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ABSTRACT

The population, composition, and spatial distribution of the plants and animals

in certain regions are always important data for natural resource management, con-

servation and farming. The traditional ways to acquire such data require human

participation. The procedure of data processing by human is usually cumbersome,

expensive and time-consuming. Hence the algorithms for automatic animal and plant

inventory show their worth and become a hot topic.

We propose a series of computer vision methods for automated plant and animal

inventory, to recognize, localize, categorize, track and count different objects of inter-

est, including vegetation, trees, fishes and livestock animals. We make use of different

sensors, hardware platforms, neural network architectures and pipelines to deal with

the varied properties and challenges of these objects.

(1) For vegetation analysis, we propose a fast multistage method to estimate the

coverage. The reference board is localized based on its edge and texture features.

And then a K-means color model of the board is generated. Finally, the vegetation

is segmented at pixel level using the color model. The proposed method is robust to

lighting condition changes. (2) For tree counting in aerial images, we propose a novel

method called density transformer, or DENT, to learn and predict the density of

the trees at different positions. DENT uses an efficient multi-receptive field network

to extract visual features from different positions. A transformer encoder is applied

to filter and transfer useful contextual information across different spatial positions.

DENT significantly outperformed the existing state-of-art CNN detectors and regres-

sors on both the dataset built by ourselves and an existing cross-site dataset. (3) We

propose a framework of fish classification system using boat cameras. The framework

contains two branches. A branch extracts the contextual information from the whole

image. The other branch localizes all the individual fish and normalizes their poses.

xiv



The classification results from the two branches are weighted based on the clearness

of the image and the familiarness of the context. Our system achieved the top 1%

rank in the competition of The Nature Conservancy Fisheries Monitoring. (4) We

also propose a video-based pig counting algorithm using an inspection robot. We

adopt a novel bottom-up keypoint tracking method and a novel spatial-aware tempo-

ral response filtering method to count the pigs. The proposed approach outperformed

the other methods and even human competitors in the experiments.
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Chapter 1

Introduction

1.1 Problem and Motivation

The population and composition of the animals and plants at a certain place are

essential information for the studies of ecology, conservation and farming. Imagine

the following scenarios: (1) The scientists in Missouri are learning the vegetation

structures and expect to measure the density of grass at several sites. (2) Some

forests in California are damaged by wildfire in recent years. To estimate the loss,

the natural resource specialists expect to compare the changes of the tree count

in different regions. (3) The sea fish in the Western and Central Pacific is being

threatened by illegal and unregulated fishing practices. The conservationists expect

to monitor the species and number of fish caught by the fishing boats. Traditionally,

to fetch such information, human laborers are sent to the study fields to measure a set

of samples and record the observation. (4) Several pig farms in Jilin Province of China

periodically reallocate pig houses to the pigs according to their status, including their

age, weight, health condition, and feeding amount. The owners of the pig farm expect

to track the pigs and monitor the number of pigs in each region on daily basis.

1



However, the traditional way for the plant and animal inventory has serious draw-

backs as follow: Firstly, in some situations, the showing up of human should be

limited or avoided. Possible reasons include: Intrusive inspections may cause distur-

bance to some local ecosystem; The environmental exposure at the study fields may

cause health risk to human; The contact between human and livestock may cause

hygiene issues to both of them; Some places are difficult, dangerous or expensive for

human to reach, such as the mountain tops of high altitude. Secondly, manual data

processing by human is typically cumbersome. This means expensive labor costs and

that the time-consuming procedures hinder the managers of the natural resources or

farms from making rapid decisions.

The development of hardware and software in recent decades makes efficient auto-

matic or computer-aided plant and animal inventory possible. On one hand, a lot of

hardwares have been more powerful and affordable, including cameras, drones, chips

for embedded systems and GPUs. These hardware help the tasks in different ways.

High-resolution cameras take clear images; And fisheye lenses have wide fields of view.

Drones can be used to fly over the study area for aerial imagery. Embedded systems

can be deployed on a robot walking in the study area. GPUs accelerate the parallel

computation of the models. On the other hand, the breakthrough of computer vi-

sion and deep learning algorithms encourages the emergence of artificial intelligence

software. The technology of AI is advancing towards maturity in some areas like ob-

ject classification, localization and tracking, and even outperforming human on some

specific tasks. The design of efficient systems and algorithms for plant and animal

inventory is worth exploring and also the goal of this dissertation.

Depending on objects of interest and environmental conditions, the technical chal-

lenges for computer vision-based automatic inventory systems can be task-specific.

For example, the objects may be numerous, crowded and even moving fast and ran-

domly. Day/night cycles, seasons and weathers affect the lighting conditions. The

2



objects may have different poses, shapes and appearances, and are in different cate-

gories. When the data are processed offline, powerful hardware can be used. But for

online embedded systems, the computational resources limit the complexity of the

models. In this sense, different strategies should be adopted to solve the problems.

1.2 Involved works and publications

We will cover four typical kinds of objects: vegetation, trees, fishes and livestocks

in this dissertation. The challenges and the proposed approaches will be introduced.

We provide a brief overview as follows:

A) Vegetation Coverage Estimation from Images

• Camera: conventional camera

• Platform: offline

• Input: images

• Properties of objects: dense

• Techniques: detection and segmentation

• My publication: G. Chen, Y. Liu, N. Wergeles, Y. Shang, J. Sartwell, T. Thomp-

son and A. Lewandowski. “Digital Image Vegetation Analysis with Machine

Learning”, In Proceedings of the 2017 International Conference on Robotics

and Artificial Intelligence (ICRAI 2017), Association for Computing Machinery

(ACM), New York, NY, USA, 6–10. DOI: 10.1145/3175603.3175611

In this work, we propose a computer vision-based approach to analyze the wild vege-

tation coverage. The vegetation coverage is estimated by the percentage of a reference

3



board covered by grass. Since the wild environment is uncontrolled, the grass and

the reference board show different colors. The goal of the proposed approach is to

accurately detect the reference board and segment the board versus grass. We adopt

handcrafted features to localize the board and generate region proposals for local

patches that are not covered by the grass. And then the segmentation is formulated

as an one-class classification problem. A color model is generated based on the re-

gion proposals and predicts the pixel-level segmentation result. There are two main

advantages of this approach. Firstly, because it automatically infers the color of the

reference board at test time, it is robust to the lighting condition change. Secondly,

it requires only a small set of training data and no pixel-level annotation is needed.

B) Tree Counting and Density Estimation Using Aerial Imagery

• Camera: Aerial camera

• Platform: offline

• Input: images

• Properties of objects: random pose, sometimes blurry and unclear in dark

• Techniques: counting by density estimation

• My publication: G. Chen and Y. Shang, “Transformer for Tree Counting in

Aerial Images”, submitted to Remote Sensing. 2021

In this work we propose an efficient density-based approach called density transformer,

or DENT, for tree counting in aerial images. The model consists of a Multi-Receptive

Field convolutional network (Multi-RF CNN), a transformer encoder, a Density Map

Generator (DMG) and a tree counter. The Multi-RF CNN simutaneously extracts

visual features from concentric receptive fields in different sizes. The transformer
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models the interaction of the visual features extracted from different positions, filter-

ing and transfering the useful contextual information across the features. The DMG

generates the density map showing the spatial distribution of the trees. And the tree

counter predicts the number of trees in the input image. We also collect the fully

labeled dataset called Yosemite Tree Dataset. To the best of our knowledge, it is the

largest public available common benchmark dataset of tree counting. We compare

it with the famous and popular state-of-art methods on Yosemite Tree Dataset and

an external cross-site dataset as well. DENT significantly outperforms almost all the

other methods.

C) Fish Detection and Classification Using Boat Camera

• Camera: boat camera

• Platform: offline

• Input: images

• Properties of objects: numerous, dense

• Techniques: counting by density estimation

• My publication: G. Chen, P. Sun and Y. Shang, “Automatic Fish Classification

System Using Deep Learning,” 2017 IEEE 29th International Conference on

Tools with Artificial Intelligence (ICTAI), 2017, pp. 24-29, DOI: 10.1109/IC-

TAI.2017.00016.

The goal of this work is to detect which species of fish appear on a fishing boat via

the images captured from boat cameras of various angles. We propose an automatic

fisheries classification system involving both instance-level classification and image-

level classification. The instance-level classifier localizes the fish ignoring the other

objects such as working crew and fishing gears. Since a captured fish can be placed
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at a random position on boat and with a random pose, the instance-level classifier

only focuses on the local region of the fish and normalize the pose to achieve better

accuracy. In some circumstances, the individual fish can hardly be recognized. For

example, when images are taken at night, they may have inaccurate colors. The cam-

era can also be affected by splashed water or rain and output blurry images. In this

case, the backup solution is to make a prediction based on the contextual information

and prior knowledge. The image-level classifier learns to link the categorical infor-

mation of fish and the whole scenario in the training set. At test time, a mechanism

is designed to estimate how familiar the current scenario is and to balance the two

classifiers. The proposed method achieved top 0.7% rank on the final leaderboard in

the worldwide competition of “The Nature Conservancy Fisheries Monitoring” hosted

by Kaggle.

D) Livestock Detection and Counting Using Inspection Robot

• Camera: fisheye lens on robot

• Platform: online, edge computing on embedded system

• Input: videos

• Properties of objects: deformable, crowded, moving

• Techniques: bottom-up detection, counting by tracking

• My publication: G. Chen, S. Shen, L. Wen, S. Luo and L. Bo, “Efficient Pig

Counting in Crowds with Keypoints Tracking and Spatial-aware Temporal Re-

sponse Filtering”, 2020 IEEE International Conference on Robotics and Au-

tomation (ICRA), 2020, pp. 10052-10058, DOI: 10.1109/ICRA40945.2020.9197211.

This work is an edge computing robot system for counting pigs. Today, a typical pig

house is too large for a single camera to cover, hence counting pigs using cameras
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is a non-trivial task. We developed an inspection robot walking on the rail installed

on the ceiling of the pig house. The robot scans the pig house using a fisheye lens.

The number of the pigs is inferred based on the captured video. The inference model

is deployed on the embedded system of the robot. To accurately localize the pigs

we proposed a bottom-up keypoint detection method to deal with the crowded and

deformable bodies of pigs, outperforming the existing state-of-art top-down detectors:

The locations and the affinity fields are predicted using a fully convolutional network.

Based on the locations and affinity, the keypoints are spatially associated. So that

the keypoints belonging to the same instances are grouped. An then the instances are

tracked across different frames. We also propose a Spatial-aware Temporal Response

Filtering procedure to handle the missing instances, false alarms and the trajectories

of the pigs. Finally, the proposed approach is compared with human volunteers. Our

approach significantly outperform the human volunteers in term of counting accuracy.

Each kind of object will be introduced in an individual chapter in the rest of this

dissertation.

1.3 Contributions

The main contributions of the works reported in this dissertation include:

1. A Digital Image Vegetation Analysis algorithm that automatically estimates

the vegetation coverage. And it is robust to lighting condition change.

• We propose a method to infer the position of the reference board directly

from the HOG feature maps.

• We propose a LBP+SVM procedure to generate coarse reference board

segmentation proposals.

• We propose a K-means based method to generate color model from the ex-
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amplar regions of reference board at test time and refine the segmentation

result to pixel level.

2. A novel density transformer, or DENT, significantly outperforming the other

mainstream state-of-art methods for tree counting tasks.

• We propose a surprisingly simple but efficient strategy to extract visual

features from multiple receptive fields and improve the feature representa-

tion. The multiple receptive fields are implemented by jump connections

from intermediate layers of a backbone CNN to the final layer.

• We propose a transformer-based method to share contextual information

across visual features corresponding to different positions.

• We propose two decoders to decode the hidden states of the transformer to

generate tree density maps and tree counts. The two decoders output re-

sults in different granularity with different computational costs but similar

counting accuracy. Such design provides the user choices based on their

time budget.

3. An automatic fish classification system robust to the random pose of fish, ex-

treme lighting condition change and wet camera, achieving the top 1% solutions

among the “The Nature Conservancy Fisheries Monitoring” competition.

• We propose a two-branch framework to classify fish using the local region

and context respectively.

• We propose a detection, pose normalization and classification workflow to

improve the classfication accuracy.

• We propose an adaptive prediction average mechanism to estimate which

branch works better and reweight the results from the two branches. The
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estimation is made according to the detection scores and the familiarity of

the context.

4. An inspection robot system for livestock counting, with a novel algorithm robust

to the livestock and camera movement. The proposed method outperforms

human competitors in pig counting experiments.

• We propose a efficient bottom-up keypoint detection framework to detect

crowded and overlapping livestocks.

• We propose a fast CNN consisting of depthwise separable convolutional

blocks to generate the heatmaps and the offset vector maps for keypoints.

And it is efficient enough to run on a conventional embedded system.

• We propose a novel spatial-aware temporal response filtering method to

suppress the false positives and tracking failure and predict the count of

the livestock.
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Chapter 2

Vegetation Coverage Estimation
from Images

2.1 Introduction

Digital image vegetation analysis (DIVA) is becoming an indispensable ground-based,

large-scale, non-destructive technique for measuring vegetation structure [3]. DIVA

provides a simple method for assessing landscape scale vegetation heterogeneity and

can serve as a method of assessing wildlife habitat suitability with ramifications for

determining habitat management success. DIVA techniques are intended to replace

the laborious cut and weigh process and have been shown to produce surprisingly ac-

curate results compared to other traditional visual obstructive methods [3, 4]. When

combined with automated computer processes DIVA has the potential to become the

principle method for evaluating vegetation characteristics in terrestrial ecosystems.

Unfortunately, one major impediment to this goal is the lack of a standardized pro-

cess of dealing with the inherent error in DIVA; i.e. variations in camera resolutions,

lighting conditions and even ambient wind speeds can have a direct impact on DIVA

results. A difference in variability will occur by location, investigator, time of day
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image board detection grass/board segmentation

Figure 2.1: The pipeline of the proposed method.

and even from image to image [5, 6]. In those cases where DIVA is semi-automated

through software, these errors will be compounded by the use of arbitrary contrast

thresholds and/or sets of highly variable user-specified pixel parameters [3]. The most

basic uncertainty with DIVA is the misclassification of pixel values as vegetation as

the relative contrast of the vegetation decreases against a known backdrop (photo-

board). This misclassification or blurring places a finite limit on the detectability of

the vegetation that can be visualized and it reduces the contrast of small features in

the image.

In this work, we explore to identify the structure of the vegetation with automatic

machine learning approach. The vegetation’s structure is learnt by analyzing the

coverage of vegetation on the blackboard. The algorithm can learn the vegetation

from the training images. During the testing phase, the algorithm can predict the

coverage of vegetation in digital images without human intervention. We developed

our pipeline with two stages (Figure 2.1). In the first stage, we localize blackboard

from the whole image. Our approach can find the pixel location of blackboard, as well

as its width and height. In the second stage, given the blackboard region location,

we further segment the image pixel of vegetation from blackboard.

The proposed approach is evaluated on a dataset collected in a real world field

study. The experimental results demonstrate that the proposed method is robust to

the color instability caused by the variation of lighting condition. On the test set,

the success rate of the localization of blackboard is 93%. The error rate of coverage
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estimation is 3%.

2.2 Related works

In literature, researchers are focusing on using different methods to collect and process

vegetation data. In terms of collecting data, there are visual obstruction methods [7,

8] and imagery methods [3, 4]. Visual obstruction methods are common and are

introduced first to quantify vegetation structures. Robel Pole [7] is one of the standard

methods for visual obstruction. The author used a linear regression-based analysis

to prove that the relationship between the mean of visual obstruction measurements

and the weight of clipped vegetation are highly correlated. Coverboard [8] is used to

read the vegetation density and showed it can be used to measure vegetation on any

scale. However, visual obstruction methods mainly rely on a human observer. There

is the potential for mistakes, based on different human criteria. It is also the least

desirable method because of the amount of effort required to process which cannot

be automated by a computer.

Recently, more research has shifted their focus on digital image based measure-

ments. Previous DIVA techniques fall generally into 3 categories: arbitrary thresh-

old classifications, human-based, and photo-training selection [3]. However, none is

based off a machine learning approach, to the best of our knowledge. In [4], an image

thresholding based vegetation measurement is proposed. In this arbitrary threshold

method, the image is converted into a binary black and white image. Any pixel

over a pre-defined and arbitrary threshold value is assigned one (vegetation) and zero

(photo-board) otherwise. This method is highly affected by variations in light from

both temporal and environmental factors such as shadowing and/or highlighting.

For the human-based selection [9] it is more accurate than arbitrary threshold

methods since this is a fully supervised process. However, this method is based on
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human criteria to determine what is vegetation, it may increase the error rate of

detection. It is also time consuming compared to arbitrary threshold method.

The photo-training technique [10] is a semi-automatic albeit arbitrarily-defined

training process. It required users to specify the parameters first, then the algorithm

can run automatically. However, if the user specified values are only partially cor-

rect, in identifying vegetation, which is generally the case with thousands of images

with significant temporal and environmental differences, then the error will likely be

perpetuated to the full set of digital images. As a result, all the three categories

approaches cannot run automatically, and require human intervention or decisions.

Therefore, all three methods increase detection error rate and have a slow processing

time.

In this work, we propose automatic localization and segmentation algorithms to

improve all three detectability factors and significantly reduce arbitrarily defined crite-

ria as well as human influences in variability. Our novelty includes: (1) Our approach

is fully automatic and does not require any human involved actions. (2) Our approach

not only takes into account color difference between vegetation area and backdrop,

but also considers shape and texture information, which is more robust to lighting

and weather changes. (3) Our approach is fast. It only takes 2-3 seconds to process

one image and a few minutes to train hundreds of images on a single common CPU.

2.3 Proposed method

The goal of the proposed method is to design an efficient approach to segment the

vegetation region on the blackboard from the rest of the image. To achieve the goal,

the blackboard is localized on the image. And then an adaptive color model is applied

to predict whether each pixel in the area of blackboard is covered by vegetation or not.

We also expect to deal with several problems: First, human labeling is expensive, so a
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learning algorithm which does not requires a large amount of labeled data is preferred.

Second, the environmental conditions such as weather and lighting vary, hence any

preset colors are not reliable to recognize the blackboard/vegetation.

2.3.1 Blackboard Localization

The work in this work is under an assumption that at least three edges (the top,

left, and right edges) of the blackboard are visible in the image and the blackboard is

standing upright. Following a heuristic that the gradient on the horizontal edge should

be vertical and the gradient on the vertical edges should be horizontal. Histogram of

Oriented Gradient (HOG) [11] features are utilized to localize the blackboard without

supervised learning (and without labeled data). Instead of applying a sliding window

like the traditional way to detect objects, the three edges can be detected separately

to achieve a fast processing speed.

The blackboard localization approach is as follows:

(1) Convert the input image into gray-scale. We find separately processing each

channel of image in RGB or HSV space in the following procedures improve the

performance a little. But a gray-scale version of the input image works well.

(2) Compute the gradient values. The most common method is to apply the 1-D

centered point discrete derivative mask in one or both of the horizontal and vertical

directions. An easy way to acquire the gradient map is to do a convolution between

the image and two filter [−1, 0, 1] and [−1, 0, 1]>.

(3) Divide the image into small cells. In our program, the size of each cell is 12

pixels by 12 pixels.

(4) Each pixel within the cell casts a weighted vote for an orientation-based his-

togram constructed on the values found in the gradient computation. In our program,

the number of orientation bins is 12.

(5) Concatenate the HOG features for each cell to get the HOG feature map for
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the image. This feature map has a lower resolution and 12 channels. Each channel is

corresponding to an arrange of orientation. Denote the channel i of the feature map

as Ci and assume the C0, C3, C6, C9 represent the upward, leftward, downward and

rightward components of the gradient map respectively. Then C3 +C9 indicates the if

there is a strong vertical edge at each position. Ideally, the summation of the columns

has two peaks which shows where the vertical side of the blackboard is. Hence in this

work, the top 2 maxima are chosen. Similarly, the horizontal edge of the blackboard

can also be localized.

(6) Since the aspect ratio of the blackboard is known, the outline of the entire

blackboard can be inferred.

2.3.2 Segmentation at raw level

In the previous step, we get the location of the blackboard. The sub-image in the area

of blackboard is divided into small cells. since the pattern for the blackboard and the

vegetation are visually different. For the training set, we separate the blackboard and

the vegetation. We can use a Local Binary Pattern (LBP) [10] to get the features

of the blackboard and vegetation. We use these features to train a Support Vector

Machine (SVM) and use this classifier to roughly separate the blackboard and the

vegetation in the testing set. The higher the score the cell receives, the probability is

higher the pixel is from the blackboard rather than the vegetation.

We use the following methods to build a color model for the corresponding picture:

1) The sub-image is cropped from the bounding box. We resize the sub-image to

600 by 900 pixels.

2) Divide the sub-image into small cells. In our program, the size of each cell is

60 by 60 pixels. Get the Local Binary Pattern (LBP) feature vector for each cell.

3) Train a SVM to classify the blackboard and the vegetation. Use the LBP

feature vector for the images of the training set to train a SVM.
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(a) (b) (c) (d)

Figure 2.2: (a) The response map of LBP+SVM. (b) The top scored cells for black-
board. (c) The distance between each pixel to the K-means color model. (d) The
segmentation result.

4) Use the SVM created in the previous step to classify the cells of the input

image and get a score for each cell (A example is shown in Figure 2.2(a)). The score

indicates how likely the part of blackboard in the cell is covered by vegetation.

2.3.3 Segmentation at pixel level

The RGB colors in the lowest-scored cells (Figure 2.2(b)) are clustered by using a

K-Means model with 8 clusters. This color model is used to approximately simulate

the distribution of the color of the blackboard. Only the lowest-scored cells are used

to build the color model to make sure that the color model is not strongly intervened

by pixel of vegetation. Given a pixel, the probability that it is covered by vegetation

is measured by the distance of the color of the pixel to the nearest cluster center of

the K-Means model (Figure 2.2(c)). By adjusting the parameters of the K-Means

Color Model, we can get a better detection. In our program, we set the threshold as

27. This means if the distance of the color of this pixel is less than 27 to the nearest

cluster, we say the pixel is blackboard, otherwise it is from vegetation. An example

of the final segmentation result is shown in Figure 2.2(d).
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2.3.4 Compute the Coverage of the Vegetation

We can calculate the number of the vegetation pixels because we already identify the

pixels from the blackboard in the previous step. The total number of pixels in the

entire blackboard area is also known. The difference of these two are the number of

pixels from the vegetation. The steps for this procedure are outlined below:

1) In the sub-image, we scanned each line of pixels to compute the number of

pixels N we detected in the vegetation. Since the size of the sub image is 600 x 900

pixels, we can get the coverage for each line which is equal to the number of pixels

divided by 600, e.g. N/600. 2) The total coverage is equal to the number of pixels

detected from vegetation X divided by the total amount of pixels in the sub-image,

e.g. N/(600×900). Finally, we can calculate the coverage of the vegetation as shown

in Figure 2.3. We plot the vegetation coverage overlay on the top of original image.

We then plot the distribution of the vegetation coverage in terms of the height. In the

distribution figure shown in Figure 2.3, the vertical axis is the height of the blackboard

and the horizontal axis is the coverage. We calculate the total vegetation coverage

percentage over the entire blackboard and display the results on the plot, which is

located slightly above the x-axis, e.g. Coverage: 55.23%.

Figure 2.3: An example of calculated vegetation coverage.
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2.4 Experiments

2.4.1 Dataset

We evaluate our proposed method on the dataset collected by the Missouri Depart-

ment of Conservation (MDC) (See examples in Figure 2.4). This dataset contains

1,260 vegetation coverboard images. The resolution of the images are 5184×3456.

The real size of the blackboard is 1m×1.5m. The picture is taken from 5 meters away

from the board, therefore the blackboard will approximately be the same size in each

image. In our experiment, we use 80% of the data as training and use 20% of the

data to test the performance of our approach. During the training stage, we extract

features and train the SVM model. During the testing phase, we evaluate our trained

model on the new images to get the accuracy.

Figure 2.4: Example images for vegetation coverage estimation taken in Missouri
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Figure 2.5: The graphical user interface of the software using the proposed method

2.4.2 Result

We developed a software with graphical user interface based on PyQt for batch pro-

cessing the images (Figure 2.5). We report the success rate for the blackboard detec-

tion and mean absolute error (MAE ) for the vegetation coverage analysis.

Results of Blackboard Localization

For our blackboard localization stage, we tested 200 images and the success rate is

93%. Examples of correctly detected blackboard are shown in Figure 2.6(a). A success

case for board detection is defined as our detected bounding box can correctly and

fully cover the blackboard in the image. We also demonstrate an example of wrongly

detected blackboards in Figure 2.6(b). We find the reason for the blackboard to be

detected incorrectly is due to the large number of vertical gradient generated by an

object standing upright. For example, in Figure 2.6(b), there is a red balloon on the

left background of the blackboard.
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(b) Failure case for board detection(a) Successful case for board detection

(d) Failure case for segmentation(c) Successful case for segmentation

Figure 2.6: Example results of the proposed method
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Results of Vegetation Coverage Analysis

For the grass detection stage and coverage computation, after analyzing our result

the estimated mean absolute error rate is approximately 3%. We also show a success

case and a failure case in Figure 2.6(c) and (d). In the failure case, a part of the

grass has very similar color with the reflection of the board. This part of grass are

misclassified.

2.5 Conclusion

In this work we proposed an approach for digital image vegetation analysis based on

handcrafted features and traditional machine learning methods. Experimental results

are reported to shows its performance. The two-stage segmentation method proposed

in this work effectively predict the coverage and the density of vegetation even if only

limited amount of labeled training data is available. It is worth noting that in recent

years algorithms based on deep learning show their state-of-art performance in many

computer vision tasks. In our future work, we will apply deep neural networks to

reinforce or replace the handcrafted features used in the proposed method. What’s

more, since training a deep neural network in a supervised fashion usually requires a

large amount of labeled data and hand-labeling is expensive, we will also investigate

if the proposed method can be used to regularize the training or generate pseudo

labels as the targets to supervise the training.
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Chapter 3

Tree Counting and Density
Estimation Using Aerial Imagery

3.1 Introduction

The density and distribution of forest trees is important information for ecologists to

understand the ecosystem in certain regions. For example, the environmental effect

of deforestation or forest fires may be estimated based on the number of lost trees

and their location. In the recent decades, forest trees are often counted with the

help of aerial imagery. Since manually counting the trees from images can still be

time consuming, automatic tree counting algorithms have been developed to lower

the time cost. With the breakthrough of deep learning in the recent decade, deep

neural networks (DNNs) made unprecedented progress in computer vision tasks such

as image classification [12, 13, 14, 15, 16] and object detection [17, 18, 19, 20, 21, 22].

DNNs also become widely popular for object counting. A fashion of object counting

methods using DNNs is detection based, i.e. to localize each individual object of

interest first and then get the total number. So far this is the mainstream of the

published tree counting methods [23, 24, 25, 26, 27, 28, 29]. Another fashion for object
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counting is to regress the density of objects in the image using DNNs. The success is

reported in a growing number of works for crowd (people) counting [30, 31, 32, 33, 34].

However, the competitiveness of density based algorithms for tree counting are not

sufficiently explored as they are applied in much fewer published works with limited

comparative evaluation [35, 36].

We would like to exploit DNN regressors and propose a method for tree counting

called density transformer or DENT, which consists of a multi-receptive field (Multi-

RF) convolutional neural network (CNN), a transformer and two heads: Density Map

Generator (DMG) and tree counter. The Multi-RF CNN extracts visual features from

images with multiple receptive fields of different sizes simutatinously, perceiving the

patterns of both the local patch and the concentric context. The transformer models

the pair-wise relations between the visual features and filters the contextual visual

information sharing across different positions using attention mechanism. The two

heads, the DMG and the tree counter, parallelly decode the hidden states of the

transformer to generate the tree density map at different granularity levels. If a

relatively coarse tree map already meets the demand, the DMG can be detached

after training to save the inference time. The whole model of DENT is end-to-end

trainable. An example input image and the tree density map generated using DENT

is illustrated in Figure 3.1.

We also found few benchmark dataset publicly available for tree counting tasks. To

the best of our knowledge, the existing works report their performance tested on either

private data or a small subset (<10k trees) of dataset made for other tasks [27, 37].

The lack of a common benchmark makes the fair comparison across different methods

infeasible. Hence we release an fully labeled dataset called Yosemite Tree Dataset,

which has a ∼10km2 rectangular study area with ∼100k trees whose coordinates are

annotated. It is suitable for evaluating not only the performance of tree counting

algorithms but also the counting error versus the area of region of interest.
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Figure 3.1: An example tree density map generated using DENT (with interpolation)

To demonstrate the effectiveness of DENT, we compare DENT with the existing

state-of-art methods of different types, including fully convolutional networks regres-

sors and detectors. The methods are evaluated on the Yosemite Tree Dataset and

the cross-site NeonTreeEvaluation [27] Dataset. On both of them DENT achieves

very competitive results in the experiments and significantly outperforms most of the

other methods.

The main contributions of this work include two parts. The first part is the novel

end-to-end approach for tree counting, using a efficient multi-receptive field CNN

architecture for visual feature representation, a transformer for modeling the pair-

wise interaction between the visual features, and two heads for outputs at different

granularity and time costs. The second part is the Yosemite Tree Dataset as common

benchmark for tree counting.
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3.2 Related works

3.2.1 Transformers

Transformers [38] are attention-based deep learning models. They are initially pro-

posed in the area of natural language processing (NLP). The input of a transformer

is an embedding sequence. Pair-wise interaction between any two elements of the se-

quence is formulated by the transformers. The output corresponding to an element is

the aggregated from all the elements of the sequence with different weights depend on

their relationship. In this work, we adopt transformer to enhance the CNN features,

by selectively transfering contextual information among different elements.

3.2.2 Density estimation

Learning density maps using deep CNNs is a trend of crowd counting. On this trend,

the counting task is formulated as a regression program. The CNNs are trained to pre-

dict the density distribution over the input image. But the location of each individual

object is not explicitly predicted. When the object is crowded, the representation of

density map is relatively robust. In the existing works, different network architectures

are tried. MCNN [30] uses a multi-column network with different filter sizes for object

at different scales. The features from all the columns are fused to predict the crowd

density map. SwitchCNN [31] has an additional classifier to predict and switch to

the best column for the given image. CSRNet [32] generates high-resolution density

map. It is composed of a front-end CNN for feature extraction and an back-end CNN

for map generation. It uses dilated convolution instead of pooling or transposed con-

volution to reduce the computational complexity. CANNet [34] encodes contextual

information at different scale by subtract local average from the feature maps.

For tree counting tasks, an AlexNet [12] regressor is applied in [35]. In the work
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of [36], AlexNet [12], VGGNet [13] and a UNet [39] are evaluated and compared; And

the UNet achieves the best performance. In this work, we follow the paradigm of the

density estimation problem and fomulate tree counting as regression problem.

3.2.3 Object detection

The purpose of object detection is to localize each object of interest in the image.

Traditional detectors explicitly use a sliding window of predefined size to scan each po-

sition of the image [40, 41, 42, 43, 44]. These early works usually extract hand-crafted

features such as HOG [42] and SIFT [45]. These feature are finally fed to a classifier

such as a support vector machine (SVM) or a neural network. Modern detectors

make use of the powerful features from deep convolutional neural networks (CNNs)

pretrained on large-scale classification datasets [12]. These detectors adopt different

strategies to generate bounding boxes for objects using CNNs. Faster-RCNN [17],

RetinaNet [19] and YOLO [20] predefine a set of anchors and formulate the detection

into two sub-problems: classification of the subimage in each anchor and regression

of the offset between the ground truth box and the anchor. CenterNet [21] treats the

center of an object as a keypoint and regress the width and height. RetinaNet, YOLO

and CenterNet infer the results in one shot. In contrast, Faster-RCNN recomputes

the features for classification after the generation of region proposals.

Tree counting by detection So far, most of the published works of tree counting

algorithms are based on detection. These methods can be categorized into tree groups:

1. Explicitly using sliding windows. The very early works in [46, 47, 48, 49]

synthesize the expected appearance of trees and generate a template based on the

prior knowledge. The likelihood of the existence of a tree in a sliding window is

estimated by the correlation between the tree template and the image patch in the

window. However, the templates oversimplify the diverse appearance of trees in real

world. Later works use hand-crafted features plus classifiers. For example, a feature
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original image bounding boxes tree density map

(c)

keypoints

Figure 3.2: Comparison among different types of annotations for tree counting algo-
rithms. (a) The original image. Some tree crowns are overlapping. It is difficult for
human to detemine the borders of the trees. But from the shadows we can roughly
localize each of them. (b) Bounding boxes, suppose to contain the whole objects using
rectangles. (c) Keypoints, usually represented in 2D coordinates. (d) Tree density
map, a heatmap indicating the spatial distribution of trees.

descriptor using circular autocorrelation is designed to detect the shape of palm tree in

[50]. The goal in [51] is also to detect palm tree, but the descriptor used is HOG [42].

While [24] and [52] use CNNs to recognize palm trees in sliding window to learn

features automatically. TS-CNNs [53] has two sliding windows of different sizes, each

has a AlexNet classifier. One is to recognize the pattern of trees, the other one is to

suppress the false positives according to the spatial distribution of the surrounding

objects.

2. Fully convolutional classifiers are equivalent of sliding window CNN classifiers

but with better computational efficiency. U-Net [39] and DenseNet [54] are used to

predict the confidence maps of tree in [55] and [56]. The peaks on the confidence

maps are considered as the final prediction.

3. Modern CNN detectors like Faster RCNN [17], SSD [18], RetinaNet [19] and

YOLOv3 [20] have state-of-art localization performance in general object detection

tasks. These approaches are also applied for tree detection in [25, 26, 27, 28, 29].

Counting trees in aerial images using detectors is straightforward but with some

disadvantages, especially when the trees are dense and crowded. Firstly the rep-

resentation of overlapping trees may be ambiguous for detectors at test time. A
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typical detector usually outputs an excessive number of initial boxes and applys Non-

Maximum Suppression (NMS) to select the best ones. The basic idea of NMS is to

pair-wisely check the Intersection over Union (IoU) of every two proposal boxes, and

remove the one with lower detection score when their IoU is higher than a preset

threshold (typically 0.45 or 0.50). For tree counting, it is often the case that two

correct boxes have high IoU. An example case is shown in Figure 3.2(b). In this case

it is very likely that the NMS procedure will remove either of the blue box and the

yellow box and cause an underestimation of tree count. Secondly, the threshold for

the detection score directly effects the predicted tree count. Deliberately tuning the

threshold requires extra effort. Thirdly, bounding boxes are relatively expensive to

label. The labelers need to determine the width and the height of the boxes. It is

often difficult when the trees are overlapping.

3.3 Methodology

The architecture of the DENT model is illustrated in Figure 3.3. It contains four

main components: a Multi-Receptive Field convolutional network (Multi-RF CNN)

to compute a feature map over an input image, a transformer encoder to model the

interaction of features extracted from different positions, a Density Map Generator

(DMG) to predict the density of the trees and a counter to regress the number of

trees in the image.

Starting from a RGB aerial image I ∈ R3×H0×W0 , the Multi-RF CNN generates

a low resolution feature map fCNN ∈ RC×H×W , where C is the number of output

channels, and in this work H = H0

32
and W = W0

32
. The feature map is projected

using a trainable linear transform to generate fvisual ∈ Rdmodel×H×W , where dmodel is

the dimension of the hidden states of the transformer encoder. For convenient, it can

also be reshaped and represented in a sequence form: fvisual = [f0, f1, ..., fL] where
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L = HW and fi ∈ Rdmodel . Since each fi is corresponding to a certain position pi

in the image, we use it to estimate the tree density at pi. We also use a special

embedding fcnt ∈ Rdmodel to query the number of trees in the image. The transformer

encoder selectively transfers the information across f0 ∼ fL and fcnt. The final hidden

state of the transformer are decoded by the DMG and the tree counter. And then the

DMG generates a density map D ∈ RH×W . Meanwhile, the tree counter outputs the

number of trees ẑ ∈ R. The details of the components are discussed in the following

sections.

3.3.1 Multi-Receptive Field network

Inspired by the macula of human retina, we extract feature representation from each

position of image using multiple receptive fields, based on the intuitive assumptions:

A wide receptive field of CNN covers a large area of image containing rich contextual

infomation. On the other hand, a narrow one focuses on the details in a small region

of interest without distracted by the surrounding objects.

Early works in MCNN [30] and SwitchCNN [31] control the receptive fields by

desiging multi-column networks with different convolutional kernel sizes. We argue

that such strategy has limitations: Firstly, using these methods it is not easy to

implement a small receptive field on much deeper networks, because generally the

receptive field is enlarged quickly with the depth of network increased. Modern deep

networks usually has large receptive fields. For example, a VGG16[13] has a receptive

field of 212×212 while a ResNet50 [14] has a receptive field of 483×483 [57]. Secondly,

the widely used pretrained off-the-shelf models cannot be reused. Searching for the

optimal architecture and pretraining takes extra effort. To avoid these limitations,

We use off-the-shelf network as a backbone and add jump connections to its early

layers to implement small receptive fields.

We proposed Multi-Receptive Field convolutional network (Multi-RF CNN) as
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Scaled Dot-Product Attention

Linear Linear Linear

linear

Q K V

Scaled Dot-Product Attention

Linear Linear Linear

Scaled Dot-Product Attention

linear linear linear

concat

Multi-Head Attention

Add & Norm

feed forward

Add & Norm

(a) Encoder Layer (b) Multi-Head Attention

Figure 3.5: (a) The architecture of an transformer encoder layer. It contains a multi-
head attention sublayer and a feed forward sublayer. Each sublayer has a residual
connection and the output is processed by layer normalization [1]. (b) The archi-
tecture of the multi-head attention sublayer. Matrices Q, K and V are projected
using multiple groups of linear projections parallelly. In each group, the projected Q,
K and V generate ouput using scaled dot-product attention. The attention outputs
from different groups are concatenated and linearly projected as the final output. All
the linear projections mentioned are learned at training phase.

depicted in Figure 3.4. Specificially, the network contains a vanilla ResNet18 and

two extra paths added on the convolutional Block 2. We refer the original path of

ResNet18 from Block 2 (i.e. Block 3∼5) as Path A. Path B consists of two 1×1

convolutional layers. Path C is simply an average pooling layer. The stride of Path B

and C is 8. The receptive fields of the three paths are naturally different, as 466×466,

43×43 and 47×47 respectively. Offsets are also applied on the input of Path B and

C to ensure that the output feature maps from the three paths are center-aligned.

These feature maps are concatenated along the channel axis as the final output.

Although the architecture of Multi-RF CNN is surprisingly simple, we observe that

it outperforms the vanilla ResNet18 in our experiments.
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3.3.2 Transformer encoder

We exploit the self-attention mechanism of transformer [38] to model two types of

interactions: those between the visual features extracted at different positions, and

those between the visual features and the counting query. In this section we introduce

the transformer encoder and discuss the two types of interactions.

Architecture

We use only the encoder part of a standard transformer. The encoder contains

a group of stacked encoder layers. By default, number of encoder layers is 2 in this

work. Each encoder layer (Figure 3.5(a)) has identical structure but its unshared

weights. The attention mechanism takes effect in the multi-head attention sublayer

(Figure 3.5(b)), where the core function is scaled dot-product attention. Given a query

matrix Q ∈ RLq×dk , a key matrix K ∈ RLk×dk and a value matrix K ∈ RLk×dv , the

scaled dot-product attention is defined as following:

Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V (3.1)

The multi-head attention can be defined as:

MultiHead(Q,K, V ) = concat(head1, ..., headh)W
O (3.2)

where h is the total number of heads, and

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (3.3)

where the projection matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv

and WO ∈ Rhdv×dmodel are learnable at training stage. We will omit the other details

about transformer, since the encoder we used is almost the same with the original.

We refer the readers to [38] for the details.
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Interaction between visual features

Contextual information is essential for density estimation. It can be extracted by

convolutional networks in their receptive fields as discussed in Section 3.3.1. The

interaction in a convolutional network occur only between the convolutional kernels

and the previous-layer feature maps. As a supplement, we exploit the self-attention

mechanism to realize the pair-wise interaction between features at different positions.

The attention score for feature vector fi on another feature fj can be roughly defined

as

aij = fiW
Q(fjW

K)>/
√
dk (3.4)

The contextual information collected by fi can be defined as

oi = softmax(ai·)(fvisualW
V )> (3.5)

Equation 3.4 and 3.5 are equivalent with an individual head in the multi-head atten-

tion mechanism when Q = K = V = fvisual.

However, Equation 3.4 and 3.5 is permutation-invariant and any positional infor-

mation is ignored. Hence we add a 2D version of positional encodings [38, 58, 22] to

the visual features before feeding the transformer encoder:

PE(x, y)4i+0 = sin(x/100004i/dmodel)

PE(x, y)4i+1 = cos(x/100004i/dmodel)

PE(x, y)4i+2 = sin(y/100004i/dmodel)

PE(x, y)4i+3 = cos(y/100004i/dmodel)

(3.6)

where (x, y) is the 2D position on the feature maps and i is the dimension.

Interaction between visual features and counting query
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Inspired by the [CLS] token used in BERT [59], we also introduce a token [CNT]

appended to the end of the input sequence of transformer encoder (Figure 3.3(c)).

The corresponding token type embedding is fcnt. Hence the input of the transformer

encoder is [f0, f1, f2, ...fL, fcnt]. The hidden state of the transformer corresponding

to the [CNT] token represents the aggregate embedding of the sequence and serves

as a global context for tree counting. In contrast, each visual feature vector is cor-

responding to a patch of the image and used to estimate the local tree density. For

convenience sake, these visual feature vectors are also refered as [DEN] tokens in this

work. To differentiate these two types of tokens, we also apply an token type em-

bedding fdenfor the DEN tokens (Figure 3.3(b)). The application of fden can be seen

as a in-place self-add operation: fi += fden. Specifically, fcnt, fden ∈ Rdmodel . And

both fcnt and fden are learnable parameters at training time. The usage of the two

token type embeddings are inspired by [59], where segment embeddings are used for

different sentences, and [60], where token type embeddings are used for visual features

versus textual features.

3.3.3 Density Map Generator (DMG)

The Density Map Generator is a fully connected feed forward network followed by a

reshape operation. The feed forward network takes the final hidden state of trans-

former corresponding to each [DEN] token to predict the tree density. The output

sequence for all [DEN] tokens is reshaped into a 2D map, which is the predicted tree

density map.

Tree density map A tree density map (Figure 3.2(d)) represents the spatial distri-

bution of trees in the image. The ground truth tree density map can be generated

from the keypoint annotations of the trees (Figure 3.2(c)). Given an image I, denote

pi = (xi, yi) is the location of the ith tree and z is the tree count. The original
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annotation map is generated as

A(p) =
z∑
i=1

δ(p− pi) (3.7)

where δ is the delta function. Following the works for crowd counting [32, 34, 30,

31], the ground truth tree density map Dgt is generated from the annotation map

convolved by a Gaussian kernel:1

Dgt = A ∗Gσ (3.8)

where Gσ(x) is a 2D Gaussian kernel with standard deviation σ:

Gσ(p) =
1

2πσ2
exp

(
−‖p‖

2

2σ2

)
(3.9)

Denote the predicted density map is D(p; I, θ), where θ stands for the parameters

of DENT. The loss of DMG is Mean Squared Error (MSE ):

LDMG =
1

BHW

∑
p

B∑
i=1

(
D(p; Ii, θ)−Dgt

i

)2
(3.10)

where B is the batch size; H, W are the height and width of the density map.

Density-based counting At test stage, the estimated counts of the trees ẑR in a

region of interest R is given by the integral of the tree density map:

ẑR =
∑
p∈R

D(p; I, θ) (3.11)

1In practice, the model learns an H ×W tree density map, which is a sum-pooled version of the
H0 ×W0 density map.
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because when R2 � σ2, we have

zR =
∑
p∈R

A(p) ≈
∑
x∈R

Dgt(p) (3.12)

3.3.4 Tree counter

The tree counter of DENT is a feed forward network that decode the transformer

output corresponding to the [CLS] token. The target of the network is the tree count

normalized by the number of the [DEN] tokens, i.e. the average of the density map:

z

L
=

z

HW
(3.13)

This network is also trained using MSE loss. We found the normalization helps the

imbalance of losses for the tree counter and DMG. Denoting c(I, θ) as the output of

the tree counter, the loss of the tree counter is

LCNT =
1

B

B∑
i=1

(
c(Ii, θ)−

zi
L

)2
(3.14)

The predicted tree number is

ẑ = c(Ii, θ)L (3.15)

The tree counter is a relatively lightweight head of DENT compared with DMG.

Since the tree counter gives predicted tree count for each H ×W area in the study

area, the predictions over the whole study area can also be seen as a coarse density

map. If a more refined density map is not demanded, the DMG can be pruned after

training. And then the computational complexity of the Dot-Product Attention in

the top encoder layer is reduced from O(L2 · dmodel) to O(L · dmodel), because the

interaction between [DEN] tokens in that layer is no longer needed. Examples of the
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density maps generated by a DMG and a tree counter are shown for comparison in

Figure 3.6.

3.4 Datasets

3.4.1 Yosemite Tree Dataset

We choose a rectangular study area in the Yosemite national park and build a bench-

mark dataset for tree counting based on RGB aerial images. (Figure 3.7) The images

are collected via Google Maps at 11.8cm/pixel resolution and stitched together. The

study area is 2262.5m×4525.1m in the real world and 19200×38400 pixels in the im-

age. Inside the study area, the position of each individual tree is manually labeled.

The total number of labeled trees is 98,949.

We split the study area into four regions A, B, C and D of the same size. (Fig-

ure 3.7(a)) Region B and D are used as training set, and Region A and C as test set.

To evaluate the accuracy of different tree counting algorithms, we further divide the

study area into small non-overlapping square blocks. The counting errors in different

blocks are supposed to calculated seperately. And the statistics of the errors are used

as the metrics. Different block sizes can be used to analyze the accuracy versus the

size of region of interest, for example 960×960 (Figure 3.7(b)) and 4800×4800.

To better demonstrate ground truth distribution of the tree counts versus the

block size, histograms are shown in Figure 3.8.

3.4.2 NeonTreeEvaluation Dataset

We also evaluate the models using NeonTreeEvaluation Dataset [2], which is collected

from 22 sites across the United States by multiple types of sensors. The forest types

vary in different sites. (Examples are shown in Figure 3.9.) In this work, we only
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Figure 3.7: (a) The study area of the Yosemite Tree Dataset, centered at Latitude
37.854, Longitude -119.548. The study area consists of four rectangular regions A, B,
C and D of the same size. Each region is an 565.6m×4525.1m subarea, corresponding
to 4800×38400 pixels in the dataset. (b) Example images cropped from different
locations of the dataset. These examples show the variance of the land covers, the
directions of light, and the sizes and the shapes of the trees. The actual size of each
example shown is 113.1m×113.1m, corresponding to 960×960 pixels in the dataset.
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Figure 3.8: Histograms of tree counts of Yosemite Tree Dataset.

use the fully labeled RGB data, as following: (1) A test set of 194 images containing

6,634 annotated trees. The size of each image is 400×400 pixels and corresponding

to a 40m×40m region in the real word. (2) A training set including 15 much larger

images, containing 17,790 annotated trees. We crop them into 3,395 400×400 training

images as consistent with the test images.

3.5 Experiments

3.5.1 Evaluation metric

By following the works for crowd density estimation, we evaluate different methods

for tree counting using Mean absolute error (MAE ) and Root Mean Squared Error

(RMSE ), which are defined as following:

MAE =
1

N

N∑
i=1

|zi − ẑi| , RMSE =

√√√√ 1

N

N∑
i=1

(zi − ẑi)2 (3.16)

where N is the total number of blocks of in test set, zi denotes the true number of

trees in the ith block, and ẑi is the predicted number of trees in the ith block inferred

by algorithms. For the NeonTreeEvaluation Dataset, a block is simply a test image.

For the Yosemite Tree Dataset, we set the block size to 960×960 and 4800×4800 and
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Figure 3.9: Examples of the test images in NeonTreeEvaluation Dataset [2]. The
four-letter captions under the images are abbreviations of the site names. The forest
types vary across different sites.
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Table 3.1: Counting errors of different approaches on Yosemite Tree Dataset

block size: 960×960 block size: 4800×4800
113m×113m in real world 566m×566m in real world

Region A Region C Region A Region C
Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UNet [39] 16.3 20.7 12.9 17.7 318.5 367.0 203.8 228.0
MCNN [30] 19.7 25.3 16.8 21.0 311.0 371.1 283.3 378.0
MCNN (End-to-end) [30] 21.8 27.6 18.4 22.7 388.2 453.6 239.4 286.5
SwitchCNN [31] 17.2 22.2 14.8 18.5 271.1 317.9 175.7 212.2
SegNet [61] 12.7 17.0 15.9 19.4 270.6 299.7 209.8 228.5
CSRNet [32] 20.9 26.3 19.1 24.6 287.0 364.7 295.3 301.3
SANet [33] 18.4 23.5 17.6 22.1 272.1 344.6 285.6 297.9
CANNet [34] 10.8 13.8 12.0 16.2 122.6 161.1 130.2 159.5

Faster-RCNN-Res50 [17] 13.9 18.1 15.0 20.0 260.2 269.7 237.0 278.0
Faster-RCNN-Res101 [17] 13.4 17.4 15.9 20.9 235.9 256.6 240.6 285.2
RetinaNet-Res50 [19] 14.3 18.1 15.0 18.6 224.1 248.7 187.5 240.0
RetinaNet-Res101 [19] 16.0 20.2 16.2 21.1 290.7 317.2 233.2 301.8
YOLOv3 [20] 17.3 22.6 15.6 20.1 353.2 383.6 256.9 286.9
CenterNet-DLA34 [21] 14.9 20.7 14.6 19.0 344.9 398.0 250.0 299.9
CenterNet-Res50 [21] 13.7 17.5 13.7 17.4 311.1 335.3 237.9 257.8
CenterNet-Res101 [21] 12.1 16.2 13.4 17.2 237.6 271.4 212.0 241.4

DENT-DMG 10.7 13.7 11.9 16.5 148.7 163.9 123.9 158.3
DENT-CNT 10.7 13.7 12.0 16.6 140.6 154.4 133.7 169.3

report the results.

3.5.2 Comparison to state-of-art methods

We compare DENT with the state of the art methods of different fashions, includ-

ing density-based methods and detection-based methods. The tested density-based

methods include fully convolutional networks originally designed for segmentation

and crowd counting. The tested detection-based methods include one-stage and two-

stage, anchor-based and anchor-free detectors.

The results are shown in Table 3.1 and 3.2. The two heads of DENT, i.e. the

DMG and the tree counter, archieve closed performance. On the Yosemite Dataset,

43



Table 3.2: Counting errors of different approaches on NeonTreeEvaluation Dataset

Method MAE RMSE

UNet [39] 34.7 56.4
MCNN [30] 14.7 24.7
MCNN (End-to-end) [30] 15.5 25.7
SwitchCNN [31] 15.2 25.1
SegNet [61] 28.9 47.5
CSRNet [32] 33.9 52.2
SANet [33] 18.4 30.1
CANNet [34] 14.6 23.1

Faster-RCNN-Res50 [17] 11.1 15.7
Faster-RCNN-Res101 [17] 11.9 18.2
RetinaNet-Res50 [19] 10.9 15.9
RetinaNet-Res101 [19] 12.0 16.8
YOLOv3 [20] 15.2 31.8
CenterNet-DLA34 [21] 10.2 17.2
CenterNet-Res50 [21] 13.0 23.5
CenterNet-Res101 [21] 12.5 20.4

DENT-DMG 7.5 12.3
DENT-CNT 7.6 12.2
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they are nearly on par with CANNet and outperform the other state of arts methods

in terms of MAE and RMSE for every test region and block size setting. On the

cross-site NeonTreeEvaluation Dataset, they significantly outperforms all the other

methods.

3.5.3 Technical details

We implent DENT using PyTorch [62]. The DMG is based on ResNet18 in PyTorch

model zoo. The bert encoder is based on BERT model released in Hugging Face2

model zoo. We set dmodel=512 and h = 8 for multi-head attention. The dimension of

the intermediate layer in feed forward networks is 2048. The standard deviation of

Gaussian kernel for density map generation is σ = 15.

On the Yosemite Tree Dataset, we crop 320×320 subimages from the study areas

for training and testing. While on the NeonTreeEvaluation Dataset, as the test set

are officially provided as 400×400 images, we crop 400×400 subimages for training

from the large training images. Since the downsample rate of the whole DENT is

32, we pad the input images with zero values to 416×416 in both training phase

and test phase. The batch sizes we used to train DENT on Yosemite Tree Dataset

and NeonTreeEvaluation Dataset are 48 and 32 respectively. Except those mentioned

above, we use same setting to train DENT on the two datasets.

Pretraining and initialization The ResNet in Multi-RF network is pretrained on

the ImageNet dataset [63, 64]. All the other components of DENT are learned from

scratch. All the parameters of the transformer are initialized with Xavier [65]. The

initial query count embedding is a fixed zero vector. The token type embeddings are

initialized using normal distribution.

Loss The total loss during training is the weighted sum of the losses of the DMG and

2https://huggingface.co/
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tree counter:

L = LDMG + λLCNT (3.17)

where λ is a weighting factor to balance the losses of the two heads. In our experiments

we use λ = 1 by default.

Optimizer We use Adam [66] to minimize the loss for totally 300 epochs without

weight decay. The initial learning rate is 10−5 for the first 100 epoches. And then

we apply a learning rate decay by a factor of 0.5 for every 50 epochs. We also apply

gradient clipping to stablize the training. The max norm of the gradients is set to

0.1.

Regularization and Data Augmentation For reducing overfitting, dropout and

random-flip are applied. Specifically, a dropout of 0.1 is added before each Add&Norm

layer in the transformer encoder. The training images along with the target tree

density map are randomly flipped horizontally and/or vertically.

3.5.4 Ablation study

To evaluate the effects of the Multi-RF CNN and the transformer layers, ablation

experiments are done on the test set of Yosemite Tree Dataset for 960×960 blocks.

The results are provided in Table 3.3. We start from a ResNet18 without transformer.

The output is projected to a single channel linearly using a 1×1 convolutional layer.

Interestingly this baseline already archieves lower errors compared with some existing

methods (Table. 3.1). After Adding two extra paths to the ResNet18 to get a Multi-

RF network, the counting errors are lowered (The third row in Table. 3.1). Adding

two transformer layers as encoder make performance gain on both ResNet18 and

Multi-RF network. We also try different number of transformer layers. Two layers

work best in our experiments. More layers worsen the results and take longer training

time to converge.
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Table 3.3: Comparison of models with different CNNs and number of transformer
layers on Yosemite Tree Dataset for block size 960×960. The models are tested on
the union of Region A and Region C. When #transformer layers = 0, the CNN
features are linearly projected to the predicted density map, otherwise the density
map is generated by DMG.

visual feature extractor #transformer layers MAE RMSE

ResNet18 0 13.4 17.7
ResNet18 2 12.8 16.9
Multi-RF 0 13.0 17.0
Multi-RF 1 12.0 16.5
Multi-RF 2 11.3 15.2
Multi-RF 3 11.8 16.7

3.5.5 Inference time

To demonstrate the computational efficiency of DENT we test it on the whole 19200×38400

study area and report the inference time. The tests are done with a single NVIDIA

Tesla V100 SXM2 GPU with CUDA 11.3. Every neural layer runs in native PyTorch

with batch size=1 in the default FP32 precision. We run 10 times for each case and

report the average. The inference time of our basic implementation is 47.8 seconds.

Faster version Due to the shift-invariance of convolution, when a study area is

scanned by the Multi-RF CNN, the size of the scan window (input size) does not

effect the final feature map.3 We adopt a two-stage inference mode to improve the

GPU utilization and lower the time cost: At the first stage, the backbone takes in

a larger input image4 and generates a larger feature map. At the second stage, the

transformer along with the DMG and the tree counter scans the feature map using

its original input size. We test this strategy with a 4800×4800 input size for the

3This is true only when every layer in the backbone has padding size=0. And beware that if
padding size=0 is used at test time, it should be used at training time as well to avoid accuracy
drop.

4The resolution is still 11.8cm/pixel, but each input image covers a larger area in the real world.
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Multi-RF CNN, the inference time is shorten to 16.0 seconds. When the DMG is

pruned as discussed in Section 3.3.4, the inference time can be furthur shortened to

11.5 seconds. Even further improvement is possible with tricks like batch processing

and low precision inference but beyond the scope of this work.

3.6 Conclusion and future work

We presented a deep neural regressor, DENT, based on CNN and transformer for

tree counting in aerial images. We built a large benchmark dataset, Yosemite Tree

Dataset, to evaluate different tree counting algorithms. We also used an existing cross-

site dataset to test the robustness of the methods. Our approach achieved competitive

results and outperformed the state-of-art methods. Ablation study further supported

the effectiveness of the design. With the advancement of drones, aerial imagery is

becoming more and more affordable. However, due to the limited visual field, the

captured photos need to be stitched to create the whole picture of a large study

field. This procedure can be laborious. For this reason, an accurate video-based

tree counting algorithm would be more automatic and appealing. The emerging

applications of video-based density estimation methods for crowd counting inspired

us. We will explore video-based tree counting algorithms in the future work.
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Chapter 4

Fish Detection and Classification
Using Boat Camera

4.1 Introduction

The species composition and distribution of fish are important biological data for

fisheries research. Traditionally the counting of different types of fish is processed

manually, which is time-consuming. With the development of computer technology,

computer vision-based fish detectors and classifiers are applied to enhance the effi-

ciency.

In this work, we propose a system combining two strategies together: one is to

use context information to overcome the unclarity of fish; the other one is to detect

localize and align fish first before classifying to extract discriminative features. The

system is expected to balance the two strategies automatically. Our research aims at

designing a harsh environments robust solution for fish classification based on deep

learning. The query images taken in different work environments can be sent to a

remote server. Then the remote server launches the proposed system to localize and

classify the fish in the images (Fig. 4.1), and then all the results are stored on hard
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Figure 4.1: Examples of fish detection and classification in different environments

disks.

In the world-wide competition of “The Nature Conservancy Fisheries Monitoring”

hosted by Kaggle, our model achieved top 0.7% rank on the final leaderboard among

solutions submitted by 2,293 different competitive teams.

4.2 Related Works

4.2.1 Fish Classification

Traditional computer vision-based fish detection and classification tasks are usually

dealt with using hand engineered features. Fish is assumed to be lying on a semi-

opaque conveyor with backlight underneath[67]. After edge detection a grid is drawn

over the fish body. With 10 equidistant width measured along the length, average

color is drawn from each grid element to form a feature vector. The classification is

based on principal component analysis (PCA). Concetto et al. [68] propose a method
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for fish classification in underwater environment based on not only shape but also

texture. The appearance of fish in different 3d views is modeled using affine trans-

formation. Mehdi et al. [69] apply a Haar detectors to localize the snout and tail of

a fish and PCA to model the prior knowledge of shape. To our best knowledge, most

of the related works [70] [67] [68] [69] are based on low level hand-crafted features

and applied in elaborately controlled circumstances. Hence their usage is limited.

4.2.2 Deep Convolutional Neural Networks

In recent years, deep learning with convolutional neural networks (CNNs) has proven

to be very effective at various perception tasks. On ImageNet [63] classification

task, CNN has produced state of art results, reaching as high as 97.75% accuracy

on ILSVRC 2017 [71] which has already been better than human ability on image

classification (94.9% accuracy). On detection problem of ImageNet, CNN provided

73.14% mean average precision (mAP) for 85 categories on ILSVRC 2017. Some

advanced neural networks have been proposed during the ImageNet competition, like

VGGNet [13], GoogleNet (Inception) [16], and ResNet [14]. Thus, object detection

and image classification problem has been achieved a series of breakthroughs using

deep convolutional neural network.

4.3 Dataset

We test the proposed system in Kaggle The Nature Conservancy Fisheries Monitor-

ing Competition1. (Both the competition itself and the provided dataset are refered

as NCFM for short below.) The objective of the competition is to classify the pro-

vided images into 8 categories: Albacore tuna, Bigeye tuna, Dolphinfish, Opah, Shark,

Yellowfin tuna, Others and No fish. Competitors are required to train a model on the

1https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring
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Figure 4.2: Data flow in the proposed system. (blue arrows) The image-level classi-
fication branch makes prediction according to all the objects in the scenario. (yellow
arrows) Instance-level classification branch focuses on fish individuals. Fish are de-
tected and aligned in order to be classified. At last, the importance of the two branches
is estimated; and then the predictions made by the two branches are reweighted and
averaged as the final prediction.

provided training set and submit prediction on test sets to the online evaluation sys-

tem. The evaluation results are shown on a leaderboard. To avoid leaderboard prob-

ing and reflect the overall performance of the solutions from competitors, accuracy is

invisible to the competitors. From the feedback of the system only cross-entropy loss

can be seen, as the only criterion for ranking:

loss = − 1

N

N∑
i=1

M∑
j=1

yij log (pij), (4.1)

where N is the number of images in the test set, M is the number of possible classes,

yij is 1 if image i belongs to class j and 0 otherwise, and pij is the predicted probability

that image i belongs to class j.

There are two stages in the competition. At each stage competitors are given

a test set. At stage 1 competitors can modify and tune their models and choose a

most satisfying one. At stage 2 the chosen models are demanded to be fixed and no

parameter-tuning is allowed. The test sets on these two stages are not overlapped.

The final rank of each competitor team is determined only by their performance on

the test set of stage 2.
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There are 3777 images in training set, 1000 images in test set 1 and 12138 images

in test set 2. All the images are taken by cameras which are set up on different

fishing boats. The position and view angle of each camera is fixed. Compared with

VOC2007[72], Imagenet [63] and MSCOCO [73], the images in NCFM have much

more complicated scenarios, consisting of workers walking around, fishing gears and

containers everywhere. The fish can be scattered on the bottom of boats, in the fish

net, held by people or in the sea water. They are usually far from the cameras and

may be partially occluded. So the lighting varies seriously in different images since

they can be taken in any time in day and in different weathers. Sometimes rain or

splashed sea water covers the camera or makes it lose focus. Hence NCFM dataset

have strong representativeness as they expose the problems that an automatic fishery

classification system may encounter in real working environments. We evaluate the

performance of proposed method on NCFM dataset and report the cross-entropy loss.

Table 4.1: Number of images in NCFM dataset

Subset Training Test - Stage 1 Test - Stage 2
#images 3777 1000 12138

4.4 Proposed System

Our proposed fishery classification system has two branches (Fig. 4.2), one is for

image-level classification and the other is for instance-level classification. The predic-

tion made by these two branches are fused together as the final prediction.
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4.4.1 Instance-Level Classification

Directly using the whole image as input may lead to a heavy burden on training of

CNN classifiers. Because firstly the abundant objects appear in images unrelated

with fish categorization may distract the learning direction. Secondly the dataset

can be easily over-fitted especially when the sample size of training set is not large

enough. For example, a classifier may unexpectedly learn the boat colors disregarding

the features of fish. Thirdly to keep the resolution of image good enough in order to

preserve the appearance details of fish, either the CNN classifiers must have a large

input size, which consumes a lot of memory and computational time; or the images

have to be scaled to a small size and then much information of fish appearance is lost.

For these reasons, focusing on fish instances rather than distributing the receptive

field over the whole image alleviates the burden of classifier on both training phase

and test phase.

The variation of the poses and scales of fish also encumbers CNNs. Since CNNs

have to learn redundant filters to recognize objects in different poses and scales. If

they can be resized to similar scales and rotated to similar azimuth angles, the filter

may be learned more effectively to describe discriminative features.

To address the problems mentioned above, the instance-level classification branch

of the proposed system is consisted of four cascade modules: detection, pose estima-

tion, alignment and classification:

Detection

We expect to localize the fish in the images using bounding boxes:

B = {(sb, x0b, y0b, x1b, y1b)} (4.2)
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where B is a set of bounding boxes for a given image; b is the index of a certain

bounding box; sb is the detection score of the bounding box b, representing the con-

fidence that there is a fish in the box; (x0b, y0b) and (x1b, y1b) are the coordinates of

the left-top vertex and the right-bottom vertex of the bounding box b.

Two state-of-art methods SSD [18] and YOLOv2[74] are chosen as the detectors

in the current work. The performance is discussed in 4.5.1.

Pose Estimation & Alignment

Alignment is a widely used procedure to deal with pose variation of objects such as

face [75] [76] [77] and bird [78] [79] in fine-grained classification tasks. We follow a

simple alignment strategy: all detected fish are rotated by appropriate angles so that

they can have the same orientation (e.g. lying horizontally and facing to the right).

At training phase the rotation angle can be computed simply based on the key

point labels (coordinates of fish heads and tails). At testing phase, the poses of fish

are unknown. So the orientation of fish need to be estimated first. There are multiple

approaches to train CNNs that can predict the pose of an fish. One is to applies

CNNs as regressors to predict keypoints of object like DeepPose [80]. Another is to

formulate the pose estimation problem as a classification task. We find that the latter

one works better. A possible reason is that DeepPose was originally evaluated on FLIC

Dataset [81] and Leeds Sports Dataset [82]. The images in these two datasets were

taken in Hollywood movie studios and stadiums, where the photography conditions

such as illumination and focus are well controlled. While the images in NCFM were

taken in harsh environments; in this case a neural network which roughly classifies

the orientation of fish may be more robust than those who try to output the exact

positions of keypoints.

Specifically, denote the orientation of fish as a vector that v from the tail to its
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Figure 4.3: Pose estimation of fish: (a) The orientation of fish is represented as a
vector v from tail to head. (b) XY-plan is equally divided into sectors. v belongs to
one of the sectors.

head (Fig. 4.3):

v = (vx, vy) = (xhead − xtail, yhead − ytail) (4.3)

where (xhead, yhead) is the position of fish head and (xtail, ytail) is the position of fish

tail. In the polar coordinate system, if the angle between 0 and 2π is equally divided

into K sectors:

Sk =

[
2πk

K
,
2π(k + 1)

K

)
(4.4)

k ∈ {0, 1, 2, ..., K − 1} (4.5)

The azimuth angle ϕ of fish is defined as:

ϕ = atan2(vy, vx) (4.6)

A fish belongs sector Sk if:

k = floor

(
Kϕ

2π

)
(4.7)
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If the predicted sector of fish is k, we use the approximated predicted azimuth angle:

ϕ∗ =
2π(k + 0.5)

K
(4.8)
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Region to align
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Image & bounding box Azimuth angle Aligned fishRegion to estimate

(b) (c) (d)

Figure 4.4: Pose estimation and alignment: (a) given an image and a bounding box
ABCD, a square subimage EFGH is cropped. The side length of cropped subimage
is as same as the longer side of the bounding box. (b) The azimuth angle of fish
in subimage EFGH is then estimated as ϕ∗. (c) A region MNPQ with azimuth
angle ϕ∗ containing the fish is selected. (d) The subimage in MNPQ is cropped
and rotated so that the fish lies horizontally. The rotated subimage is denoted as
M ′N ′P ′Q′ (called aligned fish in this work) and is used as input of classifiers for
instance classification.

In practice, we apply a VGG16 [13] as the pose classifier and choose K = 16 to

predict k.

Once a fish instance is detected and the pose is estimated, a square sub-image Ib is

cropped out as the aligned fish. (See Fig. 4.4. Ib is the subimage in square M ′N ′P ′Q′.

And see Fig. 4.5 for more details.) The side length l of Ib is set to be proportional to

the diagonal length of box b:

l = (1 + ρ)‖v‖ (4.9)

where ρ is a padding factor to control the room between the fish and the edge of the

sub-image. In our experiments, ρ is set to 0 at all test phases and randomly sampled

from [0, 1/7] at training phase.
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Instance Classification

We apply a CNN to learn conditional probability functions F ′:

F ′(c, Ib) ≈ P (c|fish) (4.10)

where Ib is an aligned fish; P stands for probability, c stands for a possible fish type,

i.e. Albacore tuna, Bigeye tuna, Dolphinfish etc.

Because there may be zero, one or multiple fish in an image, the prediction for

the whole image is:

F (c, I) =


1− smax, if c = “No fish”

smax
∑

b sbF
′(c, Ib)∑

b sb
, otherwise

(4.11)

where

smax = max
b
sb (4.12)

4.4.2 Image-Level Classification

Ideally, fish types can be determined by the appearance of fish instances. However,

when the image is too blurry or dark for an intelligent agent to clearly see the fish, or if

the training data cannot well cover the appearance of fish in different environmental

conditions, the prior knowledge plays a important role to recognize the fish using

context information. For example, it is reasonable to assume that some boats catches

some types of fish more than other types. For this purpose, similarly with 4.4.1 we

apply a CNN to learn the conditional probability distribution of fish type c given an

image I:

G(c, I) ≈ P (c|boat, daylight, weather...) (4.13)
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Figure 4.5: The spatial relation among the preliminary results (shown in Fig. 4.4) in
pose estimation module and alignment module. Rectangle ABCD, square EFGH
and square MNPQ have the same centroid O. Circle O is both the circumscribed
circle of rectangle ABCD and the inscribed circle of square MNPQ.

The CNN takes the whole image as input and outputs the predicted probability of

each possible fish type.

4.4.3 Adaptive Prediction Average

For real-world application, it cannot be ensured that all the environmental conditions

also appear in training set. For example, the actual working environment may be

on a new boat which has not been seen before (has not been seen in training set).

In such cases, (4.13) may be hardly learned and may output unexpected results. To

suppress this side effect, the results of instance-level and image-level are reweighted

in the form as following:

H(c, I) = (1− w(I))F (c, I) + w(I)G(c, I) (4.14)
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where H(c, I) denote the final prediction function which gives the predicted prob-

ability that the fish in image I belong(s) to class c; and w(I) is an function that

adaptively reweights the instance-level prediction and image-level prediction. Follow-

ing the heuristic that:

• The more likely the boat is a new boat, the larger weight should be assigned to

the image-level prediction and vice versa.

• The more clearly the fish can be seen, the larger weight should be assigned to

the instance-level prediction and vice versa.

we take the familiarity of boat and the clarity into account to choose w(I).

It’s difficult to formulate the familiar boat/new boat estimation as a supervised

classification task, because there are only familiar boats in training set. An idea

is to label all the boats in the training set, and randomly choose some boats as

pseudo new boats to train a classifier. However, labeling work is time-costing and

not preferred in this work. Instead we directly measure the familiarity of a scenario

by the distance in feature space between a test image and its nearest neighbor in

training set. Specifically, the distance d is defined as:

d = min
i

(‖f(I)− f(I traini )‖) (4.15)

where I traini is the i-th training image; function f(I) denotes the feature of image

I. In this work it is extracted from the last convolutional layer of a CaffeNet [12]

pretrained on ImageNet. The smaller d is, the more similar the test image is with

some training images.

As the detection scores stand for the confidence of detectors that there are fish

in the bounding boxes, they imply how obviously the object in boxes are fish. We

choose the their maximum smax to estimate the clarity of fish in a test image.
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For convenience, we assume w(I) can be decomposed into two terms respectively

relied on smax and d and independent with each other:

w(I) = ws(smax)wd(d) (4.16)

The functions ws(smax) and wd(d) are manually tuned and the final choice is

discussed in 4.5.5.

4.5 Experimental Results

4.5.1 Detection

In our experiments, we choose 512×512 input size for SSD and 544×544 for YOLOv2.

Since labeling the test data is prohibited in the competition, we validate the detection

module on a small subset containing 500 images randomly sampled from the training

set. SSD achieves 0.853 mean average precision and YOLOv2 achieves 0.738 mean

average precision. The precision-recall curves are shown in Fig. 4.6. The union of the
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Figure 4.6: Precision-Recall curves of detectors on a subset of 500 images sampled
from training set: (left) SSD; (right) YOLOv2.
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two sets of bounding boxes is used as the final output of the detection module. Inter-

detector Non Maximum Suppression (NMS) is tested. However, the inter-detector

NMS worsen the final classification performance. A possible reason is that the scores

of bounding boxes proposed by different detectors are lack of comparability. For

example SSD and YOLO have different hard-mining policies to deal with the problem

of imbalance samples, which makes them assign different detection scores to an object.
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Figure 4.7: Confusion matrix for pose estimation on validation set

4.5.2 Pose Estimation & Alignment

The VGG16 pose classifier is evaluated on the same subset of training set as mentioned

in 4.5.1. It achieves 0.80 top-1 error rate and 0.96 top-2 error rate. The confusion

matrix is shown in Fig. 4.7.
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4.5.3 Alignment & Instance Classification

For instance classification, we follow a simple strategy: train multiple networks and

get the average of their prediction. We evaluated three different CNN structures for

instance classification. They are ResNet50 [14], VGG16 [13] and Inception V3 [16].

To prevent overfitting, random cropping and scale jittering are applied at training

phase. We also find using external data from ImageNet helps to decrease loss. The

results are listed in Table 4.2.

Table 4.2: Performance of Instance Classification on Test Set 1

Network Quantity Trained on external data Loss
VGG16 1 No 1.137
VGG16 32 No 1.017

VGG16 (unaligned fish) 32 No 1.284
VGG16 8 Yes 0.942

ResNet50 32 No 0.968
ResNet50 8 Yes 0.921

Inception V3 32 No 0.886
Inception V3 22 Yes 0.853

4.5.4 Image-Level Classification

We modify the input size of VGG16 to 640 × 360. To decrease the computational

complexity, all the fully connected layers are discarded and three convolutional layers

are added followed by a global average pooling layer (GAP). All the new added

convolutional layers have 128 channels and 3× 3 kernel size. In this way the original

VGG16 is modified to a fully convolutional network (FCN). In our experiments, a

single model of such FCN achieves 1.129 cross entropy on test set 1. Averaging 16

different models achieves 0.937 cross entropy while averaging 256 different models

achieves 0.918 cross entropy. Further enlarging the input size doesn’t improve the

results, hence we keep the input size of the FCNs 640× 360 in the final model.
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Table 4.3: The Effects of Different Choices of w

w(I) 0.00 0.25 0.50 0.75 1.00 Adaptive
loss 1.017 0.873 0.632 0.725 0.937 0.604

4.5.5 Adaptive Prediction Average

To observe the effect of different choices of w(I), we use the average of prediction made

by 32 VGG16 instance classifiers and the average of prediction made by 16 FCNs for

image-level classification. Functions wd(d) and ws(smax) are manually tuned as shown

in Fig. 4.8. We observes simply averaging the results of instance-level classification

and image-level classification outperforms either one. And adaptive w(I) outperforms

all the constant w(I). The results are listed in Table. 4.3

0 500 1000 1500 2000 2500
d

0.0

0.2

0.4

0.6

0.8

1.0

w
d(

d)

(a) wd(d) in the final model.

0.0 0.2 0.4 0.6 0.8 1.0
smax

0.0

0.2

0.4

0.6

0.8

w
s(s

m
ax

)

(b) ws(smax) in the final model.

Figure 4.8: The final choice of wd(d) and ws(smax).

4.5.6 Overall Performance

The configuration of the final submitted model is listed in Table 4.4. It achieves 0.578

cross entropy (rank: 17th) on test set at stage 1 and 1.387 (rank: 16th) at stage 2.

The main reason for the gap between the loss at two stages is because most of the

boats in test set 1 also appear in training set, while the boats in test set 2 rarely
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appear in training set. Hence at stage 2, less context information can be used to

make inference. We also note that although the loss increases at stage 2, our rank

is actually slightly improved, which implies that our method is robust to new boat

among all the competitors.

Table 4.4: Networks in the Final Model

Level Job Network Quantity
Instance-Level Detectors SSD 1

YOLO 1
Pose Estimator VGG16 1

Classifiers Inception V3∗ 22
Inception V3 32

VGG16∗ 8
VGG16 32

Image-Level Classifier FCN(VGG16) + GAP 256
Adaptive Average Descriptor CaffeNet 1
∗Trained using external data from ImageNet.

4.6 Conclusion

This work introduces a fish classification system which can extract discrimination

features from fish instances and also make use of the context information from the

scenario around. It is robust to different environmental conditions since it can balance

the inference made based on fish instances and context information. Experimental

results show that the system is an effective solution for practical applications related

to fish classification. The whole system combined several state of art CNN models in

object recognition and image classification domain and it can be run automatically

from end to end to generate the confidence score of each class for each input image.

Other advanced CNN models can also be integrated in the system base on needs to

generate promising results.
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Chapter 5

Livestock Detection and Counting
Using Inspection Robot

5.1 Introduction

Frequently counting the number of pigs in grouping houses is a critical management

task for large-scale pig farming facilities. On one hand, pigs are often moved into

different barns at distinct growth stages or grouped into separate large pens by size.

Farmers need to know how many pigs are in each large pens. On the other hand,

comparing the counting result with the actual number of pigs enables the early detec-

tion of unexpected events, e.g., missing pigs. However, walking around the pig barns

to count a large number of pigs is costly in labor. Thus, automated pig counting and

monitoring using computer vision techniques is a promising way to support intensive

pig farming management, while reducing cost.

In recent years, various computer vision algorithms have been widely adopted to

support various developments of agriculture and farming automation, such as cattle

gait tacking [83], pig weight estimation [84] and fruit counting [85]. Despite of these

exciting progresses, pig counting remains a very challenging task, due to large pig
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Robot

(a) (b)

Figure 5.1: Illustrations of pig counting challenges in large grouping houses. The
top-down view images are captured by our inspection robot with a fisheye camerat.
Red arrows point to examples of pig overlapping and occlusion. Yellow arrows show
cases where pigs are moving in or out of camera field of view.

(a) (b)

Robot

Figure 5.2: Illustrations of our pig counting system. (a) the installed inspection
robots with rails and fisheye cameras for pig counting. (b) a single video frame with
detected pig skeletons using our counting algorithm.
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movements, high group density, overlapping, occlusion and camera perspective, as

illustrated in Fig. 5.1. Few works in literature studied the development of automated

pig counting system. Existing works [86] only handled pig counting problem in a

single image. Nonetheless, as shown in Fig. 5.1, the field of view of a single image is

only restricted to a small region and it is impossible to monitor a large pig grouping

house. Furthermore, it could not deal with the cases that pigs frequently enter into or

exist from the camera view. Towards overcoming these challenges, we presented an

novel automated counting algorithm with an inspection robot and monocular fisheye

camera. Fig. 5.2a showed two pictures of our inspection robot with a fisheye camera

installed on the roof rail in our experimental pig grouping houses. Fig. 5.2b visual-

ized a single video frame with detected pig skeletons output using our pig counting

pipeline.

The main contributions of this work are summarized as follows. 1) The sensor

configuration is presented, which is suitable for pig counting in large-scale grouping

house. 2) A novel bottom-up detection method is proposed to identify pigs, while

addressing detection challenges due to overlapping, occlusion and deformation of body

shapes. 3) A novel online spatial-aware temporal response filtering (STRF) method

is designed to suppress false positives caused by tracking failures or pig movements.

4) An efficient algorithm of the counting pipeline is designed and deployed to an

embedded system, which achieves high speed performance.

5.2 Related works

Counting in the crowd is an important, but challenging task due to severe occlusion,

perspective distortions, complex illumination and diverse distribution of target sizes

[87]. Recently, deep-learning-based methods [87, 88] have been developed to estimate

single image density map for crowd counting. Sindagi et. al. [88] developed a contex-
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tual pyramid convolutional neural network (CNN) for crowd density map estimation.

Both global and local contexts were employed in the network to achieve better ac-

curacy. Shen et. al. [87] proposed an adversarial cross-scale consistency pursuit

method to improve the estimation consistency and reduce the averaging effect in [88].

These methods formulate the counting problem as density map estimation, thus hav-

ing the advantage to handle server occlusion and perspective distortions. However,

density-map-based methods lost the detailed individual information and discarded

the accurate location information for each single target. Therefore, it loses the ability

to associate targets across time, and is not suitable for video-based counting.

Recently, researchers in agriculture presented many works towards tackling count-

ing problems in various scenarios. Tian et. al. [86] counted pigs in a single image

using a CNN-based method for pig density map estimation. Similar as [88], this

method is not suitable for video-based counting problem. As a single image only

have a small field of view (as shown in Fig. 5.1), it cannot be used for pig counting in

large grouping houses. Liu et. al. [85, 89] developed a fruit counting pipeline using a

monocular camera. Individual fruits are first segmented using a CNN-based method,

and then tracked by a Kalman Filter corrected Kanade-Lucas-Tomasi (KLT) tracker.

A structure from motion (SfM) algorithm was utilized to get the relative 3D location

and size estimate to reject outliers and double counted fruit tracks. This method

is only suitable for rigid shape and stationary target counting task, and does not

work for moving livestock counting cases. Hodgson et. al. [90] demonstrated that

images collected by unmanned aerial vehicles (UAV) could help wildlife monitoring

and counting. Rivas et. al. [91] studied cattle detection from aerial view photos.

Counting based on aerial view is promising, but could hardly be used for indoor live-

stock counting scenes without developing algorithms to handle severe occlusion (e.g.

caused by indoor building structures or perspective distortions), overlapping, double

counted tracking trajectories due to entering into or existing from camera view.
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Different from previous approaches, we presented a novel video-based pig counting

system for large pig grouping houses. The developed counting pipeline overcame dense

detection challenges (e.g. overlapping or occlusion) by a novel bottom-up pig body

parts detection and association algorithm. A STRF method was developed to obtain

the counting number by reducing the counting error caused by tracking failures or

pig movements.

5.3 Approach

In this work, we presented an efficient pig counting system for large pig grouping

houses. Fig. 5.3 demonstrates the entire algorithm pipeline. In our counting system,

the camera moved from one side of the pig grouping house roof till the other end of

roof and scanned the whole house with top-down view. A whole single counting pass

scanned the house once by the camera. As summarized in the Fig. 5.3, subsequently,

we detected multiple pig body keypoints, associated them to localize each individual

pig, tracked pigs cross frames and obtained counting results using STRF method.

5.3.1 Sensor configuration

An inspection robot, which can move back and forth along a rail installed on the roof

of the pig house, was used for pig counting data acquisition and processing from top-

down view (Fig. 5.2a). Several sensors used for different applications were installed

inside the robot, including a monocular fisheye camera for pig counting, a RGB-

D camera for pig weight estimation, gas and temperature sensors for environmental

control etc. Inside the inspection robot, an embedded system with RockChip RK3399

multi-core ARM processor was used for processing data from cameras and running

the pig counting algorithm.

70



H
e

a
tm

a
p

s

V
e

c.
 f

ie
ld

s

K
e

y
p

o
in

ts
&

 s
ke

le
to

n
s

T
r
a
c
k

S
p

a
ti

a
l 

e
n

co
d

in
g

A
s
s
o
c
.

In
p

u
t 

fr
a

m
e

s

P
ig

 p
e
n

In
s
p
e
c
ti
o
n
 

ro
b
o
t

G
u

id
e

 r
a

il

To
ta

l 
n

u
m

b
e

r
Te

m
p

o
ra

l 
fi

lt
e

ri
n

g

N
e

u
ra

l 
n

e
tw

o
rk

t

t-
1

t-
2

…

tt-
1

t-
2

…

t

t-
1

t-
2

…

F
ig

u
re

5.
3:

P
ig

co
u
n
ti

n
g

p
ip

el
in

e.
T

h
e

in
sp

ec
ti

on
ro

b
ot

m
ov

ed
fr

om
on

e
si

d
e

of
th

e
p
ig

h
ou

se
ro

of
to

th
e

ot
h
er

en
d

to
sc

an
th

e
w

h
ol

e
re

gi
on

.
A

p
ro

p
os

ed
b

ot
to

m
-u

p
d
et

ec
ti

on
C

N
N

m
o
d
el

w
as

fi
rs

t
ap

p
li
ed

on
ea

ch
v
id

eo
fr

am
e

to
ob

ta
in

th
e

ke
y
p

oi
n
ts

an
d

sk
el

et
on

s
of

al
l

p
ig

ca
n
d
id

at
es

.
A

n
on

-l
in

e
tr

ac
k
in

g
al

go
ri

th
m

w
as

th
en

u
se

d
to

ge
n
er

at
e

th
e

te
m

p
or

al
as

so
ci

at
io

n
s

ac
ro

ss
fr

am
es

.
L

as
tl

y,
S
T

R
F

,
in

cl
u
d
in

g
sp

at
ia

l
en

co
d
in

g
an

d
te

m
p

or
al

fi
lt

er
in

g,
w

as
u
se

d
to

ge
n
er

at
e

th
e

fi
n
al

co
u
n
t.

71



endmid (root) quarterbox

C2: Keypoints and skeletonsC1: Bounding boxes

Figure 5.4: Illustration of top-down bounding boxes v.s. bottom-up keypoints for
pigs detection. Column 1 (C1): bounding boxes had very high overlap ratios for
adjacent pigs. Column 2 (C2): body parts keypoints for adjacent pigs. In this work,
five keypoints are defined: one middle body part keypoint, two body end keypoints
and two quarter body keypoints.

5.3.2 Bottom-up detection

The first step was to detect pig candidates in each video frame. Traditionally, top-

down object detectors, such as faster RCNN[17], SSD [18] and YOLOv3 [20], have

been widely used. These methods first proposed locations of detection candidates

using bounding boxes, and then classified each box to be the real target or not. Non-

maximum suppression (NMS) are employed as a post-processing method to signifi-

cantly reduce false positive candidates by removing the bounding boxes that have high

overlap ratios (intersection over union) with each other. Nonetheless, using bounding

boxes to localize the pigs is sub-optimal in this application. The deformable long

oval pig shapes are very challenging for bounding-box-based approaches in crowded

scene. As shown in Fig. 5.4C1, the bounding boxes around two adjacent pigs have
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very high overlap ratio, whose ambiguous nature tends to confuse the neural network

training. Moreover for inference, the NMS post-processing step would enforce the

detector to only select one bounding box for these high overlapping cases, resulting

in false negatives. Compared with bounding boxes, the pig skeletons defined by key-

points are more suitable for differentiating pigs in the crowd as shown in Fig. 5.4C2.

In this work, we defined five pig body keypoints, including one mid point (red), two

quarter points (green) and two end points (blue); and tree-structured pig skeletons

connecting the adjacent keypoints.

Inspired by [92], we presented an efficient bottom-up detection approach (Fig. 5.5)

to overcome aforementioned limitations. This method is consisted of a keypoints

detection step and a keypoints association step. These steps were based on a deep

convolutional encoder-decoder network. The network output two different kinds of

maps: 1) Four keypoint heatmaps and 2) an offset vector field. (Fig. 5.5d) Each

heatmap provided information to classify each pixel into to one of the keypoints or

background class. The offset vector field indicated the relative positional relationships

between the adjacent keypoints, which helped the system group the keypoints and

identify which pig instance that these keypoints belonged to.

Keypoint detection The goal is to detect all visible keypoints belonging to each

single pig in the input. For this purpose, we applied a fully convolutional network

to produce heatmaps with four channels (three channels for each keypoint type and

one for background), which had the same size with the input image. This heatmap

prediction was then formulated as a per-pixel multi-class classification problem. For

each pixel location, the neural network learned to predict if it belonged to one of the

keypoint type or background. We followed [93] to generate classification targets. Let

DR(y) = {x : ‖x− y‖ < R} be a circular region centered at position y with radius

R. We denoted ki,c as the i-th keypoint of type c. All pixels of DR(ki,c) had the same

class label c. In this work, R was set to be 5. Cross-entropy loss was employed for
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this task. At testing stage, the local maxima of the heatmaps were chosen as the

predicted keypoints.

Keypoint association Due to instance-agnostic nature of the predicted key-

points on heatmaps, one unique instance ID had to be assigned for each detected

keypoint so that we ”connect the dots” belonging to the same individual instance.

For this purpose, we added to our neural network a separate two channel outputs

of offset field indicating the displacement from a given keypoint to its parent in the

skeleton (Fig. 5.4C2). Here we denoted F (ki,c) as the parent node of keypoint ki,c. If

x ∈ DR(ki,c), the target offset V (x) was vector starting from x. If ki,c itself is a root

node, i.e. c = mid, V (x) ended at ki,c; Otherwise V (x) ended at F (ki,c).

Let us denote the offset field predicted by the network as U(x). In order to

supervise the training, the regression loss for offset field was defined as

Lr =
∑
x

(1−G0(x)) ‖U(x)− V (x)‖2 , (5.1)

where G0(x) was the binary background mask used for ignoring the regression loss at

the background pixels, where the offset vector were undefined.

At testing stage, an iterative greedy algorithm was adopt to associate the pre-

dicted keypoints. We alternatively searched the best candidate parent node for all

the predicted keypoints, and removed the surplus keypoints from their candidate chil-

dren list, until no better hypothesis could be found. The best candidate parent node

was defined as the keypoint which was in the correct class and match the predicted

offset vector best. The euclidean distance between the predicted offset and the actual

offset was used to measure the match.

Architecture of the network We proposed an architecture (Fig. 5.5b) for the

network. Depthwise separable convolutions [94] were used as the basic building blocks

to reduce the computational cost. Following [61], we used location-withheld maxpool-
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ing to improve the localization accuracy, which preserved indices at the max pooling

layers of the encoder and passed them to the corresponding up-sampling layers of the

decoder.

5.3.3 Keypoints tracking

In order to count pigs across video frames, an efficient on-line tracking method was

employed to associate pig keypoints temporally. This method took the grouped pig

keypoints for single frames as input, and then assigned a unique identification number

(id) to each pig across frames. This problem was formulated as a bipartite graph

matching based energy maximization problem. The estimated pig candidates Ct at

frame t were then associated with the previous pig candidates Ct−1 at frame t− 1 by

bipartite graph matching.

ŝ = arg max
s

∑
Ct

i∈Ct

∑
Ct−1

j ∈Ct−1

ΨCt
i ,C

t−1
j
× sCt

i ,C
t−1
j

s.t. ∀Ct−1
j ∈ Ct−1,

∑
Ct

i∈Ct

sCt
i ,C

t−1
j
∈ {0, 1},

∀Ct
i ∈ Ct,

∑
Ct−1

j ∈Ct−1

sCt
i ,C

t−1
j
∈ {0, 1},

(5.2)

where Ct−1
j was the jth pig candidate in Ct−1 and Ct

i was the ith pig candidate in Ct.

sCt
i ,C

t−1
j
∈ {0, 1} was a binary variable and indicates if Ct−1

j and Ct
i were associated.

The potential ΨCt
i ,C

t−1
j

represented the similarity measurements between Ct−1
j and Ct

i .

ΨCt
i ,C

t−1
j

= λ1Ψ
A
Ct

i ,C
t−1
j

+ λ2Ψ
L
Ct

i ,C
t−1
j
, (5.3)

where ΨA
Ct

i ,C
t−1
j

represented the keypoints appearance similarities between candidates.

And ΨL
Ct

i ,C
t−1
j

implied the spatial similarities. λ1 and λ2 were hyper-parameters to
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balance the contributions of the two terms.

The spatial similarities was calculated as the l2 distance between the propagated

Ct−1
j spatial location and encoded Ct

i center location. ΨL
Ct

i ,C
t−1
j

=
∥∥P (L(Ct−1

j ))− L(Ct
i )
∥∥2.

The appearance similarity was calculated as the the l2 distance across all keypoints

embedded deep features between Ct
i and Ct−1

j .

ΨL
Ct

i ,C
t−1
j

=
5∑

n=1

λLn

∥∥∥Kn
Ct−1

j
−Kn

Ct
i

∥∥∥2 , (5.4)

where Kn represented the nth keypoint deep appearance feature obtained from con-

volution layer before the last upsampling layer of our keypoints CNN. λLn were the

hyper-parameters balancing the weights.

The aforementioned bipartite graph matching problem was solved using Hungarian

method.

5.3.4 Spatial-aware temporal response filtering

Traditionally, video-based counting methods [85, 89] counted the number of unique

tracklet ID as the final counting results. These methods were suitable for the cases,

where the target objects were stationary and object occlusion was very rare. In the

large-scale pig counting scenario, however, pigs moved fast in different directions,

and the same pig will often walked out of the camera view and came back again. In

addition, the indoor building structures (e.g. the feeding machine) would sometimes

block large part of the camera view causing severe occlusions. Occlusions across long

frames will cause tracking failure, and break trajectory of one single object into two

or more. In these cases, counting the number of unique tracklet IDs would suffer

from large false positive errors. To overcome these limitations, we represented a

novel spatial-aware temporal response filtering (STRF) method to perform on-line

counting, while minimizing the false positives.
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The STRF took the tracking trajectories for all previous frames as input, and

output the final counting number. It consisted of two steps: 1) spatial encoding;

and 2) temporal response filtering. The spatial encoding stage processed each video

frame independently, and each detected pig candidate in the frame was assigned

a code number based on their spatial locations. The temporal response filtering

stage examined each candidate’s trajectory across time and obtained a count number,

counti ∈ {0, 1,−1}, for this single candidate. The final counting result was the sum

of all count number for all candidates:
∑N

i=0 counti.

As shown in Fig. 5.6a, the spatial encoding stage divided one image frame into

activated zone and deactivated zone by an activity scanning line. This scanning line

was stationary in a single frame, but served to scan the whole pig house moving with

the inspection robot. For all detected pig candidates, activity codes will be assigned

based on which activity zone these pigs were in. In our work, pigs in activated zone

were assigned code value 0, and pigs in deactivated zone were assigned code value

1. Deactivated zone indicated that all candidates inside have already been counted

by the algorithm; and the candidates in activated zone would be counted when the

activity scanning line scanned through them.

In the temporal response filtering step, lists of spatial codes in temporal order were

generated for each trajectory. One trajectory had one list of spatial codes, and each

element of the list corresponded to a time point. Fig. 5.6c illustrated one example

of one single pig trajectory from time point t − 6 to time point t, where the blue

color represented code 1 and the red color represented code 0. As it was shown, the

generated temporal code was [0, 0, 0, 0, 1, 1, 1] from t − 6 to t. The final count

for this trajectory counti was obtained as the sum of the first order difference of the

temporal codes. In this case, the count would be 1, which indicated that this pig was

scanned once (from deactivated zone into activated zone) and the total count should

be added by 1. Similarly, Fig. 5.6d showed a pig trajectory with code [1, 0, 0, 0, 1,
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1, 0, 0] and sum of the the first order difference inferred that the count was −1. This

meant that this pig, which has been counted before, moved from scanned zone to

to-be scanned zone. Thus, the total count should minus 1. This design enabled the

algorithm to avoid false positives counting caused by pig movements into/out camera

view. Fig. 5.6e-g showed examples when the pig trajectory count was 0. Fig. 5.6e-

f represented pig trajectories that never went across the scanning line. Fig. 5.6g

represented cases where the trajectory started and ended in the same activity zone.

These examples demonstrated that STRF would not be influenced by the tracking

failures (e.g. broke one trajectory into several cased by occlusion) that happened only

in one single zone. In this study, a low-pass filter with window size of 5 was applied

before the first order differential calculation. This low-pass filtering step was designed

to avoid the trajectory jitter near the activity scanning line. The final counting result

for the whole video also added the number of detected candidates in deactivated zone

of the beginning frame and the number of detected candidates in activated zone of

the ending frame.

5.4 Experiments

We collected 51 videos by inspection robots installed in pig grouping houses of two

different pig farming corporations. All videos were originally recorded at 1280×720

resolution with frame rate of 25 f/s. For this study, we first resized the video frame to

360×640, and then cropped them to 352×640. All experiments in this work used this

resolution. Each video (pig house) had 120∼250 pigs. The length of the videos ranged

from 2 minutes to 4 minutes. We randomly split these videos into three subsets, 21

for training, 5 for validation and 25 for testing. The ground truth were provided

by workers, who counted the pigs inside the grouping houses when the videos were

recorded. We report the error of pig counting using Mean Absolute Percentage Error
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(MAPE) and Mean Absolute Error (MAE).

5.4.1 Comparison with human reader

To demonstrate the effectiveness of out method, we compared the performance of

our counting system with human readers on test dataset. There were three readers

for this study. The readers were required to provide count results by watching the

same top-down view videos as the input of the algorithm. There were no time limits

for the reading process, and the readers were allowed to pause, rewind, replay the

video and took notes for unlimited times. Each reader estimated the pig counts for

all the videos in the test datasets. The counting error for both the proposed method

and human reader were evaluated using mean absolute percentage error (MAPE) and

mean absolute error (MAE). The three readers have MAPE of 11.0%, 17.4%, and

15.9%; and MAE of 12.6, 26.3 and 25.2, respectively. The average time that the

human readers have spent on per video is around 1.5 hours. In contrast, our method

had MAPE of 2.67%, and MAE of 3.32, which significantly outperformed the human

readers.

5.4.2 Ablation study

To validate our proposed CNN architecture for keypoints detection, we compared our

method with UNet [95] and stacked Hourglass network [96] using the same train,

validation and test datasets. Both methods were modified to fit our pixel-level key-

points detection pipelines. Following [97], the cropping operators was removed from

UNet and 7 UNet-submodules were used. The Stacked Hourglass network tested had

two hourglass stacked. The Percent of Detected Joints (PDJ) [80] was used as the

evaluation metric. One keypoint was considered as detected if the distance between

the predicted keypoint and the ground truth was smaller than a fraction of the total
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Table 5.1: Comparison of keypoint detection results.

Metric PDJ@0.1 PDJ@0.2 FLOPs #Param.
Keypoint type mid quarter end mid quarter end

UNet [95] 0.938 0.935 0.895 0.971 0.980 0.953 23G 42M
Hourglass [96] 0.913 0.905 0.866 0.954 0.968 0.932 23G 3.6M

Ours 0.962 0.964 0.934 0.991 0.992 0.978 15G 3.3M

Table 5.2: Comparison of pig counting

Method MAPE MAE
SSD [18] + Tracking 327% 412
YOLOv3 [20] + Tracking 247% 368
Proposed Keypoint Detector + Tracking 152% 191
SSD [18] + Tracking + STRF 10.1% 12.2
YOLOv3 [20] + Tracking + STRF 5.35% 7.00
Proposed Keypoint Detector + Tracking + STRF 2.67% 3.32

length of the skeleton of the pig. As shown in Table 5.1, our method achieved better

keypoints detection accuracy for all 5 body parts with significantly less computation

cost and smaller parameter size.

We also compared our bottom-up detection method with SSD [18] and YOLOv3 [20]

using top-down bounding boxes detection metric: mean average precision with 0.5

IOU (mAP@0.5). The proposed bottom-up approach did not directly output bound-

ing boxes of pig. Thus, we used keypoints/skeleton bounding boxes instead. It should

be noted that the keypoints bounding boxes are more strict and harder to predict,

and our network was never trained for the bounding boxes detection task. SSD

achieved 73.3% mAP while YOLOv3 achieves 79.7% mAP. Our method had 84.3%

mAP. Although more challenging, our method showed better performance. It should

be noted that a large part of the detection failures happened around image boudaries

where large fisheye distortion and image cutoff happened. Due to the design of STRF

methods, most of the failures will not influence the final counting result.

To evaluate the effectiveness of the STRF method, we compared the counting

results with and without STRF using our detection method, SSD and YOLOv3,
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resepctively. Table 5.2 showed that the MAPE and MAE are significantly small

when using STRF. And our method achieved better performance with/without STRF

compared with SSD or YOLOv3.

5.4.3 Runtime analysis

We analyzed the runtime performance of our method using the test dataset. On

desktop computer, it achieved 3.42 frames per second (FPS) running speed with

a Intel i7-6850K CPU and 32GB DDR4 2133MHz Memory. When accelerated by

a single NVIDIA GeForce GTX 1080Ti GPU, it achieved 82.6 FPS. The proposed

counting algorithm has also been deployed on two different edge computing devices.

It achieved 0.625 FPS on a Firefly-RK3399 platform, which had a 2GB Memory and

a Rockchip RK3399 CPU. On NVIDIA Jetson Nano platform, it achieved 3.19 FPS

with a 4GB memory, a quad-core ARM A57 CPU and 128 CUDA cores.

5.5 Conclusion

In this work, we presented a hardware configuration and novel efficient algorithm

for pig counting in large grouping houses. An inspection robot with a monocular

fisheye camera was installed on the roof with rails, along which the root could move

back and forth to collect top-down view videos. A novel efficient bottom-up CNN

detection approach was developed to first detect pigs from the crowd. Second, a

online tracking method was employed to associate pig ID temporally. A novel STRF

method was proposed to calculate the final pig counts, while significantly avoid false

positive counting due to tracking failure or large pig movements. The low computation

cost design significantly reduce the computation time and model size. This counting

algorithm has been deployed in edge computing device of the inspection robot, and

achieved counting accuracy superior to human readers.
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Chapter 6

Conclusion

In this dissertation, we formulated the animal and plant inventory as computer vision

problems under different circumstances and proposed four novel approaches to detect,

recognize, track and count the objects of interest. We evaluated our approaches on the

data collected from the real world. The experimental results supported the advantage

of the approaches.

In Chapter 2 we introduced our approach for vegetation coverage estimation. The

usage of handcrafted features like HOG and LBP alleviates the burden of labeling

work. Without any training data, the detector achieves a 93% success rate. The

segmentation model generates color model for the cover board at test time. Such

design is robust to the lighting condition change and achieves 3% mean absolute

error rate in the test set collected by the Missouri Department of Conservation.

In Chapter 3 we proposed density transformer or DENT, which is a density-based

algorithm for tree counting in aerial images. The visual features are extracted by

a novel Multi-Receptive Field network, which has multiple concentric fields of view,

focusing on the local patch and wide context respectively. The visual features and

a count query embedding are encoded using a transformer encoder, where the useful

information is exchanged between the features based on their pair-wise relationship.
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Finally, the hidden states of the transformer are decoded by a Density Map Generator

and a tree counter. They generate the predicted tree density map and tree count.

We used the Yosemite Tree Dataset built by ourselves and the cross-site NeonTreeE-

valuation Dataset to evaluate DENT. Although the mainstream of the existing tree

counting algorithms is detection-based, our DENT significantly outperformed all the

other state-of-art detectors in the experiments. DENT also outperformed the other

density-based algorithms.

In Chapter 4 we introduced our approach for fish classification using cameras on

fishing boats. The proposed system uses two branches to make predictions. The

instance-level branch focus on the individual fish. It localizes the fish and normalizes

the pose of the fish. The pose-normalized fish is categorized by CNN classifiers. The

image-level branch makes predictions based on all the context in the images in case

that the individual fish is difficult to recognize. The predictions from the two branches

are adaptively weighted averaged. The weights are determined by how familiar the

context is. We evaluated this approach in the “The Nature Conservancy Fisheries

Monitoring” competition and archieved top 0.7% rank among 2293 solutions.

In Chapter 5 we introduced our video-based pig counting system. The hardware

consists of an on-rail robot carrying a fish-eye lens with a top-down view and an ARM

chip for edge computing. The algorithm consists of an efficient fully convolutional

network for bottom-up keypoint detection. From the perspective of the algorithm,

we proposed an efficient bottom-up keypoint detection approach to localize the pigs.

The detected pigs are tracked using bipartite graph matching. We also proposed a

Spatial-aware Temporal Response Filtering algorithm to suppress the missing pigs

and false alarms. The proposed approach not only outperformed the other methods

but also the human volunteers.

In sum, the proposed methods and their performance opened up new prospects of

the computer vision applications in plant and animal inventory.
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