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ABSTRACT

Deep neural networks have achieved remarkable performance in many computer vi-

sion applications such as image classification, object detection, instance segmentation,

image retrieval, and person re-identification. However, to achieve the desired perfor-

mance, deep neural networks often need a tremendously large set of labeled training

samples to learn its huge network model. Labeling a large dataset is labor-intensive,

time-consuming, and sometimes requiring expert knowledge. In this research, we

study the following important question: how to train deep neural networks with very

few or even no labeled samples? This leads to our research tasks in the following two

major areas: semi-supervised and unsupervised learning.

Specifically, for semi-supervised learning, we developed two major approaches.

The first one is the Snowball approach which learns a deep neural network from very

few samples based on iterative model evolution and confident sample discovery. The

second one is the learned model composition approach which composes more e�cient

master networks from student models of past iterations through a network learning

process. Critical sample discovery is developed to discover new critical unlabeled

samples near the model decision boundary and provide the master model with look-

ahead access to these samples to enhance its guidance capability.

For unsupervised learning, we have explored two major ideas. The first idea

is transformed attention consistency where the network is learned based on self-

supervision information across images instead of within one single image. The second

one is spatial assembly networks for image representation learning. We introduce

a new learnable module, called spatial assembly network (SAN), which performs a

xvi



learned re-organization and assembly of feature points and improves the network

capabilities in handling spatial variations and structural changes of the image scene.

Our experimental results on benchmark datasets demonstrate that our proposed

methods have significantly improved the state-of-the-art in semi-supervised and un-

supervised learning, outperforming existing methods by large margins.

xvii



Chapter 1

Introduction

1.1 Motivation

Lacking of su�cient labeled data limits the performance and application of deep neu-

ral networks. Labeling large and frequently changing datasets requires significant hu-

man e↵orts and is costly. Furthermore, providing accurate labels for domain-specific

image datasets, such as biological and medical images, requires expert knowledge.

Obtaining large-scale labeled training sets for these domain-specific tasks is di�cult.

Meanwhile, in many applications and real-world problems, unlabeled samples are

often massively and easily available, for example, images obtained from the web or

social networks. Recently, training an e�cient deep neural network using a very small

set of labeled samples or even no labeled samples has emerged as an important re-

search topic in deep learning with a wide range of applications in image classification,

object detection, instance segmentation, image retrieval, and person re-identification.

1



Learning from very few labeled data or unlabeled data is very challenging, yet highly

desirable in practice. This leads to our research topics in the following two major

areas: semi-supervised learning and unsupervised learning.

1.2 Semi-Supervised Learning

Semi-supervised learning aims to train a deep neural network with a small set of

labeled samples and a large set of unlabeled samples together [1, 2]. During the past

several years, a number of semi-supervised learning algorithms have been developed,

including regularization-based methods [1, 2], graph-based methods [3, 4, 5, 6, 7],

and Generative Adversarial Networks (GANs)-based methods [8, 9, 10, 11]. Oliver et

al. [12] provide a comprehensive survey of recent semi-supervised learning methods.

In recent approaches for semi-supervised learning aiming to achieve better model

generalization for the unseen data, a loss function is often computed on the prediction

of unlabeled samples based on the following three principles: (1) entropy minimization

which encourages the model to output high confident (low entropy) predictions on

unlabeled data [13, 14]; (2) consistency regularization which encourages the model

to produce the same output distribution when its inputs are perturbed [15, 16, 17];

and (3) generic regularization which encourages the model to generalize well and

avoid over-fitting of the training data [18]. For example, the Mean-Teacher [16]

algorithm constructs a teacher model based on the exponential moving average (EMA)

of student models obtained from previous training steps to guide the training of

the current student model by enforcing the prediction consistency between them on

unlabeled samples. MixMatch [19] designs a unified loss function which combines the

2



techniques of consistency regularization [20, 15, 16] and entropy minimization [13].

The goal of semi-supervised learning is to successfully train the network with fewer

and fewer labeled samples.

1.3 Unsupervised Learning

Clustering is one of the earliest methods developed for unsupervised learning. Re-

cently, motivated by the remarkable success of deep learning, researchers have started

to develop unsupervised learning methods using deep neural networks [21]. Auto-

encoder trains an encoder deep neural network to output feature representations with

su�cient information to reconstruct input images by a paired decoder [22]. As we

know, during deep neural network training, the network model is updated and learned

in an iterative and progressive manner so that the network output can match the tar-

get. In other works, deep neural networks need human supervision to provide ground-

truth labels. However, in unsupervised learning and recent self-supervised learning,

there are no labels available. To address this issue, researchers have exploited the

unique characteristics of images and videos to create various self-supervised learning

pretext task labels, objective functions, or loss functions, which essentially convert

the unsupervised learning into a supervised one so that the deep neural networks

can be successfully trained. For example, in DeepCluster [21], clustering is used to

generate pseudo labels for images. Various supervised learning methods have been

developed to train networks to predict the relative position of two randomly sampled

patches [23], solve Jigsaw image puzzles [24], predict pixel values of missing image

patches [25], classify image rotations of four discrete angles [26], reconstruct image

3



transforms [22], etc. Once successfully trained by these pretext tasks, the baseline

network should be able to generate discriminative features for subsequent tasks, such

as image retrieval, classification, matching, etc [27].

In this dissertation, we mainly use unsupervised deep metric learning to evalu-

ate our proposed methods. Deep metric learning aims to learn discriminative fea-

tures that can aggregate visually similar images into compact clusters in the high-

dimensional feature space while separating images of di↵erent classes from each other.

In supervised deep metric learning, we assume that the labels for training data are

available. In unsupervised deep metric learning task, we consider unsupervised deep

metric learning where the image labels are not available. It has many important

applications, including image retrieval [28, 29, 30], face recognition [31], and person

re-identification [32, 33]. Successful metric learning needs to achieve the following

objectives: (1) Discriminative. It should be able to aggregate images with the same

semantic labels into compact clusters in the high-dimensional feature space while sep-

arating images of di↵erent classes from each other. (2) Generalizable. The learned

features should be able to generalize well from the training images to test images of

new classes which have not been seen before. Learning directly and automatically

from images in an unsupervised manner without human supervision represents a very

important yet challenging task in computer vision and machine learning.

1.4 Dissertation Organization

The rest of the paper is organized as follows. In Chapter 2, we introduce a joint sam-

ple discovery and iterative model evolution method for semi-supervised learning on
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small labeled training sets. In Chapter 3, we propose to push the performance limit

of semi-supervised learning on very small sets of labeled samples by developing a new

method called learned model composition with critical sample look-ahead (LMCS).

In Chapter 4, we propose the transformed attention loss and contrastive clustering

loss for unsupervised deep metric learning. In Chapter 5, we introduce a learn-

able spatial assembly network (SAN) for supervised and unsupervised representation

learning. In Chapter 6, We summarize all the works in the dissertation.
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Chapter 2

Snowball: Iterative Model
Evolution and Confident Sample
Discovery for Semi-Supervised
Learning

2.1 Introduction

Most recent semi-supervised learning algorithms[15, 34, 16] which achieve the state

of the art performance are based on the principle of consistency regularization, which

aims to learn a smooth manifold on the labeled and unlabeled samples [35]. The

Mean-Teacher [16] algorithm constructs a teacher model based on the exponential

moving average (EMA) of student models obtained from previous training steps to

guide the training of the current student model by enforcing the prediction consistency

between them on unlabeled samples. In this work, we propose to push the perfor-

mance limit of semi-supervised learning by developing an e�cient learning method on
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very small sets of labeled samples. For example, on the same CIFAR-10 dataset, we

can achieve successful training with 250 labeled samples while outperforming existing

methods on learning with larger sets of labeled samples. On the Street View House

Number (SVHN) dataset, we can reduce the training set size from 1000 in existing

literature to 100 while maintaining e�cient learning performance. Our extensive ex-

perimental results demonstrate that our proposed method significantly improves the

overall semi-supervised learning performance, outperforming existing state-of-the-art

method by a large margin. For example, on the CIFAR-10 dataset, our proposed

method has successfully trained a model with 250 labeled samples to achieve an error

rate of 11.58%, about 38% lower than the Mean-Teacher (49.91%). We find out that

our proposed master-teacher-student framework and sample discovery, once coupled

with the augmentation and loss function of the state-of-the-art MixMatch [19], can

successfully train the network with only 100 labeled samples and gain significantly

improvement.

To achieve this goal, we propose to explore two major ideas: (1) we extend the

existing Mean-Teacher method by introducing a master-teacher-student network to

provide multi-layer guidance during the model evolution process with multiple itera-

tions and generations. This master network combines the knowledge of the student

network and teacher network with additional access to newly discovered samples.

Both the master and teacher models are then used to guide the training of the stu-

dent network by enforcing the prediction consistency between them on unlabeled

samples. The student model learns gradually from stable and reliable generated tar-

gets from the more powerful master model, which makes significant contributions

to the approach of consistency regularization. (2) We develop a confident sample
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discovery method and couple it with the master-teacher-student learning to achieve

continuous model evolution with more and more samples being discovered. The error

rate of sample discovery depends on the performance of the initial model. In self-

training [36, 37, 38], the newly selected samples often have high error rates in their

label prediction, since the initial model is not accurate, being trained with very few

samples. Our method is able to significantly reduce the label prediction error rate in

the discovered samples using the master-teacher-student network. For example, on

the CIFAR-10 dataset with 500 labeled samples for network training, the error rate

of sample discovery reaches below 1%.

Our main contributions can be summarized as follows:

(1) We introduce a new master-teacher-student structure, o↵ers a multi-layer guid-

ance during the model evolution process with multiple iterations and generation.

(2) We develop confident sample discovery method and couple it with the master-

teacher-student learning to achieve continuous model evolution with more and more

samples being discovered. For this reason, we refer to our method as Snowball.

(3) Our experimental results and ablation studies show that the proposed Snow-

ball method outperforms the state-of-the-art semi-supervised learning methods on

multiple benchmarks, especially on very small sets of labeled samples.

The rest of the chapter is organized as follows. In Section 2.2, we provide a

review of recent work on semi-supervised learning. The proposed Snowball method

is presented in Section 2.3. Experimental results are in Section 2.4. Section 2.4

concludes the chapter.
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2.2 Related Work

Training semi-supervised models with a small set of labeled samples and a large set of

unlabeled samples has become an important research task with significant impact in

practice. A number of methods have been developed and achieved remarkable results.

These methods can be summarized into the following five major categories.

(1) Self-training methods. The self-training approach [36, 37, 38, 39], also

called bootstrapping or self-teaching, first trains a classifier with labeled samples

and then uses the pre-trained classifier to classify unlabeled samples, selects the most

confident unlabeled samples, predicts their labels, and uses them for the next iteration

of training [40]. The bootstrap aggregating method in [41] trains multiple networks

independently based on di↵erent training subsets, which can make the model more

stable than single networks.

(2) Co-training methods. Co-training [42, 43] trains two separate classifiers

to learn features on two separate datasets. Each classifier is then used to classify

unlabeled samples and retrained using highly confident unlabeled samples predicted

by the other classifier. Deep co-training [44] combines the co-training and deep learn-

ing. It generates adversarial samples for each model to ensure the view di↵erence.

Dual-student [17] designs stabilization constraint which explores stable samples and

exchanges reliable information between models.

(3) Graph-based methods. Graph-based semi-supervised algorithms assume

that neighboring nodes share similar labels [40]. A graph is constructed to measure

the similarity between labeled and unlabeled samples. Knowledge learned from the

labeled samples is propagated along the graph to predict the labels of unlabeled sam-

ples [45, 4]. The manifold regularization method in [35] applies the Reproducing
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Kernel Hilbert Space (RKHS) to a parameterized classifier with squared loss or hinge

loss. The label propagation method in [46] compares unlabeled samples with labeled

samples by selecting a suitable predefined distance metric. Multi-label propagation

[47] extends this method to image annotation tasks. [48] uses the idea of self-training

and proposes a graph-based label propagation method. [49] proposed a cross-task

network which has two streams to jointly learn two tasks: classification and cluster-

ing. Based on the model predictions, a large number of pairwise constraints can be

generated from unlabeled images, and are fed to the clustering stream. They used

pairwise constraints to encode weak supervision information. Unlabeled images are

weighted according to the distances to the clusters discovered, and an improved model

is then trained on the classification stream associated with a weighted softmax loss.

(4) GANs-based methods. Another group of methods for semi-supervised

learning is based on the generative adversarial networks (GANs) [10, 11]. [8] pro-

posed an auto-encoder generative model for semi-supervised learning. GAN-based

methods often require sophisticated tuning of network hyperparameters. [9] demon-

strated the e↵ectiveness of random perturbations in semi-supervised learning. [50]

used adversarial training to discover the most sensitive perturbation for the labels

of input samples. [34] introduced the method of virtual adversarial training (VAT).

They proposed a new measure for local smoothness of the conditional label distri-

bution. Unlike adversarial training, their method defines the adversarial direction

without label information and is hence applicable to semi-supervised learning.

(5) Entropy minimization-based methods. Entropy minimization for semi-

supervised learning [13] is based on a fundamental assumption that the decision

boundary should lie in the low-density regions of data distribution [51]. This al-
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lows us to utilize unlabeled samples by introducing a loss function based on this

assumption. [52] coupled entropy minimization with self-training to label the unla-

beled samples. Pseudo-labeling [14] uses the classifier itself to construct hard labels

over the training process. It trains the classifier only with the labeled samples and

gradually introduces the weighted pseudo-labels with larger class probabilities for un-

labeled samples. Unlabeled samples and corresponding pseudo-labels are used in the

standard loss function. [53] follows similar principle and uses deep metric embedding

to measure the distance between the labeled and unlabeled samples.

(6) Consistency regularization-based methods. Many recent semi-supervised

methods are based on consistency regularization which aim to ensure consistent model

prediction over di↵erent sample perturbations. It often applies a consistency con-

straint on the teacher-student network to learn knowledge from perturbed data. The

�-model in Ladder networks [54] trains a clean model as the teacher and a noisy

model as the student, and enforces the student to predict the same target provided

by teacher. Transform loss [20] and ⇧-model [15] adopt a similar principle by introduc-

ing new loss functions for unlabeled samples which penalize inconsistent predictions.

In ⇧-model, teacher and student share network parameters and each sample is an-

alyzed twice with di↵erent random noise. Temporal ensembling [15] improves upon

the ⇧-model method by introducing an exponential moving average of predictions

obtained from previous epochs. It predicts unlabeled samples over multiple epochs

instead of labeling them with an external model. Deep Coupled Ensemble (DCE)

[55] extends temporal ensembing and combines multiple complementary consistency

regularizations. It introduces class-wise feature matching and a conditional entropy

term to explore and weight unlabeled samples in the training process.
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Instead of sharing parameters with di↵erent models and averaging of their pre-

dictions, the Mean-Teacher algorithm [16] uses an exponential moving average of the

student models obtained from previous training steps. The student and teacher mod-

els improve each other in an iterative manner. Stochastic Weight Average (SWA) [56]

averages weights with the trajectory of SGD to build a more powerful teacher. The

Smooth Neighbors on Teacher Graph (SNTG) method [57] constructs a graph-based

prediction of the teacher model to make the learned features more discriminative by

exploring intra-class similarity and inter-class dissimilarity. Complementary Correc-

tion Network (CCN) [58] is constructed on top of two essential networks. It learns

complementary knowledge from the output of the one network and the feature from

the other network and then tranfers the knowledge via mutual learning. Interpolation

Consistency Training (ICT) [59] uses the MixUp approach [18] to produce interpo-

lations from two unlabeled samples and applies consistency regularization between

them.

The most recent semi-supervised learning method is Google’s MixMatch [19]. It

designs a unified loss function which combines the techniques of consistency regular-

ization [20, 15, 16] and entropy minimization [13]. It uses the MixUp approach [18]

to mix the labeled samples and unlabeled samples randomly. The MixMatch [19]

achieves the state-of-the-art performance in semi-supervised learning. Compared to

the current consistency regularization-based methods, our Snowball method has the

following unique and important characteristics: (1) The training process is guided by

the more powerful master network. It enforces the consistency between the predic-

tions of unlabeled samples by the master network and student network and explores

more stable targets for unlabeled samples on very small labeled datasets. (2) Our
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Figure 2.1: Overview of the proposed Snowball method.

sample discovery discovers high confident unlabeled samples and assigns hard labels

instead of soft labels or weight for them. In this way, it can reduce the uncertainty

of the model for the unlabeled samples.

With semi-supervised learning methods, we are able to train an e�cient network

using a very small set of labeled samples and a large set of unlabeled samples. In this

work, we propose to push the performance limit of semi-supervised learning so that

successfully learning on very small training set becomes possible.

In the section, we present our iterative model evolution and confident sample

discovery for semi-supervised learning.

2.3 The Proposed Snowball Method

2.3.1 Method Overview

Figure 2.1 provides an overview of the proposed Snowball method. In semi-supervised

learning, we have access to a small set of labeled training samples, denoted by ⌦L

and a large set of unlabeled samples, denoted by ⌦U . Based on ⌦L, we follow the
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Mean-Teacher method in [16] to train the student network GS guided by the teacher

network GT . We use this successfully trained student model GS to analyze unlabeled

images, extract their features, compare them against the labeled images, and discover

a subset of confident samples with assigned labels. We denote this subset by U.

These discovered samples are combined with the original labeled samples to form an

augmented sample set to train a new network and form the master network modelGM .

This master network combines the knowledge of the student network GS and teacher

network GT , as well as the knowledge of newly discovered samples U. In Snowball,

we use the master network to guide the learning of the teacher and student networks

and evolve their models over multiple generations with more and more samples being

discovered. Our experimental results demonstrate that this tightly coupled model

evolution and sample discovery are able to significantly improve the performance of

semi-supervised learning, especially on very small sets of labeled training samples.

2.3.2 Master-Teacher-Student Network Model Evolution

In the original Mean-Teacher method [16], a teacher model is constructed by perform-

ing an exponential moving average (EMA) of the student network models obtained

from past training steps. Each epoch has multiple training steps. This teacher model

is then used to guide the training of the student network by enforcing the consistency

between the predictions of unlabeled samples by the student and teacher models.

This is based on one fundamental semi-supervised learning assumption that neighbor

samples in high-density region should have similar outputs [60]. The performance

of the teacher and student is limited since their knowledge are based on the original

labeled samples. The consistency between the teacher and student is not powerful
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enough when the original labeled dataset is very small.

We define two terms: iteration and generation. In each iteration indexed by k,

our method uses the current network model to find the additional subset of confident

samples from the remaining unlabeled samples to refine the models. The first iteration

starts with the original labeled samples ⌦L. One generation involves a sequence of

iterations. In each generation indexed by m, we use the model obtained from the

previous generation and come back to re-discover confident samples and refine models

over a new sequence of iterations. Specifically, at generation m and iteration k, let

the corresponding student, teacher, and master network models be Gm,k

S
, Gm,k

T
, and

Gm,k

M
respectively. Let Um

k
be the set of newly discovered samples at iteration k and

generation m. The label for each sample in Um

k
is determined by our algorithm which

will be discussed in the next section. Then, the current labeled training set is given

by

⌦m,k

L
= ⌦L [Um

1 [Um

2 [ · · · [Um

k
. (2.1)

The current training set ⌦m,k at generationm and iteration k is defined as ⌦m,k

L
[⌦m,k

U
,

where ⌦m,k

U
is the corresponding unlabeled dataset. We use ⌦m,k to train and update

the student, teacher, and master networks. Specifically, we first train the student

network Gm,k

S
. Let Gm,k

S
[t] be the corresponding model obtained at training step t.

Each training epoch can be multiple training steps [16]. At each step, the teacher

model Gm,k

T
[t], according to Mean-Teacher method, is constructed and updated based

on the following exponential moving average:

Gm,k

T
[t] = ↵ ·Gm,k

T
[t� 1] + (1� ↵) ·Gm,k

S
[t]. (2.2)
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where ↵ is the exponential moving average decay parameter. It ramps up from 0.99

to 0.999 with the increase of the training steps. The loss function for training the

student network is given by

Jm,k

S
= �1 · J

m,k

C
+ �2 · J

m,k

✓
. (2.3)

Here, Jm,k

C
represents the classification loss which is the cross-entropy between the

student network prediction (softmax output vector) and the associated label over the

current labeled training set ⌦m,k

L

Jm,k

C
= E

xl2⌦m,k
L

�{Gm,k

S
[t](xl),L(xl)}, (2.4)

where L(xl) represents the label of the input and �{·, ·} represents the cross-entropy.

The consistency loss Jm,k

✓
is the mean squared error (MSE) between the student and

teacher predictions

Jm,k

✓
= Ex2⌦m,k{kGm,k

T
[t](x)�Gm,k

S
[t](x)k2}. (2.5)

To construct the master network, we augment the labeled dataset ⌦L into ⌦m,k

L
by

newly discovered samples Um

k
. The size of ⌦m,k

L
is double the size of ⌦m,k�1

L
after each

iteration. We use the corresponding training set ⌦m,k to update the student network.

The teacher network Gm,k

T
[t] is refined by the exponential moving average of student

network in Eq.(2.2) and the consistency loss in Eq.(2.5) between the teacher and

student network. Then, the master network is obtained using the exponential moving

average of the teacher networks
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Gm,k

M
[t] = � ·Gm,k

M
[t� 1] + (1� �) ·Gm,k

T
[t]. (2.6)

The master network is used to guide the training of the teacher and student networks

to achieve better transferability on unseen samples. In our experiments, � is set to

0.999. To this end, we augment the consistency loss in Eq. (2.5) by

Jm,k

✓
= Ex2⌦m,k{kGm,k

T
[t](x)�Gm,k

S
[t](x)k2}

+E
xl2⌦m,k

L
{kGm,k

M
[t](xl)�Gm,k

S
[t](xl)k

2
},

(2.7)

which has two parts consistency: the prediction of sample x from the current training

set ⌦m,k between the teacher and student networks, and the prediction of sample xl

from the current labeled training set ⌦m,k

L
between the master and student networks.

We use MSE to measure the distance between two vectors. During training, the

output vectors from student, teacher, and master network are firstly processed by

softmax and then used to calculate the consistency loss. The master-teacher-student

provides more stable targets for unlabeled samples and improves the results on very

small labeled datasets.

2.3.3 Discovering Confident Samples

In this work, we have found out that discovering confident samples from the unla-

beled dataset, once coupled with the above master-teacher-student network evolution,

can significantly improve the overall semi-supervised learning performance. Our ex-

perimental results will demonstrate that these two are tightly coupled and greatly

enhance the performance of each other. To discover confident samples and assign
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Figure 2.2: Demonstration of the performance of Snowball in each iteration. We
select 50 labeled samples from each class as original labeled samples and transfer the
high dimension feature to 2-D feature by t-SNE. We use green, red, large green points
and black diamond symbols to represent labeled samples, discovered samples, center
of labeled samples and error discovered samples respectively.

labels for them, we use the newly trained master network Gm,k

M
to extract the feature

for each sample xu in the unlabeled dataset, and denote it by F (xu). For all samples

in the labeled dataset, we also compute their features. We then compute the center

for each class

Cn =
1

Tn

X

xl2⌦m,k
L , L(xl)=n

F (xl), (2.8)

where Tn is the total number samples in class n and L(xl) represents the label of xl.

For the unlabeled image xu, we find class center Cn⇤ which has the minimum distance

to F (xu), and then assign its label as n⇤. Previous works assign soft labels or develop a

weighing mechanism for unlabeled samples based on the trained classifier. We assign

hard labels for high confident labeled samples directly based on the feature distance

between the labeled and unlabeled samples. This will reduce the uncertainty of the

model. In our experiments, we find out that samples with smaller distance have higher

probability to have correct labels. In iteration (m, k), we select the top N
m,k samples
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with the smallest feature distance to their centers to form the newly discovered sample

set Um

k
. Figure 2.2 visualizes the new sample discovery process on the CIFAR-10

after using t-SNE to reduce the high dimension features into 2D features. We use

500 labeled samples from 10 classes and select the top 500 high confident samples as

newly discovered samples in the first iteration. The size of labeled dataset is doubled

by introducing newly discovered samples in each iteration. Figure 2.2 shows three

iterations with more and more new samples being discovered. The green points are

the original labeled samples whose cluster centers are marked with large green points.

The newly discovered samples are shown in red. A very small number of discovered

samples with wrong predicted labels are marked by a black diamond symbol. We can

see that the accuracy of label prediction for newly discovered samples is very high,

often in the range of 95-99%.

2.4 Experimental Results

To evaluate the performance of our proposed method, we use three benchmark datasets:

SVHN (Street View House Number), CIFAR-10 and CIFAR-100, which have been

extensively used for evaluating semi-supervised learning algorithms in the literature

[15, 57]. Following the existing evaluation protocol [54, 16], we split the training

samples into two parts: labeled and unlabeled samples. To test the performance of

our Snowball method on very small sets of labeled samples, we reduce the training

set size to from 1000 and 2000 in the literature to 500, 250, and compare with our

baseline Mean-Teacher method. In the literature, existing semi-supervised methods

often compare their performance on larger sets of labeled samples, for example 1000,
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2000, and 4000 images. They did not provide performance results on very small sets.

In this case, we choose the Mean-Teacher method for performance comparison, since

it has the code publicly available and we have managed to run the code to achieve

the same performance as claimed in the original paper. With this, we can gener-

ate comparison results of Mean-Teacher on very small sets. We use the source code

published on Github by Mean-Teacher [16] and use the same augmentation, training

steps, ramp-up and EMA decay rate parameters. We also conduct comparisons on

benchmark and very small labeled datasets with the state-of-the-art MixMatch [19]

on CIFAR-10 and CIFAR-100 after optimizing our sample discovery method.

The results are averaged over multiple runs with di↵erent random seeds. We follow

the random sample strategy of Mean-Teacher and ensure that each class has the same

number of labeled samples. In both Mean-Teacher and our Snowball methods, two

network structures are used: a 13-layer convolutional network (ConvNet-13) and a

26-layer Residual Network [61] with Shake-Shake regularization (Resnet-26) [20]. All

results in the following experiments are reported with classification error rates.

2.4.1 Performance Comparison with Existing Methods on
the Same Training Sets

(1) Performance Comparison on the SVHN Dataset. The street view house

numbers (SVHN) dataset consists of 32⇥32 pixel RGB images in 10 classes. There

are 73257 labeled samples for training and 26032 for testing. It has been used as the

benchmark dataset for testing semi-supervised learning and previous state-of-the-art

methods have already achieved low error rates which are very close to supervised

learning with the full training set (73257 images). All of the labeled and unlabeled
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Table 2.1: Error rate percentage of ConvNet-13 and Resnet-26 on the SVHN com-
pared to the state-of-the-art methods.

250 Labels 73257 Labels
Methods 73257 Images 73257 Images
Supervised [16] 27.77 ± 3.18% 2.75 ± 0.10%
⇧ Model [15] 9.69 ± 0.92% 2.50 ± 0.07%
Temporal Ensembling [15] 12.62 ± 2.91% 2.74 ± 0.06%
SNTG [57] 4.29 ± 0.23% 2.42 ± 0.06%
Mean-Teacher + ConvNet-13 [16] 4.35 ± 0.50% 2.50 ± 0.05%
Mean-Teacher + Resnet-26 [16] 3.53 ± 0.12% �

Our Method + ConvNet-13 4.07 ± 0.17% 2.50 ± 0.05%
Our Method + Resnet-26 3.26 ± 0.02% �

training datasets are normalized to have zero mean and unit variance. One labeled

sample and 99 unlabeled samples are assigned to each mini-batch. Table 2.1 shows

our results on the SVHN with 250 labels. We can see that our method outperforms

existing state-of-the-art methods, reducing the error rate of the second best (4.29%)

further to 3.26%.

(2) Performance Comparison on the CIFAR-10 Dataset. CIFAR-10 is an-

other benchmark dataset for evaluating semi-supervised learning methods. It consists

of 32⇥32 from 10 classes. There are 50000 labeled training samples and 10000 testing

samples. Table 2.2 shows the error rates for 1000, 2000, and all 50000 training sam-

ples achieved by our method and existing methods. We can see that our method with

Resnet-26 achieves the best performance, with an error rate of 7.82%, much lower

than the second best 10.08% by Mean-Teacher with the same network configurations.

We also provide results of our method with ConvNet-13 and other methods which

use similar network configurations. We include the results for the full training set

to demonstrate that all methods are having a similar starting point. In the original

paper, the Mean-Teacher did not provide result with Resnet. Our method will be the
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Table 2.2: Error rate percentage of ConvNet-13 and Resnet-26 on CIFAR-10 com-
pared to the state-of-the-art.

1000 Labels 2000 Labels 50000 Labels
Methods 50000 Images 50000 Images 50000 Images
Supervised [16] 46.43 ± 1.21% 33.94 ± 0.73% 5.82 ± 0.15%
⇧ Model [15] 27.36 ± 1.20% 18.02 ± 0.60% 6.06 ± 0.11%
Temporal Ensembling [15] 23.31 ± 1.01 15.64 ± 0.39 5.60 ± 0.10
SNTG [57] 18.41 ± 0.52% 13.64 ± 0.32% 5.20 ± 0.14%
Mean-Teacher + ConvNet-13 [16] 21.55 ± 1.48% 15.73 ± 0.31% 5.94 ± 0.05%
Mean-Teacher + Resnet-26 [16] 10.08 ± 0.41% 8.06 ± 0.14% �

Our Method + ConvNet-13 17.79 ± 0.11% 14.56 ± 0.38% 5.94 ± 0.05%
Our Method + Resnet-26 7.82 ± 0.08% 7.15 ± 0.17% �

Table 2.3: Performance comparison of Resnet-26 with Mean-Teacher on the CIFAR-
100.

5000 Labels 10000 Labels
Methods 50000 Images 50000 Images
Mean-Teacher + Resnet-26 37.05 ± 0.06% 28.38 ± 0.23%
Our Method + Resnet-26 34.00 ± 0.10% 27.76 ± 0.01%

same as the Mean-Teacher method when the full training set is used since the master

network will never be activated.

(3) Performance Comparison on the CIFAR-100 Dataset. CIFAR-100 is

an extension of CIFAR-10, except it has 100 classes and each class has 500 training

samples and 100 testing samples. We run further experiments on CIFAR-100 with

Resnet and compare with Mean-Teacher. Table 2.3 shows our results with 5000 and

10000 labeled samples. Our method achieves better performance with 27.76% error

rate than the Mean-Teacher with a error rate of 28.38% for 10000 labeled samples.

For 5000 labeled samples, the error rate is 3% lower than that of Mean-Teacher.

(4) Performance Comparison with MixMatch. In this experiment, we

couple our Snowball method with the state-of-the-art MixMatch [19] and conduct
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Table 2.4: Error rate percentage of Snowball with MixMatch and ConvNet-13 on
CIFAR-10 and CIFAR-100 compared to the state-of-the-art.

CIFAR-10 CIFAR-100
Methods 1000 Labels 10000 Labels
Label Propagation [62] 16.93 ± 0.70% 35.92 ± 0.47%
DCE [55] 16.53 ± 0.14% 36.75 ± 0.15%
ICT [59] 15.48 ± 0.78% �

CCN [58] 12.05 ± 0.42% 35.28 ± 0.23%
Deep Co-Train [44] � 34.63 ± 0.14%
MT + FSWA [56] 15.58 ± 0.12% 33.62 ± 0.54%
Dual-Student [17] 14.17 ± 0.38% 32.77 ± 0.24%
MixMatch [19] 9.08 ± 0.05% 32.95 ± 0.06%
Our Method + MixMatch 8.86 ± 0.08% 31.86 ± 0.11%

comparison with the state-of-the-art methods. The augmentation approach and loss

function of MixMatch are used to train the student network. We observe that the

sample discovery with minimum distance contributes less since the augmentation ap-

proach in MixMatch blends the labeled and unlabeled samples. Unlabeled samples

which have minimum distance to the labeled class center might be too similar to

the original labeled samples and they cannot provide extra knowledge. To address

this issue, we define a high confidence set which is ten times of the size of newly

discovered samples. We find the samples with maximum distance to the class center

in this high confidence set can provide useful knowledge for the model learning. To

show the e↵ectiveness of our proposed method, we conduct experiments on CIFAR-10

and CIFAR-100 with ConvNet-13 and Resnet-26. Table 2.4 shows the error rates of

our Snowball with MixMatch and performance comparison of ConvNet-13 with other

state-of-the-art methods. We can see that our proposed method improves the perfor-

mance and achieves a new state-of-the-art error rate 8.86% on CIFAR-10 with 1000

labeled samples and improves the state-of-the-art result from 32.95% to 31.86% on
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CIFAR-100 with 10000 labeled samples. Table 2.5 shows the performance comparison

with FSWA [56] and MixMatch [19] on Resnet. Our proposed method reduces the

error rate by 4.78% with 4000 labeled samples on CIFAR-10 and 25.10% with 10000

labeled samples on CIFAR-100.

2.4.2 Performance Comparison on Very Small Training Sets

In the following experiments, we demonstrate the performance of our method on very

small training sets and provide comparison with the Mean-Teacher method. Table 2.6

shows the results on the CIFAR-10 dataset with the size of training set reduced from

1000 to 500 and 250. We also copy over the results of 1000 and 2000 from Table 2.2

for the convenience of comparison. We can see that, on very small training sets, our

method significantly outperforms Mean-Teacher, reducing the error rate from 49.91%

to 11.58% with the Resnet-26 network. This 38% performance improvement is very

significant. For the Convnet-13 network, the error rate is reduced from 51.79% to

37.65%. Table 2.7 shows the results on the SVHN dataset. We reduce the original

training set size from 250 samples to 100 samples. We can see that our method

significantly outperforms the Mean-Teacher method, reducing the error rate 15.29%

to 6.04%.

In the following, we evaluate the performance of our Snowball with MixMatch on

very small labeled dataset. Table 2.8 shows the results on the CIFAR-10 dataset with

the size of training set reduced from 1000 to 250 and 100. For fair comparison, we

report our best implementation of MixMatch with 250 labeled samples on ConvNet-

13, while the reported error rate in the paper [19] is 14.31%. The results show that

our proposed method reduces the state-of-the-art error rate from 13.51% to 12.49%
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Table 2.5: Error rate percentage of Snowball with MixMatch and Resnet on CIFAR-10
and CIFAR-100 compared to the state-of-the-art.

CIFAR-10 CIFAR-100
Methods 4000 Labels 10000 Labels
MT + FSWA [56] 5.00% 28.80%
MixMatch [19] 4.95 ± 0.08% 25.88 ± 0.30%
Our Method + MixMatch 4.78 ± 0.07% 25.10 ± 0.15%

Table 2.6: Performance comparison with Mean-Teacher on very small training sets
on CIFAR-10.

250 Labels 500 Labels 1000 Labels 2000 Labels
Methods 50000 Images 50000 Images 50000 Images 50000 Images
Mean-Teacher + ConvNet-13 51.79 ± 2.13% 33.02 ± 1.60% 21.55 ± 1.48% 15.73 ± 0.31%
Mean-Teacher + Resnet-26 49.91 ± 9.38% 15.87 ± 0.10% 10.08 ± 0.41% 8.06 ± 0.14%
Our Method + ConvNet-13 37.65 ± 2.49% 22.30 ± 1.48% 17.79 ± 0.11% 14.56 ± 0.38%
Our Method + Resnet-26 11.58 ± 0.04% 9.15 ± 0.82% 7.82 ± 0.08% 7.15 ± 0.17%

with 250 labeled samples. We are able to use only 100 labeled samples to achieve

13.20% error rate, which outperforms the MixMatch with 250 labeled samples.

2.4.3 Ablation Studies and Algorithm Analysis

(1) Convergence Behaviors of Snowball. In this experiment, we demonstrate

that the proposed Snowball algorithm converges as more and more confident samples

are discovered and the master-teacher-student network evolves over iterations and

Table 2.7: Performance comparison with Mean-Teacher on very small training sets
on the SVHN.

100 Labels 250 Labels
Methods 73257 Images 73257 Images
Mean-Teacher + ConvNet-13 46.50 ± 10.12% 4.35 ± 0.50%
Mean-Teacher + Resnet-26 15.29 ± 2.63% 3.53 ± 0.02%
Our Method + ConvNet-13 14.20 ± 0.59% 4.07 ± 0.17%
Our Method + Resnet-26 6.04 ± 0.43% 3.26 ± 0.02%
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Table 2.8: Performance comparison between MixMatch and Snowball with MixMatch
and ConvNet-13 on CIFAR-10

100 Labels 250 Labels
Methods 50000 Images 50000 Images
MixMatch � 13.51 ± 2.04%
Our Method + MixMatch 13.20 ± 0.20% 12.49 ± 0.17%

Figure 2.3: Error rate of iterations and generations on CIFAR-10.

generations. In our experiments, We have the termination criterion, which makes

the error rate stable between two adjacent iterations, to determine the number of

iterations and generations. Typically, the Snowball method uses about 3 generations

and each generation has 3-4 iterations. Within each generation, we use the model ob-

tained from the previous generation to re-discover confident samples in each iteration

to grow the training samples from 250, to 500, 1000, 2000, and 4000.

Figure 2.3 shows the decreasing error rate of our method on the CIFAR-10 dataset
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with two network configurations, ConvNet-13 and Resnet-26, for 250 and 500 labeled

samples. The results show that the first generation is the most important part in the

Snowball. The error rate is significantly reduced from 40.53% to 17.25% with 250

labeled samples on Resnet-26. Even the error rate of the initial model with 500 labels

on Resnet-26 is only 14.27%, the first generation can reduce it to 9.9%. The second

generation can clean the error labels from the first generation and reduce the error

rate by 2-6%. The third generation is not necessary on larger labeled datasets, since

the improvement of it is within 1%. When the number of iterations is over 4, the

performance cannot improve too much.

Figure 2.4 shows the detailed sample distribution of 2 selected classes on CIFAR-10

over three sample discovery iterations. Class 1 shows the class without any error labels

and class 2 shows the class with error labels. For 2D visualization of these sample

images, we applied the principle component analysis (PCA) to reduce the dimension

of each image feature extracted from the classification network. The small and large

green points represent the labeled samples and class center of labeled samples. The

red points show the discovered correct samples. The black diamond symbols show the

discovered error samples. The blue points show the discovered samples from previous

iteration.

(2) Master-teacher-student model evolution and confident sample dis-

covery. In this work, we recognize that the confident sample discovering and master-

teacher-student model evolution are tightly coupled. As discussed in Section 1, dis-

covering confident samples has already been used in self-learning or bootstrap-based

semi-supervised learning. These methods su↵er from low accuracy because the la-

bel prediction error rate in their new sample discovery remains very high. In this
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Figure 2.4: The demonstration of sample discovery in each iteration. Each row shows
the distribution of clean and discovered samples in 2 di↵erent classes. Class 1 shows
the class without any error labels. Class 2 shows the class with error labels. The small
and large green points show the labeled samples and the center of labeled samples.
The red points show the discovered correct samples. The black diamond shows the
discovered error samples. The blue points show the discovered samples from previous
iteration.
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Figure 2.5: Example of labeled samples and discovered samples by sample discovery
on CIFAR-10. The discovered samples with error labels are also di�cult for human
supervision.

case, these new samples would not improve the performance of the original networks.

In this work, we find that, once combined with the master-teacher-student model

evolution, the new sample discovery can achieve significantly improved performance.

Figure 2.5 shows an example of the new sample discovery process and its errors in

label prediction. The first column is the set of labeled samples. The second column

is the correct discovered samples. The third column is the discovered error samples.

We can see that the discovered error samples are also di�cult for human supervi-

sion, since these samples have similar color of background or the shape of object to

the labeled and discovered correct samples. Figure 2.6(left) shows the comparison of

our Snowball method against the self-learning methods with confident sample discov-

ery but without guidance by the master-teacher-student network. We can see that

the error rate is dramatically reduced by the Snowball method with master-teacher-
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Figure 2.6: Comparison of our Snowball method with self-learning without guidance
on the master-teacher-student network. The left figure shows the test error rate on
CIFAR-10. The right figure shows the sample discover error rate of each iteration
and generation.

student guidance. In Figure 2.6(right), we also show the label prediction error rate

of the newly discovered samples by both methods. We can see that the Snowball

network is able to predict the labels of new samples much more accurately, which

results in significantly improved semi-supervised learning performance.

In our sample discovery method, we use the feature distance to the centroid of

labeled samples to discover new samples, while previous self-learning methods use

the model prediction to select confident samples. During our experiments, we found

that this is much more e↵ective than model prediction by the existing classification

network. For example, Figure 2.7 shows the number of samples with incorrect label

prediction for each iteration obtained by the feature distance method (blue) and the

model prediction method (red) on the CIFAR-10 dataset with 500 labeled training

images. We can see that the proposed feature distance method reduces the amount

of incorrect label predictions by about a half.

(3) Impact of di↵erent selection methods for confident sample discovery.

30



Figure 2.7: Variation of sample discovery error labels.

Table 2.9: Analysis of sample discovery
Methods With Sample Discovery Label With Ground-truth Label Sample Error Rate
500 + 500 (Min) 11.34% 10.89% 0.60%
500 + 500 (Random) 12.13% 9.95% 14.20%
500 + 500 (Max) 16.60% 19.87% 69.20%

Table 2.10: Fusion methods error label percentage of sample discovery.
Fusion Methods Average Distance Feature Cascade Average Sorting Score
Error Labels Percentage 2.9% 2.7% 2.8%

Table 2.11: The Performance of di↵erent components from our Snowball method with
Resnet-26 on CIFAR-10

500 Labels 1000 Labels
Methods 50000 Images 50000 Images
Mean-Teacher 15.87 ± 0.10% 10.08 ± 0.41%
Mean-Teacher + Sample Discovery 11.30 ± 0.58% 9.04 ± 0.25%
Master-Teacher-Student + Sample Discovery 9.15 ± 0.82% 7.82 ± 0.08%
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In our Snowball new confident sample discovery method, we find the center of labeled

samples which has the minimum distance to the current sample and then assign the

corresponding label to this unlabeled sample. We choose the top N samples with the

smallest distance as the newly discovered samples for the next iteration. On the other

hand, we recognize that samples with minimum distance to existing labeled samples

might be too similar to existing training samples and the contribution to the model

learning and transferability will be degraded. Other possible choices include using

the maximum distance criteria, or we randomly select the top N samples. Which

method is the most e↵ective? In the following experiment, we set the number of

labeled samples to be 500 on the CIFAR-10 dataset. With these 500 labeled samples,

the error rate of the trained classifier is 14.44%. The next step is to discover 500

new samples using the above three di↵erent methods. We then use these newly

discovered samples along with the original labeled samples to refine the classifier.

Table 2.9 shows the error rate results on the CIFAR-10 dataset with 500 original

labeled training samples and 500 newly discovered samples using di↵erent selection

methods. The second column in Table 2.9 shows the corresponding model error rates.

We can see that the minimum feature distance method achieves the best performance.

The third column in Table 2.9 shows the model error rates with 500 new samples

selected by three di↵erent methods, but using the ground-truth labels. The main

di↵erence lies in the error rates in label prediction by these three methods. From the

fourth column in Table 2.9, we can see that the minimum feature distance method

has an error rate of only 0.60%, while the random method and maximum feature

distance method have much higher error rates. If we do not consider the errors in

label prediction, for example, if we assume that newly discovered samples all have
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correct labels, then the random selection method has the best performance since its

samples have the largest diversity. But, in practice, we do not have this ground-truth

label. In this case, our minimum distance method achieves the best performance since

its percentage of wrong labels in newly discovered samples is much smaller than the

other two methods. This is the reason why we choose the minimum distance method

in our Snowball method.

(4) Di↵erent feature fusion methods for confident sample discovery. In

our current method, when we identify new confident samples for automated labeling,

we use the student network to extract its feature and evaluate its feature distance to

existing labeled samples. In the following experiment, we explore additional options

for the feature distance. For example, we can use three network models of the past

iterations to extract three separate features. We then fuse these features together

to form a joint feature distance metric. The following three fused feature distance

metrics are considered. (1) Average distance - We use each of these three features

to compute the distance and then use the average of them as the distance metric for

this unlabeled sample. (2) Feature cascade - These three features are cascaded

together into one combined feature vector for this unlabeled sample. We then use

this cascaded feature to measure the distance to assign labels. (3) Average sorting

score - We use each of these three features to compute the minimum distance, then

sort the samples according to their distance from the smallest to the largest. For

each of these three features, we have three separate sorting scores (sorting indices),

we then compute their average sorting scores and use this as the distance metric. We

use the ratio of the number of error discovered labels to the number of discovered

labels to measure the performance. Table 2.10 shows the error label percentage for
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these three fusion methods on the CIFAR-10 dataset with 1000 training samples. We

can see that the feature cascade method has the best performance. But, the di↵erence

between these three are relatively small.

(5) Performance of di↵erent algorithm components. Our Snowball method

has two major components: confident sample discovery and master-teacher-student

network. The confident sample discovery discovers confident samples from the un-

labeled dataset and assigns labels to these discovered samples. The master network

combines the knowledge of the student network and teacher network, as well as the

knowledge of newly discovered samples. These two tightly coupled components are

able to significantly improve the performance of semi-supervised learning. In this ab-

lation study, we conduct experiments with 500 and 1000 labeled samples on CIFAR-10

to identify the contribution of each algorithm component. Table 2.11 summarizes the

performance results with Resnet-26 using three di↵erent configurations: (1) Mean-

Teacher, (2) Mean-Teacher with sample discovery, and (3) master-teacher-student

with sample discovery. We can see that these two component are both very impor-

tant for the overall performance.

2.5 Conclusion

In this work, we have successfully developed a joint sample discovery and iterative

model evolution method for semi-supervised learning from a very small labeled train-

ing set. We have established a master-teacher-student model framework to provide

multi-layer guidance during the model evolution process with multiple iterations and

generations. Both the master and teacher models are used to guide the training of the
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student network by enforcing the consistency between the predictions of unlabeled

samples between them and evolve all models when more and more samples are dis-

covered. Our extensive experiments demonstrate that the discovering confident sam-

ples from the unlabeled dataset, once coupled with the above master-teacher-student

network evolution, can significantly improve the overall semi-supervised learning per-

formance.
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Chapter 3

Learned Model Composition with
Critical Sample Look-Ahead for
Semi-Supervised Learning

3.1 Introduction

In this work, we propose to push the performance limit of semi-supervised learning by

developing an e�cient learning method on small sets of labeled samples. For exam-

ple, on the same CIFAR-10 dataset, existing methods can achieve successful network

training with only 250 labeled samples, approaching the performance of networks be-

ing trained on the fully labeled dataset of 50000 samples in a fully supervised manner.

Can we successfully train the network with an even smaller set of samples, for exam-

ple, 100 samples? How about 80 samples? Training e�cient deep neural networks

on much smaller sets of labeled samples represents an important challenging task in

machine learning and computer vision. In the semi-supervised learning process, the
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Figure 3.1: Our proposed idea of learned composition of the master model to guide
the semi-supervised learning process towards the target model. The master model
is composed of student models from past iterations. The target model is trained on
the fully labeled dataset. The dashed green circles represent di↵erent class of critical
samples.

initial network su↵ers from low accuracy with a limited number of labeled samples.

It will lead to an unstable subsequent training. Existing semi-supervised learning

methods, including the most recent Mean-Teacher [16], Dual Students [17], and Mix-

Match [19] algorithms su↵er from significant performance degradation on smaller sets

of labeled samples.

To address this issue, we propose to explore a new approach called learned model

composition with critical sample look-ahead (LMCS). The basic idea is illustrated in

Figure 3.1. In semi-supervised learning, the network model, referred to as the student

model in this work, is initially trained on the set of labeled samples. Since this set

is small, the student model often su↵ers from low accuracy. The central question

of semi-supervised learning is how to guide or enhance the learning process of the
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student model so that it can evolve towards the target model which is trained on the

fully labeled set. The guidance method should have the capability to identify the

correct direction of model evolution so that it can pull the student model towards the

target model.

In this work, we introduce a master model to provide this guidance. During this

model evolution process, there are two major types of resources to be exploited: the

unlabeled samples and the previous versions of the student models obtained from the

past training epochs. To achieve the above mentioned capability for the master model,

we propose to explore two major ideas. First, the master model is composed from

the past versions of student models using a learned network so that it can capture

the evolution trend of student models. Second, we develop a method called confined

maximum entropy search to discover new critical samples near the model decision

boundary. According to our experiments, these samples are able to provide critical

information to refine the master models. We allow the master model to have a look-

ahead access to these samples before the student model so that it can identify the

direction of evolution for the student model. This master network is used to guide

the semi-supervised learning process from a small set of labeled samples to achieve

the target performance by enforcing the prediction consistency between student and

master models on unlabeled samples. Our extensive experiments demonstrate that the

proposed LMCS network outperforms the state-of-the-art semi-supervised learning

methods, especially on small labeled training sets.

Our main contributions can be summarized as follows: (1) we introduce a new

learned model composition structure, o↵ers a powerful master network that can be

composed from student models of past steps through a network learning process. (2)
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We develop the confined maximum entropy search to discover new critical samples

near the model decision boundary to refine the master network. (3) Our experimental

results and ablation studies show that the proposed LMCS method outperforms the

state-of-the-art semi-supervised learning methods, especially on small sets of labeled

samples. For example, on the CIFAR-10 dataset, with a small set of 80 labeled

samples, our proposed method outperforms Google’s MixMatch method by 10%.

The rest of the chapter is organized as follows. In Section 3.2, we provide a review

of recent work on semi-supervised learning. The proposed LMCS method is presented

in Section 3.3. Experimental results and ablation studies are presented in Section 3.4.

Section 3.5 concludes the chapter.

3.2 Related Work

Recently, a number of methods have been developed and achieved remarkable perfor-

mance. These methods which can be summarized in the following categories.

(1) Self-training methods. As one of the earlier methods for semi-supervised

learning, the self-training approach [37, 38, 39], also called bootstrapping or self-

teaching, first trains the initial classifier with labeled samples and then uses the

pre-trained classifier to classify unlabeled samples, selects the most confident unla-

beled samples, predicts their labels, and uses them for the next iteration of training

[40]. The procedure is repeated until it reaches the stop criteria. It is also commonly

used in many semi-supervised learning tasks, such as image classification [63], natural

language processing [36, 64] and object detection [38]. Traditional self-training is de-

signed by automatically labeling unlabeled samples and increasing the size of labeled
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datasets. This often introduces incorrectly labelled samples which might degrade the

model performance.

(2) Graph-based methods. Graph-based methods [3, 4, 5, 6, 7] aim to mea-

sure the similarity between labeled and unlabeled samples by constructing a graph.

Knowledge learned from the labeled samples is propagated along the graph to predict

the labels of unlabeled samples [45, 4]. This is based on the assumption that similar

samples share the similar predicted labels [40]. Qiu et al. [7] proposed a method to

exploit the adjacency matrix between a small number of labeled samples and all data

samples to construct the graph. They use a regression residue term and a manifold

smoothness term jointly on the hard linear constraint problem. Zhang et al. [65] pro-

posed a semi-supervised deep hashing method on large scale image retrieval task. It

exploits the structures of unlabeled samples and builds an online graph construction

method based on the mini-batch during the training.

(3) Label propagation. The label propagation method [46] compares unlabeled

samples with labeled samples by selecting a suitable predefined distance metric. Pre-

vious label propagation trains and fixes the network in advance. Recently, Wu et al.

[49] proposed a cross-task network which jointly processes two tasks: classification

and clustering. Based on the model predictions, a large number of pairwise con-

straints can be generated from unlabeled samples, and are fed to the clustering task.

They used pairwise constraints to encode weak supervision information. Unlabeled

samples are weighted according to the distances to the clusters discovered, and an

improved model is then trained on the classification task associated with a weighted

softmax loss. Deep co-space [66] learns a feature transformation matrix and discovers

reliable unlabeled samples by measuring the category variations of the feature trans-
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formations from their two neighbors. Iscen et al. [62] perform label propagation while

training the network. The model is firstly trained with labeled and unlabeled sam-

ples, then the model from previous iteration is used to construct the nearest neighbor

graph, which is used to infer pseudo-labels of unlabeled samples for the next iteration.

(4) GANs-based methods. Another group of methods for semi-supervised

learning is based on the generative adversarial networks (GANs) [8, 9, 10, 11]. Szegedy

et al. [50] used adversarial training to discover the most sensitive perturbation for

the labels of input samples. Kingma et al. [8] proposed an auto-encoder generative

model for semi-supervised learning. Pseudo ensemble agreement reported in [9] trains

a neural network that the output of each layer does not change much by di↵erent

perturbed inputs. It demonstrated the e↵ectiveness of random perturbations in semi-

supervised learning. Miyato et al. [34] introduced a new measure for local smoothness

of the conditional label distribution. They proposed the method of virtual adversarial

training (VAT), which can discover the maximum adversarial perturbation of a input

sample based on the di↵erence between the input and output.

(5) Entropy minimization-based methods. Entropy minimization assumes

that the decision boundary of the learned network should lie in the low-density re-

gions of samples [51, 13]. This allows us to define a loss function during network

training which is able to utilize unlabeled samples. Triguero et al. [52] couple en-

tropy minimization with self-training to propagate the labels to the unlabeled sam-

ples. Pseudo-labeling [14] trains the classifier with the labeled samples and gradually

introduces the weighted pseudo-labels with larger class probabilities for unlabeled

samples. Unlabeled samples and corresponding pseudo-labels are used in the stan-

dard loss function. Ho↵er et al. [53] follow a similar principle and uses deep metric
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embedding to measure the distance between the labeled and unlabeled samples.

(6) Consistency regularization-based methods. Consistency regularization

ensures consistent model prediction over di↵erent sample perturbations. It often

applies a consistency constraint on the teacher-student network to learn knowledge

from perturbed data. For example, ⇧-model [15] constructs a implicit teacher model

which shares parameters with the student model. It forwards a sample with di↵erent

perturbation twice and introduces new loss functions for unlabeled samples which

penalize inconsistent predictions. Temporal ensembling [15] improves upon the ⇧-

model method by proposing an exponential moving average of predictions obtained

from previous epochs, rather than evaluating the input twice. The Mean-Teacher

algorithm [16] takes the concept of temporal emsembing and uses an exponential

moving average of the parameter of student models obtained from previous training

steps. The student and teacher models improve each other in an iterative manner.

Athiwaratkun et al. [56] combine consistency regularization with stochastic weight

averaging (SWA) to obtain a more powerful ensemble teacher. The Smooth Neigh-

bors on Teacher Graph (SNTG) method [57] constructs a graph-based prediction

of the teacher model to make the learned features more discriminative by exploring

intra-class similarity and inter-class dissimilarity. Dual student [17] replaces the

teacher with another independent student model. It has two independent students

with di↵erent initial states and optimization path.

The most recent semi-supervised learning method, MixMatch from Google [19]

combines the ideas of consistency regularization [15] and entropy minimization [13].

It uses the model prediction to produce a guessed label for each unlabeled sample

based on principle of entropy minimization. It averages the prediction of perturbed
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Figure 3.2: Overview of the proposed LMCS method. The labeled and unlabeled
samples with the MixMatch sample augmentation are used to train student models.
Our master model consists of the student model, exponential moving average (EMA)
student model and student model from previous training step with the same architec-
ture. The critical sample discovery uses the confined maximum entropy search and
assigns labels to unlabeled critical samples which have large ambiguity.

unlabeled samples and uses the MixUp approach [18] as a regularizer to blend labeled

samples and unlabeled samples randomly. This method currently achieves the state-

of-the-art performance in semi-supervised learning [19].

3.3 The Proposed LMCS Method

In this section, we present the proposed LMCS method for semi-supervised learning.

3.3.1 Method Overview

Figure 3.2 provides an overview of the proposed LMCS method. In semi-supervised

learning, we have access to a small set of labeled training samples, denoted by ⌦L

and a large set of unlabeled samples, denoted by ⌦U . The network is trained from

scratch. We pair the unlabeled samples with labeled samples to generate soft samples

with soft labels using the MixMatch sample augmentation scheme [19]. Specifically,

we randomly sample an equal number of labeled and unlabeled samples as the mini-
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batch samples for each iteration. let (x,p) be the image sample x and its label

probability vector p from ⌦L. For each image sample x
0 from the mini-batch in the

unlabeled set ⌦U , it uses the current classifier to predict its label probability vector

p0. The augmented sample x̃ and its corresponding label probability p̃ are generated

by

� = max(�0
, 1� �

0), (3.1)

x̃ = �x+ (1� �)x0
, (3.2)

p̃ = �p+ (1� �)p0
, (3.3)

where �
0 is a random number following a Beta distribution [19]. The augmented

mini-batch is then used to train the student model ⇥i

s
in the next iteration, where i

represents the training iteration index. The student model EMA ⇥̄i

s
which is defined

by the following equation:

⇥̄i

s
= ↵ · ⇥̄i�1

s
+ (1� ↵) ·⇥i

s
, (3.4)

where ↵ is the exponential moving average parameter. In our experiments, we set

↵ to 0.999. It represents the exponential moving average (EMA) of student models

obtained from the past training iterations. We define a term: step. In the training

process, each step indexed by k can be a number of epochs and each epoch can be

a number of iterations. Using the student models of the current step ⇥k

s
and the

previous step ⇥k�1
s

, as well as the student model EMA ⇥̄k

s
, we construct the master

model ⇥k

m
using a learned model composition approach. The central issue to be

addressed here is: given a set of trained student models of the same network, how
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could we construct a new master model which outperforms each student model and is

able to e↵ectively guide the learning of the network? The Mean-Teacher method used

exponential moving average of student models ⇥i

s
to construct the ensemble model.

In this work, we formulate this problem into a learning process using a learned

model composition (LMC) network. Besides having access to all past student models,

the LMC network also discovers critical samples from the unlabeled samples. These

critical samples should satisfy two important requirements: (1) the predicted labels

for these discovered samples should have high accuracy. Otherwise, it will degrade

the learning e�ciency. (2) These new samples should be helpful in improving the

discriminative power of the master model. In this chapter, we introduce a new ap-

proach called confined maximum entropy search for critical sample discovery. It first

builds a confined unlabeled set by the feature distance. Each unlabeled sample in

the confined set is assigned a soft label based on the ranked similarity between it

and labeled samples. The critical samples are selected and assigned hard labels by a

maximum entropy criteria.

Our extensive experimental results demonstrate that the proposed LMCS method

is able to construct powerful and reliable master models to guide the learning process

of the student network and significantly improve the semi-supervised learning per-

formance. Coupled with critical sample discovery, the network is able to e�ciently

learn from a small set of labeled samples in semi-supervised learning. In the following

sections, we will explain the learned model composition and critical sample discovery

using confined maximum entropy in more details.
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Figure 3.3: Learned model composition for constructing master models. The con-
verter serves as a weighting mechanism for feature map from di↵erent student net-
work. The input of the master decision network is the fused feature map.

3.3.2 Learned Model Composition

In semi-supervised learning, the network is trained over a sequence of steps. For

example, in our experiments, we choose one step to be 10 epochs. At step k, the

corresponding model is referred to as the student model ⇥k

s
. The task of learned

model composition (LMC) is to construct a more powerful master model from the

existing student models ⇥n

s
, n = 1, 2, · · · , k. Note that k is variable and growing

with the training steps. Instead of using all k student models, in LMC, we choose to

use the following three models, the current student model ⇥k

s
, the previous student

model ⇥k�1
s

, and the current EMA student model ⇥̄k

s
which is the EMA student

model ⇥̄i

s
from current iteration. As observed in the Mean-Teacher method [16], the

EMA student models provide an e�cient integrated representation of the past student

models. It accumulates the information from each iteration instead of each epoch.

Parameters are averaged to output better intermediate representations of each layer.
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In this way, the EMA student models improve the prediction accuracy.

Figure 3.3 shows the proposed LMC network to construct the master model from

these three student models. It should be noted that they share the same network

layer structure and configuration. The only di↵erence is their weight parameters. We

choose one layer as the composition layer, which splits each network into two network

modules: feature extraction and decision networks which correspond to network layers

before and after the composition layers. During composition, the feature maps at the

composition layer from each student network are firstly processed by a converter which

is a fully connected layer and then added together to produce the fused feature map.

The converter serves as a weighting mechanism for each feature map. The master

decision network maps the fused feature map into the final classification output. The

three converter networks and the master decision network are learned with the whole

training dataset, including both labeled and unlabeled samples, using the master loss

function JM to be defined in the following.

The loss function for training the master model composition network consists of

two parts: consistency loss JC and discriminative power loss JD. The consistency loss

JC is the mean squared error (MSE) between the student model EMA and master

model predictions on unlabeled samples

JC = Ex02⌦U�[⇥
k

m
(x0), ⇥̄k

s
(x0)], (3.5)

where �[·, ·] represents the mean squared error between the predicted label probabil-

ities by these two networks. When training the master model composition network,

we also expect that the constructed master model has improved discriminative power

on the unlabeled samples. According to the minimum entropy principle, if a network
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classifier has a higher discriminative power, then its decision boundary should lie in

the low-density regions of samples. In other words, if we use this network to encode

the input image into a feature, in the corresponding feature space, the test samples

should exhibit better clustering behaviors. Let f(x) be the feature vector extracted

by the master model ⇥k

m
of an unlabeled sample x in ⌦U . We cluster these features

into N clusters. Let C0(x) and C1(x) be the cluster centers with the smallest and

the second smallest feature distance to x. If C0(x) and C1(x) are very close to each

other, then the discriminative power of ⇥k

m
on sample x is low. Therefore, we can

use the following average distance as the discriminative power loss

JD =
X

x2⌦U

{||C0(x)� f(x)||2 � ||C1(x)� f(x)||2}
2
. (3.6)

We define the loss function of the master network in Eq. (3.7) by

JM = JC + ⌘ · JD, (3.7)

where ⌘ > 0 is a hyperparameter that balances the contributions of the consistency

loss and the discriminative power loss. We select the loss function from MixMatch

[19] as the student loss JS and use the same training procedure, hyperparameters as

MixMatch [19] to train the student network.

3.3.3 Critical Sample Discovery Using Confined Maximum
Entropy Search

Another important feature of our LMCS method is to discover samples from the

unlabeled set ⌦U , assign labels to them, and include them into the training set along
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Figure 3.4: Overview of the critical sample discovery. The black, yellow and blue
data points represent the labeled samples from di↵erent classes. The white and red
data points represent the unlabeled and discovered critical samples separately. The
dashed circle represents the confined limit.

with the labeled samples to train the master model. We observe that samples from

the unlabeled set with large ambiguity or being close to the decision boundary, if

assigned with correct labels, will contribute more to the model learning performance.

But, the pseudo-label accuracy of these samples is relatively low. The unlabeled

samples which are close to the class center of labeled samples have high pseudo-label

accuracy, but these samples might be too similar to the initial labeled samples and

their contribution to the model training is very limited.

To address this issue and successfully identify the critical samples, we propose the

following confined maximum entropy search approach. Figure 3.4 shows the overview

of this approach. First, we find confined unlabeled samples which are not far away

from the samples with known labels so that we can assign labels to them with high

confidence. Specifically, we use the current student model ⇥k

s
to extract feature g(x0)
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for each sample x
0 in the unlabeled set ⌦U and feature g(x) for each labeled sample

x in the labeled set ⌦L. For the labeled set, we compute the center for each class

Cn =
1

Tn

X

{x2⌦L, L(x)=n}

g(x), (3.8)

where Tn is the total number samples in class n and L(x) represents the label of x.

For each unlabeled sample x0, we find its minimum distance d(x0) to the closest class

center. Let

⌦C = {x
0
|d(x0)  �}, (3.9)

be the confined set of unlabeled samples. � is a distance threshold.

Second, we assign a soft label for each unlabeled sample x
0
2 ⌦C based on the

ranked similarity between it and labeled samples. Figure 3.5 shows the example of

critical sample discovery on the confined set. Specifically, let d(x0
, x) be the feature

distance between x
0 and each labeled sample x in ⌦L. We rank the labeled samples

based on distance d(x0
, x) from the smallest to the highest. Let R(x) be the rank

order index of each labeled sample. We then define the following rank similarity

weight

W(x) =
�

� +R(x)/|⌦L|
, (3.10)

where � is a weight control parameter and |⌦L| represents the number of labeled

samples in the labeled set. Let p(x) be the label probability vector of x. Since x

is from the labeled set, p(x) is a binary vector with only a single 1 at the location

corresponding to its class. The soft label assigned to the confined sample x
0 is given
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Figure 3.5: Example of the critical sample discovery in confined set. Each unlabeled
sample in confined set has a ranked similarity weight. The soft label is voted by the
ranked similarity weight. The hard label is assigned to the critical sample.

by

p(x0) =

"
X

x2⌦L

W(x) · p(x)

#
/

X

x2⌦L

W(x). (3.11)

In the third step, we choose those confined samples near the decision boundary based

on the maximum entropy criteria. Specifically, if the classifier has higher uncertainty

about the sample, the predicted label probability vector will have a large entropy

H(x0) =
NX

l=1

p
0
l
· log2

1

p
0
l

, (3.12)

with p(x0) = [p01, p
0
2, · · · , p

0
N
]. We rank all confined samples in |⌦C | based on their

predicted label entropy and select the top N
k samples as the critical samples at

training step k.
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3.3.4 Multi-Generation Master-Student Network Learning

Our student network training, master network model composition, and critical sam-

ple discovery operate in a multi step-generation framework to achieve e�cient semi-

supervised learning, especially from a small set of labeled samples.

We define two terms: step and generation. The first step starts with the original

set of labeled samples ⌦L. Each generation indexed by g involves a number of steps

such that the size of the training set keeps doubled until the labeled training set is

RL times larger than the original labeled set. In our experiment, we set RL to be

10, depending on the convergence speed of the learning process. In each generation

indexed by g, our method uses the model obtained from the previous generation to

find critical samples from the remaining unlabeled samples.

Specifically, at generation g and step k, let the corresponding student and master

network models be ⇥g,k

s
and ⇥g,k

m
. Let Ug be the set of newly discovered critical

samples at generation g. The label for each sample in Ug is determined by Eq. (3.8)

and Eq. (3.11). Let

⌦G = ⌦L [U1 [U2 [ · · · [Ug (3.13)

be the training set at generation g. We use ⌦G�1 to train or update the student model

⇥g,k

s
and ⌦G to train the model composition network to obtain the master model

⇥g,k

m
. In other words, the master model always has access to more samples so that

it can provide more e↵ective guidance for the student model training. Typically, in

our experiments, the proposed LMCS semi-supervised learning converges fast within

about 3 generations. Figure 3.7 visualizes the sample distribution on each generation.

We use the t-SNE approach to reduce the high feature dimension into 2D. It shows

the testing samples from the CIFAR-10 dataset after three generations. We can
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Figure 3.6: The demonstration of critical sample discovery in two generations. We
use 10 initial labeled samples from each class as original labeled samples and transfer
the high dimension feature to 2-D feature by t-SNE. Each row shows the distribution
of clean and discovered samples in two di↵erent classes. The green points and green
points with black circle show the labeled samples and the center of all labeled samples.
The red points show the newly discovered critical samples. Examples of labeled
samples and critical samples are highlighted with green and red, respectively.

see that the model performs better and samples are better separated when more

and more critical samples are discovered. Figure 3.6 shows the detail of critical

sample discovery in the first two generations. We use 10 initial labeled samples from

each class as original labeled samples and transfer the high dimension feature to 2-D

feature by t-SNE. Each row shows the distribution of clean and discovered samples

in two di↵erent classes. The green points and green points with black circle show

the labeled samples and the center of all labeled samples. The red points show the

newly discovered critical samples. Examples of labeled samples and critical samples

are highlighted with green and red, respectively.
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Figure 3.7: Demonstration of sample distribution on three generations. We use the
t-SNE to transfer the high-dimension feature to 2-D feature on the CIFAR-10 testing
dataset

3.4 Experimental Results

In this section, we present our experimental results on benchmark datasets, perfor-

mance comparison with state-of-the-art methods, and ablation studies.

3.4.1 Benchmark Datasets and Networks

Following existing work in the literature [17, 19], we implement and evaluate our pro-

posed LMCS method on three standard benchmark datasets: CIFAR-10 [67], CIFAR-

100 [67], and SVHN (Street View House Number) [68] (1) CIFAR-10. CIFAR-10

consists of 32⇥32 pixel RGB images in 10 categories. There are 50000 labeled training

samples and 10000 testing samples. Fully supervised learning with all 50000 labeled

training set achieves 4.17% error rate on ResNet-28 [19]. (2) CIFAR-100. As an

extension of CIFAR-10, CIFAR-100 is a more complex dataset with 100 classes and

each class has 500 training samples and 100 testing samples. The fully supervised

learning error rate of 50000 labeled samples with ConvNet-13 on this 100 classes
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Table 3.1: Error rate percentage of ResNet-28 on CIFAR-10 compared to the state-
of-the-art.

Methods 250 Labels 500 Labels
⇧ Model [15] 53.02 ± 2.05% 41.82 ± 1.52%
PseudoLabel [14] 49.98 ± 1.17% 40.55 ± 1.70%
Mixup [18] 47.43 ± 0.92% 36.17 ± 1.36%
VAT [34] 36.03 ± 2.82% 26.11 ± 1.52%
Mean-Teacher [16] 47.32 ± 4.71% 42.01 ± 5.86%
MixMatch [19] 11.08 ± 0.87% 9.65 ± 0.94%
Ours 10.59 ± 0.41% 9.40 ± 0.25%

dataset is 26.42% [56]. (3) SVHN. The street view house numbers (SVHN) is an-

other benchmark dataset for semi-supervised learning. It consists of 32⇥32 RGB

images of the house number from 10 classes. There are 73257 labeled training sam-

ples and 26032 testing samples. Previous state-of-the-art method [19] nearly matched

the performance of fully-supervised learning with 73257 labeled training set (2.59%

error rate).

We also follow the same semi-supervised learning network structures in the liter-

ature [17, 19]. Specifically, we use the 28-layer Wide ResNet (ResNet-28) with 1.47

million parameters from [12, 19] on CIFAR-10 and SVHN, the 13-layer convolutional

neural network (ConvNet-13) with 3.13 million parameters from [15, 16, 34, 56, 17]

on CIFAR-10 and CIFAR-100 for fair comparisons with these results.

We follow the random sample strategy of MixMatch [19] and report the error

rate by the mean and variance across di↵erent seeds. The results are averaged over

multiple runs with di↵erent random seeds. We use the same augmentation, hyper-

parameters, and training steps as MixMatch [19] and set the EMA decay rate to 0.99

for decision network of master model.
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Table 3.2: Error rate percentage of ResNet-28 on SVHN compared to the state-of-
the-art.

Methods 250 Labels 500 Labels
⇧ Model [15] 17.65 ± 0.27% 11.44 ± 0.39%
PseudoLabel [14] 21.16 ± 0.88% 14.35 ± 0.37%
Mixup [18] 39.97 ± 1.89% 29.62 ± 1.54%
VAT [34] 8.41 ± 1.01% 7.44 ± 0.79%
Mean-Teacher [16] 6.45 ± 2.43% 3.82 ± 0.17%
MixMatch [19] 3.78 ± 0.26% 3.64 ± 0.46%
Ours 3.23 ± 0.15% 2.83 ± 0.08%

Table 3.3: Error rate percentage of ConvNet-13 on CIFAR-10 and CIFAR-100 com-
pared to the state-of-the-art.

CIFAR-10 CIFAR-100
Methods 1000 Labels 10000 Labels
⇧ Model [15] 31.65 ± 1.20% 39.19 ± 0.36%
Mean-Teacher [16] 18.78 ± 0.31% 35.96 ± 0.77%
Label Propagation [62] 16.93 ± 0.70% 35.92 ± 0.47%
MT + FSWA [56] 15.58 ± 0.12% 33.62 ± 0.54%
Dual-Student [17] 14.17 ± 0.38% 32.77 ± 0.24%
MixMatch [19] 9.08 ± 0.05% 32.95 ± 0.06%
Ours 8.74 ± 0.20% 31.16 ± 0.08%
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3.4.2 Performance Comparison with Existing Methods

To evaluate the e↵ectiveness of our LMCS method, we randomly extract 250 and

500 labeled samples from the training set of SVHN and CIFAR-10, then compare

the performance of our proposed method on the benchmark architecture Resnet-28

[12, 19] with these state-of-the-art methods. Tabel 3.1 shows the error rates of our

method in comparison with other methods based on 250 and 500 labeled samples on

CIFAR-10. We can see that our proposed method outperforms all other methods,

including the current state-of-the-art algorithm MixMatch from Google [19]. On

SVHN, we also perform experiments with 250 and 500 labeled samples to show the

generalization ability of our proposed method. We provide the results in Table 3.2

and show that our method outperforms existing methods, reducing the error rate by

2.83% with 500 labeled samples and 3.23% with only 250 labeled samples, which is

significant.

Early work on semi-supervised learning also used a ConvNet-13 architecture [15,

16, 17, 34, 56] as the benchmark architecture. To demonstrate the e↵ectiveness of our

LMCS on di↵erent benchmark architecture, we randomly extract 1000 labeled samples

from CIFAR-10 and 10000 labeled samples from CIFAR-100 and conduct further

experiments on ConvNet-13. Table 3.3 shows the error rates of our LMCS method

and performance comparison of ConvNet-13 with other state-of-the-art methods [15,

16, 17, 34, 56]. We can see that our proposed method improves the performance

and achieves a new state-of-the-art error rate 8.74% on CIFAR-10 with 1000 labeled

samples. On CIFAR-100, we select 100 labeled samples from each of 100 classes with

a total of 10000 labeled samples. Table 3.3 shows that our method improves the

state-of-the-art result from 32.95% to 31.16%.
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Table 3.4: Error rate percentage of ResNet-28 on CIFAR-10 compared to the state-
of-the-art on small set of labeled samples.
Methods 80 Labels 100 Labels 250 Labels 500 Labels
MixMatch [19] 26.44 ± 1.67% 19.61 ± 2.10% 11.08 ± 0.87% 9.65 ± 0.94%
Ours 16.05 ± 1.10% 12.75 ± 0.12% 10.59 ± 0.41% 9.40 ± 0.25%

Table 3.5: Error rate percentage of ResNet-28 on SVHN compared to the state-of-
the-art on small set of labeled samples.

Methods 100 Labels 250 Labels 500 Labels
MixMatch [19] 3.87 ± 1.86% 3.78 ± 0.26% 3.64 ± 0.46%
Ours 3.51 ± 0.09% 3.23 ± 0.15% 2.83 ± 0.08%

3.4.3 Performance Evaluations on Small Sets of Labeled Sam-
ples

In the following, we evaluate the e�ciency of our LMCS method on small sets of

labeled samples, which is very important yet very challenging in semi-supervised

learning. To this end, we reduce the size of labeled set to 80 and 100 on CIFAR-

10, 100 on SVHN and 4000, 5000 on CIFAR-100, which is much smaller than the

sizes of training sets used in existing semi-supervised learning methods reported in

the literature [15, 16, 17, 34, 56]. Existing semi-supervised methods compare their

performance on larger sets of 500, 1000 and 2000 labeled samples, but they did not

provide the evaluation on small labeled sets.

In the following experiments, we evaluate the performance of our LMCS method

on ResNet-28. Table 3.4 and Table 3.5 show the results on the CIFAR-10 dataset and

Table 3.6: Error rate percentage of ConvNet-13 on CIFAR-10 compared to the state-
of-the-art on small set of labeled samples.

Methods 100 Labels 250 Labels
MixMatch [19] 33.25 ± 4.05% 13.51 ± 2.04%
Ours 17.71 ± 2.46% 12.11 ± 0.32%
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SVHN dataset with the size of training set reduced from 250 to 100. We also evaluate

the performance of our LMCS with 80 labels on CIFAR-10. For the convenience of

comparison, we copy over the results of 250 and 500 from Table 3.1 and Table 3.2.

We can see that our method significantly outperforms the MixMatch [19], reducing

the error rate from 26.44% to 16.05% with 80 labeled samples. On SVHN, Table 3.5

shows that our proposed method could also improve the result on SVHN with only

100 labels from 3.87% to 3.51%. We also conduct experiments with CIFAR-10 and

CIFAR-100 on ConvNet-13. Table 3.6 shows that our LMCS achieves 17.71% with

100 labels and 13.51% with 250 labels on CIFAR-10. The performance on small set of

labeled samples scale outperforms MixMatch by a large margin. Table 3.7 shows the

results with only 40 and 50 labels per class (4000 and 5000 labels in total) on CIFAR-

100. We are able to improve the best result from 40.83% and 38.41% to 38.83% and

36.70%, respectively.

In the above tables of performance comparison, we only have the MixMatch [19]

algorithm for comparison for the following reason: (1) as reported in [19], MixMatch

is the current state-of-the-art semi-supervised learning method, significantly outper-

forming other recent methods in the literature, such as the Mean Teacher [16] and

VAT method [34]. (2) MixMatch has published their code. We have managed to run

their code and achieve claimed results in the paper. But in Table 3.7 for CIFAR-100,

we did include another very recent method, Label Propagation [62], since they have

published their result on ConvNet-13 with 4000 labeled samples. But for the CIFAR-

10, they did not provide codes and models with ResNet-28. It was very challenging

for us to produce their results on these new sets with small set of labeled samples.
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Table 3.7: Error rate percentage of ConvNet-13 on CIFAR-100 compared to the state-
of-the-art on small set of labeled samples.

Methods 4000 Labels 5000 Labels
Label Propagation [62] 43.73 ± 0.20% -
MixMatch [19] 40.83 ± 0.14% 38.41 ± 0.10%
Ours 38.82 ± 0.16% 36.70 ± 0.50%

Table 3.8: Error rate comparison of di↵erent sample discovery methods on CIFAR-10.
Sample Discovery Methods Error Rate (%)
No Sample Discovery (Baseline) 17.64%
Minimum Distance 17.44%
Confined Maximum Entropy 12.63%
Confined Minimum Entropy 15.71%
Unconfined Maximum Entropy 19.13%
Unconfined Minimum Entropy 16.18%

Figure 3.8: Examples of labeled samples and discovered samples by our confined max-
imum entropy search on CIFAR-10. Discovered samples with correct and incorrect
labels are highlighted with red and blue, respectively.
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3.4.4 Ablation Studies and Algorithm Analysis

In this section, we provide ablation study results on CIFAR-10 to perform in-depth

analysis of our algorithm and its di↵erent components.

(1) Impact of di↵erent selection methods for critical sample discovery.

In our critical sample discovery, we find that confined samples with maximum en-

tropy of soft labels can provide useful information for the model learning. In this

ablation study, we are trying to understand the following questions: (a) why is it nec-

essary to choose confined samples? (b) Why is it necessary to use the maximum en-

tropy principle? To answer these question, we conduct performance comparison with

the following five sample discovery methods. (1) Confined Maximum Entropy.

Samples are chosen from the confined set with maximum entropy. (2) Confined

Minimum Entropy. Samples are chosen from the confined set but with minimum

entropy. (3) Unconfined Maximum Entropy. Samples are chosen from all unla-

beled images based on the maximum entropy principle. (4) Unconfined Minimum

Entropy. Samples are chosen from all unlabeled images but with minimum entropy.

(5) Minimum Distance. We choose samples with minimum distance to the class

center.

In the following experiments, we set the number of labeled samples to be 100 on

the CIFAR-10 dataset. The error rate of the initial model is 17.64%. The next task is

to discover 400 unlabeled samples as the critical samples using the above five di↵erent

methods. Figure 3.9 shows the comparison results. We can see that the error rates

with confined methods perform similarly in the first 200 epochs since they couple the

initial labeled samples with the high accuracy newly discovered labels. Our confined

maximum entropy search method achieves the best performance after 200 epochs.
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Figure 3.9: Error rate test curve comparison of di↵erent sample discovery methods
on CIFAR-10.

Table 3.9: Error rate comparison of di↵erent initial models with ResNet-28 on CIFAR-
10.

Methods 100 Labels 250 Labels
Random Initialized Model 11.93% 10.52%
Self-Supervision Pre-trained Model 11.63% 10.38%

Samples with minimum distance might be too similar to the initial labeled samples

and their contribution to the model learning is very limited. Table 3.8 summarizes the

classification error rates using these five di↵erent critical sample discovery methods.

We can see that the confined maximum entropy method performs best. Confined

methods are much better than those unconfined discovery methods.

(2) E�ciency of critical sample discovery and relationship to the initial

Table 3.10: Ablation study: test error rates of ResNet-28 on CIFAR-10 with 80, 100,
250 labels to show performance of di↵erent components in our LMCS method.
Ablation 80 Labels 100 Labels 250 Labels
Our LMCS Method (Full Algorithm) 14.96% 11.93% 10.52%
� without Critical Sample Discovery 24.75% 17.64% 11.00%
� without Learned Model Composition 26.52% 21.70% 11.46%
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Figure 3.10: Error rate comparison of di↵erent initial models with 80 labels and 100
labels on CIFAR-10.

Figure 3.11: Error rate test curve comparison between MixMatch and MixMatch +
LMC on CIFAR-10 with 100 labels.
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model. In this ablation study, we study how the size of labeled samples and its

corresponding initial model a↵ect the overall semi-supervised learning performance.

For example, given two di↵erent sets of labeled samples from CIFAR-10, one with

80 labels and the other with 100 labels. Their initial models will have much di↵er-

ent performance. As shown in Figure 3.10, the initial model with 80 labels has a

classification error rate of 24.75%, but the model with 100 labels has an error rate

of 17.64%. Starting with these two models and two sets of labeled samples, we use

our critical sample discovery method to discover new samples. When the number of

samples, original labeled samples plus discovered samples, reaches to 500, the gap be-

tween their error rates is significantly reduced from 7.11% to 3.24%. When the total

number reaches to 1000, the gap between these models is further reduced to 3.03%.

From this ablation study, we can see that our critical sample discovery method does

not heavily depend on the initial model. It is able to find helpful critical samples to

gradually improve its performance.

Figure 3.8 shows more examples of the labeled samples and the newly discovered

samples. The discovered samples with correct and incorrect labels are highlighted

with red and blue, respectively. The newly discovered samples with correct labels

are visually di↵erent from the labeled samples, since they are close to the decision

boundary, while the discovered samples with incorrect labels are also di�cult for

human to tell the di↵erence.

(3) E�ciency of the learned model composition. Another important com-

ponent is our learned model composition (LMC). We compare two methods: Mix-

Match and MixMatch + LMC. In this way, we can demonstrate the e�ciency of our

LMC method. The constructed master model from LMC improves the discrimina-
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tive power on the unlabeled samples when converters are well trained to weight the

feature maps from di↵erent student networks. Figure 3.11 shows the test error rates

of these two methods on the CIFAR-10 with same 100 labeled samples over di↵erent

training epochs. We can see that our LMC method is able to significantly reduce the

classification error rate on top of the MixMatch method, which is already powerful

enough.

(4) Performance of self-supervision pre-trained model. In this ablation

study, we analyze how the pre-trained model with self-supervision tasks a↵ects the

overall semi-supervised learning performance. Self-supervised learning utilizes pretext

tasks to train the network with unlabeled samples. In our experiment, we use the

pretext task of classifying image rotations with four degrees (0, 90, 180, 270) [26]

to train the network and use this pre-trained model as the initial model for the

semi-supervised learning. Table 3.9 shows the performance comparison using the

ResNet-28 with and without the self-supervision pre-trained models. We can see that

the improvement achieved by the self-supervision pre-trained model is very small.

(5) Performance summary of di↵erent algorithm components. Our LMCS

method has two major components: learned model composition and critical sample

discovery. In this ablation study, we aim to identify the contribution of each algorithm

component. Table 3.10 summarizes the results on CIFAR-10 with 80, 100, and 250

labels using three di↵erent method configurations: (1) the full algorithm of LMCS,

(2) our LMCS method without critical sample discovery, and (3) our LMCS method

without learned model composition and without critical sample discovery. We can

see that these two component are both very important, contributing to the overall

performance significantly.
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3.5 Conclusion

In this work, we have developed a new method called learned model composition with

critical sample look-ahead (LMCS) to achieve successful semi-supervised learning on

small sets of labeled samples. We have introduced a new learned model composition

structure to construct the master network from student models of past steps through a

network learning process. We have also developed a new method, called confined max-

imum entropy search to discover new critical samples near the model decision bound-

ary to refine the master network. Our extensive experiments have demonstrated that

the proposed LMCS network outperforms the state-of-the-art semi-supervised learn-

ing methods, especially on small labeled training sets. Our ablation studies have

demonstrated that the learned model composition and critical sample discovery are

tightly coupled, allowing the network to learn from a small set of labeled samples, dis-

cover new critical samples to enlarge its training set, evolve the network model using

a learning process, and gradually improve its semi-supervised learning performance.
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Chapter 4

Unsupervised Deep Metric
Learning with Transformed
Attention Consistency and
Contrastive Clustering Loss

4.1 Introduction

In this work, we propose to explore a new approach to unsupervised deep metric

learning. We observe that existing methods for unsupervised metric learning focus

on learning a network to analyze the input image itself. As we know, when examining

and classifying images, human eyes compare images back and forth in order to identify

discriminative features [69]. In other words, comparison plays an important role in

human visual learning. When comparing images, they often pay attention to certain

keypoints, image regions, or objects which are discriminative between image classes

but highly consistent across image within classes. Even when the image is being
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transformed, the attention areas will be consistent. To further illustrate this, we

provide three examples in Figure 4.1. In (a), human eyes can easily tell the top image

A of the first column and the bottom image B are the same bird since they have

the same visual characteristics. The attention will be on the feather texture and

head shape. In the pixel domain, A and B are up to a spatial transform, specifically,

cropping plus resizing. When the human eyes moves from image A to its transformed

version B, the attention will be also transformed so that it can be still focused on

the head and feather. If we represent this attention using the attention map in deep

neural networks, the attention map M(A) for image A and the attention map M(B)

for image B should also follow the same transform, as shown in the second column

of Figure 4.1(a). We can also see this consistency of attention across image under

di↵erent transforms in other examples in Figs. 4.1(b) and (c).

This lead to our idea of transformed attention consistency. Based on this idea, we

develop a new approach to unsupervised deep metric learning based on image com-

parison. Specifically, using this consistency, we can define a pairwise self-supervision

loss, allowing us to learn a Siamese deep neural network to encode and compare im-

ages against their transformed or matched pairs. To further enhance the inter-class

discriminative power of the feature generated by this network, we adapt the concept

of triplet loss from supervised metric learning to our unsupervised case and introduce

the contrastive clustering loss. Our extensive experimental results on benchmark

datasets demonstrate that our proposed method outperforms current state-of-the-art

methods by a large margin.
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Figure 4.1: Consistency of visual attention across images under transforms.

4.2 Related Work and Major Contributions

This work is related to deep metric learning, self-supervised representation learning,

unsupervised metric learning, and attention mechanisms.

(1) Deep metric learning. The main objective of deep metric learning is to

learn a non-linear transformation of an input image by deep neural networks. In a

common practice [70, 71], the backbone in deep metric learning can be pre-trained

on 1000 classes ImageNet [72] classification, and is then jointly trained on the metric

learning task with an additional linear embedding layer. Many recent deep metric

learning methods are built on pair-based [73, 74, 75] and triplet relationships [76,

77, 78]. Triplet loss [77] defines a positive pair and a negative pair based on the

same anchor point. It encourages the embedding distance of positive pair to be

smaller than the distance of negative pair by a given margin. Multi-similarity loss

[70] considers multiple similarities and provides a more powerful approach for mining

and weighting informative pairs by considering multiple similarities. The ability of

mining informative pairs in existing methods is limited by the size of mini-batch.
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Cross-batch memory (XBM) [79] provides a memory bank for the feature embeddings

of past iterations. In this way, the informative pairs can be identified across the

dataset instead of a mini-batch.

(2) Self-supervised representation learning. Self-supervised representation

learning directly derives information from unlabeled data itself by formulating predic-

tive tasks to learn informative feature representations. DeepCluster [21] uses k-means

clustering to assign pseudo-labels to the features generated by the deep neural net-

work and introduces a discriminative loss to train the network. Gidaris et al. [26]

explore the geometric transformation and propose to predict the angle (0�, 90�, 180�,

and 270�) of image rotation as a four-way classification. Zhang et al. [22] propose

to predict the randomly sampled transformation from the encoded features by Auto-

encoding transformation (AET). The encoder is forced to extract the features with

visual structure information, which are informative enough for the decoder to decode

the transformation. Self-supervision has been widely used to initialize and pre-train

backbone on unlabeled data, and is then fine-tuned on a labeled training data for

evaluating di↵erent tasks.

(3) Unsupervised metric learning. Unsupervised metric learning is a rela-

tively new research topic. It is a more challenging task since the training classes have

no labels and it does not overlap with the testing classes. Iscen et al. [80] propose an

unsupervised method to mine hard positive and negative samples based on manifold-

aware sampling. The feature embedding can be trained with standard contrastive and

triplet loss. Ye et al. [71] propose to utilize the instance-wise relationship instead of

class information in the learning process. It optimizes the instance feature embed-

ding directly based on the positive augmentation invariant and negative separated
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properties.

(4) Attention mechanism. The goal of the attention mechanism is to capture

the most informative feature in the image. It explores important parts of features

and suppress unnecessary parts [81, 82, 83]. Convolutional block attention module

(CBAM) [84] is an e↵ective attention method with channel and spatial attention mod-

ule which can be integrated into existing convolutional neural network architectures.

Fu et al. [85] propose to produce the attention proposals and train the attention

module and embedding module in an iterative two-stage manner. Chen et al. [86]

propose the hybrid-attention system by random walk graph propagation for object

attention and the adversary constraint for channel attention.

Compared to existing methods, the unique contributions of this work can be

summarized as follows. (1) Unlike existing methods which focus on information anal-

ysis of the input image only, we explore a new approach for unsupervised deep metric

learning based on image comparison and cross-image consistency. (2) Motivated by

the human visual experience, we introduce the new approach of transformed attention

consistency to e↵ectively learn a deep neural network which can focus on discrimina-

tive features. (3) We extend the existing triplet loss developed for supervised metric

learning to unsupervised learning using k-mean clustering to assign pseudo labels

and memory bank to allow its access to all training samples, instead of samples in

the current mini-batch. (4) Our experimental results demonstrate that our proposed

approach has improved the state-of-the-art performance by a large margin.
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Figure 4.2: Overview of the proposed approach for unsupervised deep metric learning
with transformed attention consistency and contrastive clustering loss.

4.3 Method

4.3.1 Overview

Suppose that we have a set of unlabeled images X = {x1, x2, ..., xN}. Our goal is

to learn a deep neural network to extract their features G(xn) 2 Rd, where d is the

feature dimension. Figure 2 shows the overall design of our proposed method for

unsupervised deep metric learning based on transformed attention consistency and

contrastive clustering loss (TAC-CCL). Given an input image xn, we apply a trans-

form T , which is randomly sampled from a set of image transforms T , to xn, to

obtain its transformed version x
0
n
= T (xn). In our experiments, we mainly consider

spatial transforms, including cropping (sub-image), rotation, zooming, and perspec-

tive transform. Each transform is controlled by a set of transform parameters. For

example, the cropping is controlled by its bounding box. The perspective transform

is controlled by its 6 parameters. Image pairs (xn, x
0
n
) are inputs to the Siamese deep
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neural network. These two identical networks will be trained to extract features Fn

and F
0
n
for these two images. As illustrated in Figure 2, each network is equipped

with an attention network to learn the attention map which will modulate the output

feature map. The attention map can enforce the network to focus on discriminative

local features for the specific learning tasks or datasets. Let Mn and M
0
n
be the atten-

tion maps for images xn and x
0
n
, respectively. According to the transformed attention

consistency, we shall have

M
0
n
= T (Mn). (4.1)

Based on this constraint, we introduce the transformed attention consistency loss

LTAC to train the feature embedding network G, which will be further explained

in Section 4.3.3. Besides this attention consistency, we also require that the output

features Fn and F
0
n
should be similar to each other since the corresponding input

images xn and x
0
n
are visually the same. To enforce this constraint, we introduce the

feature similarity loss LF = ||Fn � F
0
n
||2 which is the L2-normal between these two

features. To ensure that image features from the same class aggregate into compact

clusters while image features from di↵erent classes are pushed away from each other

in the high-dimensional feature space, we introduce the contrastive clustering loss

LCC , which will be further explained in the Section 4.3.3.

4.3.2 Baseline System

In this work, we first design a baseline system. Recently, a method called multi-

similarity (MS) loss [70] has been developed for supervised deep metric learning. In

this work, we adapt this method from supervised metric learning to unsupervised
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metric learning using k-means clustering to assign pseudo labels. Also, the original

MS method computes the similarity scores between image samples in the current

mini-batch. In this work, we extend this similarity analysis to the whole training

set using the approach of memory bank [79]. The features of all training samples

generated by the network are stored in the memory bank by the enqueue method.

When the memory bank is full, the features and corresponding labels of the oldest

mini-batch are removed by the dequeue method. Using this approach, the current

mini-batch has access to the whole training set. We can then compute the similarity

scores between all samples in the mini-batch and all samples in the training set. Our

experiments demonstrate that this enhanced similarity matrix results in significantly

improved performance in unsupervised metric learning. In this work, we use this

network as the baseline system, denoted by TAC-CLL (baseline).

4.3.3 Loss Functions

To further improve the performance of the baseline system, we introduce the ideas of

transformed attention consistency and contrastive clustering loss, which are explained

in the following.

The transformed attention consistency aims to enforce the feature embedding

network G to focus visually important features instead of other background noise.

Let Mn(u, v) and M
0
n
(u, v) be the attention maps for input image pair xn and x

0
n
,

where (u, v) represents a point location in the attention map. Under the transform

T , this point is mapped to a new location denoted by (Tu(u, v), Tv(u, v)). According

to (4.1), if we transform the attention map Mn(u, v) for the original image xn by T ,

it should match the attention map M
0
n
(u, v) for the transformed image x

0
n
= T (xn).
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Based on this, the proposed transformed attention consistency loss LTAC is defined

as follows

LTAC =
X

(u,v)

|Mn(u, v)�M
0
n
(Tu(u, v), Tv(u, v))|

2
, (4.2)

where u
0 = Tu(u, v) and v

0 = Tv(u, v) are the mapped location of (u, v) in image x
0
n
.

The constrastive clustering loss extends the triplet loss [77] developed in super-

vised deep metric learning, where an anchor sample x is associated with a posi-

tive sample x+ and a negative sample x�. The triplet loss aims to maximize the

ratio S(x, x+)/S(x, x�), where S(·, ·) represents the cosine similarity between two

features. It should be noted that this triplet loss requires the knowledge of image

labels, which however are not available in our unsupervised case. To extend this

triplet loss to unsupervised metric learning, we propose to cluster the image fea-

tures into K clusters. In the high-dimensional feature space, we wish these clusters

are compact and are well separated from each other by large margins. Let {Ck},

1  k  K, be the cluster centers. Let C+(Fn) be the nearest center which has

the minimum distance to the input image feature Fn and the corresponding distance

is denoted by d+(Fn) = ||Fn � C+(Fn)||2. Let C�(Fn) be the cluster center which

has the second minimum distance to Fn and the corresponding distance is denoted

by d�(Fn) = ||Fn � C�(Fn)||2. If the contrastive ratio of d+(Fn)/d+(Fn) is small,

then this feature has more discriminative power. We define the following contrastive

clustering loss

LCC = EFn

⇢
||Fn � C+(Fn)||2
||Fn � C�(Fn)||2

�
, (4.3)

which is the average contrastive ratio of all input image features. During the training

process, the network G, as well as the feature for each input, is progressively updated.
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For example, the clustering is performed and the cluster centers are updated for every

20 epochs.

4.3.4 Transformed Attention Consistency with Cross-Images
Supervision

Note that, in our proposed approach, we transform or augment the input image xn to

create its pair x
0
n
. These two are from the same image source. We also notice that most

of existing self-supervision methods, such as predicting locations of image patches and

classifying the rotation of an image [26], and reconstructing the transform of the image

[22], all focus on self-supervision information within the image itself. The reason

behind this is that image patches from the same image will automatically have the

same class label. This provides an important self-supervision constraint to train the

network. However, this one-image approach will limit the learning capability of the

network since the network is not able to compare multiple images. As we know, when

human eyes are examining images to determine which features are discriminative, they

need to compare multiple images to determine which set of features are consistent

across images and which set of features are background noise [69]. Therefore, in

unsupervised learning, it is highly desirable to utilize the information across images.

Figs. 4.3(a)-(c) show image samples from the Cars and SOP benchmark datasets.

We can see that images from the same class exhibit strong similarity between images,

especially in the object regions. The question is how to utilize these unlabeled images

to create reliable self-supervision information for unsupervised learning? In this work,

we propose to perform keypoint or sub-image matching across images. Specifically, as

illustrated in Figure 4.3(d) and (e), for a given image sample In, in the pre-processing
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Figure 4.3: Sub-image matching for cross-image supervision.

stage, we perform a�ne-SIFT [87] keypoint matching between In and other images

in the dataset and find the top matches with confidence scores about a very high

threshold. We then crop out the sub-images containing high-confidence keypoints as

xn and x
0
n
which are related by a transform T . This high-confidence constraint aims to

ensure that xn and x
0
n
are having the same object class or semantic label. In this way,

for each image in the k-means cluster, we can find multiple high-confidence matched

sub-images. For example, on the CUB dataset, for top-2 matching in each cluster,

the label accuracy is 77.0%, which is much higher than the true positive pair rate

obtained by k-means clustering (39.1%). This will significantly augment the training

set, establish cross-image self-supervision, and provide significantly enhanced visual

diversity for the network to learn more robust and discriminative features. In this

work, we combine this cross-image supervision with the transformed attention consis-

tency. Let {(ui, vi)} and {(u0
i
, v

0
i
)}, 1  i  N , be the set of matched keypoints in xn

and x
0
n
. We wish that, within the small neighborhoods of these matched keypoints,

the attention mapsMn andM
0
n
are consistent. To define a small neighborhood around
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a keypoint (ui, vi), we use the following 2-D Gaussian kernel,

�(u� ui, v � vi) = e
� (u�ui)

2

2�2
u

� (v�vi)
2

2�2
v . (4.4)

Let

�(u, v) =
MX

i=1

�(u� ui, v � vi), �0(u, v) =
MX

i=1

�(u� u
0
i
, v � v

0
i
), (4.5)

which define two masks to indicate the neighborhood areas around these matched key-

points in these two attention maps. The extended transformed attention consistency

becomes

LTAC =
X

(u,v)

|Mn(u, v) · �(u, v)�M
0
n
(u, v) · �0(u, v)|2, (4.6)

which compares the di↵erence between these two attention maps around these matched

keypoints. Compared to the label propagation method developed for semi-supervised

learning [46, 40], our cross-image supervision method is unique in the following as-

pects: (1) it discovers sub-images of the same label (with very high probability) from

unlabeled images. (2) It establishes the transform between these two sub-images and

combines with the transformed attention consistency to achieve e�cient unsupervised

deep metric learning.

4.4 Experimental Results

In this section, we conduct extensive experiments on benchmark datasets in image

retrieval settings to evaluate the proposed TAC-CCL method for unsupervised deep

metric learning.
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4.4.1 Datasets

We follow existing papers on unsupervised deep metric learning [71] to evaluate our

proposed methods on the following three benchmark datasets. (1) CUB-200-2011

(CUB) [88] is composed of 11,788 images of birds from 200 classes. The first 100

classes (5864 images) are used for training, with the rest 100 classes (5924 images)

for testing. (2) Cars-196 (Cars) [89] contains 16,185 images of 196 classes of car

models. We use the first 98 classes with 8054 images for training, and remaining 98

classes (8131 images) for testing. (3) Stanford Online Products (SOP) [75] has

22,634 classes (120,053 images) of online products. We use the first 11,318 products

(59,551 images) for training and the remaining 11,316 products (60,502 images) for

testing. The training classes are separated from the test classes. We use the stan-

dard image retrieval performance metric (Recall@K ), for performance evaluations

and comparisons.

4.4.2 Implementation Details

We implement our proposed method by PyTorch and follow the standard experimental

settings in existing papers [75, 70, 71] for performance comparison. We use the same

GoogLeNet [90] pre-trained on ImageNet as the backbone network [91, 75, 92] and a

CBAM [84] attention module is placed after the inception 5b layer. A fully connected

layer is then added on the top of the network as the embedding layer. The default

dimension of embedding is set as 512. For the clustering, we set the number of

clusters K to be 100 for the CUB and Cars datasets, and K = 10000 for the SOP

dataset. For each batch, we follow the data sampling strategy in multi-similarity loss

[70] to sample 5 images per class. For data augmentation, images in the training set
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Table 4.1: Recall@K (%) performance on CUB and Cars datasets in comparison with
other methods.

Methods Backbone
CUB Cars

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8
Supervised Methods
ABIER [94] GoogLeNet 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1
ABE [95] GoogLeNet 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1
Multi-Similarity [70] BN-Inception 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5
Unsupervised Methods
Examplar [96] GoogLeNet 38.2 50.3 62.8 75.0 36.5 48.1 59.2 71.0
NCE [97] GoogLeNet 39.2 51.4 63.7 75.8 37.5 48.7 59.8 71.5
DeepCluster [21] GoogLeNet 42.9 54.1 65.6 76.2 32.6 43.8 57.0 69.5
MOM [80] GoogLeNet 45.3 57.8 68.6 78.4 35.5 48.2 60.6 72.4
Instance [71] GoogLeNet 46.2 59.0 70.1 80.2 41.3 52.3 63.6 74.9

TAC-CCL (baseline) GoogLeNet 53.9 66.2 76.9 85.8 43.0 53.8 65.3 76.0
TAC-CCL GoogLeNet 57.5 68.8 78.8 87.2 46.1 56.9 67.5 76.7

Gain +11.3 +9.8 +8.7 +7.0 +4.8 +4.6 +3.9 +1.8

are randomly cropped at size 227 ⇥ 227 with random horizontal flipping, while the

images in testing set is center cropped. Adam optimizer [93] is used in all experiments

and the weigh decay is set as 5e�4.

4.4.3 Performance Comparisons with State-of-the-Art Meth-
ods

We compare the performance of our proposed methods with the state-of-the-art un-

supervised methods on image retrieval tasks. The mining on manifolds (MOM) [80]

and the invariant and spreading instance feature method (denoted by Instance) [71]

are current state-of-the-art methods for unsupervised metric learning. They both use

the GoogLeNet [90] as the backbone encoder. In the Instance paper [71], the authors

have also implemented three other state-of-the-art methods originally developed for

feature learning and adapted them to unsupervised metric learning tasks: Examplar

[96], NCE (Noise-Contrastive Estimation) [97], and DeepCluster [21]. We include the
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results of these methods for comparisons. We have also included the performance of

recent supervised deep metric learning methods for comparison so that we can see

the performance di↵erence between unsupervised metric learning and supervised one.

These methods include: ABIER [94], and ABE [95], and MS (Multi-Similarity) [70].

Both ABIER and ABE methods are using the GoogLeNet as the backbone encoder.

The MS method is using the BN-Inception network [98] as the backbone encoder.

The results for the CUB, Cars, and SOP datasets are summarized in Tables 4.1 and

4.2, respectively. We can see that our proposed TAC-CCL method achieves new state-

of-the-art performance in unsupervised metric learning on both fine-grained CUB and

Cars datasets and the large-scale SOP dataset. On the CUB dataset, our TAC-CCL

improves the Recall@1 by 11.3% and is even competitive to some supervised metric

learning methods, e.g., ABIER [94]. On the Cars dataset, our TAC-CCL outperforms

the current state-of-the-art Instance method [71] by 4.8%. On SOP, our method

achieves 63.9% and outperforms existing methods by a large margin of 15%. For

other Recall@K rates with large values of k, the amount of improvement is also very

significant. Note that our baseline system achieves a large improvement over existing

methods. The proposed TAC-CCL approach further improves upon this baseline

system by another 1.4-3.6%.

Figure 4.4 shows examples of retrieval results from the CUB, Cars, and SOP

datasets. In each row, the first image highlighted with a blue box is the query image.

The rest images are the top 15 retrieval results. Images highlighted with red boxes are

from di↵erent classes. It should be noted that some classes have very small number of

samples. We can see that our TAC-CCL can learn discriminitive features to achieve

satisfying retrieval results, even for these challenging tasks. For example, at the
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Table 4.2: Recall@K (%) performance on SOP dataset in comparison with other
methods.

Methods Backbone
SOP

R@1 R@10 R@100
Supervised Methods
ABIER [94] GoogLeNet 74.2 86.9 94.0
ABE [95] GoogLeNet 76.3 88.4 94.8
Multi-Similarity [70] BN-Inception 78.2 90.5 96.0
Unsupervised Methods
Examplar [96] GoogLeNet 45.0 60.3 75.2
NCE [97] GoogLeNet 46.6 62.3 76.8
DeepCluster [21] GoogLeNet 34.6 52.6 66.8
MOM [80] GoogLeNet 43.3 57.2 73.2
Instance [71] GoogLeNet 48.9 64.0 78.0

TAC-CCL (baseline) GoogLeNet 62.5 76.5 87.2
TAC-CCL GoogLeNet 63.9 77.6 87.8

Gain +15.0 +13.6 +9.8

first row of the SOP dataset, our model is able to learn the glass decoration feature

under the lampshade, which is a unique feature of the query images. In addition, the

negative retrieved results are also visually closer to the query images.

4.4.4 Ablation Studies

In this section, we conduct ablation studies to perform in-depth analysis of our pro-

posed method and its di↵erent components.

(1) Impact of the number of clusters. The proposed contrastive clustering

loss is based on clustering in the feature space. The number of clusters K is a critical

parameter for the proposed method since it determines the number of pseudo labels.

We conduct the following ablation study experiment on the CUB data to study the

impact of K. The first plot in Figure 4.5(a) shows the Recall@1 results with di↵erent

values of K: 50, 100, 200, 500, and 1000. The other three plots show the results for
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(a) CUB

(b) Cars

(c) SOP

Figure 4.4: Retrieval results of some example queries on CUB, Cars, and SOP
datasets. The query images and the negative retrieved images are highlighted with
blue and red.
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(a) Di↵erent number of clusters

(b) Di↵erent embedding sizes

Figure 4.5: Recall@K (%) performance on CUB dataset in comparison with di↵erent
number of clusters and di↵erent embedding size.
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Table 4.3: Recall@K (%) performance on SOP dataset using Resnet-18 network
without pre-trained parameters.

Methods
SOP

R@1 R@10 R@100

Random 18.4 29.4 46.0

Examplar [96] 31.5 46.7 64.2

NCE [97] 34.4 49.0 65.2

MOM [80] 16.3 27.6 44.5

Instance [71] 39.7 54.9 71.0

Ours 47.0 62.6 77.5

Recall@2, 4, and 8. We can see that, on this dataset, the best value of K is 100, which

is the number of test classes in the CUB dataset. The performance drops when K

increases. This study suggests that the best value of K is close to the truth number

test classes of the dataset.

(2) Impact of di↵erent embedding sizes. In this ablation study, we follow

existing supervised metric learning methods [70, 94] to study the impact of di↵erent

embedding sizes, or the size of the embedded feature. For example, the feature

size ranges from 64, 128, 256, 512, to 1024. The first plot of Figure 4.5(b) shows the

Recall@1 results for di↵erent embedding size. The results for Recall@2, 4, 8 are shown

in the other three plots. We can see that unsupervised metric learning performance

increases with the embedding size since it contains more feature information with

enhanced discriminative power.

(3) Impact of the pre-trained model. We follow the recent state-of-the-art

unsupervised metric learning Instance method [71] and evaluate the performance of

our proposed method on the large-scale SOP dataset by using the Resnet-18 network

without pre-trained parameters. From Table 4.3, we can see our proposed method

outperforms Instance method [71] by more than 7%.
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Table 4.4: The performance of di↵erent components from our TAC-CCL method on
CUB, Cars, and SOP datasets.

CUB Cars SOP
R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100

Baseline 53.9 66.2 76.9 85.8 43.0 53.8 65.3 76.0 62.5 76.5 87.2
+CCL 55.7 67.8 77.5 86.2 44.7 55.6 65.9 75.7 63.0 76.8 87.2
+TAC 57.5 68.8 78.8 87.2 46.1 56.9 67.5 76.7 63.9 77.6 87.8

(4) Performance contributions of di↵erent algorithm components. Our

proposed system has three major components: the baseline system for unsupervised

deep metric learning, transformed attention consistency (TAC), and contrastive clus-

tering loss (CCL). In this ablation study, we aim to identify the contribution of each

algorithm component on di↵erent datasets. Table 4.4 summarizes the performance

results on the CUB, Cars, and SOP datasets using three di↵erent method configura-

tions: (1) the baseline system, (2) baseline with CCL, and (3) baseline with CCL +

TAC. We can see that both the CCL and TAC approaches significantly improve the

performance.

4.5 Conclusion

In this work, we have developed a new approach to unsupervised deep metric learning

based on image comparisons, transformed attention consistency, and constrastive clus-

tering loss. This transformed attention consistency leads to a pairwise self-supervision

loss, allowing us to learn a Siamese deep neural network to encode and compare

images against their transformed or matched pairs. To further enhance the inter-

class discriminative power of the feature generated by this network, we have adapted
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the concept of triplet loss from supervised metric learning to our unsupervised case

and introduce the contrastive clustering loss. Our extensive experimental results

on benchmark datasets demonstrate that our proposed method outperforms current

state-of-the-art methods by a large margin.
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Chapter 5

Spatial Assembly Networks for
Image Representation Learning

5.1 Introduction

A key challenge in computer vision and machine learning is to construct or learn

discriminative representations for the semantic content of images, which should be

invariant to changes in camera positions, perspective transforms, object scales, poses,

part deformations, spatial displacement, and scene configurations [99, 100]. Recently,

deep neural networks have emerged as a powerful approach for visual learning and rep-

resentation. With its shared weights for convolution across di↵erent spatial locations,

average or maximum pooling, coupled with su�cient training image augmentations,

they are able to generate relatively invariant features or decisions under small spa-

tial variations or transforms. However, researchers have recognized that deep neural

networks are still vulnerable to relatively large geometric transformations and spatial
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Figure 5.1: Illustration of invariant image representation learning under generic spa-
tial variations.

variations [101]. This limitation originates from the fixed geometric structures of deep

neural modules. For example, the convolution processes the input image or feature

images on a fixed grid structure with a small reception field. The pooling layers

then process the outputs from the convolution layers with a fixed spatial mapping

or channel structures. There is lack of internal mechanisms to handle the flexible

spatial variations, including spatial transforms and changes in object poses, spatial

layout, and scene structures [102]. In their recent study [103], Kayhan and Gemert

even found out that deep neural networks are exploiting the absolution spatial loca-

tions and image boundary conditions for object recognition and image classification,

challenging the common assumption that convolution layers in modern CNNs are

translation invariant.

Learning invariant features and visual representation with deep neural networks

has become an important yet challenging research problem. Recent research has

been focusing on developing various methods on transform-aware data augmenta-

tions [104, 105], geometry adversarial training [106], and transform-invariant network
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modules and structures [83, 107, 92] to improve the robustness of deep neural net-

works under spatial transforms of images and objects, such as a�ne or perspective

transforms. In this work, we aim to address the challenging problem of invariant fea-

ture representation learning under more generic spatial variations, include changes in

object poses, part configurations, and scene structures. For example, Figure 5.1 shows

three example images with di↵erent spatial configurations of objects due to object

motion. Semantically, they should be the same or belong to the same class. However,

existing deep neural networks will generate di↵erent features for them. Our goal is

to design a new spatial assembly network (SAN), which is able to examine the input

image and perform a learned re-organization or optimized assembly of feature points

from di↵erent spatial locations so as to generate invariant features for these three

images. This learned spatial assembly is conditioned by feature maps of previous

network layers. This di↵erentiable module can be flexibly incorporated into existing

network architectures, improving their capabilities in handling spatial variations and

structural changes of the image scene, and maximizing the discriminative power of

the final feature representation. We will demonstrate that the proposed SAN module

is able to improve the performance of various metric / representation learning tasks,

in both supervised and unsupervised learning settings.

5.2 Related Work and Major Contributions

Recently, a set of methods have been developed in the literature to improve the ro-

bustness of deep neural networks under spatial transforms of images and objects.

Analytically, [108] has studied the equivalence and invariance of DNN representa-
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tions to input image transformations. Lenc and and Vedaldi [101] investigated the

linear relationships between representations of the original and transformed images.

In [102], the training dataset is augmented with di↵erent spatial transformations and

used to train di↵erent networks. The weights are the shared between networks and

their generated features are then fused together using maximum pooling. To increase

the robustness of deep neural network under spatial transforms, a random transfor-

mation module is developed in [107] to transform the feature maps obtained from

the neural network and suppress its sensitivity to spatial transforms in the input

image. The spatial transformer network has been developed in [83] which is able to

locate and predict the spatial transforms of objects in the scene based on previous

feature maps and re-align the feature maps of objects based on these transforms.

This new spatial transformer layer can be inserted into existing network and used to

improve the robustness of deep neural network under spatial transforms. To handle

object-level spatial variations, an end-to-end network architecture that perform joint

detection, orientation estimation, and feature description has been explored in [109].

To achieve adaptive part localization for objects with di↵erent shapes, deformable

convolution and pooling are developed in [110], which adds 2D o↵sets to the grid

sampling locations and bin positions in the standard convolution and RoI (region of

Interest) pooling. Gens and Domingos [111] proposed a generalization of CNN that

forms feature maps over arbitrary symmetry groups based on the theory of symme-

try groups in [111], resulting in feature maps that were more invariant to symmetry

groups. Sohn and Lee [112] proposed a transform-invariant restricted Boltzmann ma-

chine (RBM) which is able to generate compact and invariant representation of the

input image using probabilistic max pooling. This framework can also be extended to
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unsupervised learning. To handle the orientation changes, Wang et al. [113] proposes

to transform the weighted region features into the final orientation invariant feature

vector by clustering key points into four orientation-based region proposals. The fea-

ture vectors from these four orientation regions are then fused by the aggregation

module that outputs an orientation-invariant feature vector. A Laplacian pyramid

network structure has been developed in [114] to produce a set of feature maps with

di↵erent scales which then fused together to improve the robustness of image features

under scale changes.

This work is also related to spatial permutation. Permutation optimization is a

long standing problem arising in operations research, graph matching, and other ap-

plications [115]. It is also referred to as the linear and quadratic assignment problem

[116]. Within the context of deep neural networks, channel shu✏ing has been ex-

plored in Shu✏eNet [117] to improve the network performance while minimizing its

computational complexity. In [100], Lyu et al. have developed a deep neural network

approach to learn the permutation for channel shu✏ing. They introduced Lipschitz

continuous non-convex penalty so that it can be incorporated into the stochastic gra-

dient descent to approximate permutation. Exact permutations are then obtained by

simple rounding at the end.

Compared to existing methods in the literature, our work has the following unique

novelties and contributions. (1) Existing methods mainly focus on transform-

invariant networks and image feature learning. The proposed spatial assembly goes

beyond spatial image transforms. It learns to re-organize or re-assemble the feature

maps across di↵erent spatial locations with the potential to handle generic spatial

variations, including changes in poses, part configurations, relative motion between
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objects, and scene structures. (2) This work represents one of the first e↵orts to

explore spatial re-organization of feature maps for 2D images. The proposed spatial

assembly represents a more generic feature operation than simple permutation. This

di↵erentiable module can be directly incorporated into existing deep neural network

for end-to-end training to increase network robustness under spatial variations and

improve the discriminative power of image features.

Figure 5.2: Spatial assembly of feature vectors across di↵erent spatial locations to
construct the output feature map.

5.3 Methods

In this section, we describe the formulation of spatial assembly and explain its back-

ward error propagation and gradient-based learning process.
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5.3.1 Di↵erentiable Spatial Assembly

It is a di↵erentiable network module which learns the spatial assembly weights from

previous feature maps and perform spatial assembly of the feature maps across dif-

ferent spatial locations based on these assembly weights within a single forward pass.

The spatial assembly weights are conditioned by the feature maps of the specific in-

put image. In other words, the spatial assembly will be di↵erent for di↵erent input

images. As illustrated in Figure 5.2, let F (i, j, c) be the feature map at network layer

k, spatial location (i, j) and channel c. It serves as the input to the spatial assembly

module. Let G(n,m, c) be the output feature map after spatial assembly. The input

and output feature maps share the same dimension (Wk, Hk). The output feature

map is constructed using the following 2D spatial permutation operation

G(n,m, c) = F (i0, j0, c), (i0, j0) = P(n,m), (5.1)

where (i0, j0) = P(n,m) is a 2D spatial permutation. The 2D spatial permutation

can be converted into a 1-D spatial permutation by introducing the location index

u = i ⇥Wk + j and v = n ⇥Wk +m. We have 0  u, v  N where N = Wk ⇥Hk.

With this, (5.1) can be re-written as

G(v, c) = F (u, c), u = P(v). (5.2)

Let P = [w(u, v)]N⇥N be the permutation matrix, which is a binary square matrix

with ones at matrix locations (P(v), v). It should be noted that the permutation

matrix P is discrete, which has exactly a single one in every row and each column,

and zeros everywhere else. These matrices form discrete points in the Euclidean
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space, which makes them not di↵erentiable.

To make this spatial permutation module di↵erentiable, we extend this spatial

permutation into spatial assembly by relaxing the binary indicator w(u, v) into a

continuous weight between [0, 1] which satisfies the following condition

NX

u=1

w(u, v) = 1,
NX

v=1

w(u, v) = 1, w(u, v) > 0. (5.3)

In spatial assembly, the output feature map is constructed by the following weighted

summation

G(v, c) =
N�1X

u=0

w(u, v) · F (u, c), (5.4)

as illustrated in Figure 5.2. Here, every feature vector in the output feature map

G(v, c) is computed using the weighted summation of the input feature vectors F (u, c)

at all spatial locations.

In order to achieve spatial re-organization of the feature map while maintaining the

di↵erentiable property of the spatial assembly weight function w(u, v), we introduce

the following two constraints. The first one is the minimum entropy constraint

which aims to ensure locality of the weighting function. From a spatial transform

perspective, this will ensure that one object is being moved from one location in the

input feature map to another location in the output feature map. Specifically, we

define the following entropy function which is the summation of entropies for all rows

and all columns of the spatial assembly weight matrix:

E[w(u, v)] =
X

v

X

u

w̄c(u, v) · log2
1

w̄c(u, v)
,

+
X

u

X

v

w̄r(u, v) · log2
1

w̄r(u, v)
.

(5.5)
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Note that when the entropy is 0, each row or each column will have a single unit value

with the rest entries to be 0. During training, this minimum entropy constraint will

be used as a part of the loss function to increase the locality of the spatial assembly

operation.

The second one is the minimum correlation constraint : during spatial as-

sembly, di↵erent input feature vectors are contributing to di↵erent output feature

vectors. Otherwise, if one input feature vector is contributing significantly to mul-

tiple output features, it will result in significant output information redundancy, or

equivalently input information loss. From the spatial transform perspective, this con-

straint will ensure that di↵erent objects are being re-organized to di↵erent locations.

To this end, we introduce the minimum correlation constraint which aims to minimize

the following correlation within the spatial assembly weight map:

C[w(u, v)] =
X

u1 6=u2

X

v

w(u1, v) · w(u2, v)

+
X

v1 6=v2

X

u

w(u, v1) · w(u, v2).
(5.6)

5.3.2 Spatial Assembly with Local Coherence

The above formulation of spatial assembly aims to achieve spatial re-assembly of

the feature map in a di↵erentiable manner. It should be noted that this spatial re-

assembly operation is performed on feature vectors at individual spatial locations of

the feature map, or individual feature points. Although the spatial assembly is learned

by optimizing the target loss function, it is highly likely that feature points from the

same object may be dis-assembled into di↵erent locations in the output feature map.
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To address this issue, we propose introduce local coherence into the spatial assembly

operation. While it could be more e↵ective to develop a separate network to predict

if two feature points belong to the same object or not, we choose to adopt a simple

yet e�cient measure to enforce the local coherence. Specifically, we define the local

coherence ↵(i, j; i0, j0) as the correlation (cosine similarity) between feature vector

Fi,j = [F (i, j, 1), · · · , F (i, j, C)] and its neighbor Fi0,j0 = [F (i0, j0, 1), · · · , F (i0, j0, C)],

i.e.,

↵(i, j; i0, j0) =

8
><

>:

Fi,j ·Fi0,j0

||Fi,j ||·||Fi0,j0 ||
, (i0, j0) 2 ⌦i,j,

0, elsewhere.
(5.7)

where ⌦i,j is the set of 8 direct neighbor points of (i, j). To address the computational

complexity, the number of feature vectors can be limited. During coherent spatial

assembly, we expect that neighboring feature points with high local coherence should

be maintained together in the output feature map. In otherwise words, they should

have similar spatial assemble weights. Motivated by this, we introduce the following

loss function

LLC =
X

(i0,j0)2⌦i,j

↵(i, j; i0, j0) · ||Wi,j � S
i,j

i0,j0 [Wi0,j0 ]||2, (5.8)

where Wi,j represents the 2-D spatial assembly weight map of size NH⇥NW for point

(i, j). S
i
0
,j

0

i,j
[·] performs a 2-D shift of the whole weight map by one point such that

point (i0, j0) is aligned to point (i, j).
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Figure 5.3: The spatial assembly networks being embedded into the deep neural
network.

5.3.3 Spatial Assembly Networks

Figure 5.3 shows the design of the spatial assembly network and how it is embedded

into existing deep neural networks for feature learning. The spatial assembly module

is integrated into an intermediate layer of the network. The feature map F (i, j, c)

generated by network F is used as input to the spatial assembly network �, which

predicts the spatial assembly weight map w(u, v), as defined in the above section.

Using this weight map, the input feature map F (i, j, c) is re-assembled into a new

feature map G(n,m, c), which will be further processed by the upper network G. In

the following, we use the supervised metric learning as an example to explain the

loss function design and learning process. This learning processing can be naturally

extended to unsupervised feature learning and will be evaluated in our experiments.

In supervised metric or feature learning, the network aims to generate discrim-

inative features such that intra-class image feature distance is minimized and the
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inter-class feature distance is maximized. As illustrated in Figure 5.1, the proposed

spatial assembly has the capability to handle spatial variations caused by changes

in object poses, part configurations, spatial layout, and scene structures, and signifi-

cantly reduce the intra-class feature variations. This can be driven by the metric loss

defined at the network output. For example, in our experiments, our baseline system

includes the multi-similarity (MS) loss [70]. The MS method computes the similarity

scores between image samples in the current mini-batch. The similarity matrix be-

tween features of the current mini-batch S. For each sample Ik, we determine the set

of positive pairs Pk and the set of hard negative pairs Nk based on their similarity

scores. Skp and Skp are similarity scores of the positive and negative pairs. We define

the loss for all samples {Ik} in the mini-batch as follows

LFEN =
1

NB

NBX

k=1

{
1

�P

log[1 +
X

p2Pk

(e��P (Skp��))]

+
1

�N

log[1 +
X

q2Nk

(e�N (Skq��))]},

(5.9)

where � is a margin threshold, �P and �N are hyper-parameters for positive and

negative pairs. We follow [70] for the setting of these hyper-parameters.

During training, the error gradients from metric loss will back propagated through

network G to the spatial assembly layer, which will be further propagated to the

spatial assembly network and the bottom network F. According to (5.4), the gradients

of the output feature map G(n,m, c) with respect to the input feature map F (i, j, c)

and the spatial assembly weights are given by

@G(n,m, c)

@F (i, j, c)
= w(i⇥N + j, n⇥N +m), (5.10)
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and

@G(n,m, c)

@w(u, v)
= F (i, j, c),

u = i⇥N + j, v = n⇥N + j.

(5.11)

In addition to the error gradients back propagated from the network output, we also

use the minimum entropy, minimum correlation constraints, and the local coherence

penalty to regulate the training of the spatial assembly weight prediction network �

through the following combined loss

L� = �1 · E[w(u, v)] + �2 · C[w(u, v)] + �3 · LLC , (5.12)

as illustrated in Figure 5.3. �i are the weighting parameters. Once successfully

trained, the SAN module will analyze the incoming feature map, predict the spatial

assembly weight map. Figure 5.4 shows two examples of predicted spatial assembly

weight map. In each example, we show the maximum weight of the first two rows from

the weight map w(u, v). It should be noted that we have re-organized 1-D weights of

each row into an 2-D vector. Each 2-D vector represents the assembly weight vector

for one output feature point. We only mark the maximum weight point in each 2-D

vector by red for a better visualization. The whole weight map is used to re-assembly

the feature map to generate the output feature map, which will be further analyzed

by the network to produce the feature or decision.
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Figure 5.4: Examples of the first two rows in the predicted spatial assembly weight
map.

5.4 Experimental Results

In this section, we conduct experiments mainly on the supervised metric learning

and unsupervised metric learning to evaluate the performance of the spatial assembly

network.

5.4.1 Datasets

For supervised and unsupervised deep metric learning, we use the following four

benchmark datasets, following the same procedure used by existing papers [94, 79,

118, 119]. (1) CUB-200-2011 (CUB) [88] is a fine-grained bird dataset. It contains

11,788 images of birds from 200 categories. The first 100 classes are used for training,

the remaining 100 classes are used for testing. (2) Cars-196 (Cars) [89] consists of

16,185 car model images (196 classes). We split the first 98 classes (8,054 images) for

training, and remaining 98 classes (8,131 images) for testing. (3) Stanford Online

Products (SOP) [75] consists of 120,053 online product images (22,634 classes) from

Ebay. The first 11,318 classes are used for training and the remaining 11,316 classes

are used for testing. (4) In-Shop Clothes Retrieval (In-Shop) [120] contains

54,642 images with 11,735 clothing classes. We use the predefined 25,882 training
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images of 3,997 classes for training. The testing set includes 14,218 query images of

3,985 classes and 12,612 gallery images of 3,985 classes.

5.4.2 Supervised Metric Learning

We follow the recent state-of-the-art methods [70, 121, 94, 79] and conduct the ex-

periments on the fine-grained CUB , Cars, SOP, and In-Shop datasets which are

challenging for learning discriminative features. We utilize the GoogleNet network

[90] pre-trained on ImageNet [72] as the backbone network with an one-layer em-

bedding head to embed feature representation to the 512-dimensional feature space

on all datasets for the benchmark performance comparison. We implement our al-

gorithm with PyTorch. The Adam optimizer [93] is used in all experiments with

5e�4 weight decay. In the following experiments, we use the standard image retrieval

performance metric (Recall@K ), for performance evaluations and comparisons. Note

that the major challenge here is that the training classes are totally di↵erent from

the test classes.

The performance comparisons with existing state-of-the-art supervised metric

learning methods on the CUB, Cars, and In-Shop datasets are summarized in Ta-

ble 5.1. These methods include: LiftedStruct Loss [75], Histogram Loss [122], N-Pair

Loss [92], Clustering [123], BIER (boosting independent embeddings robustly) [124],

Angular Loss [125], MS (Multi-Similarity) Loss [70], HDML (hardness-aware deep

metric learning) [121], ABIER [94] and XBM (Cross-Batch Memory) [79]. We use

the multi-similarity loss [70] with momentum memory bank [27] as the baseline sys-

tem. The momentum memory bank has a contrastive-based loss [126]. Our proposed

method is the baseline system with SAN module. From Table 5.1, we can see that
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Table 5.1: Recall@K (%) performance on the CUB and Cars, and In-Shop datasets
with GoogleNet in comparison with other supervised metric learning methods. Some
papers did not report results on specific datasets, which are marked with -.

Methods
CUB Cars In-Shop

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@20 R@30

LiftedStruct [75] CVPR16 47.2 58.9 70.2 80.2 49.0 60.3 72.1 81.5 - - - -
Histogram Loss [122] NIPS16 50.3 61.9 72.6 82.4 - - - - - - - -
N-Pair Loss [92] NIPS16 51.0 63.3 74.3 83.2 71.1 79.7 86.5 91.6 - - - -
Clustering [123] CVPR17 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8 - - - -
BIER [124] ICCV17 55.3 67.2 76.9 85.1 78.0 85.8 91.1 95.1 76.9 92.8 95.2 96.2
Angular Loss [125] ICCV17 54.7 66.3 76.0 83.9 71.4 81.4 87.5 92.1 - - - -
MS [70] CVPR19 58.2 69.8 79.9 87.3 75.7 84.6 90.1 94.4 85.1 96.7 97.8 98.3
HDML [121] CVPR19 53.7 65.7 76.7 85.7 79.1 87.1 92.1 95.5 - - - -
A-BIER [94] TPAMI18 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1 83.1 95.1 96.9 97.5
XBM [79] CVPR20 61.9 72.9 81.2 88.6 80.3 87.1 91.9 95.1 89.1 97.3 98.1 98.4
Proposed 63.3 74.5 83.8 90.4 83.5 89.7 93.4 96.1 92.5(88.5)98.9(97.5)99.3(98.2)99.5(98.6)
Gain +1.4 +1.6 +2.6 +1.8 +1.5 +0.7 +0.2 +0.0 +3.4(-) +1.6(0.2) +1.2(0.1) +1.1(0.2)

our method outperforms the state-of-the-art methods by up to 2.6% on the Recall@1,

2, 4, and 8 rates on the CUB dataset. We evaluate the performance of the In-Shop

dataset in two settings. One setting uses the whole testing set as the query set and

gallery set, the other setting splits the testing set into query set (14,218 query images)

and gallery set (12,612 gallery images). The performance of the second setting shows

in the brackets.

5.4.3 Unsupervised Deep Metric Learning

In the following experiments, we evaluate the performance of the spatial assembly net-

work for unsupervised metric learning where image labels are not available. We com-

pare the performance of our proposed methods with the state-of-the-art unsupervised

methods: MOM (mining on manifolds) [80], AND (anchor neighborhood discovery)

[127], CBSwR (center-based softmax with reconstruction) [128], PSLR (probabilis-

tic structural latent representation) [118], ISIF [71], and aISIF [119] (augmentation
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invariant and spreading instance feature). For fair comparisons, the authors of the

aISIF paper [119] have implemented three other state-of-the-art methods developed

for feature learning and adapted them to unsupervised deep metric learning tasks:

Examplar [96], NCE (Noise-Contrastive Estimation) [97], and DeepCluster [21], which

are included into our comparison. We use the same baseline system in the supervised

metric learning.

We use the ImageNet [72] pre-trained GoogleNet [90] as the backbone network

and set the embedding feature dimension to 128 on CUB, Cars, and SOP datasets for

performance comparison. We use the k-means clustering to cluster the embedding

features of training samples and assign pseudo labels to them. We set the cluster

number K to be 100 for the CUB and Cars datasets, and set K to 10,000 for the

SOP dataset. From Table 5.2, we can see that our proposed method outperforms the

state-of-the-art unsupervised methods by a large margin.

Following the recent state-of-the-art PSLR [118], ISIF [71], and aISIF [119] meth-

ods, we also evaluate the performance of our proposed method on Resnet-18 without

pre-trained parameters. In this experiment, we use the randomly initialized Resnet-18

network with an one-layer embedding head to verify the e↵ectiveness of our proposed

SAN module. We set the feature embedding dimension to 128 and conduct experi-

ments on the large-scale SOP dataset. The results in Table 5.3 show that our proposed

method has improved the Recall@1, Recall@10, and Recall@100 rates by 4.0%, 4.2%,

and 4.5%, respectively.

104



Figure 5.5: Retrieval examples by the baseline with and without our SAN module
on the CUB, Cars, SOP, and In-Shop datasets. The query images and the incorrect
retrieved images are highlighted with blue and red.

Figure 5.6: Retrieval examples by the baseline with our SAN module on the CUB,
Cars, and SOP datasets from unsupervised metric leaning. The query images and
the incorrect retrieved images are highlighted with blue and red.
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Table 5.2: Recall@K (%) performance on the CUB, Cars, and SOP datasets with
GoogleNet in comparison with other unsupervised metric learning methods.

Methods
CUB Cars SOP

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100

Examplar [96] TPAMI16 38.2 50.3 62.8 75.0 36.5 48.1 59.2 71.0 45.0 60.3 75.2
NCE [97] CVPR18 39.2 51.4 63.7 75.8 37.5 48.7 59.8 71.5 46.6 62.3 76.8
DeepCluster [21] ECCV18 42.9 54.1 65.6 76.2 32.6 43.8 57.0 69.5 34.6 52.6 66.8
MOM [80] CVPR18 45.3 57.8 68.6 78.4 35.5 48.2 60.6 72.4 43.3 57.2 73.2
AND [127] ICML19 47.3 59.4 71.0 80.0 38.4 49.6 60.2 72.9 47.4 62.6 77.1
ISIF [71] CVPR19 46.2 59.0 70.1 80.2 41.3 52.3 63.6 74.9 48.9 64.0 78.0
aISIF [119] TPAMI20 47.7 59.9 71.2 81.4 41.2 52.6 63.8 75.1 49.7 65.4 79.5
CBSwR [128] BMVC20 47.5 59.6 70.6 80.5 42.6 54.4 65.4 76.0 - - -
PSLR [118] CVPR20 48.1 60.1 71.8 81.6 43.7 54.8 66.1 76.2 51.1 66.5 79.8
Proposed 55.9 68.0 78.6 86.8 44.2 55.5 66.8 76.9 58.7 73.1 84.6
Gain +7.8 +7.9 +6.2 +5.2 +0.5 +0.7 +0.7 +0.7 +7.6 +6.6 +4.8

5.4.4 Ablation Studies

In the following, we perform ablation studies to further understand the performance

of the proposed spatial assembly network.

(1) Performance contribution of the SAN module. In this ablation study,

we aim to identify the contribution of our proposed SAN module on di↵erent datasets.

Table 5.4 summarizes the performance results on the CUB and SOP datasets with

and without using the SAN module in both supervised and unsupervised deep met-

ric learning. The baseline system is using the multi-similarity [70] with momentum

memory bank [27]. The momentum memory bank has a contrastive-based loss [126].

We can see that our proposed SAN module significantly improves the performance

by a large margin. Figure 5.5 shows the retrieval examples by the baseline with and

without our SAN module on the CUB, Cars, SOP, and In-Shop datasets from super-

vised metric learning. The top row shows the retrieval results by the baseline, and

the bottom row shows the results for the baseline plus the SAN module. Samples
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Table 5.3: Recall@K (%) performance on the SOP dataset using Resnet-18 network
without pre-trained parameters.

Methods
SOP

R@1 R@10 R@100

Random 18.4 29.4 46.0
Examplar [96] TPAMI16 31.5 46.7 64.2
NCE [97] CVPR18 34.4 49.0 65.2
MOM [80] CVPR18 16.3 27.6 44.5
AND [127] ICML19 36.4 52.8 67.2
ISIF [71] CVPR19 39.7 54.9 71.0
aISIF [119] TPAMI20 40.7 55.9 72.2
PSLR [118] CVPR20 42.3 57.7 72.5
Proposed 46.3 61.9 77.0
Gain +4.0 +4.2 +4.5

highlighted with blue and red boxes are query images and incorrect retrieval results.

We can see that, using the SAN module, the number of incorrect retrieval results have

been significantly reduced because the learned feature is much more discriminative.

Figure 5.6 shows the retrieval examples by the baseline with our SAN module on the

CUB, Cars, and SOP datasets from unsupervised metric learning. We can see that

our SAN can also learn discriminitive features, even image labels are not available.

(2) Performance of SAN module with di↵erent metric learning losses.

In order to verify the generalization capability of our method, we conduct experiments

to show the performance of our proposed SAN module with di↵erent metric learning

losses and di↵erent backbone networks. It should be noted that the momentum

memory bank [27, 126] in the baseline system is not included in this experiment. We

evaluate the MS loss [70] with SAN on GoogleNet backbone and Proxy-Anchor [129]

loss with SAN on BN-inception backbone. From the Table 5.5, we can see that the

MS loss [70] with SAN has improved the Recall@1 rate by 1.5% and the Proxy-Anchor
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Table 5.4: The Recall@K performance of the baseline and baseline with our proposed
SAN module on the CUB and SOP datasets.

Supervised Metric Learning

Methods
CUB

R@1 R@2 R@4 R@8
Baseline 61.8 73.2 82.3 88.9
+ SAN 63.3 74.5 83.8 90.4
Gain +1.5 +1.3 +1.5 +1.5

Methods
SOP

R@1 R@10 R@100 R@1000
Baseline 73.7 87.9 95.0 98.4
+ SAN 75.8 89.2 95.5 98.6
Gain +2.1 +1.3 +0.5 +0.2

Unsupervised Metric Learning

Methods
CUB

R@1 R@2 R@4 R@8
Baseline 53.3 66.1 77.4 85.6
+ SAN 55.9 68.0 78.6 86.8
Gain +2.6 +1.9 +1.2 +1.2

Methods
SOP

R@1 R@10 R@100
Baseline 56.9 71.2 82.7
+ SAN 58.7 73.1 84.6
Gain +1.8 +1.9 +1.9

Table 5.5: Recall@K (%) performance on SAN with Multi-Similarity (MS) loss and
Proxy-Anchor loss on the CUB dataset. ’G’ denotes GoogleNet, ’BN’ denotes BN-
inception.

Methods
CUB

R@1 R@2 R@4 R@8
MS [129] CVPR19 G 58.2 69.8 79.9 87.3
MS with SAN G 59.7 72.0 81.4 88.4
Gain +1.5 +2.2 +1.5 +1.1

Proxy-Anchor [129] CVPR20 BN 68.4 79.2 86.8 91.6
Proxy-Anchor with SAN BN 69.5 79.3 86.7 92.0
Gain +1.1 +0.1 - +0.4
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[129] with SAN has improved the Recall@1 rate by 1.1%.

5.5 Conclusion

In this work, we have successfully developed a new spatial assembly network to ex-

plore the spatial variations caused by changes in object part configurations, spatial

layout of object, and scene structures of the images. This SAN module examines the

input image and perform a learned re-organization and assembly of feature points

from di↵erent spatial locations conditioned by feature maps from previous network

layers so as to maximize the discriminative power of the final feature representation.

The proposed spatial assembly goes beyond spatial image transforms. It learns to re-

organize or re-assemble the feature maps across di↵erent spatial locations. This work

represents one of the first e↵orts to explore spatial reorganization of feature maps

for 2D images. The proposed spatial assembly represents a more generic feature

operation than simple permutation. This di↵erentiable module can be directly incor-

porated into existing deep neural network for end-to-end training to increase network

robustness under spatial variations and improve the discriminative power of image

features In our experiments, we have demonstrated that the proposed SAN module

is able to significantly improve the performance of various metric / representation

learning tasks, in both supervised and unsupervised learning scenarios.
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Chapter 6

Summary and Concluding Remarks

To achieve the desired performance in many computer vision applications, deep neural

networks often need a tremendously large set of labeled training samples. Labeling

a large dataset is labor-intensive, time-consuming, and sometimes requiring expert

knowledge. In this dissertation, we study the topic: deep learning with very few and

no labels. The proposed methods mainly follow these two topics: semi-supervised

learning and unsupervised learning.

In Chapter 2, we develop a joint sample discovery and iterative model evolu-

tion method for semi-supervised learning on small labeled training sets. We propose

a master-teacher-student model framework to provide multi-layer guidance during

the model evolution process with multiple iterations and generations. The master

network combines the knowledge of the student and teacher models with additional

access to newly discovered samples. The master and teacher models are then used to

guide the training of the student network by enforcing the consistency between their

predictions of unlabeled samples and evolve all models when more and more samples
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are discovered.

In Chapter 3, we propose to push the performance limit of semi-supervised

learning on very small sets of labeled samples by developing a new method called

learned model composition with critical sample look-ahead (LMCS). Specifically, our

proposed LMCS method explores two major ideas. First, it introduces a new learned

model composition structure so that we can compose a more e�cient master network

from student models of past iterations through a network learning process. Second,

we develop a new method, called confined maximum entropy search, to discover new

critical samples near the model decision boundary and provide the master model with

look-ahead access to these samples to enhance its guidance capability.

In Chapter 4, we develop a new approach to unsupervised deep metric learning.

To characterize the consistent pattern of human attention during image comparisons,

we introduce the idea of transformed attention consistency. It assumes that visually

similar images, even undergoing di↵erent image transforms, should share the same

consistent visual attention map. This consistency leads to a pairwise self-supervision

loss, allowing us to learn a Siamese deep neural network to encode and compare

images against their transformed or matched pairs. To further enhance the inter-

class discriminative power of the feature generated by this network, we adapt the

concept of triplet loss from supervised metric learning to our unsupervised case and

introduce the contrastive clustering loss.

In Chapter 5, we introduce a new learnable module for supervised and unsu-

pervised representation learning, called spatial assembly network (SAN). This SAN

module examines the input image and performs a learned re-organization and as-

sembly of feature points from di↵erent spatial locations conditioned by feature maps
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from previous network layers so as to maximize the discriminative power of the fi-

nal feature representation. This di↵erentiable module improving their capabilities in

handling spatial variations and structural changes of the image scene.
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