
EFFICIENT SECURE COMPARISON

IN THE DISHONEST MAJORITY MODEL

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Ali Ataeemh Al-lami

Dr. Wei Jiang, Thesis Supervisor

December, 2021

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

EFFICIENT SECURE COMPARISON

IN THE DISHONEST MAJORITY MODEL

presented by Ali Ataeemh Al-lami,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Dr. Wei Jiang

Dr. Jian Lin

Dr. Dan Lin

Dr. Khaza Anuarul Hoque

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Iraq’s Higher Committee for Ed-

ucation Development for supporting my Ph.D. program. The country receives an

essential contribution by supporting the research and development of young profes-

sionals in their program. In addition, I would like to thank my adviser, Dr. Wei

Jiang, for his insightful remarks and recommendations on this dissertation. He has

been a continual source of inspiration, advice, encouragement, and support. I feel for-

tunate to have such an exceptional, compassionate advisor like him, and I am grateful

for everything he has done for me. My words do not seem adequate to describe his

genuine contribution to this adventure.

Additionally, I am thankful for the time, expertise, and comments of all the mem-

bers of the committee who provided helpful feedback and recommendations, Dr. Lin,

Dr. Hoque, and Dr. Lin. I am also thankful to the University of Missouri, the College

of Engineering, the EECS Department, and all the faculty and staff for their consid-

erate guidance and help in navigating the entire process. Finally, I cannot forget to

thank my family and friends for all their unconditional support.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vi

LIST OF FIGURES . viii

ABSTRACT . ix

CHAPTER .

1 Introduction . 1

1.1 SMC Applications . 4

1.2 Thesis Contribution . 7

1.3 Overview . 9

1.3.1 Problem Definition . 9

1.3.2 Security Guarantee and Threat Model 10

1.4 Thesis Structure . 11

2 Related Work and Background . 13

2.1 Related Work . 14

2.1.1 SMC Against Honest Majority 14

2.1.2 SMC Against Dishonest Majority 15

2.1.3 Secure Comparison . 20

2.1.4 Fully Homomorphic Encryption (FHE) 23

2.1.5 Oblivious Transfer . 26

2.1.6 Mixed Circuit . 27

2.2 Preliminaries and Definitions . 28

2.2.1 Conventions and Notations . 29

iii

2.2.2 Secret Sharing and its Functionalities 30

2.3 Secret Sharing Schemes . 31

2.3.1 Additive Secret Sharing Scheme (ASS) 33

2.3.2 Shamir Secret Sharing Scheme (SSS) 34

2.3.3 Replicated Secret Sharing scheme (RSS) 37

2.4 BFV Encryption Scheme . 40

3 Secure Comparison Protocols . 43

3.1 Introduction . 43

3.2 Comparison Reduction . 45

3.3 Building Blocks . 46

3.3.1 Generating Secretly Shared Random Values 46

3.3.2 Generating Random Bitwise Shared Value 47

3.3.3 The Not_Zero Protocol . 49

3.4 Secure Comparison Assuming no Collusion 50

3.4.1 Security Analysis . 53

3.4.2 Complexity Analysis . 55

3.5 Secure Comparison with Collision up to n− 1 56

3.5.1 Security and Complexity Analysis 58

3.6 Discussion . 61

3.7 Performance Evaluation . 62

3.7.1 Semi-honest Model Results . 63

3.7.2 Honest Majority Results . 66

4 Generic Secure Comparison Compiler for Dishonest Majority . . 71

4.1 Introduction . 71

4.2 Building Blocks . 73

iv

4.2.1 Pairwise Secure Multiplication 73

4.3 Secure Comparison in the Malicious Majority 75

4.3.1 Input Commitment . 77

4.3.2 Input Randomization and Replication 77

4.3.3 Output Verification . 80

4.4 The SCm Protocol . 81

4.4.1 Security Analysis . 85

4.4.2 Complexity Analysis . 87

4.5 Discussion . 94

4.6 Performance Evaluation . 96

4.6.1 Runtime . 97

4.6.2 Communication Cost and FHE Parameters 99

5 Conclusion . 103

5.1 Future Work . 104

APPENDIX . 105

A Numerical Examples of Comparison Protocols 105

A.1 Example for Algorithm 8 from Section 3.4 105

A.2 Example for Algorithm 9 from Section 3.5 106

B Secret Sharing Numerical Examples 109

B.1 Replicated Secret Secret Sharing Example 109

B.2 Shamir Secret Sharing Example . 112

B.3 Additive Secret Sharing Example . 115

BIBLIOGRAPHY . 117

VITA . 134

v

LIST OF TABLES

Table Page

3.1 Complexity analysis . 56

3.2 Runtime for different bit-lengths . 64

3.3 Data transferred for different bit-lengths 65

3.4 Runtime for different bit-lengths . 66

3.5 Data amount transferred for different bit-length 66

3.6 Runtime for different bit-length . 67

3.7 Data amount transferred for different bit-length 68

3.8 Runtime for different bit-length . 69

3.9 Data amount transferred for different bit-length 69

4.1 SC complexity . 89

4.2 Complexity of F2 multiplication . 89

4.3 ZK-proof complexity . 90

4.4 Complexity of Fp . 91

4.5 Total daBit complexity . 92

4.6 Complexity of edaBit . 93

4.7 Rabbit complexity . 94

4.8 Runtime for 40, 50, 60-bits security 98

4.9 Data amount transferred among the parties for different bit security . 101

4.10 FHE parameter sizes for this paper 101

vi

4.11 FHE parameter sizes for TopGear . 102

B.1 Shares of a, b distributed to 3 participants 110

B.2 Shares of a+ b for participants . 110

B.3 Shares of a, b and correlated randomness r for participants 111

B.4 Shares of a · b . 111

B.5 Deal shares of value a . 112

B.6 Deal shares of value b . 112

B.7 Shares of a, b Distributed to 3 Participants 112

B.8 Shares of a+ b for participants . 113

B.9 Local shares multiplication for 3 participants 114

B.10 Lagrange coefficients . 114

B.11 Deal shares of local ab . 114

B.12 Distributed shares of [c] = [ab] . 114

B.13 Shares of a, b distributed to 3 participants 115

B.14 Shares of a+ b for participants . 116

vii

LIST OF FIGURES

Figure Page

1.1 Real case scenario of SMC . 2

3.1 Runtime for different bit-lengths . 63

3.2 Data amount transferred for different bit-lengths 64

3.3 Runtime for different bit-length . 65

3.4 Data amount transferred for different bit-length 66

3.5 Runtime for different bit-length . 67

3.6 Data amount transferred for different bit-length 68

3.7 Runtime for different bit-length . 68

3.8 Data amount transferred for different bit-length 69

4.1 Runtime for 40-bit security . 98

4.2 Runtime for 50-bit security . 99

4.3 Runtime for 60-bit security . 99

4.4 Data amount transferred among the parties for 40-bit security 100

4.5 Data amount transferred among the parties for 50-bit security 100

4.6 Data amount transferred among the parties for 60-bit security 101

viii

ABSTRACT

Secure comparison (SC) is an essential primitive in Secure Multiparty Computa-

tion (SMC) and a fundamental building block in Privacy-Preserving Data Analytics

(PPDA). Although secure comparison has been studied since the introduction of SMC

in the early 80s and many protocols have been proposed, there is still room for im-

provement, especially providing security against malicious adversaries who form the

majority among the participating parties. It is not hard to develop an SC protocol

secure against malicious majority based on the current state-of-the-art SPDZ frame-

work. SPDZ is designed to work for arbitrary polynomially-bounded functionalities;

it may not provide the most efficient SMC implementation for a specific task, such

as SC. In this thesis, we propose a novel and efficient compiler specifically designed

to convert most existing SC protocols with semi-honest security into the ones secure

against the dishonest majority (malicious majority). We analyze the security of the

proposed solutions using the real-ideal paradigm. Moreover, we provide computation

and communication complexity analysis. Comparing to the current state-of-the-art

SC protocols Rabbit and edaBits, our design offers significant performance gain. The

empirical results show that the proposed solution is at least 5 and 10 times more

efficient than Rabbit in run-time and communication cost respectively.

ix

Chapter 1

Introduction

Comparison serves as one of the most fundamental operators in various data analyt-

ics. When the data considered under these applications contain sensitive information

and are from multiple sources, privacy-preserving protocols may have to be adopted

to protect the data and the outcomes. Secure Multiparty Computation (SMC) prim-

itives are essential building blocks for developing many existing privacy-preserving

protocols.

The first example that outlines the secure comparison protocol is the known “mil-

lionaire” problem which is proposed by Yao in 1982 [1]. In this problem, a group of

millionaires would like to figure out which person between them is the most prosper-

ous. However, being millionaires, they do not want to reveal accurately how wealthy

they are. At the first glance, the problem might sound unsolvable due to the fact that

the input (the wealth) is required to be kept secure. However, this complication can

be determined by either finding a trusted third party who can do the computation

on behalf of the millionaires or via employing secure multiparty computation. SMC

plays the same role as the trusted third party as it guarantees that the distrustful

parties (the millionaires) learn nothing about each other input besides the output

(determine which person is the richest).

1

Figure 1.1 shows a real case scenario of SMC in which the patients records belong

to multiple health organizations. The health organizations outsource their data to

cloud servers. Correlating this information can provide major benefits to the patients

as well as the health organizations. In this case, an authorized user (physician) wishes

to query the patients records. The issue here is that patient records have sensitive

information. Considering the data comes from different sources, privacy-preserving

data analytics (PPDA) protocols may have to be adopted to protect the data and the

outcomes. SMC primitives are the building blocks for many existing PPDA protocols.

Secure comparison is the core operation in many of these primitives.

Figure 1.1: Real case scenario of SMC

Although SMC techniques provide a solid guarantee of personal privacy and data

security, they are computationally expensive. As a result, notable efforts have been

devoted to developing efficient SMC primitives for the last three decades, including

secure comparison (SC). Current SC implementations can be classified into several

categories based on the underlying building blocks, such as garbed circuits [2, 3],

homomorphic encryption [4,5], secret sharing [6–9], and the SPDZ framework [10–13].

Additionally, the existing SC protocols can also be classified based on their security

guarantees [14–16] as follows:

• Semi-honest: If a protocol is secure under the semi-honest assumption, the

participating parties expect to follow the execution requirement of the protocol.

However, they may use what they see during the execution to compute more

than they need to know.

2

• Malicious: If a protocol is secure under the malicious assumption, the partici-

pating parties can deviate arbitrarily from the normal execution of the protocol.

The adversary under this model can cheat the system with a negligible proba-

bility.

• Covert: The covert model [15, 16], a sub-class of the malicious model, takes

advantage of both semi-honest and malicious models. It allows the participat-

ing parties to diverge arbitrarily (as with the malicious) but provides certain

detectability guarantees of such behaviors. As a result, protocols that satisfy

covert security are more efficient than those that guarantee full malicious secu-

rity.

In general, the semi-honest adversarial model often leads to more efficient privacy-

preserving protocols than the malicious model, but the malicious model is less restric-

tive and thus more realistic.

The adversary may corrupt a protocol based on different strategies. The corrup-

tion strategy answers the subject of when and how parties are corrupted. There are

three main models as follows:

1. Static corruption model: In this model, t parties are controlled by an adversary.

These parties are fixed before the protocol begins. Honest parties remain honest,

and corrupted parties remain corrupted until the end of protocol execution.

2. Adaptive corruption model: Rather than holding a fixed set of corrupted parties,

adaptive adversaries have the ability to corrupt the parties during the compu-

tation. The choice of whom to corrupt and when can be arbitrarily decided

by the adversary. It may depend on its view of the execution hence the name

adaptive. This strategy models the threat of a party that is honest initially and

next changes its behavior. It is worth noting that once a party is corrupted, it

remains corrupted from that point on in this model.

3

3. Proactive security model [17, 18]: This model takes into account the likelihood

that parties are corrupted for a limited period of time. Therefore, honest parties

may become corrupted during the protocol calculations, similar to the adaptive

adversarial model, but dishonest parties may also become honest. The proactive

model occurs when the threat is an external adversary who may break into

the system while a secure computation continues. In some scenarios, when

breaches are discovered, the systems can be cleaned. Therefore, it makes the

adversary loses control of some devices, leading the parties to be honest again.

The security guarantee under this model is that the adversary can only learn

what is determined from the local state of a machine it was corrupted. This

sort of adversary is sometimes called a mobile adversary.

The motivation for working on secure comparison protocols in the SMC paradigm

is that the core operations and models in the multiparty computation are now well

established. Finding more efficient methods for complicated operations and building

blocks, on the other hand, remains an open research challenge. Thus, despite the

significant development of the SMC and the secure comparison operation, there is

still much room for improvement especially for the case of dishonest majority where

the adversary controls the majority of the parties. As a result, it is an exciting

field to work in. The research described in this thesis concentrates on the efficient

implementation of secure comparison operations. Especially, the research findings

stress on the “less than” operation. Progress on this operation will hopefully be used

to attain results with more complicated protocols in the future.

1.1 SMC Applications

During the last three decades, SMC shows many great theoretical examples that can

be valuable. The utilization varies from enabling private DNA comparisons for medi-

4

cal and other purposes to gathering statistics without revealing the aggregate results

and many more. Due to the rapid development in the communication infrastructure

and the SMC techniques, SMC is implemented in various real-world use cases, and us-

age is growing fast. In this section, we provide several examples of SMC applications

that have been deployed in this area.

1. Boston wage gap [19]: The Boston Women’s Workforce Council adopted SMC

in 2017 to calculate compensation statistics of more than 166K employees across

114 companies, including around 16 of the Greater Boston area workforce. Since

companies are not willing to provide their plain data due to privacy concerns,

the application of SMC was essential. The findings imply that the gender dis-

parity in the Boston area is even wider than the US Bureau of Labor Statistics

previously anticipated. This is an important example proving that SMC can be

used for social advantage.

2. Advertising conversion [20]: Conversion rates from ads to real purchases requires

to be calculated accurately. Google computes the intersection’s size between the

list of people showing an advertisement and people purchasing the advertised

goods. The purchase link to the displayed advertisement cannot be tracked if

the items are not purchased online. Google and the firm paying for the adver-

tisement must disclose their respective lists to determine the intersection size.

Google utilizes a protocol for the privacy-preserving set intersection without

revealing anything, but the size of the intersection [20]. Although it is not

the most efficient protocol available today, it is straightforward and fits the

company’s computing needs.

3. SMC for cryptographic key protection [21]: To protect cryptographic keys, some

firms are utilizing threshold cryptography as an alternative to legacy hardware.

Threshold cryptography allows to perform cryptographic operations (such as

5

decryption and signing) without storing the private key anywhere. SMC is not

used in this application to transfer private information between parties. Rather,

SMC is used by a single organization to create keys and perform cryptographic

operations without the key ever being stored somewhere where it may be stolen.

By dispersing the key shares over multiple settings, an attacker will have dif-

ficulty stealing all of them and obtaining the key. SMC may also be used to

preserve the signing keys used to protect cryptocurrencies and other digital as-

sets. The cryptographic enforcement of tight standards for allowing financial

transactions or sharing keys between custody providers and clients is enabled

by specifying general quorums.

4. Government collaboration [22]: Many government entities hold information on

residents, and correlating that information can provide major benefits. How-

ever, the privacy issues associated with private data pooling may deter govern-

ments from doing so. For example, in 2000, Canada canceled a scheme to pool

citizen data in response to accusations that it was creating a “big database.” Es-

tonia gathered encrypted income tax information and higher education records

using SMC to determine if students who work while studying are more likely

to fail than those who do not focus entirely on their academics. Using SMC,

the government was certain that all data security and tax secrecy requirements

would be fulfilled without sacrificing data utility.

5. Privacy-preserving analytics [23]: Machine learning is becoming increasingly

popular in a variety of fields. SMC is capable of running machine learning mod-

els on data without disclosing the model (which contains valuable intellectual

property) to the data owner or the data to the model owner. Furthermore, sta-

tistical studies can be performed across companies for anti-money laundering,

risk core calculations, and other purposes.

6

6. Secure statistical analysis of income tax records [24, 25]: Bogdanov et al. de-

scribe using SMC for the Estonian government to accomplish a secure statis-

tical analysis of income tax records. The latter work analyzed an extensive

database with over 600K students and 10M tax records. Again, simple statis-

tics were used, and the work heavily uses the fact that secure additions are

non-interactive.

7. Private benchmarking applications [26]: SMC is used as a private benchmarking

application, allowing institutions to jointly analyze client risks while protect-

ing customer data privacy. Secure linear programming is employed using SMC,

which is a deeply hard operation that requires either extremely large integer

arithmetic (to simulate real numbers without overflow) or secure floating-point

arithmetic. It is worth noting that using Boolean circuits would be impractica-

ble in both situations.

8. Satellites collision prevention: SMC has been presented as a technique for pre-

venting satellite collisions by safely integrating collision detection with sensitive

position and trajectory data. Kamm et al. [27] describe how to implement the

required conjunction analysis algorithms in SMC using a secret-sharing sys-

tem. It should be noted that this application is based on secure floating-point

operations.

1.2 Thesis Contribution

This thesis proposes an efficient secure comparison protocol and a generic compiler to

transfer any semi-honest secure comparison protocol to a secure comparison protocol

under dishonest majority (majority malicious) setting. Below we highlight some more

details of our contribution.

7

1. Design an efficient comparison protocol (SC3P) that is tailored to the honest

majority setting. The protocol works under three parties, one of them is des-

ignated to facilitate the secret sharing secure computation. As a result, the

protocol does not require secure multiplication which represents the overhead

of secure comparison operation. Moreover, we used domain reduction method

which helps in reducing the message complexity from quadratic to linear in

terms of the bit length.

2. Generic compiler for secure comparison: we propose a novel technique, termed

as randomized replication, to develop a generic compiler that transforms any

semi-honestly secure comparison protocol to be secure against dishonest major-

ity (malicious majority). The proposed compiler is generic such that a newly

developed and more efficient secure comparison protocol can be used without

changing the rest of the code or the structure of that protocol. The compiler

overcomes the high cost of the SPDZ protocols using a simple yet effective

treatments as follows:

(a) We present an efficient compiler by removing the ZK-Proof which repre-

sents the bottleneck of the SPDZ compiler. Our compiler only depends

on executing the protocol κ times. Where κ is the soundness security

parameter.

(b) The soundness parameter κ is independent of the underling HE. This leads

to a small polynomial dimension N ; thus, a short ciphertext.

(c) The compiler achieves security in both covert and malicious models only by

adjusting the κ parameter. It is more efficient than the existing solutions

for covert security based on the cut-and-choose technique. By randomly

permuting the input ordering, the error probability decreases exponentially

as the number of copies increase.

8

(d) Achieving higher security comparing to the state of the art Rabbit proto-

col. Since Rabbit utilizes edabit [28] to generate random unknown values

associated with its random unknown bits. Edabit requires to check the

consistency of the random values. Therefore, it utilizes cut-and-choose

technique which requires to set a statistical security paramter. Edabit is

implemented in MP-SPDZ [29] with only 40-bit statistical security. This

leads to reduce Rabbit security to only 40-bit. It is worth noting that our

compiler has no limit on the statistical security parameter.

3. We provide a formal security analysis using the real-ideal paradigm. In addition

to that, we give theoretical computation and communication analysis for the

proposed solutions. Moreover, we implement our compiler using SEAL library

[30] and c++. We run extensive experiments and the empirical results show

that the proposed solution is at least 5 and 10 times more efficient than Rabbit

in run-time and communication cost respectively.

1.3 Overview

In this section, we cover the problem addressed in this work. Initially we define the

problem and then describe the adversary model for the proposed protocols.

1.3.1 Problem Definition

This work focuses on secure comparison protocols. More specifically, we consider the

client-server computing model where clients outsource their data and analytics tasks

to two or more independent servers. Most existing SMC solutions are applicable in

the model. Since the clients are not involved in protocol execution, the servers are

commonly referred to as the participating parties. As a result, given a and b are non-

9

negative integers secretly shared among n parties: P1, . . . , Pn. Let [a] and [b] be the

secret shares of a and b. Both values are bounded by
⌊
p
2

⌋
, p is a prime of l = dlog2 pe

bits. Our protocol implement the comparison functionality as follows:

f(a, b) =

 0 if a ≥ b

1 if a < b
(1.1)

We define the secure comparison protocol as follows

SC(〈Pi, [a]Pi , [b]Pi〉)→ 〈Pi, [δ]Pi〉 (1.2)

1.3.2 Security Guarantee and Threat Model

Let n denote the number of parties/servers, and up to n− 1 parties can be malicious.

The assumption of computing power of these parties depends on the actual design and

implementation of the SC protocols being transformed using the proposed compiler.

For example, if an SC protocol assumes the parties are computationally unbounded,

then the same assumption holds under our compiler. The security of an SMC protocol

has several common and essential criteria:

• Privacy: the private input data of an honest party is not disclosed to the other

parties during protocol execution.

• Correctness: in presence of malicious behaviors, the honest parties can still

receive the correct output.

• Fairness: either every party receives the correct output or no parties receive the

correct output.

• Detectability: any malicious behaviors can be detected.

Any SMC protocols have to guarantee privacy, but the other properties may or may

10

not be achieved depending on the number of malicious parties. For example, robust-

ness may be achievable if the number of malicious parties is less than n
3
with Shamir’s

secret sharing scheme.

Under the malicious majority setting, in addition to privacy, the existing SMC

protocols only guarantee detectability of malicious behaviors. Malicious behaviors

generally mean collusion among the parties and not following the protocol, all of

which is equivalent to changing or modifying the shares. For instance, suppose a

value v = v1 + v2 + v3 mod p is secretly shared among three parties: P1, P2 and P3.

Each Pi has the share vi. Suppose v is a private input of an SMC protocol, and P1 and

P2 are malicious. Then any malicious behaviors of P1 and P2 are equivalent to using

v′1 and v′2 as their shares during protocol execution where v′1 and v′2 may or may not

be the same as v1 and v2. Therefore, except for prematurely aborting the protocol,

detecting malicious behaviors actually means the protocol can detect or verify if the

shares have been modified. To summary, our proposed compiler provides detectability

when the number of colluding and malicious parties is bounded by n − 1, and the

participating parties have either limited or unlimited computing power depending on

the implementation of the underlying SC protocols.

1.4 Thesis Structure

This chapter introduces the secure comparison problem in the multiparty compu-

tation setup (SMC) and the motivation for working with multiparty computation.

Chapter 2 provides a comprehensive review of the related works as well as the nec-

essary notations and conventions. Chapter 3 presents the proposed efficient, secure

comparison protocols with correctness, security, and complexity analysis in addition

to the evaluation results. In chapter 4, we show our treatment to convert semi-honest

secure comparison protocols to malicious security under a (dishonest majority) major-

11

ity malicious setup. The chapter includes correctness, security as well as complexity

analysis along with the performance results. Finally, chapter 5 concludes the work

and provides future works.

12

Chapter 2

Related Work and Background

A large and interesting work has been proposed in the area of secure comparison

(SC), in general, as well as within the field of Privacy-preserving Data Analysis in the

SMC. Secure comparison is a highly utilized functionality in many applications; due

to this, there is a high demand for efficient SC solutions. In this chapter, we begin by

covering the related work in the SMC as well as the background details of concepts

used within this work.

This chapter first covers comprehensive works in SMC using the the malicious

minority model (also known as the honest majority model) and the malicious majority

model (also known as the dishonest majority model) . Aside from the semi-honest

model, these two models define the framework in which secure comparison protocols

can be implemented. Then we give a detailed list of studies in the field of secure

comparison. Because we use fully homomorphic encryption FHE in our design, we

give a list of relevant work in this area for completeness. We also provide a list of

work related to the oblivious transfer (OT) protocols which is used to facilitate the

secure multiplication in the presence of a malicious adversary. Finally, we present

preliminaries and notations used throughout this thesis.

13

2.1 Related Work

2.1.1 SMC Against Honest Majority

A number of SMC solutions have been proposed to address the security issues under

the majority honest malicious adversary model. Here we summarize a few representa-

tive work in this area. A verifiable secret sharing scheme is proposed in [31] which uses

Shamir’s secret sharing and homomorphic commitments based on the discrete log as-

sumption. The commitments are updated along the computations, and any malicious

changes to the computation will lead to inconsistent commitments. it is worth not-

ing that this commitment scheme is computationally expensive. Combining dispute

control [32] and utilizing a designed party for intermediate computation [33], more ef-

ficient solutions is introduced in [34]. It has linear complexity based on the circuit size,

and its verification technique has error probability negligible in terms of pre-defined

security parameter. To remove this error probability, [35] uses hyper-invertible ma-

trices to perform batched correctness check of shares that leads to a perfectly secure

solution. In [36], a technique of 4-consistent tuples of shares is proposed to improve

the communication complexity given in [35] by removing the quadratic terms of the

multiplicative depth of the circuit. To ensure perfect security in presence of malicious

parties, all these solutions assume the number of malicious parties is less than n
3
.

The work in [37] suggests a solution with linear complexity and less than n
2
parties

can be malicious which is built based on the solution given in [38]. In [39], a framework

was introduced to allow computations performed by using a semi-honest protocol

along with verification steps to detect malicious behaviors with a very high probability.

It presents an efficient way to verify the correctness of a set of Beaver triples [40].

In [41], a circuit randomization technique was proposed to verify the consistencies

between two executions: one on the original circuit and one on a randomized circuit

by multiplying the inputs with a random value.

14

Both works [39,41] assume that the multiplication protocol is secure up to additive

attack [42,43],1 and the number of malicious parties is less than n
2
.

2.1.2 SMC Against Dishonest Majority

When the number of malicious parties become the majority (up to n − 1), design-

ing efficient SMC protocol gets more and more challenging. The well-known SPDZ

framework utilizes information theoretic MACs on top of additive shared secrets over

a finite filed Fp to guarantee privacy and correctness. The process carries on two

phases as follows:

• The offline phase prepares multiplication triples also known as Beaver’s triples

[44]. Since these triples are independent; they can be generates as batches in

parallel mode for efficiency.

• The online phase consumes the triples that are generated in the offline phase to

perform the actual multiplication calculation.

SPDZ protocol relies on BDOZ [45] protocol in which the offline phase relies on

pairwise multiplication carries on linearly homomorphic encryption. Zero-knowledge

proof ZKP utilizes in the offline phase to ensure dishonest parties cannot deviate from

the protocol. It requires a total of O(n2) ZK-Proof per multiplication triple of BDOZ.

Pairwise MACs applies to authenticate a secret sharing between n-parties.

Damgard et al. [10] upgrade the underling linearly homomorphic encryption used

by BDOZ to a somewhat homomorphic encryption (SHE) based on BV scheme [46].

This allows to decrease the number of ZK-Proof per multiplication triple by a factor

of n. Moreover, the pairwise MACs is replaced by a global MAC which allows to

authenticate the secret value itself instead of the shares which previously is quadratic

in n.
1Additive attack means that an adversary can add a value to the output of a multiplication.

15

In [11], Damgard et al. provide two new techniques based on cut-and-choose.

The first one produces covert security offering high efficiency. The second method

guarantee actively secure protocol with ZK-Poof asymptotically more efficient than

those utilized in [10]. However, this method requires a high memory which makes it

hard to be implemented.

The inefficiency of an actively secure offline phase that relies on the SHE comes

from the fact that SHE requires an expensive zero knowledge proofs or other cut

and choose techniques. To overcome this limitation, a new family of protocols offer

security in the presence of n − 1 dishonest parties which utilizes Oblivious Transfer

OT. Nielsen et al. [47] offer a two-party protocol for binary circuits relying on OT

extensions known as TinyOT. It has a throughput of roughly 10k in the field F2

triples per second. To overcome any leakage on the secret correlation, they rely on

consistency checks and privacy amplification techniques with an overhead of roughly

7.3 of the base OT calls. To remove the leakage on a and b during the process of

generating the triples, they rely on a combining procedure. The combining procedure

requires to be done twice, one to remove the leakage on a and the other one is to

eliminate the leakage on b. It works similarly to the sacrifice technique by batching

triples randomly into buckets such that if one of them is secure the resulting triples

stay secure.

Larraia et al. [48] show how to extend TinyOT to the multi-party setting and

accommodate it to match the online phase of the SPDZ protocols. Triple sacrifice lies

in the hart of TinyOT to guarantee the triple correctness. To remove the possibility

of any leakage from the triples, a combining technique is utilized. However, in a small

field simple pairwise checks may not suffice. Therefore, bucketing technique is used

which is an expensive method with an overhead of around 3-8 times per check, based

on the statistical security parameter as well as the number of triples.

It is worth noting that in all the previously mentioned papers the focus is on

16

improving the offline phase. While the online phase is identical across all of them.

This is where the MiniMAC [49] comes in the picture in order to speed up the online

phase. The idea of MiniMAC is to reduce the size of the MACs in the online phase

for both the binary circuits and the arithmetic circuits over a small filed. Previously,

the MAC of secret shared values has to be at least as big as the statistical security

parameter κ. Therefore, the field should offer enough room to cover κ. MiniMAC

allows to combine a vector of bits at once into a codeword, offering a constant MAC

size. The implementation of the MiniMAC technique first appears in [50] which

shows that MiniMAC offers faster performance than TinyOT by accomplishing many

operations in parallel. It is worth mentioning that the first dedicated offline phase for

the MiniMAC is proposed in [51,52].

Frederiksen et al. [51,52] shows how to construct the offline phase based on obliv-

ious transfer extension. Their main focus is on finite fields of characteristic two. The

authors shifted their focus of the traditional view of the sender and the receiver of the

OT to the use of a linear algebra method with matrices, vectors and tensor products.

During the triple generation in F2κ , the consistency check is dropped allowing the

adversary to introduce error. The introduced error is amplified using privacy amplifi-

cation step. Therefore, the sacrifice check which is performed later suffices to detect

such error. This way allows to reduce the overhead of the correlated OT protocol to

only 3 times of a basic OT extension. For F2 triple generation, the authors show that

one combining procedure is enough to remove the leakage on a and b rather than two

combining procedures.

MASCOT [53] is another general purpose compiler that shifts from somewhat

homomorphic encryption offline phase to Oblivious Transfer based offline phase. Their

main focus is on arithmetic circuit of the finite field of a prime Fp as well as the

power of two F2κ . Similar to previous works, MASCOT utilizes privacy amplification

method. However, MASCOT protocol needs to eliminate leakage on only one of the

17

three triple values. This is done efficiently by combining correlated triples of a τ

constant sized vector where τ ≥ 3. Combining is done using simple inner products to

ensure that any leaking bits are randomly combined with non leaking bits of a public

random vector. This works due to the fact that dot product sufficiently defines a

universal hash function. This allows them to use the left hash lemma to guarantee a

uniformly random triples with a given large enough τ . MASCOT results show that

their protocol is 200 times faster than [11]. Their results emphasis that even though

it requires more communication compared to the covertly secure protocol [11]. It is

still 20 times faster. It is worth mentioning that the building block of [51–53] is the

oblivious product evaluation based on Gilboa’s method [54].

Keller et al. [12] focus on improving the offline phase. Their solution comes in two

flavors. The LowGear is suited for small number of parties where the ZKP requires

to be carried such that every party needs to verify every other party’s proof. The

highGear is designed to overcome the limitations of the LowGear by summing all

proofs and only checking the sum. HighGear improves the computation cost by a

factor of n. Nevertheless, the communication cost has not improved. Due to the fact

that every party requires to send every proof to other parties and then sum all the

received proofs.

Due to memory and bandwidth constrains, HighGear has some limitations in the

security parameters. It sets the soundness security parameter Snd_sec=ZK_sec.

Where Snd_sec refers to the probability that an adversary can cheat the system.

While ZK_sec represents the statistical distance of the zero knowledge protocol.

From a security perspective, setting a low value of Snd_sec is more reasonable than

a low value of ZK_sec. Thus, setting different values is not possible in the HighGear.

The effect of treating these two parameters is rather more involved. In practice,

Snd_sec drastically affects the memory and the computation overhead. On the other

hand, ZK_sec has very minimal effect on the execution time.

18

Baum et al. [13] overcome the limitations of HighGear by introducing an improved

SPDZ scheme known as TopGear. TopGear treats Snd_sec and ZK_sec separately.

This allows them to guarantee a higher soundness with small amount of amortization

comparing to [12]. Moreover, the new scheme has smaller memory requirements.

Previously, HighGear uses a binary challenge space, however, TopGear utilizes a non-

binary challenge space of 2N + 1 where N is the ring dimension for the underline

encryption scheme. This allows them to achieve an arbitrary soundness security by

selecting the auxiliary ciphertext V ≥ (Snd_sec+ 2)/ log2(2N + 1).

Despite the improvement in the TopGear, the offline phase of the SPDZ protocol

still requires a substantially large execution time. For example, secure comparison

protocols require millions of triples which may take hours to be generated. The major

reason for this is the high cost required by the zero knowledge protocol.

Most SMC protocols progress the secure computations of arithmetic circuit based

on a finite field. Fore example, the prime filed Fp where p is a prime number. SPDZ2κ

works on a more natural way of integer computations modulo 2k. This is especially

useful for implementations and applications simplification. SPDZ2κ is the first work

to present such a solution under the majority malicious model. Previously, such

solutions only exist in the minority malicious model. Based on their results, they offer

an efficient new scheme for information-theoretic MAC which is homomorphic modulo

2k. This novel authentication approach performs as well as well-known conventional

solutions that are homomorphic across fields Fp. The security of the MAC based on

a finite field stands for the fact that non-zero values in F are invertible. However, in

the case of a ring Z2k the dishonest party can cheat with non-negligible probability.

For example, the adversary could choose a′ = a+ 2k−1 with cheating probability 1/2.

SPDZ2κ is as efficient as the MASCOT protocol [53].

19

2.1.3 Secure Comparison

A number of methods have been proposed for the secure comparison functionality

under different adversary models and mathematical domains. These protocols start

by the constant round SC protocol proposed by Damgård et al [55]. In this design,

secretly shared values must first be bit decomposed among the parties involved in

the computation. Alternatively, the values may exist as bitwise shares initially. This

means the protocol takes as input bit decomposed shares of the private values to be

compared. If this procedure is necessary, though expensive, it is potentially beneficial

when other bit-wise operations may be seen as advantageous. The cost incurred in

this scheme for bit decomposition may be amortized somewhat across all those sub-

protocols that require it. Though there is a fairly high computational complexity

and communication cost, this important result demonstrates constant rounds secure

comparison is indeed possible and well within feasibility. The core idea of Damgård’s

comparison protocol is to locate and observe the most significant bit where the two

compared numbers differ. This is done by applying prefix-Or operation which is

followed by a simple subtraction between every two adjacent bits. Finally, dot product

is applied with the second compared number to reflect the comparison result. It is

worth noting that the prefix-Or operation is the most expensive part of Damgård’s

comparison protocol. In the same paper, the authors offer a constant round protocol

to compute prefix-Or operation by applying the symmetric boolean function principle.

prefix-Or can also be computed in a logarithmic fashion as well [56].

Another technique for utilizing finite field arithmetic properties aims to influence

a comparison through intermediate comparisons and some reasoning to bring the

meaning of these intermediate comparisons together to generate the desired result.

This strategy was pioneered by Nishide and Ohta’s work [9]. Since the bit decomposi-

tion protocol is expensive, the main concept here is to carry comparison between two

secretly shared values indirectly. This is done by observing that the comparison func-

20

tion can be determined by computing (a < p/2), (b < p/2), (a−b mod p < p/2). This

leads to reduce the round complexity from 44 to only 15 round comparing to [55]. On

the other hand, the communication complexity is also decreased to 279`+5 while [55]

requires 205`+ 188` log2 ` where ` is the bit length of a prime field. It is worth noting

that this work reduced the secure multiplication invocation complexity from O(` log `)

to O(`) comparing to the previous work.

Damgård et al. [5] propose a secure comparison protocol for integer values by

utilizing additive secret sharing and homomorphic encryption. The idea of utilizing

the homomorphic encryption presents by Blake et al. [57]. However, it requires a

plaintext space of size exponential in `. In this work, the authors proposed a novel

method which allows the computation to be carried on a smaller plaintext space.

This translates to smaller exponents when taking exponentiation, hence it improves

the protocol efficiency. On the other hand, some of the computations can be carried

using additive secret sharing rather than the homomorphic encryption which leads to

further improvement.

Other improvements have since been developed that reduce the complexity and

number of intermediate calculations required depending on various constraints on the

domain of values that are exchanged and compared. Reistad et al. suggested an

unconditionally secure comparison technique against active/adaptive attackers [58].

Furthermore, the protocol improves both the rounds and multiplication invocations

complexity. However, the protocol assumes a bounded size on the compared values

of less than bp−1
4
c. The process starts by transforming the comparison of two secretly

shared values a, b into a comparison between 2a+1, 2b. Then, the protocol determines

the comparison result by computing the less significant bit (LSB) of the difference

between the later transformed values. Computing the LSB is done by randomizing

and opening the difference result via adding a uniformly random value. The final

result is then rectified using two xor operations.

21

In [59], Reistad presents a comparison protocol that is more efficient than previous

constant round comparison protocols. The protocol starts by converting the compar-

ison of two secretly shared values into a comparison between a secret value and a

global known value. This step requires the parties to generate a random shared value

associated with its random shared bits. Then the protocol progress on transferring

the later comparison to a single shared value. The protocol then requires calculating

the LSB of this value, representing the secret and global value’s comparison result.

Note that this value has to be smaller than
√

(4p) for some prime p. One last step

is required to reflect the original comparison between the two secretly shared values

which takes two xor operations.

The previous protocol is improved further by Reistad et al. [60] through improv-

ing the LSB gate. The idea of extracting the LSB of bounded size presents in [61]

using Paillier encrypted values when there is sufficient room in the ring. Such that

2`+s+logn < p, given s is a security parameter and n represents the number of parties.

To extract the LSB of a secretly shared value, the parties first generate a uniformly

random unknown bit used to hide any information. Then a random mask is computed

by allowing each party to input a uniformly random value of s+ `− 1-bit. The later

value is used to randomize the original secretly shared value and facilitate the LSB

calculation using only one xor operation between a global known value and a secretly

shared value. It is worth noting that this is where the comparison protocol loses its

perfect security to only statistical security.

All the previously mentioned protocols work in the arithmetic circuit. In recent

developments, a new family of SMC protocols allow to work in the mixed circuit of

arithmetic and binary. As a result, it opens up the avenue to improve the efficiency

of SC protocols further. Escudero et al. suggest a comparison protocol based on

edaBits [28]. The concept is to compare two secret shared integers by extracting the

MSB from a shared integer representing the difference between the two integers. If

22

the first integer is less than the second, the difference is negative, and the MSB equals

one. The author presented a truncation procedure to obtain the MSB. It should be

noted that this protocol is statistically secure. Furthermore, the statistical security

requires that the shares domain be at least p > 2`+s+1 for some statistical security

parameter s. As a result, it introduces a large gap also known as slack between

the shares and the secrete to be truncated. The comparison protocol requires two

invocations of edaBits as well as a classic daBit to facilitate the conversion back from

binary to arithmetic computation.

Makri et al. present a novel comparison protocol known as Rabbit [62]. Because

Rabbit uses daBit and edaBit, it offers security against an active adversary in the

dishonest majority setting. Furthermore, it improves the computation and communi-

cation compared to the comparison protocol present in [28]. The protocol eliminates

the need for statistical security parameter in the comparison operation. This allows

the domain of the shares to be smaller than that required by prior protocols, influ-

encing the overall efficiency of the comparison protocol. Rabbit makes use of the

concept of addition commutativity across rings/fields structures. More precisely ex-

presses a sum in two ways and thereby equals the related constraint equations. The

comparison relies on identifying and correcting when a sum in a specific modulus

wraps around. Despite the improvement in both computation and communication,

Rabbit still requires two invocations of edaBits and three invocations of Damgård less

than bit comparison protocol.

2.1.4 Fully Homomorphic Encryption (FHE)

Fully Homomorphic encryption allows both addition and multiplication to be carried

on the encrypted data. Due to the nature of Fully Homomorphic encryption problem,

FHE schemes come with a drawback which requires to deal with the reduction of the

noise before the scheme runs out of the space that allows to evaluate a function.

23

Therefore, FHE comes in three main types.

• Somewhat homomorphic encryption which can evaluate functions of limited

complexity.

• Leveled homomorphic encryption which allows to evaluate up to L levels mainly

using some modulus switching techniques.

• Fully homomorphic encryption which can evaluate an arbitrary functions by

applying the concept of bootstrapping which is simply decrypting the cipher-

text homomorphically to produce a fresh ciphertext with a fixed inherent noise

smaller than before.

The Evolution of FHE

In the last decade, several FHE schemes were developed following Gentry’s break-

through [63, 64]. Gentry’s seminal work sketches out the main theories behind the

FHE. Its core is somewhat homomorphic encryption (SHE) scheme that relies on ideal

lattices. Gentry shows how to transform the SHE scheme into FHE scheme by in-

troducing the bootstrapping technique. Gentry et al [65] present the first attempt to

implement Gentry’s blueprint scheme, utilizing several optimizations some of which

illustrated by Smart et al. [66]. The authors report a public key size of 3.2 GB while

ciphertext refresh technique takes 30 minutes with security of λ = 72 bits.

Dijk et al. [67] describe a new method for constructing SHE scheme only based on

elementary modular arithmetic. Their SHE uses addition and multiplication over the

integer rather than working with ideal lattices over polynomial in the case of Gentry’s

SHE. Eventually, they apply Gentry’s bootstrapping technique to convert the scheme

to a fully homomorphic scheme. It is worth noting that the semantic security of this

scheme relies on the well-defined search problem known as the approximate integer

GCD. The problem with Dijk’s scheme is the huge size of the public key which is

24

in O(λ10). Coron et al. [68, 69] improve the previous scheme by reducing the size of

public key to O(λ7) this is done by encrypting with a quadratic form in the public key

instead of a linear form. The scheme is semantically secure based on the approximate

GCD problem. In this scheme, the authors report a public key of 802 MB and a

ciphertext refresh of 14 minutes. In 2013, Coron et al. [70] introduced a compression

technique to reduce the public key size further from O(λ7) to O(λ5). This scheme

reports public key of 10.1 MB for similar parameters of previous scheme. The scheme

also presents a new modulus switching technique for DGHV scheme [67] by adapting

the BGV [71] modulus switching framework.

Brakerski et al. [72] introduce a new technique for constructing FHE scheme that

does not rely on the lattices assumption. The new scheme is based on the Learning

with Error (LWE) assumption which is know to be at least as hard as solving hard

problem in general lattices. The scheme introduces a re-linearization technique which

shows how to obtain a SHE scheme. The scheme deviates from the bootstrapping

general technique and relies on dimension-modulus reduction technique to convert a

SHE scheme to a FHE scheme. Brakerski et al [71] improve the noise growth of the

previous scheme by introducing a modulus switching technique that define a ladder

qL levels of moduli. Despite the noise improvement, the homomorphic evaluation is

more complicated than before. Brakerski [73] further improves the noise reduction by

introducing a scale invariant scheme, via relying on invariant perspective. The idea

is to scale down by a factor of q which gives a fractional ciphertext modulo 1. In

this case, the noise is not squared in the homomorphic multiplication. However, it

multiplies it by a polynomial factor of p(n). In [74], the authors lift the scheme in [72]

from LWE to ring-LWE (RLWE). Moreover, they introduce two optimized versions

of relinearization with smaller relinearization key. The problem with the scheme that

depends on the LWE/RLWE is the costly multiplication that involves the relineariza-

tion step to reduce a quadratic ciphertext to a linear ciphertext. In [75], the authors

25

propose a new LWE technique to construct FHE scheme based on approximate eigen-

vector method. In this scheme, there is no need for the costly relinearization step

which requires Ω(n3) complexity. The ciphertext in this case is a matrix and the

homomorphic operations is done based on matrix addition and multiplication. It is

worth noting that matrix multiplication uses sub-cubic computation such as Strassen

and Williams with complexity O(n2.807) and O(n2.3727) respectively.

The latest bootstrapping implementation is reported by Halevia et al. [76] which

takes 6 minutes. Ducase et al. [77] improve the bootstrapping procedure to less than a

second. Their improvement comes in two folds. First, they introduce a new homomor-

phically compute the NAND of two LWE ciphertexts. This introduces a much lower

noise level than previous techniques. Second, a ring variant of the bootstrapping is

utilized which reduces the asymptotic computation time of lattice cryptography from

quadratic to quasi-linear. This scheme is further improved by Chillotti et al. [78]

which brings the bootstrapping to only 0.1 second. It also reduces the bootstrapping

key size from 1 GB to only 24 MB with the same security level.

All the past presented schemes can only perform computations over the integer.

In [79], the authors introduce the first leveled homomorphic encryption scheme that

allows operations over real numbers. The security assumption of CKKS scheme is

based on RLWE. CKKS scheme was improved in [80] by introducing the full residue

number system (RNS) variants. In [81], the authors lift the CKKS leveled scheme to

FHE scheme by offering a bootstrapping function.

2.1.5 Oblivious Transfer

Aside from the works just listed, oblivious transmission is used by numerous additional

secure protocols. Protocols based on GMW [82, 83] and TinyOT [47, 48, 84] use OT

extensions for efficient SMC on binary circuits, and fast garbled circuit protocols uti-

lize OT extensions in the input stage of the protocol [85]. Pinkas et al., [86,87] employ

26

OT extensions to provide an efficient and scalable protocol for the stated application

of private set intersection. Ishai et al. [88] offer another technique for establishing

malicious security based on OT. However, they only provide asymptotic complexity

metrics. Furthermore, their protocol’s building components, such as codes and fast

Fourier transform, imply a more costly calculation than MASCOT [53], where the

computation consists mostly of a few field operations. Baum et al. [89] explained en-

hancements to the sacrifice phase and the zero-knowledge proofs employed in SPDZ

with somewhat homomorphic encryption. Their sacrifice method necessitates the

generation of triples that constitute codewords. Their zero-knowledge proofs outper-

form Damgård et al. [11] by roughly a factor of two. In a recent development, Boyle

et al. [90] propose silent OT which allows creating a large number of random, or

correlated, OTs, with very little interaction. This technique offers great advantages

for methods that uses edabit [28]. With a moderate increase in computing [91], the

communication cost utilizing silent OT may be reduced up to 100x less than OT

extension based on previous approaches [92].

2.1.6 Mixed Circuit

The above-described protocols necessitate computations on a specific mathematical

structure that requires to fix the computation domain. For example, in an arith-

metic circuit that favors integer calculations like addition and multiplication, the

domain may carry computation modulo a prime or power of two. Another example is

the modulo two calculation in binary circuits, preferred for non-linear functions like

comparisons. Many applications have both linear and non-linear capabilities. Deep

learning convolution layers, for example, are made up of dot products followed by a

non-linear activation function. Therefore, new work of research has emerged.

ABY framework [93] (Arithmetic-Boolean-Yao) handles the semi-honest model in

a two-party setting. Since then, other works have advanced the setting to differ-

27

ent parties and various adversary models. For example, in [94, 95] the authors offer

three parties in the honest majority setting, and in [96] the authors present a dishon-

est majority setting with malicious security. Other literature focuses on generating

compilers that can decide which part of a protocol carries in arithmetic or binary

circuits [97–99].

Rotaru et al. introduce daBits technique [96] (doubly-authenticated bits) which

generates random secret bits in both binary and arithmetic domains. These bits

are used to convert between binary/arithmetic domains in the SMC protocols. The

daBits supports any corruption setting; however, it has been utilized in the SPDZ

protocol [10] under dishonest majority settings with malicious security. More efficient

methods for generating daBits present in [100–102].

In late development, the function secret sharing technique is utilized for binary and

arithmetic conversions and other operations such as comparison [103,104]. Although,

it relies on a trusted setup or an expensive offline phase that has not been practical for

malicious adversaries. This method improves the online phase with only one round.

On the other hand, edaBits provides a technique to enhance the conversion between

arithmetic and binary data types in SMC [28]. The edaBits are shared integers in

the arithmetic domain with a shared bit decomposition in the binary domain. When

compared to daBits, edaBits can be produced more efficiently. It requires a cut-

and-choose approach as well as the use of binary circuits’ inherent tamper-resilient

characteristics. The edaBits work well with dishonest majority protocols like SPDZ.

It may, however, be applied to any corruption setup.

2.2 Preliminaries and Definitions

This section provides the commonly used notations and security definitions. It also

presents the background on the secret sharing schemes used to construct the proposed

28

protocols. In addition to that, it introduces construction of the BFV scheme which

is used to carry the secure multiplication in the proposed compiler in chapter 4.

2.2.1 Conventions and Notations

The following notations are commonly used in the literature and they are adopted

for the rest of the thesis:

• P1, . . . , Pn: n parties or servers who collaboratively and securely perform the

required computations.

• Zp: a prime domain {0, . . . , p− 1} where p is a prime and |p| = ` represents the

number of bits requires to represent p.

• [x]: a value x is secretly shared among the n parties. The shares are drawn

from Zp. The domain of x is bounded by p.

• [x]Pj (or [x]
Pj
p): the secret share of x belongs to party Pj. Thus, [x] is a set of

shares denoted by [x]P1 , . . . , [x]Pn .

• r, r0, . . . , r`−1: r generally represents a random value in Zp, and r0, . . . , r`−1 ∈

{0, 1} represent the individual bits of r where r0 and r`−1 are the least and most

significant bits of r respectively.

• s1, . . . , sn: are random values generated from Zp. In our proposed protocols, sj

is generated by party Pj.

The superscript/subscript in [x]
Pj
p may be dropped for succinctness if it is clear from

the context. For example, the expression below represents local computations per-

formed by Pj based on its own shares.

• Pj: [x]Pj ←
∑n

j=1[xj]Pj

29

It produces Pj’s secret share of x by summing each secret share of [xj]Pj . To simplify

the notations, we often adopt the following expression instead:

• Pj: [x]←
∑n

j=1[xj]

Moreover, the term “secret share” (or “secretly shared”) is interchangeable with “share”

(or “shared”).

2.2.2 Secret Sharing and its Functionalities

This work requires that any secret sharing scheme to be used have the ability to

perform the following operations, and the ones required communications among the

parties are denoted as ideal functionalities with symbol F . As stated previously, we

assume that the adversary A is computationally bounded and control at most n− 1

parties who remain the same throughout the protocol execution. The adversary does

not learn any information about the private input of an honest party. Thus, we

only need to guarantee privacy. Since we do not need to guarantee the computation

correctness, the implementations of these functionalities are highly efficient. Note

that detecting malicious behaviors is achieved through our proposed compiler instead

of at the sub-protocol level which leads to a very efficient SC implementation against

the malicious majority case.

• Fshare(x): given a particular value x ∈ Zp, a dealer can generate shares [x]P1 , . . . ,

[x]Pn ∈ Zp of x. Each party Pj has share [x]Pj . This must be done in a way

that they can be uniquely recombined in a method applicable to the scheme to

reconstruct the original value.

• Fopen([x]): all n shares [x]Pj are needed to reconstruct the original value x.

• Fmult([x], [y]): given two secretly shared values x and y, it returns secret shares

of xy. Specifically, the functionality returns [xy]Pj to party Pj.

30

• Fmult2(〈Pi, α〉, 〈Pj, β〉): a two-party functionality that allows Pi with private

input α and Pj with private input β to derive [αβ]Pi and [αβ]Pj .

• Local operations: These operations does not require communication as they can

be carries locally.

– Addition with a public constant: given shares of [x], and a public constant

c, execute the necessary operations to calculate [c+ x].

– Addition: given two shared values of [x] and [y], calculate the shares of the

sum of the original values [x+ y].

– Multiplication by a public constant: given shares of [x], and a public con-

stant c, execute the necessary operations to calculate [cx].

2.3 Secret Sharing Schemes

This section will go deeper into secret sharing methods by first providing an outline

of secret sharing. Then, three secret sharing schemes will be studied in further depth.

Modern cryptography is heavily predicated on the assumption that p 6= np. For

instance, factoring integers and calculating discrete logarithms are often regarded as

hard tasks on classical computers. They have been the basis for several proposed

cryptosystems includes Rivest, Shamir, and Adleman’s widely used RSA public key

cryptosystem [105]. Another example, the Paillier cryptosystem [106] in which the se-

curity is based on the Decisional Composite Residuosity Assumption (DCRA), which

has been shown to be as difficult as factoring n = pq, given that p and q are two large

prime integers. Peter Shor illustrates a technique that can solve these problems in

polynomial time using a quantum computer with a small probability of error [107].

Secret sharing systems, on the other hand, remain unaffected since their security is

based on a simple mathematical observation rather than a hard problem. As we will

31

show, it is impossible to reconstruct a secret without a sufficiently enough number of

shares.

A secret sharing scheme can be defined as two main functions as follows:

1. The first function can be implemented by the data owner (also known as a

dealer) that takes some input value s (known as a secret) and break it into a set

of n values (known as shares) {s1, s2, · · · , sn}, where n is the number of parties.

The dealer then distributes one share to each participant. It is worth noting

that these shares are random values.

2. The other function is the inverse function of the previous function. It takes a

subset of shares {s1, · · · , st} and reconstructs the original value s, where t is the

threshold which represents the minimum number of shares required to rebuild

a secret value.

The dealer represents the data owner, and sometimes a player may act as a dealer

specifically when generating a uniformly random value with other parties. The main

goal of a secret sharing scheme is to make it hard to reopen a secret value by an

authorized user. Throughout this thesis, we use the words players, parties, and

participants interchangeably to refer to a group of servers.

Many secret sharing have been suggested; for example, additive secret sharing,

Shamir secret sharing scheme [108], replicated secret sharing, hierarchical secret shar-

ing schemes [109], linear integer secret sharing scheme (LISS) [110], and DNF-based

secret sharing. This thesis utilizes Shamir secret sharing (SSS) and replicated secret

sharing (RSS) scheme for the honest majority models. On the other hand, we use

additive secret sharing for the dishonest majority model.

In this work the participants are divided into two groups: A qualified group which

is a set of player that can reconstruct a secret from a given set of shares. The other

group is a forbidden group which is a set of players that cannot reconstruct a secret

32

given a set of shares. The group of all the qualified subsets is known as the access

structure of the scheme. These schemes also known as t out of n secret sharing

schemes (t, n). Where n represents the number of players and t refers to the scheme

threshold which simply means that the qualified players requires at least t shares to

reconstruct a given secret.

2.3.1 Additive Secret Sharing Scheme (ASS)

The additive secret sharing scheme is a straightforward scheme. The secret values are

shared as the sum of the shares, thus it requires only addition modulo p to reconstruct

a secret. It is worth noting that the modulo operation is in the core of the scheme

to guarantee a uniformly random values. It is obvious that additive secret sharing

necessitates the use of all shares in order to reveal the secret; hence, it is also known

as the full threshold scheme.

Sharing

A dealer can deal a secret value s by selecting n− 1 random values which represents

the shares of the first n− 1 participants. The last shared value [s]Pn is then obtained

by summing the previous n− 1 random values and then subtract the summed value

for the secret s. The dealer then can send each share to a designated party. This can

be formulated as in equation 2.1, where [s]pi are random values in the defined field.

[s]pn = s−
n−1∑
i=1

[s]pi mod p (2.1)

Reconstructing

Under the additive secret sharing scheme, all the shares are needed to open up a

secret value. Therefore, all the parties require to send their shares to an authorized

33

user which then can sum up the shares and carry modulo p as shown in equation 2.2.

s =
n∑
i=1

[s]pi mod p (2.2)

Security

The additive secret sharing scheme offers a perfect security. The security of the scheme

follows the fact the every party gets a random value. Indeed, this offers a form of

one-time pad. The scheme promises a high security in the sense that all the shares

are required to reconstruct a secret. Thus, the scheme fits the semi-honest model

requirements where the participants follow the protocol steps. However, the scheme

has a disadvantage. For example, parties may occasionally face hardware/software

errors and be out of the service. In some cases this could happen as a form of denial

of service (DoS) attack. In this case, under the additive secret sharing scheme, the

rest of the parties cannot progress further and the whole protocol maybe terminated.

In other words, the additive secret sharing scheme has no fault tolerance mechanism

due to the fact that it requires all the shares at the end of the protocol to get the

output reconstructed correctly.

2.3.2 Shamir Secret Sharing Scheme (SSS)

Shamir secret sharing proposed in 1979 [108]. The scheme still widely used due to

its useful properties. The dealer can generate a uniformly random polynomial of

t− 1 degree such that the secret value is kept with the rest of the coefficients. Then

each point on that polynomial represents a share of the secret. The coefficients,

secret, and shares all live in the same finite prime field FP of a sufficient prime

p. Modulo operation is carried throughout all the scheme operations similar to the

additive secrete sharing scheme. The scheme allows to select a polynomial degree

34

that is independent from the number of participant parties. Thus, the scheme forms

a natural threshold sharing scheme where the number of shared that are required to

reconstruct a secret has to be at least t. Reconstructing a secret can be done easily

using different methods for example Lagrange polynomial interpolation and Van der

Monde matrix.

Sharing

A secret value s is shared under Shamir secret sharing scheme via generating a poly-

nomial of degree t− 1 as in equation 2.3.

f(x) = s+ α1x+ α2x
2 + · · ·+ αt−2x

t−2 + αt−1x
t−1 (2.3)

The dealer evaluates the polynomial for different points based on the participants

identifier idj ∈ {1, · · · , n} such that each party pj associated with a unique identifier

idj. Thus, the share of each party is computed as:

[s]pj = f(idj) (2.4)

Recombining

Reconstructing a secret requires that at least t shares to be sent to an authorized user.

The authorized user can interpolate the polynomial which can be efficiently computed

using different methods such as Van der Monde matrix or Lagrange interpolation.

Here we present Lagrange interpolation, since the focus is on the y intercept then:

f(x) =
n∑
i=1

yi

n∏
j=1;j 6=i

x− xj
xi − xj

(2.5)

35

The above equation can be simplified further since the case of interest to open the

secret is f(0).

s = f(0) =
n∑
i=1

yi

n∏
j=1;j 6=i

−xj
xi − xj

(2.6)

Security

Recall that to reopen a secret, the scheme requires t shares. Thus it is impossible

to reconstruct the polynomial given any t − 1 shares. The security of Shamir secret

sharing scheme is based on the fact that a function of degree t− 1 over Zp cannot be

reconstructed with less than t points on the function. The security is information-

theoretic as all secret values s are equally likely given only t−1 points on the function.

Multiplication under SSS

Unfortunately, Share multiplication cannot be computed using the linear property

of the transformation since multiplying two polynomials of the same degree yields a

polynomial with a degree double that of the original polynomials. This means that

a t-out-of-n threshold must be use such that n ≥ 2t + 1 [111]. The parties compute

their local share multiplication, which corresponds to the polynomial that stores the

secret product. However, the number of shares necessary to rebuild this polynomial

is usually greater than n. As a result, it is not easy to rebuild the product secret.

Instead, parties reshare the secret held in the product polynomial under the same

original polynomial degree. This is accomplished by performing a degree reduction

step and then resharing the local share result. Thus, each party produces a random

polynomial with the same source degree as the dealer and follows the same steps when

dealing a secret. Before exchanging the last shares, each party constructs a vector

of Lagrange coefficients or the first row of an appropriate Van der Monde matrix.

Then, each party multiplies the value associated with their index by the shares of

36

their product. Finally, each participant adds up the shares to get the shares for

the required degree of the product. Protocol 1 shows the full steps of Shamir secret

sharing multiplication.

Protocol 1 Mult([x][y])→ [c] = [x · y]

Require: p is prime of ` bits, βj generated using equation 2.6, where 1 ≤ j ≤ n
1: Each party Pj:

(a) computes [u]j = [x]j[y]j

(b) deals shares of [u]j to [u′]j1, · · · , [u′]jn

(c) computes [w]j1 = [u′]j1βj, · · · , [w]jn = [u′]jnβj

(d) sends each [w]jk to Pk where j 6= k

(e) receives [w]kj from other parties

(f) computes [c]j = [u′]jj +
n∑
k=1
j 6=k

[w]kj

The protocol is secure under the assumption that all parties follow the steps of

the protocol faithfully. For detailed explanation regarding security and correctness

we refer the reader to [112]. A full example is present in the appendix B.2 which

shows a step by step how to multiply two secretly shared values using Shamir secret

sharing scheme.

2.3.3 Replicated Secret Sharing scheme (RSS)

Replicated secret sharing also known as replicated additive secret sharing scheme

allows lifting the restriction on the threshold of the additive secret sharing scheme

[113]. Such that it supports a threshold (t < n− 1, n) rather than being restricted to

only fully threshold as describes in section 2.3.1. It also promises faster multiplication

by only sending a single field element per multiplication gate. In this arrangement,

several parties own multiple shares of a secret; hence the name replicated. The

scheme benefits a limited number of participants. However, due to the large number

37

of subsets required by the scheme, it does not scale effectively in the case of a large

number of parties. As a result, it suffices for the semi-honest and malicious minority

models, both of which require three participants. Since we are utilizing replicated

secret sharing scheme for semi-honest/honest majority, we restrict the scheme for

three parties following the same practice in state of the art library (MP-SPDZ) [29].

Sharing

As in the additive secret sharing scheme, a dealer can share a secret s ∈ F by selecting

random elements sj ∈ F, such that s =
∑n

j=1 sj for n parties. Then the dealer

distributes the shares such that each party Pj holds n − 1 shares. In the case of

three parties, for example, parties P1, P2, and P3 hold (s1, s3), (s2, s1), and (s3, s2)

consecutively.

Recombining

To reconstruct a secrete s from its shares, in the case of three parties, party Pj, Pj−1

and Pj+1 send sj sj−1, and sj+1 respectively to an authorized user. The authorized

user can sum up the shares and get the secret back.

Security

The protocol’s security mirrors the fact that members of every unqualified set miss

exactly one additive share. On the other hand, a qualified set cannot be included in

any unqualified set; Therefore, members of a qualified set jointly view all shares and

can thus reconstruct s.

38

Multiplication under RSS

Given [a] and [b], two secretly shared values based on the replicated sharing scheme,

our goal is to compute their product such that each party holds a share [c] where

c = a · b. Since we only require this scheme under the semi-honest/honest majority

settings which only needs three parties, we will restrict the protocol to this case. The

steps are as follows:

1. The parties generate a random correlated value rj, such that
∑n

j=1 r
j = 0.

Generating this random value is a straightforward process, we refer the reader

to the detailed treatment given in [114].

2. Each party Pj locally computes the pairwise multiplication of all the possible

combinations and add his local share of rj, then send the result to the next

party.

3. Each party outputs the final shares as a pair of values represent the locally

calculated product and the received value.

Protocol 2 Mult([x][y])→ [c] = [x · y]

Require: p is prime of ` bits, 1 ≤ j ≤ n, and rj such that
∑n

j=1 r
j = 0

1: Pj: computes [u]j = [x]j[y]j + [x]j[y]j−1 + [x]j−1[y]j + rj and sends it to Pj+1

2: Pj: receives [u]j−1

3: Pj: output [c] = ([u]j, [u]j−1)

Correctness follows the pairwise multiplication of additive values such that:

x · y = (x1 + x2 + x3)(y1 + y2 + y3) (2.7)

Recall that [u] values hold the product of xy as in protocol 2. This gives x · y =

u1 + u2 + u3 =
∑3

j=1(xjyj + xjyj−1 + xj−1yj) +
∑3

j=1 r
j. Given that

∑3
j=1 r

j = 0,

hence, equation 2.7 holds.

39

The protocol is secure under the semi-honest adversary model. The full proof is

presented in [114].

2.4 BFV Encryption Scheme

In this section, we provide a brief introduction to the BFV encryption scheme [115].

We utilize BFV in our design to compute a pairwise multiplication that takes place

between two pairs of parties under the malicious majority setup. The design requires

a circuit of one multiplication level. It is worth mentioning that SPDZ relies on BGV

scheme which has the same performance as the BFV under one level of multiplication.

BFV relies on the polynomial ring R = Z[x]/(f(x)). Where f(x) ∈ Z[x] is a

monic irreducible polynomial of degree d = 2n. Elements of the ring R is denoted in

lowercase bold, a ∈ R such that a =
∑d−1

i=0 ai · xi. Where ai is the coefficients of an

element a ∈ R.

Distributions Required by BFV

BFV requires to sample elements from different distributions as follows:

• DZ,σ: Discrete Gaussian distribution, which assigns a probability proportional

to exp(−π|x|2/σ2) to each x ∈ Z.

• χ: This distribution generates an element on R based on DZ,σ.

One Level BFV Scheme

In our design, the plaintext space is Rp for some integer modulus which does not

require to be a prime. However, to enable the batching then the plaintext modulus

must be a prime number such that p ≡ 1 mod 2N , where N is the polynomial

modulus degree [30]. The ciphertext space is Rq, where q is the ciphertext modulus.

40

Let ∆ = bq/pc. The BFV scheme is given by three algorithms {KeyGen,Enc,Dec}.

The algorithms are parametrized by a computational security parameter λ which we

set at 128. The BFV algorithms are as follows:

• KeyGen(1λ): samples s← R2, set the secret key sk = s, samples a← Rq, e←

χ. Sets b = [−(a · s + e)]q, outputs pk = (b, a).

• Enc(pk, m): to encrypt m ∈ Rp, sample u ← R2, e1, e2 ← χ, set c0 =

[b · u + e1 + ∆ ·m]q, c1 = [a · u + e2]q. Output ct = (c0, c1).

• Dec(s, ct): output m = [bp·[c0+c1]q
q
e]p

Homomorphic Operations

The elements of a ciphertext ct can be treated as the coefficients of a polynomial

ct(x). Evaluating this polynomial for s we obtain [ct(s)]q = ∆ ·m+v, where v is the

noise contained in the ciphertext. Using this interpretation, then

Given two ciphertexts ct1 = (c10, c11), ct2 = (c20, c21). The homomorphic opera-

tions are as follows:

• Addition: set c0 = [c10 + c20]q, c1 = [c12 + c21]q. We define Add(ct1, ct2) =

(c0, c1).

• Multiplication: Set c0 = [bp·(c10·c20)
q
e]q,

c1 = [bp·(c10·c21+c11·c20)
q

e]q, c2 = [bp·(c11·c21)
q
e]q. We defineMult(ct1, ct2) = (c0, c1, c2).

• Relinearize: it reduces the three components ciphertext into two components

ciphertext. The idea is to slice c2 into parts of small norm based on W such

that c2 =
∑`

i=0 W
i · c(i)

2 mod q. For i ∈ {0, · · · , `}, and ` = blogw qc. The

– EvaKeyGen(s, w): it generates a relinearization key by sampling ai ← Rq,

ei ← χ.

41

Output rlk = ([−(ai · s + ei) +W i · s2]q, ai)

– Relinearize(ct, rlk): write c2 =
∑`

i=0 c
(i)
2 ·W i, where the coefficients of c2 ∈

RW , set c′0 = [c0 +
∑`

i=0 rlk[i][0] · c(i)
2]q and c′1 = [c1 +

∑`
i=0 rlk[i][1] · c(i)

2]q.

Return (c′0, c′1)

Ciphertext Noise

Given that the distribution is bounded by B such that ||χ|| < B. The noise associated

with L levels of multiplication is roughly of size 2 · B · δ2L+1
R · pL, where δR is the

expansion factor of R which is defined as δR = max{||a · b||/(||a|| · ||b||) : a,b ∈ R}.

Since we only require one level of multiplication this leads to noise around 2 ·B ·δ3
R ·p.

The decryption works correctly as long as the ciphertext noise is smaller than ∆/2.

42

Chapter 3

Secure Comparison Protocols

3.1 Introduction

Secure multiparty computing (SMC) is a sub field of cryptography that encompasses

many techniques. Generally, it enables a group of distrustful parties to compute a

function f(x) without exposing the input x of other parties. SMC developed as a

theoretical paradigm in the early 1980s. Some researches focus on customizing SMC

solutions to a specific situation in order to compensate for the efficiency disadvantage.

Other efforts aim to improve the efficiency of core SMC building blocks, which may be

used in a wide range of applications. Thus, research has progressed from theoretical

to practical paradigms [29, 116]. Recent studies demonstrate that SMC can solve

real-world issues. Several organizations now provide SMC solutions [21,22].

Secure comparison (SC) is one of the core SMC building blocks. It is essential

in numerous applications, including online auctions, large data analytics, machine

learning, and query processing. Andrew Yao initially presented the secure compari-

son problem, often known as the millionaires’ problem, in 1982 [1]. Since then, many

research efforts have been directed to increase SC’s efficiency in different circuit do-

43

mains such as arithmetic and Boolean circuits. In a recent development, research

shifted to a mixed-mode where nonlinear operations (comparisons) can be carried

out efficiently using Boolean circuits. The arithmetic circuit, on the other hand,

can compute linear operations (addition and multiplication). Nonetheless, despite

advancements in SC protocols, it remains a bottleneck for privacy-preserving compu-

tation. As a result, every advancement in this area has a considerable impact on the

total performance of privacy-preserving applications.

In this chapter, we propose an efficient, secure comparison protocol which offer

information-theoretic security. The protocol named SC3P is designed in the case of

no collusion between the parties. As a result it works for semi-honest adversaries and

may fit the honest majority setting. The protocol works for 3 parties and requires no

secure multiplication which represents the expensive part of SMC operations.

In the case of the dishonest majority setting, constructing an efficient secure com-

parison protocol is a cumbersome problem. Therefore, we designed a protocol utilizing

the best practice in the literature to gain the best efficiency. The protocol works with

collusion up to n − 1 parties and works for any number of parties. The protocol

improves upon the state-of-the-art secure comparison protocol Rabbit. It requires to

invoke only one random value r associated with its random bits ri. While Rabbit

requires two random values. Moreover, the protocol only invokes the secure sub pro-

tocol (bit less than) once, whereas Rabbit needs three invocations of the same sub

protocol. Finally, it is worth noting that these protocols may produce random values

during a preprocessing step, making them appealing for real-world applications, as

these are critical factors in developing practical secure systems.

44

3.2 Comparison Reduction

Directly comparing two secretly shared values is possible [7], but it is computationally

expensive. Instead, we transform comparison between two secretly shared values into

comparison between a secretly shared and a publicly known value. Our implemen-

tation of a semi-honest secure comparison protocol is inspired by the ideas proposed

in [8, 9].

Suppose a and b are non-negative integers share secretly shared among n parties:

P1, . . . , Pn. Let [a] and [b] be the secret shares of a and b. Both values are bounded

by
⌊
p
2

⌋
, p is a prime and ` = dlog2 pe. Let c = 2a − 2b mod p and c0 and c` denote

the least and most significant bits of c respectively. The following observation holds:

c0 =

 0 if a ≥ b

1 if a < b
(3.1)

When a ≥ b, c = 2a− 2b must be an even number. Thus, c0 = 0. On the other hand,

when a < b, c = p− (2b− 2a). Since p is an odd number and 2b− 2a is even, c must

be odd. That is, c0 = 1. It is clear that c0 holds the comparison result between a and

b. Next we show how c0 can be derived. Let η = c + r mod p where r is randomly

selected from Zp. Then the comparison result depends on the following:

c0 =

 η0 ⊕ r0 if η ≥ r

1− η0 ⊕ r0 if η < r
(3.2)

Instead of comparing two secretly shared values a and b, now the comparison can be

performed between a public value η and a secretly shared value r. If r is randomly

chosen and remains secret, disclosing η does not reveal any information regarding a

and b. In addition, because the parties obtain the secret shares of the individual bits of

r while generating r, the comparison is simplified. However, it is not straightforward

45

to efficiently generate a secretly shared r and its bits within a domain defined by a

prime number. Next we present how to produce such r efficiently in practice.

3.3 Building Blocks

In this section, we introduces a number of primitives required below. Some of these

sub-protocols are given in [55], however, are introduced here to provide a detailed

analysis as well as for completeness. Most of these protocols are related to the gen-

eration of random values unknown to all parties. It is worth mentioning that some

of the protocol may fail. However, this does not compromise the privacy of the in-

puts. Failure here simply means to the inability to generate a proper random value,

however, it is detected. In general, the probability of failure will be of the order 1/p

where p is a prime number.

3.3.1 Generating Secretly Shared Random Values

The proposed protocols require the parties to secretly share a random bit or a random

value from Zp. We define these functionalities below and their implementations.

• Frand(p): generating a random value r in Zp and secretly sharing it among the

n parties. At the end, Pj holds share [r]Pj , and no parties know r.

• Frandb(p): generating a random bit τ ∈ {0, 1} and secretly sharing it among the

n parties. At the end, Pj holds share [τ]Pj , and no parties know τ .

In both functionalities, p also defines the domain for the random shares. Protocol

3 implements Frand, and Protocol 4 implements Frandb . At step 3 of Randb, F⊕

represents a functionality that produces shares of [w1⊕· · ·⊕wn] which results shares of

[w]. To implement F⊕, a square-root based method is proposed in [7] which is efficient

for certain prime modulus such as Mersenne prime. However, in our implementation,

46

the modulo provided in the SEAL library [30] are not efficient for perform square-root

operations. Thus, we use the Fmult functionality to implement F⊕. Since α ⊕ β ≡

α + β − 2αβ, a straightforward way for achieving F⊕ is to apply Fmult pairwise.

According to our empirical results, this approach actually provides better efficiency

in practice.

Protocol 3 Rand(p)→ [s]

Require: p is prime of ` bits, and 1 ≤ j ≤ n
1: Pj: selecting a random value sj ∈ Zp
2: Pj: Fshare(s

j)
3: Pj: [s]Pj ←

∑n
i=1[si]Pj

Protocol 4 Randb(p)→ [w]

Require: p is prime of ` bits, and 1 ≤ j ≤ n
1: Pj: selecting a random bit wj ∈ {0, 1}
2: Pj: Fshare(w

j)
3: Pj: [w]Pj ← F⊕([w1], . . . , [wn])

It is worth noting that the complexity of protocol 3 is considered as one multipli-

cation invocation which is done in one round. However, when considering dishonest

majority setting the protocol cost becomes negligible since there is no multiplication.

On the other hand, the complexity of protocol 4 is of n multiplication invocations

which can be done in log n rounds.

3.3.2 Generating Random Bitwise Shared Value

To generate a uniformly random bitwise shared value [r], and its bit-wise shares

[r0], . . . , [r`−1] such that r ∈ {0, . . . , p− 1} and ri ∈ {0, 1} for 0 ≤ i ≤ `− 1, we follow

the ideas presented in [117]. The parties first generate ` random shared bits [ri], and

then verify if r =
∑`−1

i=0 2iri < p by computing a vector of elements[ei] defined by

Equation 3.3:

[êi] = [si]

(
1 + p̂i − [ri] +

`−1∑
j=i+1

p̂j ⊕ [rj]

)
(3.3)

47

where [si] ∈ F is a random shared value, p̂ = p − 1, and p̂i represents the ith bit of

p̂. The parties then reveal the shares of [êi] and determine p̂ < [r] if ∃êi = 0. If none

of the êi values are 0, the parties derive [r] ←
∑`−1

i=0 2i[ri]. Protocol 5 shows the full

steps of generating a uniformly random bit-wise shared value in Zp:

Protocol 5 Gen_Bitwise_Shares(p)→ [r], [r0], . . . , [r`−1]

Require: p is prime of ` bits and p̂ = p− 1.
1: The parties collaboratively generate ` secretly shared random values

[s0], . . . , [s`−1] where si in Zp:
• [si]← Rand(p), for 0 ≤ 1 ≤ `− 1

2: The parties collaboratively generate ` secretly shared random bits [r0], . . . , [r`−1],
where ri ∈ {0, 1}:

• [ri]← Rand2(p), for 0 ≤ 1 ≤ `− 1

3: Based on Equation 3.3 and the shares, the parties securely verify if r is in
{0, . . . , p− 1}:

(a) [êi]← [si]
(

1 + p̂i − [ri] +
∑`−1

j=i+1 p̂j ⊕ [rj]
)
, for 0 ≤ i ≤ `− 1.

(b) êi ← Fopen([ei]), for 0 ≤ i ≤ `− 1.

(c) If ∃êi = 0, go back to Step 1 and repeat the protocol.

4: Each party locally derives [r] ←
∑`−1

i=0 2i[ri], and having [r], [r0], . . . , [r`−1] as the
party’s output.

• Step 1: The purpose of this step is to generate the ` randomly shared val-

ues [s0], . . . , [s`−1] in Zp, used in Equation 3.3 to prevent leaking information

regarding r.

• Step 2: Each party randomly selects ` bits and secretly shares these bits with the

other parties. From these shares, the party produces shares of [r0], . . . , [r`−1].

• Step 3: This step verifies if the r value whose ` bits are represented by r0, . . . , r`

are less than p, where r0 and r` represent the least and most significant bits

respectively. If this verification fails (one or more êi values are zero), the protocol

restarts from Step 1. At step (b), Fopen is a functionality that reconstructs the

actual value from its secret shares.

48

• Step 4: After the previous verification is passed, the protocol returns the shares

of [r] along with the shares of its individual bits: [r0], . . . , [r`−1].

It is worth mentioning that Step 3 of Protocol 5 seems to leak information about

the random bit [ri] when êi = 0 since p̂ is known to each party. However, when this

happens, the protocol restarts. As a result, the protocol does not leak any information

regarding r and its individual bits.

The complexity of generating random bitwise shared values consists of generating

the ` bits which requires `(n − 1) multiplication invocations in log n rounds. The

protocol also makes use of ` masks. Moreover, it requires ` multiplications to perform

the masking. Overall this consists `n multiplications in 2 + log n rounds considering

[ri] and [si] to be generated in parallel.

3.3.3 The Not_Zero Protocol

Given a secretly shared value [v] where v ∈ {0, . . . , `}, the Not_Zero protocol returns

[1] if v 6= 0; otherwise, it returns [0]. To implement that protocol, we adopt the

symmetric function idea presented in [7]. Let define an `-degree polynomial φ(x) over

Zp, such that

φ(x) =

 0 if x = 1

1 if x ∈ {2, . . . , `+ 1}
(3.4)

To securely evaluate φ(x) on v + 1 gives us the desired result. The detail steps are

provided in Protocol 6:

• Step 1: One designed party can produce φ(x) by using Lagrange interpolation

in Zp, and share φ(x) with the other parties.

• Step 2: At step (a), the parties securely perform ith exponentiation of v+1 using

exponentiation by squaring method whenever possible. For example, the parties

49

perform secure multiplication functionality Fmult([v + 1], [v + 1]) to produce

[(v+1)2], Fmult([v+1], [(v+1)2]) to produce [(v+1)3], Fmult((v+1)2], [(v+1)2])

to produce [(v + 1)4], etc. Then at step (b), these shares are used to construct

shares of [φ(v + 1)].

Protocol 6 Not_Zero([v]) → [φ(v + 1)]p
Require: p is a prime and [v], where v ∈ {0, . . . , `}
1: The parties agree on an `-degree polynomial defined in Equation 3.4: φ(x) ←(∑`

i=0 aix
i
)

mod p

2: Securely compute [φ(v + 1)]:

(a) [zi]← [(v + 1)i] for 0 ≤ i ≤ `

(b) [φ(v + 1)]←
∑`

i=0 ai[zi]

The complexity of protocol 6 can be carried in 3 rounds and 5` multiplication

invocations. We refer the reader to [9] for detailed analysis.

3.4 Secure Comparison Assuming no Collusion

In this section, we present an efficient secure comparison protocol SC3P which is

tailored for semi-honest settings. The protocol requires at least three parties and

is not limited to this case. However, it performs efficiently with small number of

participants. Recall the comparison reduction in section 3.2, where the comparison

of two secretly shared values [a], [b] is reduced to compare a publicly known value η

and a secretly shared random value r.

An alternative approach to compare η and r is the arithmetic comparison circuit

C, first suggested in [55]. Here we presents the steps of the protocol for analysis and

completeness.

It is easy to verify h retains the most significant bit j of η where η and r are

different; that is, ηj 6= rj and ηi = ri, for j < i ≤ ` − 1. The existing research has

50

Protocol 7 C(η, r)→ h ∈ {0, 1}
Require: p = 2` − 1 and 0 ≤ i ≤ `− 1
1: ei ← ηi ⊕ ri
2: fi ← ∨`−1

j=i ej
3: g`−1 ← f`−1

4: gi ← fi − fi+1, for i = `− 2 to 0

5: h =
∑`−1
i=0 giηi

been focusing on developing efficient secure methods to compute fi. The approaches

given in [55] use a symmetric function that maps input from 1, ..., `+1 to {0, 1}. The

function can be represented as a polynomial which can be evaluated securely.

In this section, we present a new and more efficient way to compute f without

using the symmetric function. Also, as, the group delimiter p in our proposed protocol

is an odd positive integer and not necessarily a prime. Therefore, secure polynomial

evaluation is not applicable in our design.

To securely compare r and η, let e = r ⊕ η. We calculate a special vector as in

equation 3.5.

γi = τi

(
1 + ηi − ri +

`−1∑
k=i+1

ek

)
mod N1 (3.5)

We depend on the following observation:

• If ∀i, γi 6= 0, then η ≥ r.

• If ∃i, γi = 0, then η < r.

Note that γi is either 0 or uniformly distributed in Z∗N2
where N2 = ` + 1. In the

second condition, the index i is also unique.

To achieve the best efficiency, our comparison protocol is asymmetric and work by

designating a party to facilitate secret sharing based secure computation. Therefore,

the protocol is secure in the semi-honest model and may work in the honest majority

setting as well. Since one of the parties is appointed; thus, the other two parities

need to protect their input before sending any value to that party. Therefore, One of

the two parities generates the following random values and share it with the second

51

party.

• τi ∈ Z∗N2
: a random vector of ` entries to randomize the intermediate result.

• δ ∈ {0, · · · , `− 1}: a random value to shift the index of the intermediate vector

result.

• ζ ∈ {0, 1}: a random bit which is used to flip the comparison such that if ζ = 0

then the comparison stays the same 〈η, [r]〉, otherwise, the comparison flips to

〈[r], η〉.

The protocol is defined as follows: SC3P (〈P1, [a]P1
N1
, [b]P1

N1
〉, 〈P2, [a]P2

N1
, [b]P2

N1
〉, 〈P3,⊥〉)

→ (〈P1, [c0]P1
N1
〉, 〈P2, [c0]P2

N1
〉)

Where a and b are secretly shared between P1 and P2, and it returns two shares

[c0]P1
p and [c0]P2

p respectively to P1 and P2. The key steps of the protocol is given in

Algorithm 8.

Through out the protocol, the index i varies from 0 to ` − 1. The parties are

indexed by j, the protocol works as follows:

1. P3 generates a random number r and its shares in ZN1 , and sends the shares of

r to P1 and P2 respectively.

2. P1 and P2:

(a) Use the shares of r to disguise c and send the result to the other party.

(b) Reveal η = c+ r and compute secret shares of e = η ⊕ r.

(c) Derive secret shares of γi, as defined in Equation 3.5 step (e).

(d) Randomly shift the secret shares of γi and send them to P3.

3. P3 reconstructs γ̂i, derives the randomized comparison results f , and sends

shares of f to P1 and P2.

4. P1 and P2 de-randomize f to derive shares of c0.

52

Protocol 8 SC3P (〈P1, [a]P1
N1
, [b]P1

N1
〉, 〈P2, [a]P2

N1
, [b]P2

N1
〉〈P3,⊥〉)→

(〈P1, [c0]P1
N1
〉, 〈P2, [c0]P2

N1
〉)

Require: N1 = 2` − 1 defines the domain of [a] and [b], N2 = `+ 1, and 0 ≤ i ≤ `− 1
1: P3

(a) Generate r ∈R ZN1 , [r]
Pj

N1
, and [ri]

Pj

N2
, for j ∈ {1, 2}

(b) Send [r]
Pj

N1
and [ri]

Pj

N2
to Pj

2: P1

(a) [c]P1

N1
← 2

(
[a]P1

N1
− [b]P1

N1

)
(b) [η]P1

N1
← [c]P1

N1
+ [r]P1

N1

(c) Generate τi ∈R Z∗
N2

, a random shift δ ∈ {0, . . . , `− 1}, and a random bit ζ

(d) Send [η]P1

N1
, τi, δ and ζ to P2

3: P2

(a) [c]P2

N1
← 2

(
[a]P2

N1
− [b]P2

N1

)
(b) [η]P2

N1
← [c]P2

N1
+ [r]P2

N1

(c) Send [η]P2

N1
to P1

4: Pj (j ∈ {1, 2})

(a) η ← [η]P1

N1
+ [η]P2

N1

(b) [ei]
Pj

N2
← (j − 1)ηi + [ri]

Pj

N2
− 2ηi[ri]

Pj

N2

(c) If ζ = 0,

(d) [γi]
Pj

N2
← τi

(
1 + (j − 1)ηi − [ri]

Pj

N2
+
∑`−1
k=i+1[ek]

Pj

N2

)
(e) Otherwise,

(f) [γi]
Pj

N2
← τi

(
1 + [ri]

Pj

N2
− (j − 1)ηi +

∑`−1
k=i+1[ek]

Pj

N2

)
(g) [γ̂i]

Pj

N2
← [γi+δ]

Pj

N2

(h) Send [γ̂i]
Pj

N2
and η0 to P3

5: P3

(a) γ̂i ← [γ̂i]
P1

N2
+ [γ̂i]

P2

N2

(b) If ∀i, γ̂i 6= 0, then f ← η0 ⊕ r0; otherwise, f ← 1− η0 ⊕ r0

(c) Generate [f]
Pj

N1

(d) Send [f]
Pj

N1
to Pj

6: Pj (j ∈ {1, 2})

(a) If ζ = 1, [c0]
Pj

N1
← (j − 1)− [f]

Pj

N1

3.4.1 Security Analysis

Claim 1. Protocol 8 is secure in the (Fopen)-hybrid model in presence of a semi-honest

adversary.
53

Proof. Since, the parties are under the semi-honest model; therefore, we only need

to guarantee correctness and privacy. First, we start by proving the correctness of

protocol 8 as follows:

• Based on the comparison reduction, we calculate a − b, then multiply the dif-

ference by 2. The result is held in c which is disguised later using the random

value r. The result of the later step is represented by η. At the end of steps 2

and 3, η is revealed to party P1 and P2.

• Based on step 4, P1 and P2 calculate the xor between ηi and [ri], the result is

assigned to the vector e. Then both parties calculate the vector γ based on

equation 3.5. The resulted randomized vector γ̂ is sent to P3.

• P3 adds up the shares of γ̂ to reveal the values in each entry. Then check:

f =

 η0 ⊕ r0 if ∀i, γ̂i 6= 0

1− η0 ⊕ r0 otherwise

• Steps 5: The parties locally derive the shares of [c0] which holds the final com-

parison result, by de-randomizing [f] such that

c0 =

 (j − 1)− f if ζ = 1, where j ∈ {1, 2}

f otherwise

Next, we prove the security in which we only need to guarantee privacy. This can be

simply achieved by showing that every intermediate result which needs to be sent is

a uniformly random value.

• In steps 2 and 3, although party P1 and P2 reveal η, it does not leak any

information about a and b because r is not known to any of them and randomly

chosen by P3.

54

• In step 4, party P1 and P2 carry a local xor and then calculate γ vector based on

equation 3.5. Note, that γ vector is masked using a random vector τ . Further-

more, the index is randomized using δ. Thus, party P3 will receive a uniformly

random vector with randomized indexes. Therefore, this step reveals nothing

about a and b.

• At the end of the protocol P1 and P2 receive a fresh random value f which then

can be locally de-randomized to get the final comparison result.

3.4.2 Complexity Analysis

The communication complexity is computed based on the number of bits sent or

received.

• Step 1: 2`+ 2` log(`+ 1)

• Step 2: `+ ` log(`+ 1) + log `+ 1

• Step 3: `

• Step 4: 2` log(`+ 1) + 1

• Step 5: 2`

The total number of bits is 6` + 5` log(` + 1) + log ` + 2. The round complexity

is derived based on the number of sequence steps. According to Protocol 8, steps

2 and 3 can be performed in parallel. Therefore, the number of rounds is five. In

addition, step 1 can be done in the offline phase, so alternatively, the protocol has one

round for pre-processing and four rounds for online computation. Table 3.1 shows the

complexity analysis comparing to the state of the art Wagh et al. secure comparison

protocol [118].

55

Table 3.1: Complexity analysis

Protocol Message complexity (bits) Rounds
Protocol 8 6`+ 5` log(`+ 1) + log `+ 2 5

Wagh et al. [118] 5`2 + 2`+ log(`) + 2 4

3.5 Secure Comparison with Collision up to n− 1

In this section, we are ready to present an efficient design of secure comparison proto-

col against semi-honest adversaries. The protocol is based on the solutions with our

proposed practical improvement. In the next chapter, we will show how to transform

this protocol into a secure one in the malicious majority setting. Note that our pro-

posed transformation technique works for any secure comparison protocol. The one

presented in this section is very efficient in practice due smaller share size and less

number of round. We will discuss the changes we made to make the protocol more

efficient in practice. To begin with, we previously present a comparison reduction

and two sub-protocols, Gen_Bitwise_Shares and Not_Zero, used to implement the

comparison protocol.

Based on the two sub-protocols and the core ideas presented in Section 3.2 and

Equation 3.3, we are ready to construct the comparison protocol that has a very good

practical efficiency. The key steps are presented in Protocol 9.

• Step 1: The parties execute the Gen_Bitwise_Shares protocol is produce a

randomly shared value r ∈ Zp and its bitwise shares. This r will be used as a

mask for the subsequent computations.

• Steps 2-4: According to the comparison reduction, first we compute the differ-

ence between a and b, and multiply the difference by 2. The result is stored in c

which is masked later by adding the random value r. The sum is represented by

η. At the end of step 4, η is revealed to every party. All these computations are

performed on the shares. Although every party learns η, it does not leak any

56

information about a and b because r is not known to any party and randomly

chosen.

• Step 5: Increment η by 1, and the result is denoted by η̂. The subsequent

computations are performed on η̂ which is necessary to match the logic given

in Equation 3.2. The explanation of step 12 given below include additional

discussion regarding this issue.

• Steps 6-8: These steps closely follow the logic given in Equation 3.3 with slight

modification. Step 6 computes bitwise XOR of η̂ and r. The result is stored in

e′i. Since the shares are additive, a designated party (e.g., P1), performs slightly

different computation from the other parties so that the summation of shares

of [e′i] gives η̂i ⊕ ri. Suppose i∗ is the most significant bit location where η̂ 6= r.

Steps 7 and 8 transform e′ into ê, such that

– êi = 0 for i∗ < i < `, and

– êi 6= 0 for 0 ≤ i ≤ i∗

• Step 9: The parties execute the Not_Zero protocol and the result is stored in

f where

fi =

 0 for i∗ < i < `

1 for 0 ≤ i ≤ i∗

• Steps 10-11: The parties locally derive the shares of [gi], such that

gi =

 0 for i 6= i∗ ∧ 0 ≤ i < `

1 for i = i∗

57

• Step 12: The parties locally derive the shares of [h]:

h =

 1 if η ≥ r

0 if η < r

As discussed early, from step 6, the computations are performed on η̂. If η were

used, it would result

h =

 1 if η > r

0 if η ≤ r

Consequently, this would lead to an incorrect result for c0 at the next step.

• Step 13: The parties derive the shares of [c0]. Since e′0 = η̂0⊕ r0 and η̂ = η+ 1,

we have e0 = η0 ⊕ r0 = 1− e′0 and c0 can be derived accordingly:

c0 =

 e0 = 1− e′0 if h = 1

1− e0 = e′0 if h = 0

This matches the result given in Equation 3.2. To compute [1−h] (respectively

[1− e′0]), the parties perform the following with P1 as a designated party:

– Pj(2 ≤ j ≤ n): [1− h]← p− [h]

– P1: [1− h]← 1− [h]

Any party can serve the role of P1, and [1− e′0] can be computed similarly.

3.5.1 Security and Complexity Analysis

Since we assume the adversary for protocol 9 is semi- honest, we do not need to

guarantee the correctness of the protocol, and the protocol can also be aborted pre-

maturely. Thus, its security proof is straightforward. Also, because the additive

58

Protocol 9 SC([a], [b]) → [c0]

Require: p is a prime, and ` = |p|
1: [r], [r0], . . . , [r`−1]← Gen_Bitwise_Shares(p)
2: [c]← 2 ([a]− [b])
3: [η]← [c] + [r]
4: Fopen([η])
5: η̂ ← η + 1
6: Pj(2 ≤ j ≤ n) : [e′i]← [ri]− 2η̂i[ri]
7: P1 : [e′i]← η̂i + [ri]− 2η̂i[ri]
8: [ê`−1]← [e′`−1]
9: [êi]← [e′i] + [êi+1], for i = `− 2 down to 0
10: [fi]← Not_Zero([êi])
11: [g`−1]← [f`−1]
12: [gi]← [fi]− [fi+1], for i = `− 2 down to 0
13: [h]←

∑`−1
i=0 η̂i[gi]

14: [c0]← [1− h][e′0] + [h][1− e′0]

Functionality 10 Fsc([a], [b]) → [τ]

Require: A prime number p that defines the share size
1: Fsc receives 〈[a]Ā, [b]Ā〉 from the honest parties, denoted by PĀ. It also receives
〈[a]A, [b]A〉 from A.

2: From these shares, Fsc derives a′ and b′ where a′ = a and b′ = b if the adversary
did not modify the original shares.

3: Set τ = 0 if a′ ≥ b′; otherwise, set τ = 1.
4: Construct shares of [τ]A and [τ]Ā, and send [τ]A to A.
5: Fsc waits for reply from A:

(a) If the reply is abort, send abort to PĀ.

(b) If the reply is continue, send [τ]Ā to PĀ.

shares provide privacy up to n− 1 malicious parties and no values are reconstructed,

protocol 9 ensures privacy.

Claim 2. The protocol 9 securely implements Fsc with abort in the (Fbitwise_shares ,

Fopen,Fnot_zero,Fmult))-hybrid model in presence of a semi-honest adversary control-

ling at most n− 1 parties.

Proof. Ssc that accesses Fsc is constructed as follows:

• Receive [a∗]A and [b∗]A from the adversary A.

59

• Ssc calls the simulator Sbitwise_shares(p) of Fbitwise_shares, and let [r∗]A, [r∗0]A, · · · , [r∗`−1]A

be the output from the simulator Sbitwise_shares.

• Ssc computes [c∗]A = 2([a∗]A − [b∗]A) and [η∗]A = [c∗]A + [r∗]A.

• Ssc calls the simulator Sopen[η∗]A of Fopen, and let [η]∗
A be the output from Sopen.

Set η̂∗ = η∗
A

+ 1.

• Ssc simulates the rest of the values by randomly choosing the same number of

values from Zp.

The first four steps simulate the exact interactions between the adversary and the

real protocol. Since no values are reconstructed, the output is secretly shared, and

we do not need to guarantee correctness, step 5 simulates the rest of the protocol by

generating the same number of random values from Zp as produced by the remaining

steps of the protocol. Thus, the simulated view is computationally indistinguishable

from the real view of the protocol.

The complexity of an SMC protocol is dominated by the number of secure multi-

plications (Fmult) being performed. Thus, a common practice in the literature is to

use (Fmult) as the base unit to estimate the protocol complexity. Here we list the

main steps of SC that require performing a non-constant number of Fmult calls.

• Step 1: the Bitwise Shares protocol makes call of Randb protocol which requires

`(n − 1) multiplication invocations calls to Fmult where the n (indicating the

number of parties) calls are incurred by the Randb protocol.

• Step 9: the Not_Zero protocol makes approximately ` calls to Fmult. Since Not

Zero is performed ` times, the step requires l2 calls to Fmult in total.

Since n is generally much smaller than `, we can simple say the complexity of SC is

bounded by O(`2) Fmult operations.

60

3.6 Discussion

This section discusses different methods to generate random unknown values as well

as various designs for the Not-Zero protocol as follows:

• Generating random unknown value associated with its random unknown bits

can be done in three way as follows:

– Protocol 3.3.2 presents a method to generate [r], [r0], · · · , [r`] such that

[r] ∈ Zp. The protocol consumes 4` multiplications in three rounds con-

sidering [ri] and [si] to be generated in parallel.

– The overhead of protocol 3.3.2 can be reduced by setting p to a Mersenne

prime. Therefor, the check for [r] < p which is utilized to be sure that [r] ∈

Zp can be reduced to only bitwise equality test between the bits of p and

[r] which cost only one multiplication in one round. It is worth noting that

Mersenne prime may not be applicable for FHE which is used to perform

secure multiplication in the dishonest majority setting as explained in next

chapter.

– In a recent development, EdaBit method takes advantage of the mixed

circuit to generate [r] ∈ Zp and [ri] ∈ Z2. EdaBit starts by allowing each

party to generate a private random ` bits ri and share them to other parties

in the Z2 domain. Then each party calculates a private r =
∑`

i=0 ri2
i and

share it in Zp domain. At this point the parties have the required shared

to generate a global unknown r by adding the shares in both domains.

It is worth mentioning that addition in Zp can be done locally. However,

addition in Z2 requires a binary n-input adder which costs (`+log n)·(n−1)

AND gates in ` log n rounds. This last step leads to shares of the bits of

r′, without modular reduction. Further steps is required to guarantee that

the generated r is of ` bits. This protocol becomes extremely expensive

61

in the presence of a dishonest majority adversary as it requires to check

the consistency of each party input. Therefore, a cut-and-choose method

is utilized.

• Not-Zero protocol can be designed in a constant round using symmetric Boolean

function with complexity of 7 rounds and 17` invocations [9]. The protocol can

be implemented in two different methods in a logarithmic fashion [56]. The

first method requires log(`) rounds and ` log(`)/2 invocations. While the other

solution offers a trade-off between the rounds and the invocations complexity

as it takes 2 log(`) − 1 rounds and 2` − log(`) − 2 invocations. It is worth

noting that all the three solutions offer perfect security. On the other hand,

the constant round solution requires extensive memory in the case of dishonest

majority given a big number of comparisons.

3.7 Performance Evaluation

We empirically analyze the computational overhead of protocol 9 against the state

of the art comparison protocol Rabbit [62]. Recall that protocol 9 requires only one

random unknown value while Rabbit needs two random unknown values. In our test

we utilize edaBit [96] to generate these random values. The most efficient edaBit

implementation is included in the MP-SPDZ library [29]. Thus, we implemented

our protocol and Rabbit using MP-SPDZ. Each data entry is secretly shared based

on Shamir Secret Sharing SSS, Replicated Secret Sharing RSSS, or Additive Secret

Sharing ASS scheme among 3 machines based on different adversary models. We used

the Chameleon Cloud [119] to run our experiments, and each machine that represents

one of the servers has the following specifications:

• Operating system: Ubuntu, Version = 18.04 LTS (Bionic Beaver).

62

• Machines hardware: x86_64 Cores: 12; Threads per core 2; Model: Intel®Xeon

®CPU E5-2670 v3 @ 2.30GHz, RAM 128GB.

• The ping between machines was 0.33 milliseconds.

To demonstrate the feasibility of the proposed protocol we implemented secure range

query processing as an application. It is worth noting that the query processing

requires to invoke two comparison protocols as well as two additional secure multi-

plications to get the final query result. The result is divided into two sections based

on the adversary model as follows:

3.7.1 Semi-honest Model Results

Secure Comparison

We rigorously examine the runtime of the secure comparison protocol for different bit-

lengths under the semi-honest setting. The data is secretly shared between three par-

ties using Shamir Secret Sharing (SSS) and Replicated Secret Sharing (RSS) schemes.

We take advantage of parallel processing as it is supported by MP-SPDZ and we set

the number of threads to 8.

Figure 3.1: Runtime for different bit-lengths

63

Figure 3.1 (produced based on the data given in Table 3.2) illustrates the eval-

uation under 2M comparisons. Protocol 9 outperforms Rabbit by approximately 7

times and up to 10 times for SSS and RSS respectively.

We evaluate the amount of data communicated during protocol execution of 2M

comparisons. We vary the bit-length = {40, 50, 60} similar to the previous experi-

ment. The number of parties is consisting of 3 parties, and the secret sharing schemes

are set in the same manner as the last experiment. Figure 3.2 (produced based on

numbers in Tables 3.3) depicts the data sent for different bit-lengths. The figure

shows that protocol 9 requires to send 3.5 less data than Rabbit for both SSS and

RSS schemes.

Figure 3.2: Data amount transferred for different bit-lengths

Table 3.2: Runtime for different bit-lengths

Bit-length This SSS This RSS Rabbit SSS Rabbit RSS
40 16.02 8.711 128.78 66.93
50 23.98 10.29 144.41 93.90
60 26.58 11.16 190.71 116.84

64

Table 3.3: Data transferred for different bit-lengths

Bit-length This SSS This RSS Rabbit SSS Rabbit RSS
40 2884 1167.99 10712 3805.96
50 3612 1444.55 13068 4809.08
60 4376 1739.11 15544 5872.2

Secure Range Query Processing

We thoroughly test the runtime of the secure range query processing protocol under

the semi-honest setting. We set various bit lengths while fixing the number of queries

to 2M. Using SSS or RSS schemes, the data is secretly shared between three parties.

We utilize the parallel processing mode and we set the number of threads to 8. Figure

Figure 3.3: Runtime for different bit-length

3.3 (created using the data in Table 3.4) demonstrates the assessment for 2M queries.

For SSS scheme, our protocol exceeds Rabbit by approximately 7 times. On the other

hand, our protocol runs faster than Rabbit up to 9 times under RSSS scheme.

We examine the amount of data transferred between three parties during the

protocol execution for 2M queries. We vary the bit-length = {40, 50, 60} similar to

the previous experiment. The secret sharing schemes are set in the same manner as

the last experiment. Figure 3.4 (produced based on numbers in Tables 3.5) shows the

data exchanged between the participants for different bit-lengths. The figure suggests

that the query protocol based on protocol 9 requires to transfer 3.5 less data than

65

Rabbit for both SSS and RSS schemes.

Figure 3.4: Data amount transferred for different bit-length

Table 3.4: Runtime for different bit-lengths

Bit-length This SSS This RSS Rabbit SSS Rabbit RSS
40 35.57 16.99 271.43 145.28
50 61.19 24.67 307.61 180.16
60 76.69 33.88 314.21 198.96

Table 3.5: Data amount transferred for different bit-length

Bit-length This SSS This RSS Rabbit SSS Rabbit RSS
40 5960 2431.98 21616 7707.91
50 7416 2985.1 26328 9714.15
60 8944 3574.22 31280 11840.4

3.7.2 Honest Majority Results

Secure Comparison

Under the honest majority model, we investigate the runtime of the secure compar-

ison protocol for various bit-lengths. Using the Shamir Secret Sharing (SSS) and

66

Replicated Secret Sharing (RSS) schemes, the data is secretly shared among three

parties. The number of threads is set to 8 following the previous experiments. Figure

Figure 3.5: Runtime for different bit-length

3.5 (produced based on the data given in Table 3.6) illustrates the evaluation under

500K comparisons. Protocol 9 outperforms Rabbit by approximately 7 times and up

to 10 times for SSS and RSS respectively.

We evaluate the amount of data communicated during protocol execution of 2M

comparisons. We vary the bit-length = {40, 50, 60} similar to the previous experi-

ment. The number of parties is consisting of 3 parties, and the secret sharing schemes

are set in the same manner as the last experiment. Figure 3.6 (produced based on

numbers in Tables 3.7) depicts the data sent for different bit-lengths. The figure

shows that protocol 9 requires to send 3.5 less data than Rabbit for both SSS and

RSS schemes.

Table 3.6: Runtime for different bit-length

Bit-length This SSS This RSS Rabbit SSS Rabbit RSS
40 115.09 17.31 258.056 50.08
50 158.42 19.46 343.626 57.04
60 180.48 29.83 395.654 66.69

67

Figure 3.6: Data amount transferred for different bit-length

Table 3.7: Data amount transferred for different bit-length

Bit-length This SSS This RSS Rabbit SSS Rabbit RSS
40 38088 7656.23 295345 21769.7
50 139469 9004.91 362817 26464.1
60 157883 7927.22 415359 26802

Secure Query Processing

We test the runtime of the secure range query processing protocol under the honest

majority setting. We set various bit lengths while fixing the number of queries to 2M.

Using SSS or RSS schemes, the data is secretly shared between three parties.

Figure 3.7: Runtime for different bit-length

68

Figure 3.8: Data amount transferred for different bit-length

Table 3.8: Runtime for different bit-length

Bit-length This SSS This RSS Rabbit SSS Rabbit RSS
40 211.92 32.85 567.30 149.521
50 269.63 43.56 690.12 151.005
60 335.40 45.41 906.14 199.618

Table 3.9: Data amount transferred for different bit-length

Bit-length This SSS This RSS Rabbit SSS Rabbit RSS
40 223500 15296.7 589587 43548.6
50 277487 15883.1 724247 52909.7
60 314265 18016.3 829025 53604.8

Figure 3.7 (created using the data in Table 3.8) demonstrates that under SSS

scheme, our protocol exceeds Rabbit by approximately 7 times. On the other hand,

our protocol runs faster than Rabbit up to 9 times under RSSS scheme.

We examine the amount of data transferred between three parties during the

protocol execution for 2M queries. We vary the bit-length = {40, 50, 60} similar to

the previous experiment. The secret sharing schemes are set in the same manner as

the last experiment. Figure 3.8 (produced based on numbers in Tables 3.9) shows the

data exchanged between the participants for different bit-lengths. The figure suggests

69

that our query protocol requires to transfer 3.5 less data than Rabbit for both SSS

and RSS schemes.

70

Chapter 4

Generic Secure Comparison Compiler
for Dishonest Majority

4.1 Introduction

Secure Multiparty Computation (SMC) allows a set of distrustful parties to jointly

compute a function without revealing any information about their private input. In

SMC, secure comparison (SC) serves as a fundamental operator in various data analyt-

ics. When the data considered under these applications contain sensitive information

and are from multiple sources, privacy-preserving data analytics (PPDA) protocols

may have to be adopted to protect the data and the outcomes. Although, SMC tech-

niques provide very strong guarantee on personal privacy and data security, they are

computationally expensive. For the last three decades, significant efforts have been

devoted into developing efficient SMC primitives including SC.

When the majority (e.g., n−1 out of n) of the participating parties are malicious,

to our knowledge, full malicious security cannot be achieved at least for SC protocols.

The best can be done is to detect if any party behaved maliciously during protocol

execution. These SC protocols [7–9,117] are secure under the malicious model. How-

71

ever, their security is only guaranteed when the number of malicious parties is less

than half of the total parties involved in the protocol execution. When the majority

of parties are malicious (or dishonest majority), the current state of the art imple-

mentation of an SC to achieve malicious security is Rabbit [62] which adopts the

edaBits protocol in the MP-SPDZ library [29]. MP-SPDZ provides implementations

of different fundamental SMC techniques, such as secret sharing, oblivious transfer

(OT) [120] and homomorphic encryption [71]. It allows mixing these techniques to

achieve best efficiency.

In this chapter we propose a novel technique, termed as randomized replication,

to develop a compiler that transforms semi-honestly secure SC protocols to be secure

against malicious majority. More specifically, we consider the client-server computing

model where clients outsource their data and analytics tasks to two or more indepen-

dent servers. Most existing SMC solutions are applicable in the model. Our proposed

compiler is also generic in that a newly developed and more efficient secure compar-

ison protocol can be used without changing most of its code or structure. Since the

clients are not involved in protocol execution, the servers are commonly referred to as

the participating parties. As a result, an SC protocol under the client-server model

may be formulated as:

SC(〈Pi, [a]Pi , [b]Pi〉)→ 〈Pi, [τ]Pi〉

where a and b are actual values being compared, [a]Pi and [b]Pi are secret shares of a

and b that are possessed by party Pi, and i varies from 1 to n. The comparison result

is represented by τ , secretly shared among the n parties. Our contributions are as

follows:

• We present a novel compiler that executes a semi-honest SC protocol κ times

with randomized and replicated inputs plus end protocol verification, where κ

72

is a user chosen statistical security parameter.

• The κ parameter in our compiler is independent of the underling homomorphic

encryption scheme. This leads to a small polynomial dimension N and a short

ciphertext.

• We achieve higher statistical security than Rabbit up to 60-bit security based

on the current SEAL library implementation. Since Rabbit is limited to 40-bit

security in the MP-SPDZ library latest implementation.

• Our protocol achieve security in both covert and malicious models only by

adjusting the actual value of κ.

• According to our empirical results and comparing to Rabbit, our solution has

at least 5 times more efficient run-time and incurs at least 10 times less message

complexity.

4.2 Building Blocks

4.2.1 Pairwise Secure Multiplication

Given two secret shared values [x], [y], we aim to get their multiplication based on

the pair wise multiplication observation as follows:

xy =
(
[x]P1 + · · ·+ [x]Pn

) (
[y]P1 + · · ·+ [y]Pn

)
=

n∑
i=1

[x]Pi [y]Pi +
n∑
i=1

n∑
j=1∧i 6=j

[x]Pi [y]Pj

The first summation is computed locally by each party, and the second summation

utilizes the Fmult2 functionality to produce secret shares of multiplication between each

〈[x]Pi , [y]Pj〉 pair. Then the share of [xy] for each party can be derived by summing

73

all its local shares:

[xy]Pi ← [x]Pi [y]Pi +
n∑

j=1∧j 6=i

Fmult2
(
[x]Pi , [y]Pj

)

Fmult2(〈Pi, α〉, 〈Pj, β〉): the implementation of Fmult2 uses homomorphic encryption

(HE) provided by the SEAL library [30]. The key steps are given in Protocol 11. The

suitable HE parameters are chosen Pi according to the plaintext domain and security

level specified by the system.

Protocol 11 Mult2(〈Pi, α〉, 〈Pj , β〉) →
〈
Pi, [αβ]

Pi
〉
,
〈
Pj , [αβ]

Pj
〉

Require: p is prime of ` bits, Encpki is an encryption function with Pi’s public key
pki and Decski is a decryption function with Pi’s private key ski.

1: Pi: Compute Encpki(α) and send it to Pj
2: Pj:

(a) Select a random value r ∈ Zp
(b) Based on the homomorphic properties of HE, derive c← Encpki(αβ + r)

(c) Set [αβ]Pj ← −r and send c to Pi
3: Pi: Set [αβ]Pi ← Decski(c)

Security Analysis

Like most SPDZ based protocols, we assume that the HE keys are generated by

a trusted process, e.g., services provided by a public key infrastructure (PKI). As

previously stated, these sub-protocols only need to guarantee privacy. As a result, the

security proofs of these protocols are straightforward based on the real-ideal paradigm

[14]. That is, for each protocol, we need to construct a simulator S that has access

to the ideal functionality. To proof a protocol is secure, we just need to show the

simulated execution image produced by S is computationally indistinguishable from

that of the real execution.

Claim 3. Protocol Mult2 securely implements Fmult2 when at most one party is ma-

licious.

74

Proof. This protocol is mostly the same as the ones presented in [12,45]. The protocol

is secure as long as the parameters are chosen correctly. Referring to [45] for detailed

analysis. The parameters used for our experimental analysis are discussed in Section

4.6. Note that the protocol does not guarantee correctness which is not necessary for

constructing the proposed compiler.

4.3 Secure Comparison in the Malicious Majority

In the previous protocols, a malicious party can modify the shares to produce invalid

comparison results. For example, suppose P1 is malicious and has shares [a]P1 and

[b]P1 . If the domain size ls of the shares is at least twice as big as the domain size lv

of the actual values (i.e., a and b), P1 can simply add 2lv − 1 to its share of a. By

doing so,the malicious party would have a very good chance of flipping the comparison

outcome. The attack success rate is about 1
2
analyzed below.

Except for aborting the protocol, a malicious behavior during protocol execution

is equivalent to share modification. Therefore, we merely need to estimate the prob-

ability that by modifying the shares, how likely the comparison result of SC will

change. Recall that the SC protocol returns 0 if a ≥ b, and 1 otherwise. As discussed

in Section 3.2, a and b are bounded by bp
2
c. The following attack is feasible that may

flip the comparison result:

• The adversary A modifies the shares [a]A and [b]A for each execution of Fsc.

Let E be the event of flipping the comparison result by modifying the shares, and the

probability of E can be estimated as follows assuming a ≥ b and a < b are equally

75

likely to happen in practice:

P(E) = P(a ≥ b)P(E|a ≥ b) + P(a < b)P(E|a < b)

=
1

2
P(E|a ≥ b) +

1

2
P(E|a < b)

=
1

2
(P(b > a) + P(b ≤ a))

=
1

2

Such an attack can be easily carried out because the malicious party knows exactly

which share to modify. In what follows, we will propose novel strategies to reduce the

attack success rate to a negligible one.

Let κ be a statistical security parameter, and our goal is to detect malicious

behaviors with probability bounded by 1 − 1
2κ
. To achieve this, the key idea in

our design is for the participating parties to execute κ independent copies of the SC

protocol with randomized input. By randomization, we mean the input shares 〈[a], [b]〉

are randomly permuted so that the malicious parties will not be able to consistently

alter the shares across all κ copies. The following steps are needed to transform any

semi-honest secure SC protocols into a secure one under the malicious model.

• Input commitment: The clients provide their inputs to the servers along with

commitments to prevent input modification by the malicious servers.

• Randomized input replications: After the servers receive the shares, they ran-

domize the ordering of the input to produce κ copies of the input pairs for

subsequent κ independent SC computations.

• Output verification: Checking if all κ copies produce the same outputs.

76

4.3.1 Input Commitment

For the rest of this section, we use a triple [a, θa, δa] to represent shares of the input

value a, where δa is randomly chosen from Zp, and θa = a · δa. The value θa serves as

a message authentication code (MAC) for a. Such code is also used in [12]. To verify

if the shares of a have been modified or not, the parties can perform the following

verification steps:

• Collaboratively generate a random secretly shared value r from Z+
p . This can

be done by randomly generate [r] and [s] from Zp. [t] ← Fmult([r], [s]) and

Fopen([t]). If t = 0, repeat these steps; otherwise, return [r].

• Compute [ω]← [r]([θa]− [a][δa]).

• Fopen([ω]) and examine:

– If ω = 0, verification passed.

– If ω 6= 0, verification failed.

As long as one party follows the steps, any modifications to the shares can be detect

with probability 1− 1
p
. The goal of this verification is to make sure that when inputs

are replicated, any malicious changes to the shares can be detected before executing

the SC protocol. When p is small and not sufficient to achieve the desired security, we

can increase either the size of p or the size of the authenticated shares. More details

are discussed in Section 4.4.1.

4.3.2 Input Randomization and Replication

Input commitment only guarantees the inputs are valid; however, it cannot be used

to verify if the parties followed the the prescribed steps during protocol execution. To

be able to verify if the parties followed the protocol, the parties execute SC κ times

77

in parallel with randomized inputs. For example, we flip a coin κ times, the outcome

of each coin flip is denoted by ti for 1 ≤ i ≤ κ. For succinctness, we use [[a]] to

represent 〈[a] , [θa] , [δa]〉, and adopt 〈[[x]] , [[y]] , [ti]〉 or 〈[[x]] , [[y]]〉ti to represent the

randomized input for the i-th SC execution based on ti:

• 〈[[x]] , [[y]]〉ti = 〈[[a]] , [[b]]〉, if ti = 0

• 〈[[x]] , [[y]]〉ti = 〈[[b]] , [[a]]〉, if ti = 1

The randomization of the input shares has to be performed in an oblivious way so

that the parties do not know which input shares are actually swapped. To achieve

this, the parties perform the steps given in Protocol 12:

• Step 1: the parties generate a shared random bit [ti] for each input pair, and

[ti] will also be used to de-randomize the output of the i-th SC execution.

• Step 2: from [ti], the parties generate a permutation matrix, denoted by [Mti]

for each input pair 〈[[a]] , [[b]]〉. When ti = 0, Mt is the 2-by-2 identity matrix.

When ti = 1, Mti is a transpose of the 2-by-2 identity matrix.

• Step 3: randomize each input pair by securely multiplying 〈[[a]] , [[b]]〉 with [Mti].

Note that the secure matrix multiplication is applied to each pair of components

of [[a]] and [[b]], i.e., 〈[a] , [b]〉, 〈[θa] , [θb]〉 and 〈[δa] , [δb]〉. At the end, the protocol

produces 〈[[x]] , [[y]] , [ti]〉.

Protocol 12 Input_Rand([[a]] , [[b]]) → 〈[[x]] , [[y]] , [ti]〉
Require: p is a prime defining the share domain.
1: [ti]← Frandb(p)

2: [Mti]←
{

[1− ti] [ti]
[ti] [1− ti]

}
3: 〈[[x]] , [[y]]〉ti ← 〈[[a]] , [[b]]〉 × [Mti]
4: return 〈[[x]] , [[y]] , [ti]〉

At the step 3 of Protocol 12, to derive the shares of [1 − ti], a designated party, say

P1, sets its share [1 − ti]
P1 ← 1 − [ti]

P1 , and the other parties set their shares to

78

[1 − ti]Pj ← p − [ti]
Pj . The rest of the computations of the protocol can be carried

out normal with standard secure additions and multiplications. The same set of

permutation matrices can be used to permute the inputs for a number of SCs on

different inputs as long as the comparison results are not leaked until the end of all

SC executions.

Functionality 13 Fscm

(〈
[[a]]A , [[b]]A

〉
,
〈

[[a]]Ā , [[b]]Ā
〉)
→ [[τ]]A , [[τ]]Ā

Require:
〈

[[a]]A , [[b]]A
〉

indicates the set of authenticated input shares controlled

by the adversary A, and
〈

[[a]]Ā , [[b]]Ā
〉
refers to the set of authenticated shares

from honest parties. κ is the security parameter.
1: Fscm receives

〈
[[a]]Ā , [[b]]Ā

〉
from the honest parties, denoted by PĀ. It also

receives
〈

[[a]]A , [[b]]A
〉
from A.

2: From these shares, Fsc derives [a′, θa′ , δa′] and [b′, θb′ , δb′]:

(a) If θa′ 6= a′ · δa′ or θb′ 6= b′ · δb′ , send abort message to all parties.

3: Set τ = 0 if a′ ≥ b′; otherwise, set τ = 1.
4: Construct authenticated shares of [[τ]]A and [[τ]]Ā according to the security pa-

rameter κ, and send [[τ]]A to A.
5: Fscm waits for reply from A:

(a) If the reply is abort, send abort to PĀ.

(b) If the reply is continue, send [[τ]]Ā to PĀ.

Protocol 14 Openm ([s])→ s

Require: H is secure commitment scheme that has κ-bit security, where κ is a sta-
tistically security parameter.

1: Pi broadcasts a commitment of its share H
(

[s]Pi
)
to the other parties.

2: After each party receives the commitments from all parities, Pi broadcasts a
commitment of its share [s]Pi .

3: If the received shares cannot be verified, abort the protocol
4: Reconstruct s from the shares.

Randomizing Inputs with Multiple Components

To permute a pair of random triples, we could apply the same permutation matrix on

the corresponding components of each triple. Alternatively, we could first pact the

79

Protocol 15 Verify ([[a]])

Require: [[a]] ≡ 〈[a] , [θa] , [δa]〉
1: [t]← Fmult([a] , [δa])
2: [s]← [t]− [θa]
3: Return Fverify_zero ([s])

Protocol 16 Verify_Zero ([s])

1: [r1]← Frand(p) and [r2]← Frand(p)
2: [t]← Fmult([r1], [r2])
3: t← Fopenm([t])
4: Abort the protocol if Fopenm([t]) aborts.
5: If t = 0, repeat the previous steps.
6: [t′]← Fmult([r1], [s])
7: t← Fopenm([t′])
8: Abort the protocol if Fopenm([t]) aborts.
9: If t′ = 0, return true; otherwise, return false.

three components of a triple into a bigger share and generate a permutation matrix

in a larger field to contain the bigger share. After multiplying the pair of the bigger

shares with the permutation matrix, we can unpact the bigger shares to produce a

permuted pair of triples.

4.3.3 Output Verification

The modified comparison will be performed κ times. After that we need to verify the

consistency of these results. Let [z1] , . . . , [zκ] be the results running the protocol κ

times on randomized inputs. Before verifying the consistency of the results, we need

to de-randomize them based on the ti values used to randomize the input shares.

However, we cannot simple de-randomize the results since the probability that the

adversary alters the de-randomized results without being detected is no longer negli-

gible. For instance, if the results are 0, then the adversary could add one to the share

it controls across all κ results. This causes the comparison result flipped, and it is

not guarantee to detect such malicious behaviors. As a solution, the parties need to

authenticate the shares of zi and ti to produce [[zi]] and [[ti]] before de-randomization.

80

Share Authentication and Result De-randomization

The parties commit or authenticate their shares of the results before de-randomization.

Let [[z1]] , . . . , [[zκ]] be the authenticated shares of z1, . . . , zκ, and τ1, . . . , τκ be the de-

randomized results. The parties can derive [[τi]] from [[zi]] and [[ti]] (see Section 4.4

for the details). To verify if the τi values are consistent, the parties perform the

following steps:

• Derive [[τ]] ≡ 〈[τ] , [θτ] , [δτ]〉, where

– [τ]←
∑κ

i=1 [τi]

– [θτ]←
∑κ

i=1 κ [θτi]

– [δτ]←
∑κ

i=1 [δτi]

• Call Fverfy([[τ]]): If verification fails, we conclude malicious behavior occurred

during protocol execution.

To see why the above verification works, we need to examine closely how the shares

are derived. The security guarantee of the verification procedure is formalized in the

next section.

4.4 The SCm Protocol

Based on the proposed transformation techniques, we are ready to construct the SCm

protocol whose key steps are present in Protocol 17. In what follows, we discuss its

step and the intuition behind the proposed design choices. Detailed security analysis

is presented in Section 4.4.1. In the current version of the protocol, we assume that p

is large enough to achieve κ-bit security. κ = 40 is sufficient for most applications. For

efficiency considerations, we want to keep the size of p just adequate to accommodate

the input values. Thus, we will later propose a strategy to achieve κ-bit security

81

Protocol 17 SCm (〈[[a]] , [[b]]〉) → [[c0]]

Require:
1: (a) p is a prime that defines the domain of the shares, and sufficiently large to

provide κ-bit security.

(b) κ is a parameter indicating κ-bit statistical security.

(c) Index i is bounded by κ, i.e., 1 ≤ i ≤ κ.
2: Input randomization and replication:

(a) 〈[[x]] , [[y]] , [ti]〉 ← Finput_rand([[a]] , [[b]])

3: Input verification:

(a) For each 〈[[x]] , [[y]] , [ti]〉, call Fverify([[x]]) and Fverify([[y]])

(b) The protocol aborts if any verification aborted or failed.

4: Executing κ secure comparison in parallel and generate authenticated shares for
each result:

(a) [zi]← Fsc(〈[x], [y]〉ti)
(b) [δzi]← Frand(p) and [δti]← Frand(p)

(c) [θzi]← Fmult([zi], [δzi]) and [θti]← Fmult([ti], [δti])

(d) [[zi]]← 〈[zi] , [θzi] , [δzi]〉
(e) [[ti]]← 〈[ti] , [θti] , [δti]〉

5: De-randomize the results and derive the authenticated shares of de-randomized
results:

(a) [τi]← [ti] + [zi]− 2×Fmult([ti], [zi])

(b) [δτi]← Fmult([δti], [δzi])

(c) [θτi]← Fmult([θti], [δzi]) + Fmult([δti], [θzi])− 2×Fmult([θti], [θzi])

(d) [[τi]]← 〈[τi] , [θτi] , [δτi]〉
6: Verifying the result:

(a) [τ]←
∑κ

i=1 [τi], [θτ]←
∑κ

i=1 κ [θτi], and [δτ]←
∑κ

i=1 [δτi]

(b) Call Fverfy([[τ]]), and the protocol aborts if any verification returns either
abort or fail.

7: Derive the final authenticated result:

(a) [c0]← κ−1 [τ] and [θc0]← κ−1 [θτ]

(b) [[c0]]← 〈[c0] , [θc0] , [δc0]〉 where [δc0]← [δτ]

without increasing the size of p which leads to more efficient protocol implementations

for small input domains.

82

The protocol takes authenticated shares from the clients or dealers. In real appli-

cations, a and b are generally belong to different clients. The shares are distributed

to the servers or parties who perform the secure computations.

• Step 1: the original input shares are randomized and replicated κ times. Each

time, a shared random bit ti is generated to produce randomized input shares

[[x]] and [[y]]. Note that those are authenticated shares, but the shares of ti are

not. In the later steps, the protocol will generate authenticated shares for ti. It

is possible to generate the authenticated shares for ti at this step.

• Step 2: Verify the integrity of the shares. The protocol aborts if any verification

failed or aborted. This step captures if any malicious parties modified their

shares during input randomization process.

• Step 3: For each randomized input pairs, call the Fsc functionality, and the

randomized comparison result is secretly shared and stored in [zi]. Next, the

authenticated shares for both zi and ti are produced.

• Step 4: De-randomize the result to obtain the actual result τi for each compar-

ison. Step 4(a) performs a secure xor of zi and ti; that is, [τi] = [zi ⊕ ti]. Then

based on the authenticated shares [[zi]] and [[ti]], the protocol derives the au-

thenticated shares of τi. First, [δτi] = [δziδti] is derived by a secure multiplication

of [δzi] and [δti]. Then the protocol computes [θτi]:

[θτi] = [θti][δzi] + [θzi][δti]− 2[θti][θzi]

= [tiδti][δzi] + [ziδzi][δti]− 2[tiδti][ziδzi]

= [tiδtiδzi + ziδziδti − 2tiziδtiδzi]

= [(ti + zi − 2tizi) δtiδzi]

= [τiδτi]

83

• Step 5: verify the comparison result based on the strategy discussed in Section

4.3.3. The protocol aborts if the verification aborted or failed.

• Step 6: derive the final authenticated comparison result. κ−1 indicates the

multiplicative inverse of κ in Zp. If the verification passed at Step 5, τ is either

0 or κ and θτ is either 0 or κδτ . That is:

[[τ]] =

 〈[0] , [0] , [δτ]〉 if τ = 0

〈[κ] , [κδτ] , [δτ]〉 if τ = κ

Thus, after multiplying κ−1 with [τ] and [θτ], c0 is set to 0 or 1, and [[c0]] is

returned as

[[c0]] =

 〈[0] , [0] , [δτ]〉 if c0 = 0

〈[1] , [δτ] , [δτ]〉 if c0 = 1

At the end of the protocol, each party sends its shares of [[c0]] to the client whose

reconstructs c0, θc0 and δc0 . The client accepts the result if θc0 = c0δc0 . If SCm is

adopted as a sub-protocol, then [[c0]] can be directly used for the subsequent secure

computations.

The protocol can be simplified by requiring the client to perform some extra

computations. At Step 3, the shares of κ pairs of [[zi]] and [[ti]] can be returned to

the client who then verifies the authenticated shares and de-randomize the comparison

results. The client accepts the result if all verifications passed and all κ de-randomized

results are the same. Alternatively, if SCm is a subroutine, the execution could end at

Step 4 where the [[τi]] values would be used for the subsequent computations. We will

provide more details about this alternative in the range query application shortly.

84

4.4.1 Security Analysis

In this section, we analyze the security of SCm using the real-ideal paradigm. First,

we prove the following claim related to the output verification step of SCm.

Claim 4. If the parties follow the SCm protocol, Fverfy([[τ]]) will succeed. On the other

hand, if any shares are modified after [[zi]] and [[ti]] are generated, the verification

will fail with probability

min

(
1− 1

p
, 1− 1

2κ

)
Proof. Suppose the parties follow the protocol to derive [[τ]] correctly, then all τi

values are either 0 or 1, and we have

θτ =
κ∑
i=1

κθτi =
κ∑
i=1

κτiδτi = κτiδτ (4.1)

If τi = 0, then τ = 0 and θτ = 0. If τi = 1, then τ = κ and θτ = κδτ . In either case, θτ

is derived correctly. As a consequence, the verification will go through successfully.

Next we analyze the probability that the verification passes when any shares could

be modified by the adversary A. During the verification process, the parties compute

the following values:

τδτ = τ̂

κ∑
i=1

δ̂τi = τ̂

κ∑
i=1

δ̂ti δ̂zi (4.2)

θτ = κ̂

κ∑
i=1

(
t̂i + ẑi − 2t̂iẑi

)
δ̂ti δ̂zi (4.3)

Since the adversary could modify any values in either equation, let τ̂ , κ̂, t̂i, ẑi, δ̂ti and

δ̂zi denote the values after their shares were modified by A. However, the adversary

had no control over what the actual values would be after modifying the shares of

these values because ti, zi, δti and δzi were randomly generated. As a result, if τ 6= 0

or τ 6= κ, the chance for the two equation to return the same value is 1
p
. In addition,

85

if zi and ti could be correctly predicted, the verification would pass as long as τ̂ = κ̂

in both equations. Nevertheless, since each pair of input was randomized, and ti

was randomly generated, the probability that the adversary can predict both values

correctly is bounded by 1
2κ

because there are κ input pairs and ti values.

Another scenario is that the adversary followed the protocol until the end step 4.

The adversary may try to flip the result during step 5. It is easy to change τ from 0

to κ, and vice versa, but still making the equality τδτ = θτ valid is difficult for the

adversary due to the fact that δτ is random. The probability of the equality is valid

after any modifications to the shares of τ , δτ , θτ , τi, δτi and θτi is bounded by 1
p
.

Combining these probabilities, the overall probability of passing the verification

when τ is neither 0 or κ is max
(

1
p
, 1

2κ

)
which leads to the failure probability given in

the claim.

Claim 5. Protocol SCm securely implements Fscm with abort in the(
Finput_rand,Fverify,Fsc,Frand,Fverify_zero,Fmult

)
-hybrid model in presence of a mali-

cious adversary controlling at most n− 1 parties.

Proof. We prove the security of SCm under the universally composable security model

[121]. The main idea is to build a simulator that interacts with the ideal functionali-

ties. If the protocol is secure, then the environment cannot distinguish a real execution

of SCm from an ideal execution between the simulator and the functionalities. The

simulator Sscm is constructed as follows:

• Receive [[a]]A and [[b]]A from the adversary A.

• Sscm calls the simulator Sinput_rand

(
[[a]]A , [[b]]A

)
of

Finput_rand, and let
〈

[[x∗]]A , [[y∗]]A , [t∗i]
A
〉

be the i-th output from Sinput_rand,

where 1 ≤ i ≤ κ.

• For each
〈

[[x∗]]A , [[y∗]]A , [t∗i]
A
〉
, Sscm calls the simulators Sverify

(
[[x∗]]A

)
and

Sverify

(
[[y∗]]A

)
of Fverify. Sscm outputs abort if any Sverify returned abort.

86

• For each
〈

[[x∗]]A , [[y∗]]A , [t∗i]
A
〉
Sscm calls the simulator Ssc

(〈
[[x∗]]A , [[y∗]]A

〉
t∗i

)
of Fsc, and let [z∗i]

A be the output of each call to Ssc.

• Sscm calls the simulator Srand(p) of Frand 2κ times to produce
[
δ∗zi
]A and

[
δ∗ti
]A.

• Sscm calls the simulator Smult

(
[z∗i]

A ,
[
δ∗zi
]A) and

Smult

(
[t∗i]
A ,
[
δ∗ti
]A) of Fmult. Let

[
θ∗zi
]A and

[
θ∗ti
]A be the output of Smult.

• Sscm calls Smult

(
[t∗i]
A , [z∗i]

A
)
, Smult

([
δ∗ti
]A
,
[
δ∗zi
]A), Smult

([
θ∗ti
]A
,
[
δ∗zi
]A),

Smult

([
δ∗ti
]A
,
[
θ∗zi
]A), Smult

([
θ∗ti
]A
,
[
θ∗zi
]A), and Smult

(
[t∗i]
A ,
[
δ∗ti
]A). From

the outputs, Sscm derives [[τ ∗i]]A and [[τ ∗]]A.

• Sscm calls Sverify

(
[[τ ∗]]A

)
. Sscm outputs abort if Sverify returned abort.

• Sscm sends [[τ ∗]]A to A, and outputs whatever A outputs.

It is straightforward to check that the simulated view produced by Sscm is computa-

tionally indistinguishable from the real view.

4.4.2 Complexity Analysis

In this section, we provide a detailed complexity analysis for both computation and

communication. We first start by defining the criteria to our analysis as follows:

1. Multiplication invocations: to show the computation complexity we refer to

the most expensive operation in the SMC paradigm which is the multiplication

operation. Since Rabbit, edaBit, and daBit work in the mixed binary and

arithmetic circuits then we will summarize two types of multiplication in F2

and Fp for binary and arithmetic circuits respectively. It is worth noting that

our proposed solutions work in the Fp.

87

2. Round complexity: it refers to the number of send/receive operations during a

protocol execution. It is worth noting that independent rounds can be carried

in parallel; thus, they are considered as one round.

3. Similar to other work, the complexity of sharing and revealing (open) is consid-

ered negligible and we only consider them toward the communication rounds.

SCm Complexity

This section presents the detailed complexity analysis of protocol 17 as follows:

• Step 1: it requires κ(n− 1) + 12κ of the Fp multiplication in log n+ 1 rounds.

• Step 2: it takes 6 of the Fp multiplication in 6 rounds.

• Step 3-a: this step requires (`n+ 20`+ 2) of the Fp multiplication in 21 + log n

rounds.

• Step 3-b: it needs 1 of the Fp multiplication in 1 round.

• Step 3-c,d: these steps require 4κ of the Fp multiplication in 2 rounds.

• Step 4: this step consists of four sub steps which need 4κ of the Fp multiplication

in 3 round.

• Step 5-b: this step takes 3 of the Fp multiplication in 6 rounds.

• Step 6: it requires 1 of the Fp multiplication in 1 round.

Table 4.1 shows the total SCm complexity. In the next section, we show the complexity

of multiplication in both F2 and FP . Where F2 multiplication is done using TinyOT

while Fp is done using HE.

88

Table 4.1: SC complexity

Step Mult-Fp Rounds
Total κ(n+ `n+ 20`+ 21) + 11 41 + 2 log n

Multiplication in F2

In this section, we consider the complexity reported in [51]. It is worth noting that the

number of rounds was not reported in [51]. Therefore, we calculate the rounds based

on Authenticate protocol in figure 6, COTE protocol in figure 19, and MACCHECK

protocol in figure 16 in [51]. Table 4.2 shows the complexity of F2 multiplication.

Table 4.2: Complexity of F2 multiplication

Steps (1-2)OT COTe Rounds
Total 9n(n− 1) 27n(n− 1) 13

Multiplication in Fp

To analyze the complexity of arithmetic multiplication under Fp, first we report the

complexity of ZK-proof based on figure 1 in [13]. It is worth noting that during this

analysis we do not consider the batching in the HE. We report the complexity using V

which refer to the auxiliary ciphertext, κ the soundness of ZK proof; the complexity

is as follows:

• Step Samp-3: this step is done locally by every Pi and it requires 2nV encryption

operations.

• Step Samp-4: it takes 1 round to broadcast C.

• Step Comm-2: it requires nV encryption operations.

• Step Comm-3: this step needs two rounds to broadcast the commitments.

• Step Chall-1: it takes 1 round to generate the random challenge matrix W .

89

• Step Resp-2: it requires 1 round to broadcast the response.

• Step Verify: this step needs nV encryption operations.

The total complexity is shown in table 4.3. Note that Samp, Comm, Chall can be

carried in parallel; thus, they require two round. Therefore, the total rounds become

three.

Table 4.3: ZK-proof complexity

Steps Enc Rounds
Total n4V 3

Next, we analyze the complexity of generating the triples based on figure 3 in [13]

as follows:

• Init-1: this is local operation which takes n encryption operations.

• Init-2: it takes 1 rounds for commitments.

• Init-3: it requires 2nκ encryption operations and 2 rounds.

• Triples-2: this step needs 12nV encryption operations.

• Triples-3: it takes 2 rounds.

• Triples-4: this step requires 12nV encryption operations in addition to two

rounds.

• Triples-6: it takes 4nV ciphertext multiplications as well as two rounds.

• Triples-7: this step requires 4nV decryption operations and 1 rounds.

• Triples-9: it takes 4nV encryption operations.

• Triples-10: it needs 12nV ciphertext multiplications.

• Triples-11: this step requires 12nV decryption operations and 1 rounds.

90

Since V = (κ + 2)/ log2(2N + 1) and log2(2N + 1) ≈ 16, the total complexity of

triple generation is illustrated in table 4.4; the table also summarizes the complexity

of multiplication in this paper. Due to the fact that our randomized replication only

requires to run the comparison κ times with the verification step at the end, this leads

to efficient multiplication protocol with only one round. While TopGear protocol of

the SPDZ compiler requires 11 rounds.

Table 4.4: Complexity of Fp

Steps Enc Dec Mult-ct Rounds
This paper nκ nκ nκ 1

Total n(2κ+ (7κ+ 14)/4 + 1) n(κ+ 2) n(κ+ 2) 11

Rabbit Complexity

To analyze Rabbit complexity we are required to first figure out the complexity of

edabit which invokes dabit. Therefore, we will start our analysis from dabit going up

to Rabbit.

DaBit Complexity: The daBit starts by generating faulty daBits (not yet

checked) then check them. The complexity of generating faulty daBit is based on

figure 13 in [28] as follows:

• Step 1: this step requires one round.

• Step 2: it takes n of the Fp multiplications.

While the complexity of checking the faulty daBits is based on figure 16 in [28] as

follows:

• Step 1-b: it requires 1 round.

• Step 1-c: it takes 1 round.

91

• Step 3: this step needs 1 of the Fp multiplication in 12 rounds.

Adding the complexity of faulty daBit and checking them leads to the total com-

plexity in table 4.5.

Table 4.5: Total daBit complexity

Mult-F2 Mult-Fp Rounds
Total - n+ 1 11 log n+ 14

EdaBit Complexity: To generate edaBit, the parties first produce private ed-

aBits, then check these private edabit for every party. Finally, the parties add the

checked private edaBits to all the other parties’ private edaBits, created in the same

way, to obtain secret-shared global edaBits. We start the analysis by first analyzing

the private edabit as follows:

• Generate/share ` bits: this step takes only one round.

• Generate/share r: it requires one round.

• Generate/share triples: this also needs one round.

It is worth noting that the steps of generating private daBits are independent and

can be carried in one round. Next, we analyze the check procedure based on the

Cut-and-Choose technique in figure 5 in [28] as follows:

• Step 2: it requires one round.

• Step 4-b: it also takes one round.

• 4-c: this step requires n22κ/(B−1)B+n2κ/(B−1)B of the Fp multiplications which

takes 11 log n+ 14 round.

• 4-d: it requires 1 round.

92

The complexity of going from private daBits to global daBits based on figure 3 in [28]

is as follows:

• private edabit: it takes 1 round.

• CutNChoose: this step takes n22κ/(B−1)B+n2κ/(B−1)B of the Fp multiplication

in 17 + 11 log n rounds.

• Step 3: this step requires (`+log n) · (n−1) of the F2 multiplication in 13` log n

rounds.

• Step 4: this step needs n+ 1 of the Fp multiplication in 11 log n+ 14 rounds.

Adding up the complexity of private edaBit, checking edaBit and global edaBit gives

the total complexity as in table 4.6.

Table 4.6: Complexity of edaBit

Step Mult-F2 Mult-Fp Rounds
Total n`+ n log n n22κ/(B−1)B + n2κ/(B−1)B + n+ 1 32 + 13` log n+ 22 log n

Rabbit Complexity: Now we are ready to present the complexity of Rabbit

protocol based on figure 6 in [62] as follows:

• Two edaBits: this step requires 2n`+2n log n of F2 multiplication and 2n22κ/(B−1)B+

2n2κ/(B−1)B+2n+2 of Fp multiplication both in 32+13` log n+22 log n rounds.

• Step 2: it takes 1 round.

• Step 3-1,b: these two steps take 42` of F2 multiplication in 234 rounds.

• Step 3-d: it requires ` of F2 multiplication in ` rounds.

• Step 3-e: it takes 21` of F2 multiplication in 234 rounds.

93

• Step 4: this step requires n+ 1 of Fp multiplication in 17 + 11 log n rounds.

The total complexity of Rabbit comparing to the complexity of SCm is illustrated in

table 4.7.

Table 4.7: Rabbit complexity

Step Mult-F2 Mult-Fp Rounds
SCm - κ(n+ `n+ 20`+ 21) + 11 41 + 2 log n

Rabbit 2n`+ 64`+ 2n log n 2n22κ/(B−1)B + 2n2κ/(B−1)B + 3n+ 3 518 + 13` log n+ 33 log n+ `

4.5 Discussion

In this section, we provide a number of points on our work. We elaborate on dealing

with smaller share sizes as well as removing the slack in the comparison protocol, and

close the discussion with statistical security argument.

Dealing with Smaller Share Sizes

This section addresses issues related to the share size, especially for authenticated

shares. For practical consideration, we limit the size of p to be as small as the input

domain, e.g., 32-bit integer. In this case, the authenticated shares only offer 32-bit

security at most. If κ = 50 (sufficient for most existing applications), we could increase

the size of p to match κ-bit security. However, if 32-bit domain is sufficient for the

actual input data, κ-bit shares will increase not only the computation complexity but

also incur large communication cost. Here we proposed an efficient solution to ensure

the security guarantee of the authenticated shares matches the overall security of the

SC protocol. Our idea is to use different share sizes for the authenticated shares.

Recall that [[a]] represents 〈[a] , [θa] , [δa]〉, and each component is generated with

the same p. To increase the security level, we can generate [θa] and [δa] with large share

size. However, we cannot simply select a large prime q and perform computations in

94

Zq since the computations are not compatible between two unrelated fields. Instead,

let K denote an extension field of Zp that is sufficiently large to achieve κ-bit security.

Then the shares of δa are generated from K and a ·δa is computed over K. As a result,

the shares of θa also belongs to K. In addition, we need to modify the Input_Rand

protocol. In the current implementation, one shared random bit ti is used to perform

the secure permutation. Since the shares of a and δa are in different fields, we also need

to generate shares of ti in K to permute 〈[θa] , [θb]〉 and 〈[δa] , [δb]〉. This change can

be easily incorporated into the current implementation. Similarly, we need to modify

how to generate and verify the authenticated shares for the rest of the protocol. For

instance, the shares of all θ and δ values need to be generated from K. At step 5,

verifying [[τ]] would also be performed in K. Making these changes is straightforward.

Removing The Slack

It is relatively easy to see that smaller SMC data types minimize communication

and computation overhead and improve the overall performance of SMC calculations.

As a result, the work in this research enables small SMC data types by eliminating

the slack between the inputs and the actual size of the data types utilized in SMC

computations.

For example, in previous work [96], the slack is necessary to account for the

statistical parameter in the dishonest majority situation. In practice, this statistical

parameter is set to at least 40 bits to assure security. As a consequence, the SMC

computation uses data types that are at least 40 bits bigger than the input values.

therefore, previous work necessitates 128-bit data types for SMC computations, which

are required to enable 64-bit computations. Our comparison technique, on the other

hand, achieves precise comparison without any slack and hence works with smaller

data types. It is worth mentioning that Rabbit also eliminated the slack requirement.

95

Achieving Higher Statistical Security

The state of the art Rabbit capitalizes on the idea of a mixed circuit and employs

edaBit to accomplish that goal. The edabit utilizes a cut-and-choose approach to

assure the consistency of the produced random values. In addition, Cut-and-choose

requires statistical security, which is restricted to 40-bits in recent MP-SPDZ imple-

mentation [29]. As a result, the security of Rabbit is restricted by 40-bit security in

the dishonest majority setting. Our compiler, on the other hand, is not bound by

this constraint. Under the HE SEAL library [30], it can handle up to 60-bit security,

which can be upgraded to enable additional bit security if necessary.

4.6 Performance Evaluation

We empirically analyze the computational overhead of our proposed protocol against

the state of the art comparison protocol (Rabbit) [62]. We implemented Rabbit using

the state of the art MP-SPDZ library [29] and we benchmark using the TopGear

protocol [13] of the SPDZ compiler. Our protocol uses Microsoft SEAL library to

run the FHE of the BFV scheme [30]. Each data entry is secretly shared based on

the additive secret sharing scheme for the setting of 2, 3, 4 or 5 servers. We used the

Chameleon Cloud [119] to run our experiments, and each machine that represents

one of the servers has the following specifications:

• Operating system: Ubuntu, Version = 18.04 LTS (Bionic Beaver).

• Machines hardware: x86_64 Cores: 12; Threads per core 2; Model: Intel®Xeon

®CPU E5-2670 v3 @ 2.30GHz, RAM 128GB.

• The ping between machines was 0.33 milliseconds.

Before presenting the results, we point out the main parameters that affect the secu-

rity in both Rabbit and our proposed approach. In our solution, besides the compu-

96

tational security parameter λ of the underling encryption scheme, we only have the

soundness security parameter κ similar to the Snd_sec parameter of SPDZ for the

same purpose. SPDZ has two additional security parameters:

• ZK_sec: the statistical distance between the coefficients of the ring elements

in an honest ZK protocol transcript and the ones produced by a simulation.

• DD_sec: the statistical distance between the coefficients of the ring elements

in the distributed decryption protocol and the ones generated from an uniform

distribution.

The three parameters are usually set to the same value, e.g., κ, to achieve κ-bit

statistical security.

In addition to these parameters, Rabbit requires to generate the special random

shared value which is associated with it is random shared bits based on edabit [28].

In the case of the edabit, the security parameter is s(sec) represents the failure prob-

ability of the edabit protocol produces at least one incorrect edabit. It is worth

mentioning that MP-SPDZ fixes this parameter to only 40 bits. This limits the secu-

rity of Rabbit to only 40 bits even when setting other statistical security parameters

to a higher value. On the other hand, our protocol enjoys up to 60-bit security.

4.6.1 Runtime

We examine the runtime of the secure comparison protocol based on various parameter

values. The FHE computational security parameter λ was set to 128, and we set the

remaining parameters as follows: κ = Snd_sec = ZK_sec = DD_sec = {40, 50, 60}

to achieve 40, 50 or 60-bit statistical security respectively. To match the same se-

curity level, we also vary the plaintext modulus log2(p) = {40, 50, 60} to match the

corresponding security level related to the authenticated shares. Since edabit utilizes

a cut and choose technique to ensure the consistency of random generated values,

97

another parameter can affect the computation overhead is the bucket size B which

we set to 5 for all the tests.

Figure 4.1 (produced based on the data given in Table 4.8) shows the run-time

for 40-bit security. Our approach performs around 5 times faster than the Rabbit for

different number of parties. It is worth noting that for every new party joining the

experiment, the run-time get almost doubled in Rabbit as well as in our protocol.

Figure 4.1: Runtime for 40-bit security

Similarly, Figures 4.2 and 4.3 (produced based on numbers in Tables 4.8) show

the runtime where the parameters set to 50, 60-bit security consecutively. Despite the

fact that Rabbit security is limited by the edabit security which is fixed to 40 in MP-

SPDZ, changing the size of the bit security, does not affect our protocol performance

and the figures suggest that we still show around 5 times faster that Rabbit in both

cases of 50, and 60-bit security.

Table 4.8: Runtime for 40, 50, 60-bits security

Sec This paper2 This paper3 This paper4 This paper5 Rabbit2 Rabbit3 Rabbit4 Rabbit5
40 5.17 11.42 17.14 25.05 26.54 51.07 73.21 107.49
50 6.13 12.71 18.88 26.94 33.81 60.71 84.46 119.34
60 8.10 14.59 21.80 30.67 64.45 105.54 146.39 189.35

98

Figure 4.2: Runtime for 50-bit security

Figure 4.3: Runtime for 60-bit security

4.6.2 Communication Cost and FHE Parameters

We evaluate the amount of data communicated during protocol execution of one

comparison. We vary the bit security and the number of parties similar to the previous

section. Figure 4.4 (produced based on numbers in Table 4.9) depicts the data sent

for 40-bit security. The figure shows that our protocol requires to send 5 to 14 times

less data than Rabbit based on the number of parties.

On the other hand, figures 4.5 and 4.6 (produced based on numbers in Table 4.9)

show that our protocol needs to exchange 12 up to 14 times less data than Rabbit for

50 and 60-bit security consecutively. From all the given figures, we see that every new

99

Figure 4.4: Data amount transferred among the parties for 40-bit security

added party costs Rabbit to more than double and even quadruple the amount of data

to be sent in some scenarios. On the other hand, our protocol shows a consistence

growth in the amount of data to be sent which get tripled for 3 parties and keeps

reducing for 4 and 5 parties where the amount of data gets increased less than 2 times

on average.

Figure 4.5: Data amount transferred among the parties for 50-bit security

To provide additional insights, Tables 4.10 and 4.11 show different security pa-

rameter settings and their effects on the underlying FHE ciphertext sizes. In all the

given tables, we fix the computational security parameter λ = 128. We set the plain-

100

Figure 4.6: Data amount transferred among the parties for 60-bit security

text modulus to log2(p) = {40, 50, 60}. It is worth noting that the SPDZ utilizes

two ciphertext moduli q1 = p0 · p1 and q0 = p0, where p0 and p1 are prime numbers.

The largest modulo q1 is used to generate level one ciphertext. Then the modulus

switching is utilized to move from level one to level zero ciphertext which is associated

with q0. More information on these parameters can be found in [122, 123]. As show

in the table, the ciphertext size is over 100 bit larger than ours on average which is a

key factor contributing to their large communication complexity.

Table 4.9: Data amount transferred among the parties for different bit security

Sec This paper2 This paper3 This paper4 This paper5 Rabbit2 Rabbit3 Rabbit4 Rabbit5
40 59 191 391 691 346.288 1713.28 4519.05 9912.04
50 89 253 528 904 444.955 2082.08 5396.93 11789.6
60 110 350 687 1170 621.434 2604.79 6977.77 14205.3

Table 4.10: FHE parameter sizes for this paper

log2(p) λ κ(sec) N log2(q)
40 128 40 8192 218
50 128 50 8192 218
60 128 60 8192 218

101

Table 4.11: FHE parameter sizes for TopGear

TopGear
log2(p) λ Snd_sec ZK_sec DD_sec N log2(p0) log2(p1)

40 128 40 40 40 32768 136 90
50 128 50 50 50 32768 166 110
60 128 60 60 60 32768 196 130

102

Chapter 5

Conclusion

In this work, we present two multiparty secure comparison protocols. First SC proto-

col is secure against malicious minority in which the adversary controls the minority

of the parties. The other SC protocol is secure under malicious majority where the

adversary controls up to n − 1 parties. Comparing to the current state of the art,

the proposed protocol is much more efficient. To validate our claim, we conducted

extensive empirical analyses that confirmed the efficiency of our protocol in both com-

putation and communication. In chapter 3, we present an efficient secure comparison

protocol. The protocol requires at least 3 parties with at least 2 honest parties. The

protocol can be adopted to guarantee security under malicious minority model using

our compiler presented in chapter 4.

In chapter 4, we present an novel approach “randomized replication” that enables

n parties to compare two integers a, b in a privacy-preserving manner with collusion

up to n− 1 party. Our approach combines secure multiparty computation as well as

fully homomorphic encryption to guarantee privacy against n− 1 corrupted parties.

We analyze the complexity of the proposed approach as well as its security. A com-

prehensive experimental evaluation shows the effectiveness of the approach in terms

of both computation and communication cost.

103

5.1 Future Work

There are several important research directions or tasks that may further improve the

quality of the work presented in this thesis as follows:

(a) Mixed protocol: as shown by the existing work, a mixed-protocol implemen-

tation (e.g., combining OT extension and homomorphic encryption) is more

efficient. We will explore this direction and verify if it benefits our protocol.

(b) Parallelization: our solution is highly parallel. We plan to examine if the run-

time can be further reduced by executing the protocol on a GPU.

(c) Communication optimization: in our current implementation, message sending

and receiving are sequential. Since many of these messages are independent and

can be sent in parallel, using more advanced communication mechanisms will

likely improve the run-time.

(d) Transforming other semi-honest SC protocols: there exist many different designs

for semi-honest SC. It would be very valuable to provide a systematization of

these de- signs along with the proposed transformation to identify the most

efficient solutions under various scenarios.

(e) Another important feature of SPDZ is its ability to split the overall computa-

tions into offline pre-processing and online computation. Although this is theo-

retically possible, we were not able to find such an option in Scale-Mamba [124]

and MP- SPDZ [29]. Based on the existing claims, it is possible that the on-

line phase itself would be more efficient than our protocol. In this regard, we

plan to investigate strategies as SPDZ to separate the computations of the com-

piler into offline and online phases, and hopefully, the online phase would be

much more efficient than our current solution without significantly affecting the

overall performance.

104

Appendix A

Numerical Examples of Comparison
Protocols

To help in understanding the proposed protocols we provide step by step examples.

In this section, we offer two example executions of our protocol from Section 3.4 and

section 3.5. In this example we will operate on values to compare a = 10, b = 7 and

r = 5. Clearly in both cases our protocol should return f = 0 shared among the

parties indicating that a ≥ b. In the following explanation we focus on the main

aspects of our approach to the comparison, and leave aside some of the details of

the sharing and mapping between sharing groups which we include for security or

efficiency. All values will be addressed by the steps in which they occur with the

notation in accordance with the variables in the algorithm.

A.1 Example for Algorithm 8 from Section 3.4

Given a = 10 and b = 7 are secretly shared between P1 and P2, and it returns two

shares[c0]. For ease of exposition, we discarded the role of τi, δ and ζ as they are not

going to affect the correctness of the protocol. The protocol works as follows:

105

1. P3 generates a random number r = 5 and its shares in ZN , and sends the shares

of r to P1 and P2 respectively.

2. P1 and P2:

(a) Compute c = 2(a− b) = 6

(b) Use the shares of r to mask c as η = c+ r = 11 and send the result to the

other party.

(c) Reveal η and compute secret shares of e = η ⊕ r.

e = 1110

(d) Derive secret shares of γi, as defined in Equation 3.5.

γi = 2143

(e) Send them γi to P3.

3. P3 reconstructs γ̂i, derives the comparison results f = η0 ⊕ r0 = 0, and sends

shares of f to P1 and P2.

4. P1 and P2 de-randomize f to derive shares of c0 = 0.

A.2 Example for Algorithm 9 from Section 3.5

• Input Transformation: Steps 1-5 We subtract a from b and multiply the result

by 2 to get the value of c. Then we add r to the later value to mask it before

we open it. After opening the η, we add one. The reason for this is to capture

the case where η = r in which our comparison protocol before adding the one

would be incorrect for c0 relying on:

h =

 1 if η > r

0 if η ≤ r

106

Next, steps 6 and 7 focus on producing the bitwise exclusive or of η̂ and r

– ei = 01001

It is worth noting that we are trying to observe the most significant bit i∗ where

η̂ 6= r. We red color this bit to draw the reader attention.

• Steps 7 and 8 transform e′ into ê, such that

– êi = 0 for i∗ < i < l, and

– êi 6= 0 for 0 ≤ i ≤ i∗

– ê = 01112

• Step 9: The parties execute the Not_Zero protocol and the result is stored in

f where

fi =

 0 for i∗ < i < l

1 for 0 ≤ i ≤ i∗

– fi = 01111

• Steps 10-11: The parties locally derive the shares of [gi], such that

gi =

 0 for i 6= i∗ ∧ 0 ≤ i < l

1 for i = i∗

– gi = 01000

• Step 12: The parties locally derive the shares of [h]:

h =

 1 if η ≥ r

0 if η < r

107

As discussed early, from step 6, the computations are performed on η̂. If η were

used, it would result

h =

 1 if η > r

0 if η ≤ r

Consequently, this would lead to an incorrect result for c0 at the next step.

– hi = 01000

– h = 1

• Step 13: The parties derive the shares of [c0]. Since e′0 = η̂0⊕ r0 and η̂ = η+ 1,

we have e0 = η0 ⊕ r0 = 1− e′0 and c0 can be derived accordingly:

c0 =

 e0 = 1− e′0 if h = 1

1− e0 = e′0 if h = 0

This matches the result given in Equation 3.2.

108

Appendix B

Secret Sharing Numerical Examples

In this section we provide numerical examples for both replicated additive secret

sharing as well as Shamir secret sharing schemes. The examples illustrate dealing

two secret data then carry addition and multiplication operation. For simplicity, we

set the number of parties to three which satisfies the semi-honest, honest majority

and dishonest majority setting requirements.

B.1 Replicated Secret Secret Sharing Example

Generating Shares Given two secrets a = 5, b = 8, a dealer wishes to deal his

secrets to three parties such that any three shares can open the secret. Specifically,

we assume that the dealer sets p = 61 and progresses by selecting three random values

for each secret such that :

5 = (10 + 12 + 44) mod 61

8 = (22 + 35 + 12) mod 61

109

Then the dealer sends the shares as in table B.1 such that each pj holds a pair of

shares for every secret (aj, aj−1), (bj, bj−1) for a and b consecutively.

Table B.1: Shares of a, b distributed to 3 participants

Party P1 P2 P3

[a] (10, 44) (12, 10) (44, 12)
[b] (22, 12) (35, 22) (12, 35)

Reconstructing the Secret To reconstruct a secret, the parties send the spec-

ified shares to an authorized user as described in section 2.3.3. Therefore, the user

can sum up the shares to rebuild the secret back:

(10 + 12 + 44) mod 61 = 5

(22 + 35 + 12) mod 61 = 8

Addition Addition is done locally, therefore, there is no need for communication

between the parties. Every party can locally sum the shares of [a], [b] as in table B.2.

To verify that the shares represent a + b, we can reopen the share as done in the

reconstruction:

(32 + 47 + 56) mod 61 = 13

Table B.2: Shares of a+ b for participants

Party P1 P2 P3
[a+b] (32, 56) (47, 32) (56, 47)

110

Multiplication The multiplication of two secretly shared values requires the

parties to generate correlated randomness such that r1 + r2 + r3 mod p = 0. We

assume that the parties hold the given shares with the correlated random values as

shown in table B.3. Next each party locally computes the pairwise multiplication and

Table B.3: Shares of a, b and correlated randomness r for participants

Party P1 P2 P3
[a] (10, 44) (12, 10) (44, 12)
[b] (22, 12) (35, 22) (12, 35)
r 33 25 3

add the correlated random value as follows:

((10 ∗ 22) + (10 ∗ 12) + (44 ∗ 22) + 33) mod 61 = 60

((12 ∗ 35) + (12 ∗ 22) + (10 ∗ 35) + 25) mod 61 = 22

((44 ∗ 12) + (44 ∗ 35) + (12 ∗ 12) + 3) mod 61 = 19

Table B.4: Shares of a · b

Party P1 P2 P3
[ab] (60, 19) (22, 60) (19, 22)

Referring back to our example, we should get 5 ∗ 8 = 40 which can be checked by

reconstructing the shares such that:

(60 + 22 + 19) mod 61 = 40

111

B.2 Shamir Secret Sharing Example

Generating Shares Given two secrets a = 5, b = 8, a dealer wishes to deal his

secrets to three parties such that any three shares can open the secret. The dealer

select a random polynomial of one degree for each secret. Specifically, we assume that

the dealer sets p = 61 and the polynomials are as follows:

f(x) = 5 + 45x mod 61 (B.1)

f(x) = 8 + 50x mod 61 (B.2)

Tables B.5 and B.6 show the dealer view of the shares of both a and b based on

equations B.1, B.2.

Table B.5: Deal shares of value a

Index 1 2 3
f(x) = 5 + 45x mod 61 50 34 18

Table B.6: Deal shares of value b

x 1 2 3
f(x) = 8 + 50x mod 61 58 47 36

Next, the dealer distributes the shares such that each index refers to a specified

party as shown in table B.7.

Table B.7: Shares of a, b Distributed to 3 Participants

Party P1 P2 P3

[a] 50 34 18
[b] 58 47 36

112

Reconstructing the Secret In order to rebuild the secret back from the shares,

we generate the Lagrange coefficients as in equation B.3.

βi =
n∏

t=1;t6=i

−xt
xi − xt

(B.3)

Despite the fact that based on the example setup we can reopen the secret using at

least two share. However, in this example we reconstruct the secret using three shares

to keep thing consistent with the number of parties given in the system. It is easy

to verify that the shares hold the secret by multiplying each share with Lagrange

coefficient then sum the values up such that:

((50 ∗ 3) + (34 ∗ 58) + (18 ∗ 1)) mod 61 = 5

((58 ∗ 3) + (47 ∗ 58) + (36 ∗ 1)) mod 61 = 8

Addition Addition is done without the need for communication between the

parties. Every party can locally sum the shares of [a], [b] as in table B.8. To verify

that the shares represent a+ b, we can reopen the share as don in the reconstruction:

((47 ∗ 3) + (20 ∗ 58) + (54 ∗ 1)) mod 61 = 13

Table B.8: Shares of a+ b for participants

Party P1 P2 P3
[a+b] 47 20 54

113

Multiplication Multiplication under Shamir secret sharing is more involved

than other secret sharing schemes as it requires an additional step to reduce the

polynomial as explained in section 2.3.2. The first step, parties locally compute their

share product as in table B.9.

Table B.9: Local shares multiplication for 3 participants

Party P1 P2 P3

[ab] 33 12 38

Next each party can locally generate the Lagrange coefficients as shown in table

B.10. Then each party generates a random polynomial of degree one which is used

to reshare the local product as illustrated in tale B.11. Before distributing the shares

each party multiply the local shares with corespondent Lagrange coefficient βi, for

example p1 in column 2 multiplies his share with βi = 3, while p2 in column 3

multiplies his share with βi = 58, etc. for the rest of the parties. At this point parties

exchange the shares and each party sums up the share as in last row of table B.11.

Table B.10: Lagrange coefficients

Party P1 P2 P3
βi 3 58 1

Table B.11: Deal shares of local ab

Party P1 P2 P3

f(x) = 33 + 42x 14 56 37
f(x) = 12 + 34x 46 19 53
f(x) = 38 + 20x 58 17 37

Table B.12: Distributed shares of [c] = [ab]

Party P1 P2 P3

[w] = [u]βi 42 46 50
[w] = [u]βi 45 4 24
[w] = [u]βj 58 17 37
[c] = [ab] 23 6 50

114

Referring to our example, we expect to get 5 ∗ 8 = 40. This is can be verified via

reconstructing the shares in last row of table B.11 as such:

((23 ∗ 3) + (6 ∗ 58) + (50 ∗ 1)) mod 61 = 40

B.3 Additive Secret Sharing Example

Constructing Shares Following the previous examples, assume that a dealer

wants to deal his two secrets a = 5, b = 8 to three parties, such that any three shares

can open the secret. The dealer selects two random values to be sent to first and

second party. The dealer then adds up the previous random values and subtracts

the sum from the original secret. Then the dealer sends the resulted value from the

previous step to the third party. Assuming that for a that P1 and P2 shares are 19

and 31 respectively. Then the share of p3 = (5− (19 + 31)) mod 61 which equals 16.

For the other secret b, let P1 and P2 shares are 22 and 28 consecutively. Therefore,

the share of p3 = (8− (22 + 28)) mod 61 which gives 19. Table B.13 illustrates the

distribution of the shares among three parties.

Table B.13: Shares of a, b distributed to 3 participants

Party P1 P2 P3

[a] 19 31 16
[b] 22 28 19

Reconstructing the Secret To reopen a secret back, the parties send their

shares to an authorized user. Therefore, the user can adds up the shares to rebuild

the secret back:

(19 + 31 + 16) mod 61 = 5

115

(22 + 28 + 19) mod 61 = 8

Addition Addition is carried locally, as a result, there is no need for communi-

cation between the parties. Each party can add the shares of [a] and [b] as in table

B.14. To verify that the shares represent a+ b, we can reconstruct the share as done

in previous section B.3:

(41 + 59 + 35) mod 61 = 13

Table B.14: Shares of a+ b for participants

Party P1 P2 P3
[a+b] 41 59 35

116

Bibliography

[1] Andrew Chi-Chih Yao. Protocols for secure computations. In Foundations of

Computer Science, volume 82, pages 160–164. IEEE, 1982.

[2] Andrew C. Yao. How to generate and exchange secrets. In Proceedings of the

27th IEEE Symposium on Foundations of Computer Science, pages 162–167.

IEEE, 1986.

[3] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-

party computation using garbled circuits. In The 20th USENIX Security Sym-

posium, August 2011.

[4] Pascal Paillier. Public key cryptosystems based on composite degree residuosity

classes. In Advances in Cryptology - Eurocrypt ’99 Proceedings, LNCS 1592,

pages 223–238, Prague, Czech Republic, May 2-6 1999. Springer-Verlag.

[5] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient and secure

comparison for on-line auctions. In Australasian conference on information

security and privacy, pages 416–430. Springer, 2007.

[6] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November

1979.

[7] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.

Unconditionally secure constant-rounds multi-party computation for equality,

117

comparison, bits and exponentiation. In Shai Halevi and Tal Rabin, editors,

Theory of Cryptography, pages 285–304, Berlin, Heidelberg, 2006. Springer

Berlin Heidelberg.

[8] Tord Ingolf Reistad and Tomas Toft. Secret sharing comparison by transfor-

mation and rotation. In International Conference on Information Theoretic

Security, pages 169–180. Springer, 2007.

[9] Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality,

and comparison without bit-decomposition protocol. In International Workshop

on Public Key Cryptography, pages 343–360. Springer, 2007.

[10] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty

computation from somewhat homomorphic encryption. In Annual Cryptology

Conference, pages 643–662. Springer, 2012.

[11] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,

and Nigel P Smart. Practical covertly secure mpc for dishonest majority–or:

breaking the spdz limits. In European Symposium on Research in Computer

Security, pages 1–18. Springer, 2013.

[12] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making spdz

great again. In Annual International Conference on the Theory and Applications

of Cryptographic Techniques, pages 158–189. Springer, 2018.

[13] Carsten Baum, Daniele Cozzo, and Nigel P Smart. Using topgear in overdrive:

A more efficient zkpok for spdz. In International Conference on Selected Areas

in Cryptography, pages 274–302. Springer, 2019.

[14] Oded Goldreich. The Foundations of Cryptography, volume 2, chapter General

Cryptographic Protocols. Cambridge University Press, 2004.

118

[15] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Ef-

ficient protocols for realistic adversaries. In Salil P. Vadhan, editor, Theory of

Cryptography, pages 137–156, Berlin, Heidelberg, 2007. Springer Berlin Heidel-

berg.

[16] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:

Efficient protocols for realistic adversaries. Journal of Cryptology, April 7 2009.

[17] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks. In

Proceedings of the tenth annual ACM symposium on Principles of distributed

computing, pages 51–59, 1991.

[18] Ran Canetti and Amir Herzberg. Maintaining security in the presence of tran-

sient faults. In Annual International Cryptology Conference, pages 425–438.

Springer, 1994.

[19] Andrei Lapets, Frederick Jansen, Kinan Dak Albab, Rawane Issa, Lucy Qin,

Mayank Varia, and Azer Bestavros. Accessible privacy-preserving web-based

data analysis for assessing and addressing economic inequalities. In Proceedings

of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies,

pages 1–5, 2018.

[20] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn

Seth, David Shanahan, and Moti Yung. Private intersection-sum protocol with

applications to attributing aggregate ad conversions. Cryptology ePrint Archive,

Report 2017/738, 2017. https://eprint.iacr.org/2017/738.

[21] andCurv(www.curv.co). UnboundTech.(www.unboundtech.com), Se-

pior(sepior.com).

[22] https://sharemind.cyber.ee. Sharemind.

119

[23] https://duality.cloud Duality.

[24] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How the estonian

tax and customs board evaluated a tax fraud detection system based on secure

multi-party computation. In International conference on financial cryptography

and data security, pages 227–234. Springer, 2015.

[25] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and

Riivo Talviste. Students and taxes: a privacy-preserving study using secure

computation. Proceedings on Privacy Enhancing Technologies, 2016(3):117–

135, 2016.

[26] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nordholt, and

Tomas Toft. Confidential benchmarking based on multiparty computation. In

International Conference on Financial Cryptography and Data Security, pages

169–187. Springer, 2016.

[27] Liina Kamm and Jan Willemson. Secure floating point arithmetic and pri-

vate satellite collision analysis. International Journal of Information Security,

14(6):531–548, 2015.

[28] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter

Scholl. Improved primitives for mpc over mixed arithmetic-binary circuits. In

Annual International Cryptology Conference, pages 823–852. Springer, 2020.

[29] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation.

In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS ’20, page 1575âĂŞ1590, New York, NY, USA, 2020.

Association for Computing Machinery.

[30] Microsoft SEAL (release 3.6), November 2020. Microsoft Research, Redmond,

WA.

120

[31] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-

track multiparty computations with applications to threshold cryptography. In

Proceedings of the 17th Annual ACM Symposium on Principles of Distributed

Computing, pages 101–111, September 21 1998.

[32] Zuzana Beerliová-Trubíniová and Martin Hirt. Efficient multi-party computa-

tion with dispute control. In Shai Halevi and Tal Rabin, editors, Theory of

Cryptography, pages 305–328, Berlin, Heidelberg, 2006. Springer Berlin Heidel-

berg.

[33] Martin Hirt and Jesper Buus Nielsen. Robust Multiparty Computation with

Linear Communication Complexity. In Advances in Cryptology - CRYPTO

2006, volume 4117, pages 463–482. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2006. Series Title: Lecture Notes in Computer Science.

[34] Ivan Damgård and Jesper Buus Nielsen. Scalable and Unconditionally Secure

Multiparty Computation. In Alfred Menezes, editor, Advances in Cryptology -

CRYPTO 2007, pages 572–590. Springer Berlin Heidelberg, Berlin, Heidelberg,

2007. Series Title: Lecture Notes in Computer Science.

[35] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure mpc with linear

communication complexity. In Ran Canetti, editor, Theory of Cryptography,

pages 213–230, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[36] Vipul Goyal, Yanyi Liu, and Yifan Song. Communication-Efficient Uncondi-

tional MPC with Guaranteed Output Delivery. In Alexandra Boldyreva and

Daniele Micciancio, editors, Advances in Cryptology âĂŞ CRYPTO 2019, pages

85–114, Cham, 2019. Springer International Publishing. Series Title: Lecture

Notes in Computer Science.

121

[37] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed-Output Delivery

Comes Free in Honest Majority MPC. In Advances in Cryptology âĂŞ CRYPTO

2020. Springer International Publishing, 2020. Series Title: Lecture Notes in

Computer Science.

[38] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-Linear Unconditionally-

Secure Multiparty Computation with a Dishonest Minority. In Reihaneh Safavi-

Naini and Ran Canetti, editors, Advances in Cryptology âĂŞ CRYPTO 2012,

Lecture Notes in Computer Science, pages 663–680, Berlin, Heidelberg, 2012.

Springer.

[39] Yehuda Lindell and Ariel Nof. A Framework for Constructing Fast MPC over

Arithmetic Circuits with Malicious Adversaries and an Honest-Majority. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 259–276, Dallas Texas USA, October 2017. ACM.

[40] Donald Beaver. Efficient multiparty protocols using circuit randomization. In

Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 420–

432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[41] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda

Lindell, and Ariel Nof. Fast Large-Scale Honest-Majority MPC for Malicious

Adversaries. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in

Cryptology âĂŞ CRYPTO 2018, pages 34–64. Springer International Publishing,

Cham, 2018. Series Title: Lecture Notes in Computer Science.

[42] Daniel Genkin, Yuval Ishai, Manoj M. Prabhakaran, Amit Sahai, and Eran

Tromer. Circuits resilient to additive attacks with applications to secure com-

putation. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory

122

of Computing, STOC ’14, pages 495–504, New York, NY, USA, 2014. Associa-

tion for Computing Machinery.

[43] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party

computation: From passive to active security via secure simd circuits. In Rosario

Gennaro and Matthew Robshaw, editors, Advances in Cryptology – CRYPTO

2015, pages 721–741, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[44] Donald Beaver. Efficient multiparty protocols using circuit randomization. In

Annual International Cryptology Conference, pages 420–432. Springer, 1991.

[45] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-

homomorphic encryption and multiparty computation. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages

169–188. Springer, 2011.

[46] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption

from ring-lwe and security for key dependent messages. In Annual cryptology

conference, pages 505–524. Springer, 2011.

[47] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai She-

shank Burra. A new approach to practical active-secure two-party computation.

In Annual Cryptology Conference, pages 681–700. Springer, 2012.

[48] Enrique Larraia, Emmanuela Orsini, and Nigel P Smart. Dishonest majority

multi-party computation for binary circuits. In Annual Cryptology Conference,

pages 495–512. Springer, 2014.

[49] Ivan Damgård and Sarah Zakarias. Constant-overhead secure computation of

boolean circuits using preprocessing. In Theory of Cryptography Conference,

pages 621–641. Springer, 2013.

123

[50] Ivan Damgård, Rasmus Lauritsen, and Tomas Toft. An empirical study and

some improvements of the minimac protocol for secure computation. In Interna-

tional Conference on Security and Cryptography for Networks, pages 398–415.

Springer, 2014.

[51] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl.

A unified approach to mpc with preprocessing using ot. In International Con-

ference on the Theory and Application of Cryptology and Information Security,

pages 711–735. Springer, 2015.

[52] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl.

A unified approach to mpc with preprocessing using ot.

[53] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious

arithmetic secure computation with oblivious transfer. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, page 830âĂŞ842, New York, NY, USA, 2016. Association for Com-

puting Machinery.

[54] Niv Gilboa. Two party rsa key generation. In Annual International Cryptology

Conference, pages 116–129. Springer, 1999.

[55] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.

Unconditionally secure constant-rounds multi-party computation for equality,

comparison, bits and exponentiation. In Theory of Cryptography Conference,

pages 285–304. Springer, 2006.

[56] Securescm analysis. public deliverable d9.2, securescm project. July 2009.

[57] Ian F Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer

and computing on intervals. In International Conference on the Theory and

124

Application of Cryptology and Information Security, pages 515–529. Springer,

2004.

[58] Tord Ingolf Reistad and Tomas Toft. Secret sharing comparison by transfor-

mation and rotation. In International Conference on Information Theoretic

Security, pages 169–180. Springer, 2007.

[59] Tord Ingolf Reistad. Multiparty comparison-an improved multiparty protocol

for comparison of secret-shared values. In International Conference on Security

and Cryptography, volume 1, pages 325–330. SCITEPRESS, 2009.

[60] Tord Reistad and Tomas Toft. Linear, constant-rounds bit-decomposition. In

International Conference on Information Security and Cryptology, pages 245–

257. Springer, 2009.

[61] Berry Schoenmakers and Pim Tuyls. Efficient binary conversion for paillier

encrypted values. In Serge Vaudenay, editor, Advances in Cryptology - EURO-

CRYPT 2006, pages 522–537, Berlin, Heidelberg, 2006. Springer Berlin Heidel-

berg.

[62] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh.

Rabbit: Efficient comparison for secure multi-party computation. IACR Cryp-

tol. ePrint Arch., 2021:119, 2021.

[63] Craig Gentry. A fully homomorphic encryption scheme. Stanford university,

2009.

[64] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings

of the 41st annual ACM symposium on Symposium on theory of computing -

STOC ’09, page 169, Bethesda, MD, USA, 2009. ACM Press.

125

[65] Craig Gentry and Shai Halevi. Implementing gentryâĂŹs fully-homomorphic

encryption scheme. In Annual international conference on the theory and ap-

plications of cryptographic techniques, pages 129–148. Springer, 2011.

[66] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with

relatively small key and ciphertext sizes. In International Workshop on Public

Key Cryptography, pages 420–443. Springer, 2010.

[67] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully

homomorphic encryption over the integers. Cryptology ePrint Archive, Report

2009/616, 2009. https://eprint.iacr.org/2009/616.

[68] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi.

Fully homomorphic encryption over the integers with shorter public keys. In

Annual Cryptology Conference, pages 487–504. Springer, 2011.

[69] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key com-

pression and modulus switching for fully homomorphic encryption over the in-

tegers. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 446–464. Springer, 2012.

[70] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrede

Lepoint, Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryp-

tion over the integers. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 315–335. Springer, 2013.

[71] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-

momorphic encryption without bootstrapping. In Proceedings of the 3rd Inno-

vations in Theoretical Computer Science Conference (ITCS’12), pages 309–325,

January 2012.

126

[72] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic En-

cryption from (Standard) LWE. In 2011 IEEE 52nd Annual Symposium on

Foundations of Computer Science, pages 97–106, Palm Springs, CA, USA, Oc-

tober 2011. IEEE.

[73] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching

from Classical GapSVP. volume 7417, pages 868–886. Berlin, Heidelberg, 2012.

Series Title: Lecture Notes in Computer Science.

[74] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic

Encryption. 2012:19, 2012.

[75] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from

learning with errors: Conceptually-simpler, asymptotically-faster, attribute-

based. In Annual Cryptology Conference, pages 75–92. Springer, 2013.

[76] Shai Halevi and Victor Shoup. Bootstrapping for helib. In Annual International

conference on the theory and applications of cryptographic techniques, pages

641–670. Springer, 2015.

[77] Léo Ducas and Daniele Micciancio. Fhew: bootstrapping homomorphic encryp-

tion in less than a second. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages 617–640. Springer, 2015.

[78] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.

Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.

In international conference on the theory and application of cryptology and in-

formation security, pages 3–33. Springer, 2016.

[79] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic

encryption for arithmetic of approximate numbers. In International Conference

127

on the Theory and Application of Cryptology and Information Security, pages

409–437. Springer, 2017.

[80] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.

A full rns variant of approximate homomorphic encryption. Cryptology ePrint

Archive, Report 2018/931, 2018. https://eprint.iacr.org/2018/931.

[81] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for

approximate homomorphic encryption. Cryptology ePrint Archive, Report

2018/1043, 2018. https://eprint.iacr.org/2018/1043.

[82] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More

efficient oblivious transfer and extensions for faster secure computation. In Pro-

ceedings of the 2013 ACM SIGSAC conference on Computer & communications

security, pages 535–548, 2013.

[83] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental

game, or a completeness theorem for protocols with honest majority. In Pro-

viding Sound Foundations for Cryptography: On the Work of Shafi Goldwasser

and Silvio Micali, pages 307–328. 2019.

[84] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian

Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P Smart.

High performance multi-party computation for binary circuits based on oblivi-

ous transfer.

[85] Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting with

security for malicious adversaries. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, pages 579–590, 2015.

128

[86] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:

Private set intersection using permutation-based hashing. In 24th {USENIX}

Security Symposium ({USENIX} Security 15), pages 515–530, 2015.

[87] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set in-

tersection based on {OT} extension. In 23rd {USENIX} Security Symposium

({USENIX} Security 14), pages 797–812, 2014.

[88] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic compu-

tation with no honest majority. In Theory of Cryptography Conference, pages

294–314. Springer, 2009.

[89] Carsten Baum, Ivan Damgård, Tomas Toft, and Rasmus Zakarias. Better pre-

processing for secure multiparty computation. In International Conference on

Applied Cryptography and Network Security, pages 327–345. Springer, 2016.

[90] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter

Scholl. Efficient pseudorandom correlation generators: Silent ot extension and

more. In Annual International Cryptology Conference, pages 489–518. Springer,

2019.

[91] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter

Rindal, and Peter Scholl. Efficient two-round ot extension and silent non-

interactive secure computation. In Proceedings of the 2019 ACM SIGSAC Con-

ference on Computer and Communications Security, pages 291–308, 2019.

[92] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious

transfers efficiently. In Annual International Cryptology Conference, pages 145–

161. Springer, 2003.

[93] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for

efficient mixed-protocol secure two-party computation. In NDSS, 2015.

129

[94] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for

machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, pages 35–52, 2018.

[95] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell,

Kazuma Ohara, and Hikaru Tsuchida. Generalizing the spdz compiler for other

protocols. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, pages 880–895, 2018.

[96] Dragos Rotaru and Tim Wood. Marbled circuits: Mixing arithmetic and

boolean circuits with active security. In International Conference on Cryptology

in India, pages 227–249. Springer, 2019.

[97] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and

Thomas Schneider. Hycc: Compilation of hybrid protocols for practical se-

cure computation. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, pages 847–861, 2018.

[98] Muhammad Ishaq, Ana L Milanova, and Vassilis Zikas. Efficient mpc via pro-

gram analysis: A framework for efficient optimal mixing. In Proceedings of the

2019 ACM SIGSAC Conference on Computer and Communications Security,

pages 1539–1556, 2019.

[99] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul

Tripathi. Ezpc: programmable and efficient secure two-party computation for

machine learning. In 2019 IEEE European Symposium on Security and Privacy

(EuroS&P), pages 496–511. IEEE, 2019.

[100] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P Smart, and

Tim Wood. Zaphod: Efficiently combining lsss and garbled circuits in scale.

130

In Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied

Homomorphic Cryptography, pages 33–44, 2019.

[101] Dragos Rotaru, Nigel P Smart, Titouan Tanguy, Frederik Vercauteren, and Tim

Wood. Actively secure setup for spdz. IACR Cryptol. ePrint Arch., 2019:1300,

2019.

[102] Charlotte Bonte, Nigel P Smart, and Titouan Tanguy. Thresholdizing hashed-

dsa: Mpc to the rescue. International Journal of Information Security, pages

1–16, 2021.

[103] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In An-

nual international conference on the theory and applications of cryptographic

techniques, pages 337–367. Springer, 2015.

[104] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocess-

ing via function secret sharing. In Theory of Cryptography Conference, pages

341–371. Springer, 2019.

[105] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126, 1978.

[106] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In International conference on the theory and applications of crypto-

graphic techniques, pages 223–238. Springer, 1999.

[107] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[108] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–

613, 1979.

131

[109] Oriol Farras and Carles Padró. Ideal hierarchical secret sharing schemes. IEEE

transactions on information theory, 58(5):3273–3286, 2012.

[110] Ivan Damgård and Rune Thorbek. Linear integer secret sharing and distributed

exponentiation. In International Workshop on Public Key Cryptography, pages

75–90. Springer, 2006.

[111] Dan Bogdanov. Foundations and properties of shamirâĂŹs secret sharing

scheme research seminar in cryptography. University of Tartu, Institute of

Computer Science May 1st, 2007.

[112] Rosario Gennaro, Michael O Rabin, and Tal Rabin. Simplified vss and fast-track

multiparty computations with applications to threshold cryptography. In Pro-

ceedings of the seventeenth annual ACM symposium on Principles of distributed

computing, pages 101–111. ACM, 1998.

[113] Thijs Veugen, Frank Blom, Sebastiaan JA de Hoogh, and Zekeriya Erkin. Se-

cure comparison protocols in the semi-honest model. IEEE Journal of Selected

Topics in Signal Processing, 9(7):1217–1228, 2015.

[114] Yehuda Lindell and Ariel Nof. A framework for constructing fast mpc over arith-

metic circuits with malicious adversaries and an honest-majority. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Se-

curity, pages 259–276, 2017.

[115] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic

encryption. IACR Cryptol. ePrint Arch., 2012:144, 2012.

[116] Abdelrahaman Aly, K Cong, D Cozzo, M Keller, E Orsini, D Rotaru, O Scherer,

P Scholl, NP Smart, T Tanguy, et al. Scale–mamba v1. 14: Documentation,

2021.

132

[117] Tord Reistad. MULTIPARTY COMPARISON - An Improved Multiparty Pro-

tocol for Comparison of Secret-shared Values. In Proceedings of the Interna-

tional Conference on Security and Cryptography, pages 325–330, Milan, Italy,

2009. SciTePress - Science and and Technology Publications.

[118] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party se-

cure computation for neural network training. Proc. Priv. Enhancing Technol.,

2019(3):26–49, 2019.

[119] Chameleon cloud. https://www.chameleoncloud.org/.

[120] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on

oblivious transfer – efficiently. In Advances in Cryptology – CRYPTO 2008,

pages 572–591, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[121] Ran Canetti. Universally composable security: A new paradigm for crypto-

graphic protocols. In Proceedings of the 42nd IEEE Symposium on Foundations

of Computer Science, pages 136–145. IEEE, 2001.

[122] Scale-mamba software. https://homes.esat.kuleuven.be/~nsmart/SCALE/.

[123] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,

Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter,

Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai,

and Vinod Vaikuntanathan. Homomorphic encryption security standard. Tech-

nical report, HomomorphicEncryption.org, Toronto, Canada, November 2018.

[124] A. Aly, M. Keller, E. Orsini, D. Rotaru, P. Scholl, N.P. Smart, and T. Wood.

Scale-mamba v1.12: Documentation (2021), 2021.

133

VITA

Ali Ataeemh Al-lami was born and raised in Amarah city, Mysan, Iraq. He ob-

tained the Bachelor degree in Computer Science from Shatt Alarab Uinveristy, Basrah,

Iraq. Ali gained 3 years of experience in the industry at Zain and Asiacell telecommu-

nication companies. As well as, 3 years in the education field at Mysan University. His

passion for research made him enroll into the MS program for Computer Science at

informatics institute of technology , Baghdad, Iraq, where he gained his master degree

in computer science. After one year, he won a scholarship of the Higher Committee of

Education Development (HCED) which funded his PhD program in the United States

for five years. Through that, he got started his PhD program at Missouri University

of Science and Technology, Rolla, Missouri,USA under the guidance of professor Dr.

Wei Jiang. Later, he transferred to the University of Missouri, Columbia, USA along

with his advisor. He is currently completing a PhD at the University of Missouri and

is working in researching privacy-preserving data analytics with Dr. Wei Jiang.

134

