii) Apply the single-time algorithm, either CFS or SDP, to obtain θθθk using

the latest received snapshot observation fk; (ii) Use (4.69) to obtain θθθ{k} from θθθk and

θθθ{k−1}.

The multiple-time sequential algorithm is much more efficient in computation than

the batch multiple-time solution presented in Section 4.3. The computation complex-

ity in the sequential estimation is dominated by the single-time case estimate that

involves 14 unknown variables, whereas the batch processing algorithm, regardless

of CFS or SDP, has 23 unknown variables. Having said, the sequential algorithm

may deviate from the CRLB earlier than the batch algorithm in suffering from the

thresholding effect, which is dependent on the latest single snapshot observation only

instead of k + 1 snapshot measurements.

4.6 Analysis

We shall prove that under first order analysis in which the second and higher order

noise terms are negligible, the covariance matrix of the proposed algebraic solution

can reach the CRLB accuracy when some conditions are met. The CRLB has been

derived in Section 2.6 which has a generic expression applicable to the 3-D case as

well. We only present the analysis for the solution of the multiple-time case. The

same analysis applies to single-time case and we can reach the same conclusion. The

analysis begins with the batch algorithm for the known carrier frequency case first

and the unavailable carrier frequency scenario next. It then continues for the study

of the sequential algorithm.
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4.6.1 Carrier Frequency Available

Let us start from (4.59). Inserting (4.25) and (4.37) and taking inverse give

cov(θθθ)−1 = ÃT B̃−TATB−TQ−1
ε B−1AB̃−1Ã. (4.71)

(4.9) can be expressed as Qε = Qn + DQαD
T , where D = [ df , Ds ] and Qα =

diag{σ2
fo
,Qs}. Using the matrix inversion lemma [104], the inverse of Qε is

Q−1
ε = Q−1

n −Q−1
n D(Q−1

α + DTQ−1
n D)−1DTQ−1

n . (4.72)

Inserting it to (4.71) gives

cov(θθθ)−1 = ÃT B̃−TATB−TQ−1
n B−1AB̃−1Ã− ÃT B̃−TATB−TQ−1

n D(Q−1
α

+ DTQ−1
n D)−1DTQ−1

n B−1AB̃−1Ã . (4.73)

B−1 and B̃−1 can be evaluated analytically since B in (4.50) is diagonal and B̃ in

(4.56) is sparse.

We list below several small noise conditions such that the approximations of A, B,

Ã and B̃ by their true values are valid. For k = 0, 1, . . . , N − 1 and i = 1, 2, . . . ,M ,

they are:

nk,i
f ok,i − f oo

' 0 , (4.74a)

∆fo
f ok,i − f oo

' 0 , (4.74b)

∆xi ' 0 , ∆yi ' 0 , ∆zi ' 0 , (4.74c)
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∆xi
xoi
' 0 ,

∆yi
yoi
' 0,

∆zi
zoi
' 0, (4.74d)

∆xi
rok,i
' 0 ,

∆yi
rok,i
' 0,

∆zi
rok,i
' 0, (4.74e)

∆ϕ(j)

ϕo(j)
' 0 or ∆ϕ(j) ' 0, j = 1, 2, . . . , 6, 8, 9, . . . , 20 , (4.74f)

∆ϕ(j)

rok,i
' 0, j = 1, 2, . . . , 6 . (4.74g)

The conditions are essentially requiring the noise of a certain measured or esti-

mated quantity is small compared to the true value. Such a noise requirement is

expected, otherwise the localization will not yield meaningful results.

When (4.74) is fulfilled, direct evaluation gives

B−1AB̃−1Ã ' Bo−1AoB̃o−1Ão =
∂fo

∂θθθoT
, (4.75a)

D ' ∂fo

∂ϕϕϕoT
. (4.75b)

Using (4.75) in (4.73), we reach the conclusion that

cov(θθθ) ' CRLB(θθθ) . (4.76)

4.6.2 Carrier Frequency Unavailable

We shall first show that minimizing the cost function (4.63) can give a solution that

can reach the CRLB performance under the conditions in (4.74). We then prove that

the proposed method can efficiently finds the minimizer of (4.63).
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The expansion of f̂k,i(fo, θθθ) around the true values up to the first order error is

f̂k,i(fo, θθθ) = f̂ ok,i +
∂f̂k,i
∂fo

∣∣∣∣∣
foo ,θθθ

o

(fo − f oo ) +
∂f̂k,i
∂θθθT

∣∣∣∣∣
foo ,θθθ

o

(θθθ − θθθo) , (4.77)

where f̂ ok,i = f̂k,i(f
o
o , θθθ

o). Using (4.77) in (4.63) and setting the gradients with respect

to fo and θθθ to zero yield

fo
θθθ

 =

f oo
θθθo

+

[ ∂ f̂o

∂f oo
,
∂ f̂o

∂θθθoT

]T
Q−1
ε

[
∂ f̂o

∂f oo
,
∂ f̂o

∂θθθoT

]−1 [
∂ f̂o

∂f oo
,
∂ f̂o

∂θθθoT

]T
Q−1
ε (f− f̂o) ,

(4.78)

where f̂o is the vector with elements f̂k,i(fo, θθθ), k = 0, 1, · · · , N−1 and i = 1, 2, · · · ,M .

(4.78) is the expected solution of the proposed method. It is reasonable to approxi-

mate f − f̂o, ∂ f̂o/∂f oo and ∂ f̂o/∂θθθo by εεε, ∂fo/∂f oo and ∂fo/∂θθθo under the small noise

conditions in (4.74a)-(4.74e). Subtracting the true solution from both sides of (4.78),

taking outer product and applying expectation give

cov(fo, θθθ) =

([
∂fo

∂f oo
,
∂fo

∂θθθoT

]T
Q−1
ε

[
∂fo

∂f oo
,
∂fo

∂θθθoT

])−1

. (4.79)

When we apply the block matrix inversion formula [104] to (4.79), keep only the lower

right block, insert (4.18) and simplify, it becomes the expression of the CRLB. Thus,

under the small noise conditions (4.74a)-(4.74e), the solution that minimizes (4.63)

will achieve the CRLB accuracy.

The procedure in the proposed algorithm of using a one variable search over fo

together with the frequency available solution will eventually reach the smallest value

of (4.64). This process is basically finding the global minimizer of (4.63). We can
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therefore conclude that the proposed method gives a solution that reaches the CRLB

accuracy, under the small noise conditions in (4.74).

4.6.3 Sequential Algorithm

We shall analyze the theoretical performance of the sequential algorithm and show

that it can achieve close to the CRLB accuracy, i.e.

cov(θθθ{k}) ' CRLB(θθθo{k}) , (4.80)

providing with the small noise conditions in (4.74), through the mathematical induc-

tion.

It is clear from the start of the sequential algorithm that

cov(θθθ{0}) ' CRLB{0}(θθθ
o) , (4.81)

by the analysis in Sections 4.6.1 or 4.6.2. Assuming (4.80) is true up to time k− 1 in

which cov(θθθ{k−1}) ' CRLB(θθθo{k−1}), we next show that (4.80) is true at time k under

(4.74).

In (4.69b), it is reasonable that θθθ{k−1} closely approximates θθθo given (4.74). The

inverse of the Fisher Information Matrix (FIM) is the CRLB [104]. Using the analysis

results in Sections 4.6.1 or 4.6.2, putting in (4.68b) and (4.69b) and multiplying out,

we have

cov(θθθ{k}) '
(

FIM(θθθo{k−1}) + HT
kFIM(θθθok)Hk

)−1
. (4.82)

According to the Gaussian data model and the uncorrelated behavior of the ob-

111



servations at different time instants, it is straightforward to validate that

CRLB(θθθo{k}) =

(
FIM(θθθo{k−1}) +

∂θθθoTk
∂θθθo{k}

FIM(θθθok)
∂θθθok
∂θθθoT{k}

)−1

. (4.83)

We have from (2.1)

∂θθθok
∂θθθoT{k}

= Hk , (4.84)

in which θθθo{k} = θθθo has been used. Using (4.84) in (4.83) yields immediately (4.80). We

therefore conclude that the sequential solution reaches closely the CRLB performance

under the small noise conditions listed in (4.74).

4.6.4 Complexity

The CFS is algebraic and it is more computationally efficient than the SDP solution.

We shall perform complexity analysis of the two solutions for the available carrier

frequency case. The unavailable carrier frequency case is basically repeating the

processing of the available carrier frequency case several times.

Going through the steps of obtaining the CFS, Appendix D shows that the com-

plexity of CFS is given by (D.1). The complexity of the SDP solution involves forming

the objective function (4.40) that takes the amount of (D.2) and solving an SDP that

has the worst-case complexity given by (D.3) [110]. Simplifying (D.1) and (D.2)–(D.3)

further by keeping the dominant components, Table 4.4 summarizes the complexity

of the solutions we proposed, in terms of the number of multiplications.

Regardless of the specific solution for single-time, multiple-time(batch) or multiple-

time(sequential), the complexity has the common expressions in Table 4.4 but taking

different values of the parameters. The parameter values for the three specific cases
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Table 4.4: Complexity of the Algebraic Solution CFS and the SDP Solution in terms
of the number of multiplications.

Sol. Order of Complexity
CFS O

(
(N3 + 3N2 + 18N)M3 + (2LN2)M2

+(2L2N)M + 4ηL3 +X
)

SDP O
(
(N3 + 3N2 + 18N)M3 + (2LN2)M2 + (2L2N)M

+2
√
L(C3 + C2L2 + CL3) ln(1/ε) +X

)
η: (number of repetitions + 1) in the second stage of CFS

M : number of sensors
N : number of consecutive time measurements
L: length of the pseudo unknown vector ϕϕϕ
C: number of constraints

X: additional computation from sequential algorithm

Table 4.5: Parameter values for Table IV.

Cases N L C X
CFS: Single-Time 1 14 0
CFS(batch): Multiple-Time N 23 0
CFS(sequential): Multiple-Time 1 14 4L3

SDP: Single-Time 1 14 30 0
SDP(batch): Multiple-Time N 23 98 0
SDP(sequential): Multiple-Time 1 14 30 4L3

are listed in Table 4.5.

Roughly speaking, the complexity difference of the two algorithms amounts to the

use of the second stage processing in the CFS and an SDP solver in the SDP solution.

The former has a complexity on the order of L3 and the latter
√
LC3 ln(1/ε), where

L < C from Table 4.5 and ε < 1. It becomes clear that CFS has lower computational

complexity.
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4.7 Simulations

The performance of the proposed solutions is compared with the CRLB and other

solutions from the literature for shallow water acoustic application where the signal

propagation speed c is about 1500 m/s [1, 81, 111]. We use shallow water localization

for illustration in this section and the proposed algorithm can be applied to other

environments and applications for localization such as by a radar network or an

airborne platform. The scenario assumes the object is moving within a 3-D cuboid

space of dimensions 3× 3× 1 km3 centered 500 m below the sea surface at (0, 0, 500)

m at a constant speed ‖u̇o‖ = 10 m/s and is radiating a tonal signal at frequency

f oo = 15 kHz [1, 81]. The fixed sensors are placed at two different regions with equal

size of 2 × 2 × 0.1 km3 centered at (0, 0, 50) m and (0, 0, 950) m. The power of the

frequency measurement noise is denoted by σ2. It is inversely proportional to the SNR

and to third power of the data length [104]. Having higher SNR or longer acquisition

time can reduce frequency measurement error σ.

We shall use 10 randomly generated configurations, where the Cartesian coordi-

nates of the object initial position, velocity direction and sensor locations in each are

sampled from a uniform distribution within the limits. The sensor positions satisfy

‖si − sj‖ > 400 m for i, j = 1, 2, . . . ,M and i < j to avoid poor geometry and sup-

port the conditions in (4.74). For the unavailable carrier frequency case, we used 150

grid points for the coarse search process, δ for the Newton-Raphson iterations is set

to 0.01 at l = 0 and then changes to f
(l+1)
o − f (l)

o for l = 1, 2, . . . , lmax − 2, and the

step-size ξ is 0.25. Algorithm performance is measured using the mean square error

(MSE) of the object location estimate computed by averaging the squared error over

10 randomly generated configurations having 1000 ensemble runs in each except the

114



tests that include the Shames method [88] or the grid search process where we used

only 100 ensembles to reduce the processing time.

The proposed closed-form and SDP solutions are denoted by CFS and SDP. In

addition, the CFS is used to initialize the MLE by the Gauss-Newton iterative imple-

mentation and the resulting solution is denoted by CFS-ML. The Newton-Raphson

iterations in the unknown frequency case is dropped from the CFS-ML solution as

the refinement process is achieved by the MLE. The SDP solution is obtained using

the CVX toolbox [94] where three scaling adjustments are used to reduce the round

off errors and achieve better accuracy. The sensor position vector s in (2.7) is scaled

down by the maximum distance between any two sensors, the range rate vector d in

(4.6) is scaled down by its maximum element.

For comparison, we include the solutions from [85] and [88] indicated by Chan

and Shames, respectively, after some modifications to match the 3-D scenario. We

change the model of Chan method to find the solution for the available frequency

case as the original model assumed it is unavailable. We also change the step-size of

the grid search so that its computational time is comparable to the SDP solution.

4.7.1 Performance w.r.t. Measurement Noise

For this test, the covariance matrices Qk, k = 0, 1, . . . , N − 1 of the measurements

are set to σ2IM where σ is in Hz. The sensor positions covariance matrix Qs is 0.

Single-Time

The number of sensors M is 16. Fig. 4.2 shows the performance as the noise level σ

increases when fo is exactly known. When σ is within the small to moderate level,
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the MSEs of CFS and SDP attain the CRLB accuracy for both position and velocity

estimation. As σ increases to a large level, the SDP shows steady performance while

the CFS leaves the CRLB. The CFS-ML improves the result of CFS by extending its

optimal accuracy to slightly larger noise level. Regardless of the measurement noise

level, Shames could not reach the CRLB performance. Chan shows poor estima-

tion accuracy due to the limited grid resolution when maintaining its computational

complexity close to that of SDP.

Table 4.6 examines the relative average processing times of the simulation in Fig.

4.2 obtained from Matlab implementation at two different levels of σ. CFS-ML is 3

times slower than CFS and both of them show great benefit over the other methods

by consuming much less processing time. Shames has a very long processing time,

while SDP and Chan have moderate computational complexity. It is possible that the

complexity of SDP can be reduced when the code for the SDP problem is specially

designed, the one used in this simulation is from a universal solver that may have

unnecessary procedures added to the original problem. The measurement noise level

does not affect much the relative average processing times of these methods.

Fig. 4.3 illustrates the performance when the carrier frequency fo is unavailable,

where the other settings remain the same as for Fig. 4.2. The absolute performance

drops from that in Fig. 4.2 as the number of unknowns for this case is increased by

one. CFS-ML appear to handle larger σ level better, and it can extend the CRLB

performance of CFS significantly by 20 dB.
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Table 4.6: Processing Times at different values of σ relative to that of CFS at σ = 0.01
Hz.

σ (Hz) CFS CFS+ML SDP Shames Chan

0.01 1.00 2.89 993.47 113312.40 723.15
0.1 1.15 3.15 985.59 112809.24 720.97

Table 4.7: Processing Times for the sequential and batch algorithms at different k
values relative to that of S-CFS at k=2.

k S-CFS B-CFS S-SDP B-SDP EKF

2 1.00 4.07 419.57 579.8 0.13
4 1.00 4.10 421.56 573.06 0.12
8 0.99 5.16 416.63 562.87 0.12
16 0.99 7.81 440.23 571.80 0.12
32 1.37 19.18 449.36 582.76 0.12

Multiple-Time

The number of sensors is M = 10 and that of successive measurements is N = 35.

Fig. 4.4 gives the estimation MSE versus σ when the carrier frequency is exactly

known. At low noise level of σ = 0.001 Hz, SDP could not reach the CRLB, possibly

due to the relaxation accuracy limit. As σ increases, CFS leaves the CRLB first and

followed by the CFS-ML, while SDP remains to follow the bound much further for

large σ.

In Fig. 4.5, we show the results for unavailable carrier frequency situation where

the observations are similar to those from Fig. 4.4. The accuracy of SDP at low noise

level can reach the CRLB, since it is limited by noise instead of relaxation.
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Figure 4.2: Performance of the proposed methods at different σ levels for single-time
case when fo is available.

Sequential Multiple-Time

We use M = 16 and N = 5 for this test. The algorithm updates the location of the

object sequentially as k increases. Fig. 4.6 shows the performance at k = 4 when

σfo = 0. The sequential algorithm using CFS is denoted by S-CFS and that using

SDP is S-SDP. When σ ≤ 0.05 Hz, both the S-CFS and the S-SDP have optimal

performance. At larger noise level, the S-CFS leaves the CRLB accuracy whereas the
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Figure 4.3: Performance of the proposed methods at different σ levels for single-time
case when fo is unavailable.

S-SDP continue to perform well.

4.7.2 Performance w.r.t. Sensor Position and Carrier Fre-
quency Errors

The covariance matrix of sensor position errors is randomly set as

Qs = σ2
sdiag{ [6, 5, 8, 9, 8, 4, 8, 9, 6, 3, 3, 7, 9, 3, 6, 8, 8, 3, 3, 4, 5, 4, 6, 8, 7, 8,
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Figure 4.4: Performance of the proposed methods at different σ levels for multiple-
time when fo is available.

4, 9, 4, 8, 3, 3, 6, 6, 7, 7, 3, 9, 4, 2, 6, 3, 4, 3, 3, 4, 5, 4 ]/10 } , (4.85)

where the unit of σs is meters. Fig. 4.7 gives the estimation performance with respect

to σs when the carrier frequency error is absent, where the measurement noise covari-

ance matrix is arbitrarily chosen as Qn = 10−7diag{ [ 4, 3, 6, 7, 8, 1, 8, 10, 3, 0.1, 1,

4, 9, 1, 6, 8 ] }. Fig. 4.8 presents the results as σfo increases while keeping σs = 0

and Qn = 10−4I16. Both CFS and SDP show similar performance by having optimal
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Figure 4.5: Performance of the proposed methods at different σ levels for multiple-
time when fo is unavailable.

accuracy over the region of small to moderate levels of errors. CFS-ML outperforms

the others by its ability to reach the CRLB at larger noise level. When we neglect

the error of carrier frequency by setting σfo to 0 in (4.9) for CFS, the performance

becomes much worse unless σfo is very small where the accuracy is dominated by the

measurement noise.
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Figure 4.6: Performance of the proposed methods at different σ levels for the sequen-
tial estimation when fo is available.

4.7.3 Sequential Estimation for Multiple-Time as Time k In-
creasing

Using M = 16 sensors and having the noise level at σ = 0.1 Hz, the MSE of the object

location estimate at successive k values is plotted in Fig. 4.9 using only one randomly

generated configuration where the sensor position error and carrier frequency noise

are absent. We include the extended Kalman filter (EKF) [104] denoted by EKF as a

comparison to our proposed sequential method. The state vector of EKF is [uT , u̇T ]T
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Figure 4.7: Performance of the proposed methods at different σs levels for single-time
case.

and the input at each instant is the frequency measurement. It is initialized with the

object state vector equal to 0 and the state covariance matrix by [112]

Qstate = diag
{

15002I2/3 , 5002/3 , 102I3/9
}
. (4.86)

The proposed sequential algorithms S-CFS and S-SDP are able to locate the object

and track it well with the optimal CRLB accuracy for the tested values of k. While
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Figure 4.8: Performance of the proposed methods at different σfo levels for single-time
case when fo is available.

EKF eventually can reach the CRLB when k is sufficiently large, they considerably

outperform the EKF when k is small.

The processing times of the algorithms at several k values from Matlab imple-

mentation are recorded in Table 4.7, under the settings of Fig. 4.9. EKF is most

computationally efficient, which takes about 1/8-th of the processing time of S-CFS.

However, its tracking performance is inadequate. Both sequential algorithms, S-CFS

and S-SDP, maintain nearly the same amounts of processing times regardless of k
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and they are less than those of their batch counterparts, B-CFS and B-SDP. When k

increases, the B-CFS processing time increases at almost constant rate and becomes

large. The time consumed by the B-SDP does not vary much with k as it is dominated

by the relaxation process which is mostly dependent on the number of unknowns and

the number of constraints rather than the measurement data size.
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Figure 4.9: Performance of the proposed methods at different k for the sequential
estimation when fo is available.
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4.7.4 Sensor Number

Figs. 4.10 and 4.11 give, respectively, the performance when using different number

of sensors for the single-time and multiple-time scenarios. The settings are the same

as in Fig. 4.2 and Fig. 4.4 for the two cases, while keeping the measurement noise

level at σ = 0.01 Hz.

For the single-time scenario in Fig. 4.10, CFS needs at least 14 sensors to work

properly due to the significant number of unknowns in (4.20). SDP attains the CRLB

with only 9 sensors. Shames cannot reach the CRLB even when the number of sensors

is large and has a very long processing time. Chan has poor performance regardless of

the number of sensors due to the accuracy limited by the grid size of solution search.

Using smaller grid size could improve the accuracy but it will be at the expense of

consuming longer processing time.

Fig. 4.11 shows similar observations for the multiple-time case. CFS now requires

9 sensors to operate and SDP can reach the CRLB with only 6 sensors.

4.8 Summary

In this chapter, We have investigated the problem of locating a moving object in 3-D

by using frequency measurements. Several scenarios including the single-time and the

multiple-time, both having carrier frequency known with error or fully unknown are

studied in the possible presence of sensor position errors. For each individual scenario,

we proposed two solutions based on the algebraic closed-form approach or the semi-

definite relaxation. The first is computationally efficient that consumes small amount

of computation time and the latter is noise resilient that can tolerate large amount
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Figure 4.10: Performance of the proposed methods using different number of sensors
for single-time case when fo is available.

of noise. The semi-definite relaxation solution has several hundreds of constraints

and we have evaluated each and listed the crucial ones that improve performance.

Both solution methods attain the CRLB performance under their intended operating

environments. We have also demonstrated CFS is an effective initialization for the it-

erative implementation of the MLE. Furthermore, a sequential estimator is developed

for the multiple-time scenario where the object location parameters are updated upon

a new observation arrives. Finally, the study contains theoretical analysis to prove
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Figure 4.11: Performance of the proposed methods using different number of sensors
for multiple-time when fo is available.

that under small Gaussian noise, the algebraic solution and the sequential estimator

can reach the CRLB accuracy having available and unavailable carrier frequency, with

the simulations providing the validation.
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Chapter 5

Moving Sensors Scenario

The measurement model given in (2.2) is valid when the sensors are fixed. To consider

the sensor movement, we use the following model

fk,i = f oo −
f oo (uok − sok,i)

T (u̇o − ṡok,i)

c
∥∥uok − sok,i

∥∥ + nk,i , (5.1)

where sok,i ∈ Rd and ṡok,i ∈ Rd are the true position and velocity of sensor i at time

instant k, and d is the localization dimension. rk,i = ‖uok − sk,i‖ is the Euclidean

distance at instant k between the object and the noisy position of sensor i. Collecting

sok,i and ṡok,i over M sensors and N time observations gives

so = [ soT1 , soT2 , . . . , soTk , . . . , soTN−1 ]T = s−∆s , (5.2)

ṡo = [ ṡoT1 , ṡoT2 , . . . , ṡoTk , . . . , ṡoTN−1 ]T = ṡ−∆ṡ , (5.3)
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and sok and ṡok are

sok = [ soTk,1, soTk,2, . . . , soTk,M ]T , (5.4)

ṡok = [ ṡoTk,1, ṡoTk,2, . . . , ṡoTk,M ]T . (5.5)

∆s and ∆ṡ are uncorrelated zero-mean Gaussian distributed error with covariance

matrices given by Qs and Qṡ respectively. To solve for the unknowns uo and u̇o,

we assume that enough measurements are available and the errors of sensor position,

sensor velocity and observation noise are uncorrelated and not significant in which the

second and higher error terms are negligible. We shall first reformulate the problem

to get an objective function with some second order constraints. Then, two solutions

will be proposed to minimize the objective function and obtain the object location

estimate. We shall also address the cases single-time and multiple-time measurements

separately.

5.1 Formulation

We start by expressing the measurement model (5.1) in terms of the available quan-

tities fo, sk,i and ṡk,i as

fk,i = fo−
fo(u

o
k − sk,i)

T (u̇o − ṡk,i)

c rk,i
+ εk,i + ∆fo o(1) + o(‖∆sk,i‖) + o(‖∆ṡk,i‖) , (5.6)

where εk,i is the composite error term given by

εk,i =

(
ρρρoTk,i(u̇

o − ṡok,i)

c
− 1

)
∆fo+

−f oo
c rok,i

(u̇o−ṡok,i)
TP⊥ok,i∆sk,i−

f oo
c
ρρρoTk,i∆ṡk,i+nk,i . (5.7)
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ρρρk,i = (uok − sk,i)/rk,i is a unit length vector pointing from sk,i to uok and P⊥ok,i =

I − ρρρok,iρρρoTk,i is the orthogonal projection matrix of ρρρok,i. Let df,k be the M × 1 vector

whose i-th element is −1+ρρρoTk,i(u̇
o − ṡok,i)/c, Ds,k as the M×dM matrix whose i-th row

is zero except the elements Ds,k(i, d×(i−1)+1 : d×(i)) = −(u̇o−ṡok,i)
TP⊥ok,if

o
o /(c r

o
k,i),

and Dṡ,k as the M×dM matrix whose i-th row is zero except the elements Dṡ,k(i, d×

(i− 1) + 1 : d× (i)) = −foo
c
ρρρoTk,i. Collecting the composite errors from different sensors

at time k gives

εεεk = df,k∆fo + Ds,k∆s + Dṡ,k∆ṡ + nk . (5.8)

Defining the vector df = [ dTf,0, dTf,1, . . . ,d
T
f,N−1 ]T , the matrix Ds = [ DT

s,0, DT
s,1,

. . . ,DT
s,N−1 ]T , and the matrix Dṡ = [ DT

ṡ,0, DT
ṡ,1, . . . ,D

T
ṡ,N−1 ]T , the error vector of all

MN measurements εεε = [εεεT0 , . . . , εεε
T
N−1]T is

εεε = df∆fo + Ds∆s + Dṡ∆ṡ + n . (5.9)

εεε remains Gaussian and has the covariance matrix equal to

Qε = E[εεεεεεT ] = σ2
fodfd

T
f + DsQsD

T
s + DṡQṡD

T
ṡ + Qn . (5.10)

To proceed further, it is more convenient to work with a scaled version of the nor-

malized Doppler shift

dk,i = c(fk,i − fo)/fo . (5.11)
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It has the meaning of the object range rate at time k observed by sensor i. Rearranging

(5.6) gives

(dk,i − εk,ic/fo) rk,i = − (uok − sk,i)
T (u̇o − ṡk,i) + ∆fo o(1) + o(‖∆sk,i‖) + o(‖∆ṡk,i‖).

(5.12)

Recall that rk,i = ‖uok − sk,i‖ which is defined before (5.1), squaring both sides yields

−2(c/fo)dk,ir
2
k,iεk,i+d

2
k,i

(
‖sk,i‖2 − 2sTk,iu

o
k + ‖uok‖

2) =
(
sTk,iu̇

o
)2

+
(
ṡTk,iu

o
k

)2
+
(
sTk,iṡk,i

)2

+
(
uoTk u̇o

)2−2ṡTk,iu
o
ku

oT
k u̇o−2sTk,iu̇

ou̇oTuok+2sTk,iṡk,iu̇
oTuok−2sTk,iṡk,is

T
k,iu̇

o−2sTk,iṡk,iṡ
T
k,iu

o
k

+ 2ṡTk,iu
o
ks
T
k,iu̇

o + o(εk,i) + ∆fo o(1) + o(‖∆sk,i‖) + o(‖∆ṡk,i‖) . (5.13)

uok is the object position at the time k. It is dependent on uo and u̇o only. Expressing

it by (2.1), we obtain the following

(
uoTk u̇o

)2
=
(
uoT u̇o

)2
+ 2kuoT u̇ou̇oT u̇o + k2

(
u̇oT u̇o

)2
, (5.14a)

ṡTk,iu
o
ku

oT
k u̇o = ṡTk,iu

ouoT u̇o + kṡTk,i(u
ou̇oT u̇o + u̇ouoT u̇o) + k2ṡTk,iu̇

ou̇oT u̇o , (5.14b)

sTk,iu̇
ouoTk u̇o = sTk,iu̇

ou̇oTuo + ksTk,iu̇
ou̇oT u̇o , (5.14c)

sTk,iṡk,iu
oT
k u̇o = sTk,iṡk,iu̇

oTuo + ksTk,iṡk,iu̇
oT u̇o , (5.14d)

sTk,iṡk,iṡ
T
k,iu

o
k = sTk,iṡk,iṡ

T
k,iu

o + ksTk,iṡk,iṡ
T
k,iu̇

o , (5.14e)

Inserting (5.14) in (5.13), we get

−2(c/fo)dk,ir
2
k,iεk,i+d

2
k,i

(
‖sk,i‖2 − 2sTk,iu

o
k + ‖uok‖

2) =
(
sTk,iu̇

o
)2

+
(
ṡTk,iu

o
k

)2
+
(
sTk,iṡk,i

)2

+
(
uoT u̇o

)2
+ 2kuoT u̇ou̇oT u̇o + k2

(
u̇oT u̇o

)2 − 2ṡTk,iu
ouoT u̇o − 2kṡTk,iu

ou̇oT u̇o
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−2k2ṡTk,iu̇
ou̇oT u̇o−2(sTk,i+kṡ

T
k,i)u̇

ouoT u̇o−2ksTk,iu̇
ou̇oT u̇o+2sTk,iṡk,iu̇

oTuo+2ksTk,iṡk,iu̇
oT u̇o

− 2sTk,iṡk,is
T
k,iu̇

o − 2sTk,iṡk,iṡ
T
k,iu

o − 2ksTk,iṡk,iṡ
T
k,iu̇

o + 2ṡTk,iu
o
ks
T
k,iu̇

o + o(εk,i) + ∆fo o(1)

+ o(‖∆sk,i‖) + o(‖∆ṡk,i‖) . (5.15)

The terms of
(
sTk,iu̇

o
)2

,
(
ṡTk,iu

o
k

)2
and ṡTk,iu

o
ks
T
k,iu̇

o, can be expanded into

(
sTk,iu̇

o
)2

= x2
k,iẋ

o2 + y2
k,iẏ

o2 + z2
k,iż

o2 + 2xk,iyk,iẋ
oẏo + 2xk,izk,iẋ

ożo + 2yk,izk,iẏ
ożo ,

(5.16a)(
ṡTk,iu

o
k

)2
= ẋ2

k,ix
o2 + ẏ2

k,iy
o2 + ż2

k,iz
o2 + 2ẋk,iẏk,ix

oyo + 2ẋk,iżk,ix
ozo + 2ẏk,iżk,iy

ozo

+ k2ẋ2
k,iẋ

o2 + k2ẏ2
k,iẏ

o2 + k2ż2
k,iż

o2 + 2k2ẋk,iẏk,iẋ
oẏo + 2k2ẋk,iżk,iẋ

ożo

+ 2k2ẏk,iżk,iẏ
ożo + 2kẋ2

k,ix
oẋo + 2kẏ2

k,iy
oẏo + 2kż2

k,iz
ożo

+ 2kẋk,iẏk,i (y
oẋo + xoẏo) + 2kẋk,iżk,i (z

oẋo + xożo)

+ 2kẏk,iżk,i (ẏ
ozo + yożo) , (5.16b)

ṡTk,iu
o
ks
T
k,iu̇

o = xk,iẋk,ix
oẋo + yk,iẏk,iy

oẏo + zk,iżk,iz
ożo + yk,iẋk,ix

oẏo + zk,iẋk,ix
ożo

+ xk,iẏk,iy
oẋo + zk,iẏk,iy

ożo + xk,iżk,iz
oẋo + yk,iżk,iz

oẏo + kxk,iẋk,iẋ
o2

+ kyk,iẏk,iẏ
o2 + kzk,iżk,iż

o2 + k (yk,iẋk,i + xk,iẏk,i) ẋ
oẏo

+ k (zk,iẋk,i + xk,iżk,i) ẋ
ożo + k (zk,iẏk,i + yk,iżk,i) ẏ

ożo . (5.16c)

Inserting (5.16) in (5.15) and rearranging,

2 (c/fo) dk,ir
2
k,iεk,i+o(εk,i)+∆fo o(1)+o(‖∆sk,i‖)+o(‖∆ṡk,i‖) = d2

k,is
T
k,isk,i−

(
sTk,iṡk,i

)2

+2
(
sTk,iṡk,iṡk,i − d2

k,isk,i
)T

uo+2
(
sTk,iṡk,i (kṡk,i + sk,i)− kd2

k,isk,i
)T

u̇o+
(
d2
k,i − ẋ2

k,i

)
xo2

+
(
d2
k,i − ẏ2

k,i

)
yo2 +

(
d2
k,i − ż2

k,i

)
zo2 +

(
k2d2

k,i − 2ksTk,iṡk,i − (xk,i + kẋk,i)
2) ẋo2
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+
(
k2d2

k,i − 2ksTk,iṡk,i − (yk,i + kẏk,i)
2) ẏo2 +

(
k2d2

k,i − 2ksTk,iṡk,i − (zk,i + kżk,i)
2) żo2

− 2ẋk,iẏk,ix
oyo − 2ẋk,iżk,ix

ozo − 2ẏk,iżk,iy
ozo − 2 (xk,i + kẋk,i) (yk,i + kẏk,i) ẋ

oẏo

− 2 (xk,i + kẋk,i) (zk,i + kżk,i) ẋ
ożo − 2 (yk,i + kẏk,i) (zk,i + kżk,i) ẏ

ożo

+ 2
(
kd2

k,i − kẋ2
k,i − sTk,iṡk,i − xk,iẋk,i

)
xoẋo + 2

(
kd2

k,i − kẏ2
k,i − sTk,iṡk,i − yk,iẏk,i

)
yoẏo

+2
(
kd2

k,i − kż2
k,i − sTk,iṡk,i − zk,iżk,i

)
zożo−2ẋk,i (kẏk,i + yk,i)x

oẏo−2ẏk,i (kẋk,i + xk,i) y
oẋo

− 2żk,i (kẋk,i + xk,i) z
oẋo − 2ẋk,i (kżk,i + zk,i)x

ożo − 2ẏk,i (kżk,i + zk,i) y
ożo

− 2żk,i (kẏk,i + yk,i) z
oẏo + 2ṡTk,iu

ouoT u̇o + 2 (sk,i + kṡk,i)
T u̇ouoT u̇o + 2kṡTk,iu

ou̇oT u̇o

+ 2
(
k2ṡk,i + ksk,i

)T
u̇ou̇oT u̇o −

(
uoT u̇o

)2 − 2k uoT u̇ou̇oT u̇o − k2
(
u̇oT u̇o

)2
(5.17)

5.1.1 Single-Time Measurement

We set k = 0 and drop the time zero index for simplicity, (5.17) reduces to

2 (c/fo) dir
2
i εi + o(εi) + ∆fo o(1) + o(‖∆si‖) + o(‖∆ṡi‖) = d2

i s
T
i si −

(
sTi ṡi

)2

+2
(
sTi ṡiṡi − d2

i si
)T

uo+2sTi ṡis
T
i u̇o+aTi bo+2ṡTi uouoT u̇o+2sTi u̇ouoT u̇o−

(
uoT u̇o

)2
,

(5.18)

ai and bo are vectors given in (5.25) and (5.26) and in (5.28) and (5.29) for 2-D and

3-D localization respectively. (5.18) remains to be a highly nonlinear equation with

respect to uo and u̇o. We shall formulate the localization problem as a constrained

optimization. Let the unknown vector be

ϕϕϕo =
[
uoT , u̇oT , boT , uoT u̇ouoT , uoT u̇ou̇oT ,

(
uoT u̇o

)2
]T

. (5.19)
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Also, define the matrix

A =



−2
(
sT1 ṡ1ṡ1 − d2

1s1

)T −2sT1 ṡ1s
T
1 −aT1 −2ṡT1 −2sT1 1

−2
(
sT2 ṡ2ṡ2 − d2

2s2

)T −2sT2 ṡ2s
T
2 −aT2 −2ṡT2 −2sT2 1

...
...

...
...

...
...

−2
(
sTM ṡM ṡM − d2

MsM
)T −2sTM ṡMsTM −aTM −2ṡTM −2sTM 1


, (5.20)

the vector

h =
[
d2

1s
T
1 s1 −

(
sT1 ṡ1

)2
, d2

2s
T
2 s2 −

(
sT2 ṡ2

)2
, . . . , d2

MsTMsM −
(
sTM ṡM

)2
]T
, (5.21)

and the M ×M matrix

B = 2
c

fo
diag

{[
d1r

2
1 , d2r

2
2 , . . . , dMr

2
M

]}
. (5.22)

Over i = 1, 2, . . . ,M , (5.18) forms the matrix equation after dropping the second and

higher order error terms,

Bεεε ' h−Aϕϕϕo. (5.23)

The approximation is valid when the error is small. The covariance matrix for the

equation error (5.23) is equal to

cov(Bεεε) = BE
[
εεεεεεT
]
BT = B Qε BT , (5.24)

where Qε is given by (5.10) with N = 1. We shall build the optimization problem for

2-D and 3-D localization separately in the following two subsections.
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2-D Localization

The transformed observation equation in (5.17) describes the relation among the un-

knowns and the available data in the 3-D coordinates. Considering the 2-D version of

the problem and single-time measurement, (5.17) reduces to (5.18) with the following

definitions of ai and bo

ai = [
(
d2
i − ẋ2

i

)
,
(
d2
i − ẏ2

i

)
, −x2

i , −y2
i , −2ẋiẏi, −2xiyi, −2

(
sTi ṡi + xiẋi

)
,

− 2
(
sTi ṡi + yiẏi

)
, −2yiẋi, −2xiẏi ]

T . (5.25)

bo = [xo2, yo2, ẋo2, ẏo2, xoyo, ẋoẏo, xoẋo, yoẏo, xoẏo, yoẋo ]T . (5.26)

The unknown vector ϕϕϕo in (5.23) has 19 elements but the number of independent

variables is only 4. Fifteen constraints are necessary to relate the elements of the

variable ϕϕϕ for the estimation of ϕϕϕo. Based on ϕϕϕo defined in (5.19), Table 5.1 shows

the individual components of ϕϕϕ and lists the relations among the elements. The

localization problem can be cast as a weighted least-squares (WLS) optimization

under a set of constraints as follows:

min
ϕϕϕ

J = (h−Aϕϕϕ)T W (h−Aϕϕϕ) , (5.27a)

s.t. All the constraints listed on the right column of Table 5.1 . (5.27b)

The 15 quadratic constraints (5.27b) come from the relations among the nuisance

variables ϕϕϕ(5 : 19) and the actual unknowns ϕϕϕ(1 : 4). There are other second order

relations among the elements of ϕϕϕ are redundant in the formulation (5.27). They will

be used for the SDP solution method to improve the tightness of the optimization
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Table 5.1: The Elements of ϕϕϕ and The 15 Constraints for The 2-D Single-Time
Measurement Case.

Elements Relations
ϕ(1) = x ϕ(5) = ϕ(1)2

ϕ(2) = y ϕ(6) = ϕ(2)2

ϕ(3) = ẋ ϕ(7) = ϕ(3)2

ϕ(4) = ẏ ϕ(8) = ϕ(4)2

ϕ(5) = x2

ϕ(6) = y2 ϕ(9) = ϕ(1)ϕ(2)
ϕ(7) = ẋ2 ϕ(10) = ϕ(3)ϕ(4)
ϕ(8) = ẏ2 ϕ(11) = ϕ(1)ϕ(3)
ϕ(9) = xy ϕ(12) = ϕ(2)ϕ(4)
ϕ(10) = ẋẏ ϕ(13) = ϕ(1)ϕ(4)
ϕ(11) = xẋ ϕ(14) = ϕ(2)ϕ(3)
ϕ(12) = yẏ
ϕ(13) = xẏ ϕ(15) = ϕ(1)ϕ(12) + ϕ(3)ϕ(5)
ϕ(14) = yẋ ϕ(16) = ϕ(2)ϕ(11) + ϕ(4)ϕ(6)
ϕ(15) = x(xẋ+ yẏ) ϕ(17) = ϕ(1)ϕ(7) + ϕ(4)ϕ(14)
ϕ(16) = y(xẋ+ yẏ) ϕ(18) = ϕ(2)ϕ(8) + ϕ(3)ϕ(13)
ϕ(17) = ẋ(xẋ+ yẏ) ϕ(19) = ϕ(1)ϕ(17) + ϕ(2)ϕ(18)
ϕ(18) = ẏ(xẋ+ yẏ)
ϕ(19) = (xẋ+ yẏ)2

when it is approximated with SDR.

The constrained optimization problem (5.27) will be solved using unconstrained

minimization or convex optimization that will be described in Sections 5.2 and 5.3

respectively.

3-D Localization

For 3-D localization, the vectors ai and bo of (5.18) are defined as follows

ai = [
(
d2
i − ẋ2

i

)
,
(
d2
i − ẏ2

i

)
,
(
d2
i − ż2

i

)
, −x2

i , −y2
i , −z2

i , −2ẋiẏi, −2ẋiżi, −2ẏiżi,

− 2xiyi, −2xizi, −2yizi, −2
(
sTi ṡi + xiẋi

)
, −2

(
sTi ṡi + yiẏi

)
, −2

(
sTi ṡi + ziżi

)
,

− 2yiẋi, −2ziẋi, −2xiẏi, −2ziẏi, −2xiżi, −2yiżi ]
T , (5.28)
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bo = [xo2, yo2, zo2, ẋo2, ẏo2, żo2, xoyo, xozo, yozo, ẋoẏo, ẋożo, ẏożo, xoẋo, yoẏo, zożo,

xoẏo, xożo, yoẋo, yożo, zoẋo, zoẏo ]T . (5.29)

The unknown vectorϕϕϕo has 34 elements in this case with only 6 independent variables.

The elements ϕϕϕo(7 : 34) are polynomial function of the first 6 elements of ϕϕϕo. Thus, we

shall build 28 constraints to relate the dependent variables with the actual unknowns,

ϕϕϕo(1 : 6). The following weighted least-square (WLS) optimization along with the 28

constraints form the localization problem for this case. The constraints are directly

derived from the definition of ϕϕϕo.

min
ϕϕϕ

J = (h−Aϕϕϕ)T W (h−Aϕϕϕ) , (5.30a)

s.t. All the constraints listed in right column of Table 5.2 , (5.30b)

5.1.2 Multiple-Time Measurements

The transformed observation equation at a certain time instant k is (5.17). For

simplicity, we incorporate the vectors ak,i and bo to get

2(c/fo)dk,ir
2
k,iεk,i+o(εk,i)+∆fo o(1)+o(‖∆sk,i‖)+o(‖∆ṡk,i‖) = d2

k,is
T
k,isk,i−

(
sTk,iṡk,i

)2

+ 2
(
sTk,iṡk,iṡk,i − d2

k,isk,i
)T

uo + 2
(
sTk,iṡk,i (kṡk,i + sk,i)− k d2

k,isk,i
)T

u̇o + aTk,ib
o

+ 2ṡTk,iu
ouoT u̇o + 2 (sk,i + kṡk,i)

T u̇ouoT u̇o + 2kṡTk,iu
ou̇oT u̇o + 2k (kṡk,i + sk,i)

T u̇ou̇oT u̇o

−
(
uoT u̇o

)2 − 2k uoT u̇ou̇oT u̇o − k2
(
u̇oT u̇o

)2
, (5.31)
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Table 5.2: The Elements of ϕϕϕ and The 28 Constraints for The 3-D Single-Time
Measurement Case.

Elements Relations
ϕ(1) = x ϕ(7) = ϕ(1)2

ϕ(2) = y ϕ(8) = ϕ(2)2

ϕ(3) = z ϕ(9) = ϕ(3)2

ϕ(4) = ẋ ϕ(10) = ϕ(4)2

ϕ(5) = ẏ ϕ(11) = ϕ(5)2

ϕ(6) = ż ϕ(12) = ϕ(6)2

ϕ(7) = x2

ϕ(8) = y2 ϕ(13) = ϕ(1)ϕ(2)
ϕ(9) = z2 ϕ(14) = ϕ(1)ϕ(3)
ϕ(10) = ẋ2 ϕ(15) = ϕ(2)ϕ(3)
ϕ(11) = ẏ2 ϕ(16) = ϕ(4)ϕ(5)
ϕ(12) = ż2 ϕ(17) = ϕ(4)ϕ(6)
ϕ(13) = xy ϕ(18) = ϕ(5)ϕ(6)
ϕ(14) = xz ϕ(19) = ϕ(1)ϕ(4)
ϕ(15) = yz ϕ(20) = ϕ(2)ϕ(5)
ϕ(16) = ẋẏ ϕ(21) = ϕ(3)ϕ(6)
ϕ(17) = ẋż ϕ(22) = ϕ(1)ϕ(5)
ϕ(18) = ẏż ϕ(23) = ϕ(1)ϕ(6)
ϕ(19) = xẋ ϕ(24) = ϕ(2)ϕ(4)
ϕ(20) = yẏ ϕ(25) = ϕ(2)ϕ(6)
ϕ(21) = zż ϕ(26) = ϕ(3)ϕ(4)
ϕ(22) = xẏ ϕ(27) = ϕ(3)ϕ(5)
ϕ(23) = xż
ϕ(24) = yẋ
ϕ(25) = yż ϕ(28) = ϕ(1)ϕ(19) + ϕ(2)ϕ(22) + ϕ(3)ϕ(23)
ϕ(26) = zẋ = ϕ(4)ϕ(7) + ϕ(5)ϕ(13) + ϕ(6)ϕ(14)
ϕ(27) = zẏ ϕ(29) = ϕ(1)ϕ(24) + ϕ(2)ϕ(20) + ϕ(3)ϕ(25)
ϕ(28) = x(xẋ+ yẏ + zż) = ϕ(4)ϕ(13) + ϕ(5)ϕ(8) + ϕ(6)ϕ(15)
ϕ(29) = y(xẋ+ yẏ + zż) ϕ(30) = ϕ(1)ϕ(26) + ϕ(2)ϕ(27) + ϕ(3)ϕ(21)
ϕ(30) = z(xẋ+ yẏ + zż) = ϕ(4)ϕ(14) + ϕ(5)ϕ(15) + ϕ(6)ϕ(9)
ϕ(31) = ẋ(xẋ+ yẏ + zż) ϕ(31) = ϕ(1)ϕ(10) + ϕ(2)ϕ(16) + ϕ(3)ϕ(17)
ϕ(32) = ẏ(xẋ+ yẏ + zż) = ϕ(4)ϕ(19) + ϕ(5)ϕ(24) + ϕ(6)ϕ(26)
ϕ(33) = ż(xẋ+ yẏ + zż) ϕ(32) = ϕ(1)ϕ(16) + ϕ(2)ϕ(11) + ϕ(3)ϕ(18)
ϕ(34) = (xẋ+ yẏ + zż)2 = ϕ(4)ϕ(22) + ϕ(5)ϕ(20) + ϕ(6)ϕ(27)

ϕ(33) = ϕ(1)ϕ(17) + ϕ(2)ϕ(18) + ϕ(3)ϕ(12)
= ϕ(4)ϕ(23) + ϕ(5)ϕ(25) + ϕ(6)ϕ(21)

ϕ(34) = ϕ(1)ϕ(31) + ϕ(2)ϕ(32) + ϕ(3)ϕ(33)
= ϕ(4)ϕ(28) + ϕ(5)ϕ(29) + ϕ(6)ϕ(30)
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and ak,i and bo are given by (5.41) and (5.42) for 2-D localization and (5.44) and

(5.45) for 3-D localization. By collecting in each term the lumped variable involving

the object position and velocity, we define the unknown vector as

ϕϕϕo =
[
uoT , u̇oT , boT , uoT u̇ouoT , uoT u̇ou̇oT ,

(
uoT u̇o

)2
, u̇oT u̇ouoT , u̇oT u̇ou̇oT ,

uoT u̇ou̇oT u̇o,
(
u̇oT u̇o

)2 ]T
. (5.32)

Let Ak be the matrix having the i-th row

Ak(i, :) =
[
−2
(
sTk,iṡk,iṡk,i − d2

k,isk,i
)T
, −2

(
sTk,iṡk,i (kṡk,i + sk,i)− k d2

k,isk,i
)T
, −aTk,i,

− 2ṡTk,i, −2 (sk,i + kṡk,i)
T , 1, −2kṡTk,i, −2k (kṡk,i + sk,i)

T , 2k, k2
]
, (5.33)

the length M vector hk be

hk = [d2
k,1s

T
k,1sk,1 −

(
sTk,1ṡk,1

)2
, d2

k,2s
T
k,2sk,2 −

(
sTk,2ṡk,2

)2
, . . . ,

d2
k,MsTk,Msk,M −

(
sTk,M ṡk,M

)2
]T , (5.34)

and the size M ×M matrix Bk be

Bk = 2
c

fo
diag

{[
dk,1r

2
k,1, dk,2r

2
k,2, . . . , dk,Mr

2
k,M

]}
. (5.35)

Putting together Ak, hk and Bk for k = 0, 1, . . . , N − 1 separately such that

A =
[
AT

0 , AT
1 , . . . , AT

N−1

]T
, (5.36)
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h =
[
hT0 , hT1 , . . . , hTN−1

]T
, (5.37)

B = diag {B0 , B1 , . . . , BN−1 } , (5.38)

we can represent all MN equations over i = 1, . . . ,M and k = 0, . . . , N − 1 of (5.31)

in a matrix form as

Bεεε ' h−Aϕϕϕo, (5.39)

where the second and higher order errors terms have been ignored and the approx-

imation is reasonable when the errors are small. The covariance matrix of (5.39) is

given by

cov(Bεεε) = BE
[
εεεεεεT
]
BT = B Qε BT , (5.40)

and Qε is given by (5.10) with N > 1. The following two subsections present the

optimization problem for 2-D and 3-D localization separately.

2-D Localization

In the 2-D coordinates, we define the vectors ak,i and bo of (5.31) as

ak,i = [
(
d2
k,i − ẋ2

k,i

)
,
(
d2
k,i − ẏ2

k,i

)
,
((
k2d2

k,i − 2ksTk,iṡk,i
)
− (xk,i + kẋk,i)

2) ,((
k2d2

k,i − 2ksTk,iṡk,i
)
− (yk,i + kẏk,i)

2) ,−2ẋk,iẏk,i, −2 (xk,i + kẋk,i) (yk,i + kẏk,i) ,

2
(
k d2

k,i − kẋ2
k,i − sTk,iṡk,i − xk,iẋk,i

)
, 2
(
k d2

k,i − kẏ2
k,i − sTk,iṡk,i − yk,iẏk,i

)
,

− 2ẋk,i (kẏk,i + yk,i) , −2ẏk,i (kẋk,i + xk,i) ]T , (5.41)

bo = [xo2, yo2, ẋo2, ẏo2, xoyo, ẋoẏo, xoẋo, yoẏo, xoẏo, yoẋo ]T , (5.42)
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Table 5.3: The Elements of ϕϕϕ and The 21 Constraints for The 2-D Multiple-Time
Measurements Case.

Elements Constraints
ϕ(1) = x ϕ(5) = ϕ(1)ϕ(1)
ϕ(2) = y ϕ(6) = ϕ(2)ϕ(2)
ϕ(3) = ẋ ϕ(7) = ϕ(3)ϕ(3)
ϕ(4) = ẏ ϕ(8) = ϕ(4)ϕ(4)
ϕ(5) = x2 ϕ(9) = ϕ(1)ϕ(2)
ϕ(6) = y2 ϕ(10) = ϕ(3)ϕ(4)
ϕ(7) = ẋ2 ϕ(11) = ϕ(1)ϕ(3)
ϕ(8) = ẏ2 ϕ(12) = ϕ(2)ϕ(4)
ϕ(9) = xy ϕ(13) = ϕ(1)ϕ(4)
ϕ(10) = ẋẏ ϕ(14) = ϕ(2)ϕ(3)
ϕ(11) = xẋ ϕ(15) = ϕ(1)ϕ(11) + ϕ(2)ϕ(13)
ϕ(12) = yẏ ϕ(16) = ϕ(3)ϕ(9) + ϕ(4)ϕ(6)
ϕ(13) = xẏ ϕ(17) = ϕ(1)ϕ(7) + ϕ(2)ϕ(10)
ϕ(14) = yẋ ϕ(18) = ϕ(3)ϕ(13) + ϕ(4)ϕ(12)
ϕ(15) = x(xẋ+ yẏ) ϕ(19) = ϕ(1)ϕ(17) + ϕ(2)ϕ(18)
ϕ(16) = y(xẋ+ yẏ) ϕ(20) = ϕ(1)ϕ(8) + ϕ(3)ϕ(11)
ϕ(17) = ẋ(xẋ+ yẏ) ϕ(21) = ϕ(2)ϕ(7) + ϕ(4)ϕ(12)
ϕ(18) = ẏ(xẋ+ yẏ) ϕ(22) = ϕ(3)ϕ(7) + ϕ(4)ϕ(10)
ϕ(19) = (xẋ+ yẏ)2 ϕ(23) = ϕ(3)ϕ(10) + ϕ(4)ϕ(8)
ϕ(20) = x(ẋ2 + ẏ2) ϕ(24) = ϕ(3)ϕ(17) + ϕ(4)ϕ(18)
ϕ(21) = y(ẋ2 + ẏ2) ϕ(25) = ϕ(3)ϕ(22) + ϕ(4)ϕ(23)
ϕ(22) = ẋ(ẋ2 + ẏ2)
ϕ(23) = ẏ(ẋ2 + ẏ2)
ϕ(24) = (xẋ+ yẏ)(ẋ2 + ẏ2)
ϕ(25) = (ẋ2 + ẏ2)2

In this case ϕϕϕo has 25 elements and the individual variables are shown in Table 5.3.

The number of actual unknowns is only 4 and the elements are related to each other.

Table 5.3 tabulates the second order relations that relates nuisance variables of ϕϕϕ

with the object location independent variables. The optimization for the multiple-

time measurements case, using the weighting matrix in (5.47) with N larger than one,

is

min
ϕϕϕ

J = (h−Aϕϕϕ)T W (h−Aϕϕϕ) , (5.43a)

142



s.t. All the constraints listed on the right column of Table 5.3. (5.43b)

The relations in Table 5.3 are used to impose constraints among the 25 elements of ϕϕϕ,

for the purpose to fix the number of independent variables to only 4. There are other

redundant second order relations among the elements of ϕϕϕ that are not needed in the

formulation but they will be used later to improve the optimization when (5.43) is

approximated with SDR.

3-D Localization

We define the vectors ak,i and bo of (5.31) here as

ak,i = [
(
d2
k,i − ẋ2

k,i

)
,
(
d2
k,i − ẏ2

k,i

)
,
(
d2
k,i − ż2

k,i

)
,
(
k2d2

k,i − 2ksTk,iṡk,i − (xk,i + kẋk,i)
2) ,(

k2d2
k,i − 2ksTk,iṡk,i − (yk,i + kẏk,i)

2) , (k2d2
k,i − 2ksTk,iṡk,i − (zk,i + kżk,i)

2) ,−2ẋk,iẏk,i ,

− 2ẋk,iżk,i ,−2ẏk,iżk,i ,−2 (xk,i + kẋk,i) (yk,i + kẏk,i) ,−2 (xk,i + kẋk,i) (zk,i + kżk,i) ,

− 2 (yk,i + kẏk,i) (zk,i + kżk,i) , 2
(
kd2

k,i − kẋ2
k,i − sTk,iṡk,i − xk,iẋk,i

)
,

2
(
kd2

k,i − kẏ2
k,i − sTk,iṡk,i − yk,iẏk,i

)
, 2
(
kd2

k,i − kż2
k,i − sTk,iṡk,i − zk,iżk,i

)
,

− 2ẋk,i (kẏk,i + yk,i) ,−2ẏk,i (kẋk,i + xk,i) ,−2żk,i (kẋk,i + xk,i) ,−2ẋk,i (kżk,i + zk,i) ,

− 2ẏk,i (kżk,i + zk,i) ,−2żk,i (kẏk,i + yk,i) ]T , (5.44)

bo = [xo2, yo2, zo2, ẋo2, ẏo2, żo2, xoyo, xozo, yozo, ẋoẏo, ẋożo, ẏożo, xoẋo, yoẏo,

zożo, xoẏo, xożo, yoẋo, yożo, zoẋo, zoẏo ]T , (5.45)
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and in the same way, we build the following optimization problem,

min
ϕϕϕ

J = (h−Aϕϕϕ)T W (h−Aϕϕϕ) , (5.46a)

s.t. All the constraints listed on the right column of Table 5.4 . (5.46b)

ϕϕϕ in (5.46) has 42 unknown elements of which only 6 are independents. The elements

ϕϕϕ(7 : 42) are directly related to the first 6 unknowns of ϕϕϕ as shown in Table 5.4.

These relations represent the key for our developed algebraic solution and also the

SDP solution through the SDR method.

The matrix W mentioned in (5.27a), (5.30a), (5.43a) and (5.46a) is an approxi-

mation for the weighting matrix and it is set to

W = cov(Bεεε)−1 , (5.47)

where cov(Bεεε) is given in (5.24) and (5.40) for single-time and multiple-time mea-

surements respectively.

5.2 Algebraic Solution

We shall present in this section an algebraic closed-form solution to solve the con-

strained WLS problems for localization. The method is computationally attractive

and will reach the CRLB performance in the small noise environment. First, we as-

sume the elements of ϕϕϕ are independent variables to obtain the WLS solution. Next,

we exploit the constraints to refine the estimate through nonlinear transformation
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Table 5.4: The Elements of ϕϕϕ and The 36 Constraints for The 3-D Multiple-Time
Measurements Case.

Elements Constraints
ϕ(1) = x ϕ(7) = ϕ(1)2

ϕ(2) = y ϕ(8) = ϕ(2)2

ϕ(3) = z ϕ(9) = ϕ(3)2

ϕ(4) = ẋ ϕ(10) = ϕ(4)2

ϕ(5) = ẏ ϕ(11) = ϕ(5)2

ϕ(6) = ż ϕ(12) = ϕ(6)2

ϕ(7) = x2 ϕ(13) = ϕ(1)ϕ(2)
ϕ(8) = y2 ϕ(14) = ϕ(1)ϕ(3)
ϕ(9) = z2 ϕ(15) = ϕ(2)ϕ(3)
ϕ(10) = ẋ2 ϕ(16) = ϕ(4)ϕ(5)
ϕ(11) = ẏ2 ϕ(17) = ϕ(4)ϕ(6)
ϕ(12) = ż2 ϕ(18) = ϕ(5)ϕ(6)
ϕ(13) = xy ϕ(19) = ϕ(1)ϕ(4)
ϕ(14) = xz ϕ(20) = ϕ(2)ϕ(5)
ϕ(15) = yz ϕ(21) = ϕ(3)ϕ(6)
ϕ(16) = ẋẏ ϕ(22) = ϕ(1)ϕ(5)
ϕ(17) = ẋż ϕ(23) = ϕ(1)ϕ(6)
ϕ(18) = ẏż ϕ(24) = ϕ(2)ϕ(4)
ϕ(19) = xẋ ϕ(25) = ϕ(2)ϕ(6)
ϕ(20) = yẏ ϕ(26) = ϕ(3)ϕ(4)
ϕ(21) = zż ϕ(27) = ϕ(3)ϕ(5)
ϕ(22) = xẏ ϕ(28) = ϕ(1)ϕ(19) + ϕ(2)ϕ(22) + ϕ(3)ϕ(23)
ϕ(23) = xż = ϕ(4)ϕ(7) + ϕ(5)ϕ(13) + ϕ(6)ϕ(14)
ϕ(24) = yẋ ϕ(29) = ϕ(1)ϕ(24) + ϕ(2)ϕ(20) + ϕ(3)ϕ(25)
ϕ(25) = yż = ϕ(4)ϕ(13) + ϕ(5)ϕ(8) + ϕ(6)ϕ(15)
ϕ(26) = zẋ ϕ(30) = ϕ(1)ϕ(26) + ϕ(2)ϕ(27) + ϕ(3)ϕ(21)
ϕ(27) = zẏ = ϕ(4)ϕ(14) + ϕ(5)ϕ(15) + ϕ(6)ϕ(9)
ϕ(28) = x(xẋ+ yẏ + zż) ϕ(31) = ϕ(1)ϕ(10) + ϕ(2)ϕ(16) + ϕ(3)ϕ(17)
ϕ(29) = y(xẋ+ yẏ + zż) = ϕ(4)ϕ(19) + ϕ(5)ϕ(24) + ϕ(6)ϕ(26)
ϕ(30) = z(xẋ+ yẏ + zż) ϕ(32) = ϕ(1)ϕ(16) + ϕ(2)ϕ(11) + ϕ(3)ϕ(18)
ϕ(31) = ẋ(xẋ+ yẏ + zż) = ϕ(4)ϕ(22) + ϕ(5)ϕ(20) + ϕ(6)ϕ(27)
ϕ(32) = ẏ(xẋ+ yẏ + zż) ϕ(33) = ϕ(1)ϕ(17) + ϕ(2)ϕ(18) + ϕ(3)ϕ(12)
ϕ(33) = ż(xẋ+ yẏ + zż) = ϕ(4)ϕ(23) + ϕ(5)ϕ(25) + ϕ(6)ϕ(21)
ϕ(34) = (xẋ+ yẏ + zż)2 ϕ(34) = ϕ(1)ϕ(31) + ϕ(2)ϕ(32) + ϕ(3)ϕ(33)
ϕ(35) = x(ẋ2 + ẏ2 + ż2) ϕ(35) = ϕ(4)ϕ(19) + ϕ(5)ϕ(22) + ϕ(6)ϕ(25)
ϕ(36) = y(ẋ2 + ẏ2 + ż2) ϕ(36) = ϕ(4)ϕ(23) + ϕ(5)ϕ(20) + ϕ(6)ϕ(26)
ϕ(37) = z(ẋ2 + ẏ2 + ż2) ϕ(37) = ϕ(4)ϕ(24) + ϕ(5)ϕ(27) + ϕ(6)ϕ(21)
ϕ(38) = ẋ(ẋ2 + ẏ2 + ż2) ϕ(38) = ϕ(4)ϕ(10) + ϕ(5)ϕ(16) + ϕ(6)ϕ(17)
ϕ(39) = ẏ(ẋ2 + ẏ2 + ż2) ϕ(39) = ϕ(4)ϕ(16) + ϕ(5)ϕ(11) + ϕ(6)ϕ(18)
ϕ(40) = ż(ẋ2 + ẏ2 + ż2) ϕ(40) = ϕ(4)ϕ(17) + ϕ(5)ϕ(18) + ϕ(6)ϕ(12)
ϕ(41) = (xẋ+ yẏ + zż)(ẋ2 + ẏ2 + ż2) = ϕ(4)ϕ(28) + ϕ(5)ϕ(29) + ϕ(6)ϕ(30)
ϕ(42) = (ẋ2 + ẏ2 + ż2)2 ϕ(41) = ϕ(1)ϕ(38) + ϕ(2)ϕ(39) + ϕ(3)ϕ(40)

= ϕ(4)ϕ(31) + ϕ(5)ϕ(32) + ϕ(6)ϕ(33)
ϕ(42) = ϕ(4)ϕ(38) + ϕ(5)ϕ(39) + ϕ(6)ϕ(40)
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[12].

Although the matrix and vector variables A, B, h and W are defined differently

for the four different cases discussed in 5.1.1 and 5.1.2, the solution to the optimization

problems given in (5.27), (5.30), (5.43) and (5.46) is

ϕϕϕ =
(
ATWA

)−1
ATWh . (5.48)

When the noise in A is not significant, we can reasonably approximate the covariance

matrix of the WLS solution ϕϕϕ by [12],

cov (ϕϕϕ) '
(
ATWA

)−1
. (5.49)

The weighting matrix W is given by (5.47) and it is unavailable since B and Qε are

function of the true object location. Nevertheless, we can construct W by using the

noisy elements of (5.48) obtained from its initial estimate when setting W = I in

(5.48). The error resulting for the solution of ϕϕϕ can be neglected as the WLS solution

is not sensitive to the error in the weighting matrix [9, 10].

Now, we shall utilize the relations among the elements of ϕϕϕ to improve the esti-

mation accuracy. Let us introduce the separate unknown vector

θθθo =
[
uoT , u̇oT

]T
, (5.50)

Also, let the pseudo data vector be the WLS solution (5.48). The relations among

the elements of ϕϕϕ and θθθo can be used to perform a nonlinear transformation in which

every element in the data vector can be expressed in terms of the elements of ϕϕϕ and

146



θθθo. In particular,

ϕϕϕ(1 : 2d) = θθθo(1 : 2d) + ∆ϕϕϕ(1 : 2d) , (5.51a)

ϕ(2d+ 1) = ϕ(1)θo(1)− ϕo(1)∆ϕ(1) + ∆ϕ(2d+ 1) , (5.51b)

ϕ(2d+ 2) = ϕ(2)θo(2)− ϕo(2)∆ϕ(2) + ∆ϕ(2d+ 2) , (5.51c)

ϕ(3d+ 1) = ϕ(d+ 1)θo(d+ 1)− ϕo(d+ 1)∆ϕ(d+ 1) + ∆ϕ(3d+ 1) , (5.51d)

ϕ(3d+ 2) = ϕ(d+ 2)θo(d+ 2)− ϕo(d+ 2)∆ϕ(d+ 2) + ∆ϕ(3d+ 2) , (5.51e)

ϕ(4d+ 1) =
1

2
ϕ(2)θo(1) +

1

2
ϕ(1)θo(2)− 1

2
ϕo(2)∆ϕ(1)− 1

2
ϕo(1)∆ϕ(2)

+ ∆ϕ(4d+ 1) , (5.51f)

where ∆ϕϕϕ is the estimation error of the WLS solution. The nonlinear transformation

in (5.51) is valid for all the different cases of localization scenarios we are discussing

in this chapter. The transformation for the rest of elements in the data vector is given

in (5.52), in which we coded the indices of the data vector and reveal it for the four

different cases in Table 5.5.

ϕ(c1) = ϕ(3)θo(3)− ϕo(3)∆ϕ(3) + ∆ϕ(9) , (5.52a)

ϕ(c2) = ϕ(6)θo(6)− ϕo(6)∆ϕ(6) + ∆ϕ(12) , (5.52b)

ϕ(c3) =
1

2
ϕ(3)θo(1) +

1

2
ϕ(1)θo(3)− 1

2
ϕo(1)∆ϕ(3)− 1

2
ϕo(3)∆ϕ(1) + ∆ϕ(14) , (5.52c)

ϕ(c4) =
1

2
ϕ(3)θo(2) +

1

2
ϕ(2)θo(3)− 1

2
ϕo(2)∆ϕ(3)− 1

2
ϕo(3)∆ϕ(2) + ∆ϕ(15) , (5.52d)

ϕ(c5) =
1

2
ϕ(d+ 2)θo(d+ 1) +

1

2
ϕ(d+ 1)θo(d+ 2)− 1

2
ϕo(d+ 2)∆ϕ(d+ 1)

− 1

2
ϕo(d+ 1)∆ϕ(d+ 2) + ∆ϕ(c5) , (5.52e)

ϕ(c6) =
1

2
ϕ(6)θo(4) +

1

2
ϕ(4)θo(6)− 1

2
ϕo(4)∆ϕ(6)− 1

2
ϕo(6)∆ϕ(4) + ∆ϕ(17) , (5.52f)

ϕ(c7) =
1

2
ϕ(6)θo(5) +

1

2
ϕ(5)θo(6)− 1

2
ϕo(5)∆ϕ(6)− 1

2
ϕo(6)∆ϕ(5) + ∆ϕ(18) , (5.52g)
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ϕ(c8) =
1

2
ϕ(d+ 1)θo(1) +

1

2
ϕ(1)θo(d+ 1)− 1

2
ϕo(d+ 1)∆ϕ(1)− 1

2
ϕo(1)∆ϕ(d+ 1)

+ ∆ϕ(c8) , (5.52h)

ϕ(c9) =
1

2
ϕ(d+ 2)θo(2) +

1

2
ϕ(2)θo(d+ 2)− 1

2
ϕo(d+ 2)∆ϕ(2)− 1

2
ϕo(2)∆ϕ(d+ 2)

+ ∆ϕ(c9) , (5.52i)

ϕ(c10) =
1

2
ϕ(6)θo(3) +

1

2
ϕ(3)θo(6)− 1

2
ϕo(6)∆ϕ(3)− 1

2
ϕo(3)∆ϕ(6) + ∆ϕ(21) , (5.52j)

ϕ(c11) =
1

2
ϕ(d+ 2)θo(1) +

1

2
ϕ(1)θo(d+ 2)− 1

2
ϕo(d+ 2)∆ϕ(1)− 1

2
ϕo(1)∆ϕ(d+ 2)

+ ∆ϕ(c11) , (5.52k)

ϕ(c12) =
1

2
ϕ(6)θo(1) +

1

2
ϕ(1)θo(6)− 1

2
ϕo(6)∆ϕ(1)− 1

2
ϕo(1)∆ϕ(6) + ∆ϕ(23) , (5.52l)

ϕ(c13) =
1

2
ϕ(d+ 1)θo(2) +

1

2
ϕ(2)θo(d+ 1)− 1

2
ϕo(d+ 1)∆ϕ(2)− 1

2
ϕo(2)∆ϕ(d+ 1)

+ ∆ϕ(c13) , (5.52m)

ϕ(c14) =
1

2
ϕ(6)θo(2) +

1

2
ϕ(2)θo(6)− 1

2
ϕo(6)∆ϕ(2)− 1

2
ϕo(2)∆ϕ(6) + ∆ϕ(25) , (5.52n)

ϕ(c15) =
1

2
ϕ(4)θo(3) +

1

2
ϕ(3)θo(4)− 1

2
ϕo(4)∆ϕ(3)− 1

2
ϕo(3)∆ϕ(4) + ∆ϕ(26) , (5.52o)

ϕ(c16) =
1

2
ϕ(5)θo(3) +

1

2
ϕ(3)θo(5)− 1

2
ϕo(5)∆ϕ(3)− 1

2
ϕo(3)∆ϕ(5) + ∆ϕ(27) , (5.52p)

ϕ(c17) =
1

2
ϕ(11)θo(1) +

1

2
ϕ(13)θo(2) +

1

2
ϕ(5)θo(3) +

1

2
ϕ(9)θo(4)− 1

2
ϕo(3)∆ϕ(5)

− 1

2
ϕo(4)∆ϕ(9)− 1

2
ϕo(1)∆ϕ(11)− 1

2
ϕo(2)∆ϕ(13) + ∆ϕ(15) , (5.52q)

ϕ(c18) =
1

2
ϕ(14)θo(1) +

1

2
ϕ(12)θo(2) +

1

2
ϕ(9)θo(3) +

1

2
ϕ(6)θo(4)− 1

2
ϕo(4)∆ϕ(6)

− 1

2
ϕo(3)∆ϕ(9)− 1

2
ϕo(2)∆ϕ(12)− 1

2
ϕo(1)∆ϕ(14) + ∆ϕ(16) , (5.52r)

ϕ(c19) =
1

2
ϕ(7)θo(1) +

1

2
ϕ(10)θo(2) +

1

2
ϕ(11)θo(3) +

1

2
ϕ(14)θo(4)− 1

2
ϕo(1)∆ϕ(7)

− 1

2
ϕo(2)∆ϕ(10)− 1

2
ϕo(3)∆ϕ(11)− 1

2
ϕo(4)∆ϕ(14) + ∆ϕ(17) , (5.52s)

ϕ(c20) =
1

2
ϕ(10)θo(1) +

1

2
ϕ(8)θo(2) +

1

2
ϕ(13)θo(3) +

1

2
ϕ(12)θo(4)− 1

2
ϕo(2)∆ϕ(8)

− 1

2
ϕo(1)∆ϕ(10)− 1

2
ϕo(4)∆ϕ(12)− 1

2
ϕo(3)∆ϕ(13) + ∆ϕ(18) , (5.52t)

ϕ(c21) =
1

2
ϕ(17)θo(1) +

1

2
ϕ(18)θo(2) +

1

2
ϕ(15)θo(3) +

1

2
ϕ(16)θo(4)− 1

2
ϕo(3)∆ϕ(15)

148



− 1

2
ϕo(4)∆ϕ(16)− 1

2
ϕo(1)∆ϕ(17)− 1

2
ϕo(2)∆ϕ(18) + ∆ϕ(19) , (5.52u)

ϕ(c22) =
1

2
ϕ(7)θo(1) +

1

2
ϕ(11)θo(3) + ϕ(13)θo(4)− 1

2
ϕo(1)∆ϕ(7)− 1

2
ϕo(3)∆ϕ(11)

− ϕo(4)∆ϕ(13) + ∆ϕ(20) , (5.52v)

ϕ(c23) =
1

2
ϕ(8)θo(2) + ϕ(14)θo(3) +

1

2
ϕ(12)θo(4)− 1

2
ϕo(2)∆ϕ(8)− 1

2
ϕo(4)∆ϕ(12)

− ϕo(3)∆ϕ(14) + ∆ϕ(21) , (5.52w)

ϕ(c24) = ϕ(7)θo(3) + ϕ(10)θo(4)− ϕo(3)∆ϕ(7)− ϕo(4)∆ϕ(10) + ∆ϕ(22) , (5.52x)

ϕ(c25) = ϕ(10)θo(3) + ϕ(8)θo(4)− ϕo(4)∆ϕ(8)− ϕo(3)∆ϕ(10) + ∆ϕ(23) , (5.52y)

ϕ(c26) =
1

2
ϕ(22)θo(1) +

1

2
ϕ(23)θo(2) +

1

2
ϕ(17)θo(3) +

1

2
ϕ(18)θo(4)− 1

2
ϕo(3)∆ϕ(17)

− 1

2
ϕo(4)∆ϕ(18)− 1

2
ϕo(1)∆ϕ(22)− 1

2
ϕo(2)∆ϕ(23) + ∆ϕ(24) , (5.52z)

ϕ(c27) = ϕ(22)θo(3) + ϕ(23)θo(4)− ϕo(3)∆ϕ(22)− ϕo(4)∆ϕ(23) + ∆ϕ(25) , (5.52aa)

ϕ(c28) =
1

2
ϕ(19)θo(1) +

1

2
ϕ(22)θo(2) +

1

2
ϕ(23)θo(3) +

1

2
ϕ(7)θo(4) +

1

2
ϕ(13)θo(5)

+
1

2
ϕ(14)θo(6)− 1

2
ϕo(4)∆ϕ(7)− 1

2
ϕo(5)∆ϕ(13)− 1

2
ϕo(6)∆ϕ(14)− 1

2
ϕo(1)∆ϕ(19)

− 1

2
ϕo(2)∆ϕ(22)− 1

2
ϕo(3)∆ϕ(23) + ∆ϕ(28) , (5.52ab)

ϕ(c29) =
1

2
ϕ(24)θo(1) +

1

2
ϕ(20)θo(2) +

1

2
ϕ(25)θo(3) +

1

2
ϕ(13)θo(4) +

1

2
ϕ(8)θo(5)

+
1

2
ϕ(15)θo(6)− 1

2
ϕo(5)∆ϕ(8)− 1

2
ϕo(4)∆ϕ(13)− 1

2
ϕo(6)∆ϕ(15)− 1

2
ϕo(2)∆ϕ(20)

− 1

2
ϕo(1)∆ϕ(24)− 1

2
ϕo(3)∆ϕ(25) + ∆ϕ(29) , (5.52ac)

ϕ(c30) =
1

2
ϕ(26)θo(1) +

1

2
ϕ(27)θo(2) +

1

2
ϕ(21)θo(3) +

1

2
ϕ(14)θo(4) +

1

2
ϕ(15)θo(5)

+
1

2
ϕ(9)θo(6)− 1

2
ϕo(6)∆ϕ(9)− 1

2
ϕo(4)∆ϕ(14)− 1

2
ϕo(5)∆ϕ(15)− 1

2
ϕo(3)∆ϕ(21)

− 1

2
ϕo(1)∆ϕ(26)− 1

2
ϕo(2)∆ϕ(27) + ∆ϕ(30) , (5.52ad)

ϕ(c31) =
1

2
ϕ(10)θo(1) +

1

2
ϕ(16)θo(2) +

1

2
ϕ(17)θo(3) +

1

2
ϕ(19)θo(4) +

1

2
ϕ(24)θo(5)

+
1

2
ϕ(26)θo(6)− 1

2
ϕo(1)∆ϕ(10)− 1

2
ϕo(2)∆ϕ(16)− 1

2
ϕo(3)∆ϕ(17)− 1

2
ϕo(4)∆ϕ(19)

− 1

2
ϕo(5)∆ϕ(24)− 1

2
ϕo(6)∆ϕ(26) + ∆ϕ(31) , (5.52ae)
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ϕ(c32) =
1

2
ϕ(16)θo(1) +

1

2
ϕ(11)θo(2) +

1

2
ϕ(18)θo(3) +

1

2
ϕ(22)θo(4) +

1

2
ϕ(20)θo(5)

+
1

2
ϕ(27)θo(6)− 1

2
ϕo(2)∆ϕ(11)− 1

2
ϕo(1)∆ϕ(16)− 1

2
ϕo(3)∆ϕ(18)− 1

2
ϕo(5)∆ϕ(20)

− 1

2
ϕo(4)∆ϕ(22)− 1

2
ϕo(6)∆ϕ(27) + ∆ϕ(32) , (5.52af)

ϕ(c33) =
1

2
ϕ(17)θo(1) +

1

2
ϕ(18)θo(2) +

1

2
ϕ(12)θo(3) +

1

2
ϕ(23)θo(4) +

1

2
ϕ(25)θo(5)

+
1

2
ϕ(21)θo(6)− 1

2
ϕo(3)∆ϕ(12)− 1

2
ϕo(1)∆ϕ(17)− 1

2
ϕo(2)∆ϕ(18)− 1

2
ϕo(6)∆ϕ(21)

− 1

2
ϕo(4)∆ϕ(23)− 1

2
ϕo(5)∆ϕ(25) + ∆ϕ(33) , (5.52ag)

ϕ(c34) =
1

2
ϕ(31)θo(1) +

1

2
ϕ(32)θo(2) +

1

2
ϕ(33)θo(3) +

1

2
ϕ(28)θo(4) +

1

2
ϕ(29)θo(5)

+
1

2
ϕ(30)θo(6)− 1

2
ϕo(4)∆ϕ(28)− 1

2
ϕo(5)∆ϕ(29)− 1

2
ϕo(6)∆ϕ(30)− 1

2
ϕo(1)∆ϕ(31)

− 1

2
ϕo(2)∆ϕ(32)− 1

2
ϕo(3)∆ϕ(33) + ∆ϕ(34) , (5.52ah)

ϕ(c35) =
3

4
ϕ(10)θo(1) +

1

4
ϕ(19)θo(4) + ϕ(22)θo(5) + ϕ(23)θo(6)− 3

4
ϕo(1)∆ϕ(10)

− 1

4
ϕo(4)∆ϕ(19)− ϕo(5)∆ϕ(22)− ϕo(6)∆ϕ(23) + ∆ϕ(35) , (5.52ai)

ϕ(c36) =
3

4
ϕ(11)θo(2) + ϕ(24)θo(4) +

1

4
ϕ(20)θo(5) + ϕ(25)θo(6)− 3

4
ϕo(2)∆ϕ(11)

− 1

4
ϕo(5)∆ϕ(20)− ϕo(4)∆ϕ(24)− ϕo(6)∆ϕ(25) + ∆ϕ(36) , (5.52aj)

ϕ(c37) =
3

4
ϕ(12)θo(3) + ϕ(26)θo(4) + ϕ(27)θo(5) +

1

4
ϕ(21)θo(6)− 3

4
ϕo(3)∆ϕ(12)

− 1

4
ϕo(6)∆ϕ(21)− ϕo(4)∆ϕ(26)− ϕo(5)∆ϕ(27) + ∆ϕ(37) , (5.52ak)

ϕ(c38) = ϕ(10)θo(4) + ϕ(16)θo(5) + ϕ(17)θo(6)− ϕo(4)∆ϕ(10)− ϕo(5)∆ϕ(16)

− ϕo(6)∆ϕ(17) + ∆ϕ(38) , (5.52al)

ϕ(c39) = ϕ(16)θo(4) + ϕ(11)θo(5) + ϕ(18)θo(6)− ϕo(5)∆ϕ(11)− ϕo(4)∆ϕ(16)

− ϕo(6)∆ϕ(18) + ∆ϕ(39) , (5.52am)

ϕ(c40) = ϕ(17)θo(4) + ϕ(18)θo(5) + ϕ(12)θo(6)− ϕo(6)∆ϕ(12)− ϕo(4)∆ϕ(17)

− ϕo(5)∆ϕ(18) + ∆ϕ(40) , (5.52an)

ϕ(c41) =
1

2
ϕ(38)θo(1) +

1

2
ϕ(39)θo(2) +

1

2
ϕ(40)θo(3) +

1

2
ϕ(31)θo(4) +

1

2
ϕ(32)θo(5)
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+
1

2
ϕ(33)θo(6)− 1

2
ϕo(4)∆ϕ(31)− 1

2
ϕo(5)∆ϕ(32)− 1

2
ϕo(6)∆ϕ(33)− 1

2
ϕo(1)∆ϕ(38)

− 1

2
ϕo(2)∆ϕ(39)− 1

2
ϕo(3)∆ϕ(40) + ∆ϕ(41) , (5.52ao)

ϕ(c42) = ϕ(38)θo(4) + ϕ(39)θo(5) + ϕ(40)θo(6)− ϕo(4)∆ϕ(38)− ϕo(5)∆ϕ(39)

− ϕo(6)∆ϕ(40) + ∆ϕ(42) . (5.52ap)

The nonlinear transformation in matrix form, after dropping the second and higher

order error terms, is

B̃∆ϕϕϕ ' ϕϕϕ− Ãθθθo . (5.53)

The matrices Ã and B̃ are the key elements of this transformation and they are

constructed differently for each localization case. Table 5.6 and Table 5.7 define the

Ã matrix for the four different cases. The B̃ matrix is given by

B̃ = I−C , (5.54)

where C is sparse matrix with non-zero elements defined in Table 5.8 for the 2-D

localization and in Table 5.9 for the 3-D localization. The WLS solution for ϕ̃ϕϕo is

θθθ = (ÃTW̃Ã)−1ÃTW̃ϕϕϕ . (5.55)

W̃ is set as

W̃ = B̃−T (ATWA)B̃−1 , (5.56)

which is an approximation of E[B̃∆ϕϕϕ∆ϕϕϕT B̃T ]−1 where (5.49) has been used. The
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Table 5.5: The indices of the data vector for the four different cases corresponding to
each code index

Code 2-D Single-Time 2-D Multiple-Time 3-D Single-Time 3-D Multiple-Time
c1 - - 9 9
c2 - - 12 12
c3 - - 14 14
c4 - - 15 15
c5 10 10 16 16
c6 - - 17 17
c7 - - 18 18
c8 11 11 19 19
c9 12 12 20 20
c10 - - 21 21
c11 13 13 22 22
c12 - - 23 23
c13 14 14 24 24
c14 - - 25 25
c15 - - 26 26
c16 - - 27 27
c17 15 15 - -
c18 16 16 - -
c19 17 17 - -
c20 18 18 - -
c21 19 19 - -
c22 - 20 - -
c23 - 21 - -
c24 - 22 - -
c25 - 23 - -
c26 - 24 - -
c27 - 25 - -
c28 - - 28 28
c29 - - 29 29
c30 - - 30 30
c31 - - 31 31
c32 - - 32 32
c33 - - 33 33
c34 - - 34 34
c35 - - - 35
c36 - - - 36
c37 - - - 37
c38 - - - 38
c39 - - - 39
c40 - - - 40
c41 - - - 41
c42 - - - 42
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Table 5.6: The entries of Ã19×4 and Ã34×6 matrices for the 2-D Single-Time and 3-D
Single-Time cases respectively.

Row 2-D Single-Time 3-D Single-Time
- Col 1 Col 2 Col 3 Col 4 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6
1 1 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 1 0 0 0 0
3 0 0 1 0 0 0 1 0 0 0
4 0 0 0 1 0 0 0 1 0 0

5 ϕ(1) 0 0 0 0 0 0 0 1 0
6 0 ϕ(2) 0 0 0 0 0 0 0 1
7 0 0 ϕ(3) 0 ϕ(1) 0 0 0 0 0
8 0 0 0 ϕ(4) 0 ϕ(2) 0 0 0 0

9 .5ϕ(2) .5ϕ(1) 0 0 0 0 ϕ(3) 0 0 0
10 0 0 .5ϕ(4) .5ϕ(3) 0 0 0 ϕ(4) 0 0
11 .5ϕ(3) 0 .5ϕ(1) 0 0 0 0 0 ϕ(5) 0
12 0 .5ϕ(4) 0 .5ϕ(2) 0 0 0 0 0 ϕ(6)

13 .5ϕ(4) 0 0 .5ϕ(1) .5ϕ(2) .5ϕ(1) 0 0 0 0
14 0 .5ϕ(3) .5ϕ(2) 0 .5ϕ(3) 0 .5ϕ(1) 0 0 0
15 .5ϕ(11) .5ϕ(13) .5ϕ(5) .5ϕ(9) 0 .5ϕ(3) .5ϕ(2) 0 0 0
16 .5ϕ(14) .5ϕ(12) .5ϕ(9) .5ϕ(6) 0 0 0 .5ϕ(5) .5ϕ(4) 0

17 .5ϕ(7) .5ϕ(10) .5ϕ(11) .5ϕ(14) 0 0 0 .5ϕ(6) 0 .5ϕ(4)
18 .5ϕ(10) .5ϕ(8) .5ϕ(13) .5ϕ(12) 0 0 0 0 .5ϕ(6) .5ϕ(5)
19 .5ϕ(17) .5ϕ(18) .5ϕ(15) .5ϕ(16) .5ϕ(4) 0 0 .5ϕ(1) 0 0
20 - - - - 0 .5ϕ(5) 0 0 .5ϕ(2) 0

21 - - - - 0 0 .5ϕ(6) 0 0 .5ϕ(3)
22 - - - - .5ϕ(5) 0 0 0 .5ϕ(1) 0
23 - - - - .5ϕ(6) 0 0 0 0 .5ϕ(1)
24 - - - - 0 .5ϕ(4) 0 .5ϕ(2) 0 0

25 - - - - 0 .5ϕ(6) 0 0 0 .5ϕ(2)
26 - - - - 0 0 .5ϕ(4) .5ϕ(3) 0 0
27 - - - - 0 0 .5ϕ(5) 0 .5ϕ(3) 0
28 - - - - .5ϕ(19) .5ϕ(22) .5ϕ(23) .5ϕ(7) .5ϕ(13) .5ϕ(14)

29 - - - - .5ϕ(24) .5ϕ(20) .5ϕ(25) .5ϕ(13) .5ϕ(8) .5ϕ(15)
30 - - - - .5ϕ(26) .5ϕ(27) .5ϕ(21) .5ϕ(14) .5ϕ(15) .5ϕ(9)
31 - - - - .5ϕ(10) .5ϕ(16) .5ϕ(17) .5ϕ(19) .5ϕ(24) .5ϕ(26)
32 - - - - .5ϕ(16) .5ϕ(11) .5ϕ(18) .5ϕ(22) .5ϕ(20) .5ϕ(27)

33 - - - - .5ϕ(17) .5ϕ(18) .5ϕ(12) .5ϕ(23) .5ϕ(25) .5ϕ(21)
34 - - - - .5ϕ(31) .5ϕ(32) .5ϕ(33) .5ϕ(28) .5ϕ(29) .5ϕ(30)
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Table 5.7: The entries of Ã25×4 and Ã42×6 matrices for the 2-D Multiple-Time and
3-D Multiple-Time cases respectively.

Row 2-D Multiple-Time 3-D Multiple-Time
- Col 1 Col 2 Col 3 Col 4 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6
1 1 0 0 0 1 0 0 0 0 0
2 0 1 0 0 0 1 0 0 0 0
3 0 0 1 0 0 0 1 0 0 0
4 0 0 0 1 0 0 0 1 0 0

5 ϕ(1) 0 0 0 0 0 0 0 1 0
6 0 ϕ(2) 0 0 0 0 0 0 0 1
7 0 0 ϕ(3) 0 ϕ(1) 0 0 0 0 0
8 0 0 0 ϕ(4) ϕ(2) 0 0 0 0

9 .5ϕ(2) .5ϕ(1) 0 0 0 0 ϕ(3) 0 0 0
10 0 0 .5ϕ(4) .5ϕ(3) 0 0 0 ϕ(4) 0 0
11 .5ϕ(3) 0 .5ϕ(1) 0 0 0 0 0 ϕ(5) 0
12 0 .5ϕ(4) 0 .5ϕ(2) 0 0 0 0 0 ϕ(6)

13 .5ϕ(4) 0 0 .5ϕ(1) .5ϕ(2) .5ϕ(1) 0 0 0 0
14 0 .5ϕ(3) .5ϕ(2) 0 .5ϕ(3) 0 .5ϕ(1) 0 0 0
15 .5ϕ(11) .5ϕ(13) .5ϕ(5) .5ϕ(9) 0 .5ϕ(3) .5ϕ(2) 0 0 0
16 .5ϕ(14) .5ϕ(12) .5ϕ(9) .5ϕ(6) 0 0 0 .5ϕ(5) .5ϕ(4) 0

17 .5ϕ(7) .5ϕ(10) .5ϕ(11) .5ϕ(14) 0 0 0 .5ϕ(6) 0 .5ϕ(4)
18 .5ϕ(10) .5ϕ(8) .5ϕ(13) .5ϕ(12) 0 0 0 0 .5ϕ(6) .5ϕ(5)
19 .5ϕ(17) .5ϕ(18) .5ϕ(15) .5ϕ(16) .5ϕ(4) 0 0 .5ϕ(1) 0 0
20 .5ϕ(7) 0 .5ϕ(11) ϕ(23) 0 .5ϕ(5) 0 0 .5ϕ(2) 0

21 0 .5ϕ(8) ϕ(14) .5ϕ(12) 0 0 .5ϕ(6) 0 0 .5ϕ(3)
22 0 0 ϕ(7) ϕ(10) .5ϕ(5) 0 0 0 .5ϕ(1) 0
23 0 0 ϕ(7) ϕ(8) .5ϕ(6) 0 0 0 0 .5ϕ(1)
24 .5ϕ(22) .5ϕ(23) .5ϕ(17) .5ϕ(18) 0 .5ϕ(4) 0 .5ϕ(2) 0 0

25 0 0 ϕ(22) ϕ(23) 0 .5ϕ(6) 0 0 0 .5ϕ(2)
26 - - - - 0 0 .5ϕ(4) .5ϕ(3) 0 0
27 - - - - 0 0 .5ϕ(5) 0 .5ϕ(3) 0
28 - - - - .5ϕ(19) .5ϕ(22) .5ϕ(23) .5ϕ(7) .5ϕ(13) .5ϕ(14)

29 - - - - .5ϕ(24) .5ϕ(20) .5ϕ(25) .5ϕ(13) .5ϕ(8) .5ϕ(15)
30 - - - - .5ϕ(26) .5ϕ(27) .5ϕ(21) .5ϕ(14) .5ϕ(15) .5ϕ(9)
31 - - - - .5ϕ(10) .5ϕ(16) .5ϕ(17) .5ϕ(19) .5ϕ(24) .5ϕ(26)
32 - - - - .5ϕ(16) .5ϕ(11) .5ϕ(18) .5ϕ(22) .5ϕ(20) .5ϕ(27)

33 - - - - .5ϕ(17) .5ϕ(18) .5ϕ(12) .5ϕ(23) .5ϕ(25) .5ϕ(21)
34 - - - - .5ϕ(31) .5ϕ(32) .5ϕ(33) .5ϕ(28) .5ϕ(29) .5ϕ(30)
35 - - - - .75ϕ(10) 0 0 .25ϕ(19) ϕ(22) ϕ(23)
36 - - - - 0 .75ϕ(11) 0 ϕ(24) .25ϕ(20) ϕ(25)

37 - - - - 0 0 .75ϕ(12) ϕ(26) ϕ(27) .25ϕ(21)
38 - - - - 0 0 0 ϕ(10) ϕ(16) ϕ(17)
39 - - - - 0 0 0 ϕ(16) ϕ(11) ϕ(18)
40 - - - - 0 0 0 ϕ(17) ϕ(18) ϕ(12)

41 - - - - .5ϕ(38) .5ϕ(39) .5ϕ(40) .5ϕ(31) .5ϕ(32) .5ϕ(33)
42 - - - - 0 0 0 ϕ(38) ϕ(39) ϕ(40)
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Table 5.8: The non-zero entries of C19×19 and C25×25 matrices for the 2-D Single-Time
and 2-D Multiple-Time cases respectively.

Row 2-D Single-Time \ 2-D Multiple-Time Row 2-D Multiple-Time
- Col 1 Col 2 Col 3 Col 4 - Col 7 Col 10 Col 11 Col 13
5 ϕo(1) 0 0 0 20 .5ϕo(1) 0 .5ϕo(3) ϕo(4)
6 0 ϕo(2) 0 0 22 ϕo(3) ϕo(4) 0 0
7 0 0 ϕo(3) 0 - - - - -
8 0 0 0 ϕo(4) - - - - -
9 .5ϕo(2) .5ϕo(1) 0 0 - - - - -
10 0 0 .5ϕo(4) .5ϕo(3) - - - - -
11 .5ϕo(3) 0 .5ϕo(1) 0 - - - - -
12 0 .5ϕo(4) 0 .5ϕo(2) - - - - -
13 .5ϕo(4) 0 0 .5ϕo(1) - - - - -
14 0 .5ϕo(3) .5ϕo(2) 0 - - - - -

- Col 5 Col 9 Col 11 Col 13 - Col 8 Col 10 Col 12 Col 14
15 .5ϕo(3) .5ϕo(4) .5ϕo(1) .5ϕo(2) 21 .5ϕo(2) 0 .5ϕo(4) ϕo(3)
- - - - - 23 ϕo(4) ϕo(3) 0 0

- Col 6 Col 9 Col 12 Col 14 - Col 17 Col 18 Col 22 Col 23
16 .5ϕo(4) .5ϕo(3) .5ϕo(2) .5ϕo(1) 24 .5ϕo(3) .5ϕo(4) .5ϕo(1) .5ϕo(2)
- - - - - 25 0 0 ϕo(3) ϕo(4)

- Col 7 Col 10 Col 11 Col 14 - - - - -
17 .5ϕo(1) .5ϕo(4) .5ϕo(3) .5ϕo(4) - - - - -

Col 8 Col 10 Col 12 Col 13 - - - - -
18 .5ϕo(2) .5ϕo(1) .5ϕo(4) .5ϕo(3) - - - - -

- Col 15 Col 16 Col 17 Col 18 - - - - -
19 .5ϕo(3) .5ϕo(4) .5ϕo(1) .5ϕo(2) - - - - -
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Table 5.9: The non-zero entries of C34×34 and C42×42 matrices for the 3-D Single-Time
and 3-D Multiple-Time cases respectively.

Row 3-D Single-Time \ 3-D Multiple-Time Row 3-D Multiple-Time
- Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 - Col 10 Col 19 Col 22 Col 23
7 ϕ(1) 0 0 0 0 0 35 .75ϕ(1) .25ϕ(4) .5ϕ(5) .5ϕ(6)
8 0 ϕ(2) 0 0 0 0 - - - - -
9 0 0 ϕ(3) 0 0 0 - - - - -
10 0 0 0 ϕ(4) 0 0 - - - - -
11 0 0 0 0 ϕ(5) 0 - - - - -
12 0 0 0 0 0 ϕ(6) - - - - -
13 .5ϕ(2) .5ϕ(1) 0 0 0 0 - - - - -
14 .5ϕ(3) 0 .5ϕ(1) 0 0 0 - - - - -
15 0 .5ϕ(3) .5ϕ(2) 0 0 0 - - - - -
16 0 0 0 .5ϕ(5) .5ϕ(4) 0 - - - - -
17 0 0 0 .5ϕ(6) 0 .5ϕ(4) - - - - -
18 0 0 0 0 .5ϕ(6) .5ϕ(5) - - - - -
19 .5ϕ(4) 0 0 .5ϕ(1) 0 0 - - - - -
20 0 .5ϕ(5) 0 0 .5ϕ(2) 0 - - - - -
21 0 0 .5ϕ(6) 0 0 .5ϕ(3) - - - - -
22 .5ϕ(5) 0 0 0 .5ϕ(1) - - - - -
23 .5ϕ(6) 0 0 0 0 .5ϕ(1) - - - - -
24 0 .5ϕ(4) 0 .5ϕ(2) 0 - - - - -
25 0 .5ϕ(6) 0 0 .5ϕ(2) - - - - -
26 0 0 .5ϕ(4) .5ϕ(3) 0 0 - - - - -
27 0 0 .5ϕ(5) 0 .5ϕ(3) 0 - - - - -

- Col 7 Col 8 Col 9 Col 13 Col 14 Col 15 - Col 11 Col 20 Col 24 Col 25
28 .5ϕ(4) 0 0 .5ϕ(5) .5ϕ(6) 0 36 .75ϕ(2) .25ϕ(5) .5ϕ(4) .5ϕ(6)
29 0 .5ϕ(5) 0 .5ϕ(4) 0 .5ϕ(6) - - - - -
30 0 0 .5ϕ(6) 0 .5ϕ(4) .5ϕ(5) - - - - -

- Col 10 Col 11 Col 12 Col 16 Col 17 Col 18 - Col 12 Col 21 Col 26 Col 27
31 .5ϕ(1) 0 0 .5ϕ(2) .5ϕ(3) 0 37 .75ϕ(3) .25ϕ(6) .5ϕ(4) .5ϕ(5)
32 0 .5ϕ(2) 0 .5ϕ(1) 0 .5ϕ(3) - - - - -
33 0 0 .5ϕ(3) 0 .5ϕ(1) .5ϕ(2) - - - - -

- Col 19 Col 20 Col 22 Col 23 Col 24 Col 25 - Col 10 Col 11 Col 16 Col 17
28 .5ϕ(1) 0 .5ϕ(2) .5ϕ(3) 0 0 38 ϕ(4) 0 ϕ(5) ϕ(6)
29 0 .5ϕ(2) 0 0 .5ϕ(1) .5ϕ(3) 39 0 ϕ(5) ϕ(4) 0
31 .5ϕ(4) 0 0 0 .5ϕ(5) 0 - - - - -
32 0 .5ϕ(5) .5ϕ(4) 0 0 0 - - - - -

- Col 21 Col 23 Col 25 Col 26 Col 27 Col 28 - Col 12 Col 17 Col 18 Col 19
30 .5ϕ(3) 0 0 .5ϕ(1) .5ϕ(2) 0 39 0 0 ϕ(6) 0
31 0 0 0 .5ϕ(6) 0 0 40 ϕ(6) ϕ(4) ϕ(5) 0
32 0 0 0 0 .5ϕ(6) 0 - - - - -
33 .5ϕ(6) .5ϕ(4) .5ϕ(5) 0 0 0 - - - - -

- Col 28 Col 29 Col 30 Col 31 Col 32 Col 33 - Col 31 Col 32 Col 33 Col 38
34 .5ϕ(4) .5ϕ(5) .5ϕ(6) .5ϕ(1) .5ϕ(2) .5ϕ(3) 41 .5ϕ(4) .5ϕ(5) .5ϕ(6) .5ϕ(1)
- - - - - - - 42 0 0 0 ϕ(4)

- - - - - - - - Col 39 Col 40 Col 41 Col 42
- - - - - - - 41 .5ϕ(2) .5ϕ(3) 0 0
- - - - - - - 42 ϕ(5) ϕ(6) 0 0
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covariance matrix of θθθ under the small error region can be approximated by [12]

cov(θθθ) ' (ÃTW̃Ã)−1 , (5.57)

where the noise in Ã and W̃ are small and can be neglected.

5.3 SDP Solution

We shall transform the optimization problem in (5.27) to a semi-definite programming

(SDP) problem and solve it through SDR technique. This method is robust against

noise, requires fewer sensors compared to the algebraic method in Section 5.2 and

can operate in difficult sensors-object geometries. However, it is less favourable in

terms of computational complexity and software/hardware design requirements. The

objective function in (5.27) irrespective of the different definitions for h, A, ϕϕϕ and

W for the four localization cases can be expressed as

J̄(ΦΦΦ,ϕϕϕ) = tr
(
ATWAΦΦΦ

)
− 2hTWAϕϕϕ . (5.58)

The term hTWh is dropped as it is independent of the unknown vector ϕϕϕ, and

ΦΦΦ = ϕϕϕϕϕϕT is a matrix that has rank equal to one. The SDP problem is constructed

as a minimizer of (5.58) under the rank relaxation of [[ΦΦΦ ϕϕϕ]T [ΦΦΦT 1]T ] to one

and several affine constraints that are basically come from the relations among the

elements of ϕϕϕ and ΦΦΦ as shown in Table 5.11-Table 5.13. The mathematical model of
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Table 5.10: Constraints of the SDP Solution for each Localization Case

Localization Case Constraints

2-D Single-Time The corresponding constraints in Table 5.11
2-D Multiple-Time All the constraints in Table 5.11
3-D Single-Time All the constraints in Table 5.12 and the corresponding constraints in Table 5.13
3-D Multiple-Time All the constraints in Table 5.12 and Table 5.13

the SDP problem is

min
ΦΦΦ,ϕϕϕ

J̄(ΦΦΦ,ϕϕϕ) , (5.59a)

s.t.

ΦΦΦ ϕϕϕ

ϕϕϕT 1

 � 0 , (5.59b)

The constraints corresponding to each localization case indicated in Table 5.10.

(5.59c)

(5.59) can be solved using some optimization packages such as CVX [94]. The SDP

problem in (5.59) is valid for all the localization cases discussed in Section 5.1 and can

be used separately for each localization case when the variables h, A, ϕϕϕ and W are

defined accordingly. The object location estimate is extracted from the independent

elements of ϕϕϕ after the SDP is been relaxed,

θθθ = ϕϕϕ(1 : 2d). (5.60)

W in (5.58) is not known due to the requirement of the true object location. Never-

theless, W can be set to identity for the first solution trial and then we can use this

solution to get an approximate of W for the second trial.
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Table 5.11: Constraints on ϕϕϕ and ΦΦΦ for the SDP solution of the 2-D localization

2-D Single-Time\2-D Multiple-Time 2-D Multiple-Time
Φ(1, 6) = Φ(2, 9) Φ(6, 10) = Φ(12, 14) Φ(1, 21) = Φ(2, 20) Φ(11, 25) = Φ(20, 22)

Φ(1, 7) = Φ(3, 11) Φ(6, 11) = Φ(9, 14) Φ(1, 22) = Φ(3, 20) Φ(12, 20) = Φ(13, 21)
Φ(1, 8) = Φ(4, 13) Φ(6, 13) = Φ(9, 12) Φ(1, 23) = Φ(4, 20) Φ(12, 22) = Φ(14, 23)
Φ(1, 9) = Φ(2, 5) Φ(6, 15) = Φ(9, 16) Φ(2, 22) = Φ(3, 21) Φ(12, 24) = Φ(16, 23)

Φ(1, 10) = Φ(3, 13) Φ(6, 17) = Φ(14, 16) Φ(2, 23) = Φ(4, 21) Φ(12, 25) = Φ(21, 23)
Φ(1, 11) = Φ(3, 5) Φ(6, 18) = Φ(12, 16) Φ(3, 23) = Φ(4, 22) Φ(13, 24) = Φ(15, 23)

Φ(1, 12) = Φ(2, 13) Φ(6, 19) = Φ(16, 16) Φ(5, 21) = Φ(9, 20) Φ(13, 25) = Φ(20, 23)
Φ(1, 13) = Φ(4, 5) Φ(7, 8) = Φ(10, 10) Φ(5, 22) = Φ(11, 20) Φ(14, 24) = Φ(16, 22)

Φ(1, 14) = Φ(2, 11) Φ(7, 9) = Φ(11, 14) Φ(5, 23) = Φ(13, 20) Φ(14, 25) = Φ(21, 22)
Φ(1, 16) = Φ(2, 15) Φ(7, 12) = Φ(10, 14) Φ(5, 24) = Φ(15, 20) Φ(15, 21) = Φ(16, 20)
Φ(1, 17) = Φ(3, 15) Φ(7, 13) = Φ(10, 11) Φ(5, 25) = Φ(20, 20) Φ(15, 22) = Φ(17, 20)
Φ(1, 18) = Φ(4, 15) Φ(7, 15) = Φ(11, 17) Φ(6, 20) = Φ(9, 21) Φ(15, 23) = Φ(18, 20)
Φ(2, 7) = Φ(3, 14) Φ(7, 16) = Φ(14, 17) Φ(6, 22) = Φ(14, 21) Φ(15, 24) = Φ(19, 20)
Φ(2, 8) = Φ(4, 12) Φ(7, 18) = Φ(10, 17) Φ(6, 23) = Φ(12, 21) Φ(15, 25) = Φ(20, 24)

Φ(2, 10) = Φ(3, 12) Φ(7, 19) = Φ(17, 17) Φ(6, 24) = Φ(16, 21) Φ(16, 22) = Φ(17, 21)
Φ(2, 11) = Φ(3, 9) Φ(8, 9) = Φ(12, 13) Φ(6, 25) = Φ(6, 10) Φ(16, 23) = Φ(18, 21)
Φ(2, 12) = Φ(4, 6) Φ(8, 11) = Φ(10, 13) Φ(6, 25) = Φ(12, 14) Φ(16, 24) = Φ(19, 21)
Φ(2, 13) = Φ(4, 9) Φ(8, 14) = Φ(10, 12) Φ(7, 20) = Φ(11, 22) Φ(16, 25) = Φ(21, 24)
Φ(2, 14) = Φ(3, 6) Φ(8, 15) = Φ(13, 18) Φ(7, 21) = Φ(14, 22) Φ(17, 23) = Φ(18, 22)

Φ(2, 17) = Φ(3, 16) Φ(8, 16) = Φ(12, 18) Φ(7, 23) = Φ(10, 22) Φ(17, 24) = Φ(19, 22)
Φ(2, 18) = Φ(4, 16) Φ(8, 17) = Φ(10, 18) Φ(7, 24) = Φ(17, 22) Φ(17, 25) = Φ(22, 24)
Φ(3, 8) = Φ(4, 10) Φ(8, 19) = Φ(18, 18) Φ(7, 25) = Φ(22, 22) Φ(18, 24) = Φ(19, 23)
Φ(3, 10) = Φ(4, 7) Φ(9, 10) = Φ(11, 12) Φ(8, 20) = Φ(13, 23) Φ(18, 25) = Φ(23, 24)

Φ(3, 12) = Φ(4, 14) Φ(9, 17) = Φ(11, 16) Φ(8, 21) = Φ(12, 23) Φ(19, 25) = Φ(24, 24)
Φ(3, 13) = Φ(4, 11) Φ(9, 18) = Φ(12, 15) Φ(8, 22) = Φ(10, 23)
Φ(3, 18) = Φ(4, 17) Φ(9, 19) = Φ(15, 16) Φ(8, 24) = Φ(18, 23)

Φ(5, 6) = Φ(9, 9) Φ(10, 15) = Φ(11, 18) Φ(8, 25) = Φ(23, 23)
Φ(5, 7) = Φ(11, 11) Φ(10, 16) = Φ(12, 17) Φ(9, 22) = Φ(11, 21)
Φ(5, 8) = Φ(13, 13) Φ(10, 19) = Φ(17, 18) Φ(9, 23) = Φ(12, 20)

Φ(5, 10) = Φ(11, 13) Φ(11, 12) = Φ(13, 14) Φ(9, 24) = Φ(15, 21)
Φ(5, 12) = Φ(9, 13) Φ(11, 16) = Φ(14, 15) Φ(9, 25) = Φ(20, 21)
Φ(5, 14) = Φ(9, 11) Φ(11, 18) = Φ(13, 17) Φ(10, 20) = Φ(11, 23)
Φ(5, 16) = Φ(9, 15) Φ(11, 19) = Φ(15, 17) Φ(10, 21) = Φ(12, 22)

Φ(5, 17) = Φ(11, 15) Φ(12, 15) = Φ(13, 16) Φ(10, 24) = Φ(17, 23)
Φ(5, 18) = Φ(13, 15) Φ(12, 17) = Φ(14, 18) Φ(10, 25) = Φ(22, 23)
Φ(5, 19) = Φ(15, 15) Φ(12, 19) = Φ(16, 18) Φ(11, 21) = Φ(14, 20)
Φ(6, 7) = Φ(14, 14) Φ(13, 19) = Φ(15, 18) Φ(11, 23) = Φ(13, 22)
Φ(6, 8) = Φ(12, 12) Φ(14, 19) = Φ(16, 17) Φ(11, 24) = Φ(15, 22)

ϕ(5) = Φ(1, 1) ϕ(13) = Φ(1, 4) ϕ(20) = Φ(1, 8) + Φ(3, 11)
ϕ(6) = Φ(2, 2) ϕ(14) = Φ(2, 3) ϕ(21) = Φ(2, 7) + Φ(4, 12)
ϕ(7) = Φ(3, 3) ϕ(15) = Φ(1, 11) + Φ(1, 12) ϕ(22) = Φ(3, 7) + Φ(4, 10)
ϕ(8) = Φ(4, 4) ϕ(16) = Φ(1, 14) + Φ(2, 12) ϕ(23) = Φ(3, 10) + Φ(4, 8)
ϕ(9) = Φ(1, 2) ϕ(17) = Φ(1, 7) + Φ(2, 10) ϕ(24) = Φ(3, 17) + Φ(4, 18)
ϕ(10) = Φ(3, 4) ϕ(18) = Φ(1, 10) + Φ(2, 8) ϕ(25) = Φ(3, 22) + Φ(4, 23)
ϕ(11) = Φ(1, 3) ϕ(19) = Φ(1, 17) + Φ(2, 18)
ϕ(12) = Φ(2, 4)
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Table 5.12: Constraints on ΦΦΦ for the SDP solution of the 3-D Single-Time and 3-D
Multiple-Time localization

Φ(1, 8) = Φ(2, 13) Φ(3, 23) = Φ(6, 14) Φ(8, 19) = Φ(13, 24) Φ(11, 24) = Φ(16, 20) Φ(16, 28) = Φ(19, 32)
Φ(1, 9) = Φ(3, 14) Φ(3, 24) = Φ(4, 15) Φ(8, 21) = Φ(15, 25) Φ(11, 25) = Φ(18, 20) Φ(16, 29) = Φ(20, 31)
Φ(1, 10) = Φ(4, 19) Φ(3, 25) = Φ(6, 15) Φ(8, 22) = Φ(13, 20) Φ(11, 26) = Φ(16, 27) Φ(16, 30) = Φ(26, 32)
Φ(1, 11) = Φ(5, 22) Φ(3, 26) = Φ(4, 9) Φ(8, 23) = Φ(13, 25) Φ(11, 28) = Φ(22, 32) Φ(16, 33) = Φ(17, 32)
Φ(1, 12) = Φ(6, 23) Φ(3, 27) = Φ(5, 9) Φ(8, 26) = Φ(15, 24) Φ(11, 29) = Φ(20, 32) Φ(16, 34) = Φ(31, 32)
Φ(1, 13) = Φ(2, 7) Φ(3, 31) = Φ(4, 30) Φ(8, 27) = Φ(15, 20) Φ(11, 30) = Φ(27, 32) Φ(17, 20) = Φ(18, 24)
Φ(1, 14) = Φ(3, 7) Φ(3, 32) = Φ(5, 30) Φ(8, 28) = Φ(13, 29) Φ(11, 31) = Φ(16, 32) Φ(17, 22) = Φ(18, 19)
Φ(1, 15) = Φ(2, 14) Φ(3, 33) = Φ(6, 30) Φ(8, 30) = Φ(15, 29) Φ(11, 33) = Φ(18, 32) Φ(17, 27) = Φ(18, 26)
Φ(1, 16) = Φ(4, 22) Φ(4, 11) = Φ(5, 16) Φ(8, 31) = Φ(24, 29) Φ(11, 34) = Φ(32, 32) Φ(17, 28) = Φ(19, 33)
Φ(1, 17) = Φ(4, 23) Φ(4, 12) = Φ(6, 17) Φ(8, 32) = Φ(20, 29) Φ(12, 13) = Φ(23, 25) Φ(17, 29) = Φ(24, 33)
Φ(1, 18) = Φ(5, 23) Φ(4, 16) = Φ(5, 10) Φ(8, 33) = Φ(25, 29) Φ(12, 14) = Φ(21, 23) Φ(17, 30) = Φ(21, 31)
Φ(1, 19) = Φ(4, 7) Φ(4, 17) = Φ(6, 10) Φ(8, 34) = Φ(29, 29) Φ(12, 15) = Φ(21, 25) Φ(17, 32) = Φ(18, 31)
Φ(1, 20) = Φ(2, 22) Φ(4, 18) = Φ(5, 17) Φ(9, 10) = Φ(26, 26) Φ(12, 16) = Φ(17, 18) Φ(17, 34) = Φ(31, 33)
Φ(1, 21) = Φ(3, 23) Φ(4, 20) = Φ(5, 24) Φ(9, 11) = Φ(27, 27) Φ(12, 19) = Φ(17, 23) Φ(18, 28) = Φ(22, 33)
Φ(1, 22) = Φ(5, 7) Φ(4, 21) = Φ(6, 26) Φ(9, 12) = Φ(21, 21) Φ(12, 20) = Φ(18, 25) Φ(18, 29) = Φ(20, 33)
Φ(1, 23) = Φ(6, 7) Φ(4, 22) = Φ(5, 19) Φ(9, 13) = Φ(14, 15) Φ(12, 22) = Φ(18, 23) Φ(18, 30) = Φ(21, 32)
Φ(1, 24) = Φ(2, 19) Φ(4, 23) = Φ(6, 19) Φ(9, 16) = Φ(26, 27) Φ(12, 24) = Φ(17, 25) Φ(18, 34) = Φ(32, 33)
Φ(1, 25) = Φ(2, 23) Φ(4, 25) = Φ(6, 24) Φ(9, 17) = Φ(21, 26) Φ(12, 26) = Φ(17, 21) Φ(19, 20) = Φ(22, 24)
Φ(1, 26) = Φ(3, 19) Φ(4, 27) = Φ(5, 26) Φ(9, 18) = Φ(21, 27) Φ(12, 27) = Φ(18, 21) Φ(19, 21) = Φ(23, 26)
Φ(1, 27) = Φ(3, 22) Φ(4, 32) = Φ(5, 31) Φ(9, 19) = Φ(14, 26) Φ(12, 28) = Φ(23, 33) Φ(19, 25) = Φ(23, 24)
Φ(1, 29) = Φ(2, 28) Φ(4, 33) = Φ(6, 31) Φ(9, 20) = Φ(15, 27) Φ(12, 29) = Φ(25, 33) Φ(19, 27) = Φ(22, 26)
Φ(1, 30) = Φ(3, 28) Φ(5, 12) = Φ(6, 18) Φ(9, 22) = Φ(14, 27) Φ(12, 30) = Φ(21, 33) Φ(19, 29) = Φ(24, 28)
Φ(1, 31) = Φ(4, 28) Φ(5, 17) = Φ(6, 16) Φ(9, 23) = Φ(14, 21) Φ(12, 31) = Φ(17, 33) Φ(19, 30) = Φ(26, 28)
Φ(1, 32) = Φ(5, 28) Φ(5, 18) = Φ(6, 11) Φ(9, 24) = Φ(15, 26) Φ(12, 32) = Φ(18, 33) Φ(19, 32) = Φ(22, 31)
Φ(1, 33) = Φ(6, 28) Φ(5, 21) = Φ(6, 27) Φ(9, 25) = Φ(15, 21) Φ(12, 34) = Φ(33, 33) Φ(19, 33) = Φ(23, 31)
Φ(2, 9) = Φ(3, 15) Φ(5, 23) = Φ(6, 22) Φ(9, 28) = Φ(14, 30) Φ(13, 16) = Φ(19, 20) Φ(19, 34) = Φ(28, 31)
Φ(2, 10) = Φ(4, 24) Φ(5, 25) = Φ(6, 20) Φ(9, 29) = Φ(15, 30) Φ(13, 17) = Φ(19, 25) Φ(20, 21) = Φ(25, 27)
Φ(2, 11) = Φ(5, 20) Φ(5, 33) = Φ(6, 32) Φ(9, 31) = Φ(26, 30) Φ(13, 18) = Φ(20, 23) Φ(20, 23) = Φ(22, 25)
Φ(2, 12) = Φ(6, 25) Φ(7, 8) = Φ(13, 13) Φ(9, 32) = Φ(27, 30) Φ(13, 21) = Φ(14, 25) Φ(20, 26) = Φ(24, 27)
Φ(2, 14) = Φ(3, 13) Φ(7, 9) = Φ(14, 14) Φ(9, 33) = Φ(21, 30) Φ(13, 26) = Φ(14, 24) Φ(20, 28) = Φ(22, 29)
Φ(2, 15) = Φ(3, 8) Φ(7, 10) = Φ(19, 19) Φ(9, 34) = Φ(30, 30) Φ(13, 27) = Φ(14, 20) Φ(20, 30) = Φ(27, 29)
Φ(2, 16) = Φ(4, 20) Φ(7, 11) = Φ(22, 22) Φ(10, 11) = Φ(16, 16) Φ(13, 30) = Φ(14, 29) Φ(20, 31) = Φ(24, 32)
Φ(2, 17) = Φ(4, 25) Φ(7, 12) = Φ(23, 23) Φ(10, 12) = Φ(17, 17) Φ(13, 31) = Φ(19, 29) Φ(20, 33) = Φ(25, 32)
Φ(2, 18) = Φ(5, 25) Φ(7, 15) = Φ(13, 14) Φ(10, 13) = Φ(19, 24) Φ(13, 32) = Φ(20, 28) Φ(20, 34) = Φ(29, 32)
Φ(2, 19) = Φ(4, 13) Φ(7, 16) = Φ(19, 22) Φ(10, 14) = Φ(19, 26) Φ(13, 33) = Φ(23, 29) Φ(21, 22) = Φ(23, 27)
Φ(2, 20) = Φ(5, 8) Φ(7, 17) = Φ(19, 23) Φ(10, 15) = Φ(24, 26) Φ(13, 34) = Φ(28, 29) Φ(21, 24) = Φ(25, 26)
Φ(2, 21) = Φ(3, 25) Φ(7, 18) = Φ(22, 23) Φ(10, 18) = Φ(16, 17) Φ(14, 16) = Φ(19, 27) Φ(21, 28) = Φ(23, 30)
Φ(2, 22) = Φ(5, 13) Φ(7, 20) = Φ(13, 22) Φ(10, 20) = Φ(16, 24) Φ(14, 17) = Φ(19, 21) Φ(21, 29) = Φ(25, 30)
Φ(2, 23) = Φ(6, 13) Φ(7, 21) = Φ(14, 23) Φ(10, 21) = Φ(17, 26) Φ(14, 18) = Φ(21, 22) Φ(21, 31) = Φ(26, 33)
Φ(2, 24) = Φ(4, 8) Φ(7, 24) = Φ(13, 19) Φ(10, 22) = Φ(16, 19) Φ(14, 20) = Φ(15, 22) Φ(21, 32) = Φ(27, 33)
Φ(2, 25) = Φ(6, 8) Φ(7, 25) = Φ(13, 23) Φ(10, 23) = Φ(17, 19) Φ(14, 24) = Φ(15, 19) Φ(21, 34) = Φ(30, 33)
Φ(2, 26) = Φ(3, 24) Φ(7, 26) = Φ(14, 19) Φ(10, 25) = Φ(17, 24) Φ(14, 25) = Φ(15, 23) Φ(22, 30) = Φ(27, 28)
Φ(2, 27) = Φ(3, 20) Φ(7, 27) = Φ(14, 22) Φ(10, 27) = Φ(16, 26) Φ(14, 29) = Φ(15, 28) Φ(22, 33) = Φ(23, 32)
Φ(2, 30) = Φ(3, 29) Φ(7, 29) = Φ(13, 28) Φ(10, 28) = Φ(19, 31) Φ(14, 31) = Φ(19, 30) Φ(22, 34) = Φ(28, 32)
Φ(2, 31) = Φ(4, 29) Φ(7, 30) = Φ(14, 28) Φ(10, 29) = Φ(24, 31) Φ(14, 32) = Φ(22, 30) Φ(23, 29) = Φ(25, 28)
Φ(2, 32) = Φ(5, 29) Φ(7, 31) = Φ(19, 28) Φ(10, 30) = Φ(26, 31) Φ(14, 33) = Φ(21, 28) Φ(23, 34) = Φ(28, 33)
Φ(2, 33) = Φ(6, 29) Φ(7, 32) = Φ(22, 28) Φ(10, 32) = Φ(16, 31) Φ(14, 34) = Φ(28, 30) Φ(24, 30) = Φ(26, 29)
Φ(3, 10) = Φ(4, 26) Φ(7, 33) = Φ(23, 28) Φ(10, 33) = Φ(17, 31) Φ(15, 16) = Φ(20, 26) Φ(24, 33) = Φ(25, 31)
Φ(3, 11) = Φ(5, 27) Φ(7, 34) = Φ(28, 28) Φ(10, 34) = Φ(31, 31) Φ(15, 17) = Φ(21, 24) Φ(24, 34) = Φ(29, 31)
Φ(3, 12) = Φ(6, 21) Φ(8, 9) = Φ(15, 15) Φ(11, 12) = Φ(18, 18) Φ(15, 18) = Φ(20, 21) Φ(25, 34) = Φ(29, 33)
Φ(3, 16) = Φ(4, 27) Φ(8, 10) = Φ(24, 24) Φ(11, 13) = Φ(20, 22) Φ(15, 31) = Φ(24, 30) Φ(26, 32) = Φ(27, 31)
Φ(3, 17) = Φ(4, 21) Φ(8, 11) = Φ(20, 20) Φ(11, 14) = Φ(22, 27) Φ(15, 32) = Φ(20, 30) Φ(26, 34) = Φ(30, 31)
Φ(3, 18) = Φ(5, 21) Φ(8, 12) = Φ(25, 25) Φ(11, 15) = Φ(20, 27) Φ(15, 33) = Φ(21, 29) Φ(27, 34) = Φ(30, 32)
Φ(3, 19) = Φ(4, 14) Φ(8, 14) = Φ(13, 15) Φ(11, 17) = Φ(16, 18) Φ(15, 34) = Φ(29, 30)
Φ(3, 20) = Φ(5, 15) Φ(8, 16) = Φ(20, 24) Φ(11, 19) = Φ(16, 22) Φ(16, 21) = Φ(17, 27)
Φ(3, 21) = Φ(6, 9) Φ(8, 17) = Φ(24, 25) Φ(11, 21) = Φ(18, 27) Φ(16, 23) = Φ(17, 22)
Φ(3, 22) = Φ(5, 14) Φ(8, 18) = Φ(20, 25) Φ(11, 23) = Φ(18, 22) Φ(16, 25) = Φ(17, 20)
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Table 5.13: Constraints on ϕϕϕ and ΦΦΦ for the SDP solution of the 3-D localization

3-D Single-Time \ 3-D Multiple-Time 3-D Multiple-Time
ϕ(7) = Φ(1, 1) Φ(1, 36) = Φ(2, 35) Φ(12, 37) = Φ(21, 40) Φ(21, 36) = Φ(25, 37)
ϕ(8) = Φ(2, 2) Φ(1, 37) = Φ(3, 35) Φ(12, 38) = Φ(17, 40) Φ(21, 38) = Φ(26, 40)
ϕ(9) = Φ(3, 3) Φ(1, 38) = Φ(4, 35) Φ(12, 39) = Φ(18, 40) Φ(21, 39) = Φ(27, 40)
ϕ(10) = Φ(4, 4) Φ(1, 39) = Φ(5, 35) Φ(12, 41) = Φ(33, 40) Φ(21, 41) = Φ(30, 40)
ϕ(11) = Φ(5, 5) Φ(1, 40) = Φ(6, 35) Φ(12, 42) = Φ(40, 40) Φ(21, 42) = Φ(37, 40)
ϕ(12) = Φ(6, 6) Φ(2, 37) = Φ(3, 36) Φ(13, 37) = Φ(14, 36) Φ(22, 37) = Φ(27, 35)
ϕ(13) = Φ(1, 2) Φ(2, 38) = Φ(4, 36) Φ(13, 38) = Φ(19, 36) Φ(22, 40) = Φ(23, 39)
ϕ(14) = Φ(1, 3) Φ(2, 39) = Φ(5, 36) Φ(13, 39) = Φ(20, 35) Φ(22, 41) = Φ(28, 39)
ϕ(15) = Φ(2, 3) Φ(2, 40) = Φ(6, 36) Φ(13, 40) = Φ(23, 36) Φ(22, 42) = Φ(35, 39)
ϕ(16) = Φ(4, 5) Φ(3, 38) = Φ(4, 37) Φ(13, 41) = Φ(28, 36) Φ(23, 36) = Φ(25, 35)
ϕ(17) = Φ(4, 6) Φ(3, 39) = Φ(5, 37) Φ(13, 42) = Φ(35, 36) Φ(23, 41) = Φ(28, 40)
ϕ(18) = Φ(5, 6) Φ(3, 40) = Φ(6, 37) Φ(14, 36) = Φ(15, 35) Φ(23, 42) = Φ(35, 40)
ϕ(19) = Φ(1, 4) Φ(4, 39) = Φ(5, 38) Φ(14, 38) = Φ(19, 37) Φ(24, 37) = Φ(26, 36)
ϕ(20) = Φ(2, 5) Φ(4, 40) = Φ(6, 38) Φ(14, 39) = Φ(22, 37) Φ(24, 40) = Φ(25, 38)
ϕ(21) = Φ(3, 6) Φ(5, 40) = Φ(6, 39) Φ(14, 40) = Φ(21, 35) Φ(24, 41) = Φ(29, 38)
ϕ(22) = Φ(1, 5) Φ(7, 36) = Φ(13, 35) Φ(14, 41) = Φ(28, 37) Φ(24, 42) = Φ(36, 38)
ϕ(23) = Φ(1, 6) Φ(7, 37) = Φ(14, 35) Φ(14, 42) = Φ(35, 37) Φ(25, 41) = Φ(29, 40)
ϕ(24) = Φ(2, 4) Φ(7, 38) = Φ(19, 35) Φ(15, 38) = Φ(24, 37) Φ(25, 42) = Φ(36, 40)
ϕ(25) = Φ(2, 6) Φ(7, 39) = Φ(22, 35) Φ(15, 39) = Φ(20, 37) Φ(26, 39) = Φ(27, 38)
ϕ(26) = Φ(3, 4) Φ(7, 40) = Φ(23, 35) Φ(15, 40) = Φ(21, 36) Φ(26, 41) = Φ(30, 38)
ϕ(27) = Φ(3, 5) Φ(7, 41) = Φ(28, 35) Φ(15, 41) = Φ(29, 37) Φ(26, 42) = Φ(37, 38)

ϕ(28) = Φ(2, 22) + Φ(4, 7) + Φ(6, 14) Φ(7, 42) = Φ(35, 35) Φ(15, 42) = Φ(36, 37) Φ(27, 41) = Φ(30, 39)
ϕ(29) = Φ(2, 19) + Φ(3, 25) + Φ(5, 8) Φ(8, 35) = Φ(13, 36) Φ(16, 35) = Φ(19, 39) Φ(27, 42) = Φ(37, 39)
ϕ(30) = Φ(1, 26) + Φ(5, 15) + Φ(6, 9) Φ(8, 37) = Φ(15, 36) Φ(16, 36) = Φ(20, 38) Φ(28, 36) = Φ(29, 35)
ϕ(31) = Φ(1, 10) + Φ(3, 17) + Φ(4, 20) Φ(8, 38) = Φ(24, 36) Φ(16, 37) = Φ(26, 39) Φ(28, 37) = Φ(30, 35)
ϕ(32) = Φ(1, 16) + Φ(2, 11) + Φ(3, 18) Φ(8, 39) = Φ(20, 36) Φ(16, 40) = Φ(17, 39) Φ(28, 38) = Φ(31, 35)
ϕ(33) = Φ(4, 23) + Φ(5, 25) + Φ(6, 21) Φ(8, 40) = Φ(25, 36) Φ(16, 41) = Φ(31, 39) Φ(28, 39) = Φ(32, 35)
ϕ(34) = Φ(1, 31) + Φ(3, 33) + Φ(5, 29) Φ(8, 41) = Φ(29, 36) Φ(16, 42) = Φ(38, 39) Φ(28, 40) = Φ(33, 35)

Φ(8, 42) = Φ(36, 36) Φ(17, 35) = Φ(19, 40) Φ(28, 41) = Φ(34, 35)
Φ(9, 35) = Φ(14, 37) Φ(17, 36) = Φ(24, 40) Φ(28, 42) = Φ(35, 41)
Φ(9, 36) = Φ(15, 37) Φ(17, 37) = Φ(21, 38) Φ(29, 37) = Φ(30, 36)
Φ(9, 38) = Φ(26, 37) Φ(17, 39) = Φ(18, 38) Φ(29, 38) = Φ(31, 36)
Φ(9, 39) = Φ(27, 37) Φ(17, 41) = Φ(31, 40) Φ(29, 39) = Φ(32, 36)
Φ(9, 40) = Φ(21, 37) Φ(17, 42) = Φ(38, 40) Φ(29, 40) = Φ(33, 36)
Φ(9, 41) = Φ(30, 37) Φ(18, 35) = Φ(22, 40) Φ(29, 41) = Φ(34, 36)
Φ(9, 42) = Φ(37, 37) Φ(18, 36) = Φ(20, 40) Φ(29, 42) = Φ(36, 41)
Φ(10, 35) = Φ(19, 38) Φ(18, 37) = Φ(21, 39) Φ(30, 38) = Φ(31, 37)
Φ(10, 36) = Φ(24, 38) Φ(18, 41) = Φ(32, 40) Φ(30, 39) = Φ(32, 37)
Φ(10, 37) = Φ(26, 38) Φ(18, 42) = Φ(39, 40) Φ(30, 40) = Φ(33, 37)
Φ(10, 39) = Φ(16, 38) Φ(19, 36) = Φ(24, 35) Φ(30, 41) = Φ(34, 37)
Φ(10, 40) = Φ(17, 38) Φ(19, 37) = Φ(26, 35) Φ(30, 42) = Φ(37, 41)
Φ(10, 41) = Φ(31, 38) Φ(19, 39) = Φ(22, 38) Φ(31, 39) = Φ(32, 38)
Φ(10, 42) = Φ(38, 38) Φ(19, 40) = Φ(23, 38) Φ(31, 40) = Φ(33, 38)
Φ(11, 35) = Φ(22, 39) Φ(19, 41) = Φ(28, 38) Φ(31, 41) = Φ(34, 38)
Φ(11, 36) = Φ(20, 39) Φ(19, 42) = Φ(35, 38) Φ(31, 42) = Φ(38, 41)
Φ(11, 37) = Φ(27, 39) Φ(20, 35) = Φ(22, 36) Φ(32, 40) = Φ(33, 39)
Φ(11, 38) = Φ(16, 39) Φ(20, 37) = Φ(27, 36) Φ(32, 41) = Φ(34, 39)
Φ(11, 40) = Φ(18, 39) Φ(20, 38) = Φ(24, 39) Φ(32, 42) = Φ(39, 41)
Φ(11, 41) = Φ(32, 39) Φ(20, 40) = Φ(25, 39) Φ(33, 41) = Φ(34, 40)
Φ(11, 42) = Φ(39, 39) Φ(20, 41) = Φ(29, 39) Φ(33, 42) = Φ(40, 41)
Φ(12, 35) = Φ(23, 40) Φ(20, 42) = Φ(36, 39) Φ(34, 42) = Φ(41, 41)
Φ(12, 36) = Φ(25, 40) Φ(21, 35) = Φ(23, 37)

ϕ(35) = Φ(1, 10) + Φ(5, 22) + Φ(6, 23) ϕ(39) = Φ(4, 16) + Φ(5, 11) + Φ(6, 18)
ϕ(36) = Φ(2, 12) + Φ(4, 24) + Φ(5, 20) ϕ(40) = Φ(4, 17) + Φ(5, 18) + Φ(6, 12)
ϕ(37) = Φ(3, 11) + Φ(4, 26) + Φ(6, 21) ϕ(41) = Φ(1, 38) + Φ(2, 39) + Φ(3, 40)
ϕ(38) = Φ(4, 10) + Φ(5, 16) + Φ(6, 17) ϕ(42) = Φ(4, 38) + Φ(5, 39) + Φ(6, 40)
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5.4 CRLB

The CRLB derived in Chapter 2 is valid only for the fixed sensor scenario and does

not consider the additional error coming from the sensor movement. In this section,

we shall change the derivation slightly to consider the error of sensor velocity.

We define the nuisance variable vector as

αααo =
[
f oo , soT , ṡoT

]T
, (5.61)

and the observation vector as

g =
[
fT , fo , sT , ṡT

]T
. (5.62)

Since the location vector for estimation is θθθo = [ uoT , u̇oT ]T and the parameter

vector for evaluating the CRLB is φφφo =
[
θθθoT , αααoT

]T
, the logarithm of the probability

density function under the Gaussian data will be

ln£(φφφo; g) = ln£(φφφo; f) + ln£(φφφo; fo) + ln£(φφφo; s) + ln£(φφφo; ṡ)

= κ− 1

2
(f − fo)T Q−1

n (f − fo)− 1

2
σ−2
fo

(fo − f oo )2 − 1

2
(s− so)T Q−1

s (s− so)

− 1

2
(ṡ− ṡo)T Q−1

ṡ (ṡ− ṡo) , (5.63)

where κ is a constant. The CRLB can be partitioned into a 2× 2 block matrix as

CRLB (φφφo) = −E
[
∂2lnf(g;φφφo))

∂φφφo∂φφφoT

]−1

=

 X Y

YT Z


−1

. (5.64)
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The blocks in (5.64) are corresponding to the estimation performance of θθθo and αααo,

and they are given by

X = −E
[
∂2lnf(g;φφφo)

∂θθθo∂θθθoT

]
=
∂foT

∂θθθo
Q−1
n

∂fo

∂θθθoT
, (5.65a)

Y = −E
[
∂2lnf(g;φφφo)

∂θθθo∂αααoT

]
=
∂foT

∂θθθo
Q−1
n

∂fo

∂αααoT
, (5.65b)

Z = −E
[
∂2lnf(g;φφφo)

∂αααo∂αααoT

]
=
∂foT

∂αααo
Q−1
n

∂fo

∂αααoT
+ Q−1

α , (5.65c)

where Qα = diag(σ2
fo
,Qs,Qṡ). The expressions for the partial derivatives in (5.65)

are given in Appendix E. Applying the partitioned matrix inversion formula [101] on

(5.64) to get, from the upper left block

CRLB (θθθo) = (X−YZ−1YT )−1 = X−1 + X−1Y
(
Z−YTX−1Y

)−1
YTX−1. (5.66)

The first term on the right of (5.66) is the CRLB of θθθo when there is no sensor

location error or carrier frequency noise. The second term in (5.66) is the additional

performance loss in the presence of ∆fo, ∆s and ∆ṡ.

5.5 Analysis

In this section, we shall prove that the covariance matrix of the proposed algebraic

solution can reach the CRLB accuracy under the first order analysis in which the

second and higher order noise terms are very small to be neglected when some con-

ditions are satisfied. We shall start with the theoretical covariance matrix given in

(5.57) as a general equation for all the localization cases and then we shall give the
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conditions for each specific case separately according to the definition of Ã and W̃.

Inserting (5.47) and (5.56) in (5.57) and taking the inverse of both sides up to the

first order noise component give

cov(θθθ)−1 = ÃT B̃−TATB−TQ−1
ε B−1AB̃−1Ã. (5.67)

For convenience, we express (5.10) as Qε = Qn + DQαD
T , where D = [ df , Ds , Dṡ ]

and Qα is defined below (5.65). The inverse of Qε, from the matrix inversion lemma

[104], is

Q−1
ε = Q−1

n −Q−1
n D(Q−1

α + DTQ−1
n D)−1DTQ−1

n . (5.68)

Inserting (5.68) in (5.67) gives

cov(θθθ)−1 =ÃT B̃−TATB−TQ−1
n B−1AB̃−1Ã

− ÃT B̃−TATB−TQ−1
n D(Q−1

α + DTQ−1
n D)−1DTQ−1

n B−1AB̃−1Ã .

(5.69)

B−1 and B̃−1 can be evaluated analytically since B is diagonal and B̃ is sparse.

Replacing A, B, Ã and B̃ in (5.69) by their true values and inserting (5.65) in (5.66)

with the gradients given in Appendix E, the following two equations can be shown to

be true upon using direct algebraic evaluation

Bo−1AoB̃o−1Ão =
∂fo

∂θθθoT
, (5.70a)

D =
∂fo

∂αααoT
. (5.70b)
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Table 5.14: Small Noise Conditions For k = 0, 1, . . . , N − 1 and i = 1, 2, . . . ,M

No. 2-D Single-Time 2-D Multiple-Time 3-D Single-Time 3-D Multiple-Time
1 ni

fo
i −fo

o
' 0

nk,i

fo
k,i−fo

o
' 0 ni

fo
i −fo

o
' 0

nk,i

fo
k,i−fo

o
' 0

2 ∆fo
fo
i −fo

o
' 0 ∆fo

fo
k,i−fo

o
' 0 ∆fo

fo
i −fo

o
' 0 ∆fo

fo
k,i−fo

o
' 0

∆xi

xo
i
' 0

∆xk,i

xo
k,i
' 0 ∆xi

xo
i
' 0

∆xk,i

xo
k,i
' 0

3 ∆yi

yo
i
' 0

∆yk,i

yo
k,i
' 0 ∆yi

yo
i
' 0

∆yk,i

yo
k,i
' 0

∆zi
zo
i
' 0

∆zk,i

zo
k,i
' 0

∆xi

roi
' 0

∆xk,i

rok,i
' 0 ∆xi

roi
' 0

∆xk,i

rok,i
' 0

4 ∆yi

roi
' 0

∆yk,i

rok,i
' 0 ∆yi

roi
' 0

∆yk,i

rok,i
' 0

∆zi
roi
' 0

∆zk,i

rok,i
' 0

∆ẋi

ẋo
i
' 0

∆ẋk,i

ẋo
k,i
' 0 ∆ẋi

ẋo
i
' 0

∆ẋk,i

ẋo
k,i
' 0

5 ∆ẏi

ẏo
i
' 0

∆ẏk,i

ẏo
k,i
' 0 ∆ẏi

ẏo
i
' 0

∆ẏk,i

ẏo
k,i
' 0

∆żi
żo
i
' 0

∆żk,i

żo
k,i
' 0

6
soTi ∆ṡi
soTi ṡoi

' 0
soTk,i∆ṡk,i

soTk,iṡ
o
k,i

' 0
soTi ∆ṡi
soTi ṡoi

' 0
soTk,i∆ṡk,i

soTk,iṡ
o
k,i

' 0

7
ṡoTi ∆si
soTi ṡoi

' 0
ṡoTk,i∆sk,i

soTk,iṡ
o
k,i

' 0
ṡoTi ∆si
soTi ṡoi

' 0
ṡoTk,i∆sk,i

soTk,iṡ
o
k,i

' 0

∆ϕ(l)
ϕo(l) ' 0 ∆ϕ(l)

ϕo(l) ' 0 ∆ϕ(l)
ϕo(l) ' 0 ∆ϕ(l)

ϕo(l) ' 0

8 l = 1, 2, . . . , 18 l = 1, 2, . . . , 18, l = 1, 2, . . . , 33 l = 1, 2, . . . , 33,
22, 23 38, 39, 40

9 ∆ϕ(l)
roi
' 0 ∆ϕ(l)

rok,i
' 0 ∆ϕ(l)

roi
' 0 ∆ϕ(l)

rok,i
' 0

l = 1, 2, . . . , 4 l = 1, 2, . . . , 4 l = 1, 2, . . . , 6 l = 1, 2, . . . , 6

(5.70) can be achieved when the approximation of A, B, Ã and B̃ by their true values

is valid. The conditions to assure this validation for the four localization cases are

listed in Table 5.14.

The first and second conditions of Table 5.14 impose that the Doppler shift gen-

erated by the relative movement among the object and the sensors is relatively large

compared to the measurement noise and the error of carrier frequency, which is ex-

pected in order for the localization by frequency only measurements to be possible.

The third and fourth conditions require the sensor position error relative to the true
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sensor position coordinates and to the true sensor-object distance to be small. Con-

dition 5 implies that the error of sensor velocity is relatively small compared with

the true values of the sensor velocity coordinates. Conditions 7 and 8 demand that

the error associated with the dot product between the position and velocity of the

sensor is relatively small compared with the true value of this product. Condition

8 requires the elements of Ã that are coming from the first stage solution to have

sufficiently small error compared to their true values and condition 9 needs the error

of the elements in C̃ to be small relative to the sensors-object distances.

When the conditions of Table 5.14 are satisfied, we get

B−1AB̃−1Ã ' ∂fo

∂θθθoT
, (5.71)

and as a result,

cov(θθθ) ' CRLB(θθθ) . (5.72)

5.6 Simulations

To test the performance of the proposed solutions, we shall simulate the problem of

localizing a moving object in the underwater environment using the acoustic signals.

The object travels at a constant speed of ‖u̇o‖ = 10 and radiate a single tone at

f oo = 15 kHz with speed of propagation c = 1500 m/s [1, 83, 81]. The measurements

have covariance matrices Qk = σ2IM , k = 0, 1, . . . , N − 1, and the unit of σ is

Hz. The mean-square error (MSE) of the object location estimate will be used for

the performance measure and it is computed by averaging 1,000 ensemble runs. The

CRLB derived in Section 5.4 is presented as a performance reference. We shall denote

166



the closed-form solution by CFS and the semi-definite programming solution by SDP

in the result figures. The SDP solution is obtained using the CVX toolbox [94]. To

handle the numerical aspect of CVX, two scaling factors , s1 and s2, will be used.

s1 is applied to the sensor position vector s defined in (5.2) and s2 is applied to the

sensor velocity vector ṡ defined in (5.3) and to the quantity dk,i given by (5.11). We

assume fo is exactly known and the sensor position and sensor velocity errors are

absent.

5.6.1 2-D Single-Time

For this localization case, we used M = 20 sensors with positions and velocities

shown in Table 5.6.1. The sensor positions satisfy the condition ‖si − sj‖ > 150 m

for i, j = 1, 2, . . . ,M and i < j to avoid near degenerated geometries. The object

is placed at uo0 = [1607.01 1472.35]T m outside the sensors region with velocity

u̇o = [7.5726 6.5311]T m/s. The scaling factors for using the CVX are s1 = 5.6×10−4

and s2 = 6.1× 10−2.

Fig. 5.1 shows the estimation accuracy of the proposed methods as the frequency

measurement noise level σ increases. The MSE of the CFS and SDP methods reach the

CRLB accuracy level for both position and velocity estimation excluding the position

estimation for SDP at σ = 3.2 mHz, possibly due to CVX numerical accuracy, and

also the CFS accuracy at σ = 1 Hz, due to the threshold effect.

5.6.2 2-D Multiple-Time

In this case, only M = 4 sensors are used and each sensor collects N = 15 mea-

surements throughout its random movement. The sensors positions and velocities for
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Table 5.15: Sensor Positions in (m) and Velocities in (m/s) for 2-D Single-Time
Localization

i xi yi ẋi ẏi

1 -44.16 -311.56 -5.9757 -3.3623
2 -180.90 587.49 2.2498 -4.0959
3 447.67 -278.44 -6.9171 0.7386
4 39.70 39.88 6.7859 -5.385
5 300.42 223.29 -6.2975 4.3638
6 509.53 119.83 1.6936 -6.4772
7 -263.74 -375.92 5.9557 -1.4524
8 -377.65 -682.32 1.7847 -6.1058
9 -507.07 67.76 -2.4296 0.7225
10 -206.74 -110.62 6.269 1.029
11 461.93 354.00 4.139 -2.618
12 -561.46 -244.15 -0.8908 5.0193
13 740.70 -179.93 -1.5429 2.5112
14 379.52 -574.18 -3.6148 1.1946
15 -564.68 -580.38 -6.8161 2.5024
16 134.35 422.09 -2.5331 4.748
17 728.85 642.94 1.3534 -1.5602
18 208.66 743.82 3.8845 -3.0508
19 528.36 698.54 6.5255 -0.5112
20 636.30 -705.82 1.498 -4.8675
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Figure 5.1: Performance of the proposed methods at different σ levels for 2-D single-
time case. (a) position estimation, (b) velocity estimation.

k = 0, 1, . . . , N − 1 are shown in Table 5.16. The object starts the linear motion at

uo0 = [−188.96 491.34]T m with velocity u̇o = [−0.7598 − 9.9711]T m/s and ends at

uo14 = [−199.6 351.74]T m. The CVX scaling factors s1 and s2 are both set to 0.01.

Fig. 5.2 illustrates the performance of the proposed methods for this localiza-

tion case where only few sensors are available but using multiple-time measurements

from each sensor. The absolute performance improved compared to Fig. 5.1 as we

have larger number of measurements in total. Nevertheless, the relative performance
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Table 5.16: Sensor Positions in (m) and Velocities in (m/s) for 2-D Multiple-Time
Localization

k i xk,i yk,i ẋk,i ẏk,i k i xk,i yk,i ẋk,i ẏk,i

0 1 746.99 -285.99 3.8611 8.2414 8 1 810.37 -284.30 9.0958 -0.3082
0 2 463.54 -631.35 9.3566 1.1507 8 2 523.63 -606.07 8.138 -4.7586
0 3 -43.16 -341.02 -6.8761 1.618 8 3 0.85 -323.26 6.0098 -3.7123
0 4 521.74 424.69 -1.4801 -9.3201 8 4 572.21 479.81 7.436 5.8103

1 1 755.47 -282.68 8.4782 3.3088 9 1 817.59 -278.76 7.2234 5.5363
1 2 472.41 -628.15 8.8644 3.2084 9 2 530.33 -612.71 6.6972 -6.6346
1 3 -36.94 -337.66 6.216 3.3556 9 3 6.19 -327.89 5.3331 -4.6322
1 4 529.70 429.76 7.959 5.0703 9 4 579.73 474.11 7.5188 -5.7028

2 1 760.51 -275.10 5.0447 7.575 10 1 826.55 -277.19 8.9634 1.5769
2 2 477.50 -620.21 5.0936 7.9326 10 2 536.26 -620.03 5.9359 -7.3237
2 3 -31.40 -333.28 5.5379 4.3852 10 3 10.27 -333.66 4.0868 -5.7617
2 4 536.57 436.23 6.8684 6.4715 10 4 586.31 467.34 6.582 -6.7625

3 1 769.38 -273.07 8.871 2.0331 11 1 835.65 -277.50 9.0955 -0.3182
3 2 482.95 -612.52 5.4541 7.6892 11 2 541.72 -627.72 5.4572 -7.687
3 3 -26.96 -327.79 4.4449 5.4901 11 3 14.10 -339.59 3.8274 -5.9372
3 4 542.71 443.40 6.1389 7.1672 11 4 591.64 459.56 5.3299 -7.7876

4 1 778.48 -272.96 9.1003 0.115 12 1 844.52 -279.54 8.8707 -2.0346
4 2 489.19 -605.45 6.232 7.0734 12 2 546.86 -635.62 5.1363 -7.905
4 3 -23.03 -321.92 3.934 5.8671 12 3 18.17 -345.37 4.069 -5.7743
4 4 548.32 450.98 5.6118 7.587 12 4 596.75 451.62 5.1093 -7.934

5 1 787.49 -274.28 9.0043 -1.3234 13 1 852.72 -283.49 8.1999 -3.9485
5 2 497.19 -600.47 8.0053 4.9786 13 2 551.96 -643.55 5.1076 -7.9236
5 3 -18.82 -316.24 4.2009 5.679 13 3 23.34 -350.18 5.1673 -4.8164
5 4 553.53 458.85 5.2137 7.8659 13 4 601.95 443.74 5.1966 -7.8772

6 1 792.40 -281.94 4.9173 -7.6582 14 1 860.29 -288.55 7.5654 -5.0589
6 2 506.44 -598.67 9.253 1.8038 14 2 557.94 -650.83 5.9791 -7.2885
6 3 -11.83 -317.24 6.9924 -1.0024 14 3 29.31 -353.96 5.9688 -3.7778
6 4 558.92 466.59 5.3908 7.7455 14 4 608.17 436.65 6.2205 -7.0965

7 1 801.27 -283.99 8.8665 -2.0526
7 2 515.49 -601.31 9.0482 -2.6458
7 3 -5.15 -319.55 6.6767 -2.3065
7 4 564.77 474.00 5.851 7.4041
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Figure 5.2: Performance of the proposed methods at different σ levels for 2-D multiple-
time case. (a) position estimation, (b) velocity estimation.

among the CFS and SDP algorithms remains similar except the threshold effect of

CFS appears at σ = 0.56 Hz and the SDP follows the CRLB very well in this case.

5.6.3 3-D Single-Time

For the 3-D single-time case, the unknown vector ϕϕϕ in (5.30) has 34 elements; there-

fore, we used M = 35 sensors to accommodate the algebraic solution requirement.

The positions and velocities for this case are shown in Table 5.6.3. The minimum
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distance among the sensors are imposed to be no less than 250 m and the scal-

ing factors s1 = 5.63 × 10−4 and s2 = 8.1 × 10−2 are used. The true position

and velocity of the object are set as uo0 = [−14.71 992.2 − 1356.53]T m and

u̇o = [−5.0886 2.9613 − 8.6430]T m/s.

Fig. 5.3 shows the estimation performance for the proposed methods when large

number of sensors are used to locate a moving object in the 3-D space. The CFS

and SDP algorithms exhibit optimum accuracy when σ is equal or less than 0.5 Hz.

Higher σ levels can still be tolerated by the SDP method but it will cause the CFS

to leave the CRLB accuracy.

5.6.4 3-D Multiple-Time

We use M = 4 sensors for this localization case and the number of successive measure-

ments for each sensor is N = 20. The sensors locations are given in Table 5.18. The

scaling factors s1 and s2 for use with CVX in obtaining the SDR solution are 0.015.

The object movement starts at uo0 = [−524.37 − 831.08 549.01]T and ends at uo19 =

[−566.55 −948.45 613.26]T with constant velocity u̇o = [−2.2198 −6.1775 3.3817]T .

Fig. 5.4 gives the estimation performance as the noise level σ increases when only

4 sensors with multiple-time measurements are used for the 3-D object localization.

The SDP velocity estimation slightly deviate from the CRLB at σ = 3.2 mHz due

to the CVX numerical accuracy limit and the threshold effect appears on the CFS

algorithm when σ is larger than 0.5 Hz. Otherwise, both the CFS and SDP solutions

perform very well in reaching the CRLB.
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Table 5.17: Sensor Positions in (m) and Velocities in (m/s) for 3-D Single-Time
Localization

i xi yi zi ẋi ẏi żi

1 41.83 -206.72 539.89 0.7738 1.6133 4.7143
2 -4.87 -116.38 -524.85 4.6771 -4.8408 -5.048
3 -344.35 -193.66 -428.95 2.4653 -4.3342 1.8965
4 -481.78 546.54 454.49 -1.0883 -5.2303 -1.1167
5 -470.06 -159.43 52.05 0.0349 3.5272 -2.4159
6 -470.23 108.24 -127.74 3.0438 1.1788 0.9633
7 394.19 79.31 -728.67 -3.0827 5.7171 -2.5574
8 -638.72 337.34 6.21 5.7533 -5.2548 -2.3914
9 549.99 -557.65 491.69 2.0803 5.6624 -3.1808
10 -274.88 361.88 654.14 -0.4382 -3.6867 -0.9863
11 642.72 250.05 -224.01 -2.5141 -2.3323 -5.068
12 -601.02 -144.89 -279.45 -4.6114 3.3999 1.6901
13 -193.31 186.87 252.84 -3.2119 -4.8618 -0.6891
14 594.58 612.51 -601.58 -3.893 1.1395 1.1096
15 -622.39 -75.92 372.39 -4.0489 5.4512 -2.2167
16 -48.58 337.21 532.54 5.0095 1.0994 3.5499
17 -464.80 392.13 239.44 2.9073 -1.9004 0.2159
18 -620.32 -533.79 24.34 5.3742 2.8665 -0.7975
19 417.98 -363.18 290.10 -1.9452 -0.5624 -5.2735
20 -590.62 -708.32 545.38 4.1296 -3.5323 -2.2578
21 87.36 327.66 -325.66 -5.3217 -3.4894 0.1171
22 655.90 391.34 641.73 3.5027 5.7393 0.947
23 35.70 -265.93 196.75 -5.4708 1.2978 2.6842
24 274.52 407.95 -471.59 -3.2451 0.0086 4.1627
25 -311.16 615.55 -691.30 -5.7376 -5.2862 0.1318
26 150.65 591.39 423.48 -4.4309 2.9829 -4.4513
27 -181.19 659.02 128.06 -2.8 2.8342 -1.9115
28 268.43 -347.39 739.44 -4.6474 -5.3978 -2.6595
29 372.08 212.18 740.58 -5.5725 2.6022 -2.262
30 -700.67 -313.47 415.36 3.571 2.422 -2.8766
31 -388.60 423.64 -267.34 1.1884 2.6506 2.8262
32 -737.46 130.50 -378.85 -3.537 5.9034 -0.2801
33 587.05 -515.19 -461.30 -5.674 3.0132 5.4079
34 410.57 739.39 663.38 -4.5391 4.5071 -0.7607
35 571.14 503.14 263.78 -2.4108 2.5939 -4.2892
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Table 5.18: Sensor Positions in (m) and Velocities in (m/s) for 3-D Multiple-Time
Localization

k i xi yi zi ẋi ẏi żi k i xi yi zi ẋi ẏi żi

0 1 505.61 -119.53 48.96 -10.16 -3.242 5.2772 10 1 541.08 -72.55 13.28 2.40 0.5033 11.6478
0 2 -69.72 108.41 -226.60 -0.58 1.4588 9.4766 10 2 -40.09 122.74 -261.30 -0.60 9.5683 0.5991
0 3 -192.30 -438.54 56.84 9.73 1.6639 2.4846 10 3 -161.57 -398.25 6.09 -4.25 7.8974 4.824
0 4 -228.49 108.47 -482.84 7.27 -0.9038 -7.9633 10 4 -179.46 148.47 -511.28 -5.40 4.9859 7.9491

1 1 515.33 -113.43 52.12 3.04 11.0651 3.1564 11 1 542.44 -67.08 23.77 -4.96 2.6669 10.4843
1 2 -63.47 112.95 -220.89 4.59 6.2178 5.7046 11 2 -34.33 125.41 -268.51 4.76 4.1969 -7.208
1 3 -187.37 -436.18 48.26 -4.62 2.9445 -8.5852 11 3 -159.74 -388.82 9.47 -3.19 9.0597 3.3817
1 4 -221.16 115.51 -479.10 3.51 9.5334 3.7372 11 4 -178.70 157.74 -505.74 -4.76 7.9962 5.5322

2 1 521.83 -103.55 50.81 -1.31 11.7567 -1.3156 12 1 540.29 -56.86 29.47 -5.00 9.1731 5.6993
2 2 -64.22 112.00 -230.42 1.20 0.1528 -9.5289 12 2 -28.53 132.63 -271.07 2.47 8.922 -2.5626
2 3 -181.73 -427.73 49.01 0.75 10.1273 0.7515 12 3 -159.28 -391.92 19.16 2.99 0.9674 9.687
2 4 -218.08 125.83 -478.05 1.04 10.7221 1.0489 12 4 -180.45 164.50 -497.47 -5.33 4.5002 8.2732

3 1 524.20 -92.07 48.73 -2.04 11.5415 -2.0719 13 1 539.34 -55.95 41.30 -1.31 0.1448 11.8295
3 2 -60.65 120.72 -232.26 -1.81 9.2532 -1.84 13 2 -26.12 140.70 -266.47 -4.04 7.3967 4.6063
3 3 -179.99 -417.95 46.78 -2.18 9.6919 -2.2357 13 3 -160.02 -390.35 29.19 -1.71 0.2966 10.0334
3 4 -218.66 134.06 -485.06 -5.34 6.2831 -7.0105 13 4 -177.11 160.33 -488.06 4.65 2.6384 9.4126

4 1 522.48 -82.59 41.74 -5.66 7.7962 -6.9906 14 1 549.90 -59.95 45.06 3.57 10.715 3.759
4 2 -59.88 127.54 -238.98 -4.80 4.9046 -6.7199 14 2 -26.01 145.60 -258.21 -4.22 2.5044 8.259
4 3 -181.01 -410.28 40.15 -5.03 5.8772 -6.6214 14 3 -163.31 -386.91 38.19 -4.21 2.2258 9.0013
4 4 -220.63 139.56 -494.17 -4.92 3.1501 -9.1136 14 4 -170.77 156.91 -479.97 5.38 4.7864 8.0837

5 1 517.70 -76.57 32.66 -5.87 4.9664 -9.0857 15 1 555.30 -60.32 55.66 4.81 2.4534 10.6047
5 2 -60.46 130.38 -248.14 -2.76 0.8726 -9.159 15 2 -29.08 151.56 -251.33 -4.80 4.6837 6.8759
5 3 -183.46 -405.04 31.77 -4.76 3.2798 -8.384 15 3 -156.27 -390.77 44.46 4.94 6.3248 6.2678
5 4 -213.20 132.17 -496.90 2.64 10.1353 -2.7299 15 4 -161.48 157.41 -474.44 4.76 7.9948 5.5336

6 1 515.12 -75.12 21.13 -2.86 0.7324 -11.5301 16 1 561.97 -56.68 64.82 5.85 4.8592 9.1556
6 2 -56.13 121.92 -246.74 -1.38 9.4026 1.3966 16 2 -27.58 150.25 -241.94 1.95 0.4156 9.3955
6 3 -182.07 -406.17 21.75 1.76 0.3144 -10.0244 16 3 -154.29 -391.04 54.44 1.96 0.3912 9.9853
6 4 -204.92 128.78 -503.00 5.04 7.3917 -6.0949 16 4 -153.68 162.03 -468.53 4.95 7.5925 5.9139

7 1 521.64 -76.12 11.22 5.49 3.6537 -9.9083 17 1 563.12 -55.58 53.02 -1.58 0.2144 -11.7945
7 2 -58.66 124.52 -255.64 -3.36 1.3703 -8.8942 17 2 -23.96 148.86 -233.15 3.55 1.5648 8.7885
7 3 -182.50 -406.00 11.57 -0.46 0.021 -10.1723 17 3 -144.46 -389.70 52.17 -2.22 9.6749 -2.2741
7 4 -198.10 129.68 -511.35 5.31 4.3823 -8.3499 17 4 -146.89 170.09 -466.06 2.41 10.2594 2.4716

8 1 532.54 -74.88 6.59 4.26 10.1051 -4.6248 18 1 565.25 -44.81 48.40 -4.26 10.1082 -4.6208
8 2 -58.39 124.36 -265.24 0.31 0.0101 -9.6006 18 2 -16.61 148.61 -226.97 4.73 5.6324 6.1778
8 3 -172.49 -406.82 9.88 1.67 9.9024 -1.6898 18 3 -137.63 -386.60 59.06 5.07 5.519 6.8913
8 4 -189.09 134.59 -514.80 3.28 9.7196 -3.4571 18 4 -143.63 177.29 -473.45 -5.40 5.7713 -7.395

9 1 542.44 -70.52 1.64 4.51 9.8369 -4.9579 19 1 567.22 -55.57 43.70 4.32 10.0436 -4.7033
9 2 -49.66 122.15 -261.90 -3.13 8.4481 3.3345 19 2 -11.43 151.86 -219.56 4.71 3.8875 7.4112
9 3 -167.35 -405.10 1.26 4.59 2.8857 -8.62 19 3 -129.96 -379.92 58.56 -0.50 10.1577 -0.5053
9 4 -182.17 141.64 -519.23 4.03 9.0186 -4.4203 19 4 -145.22 185.92 -479.78 -5.14 7.1174 -6.3338

174



-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

-20

-10

0

10

20

30

40 CFS
SDP
CRLB

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

-60

-50

-40

-30

-20

-10

0

10
CFS
SDP
CRLB

Figure 5.3: Performance of the proposed methods at different σ levels for 3-D single-
time case. (a) position estimation, (b) velocity estimation.

5.7 Summary

In this Chapter, we investigated the moving sensors scenario where each sensor moves

along nonlinear trajectory with random speed and collects frequency measurement

from the object. Incorporating the sensor movement in the frequency measurement
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Figure 5.4: Performance of the proposed methods at different σ levels for 3-D multiple-
time case. (a) position estimation, (b) velocity estimation.

model results in an increase in the complexity of the model and significant increase

in the number of auxiliary variables. The consequence is a large increase in the

number of constraints when forming the optimization problem especially in the SDP

solution procedure. Also, We have derived the error term associated with the pseudo

linear formation including the sensor velocity error which will define later, during

the analysis study, additional small noise conditions needed to implement the CFS

algorithm.
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In addition, we have investigated the sensors movement and found out that the

circular movement of the sensors is not appropriate for the pseudo linear formation

and can deficient the additional information coming from the sensor movement and

makes it vain to reduce the number of required sensors.

Both the closed form solution CFS and the semi-definite programming SDP al-

gorithms derived using the same WLS formulation with a set of constraints. Matlab

simulation is used to test the performance of the proposed methods. Both algorithms

perform well in reaching the CRLB accuracy. In terms of computational complexity,

the CFS estimator is more attractive than the SDP. It is favorable when regular local-

ization geometry such as those having near optimum sensor placement [106] are used.

CFS requires additional sensors and low data error to operate and it can only reach

the CRLB performance under the small noise conditions specified in Table 5.14. The

SDP estimator is much better in handling poorer localization geometry, operating

with fewer sensors and working with higher data error.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research investigates the localization of a moving object in position and velocity,

by observing the emitted frequency from the object that is subject to the Doppler

shift effect at a number of stationary or moving sensors. Previous attempts rely on

exhaustive grid search or numerical polynomial optimization to obtain a solution.

We proposed a constrained optimization to formulate the localization problem, which

enables the problem to be solved efficiently using the linear optimization method to

reach a closed-form solution CFS or the semi-definite programming SDP technique

to achieve a noise resilient estimate. The CFS has the best computational efficiency

among all the other estimators but requires additional sensors and small frequency

observation noise. The SDP gives much better performance in handling poorer local-

ization geometry, operating with fewer sensors and working at higher measurement
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noise level but needs further processing time and more complicated hardware and

software units.

The algorithms are derived for several different scenarios based on the same for-

mulation approach. We started with the 2-D localization, stationary sensors and

single-time measurement scenario. Then, we developed the algorithms to multiple-

time observations, which helped to reduce the number of sensors required and produce

better location accuracy assuming the motion of the object is linear with constant

speed. After that, 3-D localization is considered which is more complected regarding

the number of auxiliary variables associated with the pseudo linear formulation and

also in handling much more quadratic constraints that relate the independent un-

known and the nuisance variables. Later, we considered the sensors are moving along

nonlinear trajectories with random speed and derived the CFS and SDP solutions

for the 2-D single-time, 2-D multiple-time, 2-D single-time and 3-D multiple-time

localization scenarios. The presence of errors in the carrier frequency and the sensor

positions are considered. The non-cooperative scenario where the carrier frequency is

completely not known is also addressed. Analysis validates the proposed closed-form

solution in reaching the Cramer-Rao Lower Bound accuracy under Gaussian noise

over the small error region. Simulations support the performance of the proposed

solutions.

The proposed CFS algorithm appears to require small frequency measurement

errors to operate well. CFS can serve as an effective initialization to the iterative

implementation of the ML Estimator, especially in the single-time measurement case

where the deviation from the CRLB seems gradual. While the SDP solution gives

better performance when the SNR is low or the number of sensors is small, careful
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scaling of the input quantities and parameters may be needed to improve the numer-

ical accuracy in which the scaling adjustment could be dependent on the SDP solver

used. Incorporating an SDP solver may need certain hardware and software that

could be prohibitive in some practical applications. In general, the CFS algorithm

should be used under an environment where the localization geometry is typical, the

number of sensors is sufficient and the SNR is high, or when the computation com-

plexity is an important factor for consideration. In the situation where the number

of sensors is limited or the SNR is low while the complexity is not a crucial factor,

the SDP solution is recommended.

Without accounting for the sensor position error by assuming their locations are

accurate although they have error, the MSE is nearly 4 dB higher than the CRLB

at low noise level and deviates significantly from the bound early when the noise

level increases. When accounting for the sensor position error, both CFS and SDP

reach the CRLB accuracy and the latter performs well even when the sensor position

error is large. When the available carrier frequency has some error but assuming it as

accurate in CFS, the performance is highly degraded unless the error is very small and

the the measurement noise becomes the dominant over the carrier frequency error.

The results manifest the importance of taking the error associated with the carrier

frequency or the sensor locations into consideration when designing a localization

algorithm.

180



6.2 Future Work

The proposed solutions for the problem of object localization using Doppler shifted

frequency measurements can be further investigated to improve the performance and

accommodate other localization scenarios. Additional research can be done on im-

proving the noise resilient ability of the algebraic solution, reducing the number of

constraints for the SDP algorithm, and better handling the sensor position and ve-

locity errors. The problem of optimum sensor placement is another interesting topic

that can help to reduce the required number of sensors when the measurement noise

level is high. The mobility pattern of the sensor can be investigated to draw a clear

picture of its effect on the localization ability and accuracy.

The problem of object localization using multiple-time measurements investigated

in this research is a special case of object tracking under a linear motion constant

velocity model. The proposed algorithm may be applicable for other motion pattern

of the object if the observation period is short enough that constant velocity model

holds approximately within. Our future work is to extend the proposed algorithms

to the more complex object tracking scenario where the motion is nonlinear and the

velocity is not constant. One approach is to incorporate a disturbance term in the

object trajectory model to account for the position variations and apply a dynamic

velocity model, such as a constant acceleration model, to describe the velocity changes

over time.

181



Appendix A

The partial derivatives in (2.41) are:

∂fo

∂θθθoT
=

∂

∂θθθoT
[
foT0 , foT1 , . . . , foTN−1

]T
, (A.1a)

∂fok
∂θθθoT

=
∂

∂θθθoT
[
f ok,1, f

o
k,2 , . . . , f

o
k,M

]T
, (A.1b)

∂f ok,i
∂θθθoT

=

[
∂f ok,i
∂uoT

,
∂f ok,i
∂u̇oT

]
, (A.1c)

∂f ok,i
∂uoT

=
−f oo

c ‖uok − soi‖
u̇oTP⊥ok,i , (A.1d)

∂f ok,i
∂u̇oT

=
−f oo

c ‖uok − soi‖
(
ku̇oTP⊥ok,i + (uok − soi )

T
)
. (A.1e)

∂fo

∂αααoT
=

∂

∂αααoT
[
foT0 , foT1 , . . . , foTN−1

]T
, (A.2a)

∂fok
∂αααoT

=
∂

∂αααoT
[
f ok,1, f

o
k,2 , . . . , f

o
k,M

]T
, (A.2b)

∂f ok,i
∂αααoT

=

[
∂f ok,i
∂f oo

,
∂f ok,i
∂soT

]
, (A.2c)

∂f ok,i
∂f oo

= 1− (uok − soi )
T u̇o

c ‖uok − soi‖
, (A.2d)
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∂f ok,i
∂soT

=
f oo
c

[
0Td(i−1) ,

u̇oTP⊥ok,i
‖uok − soi‖

, 0Td(N−i)

]
, (A.2e)

where d is the dimension of localization and the matrix P⊥ok,i is defined below (3.3).

bfo and Bs in (2.36) are

bfo =
∂f oo
∂φφφoT

=
[
0T2d , 1 , 0TdM

]
, (A.3a)

Bs =
∂s

∂φφφoT
=
[
0dM×(2d+1) , IdM

]
. (A.3b)
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Appendix B

From (4.20), (4.29) and representing an estimated value (·) by (·)o + ∆(·), it is direct

to validate the following relations for the elements of h̃ in (4.30) after dropping the

second order error terms,

h̃(4) = ϕ(1)ϕ̃o(1) + ϕ(2)ϕ̃o(2) + ϕ(3)ϕ̃o(3)− ϕo(1)∆ϕ(1)

− ϕo(2)∆ϕ(2)− ϕo(3)∆ϕ(3) + ∆ϕ(4) , (B.1a)

h̃(8) =
1

2
ϕ(6)ϕ̃o(4) +

1

2
ϕ(5)ϕ̃o(5)− 1

2
ϕo(6)∆ϕ(5)

− 1

2
ϕo(5)∆ϕ(6) + 2ϕ(8)∆ϕ(8)−∆ϕ(8)2, (B.1b)

h̃(9) =
1

2
ϕ(7)ϕ̃o(4) +

1

2
ϕ(5)ϕ̃o(6)− 1

2
ϕo(7)∆ϕ(5)

− 1

2
ϕo(5)∆ϕ(7) + 2ϕ(9)∆ϕ(9)−∆ϕ(9)2, (B.1c)

h̃(10) =
1

2
ϕ(7)ϕ̃o(5) +

1

2
ϕ(6)ϕ̃o(6)− 1

2
ϕo(7)∆ϕ(6)

− 1

2
ϕo(6)∆ϕ(7) + 2ϕ(10)∆ϕ(10)−∆ϕ(10)2, (B.1d)

h̃(11) = ϕ(8)ϕ̃o(2) + ϕ(9)ϕ̃o(3) + ϕ(1)ϕ̃o(4)− ϕo(5)∆ϕ(1)

− ϕo(2)∆ϕ(8)− ϕo(3)∆ϕ(9) + ∆ϕ(11) , (B.1e)
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h̃(12) = ϕ(8)ϕ̃o(1) + ϕ(10)ϕ̃o(3) + ϕ(2)ϕ̃o(5)− ϕo(6)∆ϕ(2)

− ϕo(1)∆ϕ(8)− ϕo(3)∆ϕ(10) + ∆ϕ(12) , (B.1f)

h̃(13) = ϕ(9)ϕ̃o(1) + ϕ(10)ϕ̃o(2) + ϕ(3)ϕ̃o(6)− ϕo(7)∆ϕ(3)

− ϕo(1)∆ϕ(9)− ϕo(2)∆ϕ(10) + ∆ϕ(13) , (B.1g)

h̃(14) = ϕ(11)ϕ̃o(1) + ϕ(12)ϕ̃o(2) + ϕ(13)ϕ̃o(3)− ϕo(1)∆ϕ(11)

− ϕo(2)∆ϕ(12)− ϕo(3)∆ϕ(13) + ∆ϕ(14) . (B.1h)
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Appendix C

From the definition of ϕϕϕo in (4.44), it is simple to validate the following relations,

which form constraints to the WLS problem for multiple-time scenario:

ϕ(7) = ϕ(1)2 + ϕ(2)2 + ϕ(3)2, (C.1a)

ϕ(8) = ϕ(1)ϕ(4) + ϕ(2)ϕ(5) + ϕ(3)ϕ(6), (C.1b)

ϕ(9) = ϕ(4)2, (C.1c)

ϕ(10) = ϕ(5)2, (C.1d)

ϕ(11) = ϕ(6)2, (C.1e)

ϕ(12) = ϕ(4)ϕ(5), (C.1f)

ϕ(13) = ϕ(4)ϕ(6), (C.1g)

ϕ(14) = ϕ(5)ϕ(6), (C.1h)

ϕ(15) = ϕ(1)ϕ(9) + ϕ(2)ϕ(12) + ϕ(3)ϕ(13)

= ϕ(4)ϕ(8), (C.1i)
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ϕ(16) = ϕ(1)ϕ(12) + ϕ(2)ϕ(10) + ϕ(3)ϕ(14)

= ϕ(5)ϕ(8), (C.1j)

ϕ(17) = ϕ(1)ϕ(13) + ϕ(2)ϕ(14) + ϕ(3)ϕ(11)

= ϕ(6)ϕ(8), (C.1k)

ϕ(18) = ϕ(4)ϕ(9) + ϕ(5)ϕ(12) + ϕ(6)ϕ(13), (C.1l)

ϕ(19) = ϕ(4)ϕ(12) + ϕ(5)ϕ(10) + ϕ(6)ϕ(14), (C.1m)

ϕ(20) = ϕ(4)ϕ(13) + ϕ(5)ϕ(14) + ϕ(6)ϕ(11), (C.1n)

ϕ(21) = ϕ(4)ϕ(18) + ϕ(5)ϕ(19) + ϕ(6)ϕ(20), (C.1o)

ϕ(22) = ϕ(1)ϕ(18) + ϕ(2)ϕ(19) + ϕ(3)ϕ(20)

= ϕ(4)ϕ(15) + ϕ(5)ϕ(16) + ϕ(6)ϕ(17), (C.1p)

ϕ(23) = ϕ(1)ϕ(15) + ϕ(2)ϕ(16) + ϕ(3)ϕ(17). (C.1q)
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Appendix D

This Appendix examines the complexity of the algebraic and SDP solutions for

multiple-time scenario, when the carrier frequency is available. The single-time sce-

nario is a special case where the number of successive time observations N is 1. The

study concentrates on the batch processing for multiple-time case. The complexity

difference with the sequential version is summarized at the end.

D.1 Algebraic Solution

The algebraic CFS involves one least-squares computation for initializing the first

stage weighting matrix and two WLS calculations from the two stages. The overall

complexity is dominated by the evaluation of the weighting matrix (4.25). Table D.1

lists the detailed operations and the associated computational costs in terms of the

number of multiplications for the algebraic solution [113, 114]. When the second stage

is repeated η − 1 times (η ≥ 1) to improve W̃, The computational complexity is
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M3N3 + 3M3N2 + 18M3N + (2L+ 3)M2N2 + 3M2N

+ (2L2 + 5L+ 1)MN + (2/3 + 4η)L3 + (4 + η(1 + 2K))L2

+ η(K + 3)LK + η(K/3 + 2)K2 , (D.1)

where M is the number of sensors, N is the number of measurements in consecutive

time instants, L is the length of the pseudo unknown vector ϕϕϕ in the first stage and

K is the length of the unknown vector ϕ̃ϕϕ that is equal to 6.

D.2 SDP Solution

The SDP solution requires the formation of the objective function (4.40) and the

solution of the relaxed SDP (4.60). Also, (4.60) is solved twice, first with W set to

the identity matrix to obtain an initial solution and second with W formed by the

initial solution to obtain the final solution. Generating the objective function for the

first SDP solution uses the operations in entries 1-2 of Table D.1 and that for the

final SDP solution needs entries 4-9. There are extra MN multiplications in entries

2 and 9 due to the factor 2 in (4.40). Obtaining the objective functions take the

computational cost of

M3N3 + 3M3N2 + 18M3N + (2L+ 3)M2N2

+ 3M2N + (2L2 + 6L+ 3)MN . (D.2)
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The worst-case complexity of solving an SDP is [110]

O

(
√
µ

(
m3 +m2

Nsd∑
j=1

(nsdj )2 +m

Nsd∑
j=1

(nsdj )3

)
ln(1/ε)

)
, (D.3)

where m is the number of equality constraints, Nsd is the number of semidefinite

cone constraints, nsdj is the dimension of the i-th semidefinite cone, µ is the barrier

parameter for measuring the geometric complexities of the cones involved,

µ =

Nsd∑
j=1

nsdj , (D.4)

and ε > 0 is the solution precision. The relaxed SDP (4.60) has C + 1 linear equality

constraints and one semidefinite cone constraint of size L + 1 (hence Nsd = 1 and

nsd1 = L+ 1). Thus, the worst-case complexity is on the order of

O
(√

L(C3 + C2L2 + CL3) ln(1/ε)
)
. (D.5)

The proposed SDP solution calls an SDP solver twice and the amount in (D.5) needs

to be doubled.

D.3 Sequential Estimation

The sequential multiple-time algorithm requires an extra step to update the solution

by the object location estimate from the current single time measurement. Table D.2

lists the extra computational cost of this additional step.
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Table D.1: Computational Costs of the Algebraic Solution CFS

Operations (LS) Computational Costs

ATA MNL (L+ 1)
ATh 2MNL(

ATA
)−1 (

ATh
)

L3/3 + 2L2

Operations (First WLS) Computational Costs

σ2
fo
dfd

T
f

(
M2N2 +MN

)
+ 2MN (3M)

2

+DsQsD
T
s + Qn +3M2N (MN + 1)

Q−1
ε M3N3

B−1Q−1
ε B−1 2M2N2

ATW 2LM2N2(
ATW

)
A MNL (L+ 1)(

ATW
)
h 2MNL(

ATWA
)−1 (

ATWh
)

L3/3 + 2L2

Operations (Second WLS) Computational Costs

B̃−1 L3

B̃−1
(
ATWA

)
B̃−1 2L3 +

(
L3 + L2

)
ÃTW̃ 2KL2(

ÃTW̃
)
Ã LK (K + 1)(

ÃTW̃
)
h̃ 2KL(

ÃTW̃Ã
)−1 (

ÃTW̃h̃
)

K3/3 + 2K2

Table D.2: Extra Computational Costs for the Solution Update of Sequential Process

Operations Computational Costs

Hkθθθ{k−1} K/2

B̃−1 L3

B̃−1
(
ATWA

)
B̃−1 2L3 +

(
L3 + L2

)
ÃTW̃Ã 2KL2 + LK (K + 1)

HT
{k}W{k} K2/2(

HT
{k}W{k}

)
H{k} K2/2(

HT
{k}W{k}

)
[θθθTk θθθT{k−1}]

T 2K (2K)(
HT
{k}W{k}H{k}

)−1

K3/3 + 2K2

·
(
HT
{k}W{k}[θθθ

T
k θθθT{k−1}]

T
)
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Appendix E

The partial derivatives in (5.65) are:

∂fo

∂θθθoT
=

∂

∂θθθoT
[
foT0 , foT1 , . . . , foTN−1

]T
, (E.1a)

∂fok
∂θθθoT

=
∂
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[
f ok,1, f
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o
k,M

]T
, (E.1b)

∂f ok,i
∂θθθoT

=
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∂uoT

,
∂f ok,i
∂u̇oT

]
, (E.1c)
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∂uoT

=
−f oo

c
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∥∥(u̇o − ṡok,i)
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=
−f oo
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, (E.2a)
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∂f ok,i
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=

[
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∂f oo

,
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∂f ok,i
∂soT

=
f oo
c

[
0Td((i+kM)−1) ,

(u̇o − ṡok,i)
TP⊥ok,i

‖uok − soi‖
, 0Td(NM−(i+kM))

]
, (E.2e)

∂f ok,i
∂ṡoT

=
f oo
c

[
0Td((i+kM)−1) ,

k(u̇o − ṡok,i)
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T

‖uok − soi‖
, 0Td(NM−(i+kM))

]
, (E.2f)

where d is the dimension of localization.
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