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ABSTRACT 

 

This project attempts to design a path planning algorithm for a group of 

unmanned aerial vehicles (UAVs) to track multiple spreading wildfire zones on a 

wildland. Due to the physical limitations of UAVs, the wildland is partially observable. 

Thus, the fire spreading is difficult to model. An online training regression neural 

network using real-time UAV observation data is implemented for fire front positions 

prediction. The wildfire tracking with UAVs path planning algorithm is proposed by Q-

learning. Various practical factors are considered by designing an appropriate cost 

function which can describe the tracking problem, such as importance of the moving 

targets, field of view of UAVs, spreading speed of fire zones, collision avoidance 

between UAVs, obstacle avoidance, and maximum information collection. To improve 

the computation efficiency, a vertices-based fire line feature extraction is used to reduce 

the fire line targets. Simulation results under various wind conditions validate the fire 

prediction accuracy and UAV tracking performance.
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Chapter 1 

 

INTRODUCTION 

 

1.1 Background 

Wildfire [1] is one of the most severe natural disasters in last 5 years. In 2020, 

wildfire burned 10.1 million acres of land national wide [2] and threatened residents life 

and heath [3]. Traditional wildfire management [4, 5] requires highly human involving in 

disaster response and preparedness. Helicopter surveillance [6] for the wildfire is 

dangerous to the pilots due to the complicated wind disturbance and the weather 

condition. Unmanned Aerial Vehicles (UAVs), as a flexible and economic approach, 

become more and more widely used in wildfire detection and prevention [7-9]. A UAS 

system with an image process developed by NASA Ikhana UAS [10] proved the 

flexibility of UAVs in wildfire data collection. Collaboration between multiple low-cost 

UAVs can cover large areas or to obtain complementary views of forest wildfire 

monitoring was demonstrated in [11]. In [12], a set of new image processing algorithms 

was utilized on UAVs to detect and track forest fire.  With the growth of UAV detection 

for the wildfire, the autonomous path planning of UAVs [13] becomes a great challenge. 

Significant achievements are made in robustness and efficiency in path planning 

algorithms [14-20]. 

One of the general frameworks of the path planning is to describe it as a partially 

observable Markov decision process (POMDP) [21-23]. In this framework, plenty of 

methods are searched [24-27]. Some used a Kalman filter [28] to approximate the Q-
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function [29], like NBO (nominal belief optimization) [30-32]. By POMDP formulation, 

1) prediction of one-sensor-to-one-target and collision avoidance are discussed [33-35], 

2) this formulation allows UAVs to make decision depending on partially observable 

environment, which is close to the realistic wildfire environment, 3) approximating for 

POMDP provides discrete-time model for easier calculation [36-38]. 

Another major category in path planning is stochastic methods like RRT (rapid 

random tree) [39, 40]. Specifying a step size, the algorithm searches a local minimum 

path to access the target. Then some research such as RRT* [41, 42] worked to improve 

the path and solve the central trapping problem of this algorithm [43-45]. Similar random 

methods such as PSO (Particle Swarm Optimization) [46-51] and ACO (Ant Colony 

Optimization) [52-55] have the same concept. These approaches have the advantages in 

collision avoidance, if the ending position is inside an obstacle, it will eliminate the 

certain step. But it tends to drop to a ‘trap’ of local minimum. Thus, a lot of paper works 

on fixing this problem [56-58]. 

FIRM (Feedback-based Information Roadmap) [59, 60] and many other Roadmap 

[61-65] methods divide the path planning into two parts with a frame of POMDP: 1) 

build an off-line map [66, 67], 2) planning on-line.  The off-line map contains the goal as 

points and the straight lines between the goals as edges. Thus, they first generate a map 

that avoids all the obstacles and achieve the shortest path. Then they assume the sensor as 

a starting point in the map to search path on-line [68, 69]. If the sensors find a path that 

not in the off-line map, a new path will be added. The benefits of these methods are: 1) 

quite efficient in collision avoidance, 2) with off-line map, the sensors can always find a 

reasonable path instead of stopping in the local minimum. 
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Different with the discrete-time [70] stochastic methods, APF (artificial potential 

field) [71-75] methods focus on planning a path in continuous time [76-78] domain with 

collision avoidance. Vector field path planning designs the terrain map to a vector field 

surface [79], with obstacles as high field to avoid, and targets as the low field to attract 

the UAVs in. The advantage of these methods is that it generates a continuous trajectory 

for UAV with known terrain map. 

Along with the rapid development of neural networks [80], NN solution is applied 

to solve path planning of UAVs [81-83]. A general application of NN in this area is to 

combine the network with Reinforcement Learning (RL) [84-87], one of the most 

successful frameworks is Deep Q-Networks (DQN) [88-90]. DQN has a convolutional 

NN (CNN) [91-93] to approximate the Q-factor function, then the following research 

involved LSTM [94-96], a recurrent algorithm, to model the POMDPs. Then this 

structure is introduced to UAV jamming strategy [97] wildfire surveillance [6, 98]. DQN 

offers a robust result for wildfire tracking, but training a reliable network is always time 

consuming (12 hours training in [98]). 

This project focus on designing a reliable path planning algorithm for UAVs to 

track spreading wildfire zones. In the real-time wildfire fire front tracking, none of the 

previous research can be applied directly. 

For the prediction of the wildfire land, the following problems should be solved. 

First, spreading wildfire tracking is different from moving targets tracking. 

Previously, moving targets tracking considers a specific number of targets. Thus, it 

allows NBO [30] method to use Kalman filter as sensor-target estimation [99, 100]. The 

belief states [101] are assumed to be Gaussian distribution [102]. Then, it summarized 



4 
 

Kalman filter estimation as its Q-value [103] and minimized the mean square error [104].  

Given a certain number of moving targets, Kalman filter is powerful to predict the future 

states. However, it is not capable of predicting a growing number of targets. In the 

wildfire tracking, the fire fronts can be split into cell points.  Along the time scenario, the 

longer the fire front is, the more the targets are. The Kalman filter lost its advantages. 

Thus, a method which can predict a whole map of growing fire points instead of with 

specific number of firing points is necessary. 

Second, to manage the wildfire efficiency, the prediction should be low time cost 

and should be online trained to allow new data stream in. In [98], a 12-hour training time 

is not applicable for a practical wildfire management. The offline map such as in FIRM 

[59] cannot satisfy the requirement of tracking the fast changing wildfire land. 

Last, the prediction model should be easy to generalize from one wildfire land to 

another. Traditionally, the prediction of wildfire depends on the physical model which 

relies on the terrain, vegetation, and other factors [105-107] or empirical model [108] 

which relies on the statistic correlation. A more general method should be searched for 

prediction. 

With all these considerations, a simple architecture neural network shows its 

advantages. The neural network behaves like a black box, only the inputs and outputs 

should be concerned. Moreover, with simple architecture once it was trained, the 

prediction time cost is quite low. The reasons and benefits why a simple architecture 

neural network is the best choice for this problem will be explained later in Chapter 2. 

A reliable and practical UAVs path planning algorithm is the other main concern. 
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The algorithm can be built on an optimal policy searching method such as Q-

learning. However, how to define a cost function that can describe wildfire tracking is 

quite challenging. 

Unlike the traveling salesman problem (TSP) [109], the agent (in this case, the 

UAVs) is designed to visit every single target with minimizing the traveling cost. 

Wildfire tracking is dealing with a growing traveling cost which is caused by the 

spreading of fire front. Furthermore, along with the whole-time scenario, UAVs should 

keep tracking of the fire zones instead of ceasing tracking after visited all the fire zones. 

In other words, wildfire tracking along the time can only achieve a local optimum in a 

reasonable period.  

This optimum includes two factors: first is to minimize the cost in an appropriate 

time horizon, and second is to maximize the fire information collection [110].  

Another difficulty in path planning is that wildfire tracking is a partially 

observable problem. Not only for the fire points, but also for obstacles. The smoke areas’ 

positions which cause disturbance and are harmful to UAVs body cannot be predicted. 

Thus, artificial potential field methods like [71, 75] and many bio-inspired methods like 

[55] cannot apply.  

With all these strict practical limitations, designing an appropriate cost function is 

vital and difficult part. Details and explanations of the cost function will be introduced in 

Chapter 3. 

 

1.2 Problem Statement 



6 
 

All UAVs are designed to fly at a given altitude. The wildfire is assumed to 

spread in a two-dimension ground coordinate. The wildfire front is considered as moving 

targets. Linear forward acceleration and bank angle are control variables. Control 

variables are constrained by their respective limits.  

Each UAV is installed with a camera, given the altitude of UAV, the field of view 

(FOV) are calculated by the sensor width and height along with the focal length. The 

observation errors happen between the UAVs observation and image processing.  

Obstacles are assumed to appear randomly in each zone. During the period of 

obstacles appearing, all obstacles are assumed to be steady. 

The path planning algorithm is formulated as a single policy Q-learning process 

[29]. The objective is to minimize the designed Q-value according to various tracking 

requirements.   
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Chapter 2 

 

 WILDFIRE SPREAD PREDICTION WITH NEURAL NETWORK 

 

2.1  Basic concepts of Neural Network 

The Neural Network (NN) is composed of neurons [111] which are connected 

fully or partially with different weights and several active functions for each neuron. This 

idea started from trying to build a network like human brain which is capable of learning 

scalable information with variety dimension signals [112, 113]. All these connected 

neurons construct a network to process the information efficiently. A general architecture 

of NN is shown in Figure.1: 

 

 

Figure 1 Neural network architecture 
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The neurons are the basic units containing an activation function [114] in it. 

Several neurons consist of a layer. The input layer and the output layer represent the 

initial database and the desired result wanted, separately. Among the input and output 

layer, hidden layers will be defined. Different numbers of neurons, connections, active 

functions etc. decide the performance of a NN.   

Assume the N-dimension input vector is: 

 
  1 2[ , ,..., ]nn n n nNX x x x=

 
  (1) 

With the weights appointed to each neuron, the net input layer for a neuron of a 

hidden layer is:
  

 
,

1

hN
hi hi hi

nn hj nj nj j

hj

net weight x bias
=

+= 
 
  (2) 

where hi represents for the hi-th hidden layer, hj is the number of neurons in this 

hidden layer, hN is the total neurons of input layer. hi

njweight   is the weight from each 

input neuron to hj-th neuron of hidden layer. hi

jbias   is the bias added to each hidden 

layer neuron, j and hj are equal and are same with physical meaning, both are the j-th or 

hj-th neuron of this layer, using hj is to show it is the j-th neuron in hidden layer. nj 

means this is the weight from n-th input neuron to j-th hidden layer. The bias can be set 

to be 0. 

Then, the output of this hidden layer neuron will be: 

 
, ,( )h hi

nj act j nn hjHi f net=    (3) 

The function 
,

h

act jf
 
 is the activation function selected for j-th neuron of a hidden 

layer. 
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The calculation between hidden layers is the same. Thus, let us focus on the 

output layer. Suppose the hidden layer before the output layer has j’ number of hidden 

neurons, to denote that it is the neuron of hidden layer, it will be write as hj’ is equation. 

The network input for output layer is: 

 
'

', '

' 1

hJ
o o o

hj no j o j o o

hj

net weight x bias

=

+=     (4) 

where the 
'

o

j oweight  is the weight for j’-th neuron of the layer in front of output 

layer to o-th neuron of output layer. o

obias  is the bias added to the o-th neuron of output 

layer, hJ’ is the total number of neurons in hidden layer before output layer. 'j ox  is the 

value of a neuron at the hidden layer before output layer. 

Then the outputs of the NN with activation function of output layer can be 

calculated: 

 
, ,( )o o

j o act o hj noout f net =  
 
  (5) 

Above is the calculation process for a trained NN to get output. In a NN training 

process, once the output of NN is calculated, compare the output with desired result to 

get the errors for each output neuron: 

 
 'o o j oerror des out= −

 
  (6) 

where odes  is the desired value of o-th output neuron. 

To training the NN, the most common method is to minimize the summed squared 

error (SSE) [115]. The process to update weights is back propagation [116]. Let us the 

SSE as: 

 
2

1

1
( )

2

O

o

o

Er error
=

= 
 
   (7) 
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where O is the total number of neurons of output layer. 

With the learning rate   specified, a certain weight is modified by: 

 
 

Er
weight

weight



 = −

  
  (8) 

Using the chain rule [117], for example, a weight error for output neurons is: 

  
'

'

' ',

j o

j o o

j o hj no

outEr

out net



= −

 
 

  (9) 

Multiply by the learning rate   as referred in equation（8）: 

 
'

' , ',

' ',

( ( )) '
j oo o o

j o act j hj noo

j o hj no

outEr
weight error f net

out net



 = − =

   
  (10) 

And the weight of output layer is simply updated by: 

 
' ' '( )o o o

j o j o j oweight new weight weight= + 
 
  (11) 

With the same definition, the error for each hidden neuron of the hidden layer is: 

 
' ',

'

' ', ,

oO
j o hj no nj

jj o hi
o j o hj no nj nn hj

out net HiEr

out net Hi net


   
= −     


 

 (12) 

where Hi is as equation (3), O is the total neuron number of the output layer. 

Then: 

 
' ',
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ght  

   
−     

 = −



= 
 
 (13) 

and the weight of hidden layer is updated by (suppose this network has only two 

layers): 

 
' ' '( )hi hi hi

jj jj jjweight new weight weight= +     (14) 
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where the jj’ denotes the weight of j-th neuron of a hidden layer to j’-th neuron of 

the hidden layer before output layer. 

NN has been proved to be a powerful way to solve the problems when it has a 

complicated relation between the inputs and outputs. In the past years, it develops 

rapidly. The structure of the NN became various [118-120]. Also, a lot of biased weight 

method is searched such as Adam optimization [121] and other optimization methods 

[122]. 

Due to its efficiency, reliability, and accuracy, NNs were applied in many areas: 

data analysis [123], classification [124], prediction [125-129], modeling[130], detection 

[131], pattern recognition [132] and etc..  

NN is not always a best choice to solve a problem. Some major weaknesses of 

NN are seeking to be solved.  

First, to improve the robustness:  The behavior of NN highly depend on the 

training dataset. NN performs best when the application data is inside the range of the 

training data. But massive amount of training data sometimes leads to overtraining, which 

the NN would not converge [133, 134].  

Second, to decrease the computation cost: Usually, NN is more computation 

expensive than traditional learning method. Many architectures are searched to improve 

the computation efficiency of NN [135].  

Third, to improve the generality: A trained NN is like a black box. The relation 

between the inputs and outputs keeps unveil. The performance of NN is randomly 

decided by the parameters (layers, hidden neurons, activation functions) chosen. 
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Although some NNs can achieve goals, the logic cannot be explained. Some research 

focus on how to interpret the NN to give a convincible conclusion [136].   

 

2.2  Architecture of Neural Network 

In this project, a predictor needs to achieve fast online-training and reliable 

prediction with the wildfire data collected at previous times. The prediction is not 

required to be exactly accurate. Prediction of this project serves like a guideline for 

UAVs to determine where their destinations are. After arriving the destinations, UAVs 

act as sensors to capture the real status of the wildfire. Thus, the incorrect prediction will 

be modified once the wildfire zone can be observed by UAVs. The key challenges of 

prediction are: 

1. Achieve a whole-map prediction. 

2. Fast training and prediction. 

To determine where UAVs should arrive, a rough picture of fire zones is needed. 

Fire zones, unlike single moving target which only changes position, will change both 

their positions and shape area.  That is to say, the fire front is spreading during burning 

time. In this project, fire front can be identified as lines and split lines into points as 

targets. Then with the fire spreading, the number of targets increases. Traditional tracking 

method like Kalman Filter is not capable of managing growing numbers of targets. The 

sensor-target mode is efficient to track known targets, but all the new fire points are blind 

to this estimation.  

With this consideration, NN seems to be the best prediction method. 
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However, as stated previously. NN is more computation expensive than 

traditional learning method. After compared and analyzed NN and CNN architectures, 

then a small NN with less layer, less neurons are decided to be used as the predictor in 

this path planning algorithm. Usually, a NN or CNN would have more than 100 layers to 

get a reliable result. All layers are installed with a huge number of neurons. With such 

architecture, the computation is complex. For those huge NNs, their inputs and outputs 

have different physical meanings. For instance, a NN has many signals such as pictures, 

breath rates, temperature of a patient as inputs, and the desired output for this NN is a 

conclusion whether this patient has cancer. 

In brief, if one seeks a relation between two or more different physical variables 

and use NN as a black box controller, the architecture of NN will be enormous. It is easy 

to explain, if the traditional methods cannot build a straightforward relation between two 

variables, then NN also needs more layers to approximate it. 

After analysis, it is convincible for us to choose a simple architecture NN. This 

project’s task is much simpler than those large NNs’ goals. Unlike paper [98], it uses a 

CNN for wildfire tracking. The inputs are pictures, and the outputs are the control 

variables for UAVs. With its design, their CNN should be huge to approximate the 

relation. Thus, their CNN training is quite time-consuming for 12 hours to get a 

reasonable result. This project’s goal is to train a NN which could predict the positions of 

the fire points. The inputs and outputs are both positions. Using NN as only a predictor 

not a controller allows us to use a simple NN. 

Once a brief architecture NN is decided. The type of NN which fit this problem 

should be tested. 
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Modelling, pattern recognition, prediction and other application areas are all 

tested.  

The first failure is pattern recognition NN. In general, pattern recognition NN is 

applied when there are plenty of inputs, and the desired outputs is certain conclusion such 

as fingerprint. The NN is required to recognize whether this is the correct one. Modelling 

is not suitable, either. Modelling NN are wildly used in complicated process. NN serves 

like black box. Then prediction NNs are tested. If the prediction period of NN is limited 

in a very short horizon, time-series prediction will achieve an inaccurate prediction. 

Time-series prediction will have a time delay for every prediction. With increasing fire 

points, the new fire points cannot fit in this model. This is not ideal type for us. 

After many experiments, a regression neural network model fits this project most. 

Finally, a small architecture neural network with 10 hidden layers with 10 neurons each 

is selected for this path planning algorithm. The architecture is shown in Figure.2: 
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Figure 2 Simple NN architecture used in project 

 

To solve the increasing dimension (new fire points), the inputs are set to be 2-

dimension position coordinate of a single fire point at current time step. The output is the 

2-D position coordinate of this fire point at next time step. Each time step, loop this 

prediction until all the fire points are predicted. By this design, the NN dimension keeps 

same.  

This design also explains why the regression fits this project. The NN is fitting a 

trend for all the position data.  

 

2.3  Neural Network Training for Wildfire Spread Prediction 

In experiment, two benefits of regression NN for this problem is examined. First, 

it allows large errors. This method fit the data with the densest distribution, thus the 

extreme large errors are ignored. The wildfire in the real world usually spread with strong 
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and complex wind. The fire appears in unsteady states in the picture, but the combustible 

material stays the same. Then extreme disturbance which seldomly happen will not 

impact on the prediction. 

Second, the NN applied in this project has 10 layers, with 10 hidden neurons in 

each layer as stated before. This small NN only needs about 2-3 minutes to train with 

MATLAB. This allows us to frequently re-train the network to get new results.  It is 

difficult to find a model which perfectly describes the wildfire spreading, the more 

practical way is to find approximation which can predict the spreading for a certain time 

range. 

Once the architecture is determined. The training process for NN is described 

below. 

In this project, UAVs (sensors) are capturing status of fire points. Picture 

processing and other factors like fracturing fire by the wind causes errors between real 

wildfire data and observation of UAVs. The goal is to identity the ‘fire center’ from the 

data obtained by UAVs, since the flaming material is always located in the center of the 

combustion zone. 

Thus, an UAV observing disturbance is included in the training progress. 

To evaluate the NN’s accuracy, a method called ‘symmetric difference’ [137, 

138] is applied to compare the prediction by NN and the real wildfire data.  

The concept of symmetric difference is to use the union of two areas subtract the 

intersection of these two areas: 

 ( ) ( )PoA PoB PoA PoB PoA PoB =  −    (15) 
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where PoA , PoB represent the areas separately. A figure to illustrate the idea of 

symmetric difference method is Figure.3: 

 

 

Figure 3 Symmetric difference 

 

Symmetric difference is applied to identity accuracy of NN’s prediction. Now the 

details about NN training can be discussed. 

First, NN is trained in the real data set to test for the robustness of the NN. 

Fire zones are assumed to spread at a 2-dimension map on the ground. It initiates 

with three fire points. Gradually, it spreads to three fire zones. At the end of these 

experiments, the three fire zones merged into one. The whole-time scenario for 

experiments is 5 hours (18000 seconds). Figure.4 illustrated the fire zones generated by 

DEVS-FIRE model [139]: 
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Figure 4 DEVS-Fire generated fire 

 

Represent the wildfire fire front with fire points, the whole-time scenario is shown 

in Figure.5: 

 

Figure 5 Fire front showing with fire points 

 

Clearly, the figure above explained how the fire front grows along with time.  

At the beginning of the scenario, assume the first 300s data is known. Thus, at the 

very beginning, training period for the first NN is 300s. Then this NN was applied to 

prediction 600s wildfire with input of 300s. Since 600s, the time period is designed to be 
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100s. The comparison of prediction and real wildfire data of 600s is illustrated in 

Figure.6: 

 

Figure 6 Comparison of prediction and real wildfire of 600s 

 

Blue dots represent for the prediction position of fire points. Red dots represent 

for the real wildfire fire point position provided by our collaborator. The light blue area is 

the ‘area difference’ calculated by symmetric difference. According to this method, the 

area difference is 5305.6 m2 for zone1, 5109.9 m2 for zone2, and 450.56 m2 for zone3. 

The total area difference is 10860 m2. At 600s, the total area of real firing zone is 8101 

m2, with zone1 is 6300 m2, zone2 is 901 m2, and zone3 is 900 m2.  

At this time, the NN is quite inaccurate. The error (ratio of total area difference 

diAr   and total real area reAr ) is: 

10860
% 134.06%

8101

di

re

Ar
Ratio

Ar
= = =
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Remember the reason of choosing a NN as predictor is to involve the new fire 

points in. Thus, some new firing points according to the spreading speeds of fire zones 

should be added along with time. The rough parameter for spreading is 0.1 for every 

100s. The new points are added as a random position within the position range of each 

fire zone. The Figure.7 provides a result after adding the points: 

 

Figure 7 Comparison of prediction and real wildfire with adding points at 600s 

 

The area difference calculated is 5503.9 m2, 16578 m2 and 915 m2 for zone1, 

zone2 and zone3 respectively. The total area difference is 22996 m2 with adding points to 

the prediction. 

The prediction is worse than the prediction without adding points. It is simple to 

explain. When the points are few, the adding points behave like disturbance. However, to 

approximate this NN model as the situation practice, adding points should be kept. 
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The error is extremely large at this moment. Then re-trained this NN at 600s with 

adding points. Unlike the beginning, the NN was trained with 300s period data, this time 

500s to 600s data are the input dataset. The real fire wildfire position data at 600s is the 

desired output. Thus, the prediction time step is adjusted to 100s. The NN trained at 600s 

is applied in the next few time-period until 1000s. Here is figure showing the prediction 

result at 1000s with 900s real fire points position as input: 

 

Figure 8 Comparison of prediction and real wildfire at 1000s 

 

The total area difference measured at 1000s, with the NN trained at 600s, is 36084 

m2. The area difference for each zone is 16837 m2, 6100.6 m2, and 13146 m2 respectively. 

For comparison, the real fire area is measured at 1000s as 32400 m2. For zone1, zone2, 

zone3, the real fire area is 19800 m2, 5400 m2, 7200 m2 respectively. 

At 1000s, the ratio of total area difference and total real fire area is: 

36084
% % 182.24%

19800

di

re

Ar
Ratio

Ar
= = =
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Keep training the NN at 1000s and apply the NN trained at 1000s to predict the 

fire states at 2000s. Assume UAVs have collected the fire data 900s to 1000s and use this 

as the training data set. The desired output is real wildfire data at 1000s. This new-trained 

NN will also be applied to predict every 100s fire points, which the time length is the 

same with its training time length.  

With the real fire points at 1900s as input, the NN predicted the fire points at 

2000s as Figure.9: 

 

Figure 9 Comparison of prediction and real wildfire at 2000s 

 

From now on, NN tends to be steady. 

At 2000s, the total real fire zone area is 147,000 m2. Real area for zone1, zone2 

and zone3 is 69750 m2, 31500 m2, 42750 m2 separately. The area difference in this 

situation can then be obtained as 1809.9 m2, 4501.5 m2 and 6231.8 m2 for zone1, zone2, 

and zone3. The summation of the area difference of all the 3 areas is 12543 m2. The ratio 

is: 



23 
 

12543
% % 8.5%

147000

di

re

Ar
Ratio

Ar
= = =

 
 

Then the accuracy can be obtained as: 

100% 8.5% 91.5%Accuracy = − =   

The wildfire spread prediction NN achieved a quite reliable accuracy since 2000s.  

Another benefit of this NN is that this NN trained at 1000s can be applied until 

6000s. Figure.10 demonstrates its efficiency: 

 

Figure 10 Comparison of prediction and real wildfire at 6000s using NN trained at 1000s 

 

The input for Figure.10 above is 5900s’s real fire position. The area difference 

calculated for all 3 zones is 66,551 m2. Zone1 has the area difference of 14,578 m2. Zone2 

has the smallest area difference of 12,663 m2. Zone3 has the largest area difference of 

39310 m2. The real wildfire areas for 3 fire zones: 263,700 m2, 441,000 m2, 479,250 m2. 

The total real wildfire area is 1,183,950 m2. 
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The accuracy is: 

66551
100% 100% % 94.4%

1183950
Accuracy rario= − = − =

 
 

Although this NN can be implemented for the later scenarios, NN is still re-

trained at 6000s.  

The NN trained at 6000s achieved a prediction at 12000s with 11900s real fire 

position as input as Figure.11: 

 

Figure 11 Comparison of prediction and real wildfire at 12000s using NN trained at 6000s 

 

Zone2 and zone3 merged into a new larger zone at 12000s. With zone1 has the 

area of 1,915,200 m2, and the new merged area has an area of 3,577,050 m2, the total real 

wildfire area is 5,492,250 m2. The area difference for zone1 is 63,381 m2, while it is 

57,771 m2 for new merged zone. The total area difference is 121,152 m2. Then the 

accuracy can be measured as: 
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121152
100% % 97.8%

5492250
Accuracy = − =

  
 

The accuracy of NN trained at 6000s is great for prediction goal (to provide a map 

for UAVs to determined which fire position should be their next destination). 

After showing the results of using the 6000s-trained NN to predict every 100s 

with real fire data, a comparison of the results between using NN trained at 1000s and 

NN trained at 6000s will be provided.  

At 16000s, given 15900s real fire position as input, the NN trained at 6000s 

predicts the fire as Figure.12: 

 

Figure 12 Comparison of prediction and real wildfire at 16000s using NN trained at 6000s 

 

The area difference of NN  trained at 6000s is 428,300 m2. With real wildfire area 

as 8,853,300 m2, the accuracy is: 

42830
100% % 95.2%

8853300
Accuracy = − =
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With fire spreading, the accuracy decreases slightly compared with the result at 

12000s, but it still quite accurate. 

The prediction at 16000s given 15900s real fire position as input, the prediction of 

NN trained 1000s is shown in Figure.13: 

 

Figure 13 Comparison of prediction and real wildfire at 16000s using NN trained at 1000s 

 

The total area difference of using the NN trained at 1000s to predict at 16000s is 

663,340 m2. It is 23,510 m2 larger than using the NN trained at 6000s. The accuracy can 

be calculated as: 

663340
100% % 92.5%

8853300
Accuracy = − =

 
 

It is 2.4% lower than the NN trained at 6000s. 

Thus, the NN trained at 6000s can be applied to predict the fire position until the 

end of the time scenario at 18000s. The input is the real fire data at 17900s. The result is 

below: 
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Figure 14 Comparison of prediction and real wildfire at 18000s using NN trained at 6000s 

 

With total area difference 734,910 m2 and total real fire area 10,759,950 m2, the 

prediction accuracy is 93.2%. 

 

2.4  Neural Network Training for Wildfire Prediction in Experiment 

After tested this idea in real wildfire data, it can be applied this in practice. 

Remember the reason why a NN is considered to be as predictor: in path planning 

process, the whole map is partially observable to UAVs. This would not only impact on 

predictor choice, but also impact on the accuracy of NN. At every time step, the observed 

points are updated with real fire position. But the unobserved points would keep 

predicted position. Thus, the data in experiment is not the same as real wildfire data. It 
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has some inaccurate data (unobserved points) in the data set. This leads to a more 

frequently training of NN than the test did in the real wildfire data. 

In experiment, with the path planning algorithm will be proposed (explain in next 

chapter), NN needs to be re-trained at 1000s, 3000s, 6000s, 10000s, 12000s and 16000s. 

An observing disturbance is concluded to training input to approximate realistic situation. 

This UAVs observing disturbance is assumed to be a random distribution within a range 

of 200 meter. The trained NN at 12000s is shown below: 

 

Figure 15 Trained NN for prediction at 12000s with disturbance 

 

The black dots are the disturbed training input. The blue dots represent the 

prediction this time. And the red dots are the prediction at 12000s. 

Here the benefits of regression NN are illustrated. As stated in section 1.2, the 

predictor should identify the center of the fire points with the observing disturbance such 

as picture processing. Regression analyzes the trend of data, and find a function fits the 

curve. Thus, extreme values will not affect the curve. Although some extreme 

disturbance occurs like in position [2000, 5000] meter, NN successes to fit the data.  



29 
 

The fitting plot is provided in Figure.16: 

 

Figure 16 Fitting plot for trained NN at 12000s 

 

The black circles are the 2-D coordinates of fire points. The four plots are the 

training fits (70% of data), validation fits (15% of data), test fits (15% of data) and all 

data fits. Validation and test are necessary, they indicated how this NN behave at this 

data set. 

From the fitting plot, it can be concluded that a linear regression fits fire data 

most. The slope is about 0.99. 

In the experiment, the prediction procedure is as described below: 

The map information is updated every 10 seconds. From time k to k+10, the 

trained network will generate a possible position for each existing point. At time k+100, 

the possible positions are plotted (indicated as yellow part in the figure) like Figure.17: 
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Figure 17 Prediction by NN of 100s 

 

At k+100, take the average of the 10 prediction to get a more reliable result. 

According to practical application, the fire zones are spreading. Thus, at k+100, 

for the unobserved points, randomly select a point in the center of the fire zones and 

compare the distance between k and the prediction position at k+100. Then, the further 

ones will be kept since a spreading fire zone will tend to leave the center. 

The observed points will be updated by the real wildfire position. Figure.18 shows 

the prediction result by this procedure at 12100s: 
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Figure 18 Prediction and real wildfire data at 12100s 

 

The yellow shape is the prediction for all 10 predictions. The red dots are the final 

prediction at 12100s. The blue dots are the real wildfire at 12100s. 

As mentioned, with the disturbance and unobservable points, the NN is re-trained 

more frequently. Also, the accuracy decreases slightly. Figure.19 is the experiment result 

of prediction of using NN trained at 12000s of 16000s with 15900s fire states as input. 

On the right top, an inaccurate zone appeared compared with prediction of using 

NN rained at 6000s with real fire data. 

The area difference for using NN trained at 12000s in experiment is 786,110 m2. 

The prediction accuracy is: 

786110
100% % 91.1%

885330
Accuracy = − =
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The accuracy for NN trained at 6000s with real wildfire data is 95.2%, as 

measured before. 

 

Figure 19 Comparison of prediction and real wildfire at 16000s using NN trained at 12000s with experiment 

 

Then NN will be re-trained at 16000s in experiment. The NN trained at 16000s  in 

experiment predict 18000s fire points with 17900s fire position as input as Figure.20: 
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Figure 20 Comparison of prediction and real wildfire at 18000s using NN trained at 16000s with experiment 

 

The area difference at 18000s with NN trained at 16000s in experiment is 848,450 

m2. The prediction accuracy is: 

848450
100% % 92.1%

10759950
Accuracy = − =

 
 

The accuracy for NN trained at 6000s with real fire data is 93.2%. 

The increasing accuracy for experiment trained NN demonstrates more frequently 

training can improve the behavior of the NN. 

In summary, a simple architecture NN can achieve the goal: to predict rough 

whole map for the UAVs to decide where they should go. It achieves a prediction 

accuracy above 90%. It is a reliable prediction for next step. The path planning algorithm 

is built on this prediction map. 

The trend with time of the prediction error, which is defines as: 



34 
 

area difference
prediction error

real wildfire area

 
 =

  
 

 is plotted here: 

 

Chart 1 Prediction Error with time 

After 6000 seconds, the NN used in this chart is the one trained 6000s. From  

Chart.1, at 1000s, since new fire points are added manually, there the NN increases of 

prediction error. However, with re-train at 2000s, the prediction error decreases. The 

prediction error keeps decreasing with re-train until 12000s. Since the NN trained at 

6000s is applied until the end. The error increases a little bit due to the frequency of re-

training decreases. But the prediction error is acceptable with in 10%. If a higher 

accuracy is required, one can increase the frequency of re-training.  

A table illustrates the procedure of the NN prediction is below: 

Table-1: Train NN for Prediction 

Initialized Training 
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1. From time 0 to assumed first time 1K   (in this case, it is 300s) which is 

assumed have the data, and the time step for collecting data is k (10s for this 

case). 

2. Training Input: Set fire points positions at 0, k , …, 1K k−  as inputs 

3.  Rearrange the data in a large matrix. 

 Set previous position of new points as [0,0].  

 Rows should be equal to the rows at time 1K . 

4. Training Output: Set fire points positions at 1K  as output 

5. Train: For each position, use a training method train the data 

6. Return: The first desired NN ( )K sB t . 

Re-train the NN 

1. Let the chosen time period for training be K (in this case, it is 100 seconds) 

prepare UAVs collected data from 2K K−   to 2K k−  . This data contains 

both prediction and real wildfire data, since the wildfire land is partially 

observable. 

2. Training Input: Set fire points positions at  2K K−  , …, 2K k−   as inputs 

3.  Rearrange the data in a large matrix. 

       Set previous position of new points randomly at the range of each zone.  

       Rows should be equal to the rows at time 2K   . 

4. Training Output: Set fire points positions at  2K  as output. 

5. Train: For each position, use a training method train the data 
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6. Return: The first desired NN   

7.   At every specific re-train time, repeat Re-train step 1-6. 

Application of NN 

1. Input: fire point current position, [ ],x yt t  

2. For all the M fire points m=1:M  

3.        do prediction by ( )K sB t  

4. End 

5. Output: Predicted fire points positions [ ],x yb b .   
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Chapter 3 

 

 Q-LEARNING BASED PATH PLANNING ALGORITHM 

 

Based on the prediction map by NN, the path planning algorithm for wildfire 

tracking can be designed. The objective of algorithm is to find an optimal UAVs path to 

track the fire front on the time horizon. Then Q-learning optimization [29] is an 

appropriate method. Many research focus on combining Q-learning with partially 

observable environment [140], which is similar to wildfire land.  Q-learning optimization 

has 2 benefits for this algorithm: 

1. The cost function can conclude many practical factors by defining 

function approximation with action value [141, 142].  

2. It allows us to design a continuous cost function on time horizon.  

Unlike the travelling salesman problem (TSP) [109] or other dynamic models, Q-

learning can design a Q-function [143, 144] for continuous time domain. By searching 

for the optimal Q-value calculated by the Q-function, an optimal path can be calculated 

for UAVs. 

 

3.1 UAV Dynamics 

The UAV state at time k is defined as [ , , , ]k k k k kx y v =s
 
, where [ ],k kx y   is the 

position coordinate of UAV, kv   is the linear forward velocity, and k   represents the 

heading angle. The control vector is at time k defined as [ , ]k k ka =u
 
, where ka  denotes 
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the linear forward acceleration, and k  represents the bank angle. Assume the time step is 

t , at time k, the UAV velocity is calculated by [31]: 

 1  k k kv v a t+ = +     (16) 

Considering about the physical limitation of UAVs, the velocity has a lower 

bound minV   and an upper bound  maxV . Then the velocity of time k+1 is updated by: 

  1 max ,min{ }k min max k kv V V v a t+ = + ，    (17) 

The heading angle can be updated by: 

 ( )1   tan /k k k kg t v  + = +      (18) 

where g represents the gravitational constant. 

The position coordinate is updated by the following equation: 

 ( )1 cosk k k kx x v t + = +     (19) 

 ( )1 sink k k ky y v t + = +     (20) 

 

3.2 Field of View (FOV) 

All UAVs are assumed to fly in a constant altitude h [145]. A camera for 

capturing images is installed at the bottom center of each UAV. The camera’s frame 

depends on its lens width lensw  height lensh and the selected focal length f . 

The camera’s frame width is: 

 ( )12tan / 2frame lensw w f−=
 
  (21) 

The camera’s frame height is: 

 ( )12tan / 2frame lensh h f−=
 
  (22) 
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Given the parameters, figure. Shows the how the camera frame height determines 

the FOV on the ground: 

 

Figure 21 Field of View 

 

 

With the constant altitude h, the width (left and right boundary) of the FOV can 

be calculated by: 

 ( )tan 0.5w frameFOV h w= 
 
  (23) 

With the constant altitude h, the height (top and bottom boundary) of the FOV can 

be calculated by: 

  ( )tan 0.5h frameFOV h h=    (24) 

Once the FOV is obtained, whether a predicted fire point is inside FOV can be 

determined. At time k, denote a fire point by [ , ]x y

k kb b
 
 in the ground inertial frame. The 

inertial coordinate can be transformed to the UAV body frame by [146]: 



40 
 

 

,

,

cos sin cos sin

= sin cos sin cos

1 0 0 1 1

x FOV x

k k k k k k k k

y FOV y

k k k k k k k k

b x y b

b x y b

   

   

   − − 
    

− −    
          

  (25) 

where , ,,[ ]x FOV y FOV

k kb b
 
 is the fire position in FOV frame, and [ ],k kx y

 
 is the UAV 

position in the inertial frame. 

If the predicted fire point , ,,[ ]x FOV y FOV

k kb b  locate inside the FOV frame, then 

assume this point is observable to UAV. Otherwise, this point is unobservable to UAV. 

 

3.3 Cost Function Design for Q-learning 

3.3.1 Q-function with Receding Horizon 

Time domain of path planning is infinite. In experiment, an accumulative 5-hour 

global optimization on time-domain is unachievable. The unknown fire states in the 

future time step, the enormous computation consumption and other factors decide that 

this optimal policy cannot be an accumulative optimization on such a long-time domain. 

Thus, receding the time horizon to a long enough period H is an accessible method to 

optimization [147, 148]. 

Given a system whose the cost function is ( ),k kR s u  then the expected 

accumulative objective function on the time horizon 1, 2, …, H is: 

 ( )
1

,
H

H k k

k

C E R
+

 
=  

 
 s u

 
  (26) 

Which means the mathematical expectation of accumulative summation of cost 

function ( ),k kR s u  . 
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the Q-factors [144] for this problem can be defined, with a single sample state, for 

all pairs of states and control variables ( ),k ks u  as: 

 ( ) ( ), ,k k k k HQ R C= +s u s u    (27) 

where  is the learning rate. The value obtained for this Q-factor is Q-value.  

According to the Bellman’s equation [143], the optimal objective function at a 

given time k on the time horizon H is: 

 ( ) ( ) ( )
1

* *

'

1

, , min ,
k H

k k k k k k k' k'

k k

Q R Q
+ −

= +

= + s u s u s u
 
  (28) 

The policy pairing for this optimal objective value is called the optimal policy. 

Then the optimal policy at time k can be expressed as: 

 ( ) ( )* argmin ,k k H k kQ −=
u

s s u
 
  (29) 

In practice, design a reasonable cost function to approximate the Q-factors is 

critical in Q-learning. Optimization depends on the cost function designed. If a cost 

function failed to find a reliable expression of the problem, the optimal policy it finds 

would not fit the problem. A cost function should contain as many as key factors of the 

problem and organized the key factors in a way that can describe the problem. 

 

3.3.2 Design the cost function for target tracking 

For a single UAV, if the object is to let UAV approach predicted target, then this 

can achieve by minimizing the distance between them. The distance between a UAV and 

predicted targets is: 

 ( ) ( )
2 2

x y

k k k k kr x b y b= − + −    (30) 
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where [ ],k kx y
 
is the 2-D position coordinate for the UAV, and [ , ]x y

k kb b  is the 

predicted targets position at time k. 

The accumulative summation on the time horizon H can be calculated as: 

 dist

1

k

k

H

R r
=

= 
 
  (31) 

Equation (31) is the fundamental cost function for path planning problem. By 

minimizing the distance, UAVs are driven to approach the predicted targets. However, a 

simple distance function cannot satisfy the requirements. One challenging problem is: 

when there are many targets, all targets are acting as vertices of a polygon. That will lead 

UAV to be trapped in the center of the ‘polygon’ instead of cruising along the edges. In 

this problem, this polygon is the fire zone. Simply adding the distances together will 

cause a stuck in the center of fire zone instead of tracking fire front as Figure.22: 

 

Figure 22 Trapping in the center result 

 

Think about the simplified case to explain this problem. Let us assume there are 

three targets, which can be regarded as the vertices of a triangle like Figure.23: 
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Figure 23 Triangle principle 

 

If a UAV, which is represented with red dot, is seeking for a minimum of the 

summation of distance to all three vertices A, B and C. Then the optimal solution may 

locate inside this triangle as presented by D in the left side of the figure. Remember the 

UAVs’ task is to collect the information of the fire front for monitoring. UAVs should 

follow the edge AB, AC and BC instead of trapping at the center.  

Then the triangle principle is applied to solve this problem: the summation of two 

edges of a triangle is always greater than the third edge. Thus, by minimizing 

( )AD BD AB+ − , the UAV is driven to access edge AB. Applying the same principle to 

the other edges, this calculation can be represented as: 

( ) ( )2 AD BD CD AB BC AC+ + − + +   

Suppose there are M targets at given time k. The distance between the targets can 

be calculated by: 

 ( ) ( )
2 2

, , , 1 , , 1

x x y y

k m k m k m k m k mB b b b b+ += − + −
 
  (32) 

The summation of all the distances between targets is: 
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 2 2

. , ,1 , ,1

=1

(( ) ( ) )x x y y

sum k m k M

M

M k k k

m

B B b b b b− + −+= 
 
  (33) 

The second term is the distance between the last target and the first targe.  

Then, assume at time k, UAV is at m-th target, the cost function can be modified 

to: 

 
1

2
H

T

k sum

k

R r B
=

= −
 
  (34) 

This is not the final design of cost function. The cost function above forces UAVs 

staying on the fire front, but it cannot force UAVs exploring the fire front. The above cost 

function will lead to result as Figure.24: 

 

Figure 24 Result without distinguish inside and outside FOV points 

 

The UAV stays on the fire front instead of trapping in the center, but it would not 

fly along the whole fire front line to observe all the fire points. 

After solved trapping in the center of the fire zone, UAVs need to distinguish the 

points inside and outside the FOV in NN map. At each time step, the NN prediction 
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provides a whole map to UAVs for path planning. Based on this NN prediction map, 

UAVs decide where they should go. Then UAVs will update the real fire states with their 

observation. By giving different cost function for fire points inside and outside FOV, 

UAVs would explore the fire points outside the FOV. 

For the points inside the UAV’s FOV, a small negative compensation is designed 

in the cost function. The cost for the observable points is: 

 ( ) ( )
2 2

, , ,

1

/
H

ob x y

k m k k m k k m

k

R c x b y b
=

 
= − − + − 

 
  

  (35) 

where c is a small constant. 

This reciprocal takes the ‘weight’, or ‘the importance of a fire point’, into 

consideration by using the distance as the denominator.  The compensation for an 

observed points cannot be a constant. If this compensation is set to be a constant, the 

UAVs will tend to stay in the same position. Since the compensation is the same for the 

UAVs to observe whichever fire points, the further points will be ignored. By relating 

with a ‘weight’ denoting each fire points, the importance of further fire points increases. 

As a result, UAVs will explore the further fire points. 

But the reciprocal of the distance leads to a small trouble for observation. In the 

FOV of UAV, the further fire points get the smaller cost. While minimizing the function, 

the points far from the center weight less. It is not reasonable for the real-world situation: 

the further a point away from the center of FOV, the less clear it appears in the picture. 

To solve this, this small constant should be negative here.  

For all the fire points outside the FOV of UAVs, another practical factor is taken 

into consideration. Time factor is included in the cost function as: 
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 ( ) ( ) ( )
2 2

, , ,

1

1
H

kunob x y

k m k k m k k m

k

R x b y b
=

 
= + − + − 

 


 
  (36) 

where   is a small positive constant to increase the weight gradually with time.  

The coefficient term ( )1
k

+  contains the time in. This term’s value grows with 

time k. The longer a fire point is not observed, the larger the value will be. Thus, the 

importance of unobserved fire points increases. With this design, UAVs tend to explore 

to the unobservable fire points in NN predicted map. 

Remember equation (34) which is designed to force UAVs staying on the fire 

front. Replace the first term 
1

k

k

H

r
=

  in equation (34) with equation (36). The cost function 

for unobserved fire points of NN predicted map then can be expressed in the following 

form: 

  ( ) ( ) ( )
2 2

, , ,

1

2 1
H

kT unob x y

k m k k m k k m sum

k

R x b y b B−

=

 
= + − + − − 

 
  (37) 

 

3.3.3 Maximizing the information collection with spreading fire zone 

In simulation, there are three fire zones initially. While they are spreading and 

merging into one fire zone, path planning algorithm should achieve maximum fire 

information collection [149, 150] by balancing the ‘exploration’ and ‘exploit’ [151, 152] 

for the different zones while there is more than one fire zone.  

Exploration represents the activity that a UAV searches for new zones. Exploit 

refers to a UAV keeps searching a known area for details. Exploration helps to get a 

whole view of all zones, while exploit helps obtain the details of a fire zone, especially 
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when a zone is spreading faster than others. In order to get more fire information for 

monitoring, a path planning algorithm should balance the exploration and exploit. 

First, different fire points should be identified for fire zones. The points distance 

,k mB  calculated in section 3.3.1can be used to classify the fire points into different zones.  

It indicates the distance of two adjacent fire points, design the criterion for sorting 

adjacent two fire points into the same fire zone as: 

 ,k m fB D    (38) 

where fD  is a predefined zone distance for sorting fire zones. 

Suppose Z is the number of fire zones after sorting.  And for each fire zone, a 

number of z fire points are in each zone. Then assume a constant spreading speed of new 

points will appear for every specified time horizon for each zone. For the values less than 

one, round it to the nearest whole number. 

In zone z, use a binary indicator 
,

z

k mi  to indicate whether a fire point is inside or 

outside of the FOV of each UAV. For any point inside the FOV, the value is 0, otherwise 

it is set to be 1. All the new points are set to be 1. Thus, for a zone z, an indicator vector  

z

kI with each fire point’s indicator
,

z

k mi  as elements. 

Sum up all the elements in each zone’s indicate vector z

kI  . Then the summations 

can be used to balance the exploration and exploit. Compare all these Z summations, the 

maximum and minimum of them can be obtained. Then multiply a bias weight to the 

indicators:  
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( )

( )

max

min

min

1

1 1max

1

2 1min

1

  arg max ,...

arg min ,...

zZ

k k k
z

zZ

k k k
z

z

k z

w

w

Otherwise w

z

z


 













 =   = 



=   = 

 = 


zmax

z

z

1

1

1

I I I

I I I

I

  (39) 

where the bias weights have the relation
1 2zw w w


  . 

After the resetting in equation (39), the fire zone which with the maximum 

summation will have the indicator vector of elements are 
maxz

kI , while the indicator vector 

of the fire zone with the minimum summation have elements are minz

kI . All the other 

indicator vectors are reset to be 
z

k
I , which the values of elements are between 1w  and 

2w . Thus, a rearranged M-by-1 vector ind

kI of indicators with rank of increasing rank of m 

at time k can be generated. 

A simple example is given below to explain this idea: 

Suppose three fire zones are sorted in a simulation. For a UAV, if there are 2, 3, 2 

points in each zone, and only the two points in zone2 is observed, then indicator table can 

be illustrated as: 

Points Zone1, 1 Zone1,2 Zone2,1 Zone2,2 Zone2,3 Zone3,1 Zone3,2 

Value 1 1 0 0 1 1 1 

Ind 1

,1ki  
 1

,2ki  
 2

,3ki  
 2

,4ki  
 2

,5ki  
 3

,6ki  
 3

,7ki  
 

 

At time k, if UAV is at m-th fire point, this fire point is noticed as 1. Then the next 

fire points follow this rank. So, 1,2…7 denotes the rank of fire points in the fire points 

row. The left upper number represent which fire zone this point belong to.  
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In the table, the first line explains which zone a fire point belong to. The second 

row is the value of the indicator of fire point. The third line is denoting for the indicators. 

According to equation (39), sum the indicator for each zone (with the same 

number on upper side) will have this result: 

1

2

3

2

1

2

k

k

k

I

I

I

=

=

=





  

 

The maximum is 1

kI  and 3

kI , both will be set to be 1w . The minimum 2

kI  will set 

to be 2w . This case does not have a vector with elements are set to be 
Z y

w . Now, the new 

indicator ind

kI  vector for all fire points is then: 

1 1 2 2 2 3 3[ , , , , , . ]ind

kI w w w w w w w=   

Assume N UAVs are used in path planning. Multiply this indicator vector to the 

cost function, the equation will be equation (40): 

 
 
 ( )

, ,

1

 
k n

N
ind

k k m

n

R R
=

= I  (40) 

where 
, ,

ob

k m k mR R=  as equation for a fire point inside the FOV based on the whole 

NN predicted map, and 
, ,

T unob

k m k mR R −=  as equation for a fire point outside the FOV on this 

map. Note that the information indicator vector is for balancing the exploration and 

exploit to maximize the fire information for most efficient monitoring. 

 

3.3.4 Collision Avoidance 

In practice, a group of UAVs is used to track the fire zones. To achieve an 

autonomous control, collision avoidance between UAVs is necessary for path planning. 
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The collision avoidance is considered as penalty P. Assume the safe distance between 

two UAVs is sd  , the penalty term P is described as: 

  ( ) ( )
2 2

1 2 1 2

k k k skP x x y y d= − + − −  (41) 

With all the considerations stated above, the final cost function for wildfire fire 

front tracking algorithm can be described as: 

 
2

min{0, }c

k kR R P= −   (42) 

where 
2

min{0, }P  is the collision cost function. If the relative distance between 

two UAVs is greater than the safe distance specified, this term is 0. Otherwise, this term 

will be the penalty value.  is a constant needed to be adjusted to ensure the penalty term 

will dominate the cost function once the relative distance between two UAVs is shorter 

than the safe distance. 

 

3.3.5 Obstacle Avoidance 

In practice, the only information UAVs have for determining the path is the map 

predicted by NN. The NN is trained to predict the fire states without obstacles which are 

assumed appearing randomly on the scenario through time. UAVs are blocked to any 

obstacles before UAVs detected them. Also, all UAVs have limited FOV. Cameras are 

supposed to installed at the center of the UAVs’ body, then the FOV boundary for the 

UAVs are only half of both width and height. Fixed-wing UAVs are used to track the 

wildfire fire front. To ensure safe flying, a minimum velocity is defined as in equation 

(17) in section 3.3.1. Thus, when UAVs capture an obstacle, there would be a quite short 

period for UAVs to avoid it. Time is the most important factor. 
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By this assumption, many obstacles avoidance method like APF [75] cannot be 

applied in this project. It needs a completely knowledge of the obstacles, so that it could 

construct a potential field priorly (which is also time consuming). 

Combined with some immediate obstacle avoidance for aerial propeller, the final 

obstacle avoidance method for this project has two steps: 

1. The local controller: 

Once the obstacles are detected, the local controller will give an immediate 

command at this time step.  

2. The global controller: 

After following the local controller’s command, then let the UAV communicate 

the obstacles’ information to the path planning algorithm for next step, a huge weight is 

added to the punishment for the obstacle position to pushing UAV leave the obstacles 

next step. 

The obstacles observed inside FOV will be describe as polygons. By calculating 

the distance between vertices of the polygon and the body of the UAV and the obstacle, 

an obstacle avoidance term col

kR   is generated. Then a large positive constant weight    is 

added for this term: 

 ( ) ( )
2 2

, ,

1

   
L

col col col c

k k k l k k l k

l

R x x y y R
=

= − − + − +   (43) 

Where  , ,,col col

k l k lx y    is the 2-dimensional obstacles’ position coordinate. The 

number of vertices is L. 

This cost function would not be negative infinity. Once the obstacles are outside 

the FOV, the algorithm will use equation (43) as the cost function.  
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The path planning algorithm for wildfire tracking based on Q-learning can be 

described as Algorithm-1: 

Algorithm-1: Optimal path planning by Q-learning 

1. Input: target prediction 1 1[ , ]x y

k kb b− −  from the NN predictor, ( )K sB t  , previous time 

step UAV states 1 1 1 1 1[ , , , ]k- k k k kx y v − − − −=s , optimization horizon H, NN model 

training period K.  

2. For k = 1: K 

3.    Load the data of the wildfire at time k. 

4. Use the trained network ( )K sB t  to obtain the predicted target position 1 1[ , ]x y

k kb b− −   

5. Check whether a target point is inside the FOV of UAVs and determine 
z

kI

accordingly. 

6.       IF obstacles are NOT detected   

7. Compute the cost (42): 

2
min{0, }c

k kR R P= −  

8.       ELSE  Compute the cost (43): 

( ) ( )
2 2

, ,

1

L
col col col c

k k k l k k l k

l

R x x y y R
=

= − + − +  

9.    END IF 

10. According to (28), compute the Q-value at this time step as: 

 ( )
1

*

1

, minc c

k k k k k

k

k H

Q R R
+ −

+

= + s u  

if without obstacles in the FOV or: 
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( )
1

*

1

, mincol col

k k k k k

k

k H

Q R R
−

+

+

= + s u  

If with obstacles in the FOV. 

11. Find the control u that gives the optimal Q-value according to (29): 

( ) ( )* arg min ,k k k kQ =
u

s s u  

12. Use the obtained ( )*

k k k=u s from step 12 to update ks with UAV dynamics 

presented in (16)-(20). 

13.  END For at time K 

14.  Re-sample the next K seconds, and re-train the NN model ( )K sB t . 

15.  Repeat step 2 to step 13 in the next K seconds. 

 

 

3.3.6 Minimizing the Period Without Targets in any UAV’s FOV 

In practice, UAVs are required to get a coverage of the different combustible 

zones to obtain more information. Sometimes, if all UAVs fly towards to a new 

destination, then UAVs cannot get any fire information at this certain moment. To solve 

this, at given time k, the algorithm adds another binary indicator ,

,

T n

k mI , where n denotes 

the n-th UAV, and m denotes the m-th fire point. 

The indicator ,

,

T n

k mi  is design as 0 when a target is outside the FOV of a UAV and is 

set to be 1 if a target is inside the FOV. Then, by summing up all the elements in ,

,

T n

k mI  , 

whether a UAV has at least one target inside its FOV or not is measured. If the 

summation is zero, it represents there is no fire points in none of UAVs. Then UAVs 
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should be driven to approach the nearest points until at least one UAV has NN predicted 

fire points inside FOV. The cost function under this situation can be described as: 

 
 
 ( ) ( )

2 2

, , ,

1

x y

k near k k near k k nea

H

r

k

R x b y b
=

= − + −  (44) 

where 
, ,,[ ]x y

k near k nearb b  is the nearest fire points on the map predicted provided by 

NN. 

Considering this case, the path planning algorithm for wildfire tracking can be 

addressed in Algorithm-2: 

Algorithm-2: Path Planning to minimize the period without targets in any UAV’s 

FOV 

1. Input: Same inputs as Algorithm-1.  

2. IF   ( ) ( ),1 ,2 ,0 0 ( 0)T T T n =   =   =I I I  

    Find the control to minimize (44): ,arg mink k nearR=
u

u  

3. ELSE  

4. do Algorithm 1. 

5. END IF 

 

 

3.4 Simulation Results for Path Planning Algorithm 

To demonstrate the proposed path planning algorithm for wildfire tracking can 

generate reliable trajectories for UAVs, some simulation results will be provided. 
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As mentioned before, the wildfire data are provided by a wildfire simulator based 

on the DEVS-FIRE [139] model. This wildfire data is regarded as real wildfire in 

simulation. This method split a wildland into cellular spaces, where each cell installs its 

terrain data and fuel (vegetation) data with representing to the sub-regions in the area. All 

cells communicate with a weather model to receive weather data such wind speed and 

wind direction over time. Once a cell is ignited, Rothermel’s model [153] is applied to 

simulate the fire spread rate and direction.  

In the simulation to test the path planning algorithm, the wildland is supposed to 

be a 200 by 200 cellular place with each cellular has an area of 30 meter by 30 meter. At 

the beginning of simulation, three fire points are ignited at [3600, 4500] meter, [4500, 

2100] meter and [3150, 3000] meter separately. The whole-time scenario is 5 hours 

(18000s).  The Figure.5 in section 2.1 has shown it.  

The parameters for all the equations are introduced here: 

The Q-function learning rate mentioned in equation is defined as =0.9 . The 

negative constant for observable fire points in (35) is 1c− = − . The constant in the 

coefficient term for unobservable fire points in (36) is 0.8 = . The collision avoidance 

safe distance sd   for in (40) is set to be 200 meters. The adjustable constant for UAV 

collision avoidance penalty term in (41) is 10 =  . The fire zones sorting distance fD is 

500 meters. The constant for obstacle avoidance in (42) is 50− = − . 

Initially, assume the first 300 seconds (5 minutes) fire data is obtained to train the 

first network. Then, the NN would be re-trained at 1000s, 2000s, 6000s, 10000s, 12000s 

and 16000s. As shown in Chapter 2, with the data set increasing, the frequency for NN 

training can be reduced. The final trained network is applied until the end (18000s) of 
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experiment. NN’s architecture is 10 layers with 10 neurons in each layer. Thus, it only 

needs about 1-2 minutes to train the networks. With increasing of dataset, the time 

consumption rises. But the final network only takes around 3 minutes in training. 

Assume all UAVs are installed with DJI Phantom 4 cameras, which the width of 

lens is 13.2 mm, height of lens is 8.8 mm, and the focal length is 5.361 mm. With the 

specified flying altitude of 200 meter, the FOV on the ground can be calculated. The 

FOV of the camera is a rectangle. Thus, the inertial position of the fire front point needs 

to be rotate into the coordination of UAVs with the translate matrix mentioned in 

equation (25).   

As for Q-learning based cost function solvers, plenty of optimization problem 

solvers are developed. In this project, the main work is to formulate a reliable cost 

function for path planning. It did not focus on derive a new solver. Since this algorithm is 

simulated in MATLAB, it chooses the fmincon to solve the Q-function. The default 

algorithm for fmincon is gradient-based search algorithm, and the steps is set to be 3000. 

With all these settings, the path planning algorithm on the whole time-scenario 

result will be presented below: 
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Figure 25 Trajectories from 0 to 2400s 

 

The UAVs start at [4000, 5000] meter and [5500, 2000] meter separately.  The 

purpose is to demonstrate the efficiency for the proposed path planning algorithm, so the 

real wildfire position will be illustrated in the figures. All the real fire points are indicated 

as blue dots in the fire. The UAV1’s trajectory is indicted as black line in the figure, 

while UAV2’s trajectory is indicated as green line. UAV1 has an initial speed 18 m/s, a 

starting heading angle pi/10, and an initial acceleration 3 m/s2. UAV2 is designed to have 

an initial speed 16 m/s, a starting heading angle pi/12, and an initial acceleration 2 m/s2. 

The limitation of the linear forward speed is [11, 26] m/s. Assume the UAVs have 

an acceleration between [-5, 5] m/s2, the bank angle of is set to be [-pi/3, pi/3]. 

When the simulation start, there is no target is in any UAV’s FOV, the UAVs 

approach to the nearest targets separately. Then they exploit in each target fire zone for 
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collecting details of the fire information. Afterwards, UAV1 flies to zone3 at the left 

bottom. 

The control variables plot from beginning to 1200s is provided below to illustrate 

the limitation constraints work: 

 

 

Figure 26 Control variables for UAV1 during 0 and 1200s 

 

 

Figure 27 Control variables for UAV2 during 0 and 1200s 
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Corresponding to Figure.25, UAV1 (black trajectory) keeps the same control 

variables at the beginning, only a sharp acceleration of 5 m/s2 at the 1s and a small adjust 

with its bank angle. These control variables demonstrate the UAV1 is flying directly to 

fire zone1. Similar trend for UAV2 (green trajectory), it changes both heading angle and 

acceleration sharply at the initial point, and the keeps the same heading angle until it 

reaches fire zone2. This change in control variables demonstrates the proposed algorithm 

is efficient.  Define the heading angle of UAV2 as pi/12, but zone2, which is chosen to be 

UAV2’s target, is in the negative direction of UAV2. Thus, it needs to adjust its bank 

angle. For both UAVs, the acceleration changes do not change frequently. Because at this 

period, all fire points in a fire zone can easily be captured, thus they do not need change 

the acceleration. But the bank angle of both UAVs changes frequently after they reached 

the target. This indicates the UAVs are flying along the fire front collect information of 

the same fire zone. 

 

Figure 28 Trajectories from 2400s to 6000s 
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From 2400s to 6000s, the fire zone begins to change dramatically. The 

information indicator vector in equation (39) changes frequently. Thus, from the figure, 

the UAVs fly between the different fire zones to achieve exploration. Visiting different 

fire zones would be the best policy to collect fire information. Notice that when the 

UAV2 flies to zone3 at the left bottom, the UAV1 avoids it and fly to zone 2 at the right 

bottom. 

 

Figure 29 Trajectories from 6000s to 10800s 

 

Gradually, when the zone2 and zone3 merged into one larger zone as presented 

from 6000s to 10800s, UAV1 stays at the merging edge of zone2 while UAV2 covering 

the whole zone1. The merging edge is where the fire points change both position and 

number rapidly. It is convincible that UAV1 tends to exploit at this area to collect details 

of fire points. When zone2 and zone3 merged, UAV1 leaves this area and flies to zone1 
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to cover zone1. UAV2 goes down to the merged area and has a full coverage of this new 

larger zone. 

 

Figure 30 Trajectories from 10800s to 18000s 

 

In Figure.30 when zone1 is merging with the merged new zone, UAVs tend to 

stay at the edge where spreads fast. The sorting distance is set to be 500 meters. Thus, 

while the two zones are near enough, they are regarded as one new zone for UAVs. Then 

UAVs from 12000s to 14000s begin to cover the whole area.  
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Figure 31 Trajectories from 12000s to 14000s 

 

Figure.31 provides a clear view of trajectories from 9600s to 10800s. In this 

period, two UAVs exchange their tracking zones. UAV1 flies to the upper zone1 and 

UAV2 goes down. UAV2’s trajectory covers a large area, while UAV1 tends to stay at 

the nearer position. The reason is, UAV2 is crossing the gap of areas. This algorithm has 

a contain a minimizing the period without targets in any UAV’s FOV design. Thus, if 

UAV2 travels between areas, UAV1 will stay in a smaller land to keep at least one UAV 

has targets inside FOV. 

To test obstacle avoidance design, assume from 6000s to 7000s, obstacles such as 

smoke which should be avoided for UAVs’ safety, appear inside each fire zone. To test 

the robustness of this algorithm, the obstacles are assumed are a triangle, a rectangle, and 

a pentagon. 

The results are presented below: 
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Figure 32 Trajectories for collision avoidance 

 

The grids demonstrate the UAVs follow the command from local controller to 

avoid the obstacles. The local controller is designed to give an immediate control action 

with 1) gives an acceleration -5 m/s2 to UAVs, 2) if the obstacle is on the left-hand side of 

the FOV, gives a bank angle π/4, or if the obstacle is on the right-hand side of FOV, gives 

a bank angle - π/4. The trajectory of UAV1 (black line) shows the algorithm has pushed 

the UAV apart away from the obstacle2 since the circle at the right top. Once the UAV 

cannot detect the obstacle, the algorithm will plan the path with equation. The trajectory 

of UAV2 (green line) also avoids obstacle1 successfully with the same tendency. 

To demonstrate the robustness, the trajectories for avoiding obstacle3 will be 

provided in Figure.33: 
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Figure 33 Trajectories for avoiding obstacle3 

 

The path inside the red dash rectangle shows the attempt of the UAV2 to avoid 

the obstacle3. The grid is similar to what happened at obstacle1 and obstacle2. This result 

demonstrates this method is quite robust regardless of the shape of the obstacles. 
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Chapter 4 

 

 ROBUSTNESS EVALUATION OF PATH PLANNING ALGORITHM 

UNDER VARIOUS WIND 

 

In this chapter, some results on different data set will be presented to demonstrate 

the robustness of the proposed path planning algorithm for wildfire tracking. The new 

dataset has three sub datasets regarding with three different wind speed. Wildfires are 

assumed to spread on same wildland (the same terrain and vegetation), wind is the key 

factor impacting the spreading status.  

The results will be illustrated by the order of original wind, slower wind and 

faster wind. Figures about NN training and path planning will be presented.  

 

4.1 Original Wind Results 

4.1.1 Wildfire Spread Prediction Neural Network Training Accuracy 

Process of testing for the area difference keeps the same with Chapter 2. Similar, 

the first training starts with 300s, and then reached to 1000s. The next time step is 2000s. 

In original dataset, the steady time is 3500s. 

Here is the result of using the 1000s NN to predict fire position at 2000s given the 

real fire position at 1900s: 



66 
 

 

Figure 34 Original wind: comparison of prediction and real wildfire at 2000s 

 

The red dots represent the real wildfire points, and the blue dots represent the 

prediction. The area difference is denoted by light blue for zone1 and light orange for 

zone2. 

At 2000s of this scenario, the real wildfire area is 131,850 m2 with 8,100 m2 for 

zone1 on the top and 123,750 m2 for zone1. The area difference is 53,021 m2 with 3,701 

m2 for zone1 and 49,320 m2 for zone1.  

The prediction accuracy then can be measured as: 

53021
100% % 59.79%

131850
Accuracy = − =

 
 

The accuracy cannot satisfy a prediction requirement, then this NN need to re-

train. The NN trained at 2000s predict efficiently from 2000s to 3500s: 
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Figure 35 Original wind: comparison of prediction and real wildfire at 3500s using NN trained at 2000s 

 

However, it cannot predict the fire state at 4000s given the real fire data at 3900s. 

The failed result is shown in Figure.36: 

 

Figure 36 Original wind: comparison of prediction and real wildfire at 4000s using NN trained at 2000s 

 



68 
 

Obviously shown in the figures above, the NN trained at 2000s failed to predict 

zone1. The reason is the same with previous dataset: when the dataset is small, the points 

added to fit the matrix dimension will cause huge errors. The fire zone1 has an area of 

71,550 m2 while the area difference calculated by symmetric difference method is 41,218 

m2. From the figure, this NN cannot predict the trend of the fire points. 

The accuracy is 85.28% with area difference 47,417 m2 of zone2. 

Compared the results at 3500s and 4000s, 3500s is an appropriate time to re-train 

the NN. The NN trained at 3500s predicted the fire points at 4000s as: 

 

Figure 37 Original wind: comparison of prediction and real wildfire at 4000s using NN trained at 3500s 

 

At 4000s, the real wildfire area of zone2 is 528,750 m2. The total wildfire area can 

be calculated as 600,300 m2. The area difference summation is 48,166 m2 with 10,354 m2 

for zone1 and 37,812 m2 for zone2. The accuracy for NN trained at 3500s is: 
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48166
100% % 91.98%

600300
Accuracy = − =

 
 

It improves 6.7% in accuracy. The most important achievement is that the new 

NN can predict the trend of the fire points precisely.  

The new NN fits well at 4000s. According to the later experiments, it can be 

concluded that 3500s is the ‘steady point’ of this dataset. More training times would 

obtain better results, but this NN can be used until the end of this dataset at 14400s. 

Figure.38 gives the result at 14400s of this NN, with the real fire points at 14300s 

as the input: 

 

Figure 38 Original wind: comparison of prediction and real wildfire at 14400s using NN trained at 3500s 

 

 

The area difference is 645,100 m2. Real wildfire zone area is 9,437,850 m2. It 

achieves an accuracy of 93.17%. 
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The trend of prediction error with time under original scenario is: 

 

Chart 2 Prediction Error of Original Wind with Time 

 

The prediction error keeps decreasing under the original wind. 

Regression NN behaves well in this scenario. Then the path planning based on Q-

learning can be tested.  

 

4.1.2 Path Planning Algorithm Results 

This time, a tight limitation of bank angle [-pi/12, pi/12] is applied to UAVs. The 

acceleration limitation keeps the same [-5, 5] m/s2. The limitation of the speed is [11, 26] 

m/s, which is also the same as previous. 

The Field of View (FOV) stays the same, which has a width of 172.5273 meter 

and length 363.3973 meter. This is determined by the focal length, sensor width, sensor 

length as DJI 4, and a flight height 200 meter. 

With all these settings, the results are: 
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Figure 39 Original wind: trajectories from 0 to 2400s 

 

Original position of UAV1 is set to be at [2000, 5000] meter, and UAV2 has the 

beginning position [5500, 2000] meter. The starting heading angels of UAV1 and UAV2 

are pi/12, pi/6 respectively. The initial speeds of UAV 1 and UAV2 are 18 m/s and 16 

m/s respectively. 

In Figure.39, with minimizing the non-targets time rule in either UAVs algorithm, 

the two UAVs go to zone1 and zone2 separately. Then they stay in each zone to exploit 

the known zone. This decision is made anonymously depending on the whole map 

predicted by NN. 
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Figure 40 Original wind: trajectories from 2400s to 6000s 

 

Then at time 2400s, as shown in figure 41, UAV2 goes to zone1 to explore the 

new zone, while UAV1 stays in known zone to keep at least 1 UAV has targets inside 

FOV. In the period 3600s-4800s, with the fast spreading of zone2, UAV2 then decides to 

fly to zone2 to collect more information about this area. Later, with the zone2 decreases 

the spreading speed, UAV2 goes to zone1 to cover the new information. 
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Figure 41 Original wind: trajectories from 6000s to 10800s 

 

From 6000s, UAV2 comes back to zone2 to gather the information. Soon, with 

the merging of the two zones, UAV1 comes to zone2 as well. When the merging of the 

zones accomplished, the two UAVs fly around the whole map. 

 

Figure 42 Original wind: trajectories from 10800s to 14000s 
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The whole time-scenario for all three new data set is 14400s. At the end period, 

two UAVs keep flying around to cover the whole map. 

From the trajectories, this algorithm is steady on new wildfire states. Since there 

are only two fire zones to cover, the balance of exploration and exploit is better than 

using two UAVs to track three wildfire zones. 

The obstacle avoidance result is shown below: 

 

Figure 43 Original wind: trajectories for collision avoidance 

 

Assume during 7000s to 8000s, three obstacles appear inside fire zone. All the 

UAVs avoid the obstacles. With a strict bank angle limitation [-pi/12, pi/12], UAVs need 

more turning to avoid the obstacle. The trajectory is smoother. 

Figure.45 shows the position of the two UAVs of a certain time. It can clarify that 

UAVs do not collide with each other: 
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Figure 44 Original wind: details for collision avoidance 

 

The red points indicate the two UAVs current position at this time. The position is 

not inside the safe distance. It demonstrates that while UAVs are tracking the same zone, 

they are flying in a way would not interfere with each other. Although from the stationary 

figure, the trajectories seem overlapped. But along with time-domain, it would not 

interfere. 

 

4.2 Slower Wind Results 

Wind is one of key factors which impact the fire zones spreading. The slower the 

wind is, the more accurate the NN prediction will be. On this dataset, the process and key 

time spot is quite similar with original wind dataset.  

 

4.2.1 Wildfire Spread Prediction Neural Network Prediction Accuracy 
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To show various results, different time period results will be presented in this 

section. The prediction at 3500s given 3400s real fire points using the NN trained at 

2000s will be provided here: 

 

Figure 45 Slower wind: comparison of prediction and real wildfire at 3500s using NN trained at 2000s 

 

Still, the area difference in the left picture is indicated with light blue for zone1 

and light orange for zone2. The total area difference is 25,692 m2. The red dots are the 

real wildfire points, and the blue dots are the predicted fire points provided by NN. The 

total real wildfire area is 408,150 m2. The prediction accuracy is 93.7%. 

Although this NN can be applied until the end like in the original wind 

environment, NN is re-trained at 12000s to compare whether the accuracy of NN can be 

improved or not. The result for using NN  trained at 12000s to predict 14400s fire points 

with 14300s real wildfire position as input is: 
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Figure 46 Slower wind: comparison of prediction and real wildfire at 14400s using NN trained at 12000s 

 

The area difference is 122,070 m2 while the real wildfire area is 9,437,850 m2. 

The NN prediction accuracy is 98.71%. It is a perfect prediction result. 

The tendency of the prediction error with time under slower wind condition is 

shown in Chart.3, the prediction behavior is better than original wind: 

 

Chart 3 Prediction Error of Slower Wind with Time 
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4.2.2 Path Planning Algorithm Results 

With all the parameters keep same, the only changed initial parameter is the 

starting position of the two UAVs. This time, UAV1 starts at [3500, 2000] meter, UAV2 

starts at [5500, 3500] meter. 

The results on this scenario are: 

 

Figure 47  Slower wind: trajectories from 0 to 2400s 

 

In Figure.47, starting from the beginning, the UAVs fly to the nearest zone for 

them. UAV2 goes to zone1, and UAV1 goes to zone2. Then they stay at each zone for a 

while. 
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Figure 48 Slower wind: trajectories from 2400s to 6000s 

 

Then in Figure.48, with very fast spreading of zone2, which can be clearly 

observed by comparison of Figure.48 and Figure.49, UAV2 comes down to zone2 to 

cover this zone. At 3600s-4800s, the zone1 suddenly increases its spreading speed. Thus, 

UAV2 goes to zone1 to collect information of zone1. 
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Figure 49 Slower wind: trajectories from 6000s to 10800s 

 

Finally, the two UAVs stay at their zone until the end in Figure.50. 

 

Figure 50 Slower wind: trajectories from 10800s to 14000s 
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The Figure.51 and Figure.52 show the control variables of both UAVs. The time 

period during 0-1200s is plotted. The bank angle is limited inside [-pi/12, pi/12], which is 

plotted by degree for easy understanding [-15, 15] degree. Since the UAVs are near the 

fire zones. In this environment, they arrived fire zones quickly. Then both UAVs adjust 

their control variables to fly around a known area to exploit. With enough UAVs for 

zones, they stay in the same area. 

 

 

Figure 51 Slower wind: control variables for UAV1 

 

Figure 52 Slower wind: control variables for UAV2 
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The obstacle avoidance is better than on the original set. Both UAVs avoid the 

three different shape obstacles. 

 

 

Figure 53 Slower wind: collision avoidance 

 

4.3 Faster Wind Results 

This dataset is most complicated dataset. In simulation, the ‘steady time spot’ is 

12000s. Only the NN trained at that time can be used until 14400s. Through all the time 

scenario, every NN can only be used in an approximate 1000s-time range. NN need to re-

train that once and once again around 1000s. It is reasonable since the faster wind causes 

unsteady fire spreading. Then the trend of the fire points is more difficulted to fit. 

As all the others, NN started to train at 300s, then 600s, then 1000s. The next will 

be 1900s in this situation. Then NN needed to be re-trained at 2700s. Then at 3500s and 
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4700s NN were re-trained to achieve a better result. Then re-trained at 6000s, 

7100s…until 12000s, a NN can be applied until the end. 

 

4.3.1 Wildfire Spread Prediction Neural Network Prediction Accuracy 

There are too many results for this situation. For a precise explanation, the result 

of using the NN trained at 1900s to predict 2700s given the real fire states at 2600s will 

provide here: 

 

Figure 54 Faster wind: Comparison of prediction and real wildfire at 2700s using NN trained at 1900s 

 

With faster wind, the zone1 and zone2 spread quite different. Zone2 spread faster 

ever. Thus, NN prediction is slower than realistic situation. The total area difference 

measured by symmetric difference is 12,815 m2, while total firing area is 68,850 m2. The 

NN prediction accuracy is 81.4%. 

In faster wind environment, almost every 1000s, the NN needs to be re-trained. 

Since the NN only need 1-2 minutes to train on this smaller dataset, this result is 
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acceptable. The final NN trained at 12000s predicts the 14400s wildfire with 14300s real 

wildfire data as input is: 

 

Figure 55 Faster wind: Comparison of prediction and real wildfire at 14400s using NN trained at 12000s  

 

The area difference is 399,970 m2 while the area of fire zone is 8,296,650 m2. The 

NN prediction accuracy is 95.2%. Though more frequently re-training required, the NN 

still achieve a great accuracy. 

A chart denotes the prediction error with time is shown below: 
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Chart 4 Prediction Error of Slower Wind with Time 

 

The prediction error decreases with time. In this scenario, a higher frequency is 

required to achieve a better result. 

 

4.3.2 Path Planning Algorithm Results 

Although training the NN is struggled, the path planning algorithm behaves quite 

robust on this data set. 

Again, with all the physical limitations keep same, only the initial position of both 

UAVs is changed. This time, the UAV1 starts at [3500, 2000] meter, while UAV2 starts 

at [5000, 3000] meter. 

The results are shown below: 
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Figure 56 Faster wind: trajectories from 0 to 2400s 

 

On this dataset, UAVs first go to the nearest zones in Figure.56. Then unlike the 

slower or original wind, this time, UAV2 flies to zone1 to cover more information at time 

1200s-2400s. This change causes by the spreading speed of zone2 is much faster than 

zone1 as presented of the 2700s NN prediction in Figure.54. The fire front is much longer 

than zone1, so the importance of zone2 increases. 

Then UAV2 flies back to zone2 in Figure.57. With fast spreading in both zones, 

the two UAVs stay at the zone separately to obtain more information. And they keep this 

until the end in Figure.59. 
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Figure 57 Faster wind: trajectories from 2400s to 6000s 

 

 

Figure 58 Faster wind: trajectories from 6000s to 10800s 
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Figure 59 Faster wind: trajectories from 10800s to 14400s 

 

The obstacle avoidance is shown in Figure.60.  

 

Figure 60 Faster wind: collision avoidance 
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This fast wind testing shows that the proposed algorithm can force the UAVs to 

avoid the obstacles located on a long line of the fire front, which the path planning 

without avoidance tends to track. However, it is a dangerous angle happened.  

It is caused by a combination of physical limitation. First, UAVs have a fast speed 

compared with the FOV. The shortest side of FOV of UAVs is around 170 meters. While 

divided this by half since the camera is assumed to installed in the center of UAV, it is 

only 85 meters. But UAV has a speed limitation [11, 26] m/s. In brief, UAVs may only 

have 4 seconds since they observed the obstacles. Second, UAVs bank angle are quite 

small as [-pi/12, pi/12], which is quarter of previous design. 

To improve the behavior of obstacle avoidance is simple. Change either one 

factor mentioned above would work. A solution of change the FOV to 170 meters is 

provided below. In practice, this is quite accessible, fly to a higher altitude can achieve 

this as Figure.61: 

 

Figure 61 Faster wind: collision avoidance with larger FOV 

 

The larger FOV helps the UAVs avoid the obstacles.  
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Chapter 5 

 

 COMPUTATION EFFICIENCY IMPROVED PATH PLANNING 

ALGORITHM 

 

5.1 Vertices-based Fire Line Feature Extraction (VFL-FE) 

In proposed algorithm, a NN predicts the position of the wildfire. After the whole 

prediction map of the fire point obtained, the path planning algorithm will find the 

optimal solution for the UAVs. Remember that the cost function depends on the distance 

between fire points and UAVs. The Euclidean distance calculation requires more 

calculation time than basic computations such addition. With time increasing, the 

spreading fire front grows longer, the number of the fire points grows. Thus, to reduce the 

calculation time in this project, a time-friendly method to pick up the ‘featuring points’ 

from the dataset is necessary. The goal of the sample method is the shape of the fire zone 

will keep. 

There are many research in pattern recognition and picture processing focus on 

extracting the feature [154, 155]. For example, face or fingerprint recognition requires 

feature extracting. However, these methods are always achieved by a large train network 

which cannot be applied to this project. Furthermore, the wildfire points data is position 

of points not pictures. Thus, the methods which withdraw the lines of pictures cannot 

satisfy the requirement for extracting featuring points from points. 

Then, a method for selecting featuring points from a group of points is proposed 

in this chapter. 
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Think about a polygon such as: 

 

Figure 62 Featuring points of a polygon 

 

To reform a polygon with several points, the featuring points will be the six 

vertices (denoted with red dots). Although the lines of the polygon have many points, 

only these six points are important for identification.  

Then think about another common example: how to approximate a circle with 

lines. The general method is to approximate the circle as a polygon. The more vertices 

obtained, the more accurate this approximation is. 

 

 

Figure 63 Featuring points of a circle 
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Then these red points are the featuring points needed to reform a circle. 

Next, consider an irregular shape as Figure.64: 

 

 

Figure 64 Featuring points of an irregular shape 

 

With red dots as the featuring points, the irregular shape on the left-hand side can 

be reformed to a similar shape at the right side. 

From the examples above, it becomes clear that, the vertices can be used as the 

featuring points. 

Then, consider the vertex as a local minimum or maximum in a piecewise 

continuous function, then the signal of the slopes of the two sides of the vertex is 

different. The vertices are the turning points of a function.  

 Suppose the left-side slope of a vertex is 
ls ,  and the right-side slope of a vertex 

is 
rs . Then this property can be expressed as: 

 0l rs s     (45) 
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With this concept in mind, the selecting of the featuring points from fire zone line 

can be express in the following step.  

First, like how calculus divides the function, the whole fire line can be separated 

into several pieces of short fire lines, each short line has the same length (same number of 

points in these small set). This step gives a sketch of how many featuring points will be 

selected from the original data set. Assume the starting point’s 2-D coordinate of this 

short line is [ , ]x y

s s sp p p= , and the ending point’s coordinate is [ , ]x y

e e ep p p= . Then the 

slope of the line generated by these two points can be expressed as: 

 
y y

p e s

x x

e s

p p
s

p p

−
=

−
  (46) 

Now the red dash line with the slope 
ps is not accurate enough. 

 

Figure 65 Slope formed by two end points 

 

Second, consider a single short line to as a function waiting to find the local limit. 

Remember equation (45), the slopes of the local limit’s two sides are different. Suppose 

at time k, the m-th point of the NN predicted map needs to be checked whether it satisfies 

this criterion, one can calculate the slopes of 2 adjacent points of m-th with equation (46). 

The left-hand (previous) side slope of m-th point is: 

  
, , 1

,

, , 1

y y

k m k ml

k m x x

k m k m

b b
s

b b

−

−

−
=

−
  (47) 



94 
 

Where 
, , ,[ , ]x y

k m k m k mb b b=  is the coordinate of m-th point predicted by NN, and 

, 1 , 1 , 1[ , ]x y

k m k m k mb b b− − −=  is the coordinate of left-hand side (previous) point. 

 
, , 1

,

, , 1

y y

k m k m

k m x x

k k m

r

m

b b
s

b b

+

+

−
=

−  
  (48) 

where 
, 1 , 1 , 1[ , ]x y

k m k m k mb b b+ + +=  is the right-hand side (later) point. 

Then check whether this inequation holds: 

 
, , 0l r

k m k ms s     (49) 

If this inequation hold, then m-th point should be kept since it is a turning point.  

After this step, the dash line can describe the shape the original line.  

 

 

 

Figure 66 Dash line to describe the shape of an original line 

 

Finally, in practice, some points selected in step 2 may be abandoned. For 

instance, in real fire data, some points will appear like Figure.67: 
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Figure 67 Points not necessary 

 

The points inside the black rectangle are not necessary for path planning, since 

they locate inside the field of view (FOV) of UAVs when UAVs follow the trajectory. To 

solve this, one can check whether the featuring points are inside the shortest edge of the 

FOV when UAVs travel from the beginning to the ending points. If it is inside the 

shortest side of FOV, this point can be abandoned. If not, it should be kept. 

 

5.2  Application of VFL-FE Method after Neural Network Prediction 

In this simulation case, a sample set around 300 points (depends on the CPU one 

uses, a better CPU would allow a larger set) is appropriate. Thus, the whole line is cut 

into 100 short lines. Then 200 points is selected initially, which is the beginning and 

ending points of the lines.  

Applying this method to dataset, the result of selecting the featuring points at 

18000s (the biggest data set in simulations), points can be decreased from 981 to 259 

according to MATLAB. Time cost of select this new map is 0.023-0.041 seconds as 

tested in MATLAB. 
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Figure 68 Comparison of VFL-FE reduced map and original map 

 

The red star dots are the featuring points selected, and the blue dots are the real 

wildfire points. From the figure, it is clearly the red star dots can approximate the shape 

of the wildfire map, although some tiny part (inside UVAs’ FOV) is not cover.  

Besides decreasing the map points needed, this method has another benefit: the 

number of points can be decided by a practical case. The number would not be accurate, 

but it can define a range of the final number. For example, for a better CPU, the whole 

fire line may be separated into 200 short lines. At this situation, according to the 

simulation, the final featuring points will be 398. The Figure.69 is shown here: 
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Figure 69 VFL-FE Reduced map with more short lines 

 

Obviously if more points selected, the shape will be more accurate. From the 200 

short lines figure, almost every vertex is selected into the reduced new map. These 398 

points can represent the whole fire zone perfectly. 

 

5.3  Path Planning based on VFL-FE Generated Map 

After reduced map are generated, this new map can be implemented to the path 

planning algorithm for wildfire tracking. Remember that in this algorithm, NN predict a 

whole map every 10 seconds. This reducing step is implemented after NN prediction. 

Once reduced map is obtained, path planning optimization can generate trajectories for 

UAVs based on this reduced map.  

To trigger the reducing map, the condition is set to be when the number of firing 

points greater than 300. This is decided by the CPU calculation capacity. In experiment,  
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CPU used in this project can deal with firing points within 300 quite fast. Thus, when the 

number of firing points is less than this, it is not necessary for us to reduce the map. 

The results are shown below: 

 

Figure 70 Trajectories from 0 to 2400s 

 

The acceleration limitation is [-5, 5] m/s2 and bank angle limitation keeps strict as 

[-pi/12, pi/12]. The wildfire points are represented as blue dots. The black line is 

trajectory of UAV1, green line is trajectory of UAV2. The initial positions for two UAVs 

are [2000, 5000] meter, and [5500, 2000] meter respectively. The starting linear forward 

speeds of two UAVs are 18 m/s, and 16 m/s separately. Initial heading angles are pi/10, 

and pi/6 accordingly. 
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At the beginning in Figure.70, UAV1 and UAV2 goes to the nearest zones 

individually. Then, with the spreading of fire zone3, both UAVs visit zone3. Although 

the limitations for control variables are tighter that the original test, the trajectories are 

similar. It demonstrates the robustness of this algorithm. 

 

Figure 71 Trajectories from 2400s to 6000s 

 

During 2400s and 3600s in Figure.71, UAVs are travelling between zone2 and 

zone3. Then UAV2 stays at zone3 and UAV1 flies to zone1. Soon, since zone1 spreading 

faster, UAV1 seeks to reach zone1 to collect fire information. 

Both UAVs stay on zone1, especially at the edge where is going to merge. From 

now on, with the growing number of fire points, the reducing map is triggered. UAV2 

comes down to cover the merging edge of zone2 and zone3. 
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Figure 72 Trajectories from 6000s to 10800s 

 

Both UAVs tend to exploit at zone1 from 10800s to 12000s Figure.72. While the 

zones are going to merge, UAV2 tracks that fire front. Then, after all zones merged into 

one. Both UAVs flying around the fire front. 
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Figure 73 Trajectories from 16000s to 18000s 

 

From Figure.73, one can observe the reducing map can reform an efficient shape 

similar to the whole map. Since the UAVs are tracking the entire map. 

Time cost after implementing the reduce map for the whole-time scenario is 

7732.3 seconds. Several tests find out that the time cost is between around 7400 second 

to 8300 seconds. Without reducing time, the time cost is around 9-10 hours. 

 

5.4  Re-balancing Exploration and Exploit with VBFL-FE Generated 

Map 

The results in section 5.3 during 6000s and 10800s show UAVs focus on the 

merging boundary and zone1 for extremely long time. This is caused by the balancing 

parameters has not been adjusted after implemented reduced map. According to featuring 

points selected method using the changing slope, a smaller rectangle may have more 

points than a larger triangle as shown below: 
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Figure 74 Smaller rectangle and larger triangle 

 

Thus, balancing parameters of the explore and exploit should be adjusted. Since 

the results tend to be track on zone1, the weights of zone2 and zone3 should be increased. 

The results after adjusted the parameters are presented below: 

 

Figure 75 Trajectories from 0 to 2400s 
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The purpose is to compare the balancing parameter of exploration and exploit, so 

all the UAVs physical parameter keep same with previous simulation. The acceleration 

limitation is [-5, 5] m/s2 and bank angle limitation is [-pi/12, pi/12] for both UAVs. The 

wildfire points are represented as blue dots. The black line is trajectory of UAV1, green 

line is trajectory of UAV2. The initial positions for UAVs are [2000, 5000] meter, and 

[5500, 2000] meter respectively. The starting linear forward speeds of UAVs are 18 m/s, 

and 16 m/s separately. Initial heading angles are pi/10, and pi/6 accordingly. 

From beginning to 2400s, it can be observed that this time UAVs tends to stay on 

zones instead of flying between zones like before. After adjusted the weight of zones, the 

importance of zones clarified. UAV1 goes to the nearest zone1 first, then it comes down 

to collect information for zone3. UAV2 goes to zone2 at beginning and then visits zone3 

as well. Soon when UAV1 stays at zone3, UAV2 comes up to cover zone1. 

 

Figure 76 Trajectories from 2400s to 6000s 
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While zone2 and zone3 spread faster than zone1 in Figure.76, both UAVs are 

flying around these two zones to collect the fire information. UAV2 tries several times to 

visit zone1. 

 

Figure 77 Trajectories from 6000s to 10800s 

 

Compared with unadjusted results in Figure.71, during 6000s and 10800s 

improves most. This time, UAV1 covers the merging boundary of zone1 and zone2, and 

UAV2 covers zone3 to achieve a maximum fire information collection. At 8400s, while 

the merging finished, UAV1 flies around zone1, and UAV2 flies around merged zone to 

achieve a whole map observation. 
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Figure 78 Trajectories from 10800s to 18000s 

 

After zone2 and zone3 merged in Figure.78, both UAVs keep the trend at 10800s. 

While zone1 spreads faster, UAV2 comes up to cover zone1 from 12000s to 14000s. 

Then when all zones merged into one, both UAVs cover the whole fire front. 

 

5.5  Simulation Results with Two UAVs under Various Wind Scenarios 

Results for the faster, original, and slower wind environment will also be 

presented to demonstrate the reducing map method fit this problem. 

 

5.5.1 Original Wind Results 
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The largest number of the new dataset is 383 points at 14400 seconds, the short 

lines are set to be to 50 on this dataset to get a clear view. Finally, 90 points are chosen to 

reform this shape. The reduced map on this set is: 

 

Figure 79 Original wind: VFL-FE reduced map 

 

Bank angle is set to be [-pi/12, pi/12] as the previous simulation. The acceleration 

limitation keeps the same [-5, 5] m/s2. The limitation of the speed is [11, 26] m/s, which 

is also the same as previous. 

The Field of View (FOV) stays the same, which has a width of 172.5273 meters 

and length 363.3973 meters. This is determined by the focal length, sensor width, sensor 

length as DJI 4, and a flight height 200 meter. 

UAV1 starts at [2000, 5000] meter, and UAV2 starts at [5500, 2000] meter. The 

starting heading angels of UAV1 and UAV2 are pi/12, pi/6 respectively. The initial 

speeds of UAV1 and UAV2 are 18 m/s and 16 m/s respectively. 
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Figure 80 Original wind: trajectories from 0 to 2400s 

 

The minimizing period without any targets in UAVs’ FOV keeps steady at this 

time scenario. This result shows the benefit of using NN to predict a whole map: even 

from a further distance, once the UAVs have a whole predicted map by NN, they can 

approach the fire zone efficiently. 
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Figure 81 Original wind: trajectories from 2400s to 6000s 

 

Then during 2400s to 5400s Figure.81, UAV1 stays in zone1, while UAV2 flies 

between the two fire zones to achieve an exploration. From 5400s, since the zone1 

spreads fast, both UAVs stay on zone1 to exploit for details. 

 

Figure 82 Original wind: trajectories from 6000s to 10800s 
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Figure 83 Original wind: trajectories from 10800s to 14400s 

 

Gradually, when the two fire zones merges, UAVs will cover the whole wildland. 

The with reducing map is quite similar to the results with whole map previously. But the 

calculation time is decreased to 5393.2 seconds this time. Before reducing the 

calculation, the original time cost is 10110.893998 seconds on the same CPU. On this 

dataset, the time reducing is not obviously as on the three fire zones. The reason is that 

the initial time cost is not huge since the fire points in this dataset is not as many as three 

fire zones. 

 

5.5.2 Slower Wind Results 

Since the purpose is to compare the time cost, all the parameters for testing on 

reducing map keeps the same with parameter without reducing map. UAV1 begins with 

[3500, 2000] meter, UAV2 begin with [5500, 3500] meter.  

The reduced map with short lines is set to be 50 is as Figure.84: 
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Figure 84 Slower wind: VFL-FE reduced map 

 

The red stars are featuring points selected, while the blue dots are wildfire points. 

The results on this scenario with reducing map are: 

 

Figure 85 Slower wind: trajectories from 0 to 2400s 
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In Figure.85, initially, the UAVs fly to the nearest zone for them. UAV2 

approaches to zone1, and UAV1 approaches to zone2. Then from 600s to 1200s, UAV2 

comes to zone2 due to zone2’s fast spreading. 

 

Figure 86 Slower wind: trajectories from 2400s to 6000s 

 

In Figure.86, it is clear that until 3600s, zone1 only spreads a little larger. It 

explains why both UAVs stay at zone2 to collect fire information. Then, when zone1 

starts spreading, UAV2 goes back to zone1 to cover this fire zone. UAV1 keeps at zone2. 
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Figure 87 Slower wind: trajectories from 6000s to 10800s 

 

When the spreading speed of zone1 increases, UAV1 arrives to zone1 to achieve 

more efficient fire information collection. After the zones merged, both UAVs fly at the 

merged zone until end. 
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Figure 88 Slower wind: trajectories from 10800s to 14000s 

 

Time cost for slow wind weather is 5824.9 seconds this time, which is similar to 

the time cost for original wind. 

 

5.5.3 Faster Wind Results 

Also, 90 featuring points in this set to represent the whole fire zone. Since the 

number of firing points on this dataset is not enormous, the reducing map is not 

necessary. But to compare the reducing map and to test how the results will be, the 

triggering condition for reducing time map is set to be when the number of firing points is 

greater than 150. 

The time reducing method select the featuring point at 14400s of faster wind is 

presented in Figure.89: 
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Figure 89 Faster wind: VFL-FE reduced map 

 

For the faster wind weather, UAV1 starts at [3000, 2500] meter, UAV2 begins at 

[5000, 3000] meter. All the other initial conditions keep the same. 

The trajectories on slower-wind weather are: 

 

Figure 90 Faster wind: trajectories from 0 to 2400s 
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After reached the nearest zones individually, UAV2 comes to zone2 to collect 

more information in this area since it spreads faster than zone1. 

 

Figure 91 Faster wind: trajectories from 2400s to 6000s 

 

In Figure.91 one can observe the area of zone2 is much larger than zone1, that is 

the reason UAV2 comes down at previous period. Then from 2400s, when zone1 starts 

spreading, UAV2 goes back to zone1 for maximizing the fire information collection. 
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Figure 92 Faster wind: trajectories from 6000s to 10800s 

 

During 6000s and 10800s, both zones spread fast, so UAVs stay at each zone 

separately to collect information. After two zones merged, both UAVs fly around the 

whole map. 
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Figure 93 Faster wind: trajectories from 10800s to 14000s 

 

The calculation time is 5278.4 seconds. According to all test, the time cost would 

not exceed 6000 seconds on all the three different wind-speed weather data set. The time 

cost is around 11100s to 12000s without reduced map. In this dataset, half of the cost 

time is deduced. 

 

5.6 Simulation Results with Three UAVs for Three Fire Zones 

After achieved reducing the calculation time, it is capable of testing for three 

UAVs to track three wildfire zones. 

A simulation result for three UAVs will be provided to demonstrate this algorithm 

not only behave steady in different wildland, but also behave steady with multi-UAVs. 
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Path planning on different environments demonstrates the algorithm’s robustness 

of handling different wildland. As an autonomous algorithm designed for multi-UAVs, 

three UAVs as a group to track the fire zones are simulated. The acceleration limitation is 

[-5, 5] m/s2. The bank angle limitation keeps strict as [-pi/12, pi/12].  

Below are the results: 

 

Figure 94 Trajectories from 0 to 2400s 

 

As before, the wildfire points are denoted as blue dots. The black line is trajectory 

of UAV1, green line is trajectory of UAV2, and purple line is the trajectory for UAV3. 

The starting positions for three UAVs are [2000, 5000] meter, [5500, 2000] meter, and 

[2000, 1500] meter respectively. Initial linear forward speeds of three UAVs are 18 m/s, 
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16 m/s, and 14 m/s separately. Initial heading angles are pi/10, pi/6 and -pi/10 

accordingly. 

At the beginning, three UAVs fly to the nearest zone separately. This tendency is 

the same with the two UAVs tracking two fire zones. Soon, while the fire zones spread 

with different speed, it three UAVs change their tracking zone. 

 

Figure 95 Trajectories from 2400s to 6000s 

 

UAV3 tends to go zone1 around 2400s. But with all the other UAVs are flying to 

a new destination, it finally finds the nearest zone to ensure at least one UAV has a target 

inside FOV. Thus, it goes back to zone3. UAV1 and UAV2 exchange their tracking 

zones since UAV3 stays in the same zone during 2400s and 3600s. Then at 5400s, UAV3 

travels to zone2, UAV2 stays on zone2. 
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Figure 96 Trajectories from 6000s to 10800s 

 

Adding one UAV allows the UAVs to cover both zone2 and zone3 while they are 

merging. Where the edges merging catches all the UAVs attention. With UAV1 stays 

exactly at the merging edge, UAV2 and UAV3 can track the whole fire front of zone2 

and zone3 as shown from 7200s to 8400s. More fire information can be collected. 
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Figure 97 Trajectories from 10800s to 18000s 

 

While the merge happened, all UAVs stays at that edge during 10800s to 12000s. 

Soon, when the merge finished at 12000s, UAV3 flies to zone1 to collect fire information 

for zone1. And UAV2 begins to cover merged zone. UAV1 stays at the edge where 

zone1 are merging to the merged new zone. When all the fire zones merged, all UAVs fly 

to track the whole area. 
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