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ABSTRACT

There is a growing need for the development of computational methods and tools for

automated, objective, and quantitative analysis of biomedical signal and image data to fa-

cilitate disease and treatment monitoring, early diagnosis, and scientific discovery. Re-

cent advances in artificial intelligence and machine learning, particularly in deep learning,

have revolutionized computer vision and image analysis for many application areas. While

processing of non-biomedical signal, image, and video data using deep learning methods

has been very successful, high-stakes biomedical applications present unique challenges

such as different image modalities, limited training data, need for explainability and inter-

pretability etc. that need to be addressed.

In this dissertation, we developed novel, explainable, and attention-based deep learn-

ing frameworks for objective, automated, and quantitative analysis of biomedical signal,

image, and video data. The proposed solutions involve multi-scale signal analysis for oral-

diadochokinesis studies; ensemble of deep learning cascades using global soft attention

mechanisms for segmentation of meningeal vascular networks in confocal microscopy;

spatial attention and spatio-temporal data fusion for detection of rare and short-term video

events in laryngeal endoscopy videos; and a novel discrete Fourier transform driven class

activation map for explainable-AI and weakly-supervised object localization and segmen-

tation for detailed vocal fold motion analysis using laryngeal endoscopy videos. Experi-

ments conducted on the proposed methods showed robust and promising results towards

automated, objective, and quantitative analysis of biomedical data, that is of great value for

potential early diagnosis and effective disease progress or treatment monitoring.
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CHAPTER 1

INTRODUCTION

Biomedical images that create visual and functional representations of the interior of

the human body provide indispensable non-invasive diagnostic capabilities in the modern

healthcare system [10]. Thanks to the advances and increased availability of the medi-

cal imaging devices, biomedical image data from sub-cellular to organ scales, involving

different modalities (i.e. electron and light microscopy, endoscopy, computed tomogra-

phy, magnetic resonance imaging etc.) is growing at an unprecedented rate. Novel image

analysis methods and tools are needed to take full advantage of this data. Automated, quan-

titative, and objective analysis of biomedical image data can aid in early diagnosis, disease

progress monitoring, and treatment efficacy monitoring, which are crucial for medical deci-

sion making, timely intervention, and ultimately, improving patients’ quality and duration

of life. However, biomedical image analysis remains to be challenging, due to (1) high-

stakes nature of the application that requires higher levels of accuracy, explainability and

interpretability; (2) unique image modalities; (3) complex anatomical structures; (4) large

variability in the data; and (5) very limited training data due to expertise requirements,

labor-intensive nature of the process, and lack of intuitive annotation tools for complex

2-D + time or 3-D volumetric data.

In recent years, deep learning, a subfield of artificial intelligence and machine learn-

ing (AI/ML), has emerged as a powerful tool for image processing and computer vision.

Deep learning architectures are composed of multi-layer stacks of simple modules, all (or

most) of which are subject to learning, and many of which compute non-linear input-output
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mappings [11]. Deep learning has substantially improved state-of-the-art in many image

processing and computer vision tasks for both general and biomedical applications [12]

[10] [13] [14] [15]. However, two issues, the black-box nature of classical deep learning

methods and their need for large amounts of training data, have restricted their use in clini-

cal applications. Very recently, the Attention Model (AM), first introduced for machine

translation [16] [17], has become increasingly popular within the artificial intelligence

(AI) community. Attention model serves as a resource allocation scheme and is becoming

an essential component of neural architectures especially deep learning architectures for

a remarkably large number of applications including natural language processing (NLP),

speech recognition, and computer vision (CV) [18] [16]. Beyond improving performance

of neural networks, recently, attention mechanism has also been used as a tool to help im-

prove interpretability as well as transparency and fairness of neural network architectures.

The field of explainable artificial intelligence (XAI) focuses on understanding and in-

terpretation of AI systems. XAI aims to address the need for trustworthy, fair, robust, high

performing models for real-world applications [19] [20]. XAI methods attempt to (1) ex-

plain the decisions made by algorithms; (2) unravel the patterns within the inner mechanism

of an algorithm; and/or (3) present the system with coherent models or mathematics [21].

By applying different XAI methods such as visualization of artificial intelligence behav-

iors, developing white-box models, building logical flow graph explanations etc., artificial

intelligence systems can be made more interpretable and reliable for humans. Such systems

can better serve the decision-making process in the biomedical field.

For optimum performance, deep learning systems require large amounts of annotated

data. In biomedical fields, lack of annotated training data tends to be more severe compared

to the other application areas, because of difficulties in data acquisition and requirement of

expertise for data labeling. Weakly-supervised learning, that aims to reduce data annotation

workload while still keeping comparable accuracy and precision levels in the deep learning

network output, started to receive enormous attention. Recently, the class activation map
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(CAM) technique, which was originally developed for XAI, has been proposed to imple-

ment weakly-supervised learning. The CAM methods generate a discriminate saliency map

for a specific class from the deep classification networks, showing the pixel-wise probabil-

ity of a pixel being used for the final class label prediction. The larger the probability, the

more likely it is that the pixel belongs to the target object. This transformation from an

image-level class label to a pixel-level class activation map enables pixel-wise precision

outputs by only using image-level inputs and leads to considerable savings in data annota-

tion workload. Because of this possibility of reduction in annotation workload, CAM tech-

niques started to be applied to weakly-supervised learning tasks such as weakly-supervised

object localization and weakly-supervised object segmentation.

In this dissertation, we focused on developing novel, explainable, attention-based, weakly-

supervised deep learning solutions for biomedical signal, image, and video analysis. We

proposed solutions to three different types of data modalities and associated biomedical

signal, images, and video analysis problems: (1) 1-D signal data analysis for speech and

swallow studies involving oromotor system; (2) 2-D image and 3-D image volume analysis

for meningeal microvascular system study; (3) 2-D + time (video) analysis for vocal folds

motion study. We developed deep learning network architectures involving novel atten-

tion, information selection, and fusion mechanisms, and a novel frequency domain class

activation map method. The proposed systems aims to enable automated, objective, and

quantitative analysis of these three different data modalities, addressing specific needs of

biomedical data analysis.

1.1 Key Contributions

In this dissertation, we made contributions to deep learning architectures, attention

mechanisms, explainable AI (XAI), weakly-supervised object localization and segmen-

tation, and information selection and fusion. We developed fully-supervised and weakly-

supervised machine-learning-based algorithms that are able to handle 1-D signal, 2-D im-
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age, 3-D volume, and 2-D + time (video) data. Through the developed methods, we fa-

cilitated automated, objective, and quantitative analysis of the oral diadochokinesis (oral-

DDK) test, flexible endoscopic evaluation of swallowing studies, and meningeal microvas-

culature system. The developed methods also allowed extraction of quantitative biomark-

ers to facilitate scientific understanding, early diagnosis, monitoring of diseases and treat-

ments.

The key contributions of this dissertation can be summarized as follows:

1. DeepDDK: A Deep Learning based Oral-Diadochokinesis Analysis Software.

We proposed DeepDDK, a cascaded end-to-end trainable network for fast-speech

audio event detection and timestamp prediction. The input to the DeepDDK is a 1-D

audio signal acquired during oral-DDK tests. In order to label oral-DDK data, we

have developed a preliminary unsupervised automated syllable detector (relying on

the signal envelope and local maxima detection) with a user interface for visualiza-

tion, navigation, and modification of the results. Annotation consists of a single event

timestamp for each audio event and doesn’t include any information regarding asso-

ciated temporal interval (i.e. event start and end timestamps). The first subnetwork of

DeepDDK predicts start and end timestamps for each event. The second subnetwork

of DeepDDK predicts a single timestamp within each event.

2. MS-DeepDDK: Multi-Modal and Multi-Scale Oral-Diadochokinesis Analysis

using Deep Learning. We proposed a multi-modal oral-DDK test analysis system

involving automated processing of complementary 1-D audio and 2-D video signals

acquired during speech and swallowing studies. The system aims to automatically

generate objective and quantitative measures from the oral-DDK tests to aid early

diagnosis and treatment monitoring of neurological disorders. The audio signal anal-

ysis component of the proposed system involves a novel multi-scale deep learning

network. The video signal analysis component involves tracking mouth and jaw mo-
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tions during speech tests using our visual landmark tracking software. This system

is an extension and improvement of our original DeepDDK system.

3. LARNet: Orthogonal Region Selection Network for Laryngeal Closure Detec-

tion in Laryngoscopy Videos. We proposed a deep learning-based image analysis

solution for automated detection of laryngeal adductor reflex (LAR) events in la-

ryngeal endoscopy videos. The proposed system consists of a two-stream network

with a novel orthogonal region selection subnetwork (ORS). The proposed network

classifies each video frame into one of three vocal fold (VF) states: non-LAR (open

VFs), LAR (closed VFs), and visual occlusion (the VFs are either masked/covered

by other anatomical structures or out of the camera field of view). The proposed ap-

proach combines global and local information through a two-stream network and a

novel orthogonal region selection (ORS) subnetwork that works like an unsupervised

attention mechanism to improve VF state estimation accuracy.

4. LARNet-STC: Spatio-Temporal Context-based Orthogonal Region Selection Net-

work for Laryngeal Closure Detection in Laryngoscopy Videos. We proposed

LARNet-STC, a deep learning model that extends our novel orthogonal region selec-

tion network with temporal contextual information. This network learns to directly

map its input to a VF open/close state without first segmenting or tracking the VFs ,

which drastically reduces labor-intensive manual annotation needed to generate seg-

mentation mask or VF motion tracks. The proposed spatio-temporal context-based

orthogonal region selection network allows the integration of local image features,

global image features, and information on VF states in time for robust LAR event de-

tection. This deep learning network is a further improvement of our original LARNet

system.

5. Ensemble of Deep Learning Cascades for Segmentation of Blood Vessels in Con-

focal Microscopy Images. We proposed a deep learning system for robust segmen-
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tation of cranial vasculature of mice in confocal microscopy images. The proposed

system is an ensemble of two deep-learning cascades consisting of two coarse-to-fine

subnetworks with skip connections in between. One cascade aims to improve sensi-

tivity, while the other aims to improve the precision of the segmentation results. The

proposed cascades first learn to predict two soft attention maps, one based on binary

pixel classification, and the other based on regression to a distance map. Then, the

attention maps guide the networks to predict an accurate vessel segmentation mask.

To compensate for limited confocal microscopy training data, each of the proposed

cascades is first trained with an epifluorescence microscopy image dataset [22][23],

then fine-tuned with a small set of fused confocal microscopy images of mice cranial

microvasculature.

6. DFT-CAM: Discrete Fourier Transform Driven Class Activation Map. We pro-

posed a gradient-free, discrete Fourier transform driven, class activation map method

named DFT-CAM. Discrete Fourier Transform (DFT) converts spatial domain in-

formation in the images into frequency domain. Frequency domain representation

allows better separation of significant semantic information from image details and

noise. These representations can be used to summarize geometrical characteristics of

spatial information [24]. The proposed DFT-CAM method first uses discrete Fourier

transform (DFT) based representation to summarize learned features in convolutional

feature maps; then uses feature orthogonality to automatically select the most repre-

sentative semantic features while preventing the inclusion of less-contributed fea-

tures.

7. Weakly-supervised Object Localization. We proposed a DFT-CAM based weakly-

supervised object localization pipeline, which uses image-level training labels to pre-

dict pixel-level detection outputs for target objects.
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8. Weakly-supervised Object Segmentation. We proposed a weakly-supervised glot-

tal region segmentation system, which doesn’t require manually annotated segmen-

tation ground truth for deep segmentation training. The proposed system involves

three modules, a deep classification module, a pseudo binary mask generation mod-

ule, and a weakly-supervised deep segmentation module. The deep classification

module directly uses our previously proposed human laryngeal closure detection net-

work, called LARNet-STC [25]. Then, our gradient-free, discrete Fourier Transform

driven class activation map method named DFT-CAM is adopted to produce a class

activation map (CAM) during the inference process of the LARNet-STC. Active con-

tours [24] are used to generate pseudo binary masks of the glottal regions using the

thresholded CAM results. Finally, the pseudo binary masks of glottal region are used

to train a modified U-Net [26] with two complementary outputs to predict a segmen-

tation mask of the glottal region.

1.2 Thesis Outline

The rest of the dissertation is organized as follows: Chapter 2 reviews the related work.

Chapter 3 introduces 1-D signal event segmentation networks DeepDDK and Multi-scale

multi-modal DeepDDK (MS-DeepDDK) that are trained with weak supervision. These

two deep learning networks address the issue of lacking information about the start and

end timestamps for each signal event. The proposed DeepDDK and MS-DeepDDK are de-

signed to have light deep-learning architectures with efficient supervision strategies, aiming

at fast and accurate training and inference processes. In this chapter, we show the evalua-

tion results of DeepDDK and MS-DeepDDK on oral-DDK data.

Chapter 4 presents spatial-temporal orthogonal region selection (ORS) networks LAR-

Net and LARNet-STC for video segmentation. First, we proposed an attention mechanism

orthogonal region selection (ORS) subnetwork. Then, we proposed ORS-based LARNet

and LARNet-STC. These two deep classification networks address the issue of imbalanced
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classes of training data. In this chapter, we evaluate the LARNet and LARNet-STC on

human the laryngeal transnasal endoscopy video dataset.

Chapter 5 presents an ensemble of deep learning cascades designed for 2-D image-

based segmentation. The proposed segmentation system with two deep-learning cascades

overcomes the issue of segmentation ground truth lacking and improves the efficiency of

network training. The proposed pipeline is applied to confocal microscopy images of the

meningeal microvascular system for evaluation.

Chapter 6 presents Discrete Fourier Transform driven class activation map (DFT-CAM)

and DFT-CAM based weakly-supervised object localization and segmentation. First, we

describe the Discrete Fourier Transform driven class activation map (DFT-CAM). Then,

we describe the weakly-supervised object localization and segmentation pipelines based

on the DFT-CAM. The weakly-supervised object localization is evaluated on the ImageNet

Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) dataset [27]. The weakly-

supervised object segmentation is applied to the human laryngeal transnasal endoscopy

video data for evaluation. In the end, together with the previously proposed LARNet and

LARNet-STC, we describe the joint analysis of classification and segmentation results fur-

ther improve the robustness and comprehensiveness of the visual-based analysis for the

vocal fold system.

Chapter 7 concludes this dissertation and discusses future works. Methods presented in

this dissertation, originating from collaborations with researchers in biomedical and com-

putational sciences, have been published in [4] [28] [29] [30] [25].

8



CHAPTER 2

RELATED WORKS

2.1 Oral-DDK syllable detction in oral-DDK test audio.

Recent studies have started to show the potential of speech in general and oral diado-

chokinesis (oral-DDK) in particular to be a functional biomarker for neurological disorders.

DDK task derived measures were explored for diagnosis of neurological diseases such as

Parkinson’s disease (PD) [31][32], traumatic brain injury [33], multiple sclerosis (MS)

[34], and ataxic dysarthria [35]. Various computational approaches have been proposed

to analyze DDK data and to derive clinically relevant outcome measures. For example,

syllables in oral-DDK task can be detected by first computing signal envelope, then by

thresholding the envelope or locating local maxima in the envelope. This process requires

parameter selection for envelope computation and thresholding. However, complexity of

the signals, and high variations in frequency and amplitude make parameter selection chal-

lenging and result in under- or over-detection of the syllables. Wang et al. [36] proposed

a multi-threshold syllable detection system in which a threshold is automatically selected

based on a 7-second DDK sample and the gender of the participant. Threshold can then be

adjusted to re-perform the analysis if needed. However, if the lowest peak intensity during

consonant-vowel (CV) is lower than the highest peak intensity during inter-syllable pauses,

the DDK sample gets labeled as nonexecutable. The approach results in more than one

third of their DDK samples being unanalyzable. Tao et al. [37] proposed use of Gaussian

Mixture Models and Hidden Markov Models (GMM-HMM) to automatically detect sylla-

ble boundaries in DDK data. While there is significant interest and substantial success in
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deep learning-based audio analysis systems [38][39][40], oral-DDK analysis remains to be

a challenging task due to fast and repetitive nature of the data, need for accuracy, and lack

of semantic context clues that can help the process.

2.2 Laryngeal endoscopy video analysis

Majority of the laryngeal endoscopy video analysis studies focus on processing of rigid

transoral (through the mouth) laryngoscopy videos. Transoral laryngoscopy videos are

characterized by high frame rates, high image resolutions, and good image quality. On

the other hand, flexible transnasal (through the nose) endoscopy, used in clinical practice

and focus of this dissertation, suffer from lower frame rates, image resolutions, and quality.

The earlier works on laryngeal endoscopy video analysis mostly relied on sensitive hand-

crafted/engineered features that require heavy parameter tuning. Some examples of these

works include [41][42][43] designed for vocal fold (VF) segmentation, [44] designed for

VF classification , and [45] designed for VF image selection. Recently, deep learning-based

approaches started to emerge for automated analysis of laryngeal videos. In [6], we have

developed a deep convolutional regression network for segmentation of VFs and glottal

region. Annotated training data for this network was generated by extending our previous

interactive vocal fold tracking software VFTrack [46]. In [47], a cascade of two networks

was proposed to segment the laryngeal structures. In [5], a U-Net [26] based segmentation

network was augmented with Long Short-Term Memory (LSTM) [48] blocks for segmenta-

tion of glottal region from transoral laryngeal endoscopy videos. This dissertation focuses

on detection of laryngeal adductor reflex (LAR) events in flexible, transnasal endoscopy

videos. While great improvement over the previous handcrafted/engineered works, VF seg-

mentation networks are not very suitable for LAR event detection for four main reasons:

(1) segmentation networks require ground truth segmentation masks for training. Prepa-

ration of these training segmentation masks is a labor intensive and time-consuming task

requiring domain expertise. Whereas frame level class labels (i.e. open VFs, closed VFs)
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required for VF state description require much less effort and expertise. (2) Segmentation

networks are often tested on video frames where VFs are fully visible. They often detect

spurious regions when VFs are occluded or are not in the field of view of the endoscope.

(3) Abrupt motion during LAR events leads to tracking failures. (4) Additionally, most of

the earlier work on VF analysis did not incorporate temporal video context and analyzed

individual video frames independently leading to loss of valuable temporal information for

LAR event detection.

2.3 Dealing with objects in different scales

In deep convolutional neural networks, max-pooling layers designed to enlarge the con-

volution field of view play a critical role. They present a compromise between the hardware

capability, execution time, and the convolutional kernel size. They help a network extract

and learn abstract and transformation invariant features from an image. Unfortunately,

small objects can also be eliminated in this process. If small objects are of interest to the

given task, network performance can get adversely affected. In our applications, VFs typ-

ically occupy a small portion (typically < 25%) of the endoscope field of view. In some

cases, when the endoscope is positioned further away from the VFs, or when the endoscope

is being pulled out of the larynx, the apparent size of the VFs can be even smaller. Fur-

thermore, the relatively far distance between the VFs and the endoscope makes the camera

harder to autofocus. Depending on the position and orientation of the endoscope, VFs can

appear at different positions in a video frame. VF state estimation performance is expected

to be adversely affected by the small size of VFs in these inspected images.

To deal with small object classification/segmentation problems, regions of interest are

usually extracted from the input images before performing classification or segmentation

tasks. For example, in deep object detection networks such as YOLOv4 [49] and fea-

ture pyramid network [50], first a set of bounding boxes are proposed, then image content

within the proposed bounding boxes are classified and/or segmented. These detection net-
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works require ground truth bounding boxes and segmentation masks besides class labels

for training, which increase manual annotation workload and slow down the speed of the

process. In this work, we propose an unsupervised region selection scheme (orthogonal re-

gion selection (ORS) subnetwork) that selects an image subregion without need for manual

annotation.

2.4 Orthogonality

Orthogonality has been used for network initialization in deep neural networks (DNNs)

[51][52]. Orthogonal weight normalization has been proposed to improve network gen-

eralization capabilities [53]. There is a growing interest on use of deep neural network

layer weight pruning techniques to reduce feature redundancy in DNNs. The aim is to im-

prove the generalization and precision capabilities of DNNs [54]. Orthogonality has been

used in network initialization and regularization to prevent gradient vanishing or explod-

ing problem in training very deep neural networks [55][56]. [57] proposed a loss function

that encourages the features of different classes to be orthogonal to each other. Orthogonal

deep features decomposition has been proposed to improve face recognition accuracy [58].

In this work, we relied on feature orthogonality to select image subregions of interest for

further processing.

2.5 Dealing with imbalanced data

Imbalance in training data can affect network performance by leading to convergence

bias towards the majority class. Since imbalanced class samples is common in medical

image analysis some strategies such as random over-sampling (ROS) [59], random under-

sampling (RUS) [60], dynamic sampling [61], online hard example mining (OHEM) [62],

custom loss function [63][64][65], weighted loss [66], custom DNN [67][68], and CNN

output thresholding adjustment [69] have been proposed. In order to deal with our rare

event detection problem, where LAR frames constitute less then one tenth of the non-LAR
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frames, we used both ROS and RUS strategies and created a relatively equal distribution of

input training data in each epoch.

2.6 Spatio-temporal networks for classification

Spatio-temporal deep learning networks are designed for learning spatial and temporal

features jointly for more accurate prediction. Published deep learning methods involv-

ing spatio-temporal information can be categorized into three types: (1) high-dimensional

convolutional networks such as 3-D and 4-D convolutional networks; (2) recurrent neural

networks (RNNs) such as long short-term memory (LSTM) [70] and gated recurrent unit

(GRU) [71] networks; and (3) local spatial features combined with temporal convolutional

neural networks (TCN).

Current spatio-temporal solutions that directly use 3-D or even 4-D convolutions [72][73][74]

require more hardware memory and computational cost than 1-D and 2-D convolutions.

Moreover, for long-term sequential data, memory required for processing temporal infor-

mation in 3-D and 4-D convolutions increases exponentially as the data becomes longer,

which makes it harder to be trained on low-memory GPUs. RNN has been proposed for

long-term context-intensive sequential data and applied to many tasks such as arrhythmia

detection [75][76], seizure detection [77][78], and action recognition [79][80]. Recently,

several spatio-temporal fully convolutional deep learning networks that utilize local spa-

tial features combined with temporal convolutional neural network have been proposed

for learning long-term patterns [81][82]. However, due to the low frame rates of flexible

transnasal endoscopy and the rare nature of the LAR and occlusion events, state of the

vocal folds change momentarily within a few frames. In such rare and short-term cases,

use of longer term temporal information hurts rather than helps classification/detection per-

formance. [5] showed that long short-term memory (LSTM) leads to false detections on

an empty (all black) video frame when used for vocal fold segmentation despite use of

high-speed endoscopy video.
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2.7 Segmentation of meningeal microvasculature in confocal microscopy images

While many algorithms have been proposed for segmentation of vascular systems, ma-

jority of these works focus on analysis of retinal blood vessels [83][84][85] [86] [87].

These works mostly benefit from publicly available annotated retinal blood vessel data

such as DRIVE [88], STARE [89], and ImageRet [90] etc.. Computational analysis of

vascular images from confocal microscopy remains limited due to the severe lack of anno-

tated data and challenges associated with 3-D image analysis. Unlike retinal blood vessels,

meningeal microvasculature is characterized by irregular shapes, varying scales of vessels,

staining and imaging issues.

2.8 Class activate map

For optimum performance, deep learning networks require large amounts of training

data. However, data annotation is time-consuming and labor-intensive. Especially in

biomedical fields, data is already hard to acquire due to hardware limitations, privacy pro-

tection, and saving issues. On top of this, biomedical data annotation becomes even harder

due to labor intensive nature of the process and expertise requirements.

Recently, a deep-learning-based technique, named class activation map (CAM), has

been proposed to visualize the decision basis in deep learning networks. CAM methods

usually generate a rough 2-D class discriminative saliency map for the input image, show-

ing a pixel-wise probability estimation of pixels being used to decide the class label in

deep learning classification networks. This visualization improves the interpretability, ex-

plainability, and reliability of deep learning networks. Transformation from image-level

class labels to pixel-level class activation maps can be used to power weakly-supervised

pixel-level tasks such as weakly-supervised object localization and weakly-supervised ob-

ject segmentation. These tasks can greatly reduce human annotation workload and save

time.
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Several CAM methods have been proposed, such as gradient-free methods CAM [91]

and Ablation-CAM [92], or gradient-based methods such as Grad-CAM [93] and Grad-

CAM++ [94]. To generate a saliency map, these methods often combine information from

all the channels from a convolutional layer using a weighted sum operation. This process

can blend unrelated regions of the target object and affect the energy distribution of the

saliency map, lowering the accuracy of downstream tasks such as the weakly-supervised

object localization and weakly-supervised object segmentation processes.

2.9 Weakly-supervised object localization and segmentation

Weakly-supervised learning is a branch of machine learning. Weakly-supervised learn-

ing recently has received enormous attention, aiming to reduce data annotation work-

load and maintain the same level of output precision [95] [96]. Based on the types of

training data, weakly-supervised learning can be categorized into three types: (1) incom-

plete supervision, which means only a subset of training data is labeled; (2) inexact su-

pervision, which means that the training data is coarse-grained; (3) inaccurate supervi-

sion, which means the training labels are noisy [97]. Based on the purposes, weakly-

supervised learning can be divided into different categories according to their desired out-

puts, such as weakly-supervised object localization (WSOL), weakly-supervised object de-

tection (WSOD), weakly-supervised object classification (WSOC), and weakly-supervised

object segmentation (WSOS). Different methods have been proposed to achieve the goal,

for example, methods that are based on specific system architectures, feature extraction and

refinement, loss function, and training strategies [98].
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CHAPTER 3

EVENT DETECTION: DEEPDDK FOR ORAL

DIADOCHOKINESIS ANALYSIS

This chapter introduces our 1-D signal event detection deep-learning networks Deep-

DDK and multi-modal multi-scale DeepDDK (MS-DeepDDK). DeepDDK is a cascade of

two 2-D deep-learning networks that use single-scale 1-D signal as input [4]. Multi-modal

multi-scale DeepDDK, MS-DeepDDK, is an end-to-end trainable deep-learning network

that takes multi-scale 1-D signal as input [28], which is an improvement of our original

DeepDDK network [4]. The proposed DeepDDK and MS-DeepDDK are trained with weak

supervision. This allows a lightweight deep learning network and enables accurate and fast

1-D signal event detection. The DeepDDK and MS-DeepDDK networks were evaluated

on oral diadochokinesis (oral-DDK) audio signals.

In this chapter, we first introduce the background and objective of oral diadochokinesis

data analysis. Then, we introduce our proposed DeepDDK and MS-DeepDDK networks,

and their corresponding experimental results individually.

3.1 Introduction

Various neurological disorders such as Parkinson’s disease (PD), stroke, amyotrophic

lateral sclerosis (ALS), etc. cause oromotor dysfunctions resulting in significant speech

and swallowing impairments. Assessment and monitoring of speech disorders offer effec-

tive and non-invasive opportunities for differential diagnosis and treatment monitoring of

neurological disorders. Oral diadochokinesis (oral-DDK) is a widely used test conducted
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by speech-language pathologists (SLPs) to assess speech impairments. Unfortunately, anal-

ysis of the oral-DDK tests relies on perceptual judgments by SLPs and are often subjective

and qualitative, thus limiting their clinical value. In this chapter, we propose a multi-

modal oral-DDK test analysis system involving automated processing of complementary

1-D audio and 2-D video signals of both speech and swallowing function. The system aims

to automatically generate objective and quantitative measures from the oral-DDK tests to

aid early diagnosis and treatment monitoring of neurological disorders. The audio sig-

nal analysis component of the proposed system involves a novel multi-scale deep learning

network. The video signal analysis component involves tracking mouth and jaw motion

during speech tests using our visual landmark tracking software. The proposed system has

been evaluated on speech files corresponding to 9 different DDK speech syllables. The

experimental results demonstrated promising audio syllable detection performance with an

average of 1.6% count error across different types of oral-DDK speech tasks. Moreover,

our preliminary results demonstrated added value through combined audio and video signal

analysis.

Diagnostic and prognostic accuracy as well as timely intervention and treatment mon-

itoring are important for progressive neurological disorders such as Parkinson’s disease

(PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), since earlier inter-

vention is associated with improved quality of life and survival in these patient populations.

Diagnosis and monitoring of neurological disorders involve various medical tests, some of

which can be invasive and expensive, prohibiting their effective use. Recent advances in

mobile health technologies have lead to the development of non-invasive, more accessible,

and affordable new methods and devices not only for diagnosing and monitoring medical

conditions, but also for tracking functional decline induced by these diseases. This chap-

ter focuses on development of an oral-diadochokinesis (oral-DDK) analysis software for

non-invasive, objective, and quantitative assessment and monitoring of speech disorders

common in PD, ALS, MS, and other neurological disorders.
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Oral-DDK tasks are universally used by speech-language pathologists (SLPs) for as-

sessment and monitoring of motor speech disorders (e.g., dysarthria and apraxia)[99].

These tasks involve repetitions of single syllables like “Pa”, “Ta”, “Ka”, or sequential

multi-syllables such as “Pa-Ta-Ka”, “Buttercup”, etc. as fast as possible, in one breath

or within a fixed period of time. SLP use these tasks to estimate diadochokinetic (DDK)

rate to provide information about a person’s ability to make rapid speech movements using

different parts of the mouth [100]. Manual analysis of DDK rate from audio files is sub-

jective, time intensive, and error-prone. Furthermore, since manual analysis only estimates

syllable count, not the locations (timestamps), or production accuracies of the events, rich

information that can help diagnosis or monitoring is lost.

(a) “Pa” audio sample (b) “Ta” audio sample

(c) “Ma” audio sample (d) “La” audio sample

Figure 3.1. Audio waveform samples for different types of oral-DDK tasks.
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In this chapter, we present 1-D signal event detection deep-learning networks Deep-

DDK and MS-DeepDDK, which take 1-D signal as input and predict start and end times-

tamps of the detected 1-D signal events. The proposed DeepDDK and MS-DeepDDK can

be applied to detect and localize syllables in DDK audio files. The aim of this work is to

enable the computation of objective, quantitative measures from the oral-DDK signals to

aid early diagnosis and treatment monitoring of neurological disorders.

3.2 DeepDDK Oral Diadochokinesis Analysis Network

Deep learning is a subfield of machine learning that allows learning of high-level ab-

stractions in data through its multi-layer architecture [11]. Inspired by the recent successes

of deep learning in speech and image analysis, we have developed DeepDDK, a deep learn-

ing based system for automated detection and localization of syllables in oral-DDK tasks.

3.2.1 Network Architecture

DeepDDK consists of a cascade of two convolutional neural networks (CNNs). The

first CNN (CNN-1) segments the 1-D audio signal into syllable vs. non-syllable (silence,

breath, etc.) regions. CNN-1 is a classification network that operates on 1-D temporal array

of audio samples. Input size is 1×5292, where 5292 = 120ms×44.1kHz corresponds to the

product of average syllable duration and sampling rate. Output size is two, corresponding

to syllable and non-syllable labels. The CNN-1 network structure is shown in Figure 3.2a

and Table 3.1.

The second CNN (CNN-2) locates syllable timestamps within the syllable regions de-

tected by CNN-1. CNN-2 is a 2D regression network that operates on a sequence of audio

frames (temporal windows) with length of average event duration 120ms (Table 3.2) to

predict the precise timestamp of a syllable. For each frame in the input, CNN-2 predicts

the probability to contain a syllable. Input size is 15 × 5292, where 15 is the number of
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audio frames analyzed and 5292 is the length of a frame as in CNN-1. The CNN-2 network

structure is shown in Figure 3.2b and Table 3.1.

3.2.2 Convolutional Neural Networks Training of DeepDDK

Using our custom DDK data collection iOS App, we conducted an IRB-approved study

to collect oral-DDK data from seventeen testers for nine tasks (corresponding to syllables

“Pa”, “Ta”, “Ka”, “Da”, “Ba”, “Ga”, “La”, “Ma”, and “Ha”). Following study consent,

subjects were instructed to repeat each syllable as fast as they could for 15 seconds. Each

task was repeated twice, resulting in 306 audio files of length 15 seconds. All audio files

were sampled at 44.1 kHz. Our DeepDDK system relies on availability of labeled train-

ing data. In order to label data, we have developed a preliminary unsupervised automated

(a) CNN-1 architecture

(b) CNN-2 architecture

Figure 3.2. CNN-1 and CNN-2 architectures used for DDK syllable detection and localization.
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CNN-1: Layer (type) Size CNN-2: Layer (type) Size
input 1 (InputLayer) (5292, 1) input 2 (InputLayer) (15, 5292, 1)
conv1 (Conv1D) (5292, 64) conv1 (Conv2D) (15, 5292, 32)
conv2 (Conv1D) (5292, 64) conv2 (Conv2D) (15, 5292, 32)
conv3 (Conv1D) (5292, 64) conv3 (Conv2D) (15, 5292, 32)
max pooling1d 1 (1323, 64) max pooling2d 1 (7, 661, 32)
batch norm 1 (1323, 64) batch norm 5 (7, 661, 32)
conv4 (Conv1D) (1323, 128) conv4 (Conv2D) (7, 661, 64)
conv5 (Conv1D) (1323, 128) conv5 (Conv2D) (7, 661, 64)
conv6 (Conv1D) (1323, 128) conv6 (Conv2D) (7, 661, 64)
max pooling1d 2 (330, 128) max pooling2d 2 (3, 82, 64)
batch norm 2 (330, 128) batch norm 6 (3, 82, 64)
conv7 (Conv1D) (330, 256) conv7 (Conv2D) (3, 82, 128)
conv8 (Conv1D) (330, 256) conv8 (Conv2D) (3, 82, 128)
flatten 1 (FC) (84480) flatten 2 (FC) (31488)
batch norm 3 (84480) batch norm 7 (31488)
dropout 1 (84480) dropout 3 (31488)
dense 1 (FC) (1000) dense 3 (FC) (1000)
dropout 2 (1000) dropout 4 (1000)
dense 2 (FC) (2) dense 4 (FC) (15)
batch norm 4 (2) batch norm 8 (15)
output classification (2) output regression (15)

Table 3.1. Layer details for CNN-1 and CNN-2 used for DDK syllable detection and localization.

syllable detector (envelope with local maxima) with a user interface for visualization, nav-

igation, and editing of the results. Results form unsupervised detector were inspected by

three experts and corrected according to consensus using our visualization and editing in-

terface. The ground truth consists of a timestamp for each syllable, instead of a region in

the audio signal. Locations of these timestamps typically correspond to the sample value

maxima in the syllable/event. Considering average event duration (see Table 3.2), 120ms

temporal windows (also called ‘frames’) centered at the ground-truth syllable timestamps

are used as positive samples (syllables) to train CNN-1. Each timestamp produces only

one positive frame, reducing false positives in the training data compared to use of sliding

windows. Shaded regions in Figure 3.3 show these positive samples. As negative sam-

ples (non-syllable) to train CNN-1, 120ms temporal windows centered at each midpoint
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between two consecutive syllable timestamps are used. In order to prevent information

loss, instead of extracting hand-crafted audio features, raw audio sample value is fed into

CNN-1. CNN-2, the regression module, aims to predict precise timestamps of the detected

syllables. To train the network, 15 sequential frames (one centered at, K centered before,

and 15 − K − 1 centered after the ground truth timestamp, where K is a random number

in the range 1 to 13 for robustness) are extracted with a step size of 12ms. Each frame is

assigned a score indicating its probability to contain a syllable:

Pi = 1 −
|i − iGT |

15 − 1
(3.1)

where i is the index of the specific frame in the sequence and iGT is the index of the frame

centered on the ground-truth syllable timestamp.

3.2.3 Convolutional Neural Networks Testing of DeepDDK

DeepDDK syllable detection and localization processes can be summarized as follows.

The intermediate outputs from classification network (CNN-1) and regression network

(CNN-2) are shown in Figure 3.4b and 3.4c.

Step-1 Classification: Raw audio samples are fed into CNN-1. For each sliding window

with stride 12ms, CNN-1 predicts a class label (syllable vs. non-syllable), which is then

(a) “Ta” labeled sample (b) “La” labeled sample (c) “Ha” labeled sample

Figure 3.3. Sample training data. Colored dots mark ground-truth timestamps, shaded regions mark
positive training samples for CNN-1.
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Figure 3.4. Intermediate outputs from the different stages of DeepDDK for a sample “Pa” file. Top
panel: original audio signal (blue) with ground-truth timestamps (red). Second panel: output of
CNN-1. Third panel: output of CNN-2 where local maxima indicate syllable timestamp.

assigned to the sliding window. The process produces a binary 1D array,L, whereL(t) = 1

indicates presence of a syllable at time t.

Step-2 Interval Preprocessing: Morphological closing is applied to L to fill small gaps in

class labels. Syllable event time intervals E = {E1, ..,En} are identified by applying con-

nected component labeling to L. Ei represents a region of a syllable. n indicates sylla-

ble/event count in the file.

Step-3 Syllable Timestamp Prediction: From each syllable event interval Ei, 15 sequential

frames are extracted. If the duration of Ei is less than 15 frames, the negative frames around

Ei will be included until Ei duration has 15 frames. Extracted frames are fed into CNN-2

for timestamp score prediction. The center of the frame with the maximum CNN-2 score

is marked as the timestamp for event Ei .
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3.3 Experimental Results of DeepDDK

As described in Section 3.2.2, we have collected 306 audio files corresponding to 17

subjects, 9 different syllables, and two files for each syllable type. These files were first

analyzed by our unsupervised gammatone-based syllable detection software. The detec-

tions were then corrected by expert speech pathologists using our visualization and editing

interface to produce ground-truth data. Out of these 306 files, 225 files (74%) were used

to train the proposed DeepDDK software, and 81 files (26%) were used to test the sylla-

ble detection and localization performance. Each audio file was 15sec long. The average

number of events per audio file was 74.

We evaluated the system performance in terms of syllable/event count accuracy and

syllable/event localization accuracy. Event counting accuracy is evaluated by comparing

the number of detected events (DT ) to the number of ground truth events (GT ). The average

event count difference 1
N

∑N
i=1 |#DT (i) − #GT (i)| between DeepDDK and ground-truth for

N = 81 test files is 1.6 events. The average execution time per test file is 1.9s. Figure 3.5

shows detailed, comparative, syllable count accuracy analysis for the proposed DeepDDK

and a very recent pre-linguistic speech segmentation tool[1]. DeepDDK results in low

syllable count errors and outperforms the pre-linguistic speech segmentation tool[1]. For

81% of the test files, DeepDDK count error is 2 or less (|#DT (i)−#GT (i)| ≤ 2). Considering

that the average number of events per file is 74, this corresponds to 2.70% error. For the

case of [1], only 72% of the test files have a count error of 2 or less. Figure 3.5 also

shows that DeepDDK’s highest error for any file is 5, which corresponds to an error of

6.75%, whereas when [1] is used, 17% of the files have a count error higher than 5. We

also compared our results with another DDK software from Smekal et al. [2][3], and

linear support vector machine (SVM) with Mel-frequency cepstral coefficients (MFCC)

features. Table 3.2 presents overall and type-specific event localization performances for

DeepDDK. Localization performance is measured in terms of recall (Recall = #T P
#GT ) and

precision (Precision = #T P
#DT ) for a given temporal distance threshold. Two temporal distance
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thresholds T = 30ms and T = 60ms were used to evaluate performance. If the timestamp of

the detected event is located within T milliseconds of the ground-truth event, the detection

is considered a true positive detection (T P). We can see in Table 3.2 that event types ‘Pa’,

‘Ka’, ‘Ba’, ‘Da’, and ‘Ga’ have very high location accuracies for T = 30ms, because

of their fairly regular pattern. In contrast, ’Ta’ appears to have lower location accuracy.

However, this is mostly due to its relatively longer duration (larger than our frame length),

which leads to the shift location of the predicted event label.

3.4 MS-DeepDDK Multi-scale Oral Diadochokinesis Analysis Network

The proposed MS-DeepDDK is shown in Figure 6.2. The proposed system consists

of two parallel subsystems for improved robustness. The first subsystem is responsible for

analysis of audio signals, while the second subsystem is responsible for tracking mouth and

Figure 3.5. Cumulative distribution of event count error for pre-linguistic segmentation[1], Smekal
et al.[2][3], MFCC with Linear SVM and our DeepDDK software. Horizontal axis indicates count
error (difference between the number of predicted events vs. ground truth events). Vertical axis
shows the ratio of the test files. Absolute event count differences of 1, 2, 3, 4, 5 in the graph
correspond to percent count errors of 1.35%, 2.70%, 4.05%, 5.40%, 6.75%, respectively (average
number of events per file is 74).
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Type Event Recall Precision
Duration 30ms 60ms 30ms 60ms

‘Pa’ 120ms 0.97 0.98 0.97 0.98
‘Ta’ 170ms 0.81 0.95 0.81 0.95
‘Ka’ 140ms 0.91 0.97 0.92 0.98
‘Ba’ 90ms 0.97 0.98 0.97 0.99
‘Da’ 130ms 0.89 0.97 0.81 0.98
‘Ga’ 110ms 0.94 0.96 0.95 0.98
‘La’ 100ms 0.79 0.90 0.79 0.90
‘Ma’ 90ms 0.88 0.95 0.89 0.97
‘Ha’ 140ms 0.85 0.93 0.87 0.95
Average 120ms 0.89 0.95 0.90 0.97

Table 3.2. DeepDDK’s location accuracy of different types of syllables.

extracted audio

video

extracted 
video frames

Deep-learning-based 
multi-scale syllable 
detection network

Visual tracking of mouth 
motion using JawTrack

detection results

……

- start timestamp

- end timestamp
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Figure 3.6. The proposed multi-modal and multi-scale oral-DDK analysis pipeline.

26



jaw motion occurring during oral-DDK tests. Oral-DDK audio signal analysis involves:

(1) sliding temporal window syllable/non-syllable classification; and (2) localization of

start and end timestamps for individual syllables. During oral-DDK tests, large variations

in audio signal amplitude, frequency, and pitch occur due to test subjects’ age, gender,

fatigue, and severity of their neurological disorders affecting speech production. In order

to ensure robust syllable detection despite these signal variations, we propose a multi-scale

syllable detection deep learning network.
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Figure 3.7. The architecture of the proposed multi-scale syllable detection deep learning network
MS-DeepDDK.

3.4.0.1 MS-DeepDDK Network Architecture

The proposed multi-scale syllable detection network, MS-DeepDDK, consists of three

streams of one dimensional convolutional subnetworks responsible for feature extraction.

The inputs to the processing streams are generated using three different temporal scales

corresponding to sliding temporal windows of 0.09, 0.12, and 0.15 seconds. These tempo-

ral window sizes were selected according to the average syllable durations listed in Table

3.3. In each stream, one-dimensional input vectors are convolved with one-dimensional

convolutional kernels. Two max-pooling layers are added between two groups of adjacent

convolutional layers to enlarge the receptive field of these convolution operations. The

one-dimensional convolutional feature vectors, outputted from the three parallel process-
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Table 3.3. Average durations for oral-DDK syllables “Pa” & “Ta” & “Ka” and for various other
syllables that are close substitutes.

Average Syllable Durations (seconds)
“Pa” “Ta” “Ka” “Ba” “Da” “Ga” “La” “Ma” “Ha” Average
0.12 0.17 0.14 0.09 0.13 0.11 0.10 0.09 0.14 0.12

ing streams, are concatenated and fed to two consecutive fully connected layers to perform

syllable/non-syllable classification. The proposed deep learning network architecture is

shown in Figure 3.7. Network parameters for the three parallel feature extraction streams

are summarized in Table 3.4.

3.4.0.2 Network Training of MS-DeepDDK

Using our custom oral-DDK data collection iOS App, we conducted an IRB-approved

study to collect oral-DDK data from 17 testers for 9 tasks (corresponding to syllables “Pa”,

“Ta”, “Ka”, “Da”, “Ba”, “Ga”, “La”, “Ma”, and “Ha”). Following study consent, subjects

were instructed to repeat each syllable as fast as they could for 15 seconds. Each task

was repeated twice, resulting in 306 audio files of length 15 seconds. All audio files were

sampled at 44.1 kHz. Annotated training data was generated by consensus of three do-

main experts using our interactive oral-DDK annotation software, TongueTwister. Ground

truth annotations consists of a series of timestamps marking each syllable. Locations of

these timestamps typically corresponded to signal local maxima within the syllable/event.

Considering average audio event duration (see Table 3.3), three different scales of temporal

windows centered at the ground-truth syllable timestamps were used as positive samples

(syllables) to train the proposed network. Each timestamp was used to produce three pos-

itive temporal windows. Midpoints between consecutive syllable timestamps were used

to generate negative samples (non-syllables). As in the case of positive samples, three

negative temporal windows were extracted from each midpoint. Mel-frequency cepstral

coefficients (MFCCs) [101] were computed for the extracted positive and negative tem-
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poral windows. These coefficients were flattened and fed into the proposed network for

training.

3.4.0.3 Syllable Detection using MS-DeepDDK

Main processing steps involved in the proposed audio signal based syllable detection

and localization processes can be summarized as follows:

1. Classification: MFCC features computed from temporal windows are flattened and

fed into the proposed multi-scale network MS-DeepDDK. For each sliding window

(with a stride 1
10 × temporal window size), the proposed network predicts a class

label, syllable versus non-syllable. The process produces a binary 1-D array L, where

L(t) = 1 indicates the presence of a syllable at time t.

2. Interval preprocessing: Morphological closing is applied to L to fill small gaps in

class labels. Syllable event time intervals E = {E1, .., En} are identified by applying

connected component labeling to L. Ei represents the interval of time corresponding

to a syllable. n indicates the syllable/event count in the file.

3. Syllable timestamp prediction: For each syllable event interval Ei, the center of the

interval is extracted as the final timestamp prediction for each syllable event.

3.4.1 Visual Oral-DDK Analysis through Mouth and Jaw Motion Tracking

For visual analysis of mouth and jaw motion during oral-DDK tests, we use JawTrack

tracking software [102][103]. JawTrack is our group’s visual tracking software that pro-

vides functionalities of landmark tracking, automated and manual motion event detection,

and automated computation of biologically motivated outcome measures. JawTrack uses

normalized 2-D cross correlation [104] and motion pattern analysis to track landmarks of

interests selected by users. JawTrack supports multiple image modalities (i.e., visible and

X-ray) and has been used for tracking landmarks of interest on various animal (mice, rat,

dog) and human motion studies [103]. In order to track mouth and jaw motion during
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oral-DDK tests, we have marked three locations of interest (i.e., philtrum, mentolabial sul-

cus, and chin) with colored stickers applied to the skin. The three markers are tracked,

visualized, and analyzed using JawTrack. The philtrum is used as a reference point. Dis-

tances of mentolabial sulcus and chin to philtrum in time are used to quantify motion and

open/closed states of the mouth. A sample screenshot of the JawTrack interface during vi-

sual DDK analysis is shown in Figure 3.8. In the example, 1-D plot illustrates the distance

between the philtrum and mentolabial sulcus in time, where the green and red dots on the

graph mark the automatically detected opened and closed states of the mouth/jaw.

philtrum

mentolabial
sulcus

chin

Figure 3.8. Sample screenshot for JawTrack visual tracking software during oral-DDK mouth and
jaw motion analysis.

3.5 Experimental Results of MS-DeepDDK

3.5.1 Oral Syllable Detection Accuracy

As described in Section 3.4.0.2, we have collected 306 audio files from 17 subjects,

corresponding to 9 different syllables, and two audio files for each syllable type. These

files were first analyzed by unsupervised gammatone-based [105] syllable detection option
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Table 3.4. Network parameters for the feature extraction streams in the proposed MS-DeepDDK
network.

Layer name kernel size, # channels
conv1 1 x 3, 64
conv2 1 x 3, 64
conv3 1 x 3, 64
maxpooling1D 1 x 4
conv4 1 x 3, 128
conv5 1 x 3, 128
conv6 1 x 3, 128
maxpooling1D 1 x 4
conv7 1 x 3, 256
conv8 1 x 3, 256

in our TongueTwister software. The detections were then corrected by expert SLPs using

our visualization and editing interface to produce ground-truth data. Out of these 306 audio

files, 225 audio files (74%) were randomly selected for training the proposed multi-scale

DDK syllable detection network MS-DeepDDK. The remaining 81 files (26%) were used

to test the syllable detection performance. Each audio file was 15 seconds long. The

average number of events per audio file was 74.

We compare the performance of the proposed MS-DeepDDK network to four DDK

syllable detection approaches: (1) pre-linguistic audio segmentation [1]; (2) non-linear

dynamic features combined with empirical mode decomposition (EMD); [3, 2], (3) Mel-

frequency cepstral coefficients (MFCC) combined with linear support vector machines

(SVM); and (4) our earlier deep DDK syllable detection network DeepDDK [4].

Evaluations were carried out in terms of Mean Absolute Error (MAE), Mean Square

Error (MSE), and Cumulative Score (CS) [106, 107] that compared the number of syllable

events in the ground truth versus in the automated predictions. These evaluation measures

are defined as follows:

MAE =
1
N

N∑
i=1

|gi − pi| (3.2)
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Table 3.5. Mean absolute error (MAE) and mean square error (MSE) comparisons for oral-DDK
syllable detection.

MAE MSE
Pre-linguistic [1] 3.2375 31.6375
MFCC+linearSVM 3.5432 31.0741
Smekal et al. [2] [3] 17.6420 4178.3580
DeepDDK [4] 1.6049 4.4198
MS-DeepDDK (proposed) 1.1852 2.9630

Table 3.6. Cumulative scores (CS) for the compared methods for different count error tolerances.

CS(0) CS(1) CS(2) CS(3) CS(4) CS(5)
Smekal et al. [2] [3] 0.0370 0.1852 0.3086 0.3827 0.4568 0.5185
MFCC+LinearSVM 0.1358 0.3086 0.5432 0.6667 0.7407 0.8148
Pre-linguistic
segmentation [1] 0.1235 0.4815 0.7161 0.7902 0.8025 0.8272

DeepDDK [4] 0.2099 0.5556 0.8149 0.8519 0.9630 1.0
MS-DeepDDK
(proposed) 0.3210 0.7407 0.8642 0.9136 0.9753 1.0

MS E =
1
N

N∑
i=1

(gi − pi)2 (3.3)

CS (x) =
Ne≤x

N
× 100% (3.4)

where gi and pi represent the ground truth and predicted number of syllable events in oral-

DDK audio file i, N is the total number of test audio files, and Ne≤x is the number of files

where the prediction makes an absolute count error of less than or equal to error tolerance

x.

Syllable detection mean absolute errors (MAE) and mean square errors (MSE) are

listed in Table 3.5. The proposed multi-scale oral-DDK syllable detection network MS-

DeepDDK achieves the lowest MAE and MSE errors among all five algorithms with an

average absolute count error of less than 1.2, corresponding to less than 1.60% error rate,

given that the average total number of syllable events in a file is 74. MS-DeepDDK im-
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Table 3.7. Detailed cumulative score (CS) analysis for the proposed MS-DeepDDK network using
five-folds cross-validation.

Cumulative score (CS) of different counts error tolerance
Fold

0 1 2 3 4 5 >5
1 44.44% 81.48% 90.74% 96.30% 98.15% 100% 0.00%
2 33.33% 68.52% 85.19% 94.44% 96.30% 96.30% 3.70%
3 33.33% 76.39% 88.89% 91.67% 95.83% 97.22% 2.78%
4 22.22% 57.41% 75.93% 87.04% 94.44% 96.30% 3.70%
5 38.89% 73.61% 84.72% 97.22% 100% 100% 0.00%
Avg. 34.44% 71.48% 85.09% 93.33% 96.94% 97.96% 2.04%
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Figure 3.9. Cumulative scores (CS) for different count error tolerances. Comparison between
methods: pre-linguistic segmentation [1], Smekal et al. [2, 3], MFCC with Linear SVM, DeepDDK
[4], and the proposed multi-scale DeepDDK. Absolute event count differences of 0, 1, 2, 3, 4, 5
in the x-axis of the graph correspond to percent count errors of 0%, 1.35%, 2.70%, 4.05%, 5.41%,
6.76%, respectively (using the average number of events per file as 74).

proves MAE and MSE scores with respect to the next best result DeepDDK [4] by 26.15%

and 32.96% respectively.

For a more detailed analysis of the syllable detection errors, we compute and compare

cumulative score (CS) measures for absolute count error tolerances of 0, 1, 2, 3, 4, and 5
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Figure 3.10. Boxplot of the absolute count errors for five-folds cross-validation.

corresponding to percent error tolerances of 0%, 1.35%, 2.70%, 4.05%, 5.41%, and 6.76%

respectively. Cumulative score plots for the compared approaches are shown in Figure

3.9. Detailed cumulative scores for different tolerance levels are listed in Table 3.6. MS-

DeepDDK outperforms the compared approaches for all error tolerances and outperforms

the next best approach DeepDDK [4] by 11.11%, 18.51%, 4.93%, 6.17%, and 1.23% for

absolute count error tolerances of 0 to 4, respectively.

3.5.2 K-folds Cross-validation of Syllable Event Detection of MS-DeepDDK

We further analyzed the performance of the proposed MS-DeepDDK approach using

five-folds cross-validation. All oral-DDK audio files in the study, 306 files in total, are
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false positive 
detections in 
MS-DeepDDK

a breath event false negative 
detections in 
JawTrack

A B C D

Figure 3.11. Audio-visual analysis of oral-DDK tests. Top: The blue waveform is the original
audio waveform. The green line on top of the blue waveform is the signal envelope. Yellow dots
mark event timestamps generated by the proposed MS-DeepDDK network. Bottom: the blue signal
denotes the distance between the philtrum and mentolabial sulcus in time, automatically computed
using our JawTrack visual tracking software. Green and red dots represent opened and closed states
of the mouth/jaw outputted by JawTrack.

divided into five folds. Five experiments are performed where one fold of files is kept for

testing and the remaining four folds of files are used for training of the proposed network

MS-DeepDDK. The five-folds cross-validation results are shown in Table 3.7. As we can

see on the last row in Table 3.7, over 85% of the test audio files have an absolute count error

equal to or less than 2, corresponding to a 2.7% error rate given that the average number of

events per audio was 74. On average, nearly 98% of the test audio files have an absolute

count error equal to or less than 5, corresponding to a 6.8% error rate given that the average

number of events per audio was 74.
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Boxplots of the five-folds cross-validation results are shown in Figure 3.10. Mean

and median values of each fold are less than 2 absolute count errors (2.7% error rate),

demonstrating robustness across the whole dataset. There are six audio files that have an

absolute count error larger than 5, three of which are “La” audio files, one is “Ga”, and one

is “Ha”. These syllables have less clear phonetic boundaries between two adjacent syllables

and irregular audio waveforms compared to standard oral-DDK test syllables “Pa”, “Ta”,

“Ka”.

3.5.3 Visual Oral-DDK Analysis

Three common sources of errors during oral-DDK audio signal analysis are: (1) back-

ground noise in the environment, (2) non-syllable events such as breaths or coughs that

produce sound, and (3) weak audio signal amplitudes particularly due to fatigue. Visual

cues complement audio signals to overcome these error sources.

Figure 3.11 illustrates the complementary nature of the audio-based MS-DeepDDK and

visual JawTrack oral-DDK event detection outputs. Vertical lines marked with labels A, B,

C, and D illustrate specific cases where use of both signals improve detection accuracy.

(A) Weak false detections by MS-DeepDDK can be filtered-out using JawTrack output

that does not detect mouth/jaw opening motion at those timestamps. These false-positive

detections can be caused by background noise. (B) Weak false detection by MS-DeepDDK

corresponding to a breath can be filtered-out using JawTrack output, where breath events

are clearly characterized by abnormally larger signal peaks in height and width (motion

amplitude and duration). (C-D) Missed detections in mouth/jaw motion analysis can be

corrected using clear syllable signatures in MS-DeepDDK.

3.6 Conclusion

We have presented DeepDDK and MS-DeepDDK, which are deep-learning-based sys-

tems for automated analysis of oral-DDK tasks. The proposed system allows objective
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and quantitative analysis of oral-DDK data corresponding to a task routinely used by SLPs

for assessment and monitoring of oral motor speech abilities. Experimental results show

robust syllable detection and localization capabilities across different types of DDK tests.

Use of complementary audio-visual cues leads to further robustness. Accurate, objective,

quantitative analysis of oral-DDK data is of great significance because these tests can be

potentially used to facilitate diagnosis and monitoring of neurological disorders, particu-

larly progressive ones such as PD, ALS, and multiple system atrophy. Our future plans

include improved fusion of audio and visual cues and testing of the proposed system for

analysis of early Parkinson’s disease patient data.
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CHAPTER 4

VIDEO SEGMENTATION: ORTHOGONAL REGION SELECTION

AND LARNET-STC NETWORKS

This chapter introduces spatial-temporal orthogonal region selection (ORS) networks

LARNet and LARNet-STC for 2-D + time (video) data analysis. The LARNet [25] is

a two-stream deep classification network using 2-D spatial information, which combines

the novel orthogonal region selection (ORS) attention that improves the overall classifica-

tion result. The LARNet-STC [30] is a spatial-temporal orthogonal region selection deep

classification network, which takes sequential 2-D images as input. The LARNet-STC is

a further improvement of LARNet using temporal information. The proposed two deep

learning networks are end-to-end trainable. The proposed LARNet and LARNet-STC can

be applied to 2-D image-based video event detection. We applied our proposed LARNet

and LARNet-STC to the human trans-nasal laryngeal endoscopy video for extracting ob-

jective and quantitative results for laryngeal adductor reflex (LAR) analysis.

In this chapter, we will first introduce the background and objective of the human trans-

nasal laryngeal endoscopy video analysis. Then, we will introduce our proposed LARNet

and LARNet-STC and their corresponding experimental results respectively. Finally, we

will conclude this chapter.

4.1 Introduction

Vocal folds (VFs), which are also called vocal cords, are two bands of soft muscles lo-

cated at the larynx (voice box), the tubular structure that connects the throat to the trachea
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(a) open VFs (b) closed VFs (c) visual occlusion

Figure 4.1. Sample images for the three vocal fold state classes.

(windpipe). VFs operate like a valve in the upper airway, opening and closing mainly inner-

vated by the recurrent laryngeal nerve to coordinate breathing, swallowing, and speaking

[108] [109]. When speaking, the VFs vibrate and allow air to pass from the lungs through

the cords to produce human voice. As a crucial component of the airway, VF dysfunction

can lead to breathing difficulty (dyspnea) and swallowing dysfunction (dysphagia) that can

significantly endanger a patient’s life, or voice impairment (dysphonia) that can affect the

quality of life [110]. VF dysfunction occurs when the VFs can’t open or close correctly.

Inappropriate VF closure can impede breathing or speaking, whereas improper VF opening

can allow food and liquid to be inhaled into the airway, causing choking and/or lung infec-

tion (aspiration pneumonia) [111]. While numerous medical conditions have been shown to

result in life-threatening VF dysfunction, the most prevalent triggers are neurological dis-

orders (e.g., stroke, Parkinson’s disease, and amyotrophic lateral sclerosis) and head and

neck cancer [112]. The major morbidity and mortality in these conditions or diseases are

caused by aspiration pneumonia [113], thus emphasizing the clinical needs for advanced

medical management of VF dysfunction.

Flexible Endoscopic Evaluation of Swallowing with Sensory Testing (FEESST) is a

clinical test conducted by speech-language pathologists (SLPs) and otolaryngologists to
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closely inspect the motor and sensory functions of the VFs and to assess the risk of aspira-

tion [114]. During the FEESST procedure, a thin flexible endoscope is inserted through the

nose into the larynx to visualize the VFs, which can be known as nasal laryngoscopy. Dur-

ing the procedure, small puffs of air are delivered to the VFs through the working channel

of the endoscope. These puffs of air stimulate the laryngeal mucosa near the VFs and trig-

ger a laryngeal adductor reflex (LAR) where the VFs abruptly close momentarily (less than

1 second) as an airway protection reflex to prevent accidental invasion of “foreign” materi-

als into the lungs. This airway protection is innervated by the vagus nerve, which is located

at the throat between the top of the vocal folds to the tip of the epiglottis. While FEESST

is a routinely conducted test in clinical practice, the generated laryngoscopy videos (if they

are even recorded) are only visually inspected, resulting in loss of valuable clinical infor-

mation that can potentially be used to help early diagnosis, plan treatment options, and

monitor disease progress and treatment effectiveness. In contrast to visual inspection that

only checks the occurrence of a LAR event, video analysis can objectively quantify the

duration of LAR events and detect subtle VF dysfunction, which may easily be neglected

by visual inspection. Our group has developed a patented air pulse device and method

to reliably evoke the LAR and visualize the entire larynx during endoscopic LAR testing

[115]. This chapter presents a deep learning-based automated video analysis system for au-

tomated detection of laryngeal adductor reflex (LAR) events in endoscopic LAR testing to

enable objective, quantitative analysis of VF function. The ultimate aims for the proposed

system are objective and quantitative monitoring of disease progression and treatment re-

sponse; and generation of novel quantitative data to facilitate development of data-driven

preventative strategies for life-threatening diseases like aspiration pneumonia caused by

VF dysfunction.

Recent studies demonstrated the scientific and clinical utility of quantitative vocal fold

motion analysis in prediction and monitoring of dysphagia-related aspiration pneumonia

disease [116]; in monitoring dysfunction after recurrent laryngeal nerve (RLN) injury and
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during the RLN regeneration [46][117]. Advances in artificial intelligence, particularly in

deep learning, have started to bring promising approaches and results to biomedical im-

age analysis, facilitating automated and quantitative analysis for various applications such

as microorganism counting [118], breast cancer image analysis [119], automated segmen-

tation for lung cancer radiotherapy [120], MRI and CT bladder segmentation [121], and

COVID-19 medical image analysis [122].

In this chapter, we propose a spatio-temporal deep learning network to identify VF

states open, closed, and occluded, in order to detect and quantify LAR events in laryngeal

endoscopy videos. This is a challenging task because of numerous factors such as anatom-

ical variations in different patients; diverse illumination conditions such as over/under-

exposure, artifacts such as glare, camera focus problems, motion blur caused by the en-

doscope operation; scale variations due to anatomy and position of the endoscope with

respect to the VFs; camera or patient motion; partial or full visual obstruction of the VFs

due to camera fogging, saliva accumulation, camera position, and motion of the surround-

ing anatomical structures; the limited number of training videos, and highly imbalanced

data due to the rare nature of the LAR events. The distribution of the various challenging

cases within the whole dataset and test dataset are listed in Table 4.1.

Table 4.1. Distribution of the various challenging cases in the dataset.

Problem
number of images (percentage)

whole dataset testing set

Out-of-focus 440 (4.83%) 342 (15.04%)

Over-exposure 963 (10.58%) 406 (17.85%)

Low-light 752 (8.26%) 261 (11.48%)

Out of region of interest 531 (5.83%) 134 (5.89%)

Off-center 2588 (28.43%) 418 (18.38%)

Figure 4.2 shows some sample laryngoscopy frames illustrating these challenging cases.
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The proposed network classifies each video frame into one of three classes: non-LAR

(open VFs), LAR (closed VFs), and visual occlusion (where the VFs are either obstructed

by other anatomical structures or are out of the endoscope camera field of view). Sample

video frames of these three different classes are shown in Figure 4.1. The proposed network

is designed to directly classify a video frame into VFs’ open, closed, or occluded states,

without first segmenting or tracking the VFs to estimate their states. This direct, one step

process drastically reduces the manual annotation workload to generate network training

data from labor-intensive VF segmentation or motion tracking to rapid frame-level class

label assignment. Furthermore, as we demonstrate later, direct LAR detection through

image classification outperforms segmentation-based LAR detection performance.

The proposed approach incorporates a novel orthogonal region selection (ORS) sub-

network that combines global and local image information. ORS functions like an unsu-

pervised spatial attention mechanism, while the video context incorporates temporal in-

formation to improve VFs state estimation accuracy. The temporal context information is

extracted from five sequential video frames centered at the target video frame. We call the

sliding window of sequential video frames an “image block.” Besides the VFs state classifi-

cation task, our proposed ORS subnetwork can be used along with other deep classification

networks as a spatial attention mechanism to strengthen feature extraction. To the best of

our knowledge, we are the first group that proposed automated video analytics solutions for

the endoscopic analysis of the LAR tests and this work is the first direct VF state estima-

tion system utilizing spatio-temporal context. The proposed network augments the image

features extracted from the target frame with temporal context from the neighboring video

frames, to improve the classification accuracy of the target frame.

The contributions of this chapter are summarized below:

1. We propose a novel orthogonal region selection (ORS) network that combines local

and global image information for the task of VF state classification. This proposed
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(a) out-of-focus sample (b) over-exposured sample (c) low-light sample

Figure 4.2. Sample laryngoscopy video frames illustrating different processing challenges. (a-
c) Left images show original video frames, right images show corresponding histogram equalized
images.

method directly maps its input to a VF state without prior generation of segmentation

masks, regions of interest, or motion trajectories, which reduces manual annotation.

2. We introduce an end-to-end trainable spatio-temporal network that integrates tem-

poral context with orthogonal region selection to further improve the classification

accuracy. To the best of our knowledge, this is the first spatio-temporal deep classifi-

cation network for analysis of flexible transnasal endoscopy videos.

3. The proposed orthogonal region selection (ORS) subnetwork can be applied on top

of other deep learning classification networks as a spatial attention mechanism to

strengthen feature extraction.

4. This proposed deep learning system generates promising performance in detecting

rare LAR and occlusion events with limited amounts of training data in general and

with highly imbalanced data between non-LAR class and other classes.

4.2 Related Work

4.2.1 Laryngeal Endoscopy Video Analysis

Majority of the earlier works on laryngeal endoscopy video analysis (i.e., for VF seg-

mentation [41], for analysis of VF vibration patterns [42][43], or for analysis of VF shape

and vascular defects) were limited to processing of high-speed rigid transoral (through the
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mouth) laryngoscopy videos. Compared to these videos that have a higher frame rate,

higher image resolution, and better image quality, this chapter focuses on processing of

flexible transnasal (through the nose) endoscopy videos widely used in clinical practice that

lack these advantages. The earlier work have also mostly relied on handcrafted/engineered

features which are not very robust and require parameter tuning. Recently, various deep

learning approaches have been proposed for analysis of laryngeal videos. In [6], we have

developed a deep convolutional regression network for segmentation of the glottal region.

Annotated training data for this network was generated by extending our previous interac-

tive VF tracking software [46]. In [47], a cascade of two networks was proposed to segment

the laryngeal structures. In [5], an U-Net [26] based network has been developed for glottis

region segmentation in high-speed endoscopic videos. The results from the network is fur-

ther improved by utilizing Long Short-Term Memory (LSTM) [48] blocks to incorporate

the temporal context.

While great improvement over the previous handcrafted/engineered works, those net-

works that are designed for VF segmentation are not very suitable for LAR event detection

for four main reasons: (1) segmentation networks require ground truth segmentation masks

for training. Preparation of these training masks is a labor intensive and time-consuming

task requiring domain expertise. Whereas frame level single class label assignment re-

quired for our proposed system is much more efficient. (2) Segmentation networks are

often tested on video frames where VFs are fully visible. They often detect spurious re-

gions when VFs are occluded or are not in the field of view of the endoscope. (3) Similarly,

LAR events lead to tracking failures due to abrupt motion. (4) Additionally, most of the

earlier work on VF analysis (except [5]) did not incorporate temporal video context and

analyzed individual video frames independently leading to loss of valuable temporal infor-

mation. In this chapter, we perform explicit VF state estimation and incorporate temporal

video contextual information for robust state estimation. Beside LAR event detection, the

proposed network can be used as a preprocessing step for VF segmentation or VF tracking
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to determine temporal intervals of interests for further processing. The following subsec-

tions review related work specific to the challenges we are addressing in this chapter.

4.2.2 Objects in Different Scales

In the deep convolutional neural networks, max-pooling layers that are designed to en-

large the convolution field of view play a critical role. They present a compromise between

the hardware capabilities and the convolutional kernel size. They help a network extract

and learn abstract and transformation invariant features from an image. Unfortunately, this

process can also lead to elimination of small objects. If these small objects are of interest

to the given task, network performance can get adversely affected. In this application, VFs

typically occupy a small portion (typically < 25%) of the endoscope field of view. In some

cases, when the endoscope is positioned further away from the VFs, or when the endoscope

is being pulled out of the larynx, the apparent size of the VFs can be even smaller. Fur-

thermore, the relatively far distance between the VFs and the endoscope makes the camera

harder to autofocus. Depending on the position and orientation of the endoscope, VFs can

appear at different positions in a video frame. VF state estimation performance is expected

to be adversely affected by the small size of VFs in these inspected images.

To deal with the small object classification/segmentation problems, regions of interest

are usually extracted from the input image before performing classification or segmenta-

tion tasks. For example, deep object detection networks such as Fast-RCNN [123], Mask-

RCNN [124], feature pyramid [50], etc. first propose a set of bounding boxes before per-

forming further analysis. These detection networks require ground truth bounding boxes

(or segmentation masks) besides class labels for training, which drastically increase the

manual annotation workload. In this chapter, we propose an unsupervised region selection

scheme (orthogonal region selection (ORS) subnetwork) that selects an image subregion

without need for manual annotation.
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4.2.3 Orthogonality

Orthogonality has been used for network initialization in deep neural networks (DNNs)

[51][52]. Orthogonal weight normalization has been proposed to improve network gen-

eralization capabilities [53]. There is a growing interest on use of deep neural network

(DNN) layer weight pruning techniques to reduce feature redundancy in DNNs. The aim is

to improve the generalization and precision capabilities of DNNs [54]. However, the pop-

ularization of the weight pruning technique is limited by its difficulty of implementation.

Orthogonality has also been used in network initialization and regularization to prevent

gradient vanishing or exploding problem in training very deep neural networks [55][56].

[57] proposes a loss function that encourages the features of different classes to be orthog-

onal to each other. Orthogonal deep features decomposition has been proposed to improve

face recognition accuracy [58]. In this chapter, we rely on feature orthogonality to select

the subregion of interest for further processing.

4.2.4 Imbalanced Data

Imbalance in training data can affect network performance by leading to convergence

bias towards the majority class. Since imbalanced class samples is common in medical

image analysis some strategies such as random over-sampling (ROS) [59], random under-

sampling (RUS) [60], dynamic sampling [61], online hard example mining (OHEM) [62],

custom loss function [63][64][65], weighted loss [66], custom DNN [67][68], and CNN

output thresholding adjustment [69] have been proposed. In order to deal with our rare

event detection problem, where LAR frames constitute less then one tenth of the non-LAR

frames, we used both ROS and RUS strategies and created a relatively equal distribution of

input training data in each epoch.

4.2.5 Spatio-temporal Networks for Classification

Spatio-temporal deep learning networks are designed for learning spatial and temporal

features jointly for more accurate prediction. Published deep learning methods involv-
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ing spatio-temporal information can be categorized into three types: (1) high-dimensional

convolutional networks such as 3D and 4D convolutional networks; (2) recurrent neural

networks (RNNs) such as long short-term memory (LSTM) [70] and gated recurrent unit

(GRU) [71] networks; and (3) local spatial features combined with temporal convolutional

neural networks (TCN).

Current spatio-temporal solutions that directly use 3D or even 4D convolutions [72][73][74]

require more hardware memory and computational cost than 1-D and 2-D convolutions.

Moreover, for long-term sequential data, the memory required for processing temporal in-

formation in 3D and 4D convolutions increases exponentially as the data becomes longer,

which makes it harder to be trained on low-memory GPUs. RNN has been proposed for

long-term context-intensive sequential data and applied to many tasks such as arrhythmia

detection [75][76], seizure detection [77][78], and action recognition [79][80]. Recently,

several spatio-temporal fully convolutional deep learning networks that utilize local spa-

tial features combined with temporal convolutional neural network have been proposed

for learning long-term patterns [81][82]. However, due to the low frame rates of flexible

transnasal endoscopy and the rare nature of the LAR and occlusion events, state of the vo-

cal folds change momentarily within a few frames. In such rare and short-term cases, use

of longer term temporal information hurts rather than helps classification/detection per-

formance. [5] shows that long short-term memory (LSTM) leads to false detections on

an empty (all black) video frame when used for vocal fold segmentation despite use of

high-speed endoscopy video.

4.3 Method

The goal of the proposed LARNet and LARNet-STC are automated detection of LAR

events in laryngoscopy videos. The LARNet is a two-stream deep classification network.

The LARNet-STC is built on top of LARNet, which contains two main parts: (1) VFs state
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Figure 4.3. Architecture of the proposed VFs state estimation network.

estimation network for single image features extraction, and (2) context-based network for

classification.

4.3.1 VFs State Estimation Network (LARNet)

For extracting features, we have first developed a custom, two-stream deep learning

network for estimation of VFs open/closed states for each video frame, we call it “LARNet”

(Figure 4.3). The two inputs of the network are: (1) original video frame resized to 224 ×

224 pixels; and (2) a set of five cropped sub-regions extracted from the histogram equalized

original image. The first input, the original video frame, provides global information from

the camera field of view. This original image is fed into an ImageNet [125] pre-trained

ResNet-18 convolutional neural network [126] for feature extraction. This first stream

produces a 1× 512 feature vector. The second input, a set of cropped sub-regions, provides

local information. This input is fed into a custom orthogonal region selection subnetwork

described in Section 4.3.3. This second stream produces another 1 × 512 feature vector.

The two feature vectors are concatenated to generate a 1× 1024 linear vector (concatenate-
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1024) followed by a fully-connected layer (FC-1024). Feature extraction is performed by

three fully connected layers, FC-1024, FC-512, and FC-256. ReLu (rectified linear unit)

activation function and dropout of 0.5 are applied between the concatenate-1024, FC-1024,

FC-512, and FC-256 layers. This VF state estimation network produces 1 × 256 feature

vector at the end. In our previous chapter [127], the last fully-connected layer was FC-3

instead of FC-256 for direct classification output.

4.3.2 Image Preprocessing and Subregion Generation

As can be seen in the sample frames shown in Figure 4.2, some of the video frames

suffer from very low illumination that heavily affects the visibility of VFs. In the VFs state

estimation network, we augment the single-stream network whose input is the original im-

age with a second input and processing stream that deals with a set of cropped images. This

second stream aims to address the illumination problems, scale variation, and incorporate

local information into the decision process. All original images are first resized to 224×224

pixels (input size of ResNet-18 networks). Histogram equalization [128] is applied to the

resized original images in order to improve image contrast and visibility. The VFs cover

only a small portion of the endoscope field of view and can appear at different positions in

a video frame. To address these issues, five 154 × 154 subregions (four corners and one

center) are cropped from the histogram equalized image as shown in the left side of Fig-

ure 4.4. One of these cropped regions is expected to have better coverage of the VFs. These

cropped images are then resized to 224 × 224 pixels and fed into the orthogonal region se-

lection (ORS) subnetwork described below to perform selection and to handle information

redundancy.

4.3.3 Orthogonal Region Selection Subnetwork (ORS)

The five cropped and resized images are fed into the ORS subnetwork shown in Fig-

ure 4.4. Each cropped image is processed by an ImageNet [125] pre-trained ResNet-18

convolutional neural network [126] for feature extraction. These ResNet-18 networks are
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Figure 4.4. Subregion cropping and the Orthogonal Region Selection (ORS) subnetwork. Inputs to
the network are five cropped subregions (marked with yellow squares) from the preprocessed image.
Output of the network is a 1-D feature vector corresponding to the selected subregion. This vector is
selected from F by the index j∗ of the minimum value in O. “FC” represents fully-connected layer.

retrained for VFs state estimation. The output of each ResNet-18 network is a 1 × 512

feature vector corresponding to each cropped region. A 5 × 512 matrix F is constructed

where each row j in F is the feature vector of one subregion. The measure of orthogonality

O j between a subregion R j and the remaining subregions is defined as:

P = F×FT −diag
(
F×FT

)
(4.1)

O j =

4∑
k=0

P jk (4.2)
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j∗ = argmin
j

(O j) (4.3)

Each row j in P denotes the dot product between the subregion feature j and others. In

equation(4.2), O is a 5-by-1 matrix representing the sum of each row in P as a final measure

of orthogonality for each subregion. The 1× 512 feature vector F j∗ with minimum value in

O is selected as the local feature vector used in VFs state estimation.
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Figure 4.5. Architecture of the proposed spatio-temporal context-based orthogonal region selection
network. On top of the VF state estimation networks, a set of fully convolutional layers are inserted
to the network to incorporate temporal context. “Conv” represents convolution operation.

4.3.4 Temporal Context-based Orthogonal Region Selection Network of LARNet-

STC

Temporal video context is used to improve the state estimation/classification results

obtained from independent processing of the video frames by incorporating VF state infor-

mation from neighboring frames. We propose a simple and efficient deep learning network

that combines the spatial information-only VF state estimation network described in Sec-

tion 4.3.1 with a fully convolutional temporal context feature. The architecture is shown

in Figure 4.5. The proposed fully convolutional network for incorporating temporal con-

text features allows an arbitrary number of sequential frames without changing the network

architecture. The proposed network concatenates equal sized temporal context and spatial-

only VF state estimation feature vectors. The inputs of this network are five sequential

images centered at the target frame in the video, we call it an “image block.” The target
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classification label is the label of the center frame of the image block. For the start and end

frames of the video, we pad the video by mirroring the first and last two frames in the video.

Then, all five images are preprocessed and fed into the VF state estimation network indi-

vidually for feature extraction. The VF state estimation network generates 5 × 256 feature

matrix for the five sequential images. According to the manual ground-truth, the average

duration of the fully-closed state of the VFs during the LAR events is 5.6 frames. Con-

sidering this duration and the trade-off between the hardware memory and execution time,

we selected five sequential images as temporal context. We also tested and discussed the

proposed network with three and seven sequential images respectively in Section 4.5.2.2.

The 5 × 256 feature matrix is the spatio-temporal contextual information composed of

the five sequential frames centered at the target frame. Then three convolution operations

are conducted on the 5 × 256 feature matrix to further summarize the contextual informa-

tion. Batch normalization and ReLu activation function are used between each convolu-

tion. This stream produces a 1 × 256 spatio-temporal contextual information vector. The

spatio-temporal context vector and the target frame feature vector directly outputted from

the VF state estimation network are concatenated to form a 1 × 512 feature vector. Fi-

nally, two additional convolution operations are conducted on the 1 × 512 feature vector

to produce the final classification result. We load the pre-trained weights to the VF state

estimation network and freeze them during training. The whole system is end-to-end train-

able. Categorical cross-entropy loss and Adam optimizer are used in training. Categorical

cross-entropy loss is defined as:

CELoss = −

C∑
i

tilog ( f (s)i) (4.4)

f (s)i =
esi∑C
j es j

(4.5)

where C is the total number of classes; ti, si are the ground-truth and network output for

the class i respectively; and f (s)i is Softmax activation function.
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4.3.5 Dealing with Imbalanced Data

LAR is a rare event. Video frames where the VFs are fully closed occur far less fre-

quently than video frames where the VFs are fully or partially open. The closed state only

occupies ∼7% of the video frames. The occlusion states where the VFs are either oc-

cluded or out of the field-of-view occupy ∼9% of the video frames. To deal with large data

imbalance in VF state estimation, we propose to use an approach that combines random

over-sampling (ROS) [59] and random under-sampling (RUS) [60] schemes described in

Section 6.2. In each epoch, we randomly generate k image blocks for the context-based

orthogonal region selection network to train. The class of the image block is the class of

the center frame. First, we randomly select k/3 image blocks from all training non-LAR

image blocks, and augment with random contrast, zoom in, rotation, and flip image oper-

ations. Next, we randomly select k/6 image blocks from all training LAR image blocks,

then randomly select k/6 image blocks from all training occlusion image blocks. Both se-

lected LAR and occlusion image blocks are transformed with random contrast, zoom-in,

rotation, and flip to double the training set. Since the non-LAR class is easy to train as

they have sufficient data, we chose to raise the portion of LAR and occlusion image blocks

in the training data. All selected non-LAR, LAR, and occlusion image blocks are merged

together, shuffled, and used for network training. In our experiment, we heuristically pick

k = 300.

4.4 Experimental Results of LARNet

Our dataset consists of 58 labeled human laryngoscopy videos collected from twenty

participants with a 3.7-mm outer-diameter endoscope (11302BD2, Karl Storz), at a frame

rate of 30 FPS (frames per second). We randomly separated these videos into training

videos and testing videos, resulting in 6,828 frames in training dataset and 2,274 frames in

testing dataset. Frame size for all the videos are 480×720×3. The training dataset contains

5,840 non-LAR frames, 394 LAR frames, and 594 occlusion frames. The test dataset
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contains 1,837 non-LAR frames, 251 LAR frames, and 186 occlusion frames. Frames are

labeled as “occlusion” if more than half of the VFs are occluded, disappear, or couldn’t

be recognized in the image. “LAR” class includes fully closed and partially closed VF

frames. Partially closed state happens before and after the fully closed state, usually within

one or two time steps, and the remained partially open VFs area only occupies within 10%

of the full open VFs area. All remaining frames are labeled as “non-LAR”. The training

and testing procedures are ran on a single GTX 1060 6GB GPU. Testing speed is 27 FPS.

System performance is evaluated in terms of precision, recall, and F1-score:

precision =
T P

T P + FP
(4.6)

recall =
T P

T P + FN
(4.7)

F1score =
2 ∗ precision ∗ recall

precision + recall
(4.8)

where T P represents truth positive, FP represents false positive, and FN represents false

negative outputs.

4.4.1 Ablation Study of LARNet

In order to better understand the contributions of the different components of the pro-

posed approach, we have designed and trained three additional networks. The first two

networks, LarNet1o and LarNet1e, are single-stream networks with ResNet-34 [129] fea-

ture extraction modules trained with original and histogram equalized images respectively.

The third network, LarNet2, is a two-stream network similar to the proposed network, but

without the ORS subnetwork. LarNet2 has two inputs, one is 224-by-224 original image,

the other is 224-by-224 histogram equalized image without cropping. The two inputs are

processed by two individual ResNet-18 networks. Output feature vectors from the two

ResNet-18 networks are concatenated together, followed by another two fully connected

layers like in the proposed network.
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4.4.2 Results of LARNet

A summary of our VF state estimation performance analysis results are reported in

Table 4.2. As we can see from the first two rows of Table 4.2, LarNet1e out-performs Lar-

Net1o. Both networks have identical single-stream architectures using ResNet-34 feature

vectors. These results indicate that image preprocessing, specifically histogram equaliza-

tion in this case, improves the classification accuracy. In the third row of Table 4.2, Lar-

Net2, the two-stream network, which simply concatenates features from the original image

and histogram equalized images, respectively, results in the highest recall of LAR. How-

ever, without the ORS subnetwork as in the proposed system, this custom network doesn’t

perform as well as LarNet1e using the histogram equalized images.

The results for the proposed method that combines image preprocessing, two-stream

processing, and an ORS subnetwork are shown in the last row of Table 4.2. Precision for

the non-LAR cases is slightly lower compared to LarNet1o (≤ 0.22%). Recall for the LAR

cases is slightly lower than LarNet2 (≤ 0.84%). However, in all other aspects, the proposed

network outperforms the LarNet1o, LarNet1e, and LarNet2 networks. LAR detection pre-

cision improves by 26.52% compared to LarNet1o, and 7.93% compared to LarNet1e. As

a result, the proposed network improves at least 5.08% in F1 score of LAR, 2.90% in F1

score of occlusion, and 0.86% in F1 score of non-LAR. These results demonstrate that

the use of image preprocessing, fusion of global and local information through two-stream

network, and the proposed orthogonal region selection subnetwork improve the VF state

estimation process. The low occlusion recall values from all four networks are due to two

main factors: labeling protocol and LAR-occlusion appearance similarity. Independent of

VF open/close state, our ground-truth labeling protocol marks all cases where more than

half of the VFs are not visible as occluded. The glottal region, the gap between the VFs,

is not visible when either the VFs are closed or occluded, resulting in confusion between

occlusion and LAR classes.
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4.5 Experimental Results of LARNet-STC

Our dataset consists of 58 labeled human laryngoscopy videos collected from twenty

participants with a 3.7-mm outer-diameter endoscope (11302BD2, Karl Storz), at a frame

rate of 30 fps (frames per second). The study was approved by the Institutional Review

Board of the University of Missouri. We randomly separated all videos into training videos

and testing videos, resulting in 9,102 frames in total, of which 6,828 frames (75%) are used

as training data and the other 2,274 frames (25%) are used as testing data. Frame size for

all the videos are 480 × 720 × 3. The training dataset contains 5,840 non-LAR frames,

394 LAR frames, and 594 occlusion frames. The test dataset contains 1,837 non-LAR

frames, 251 LAR frames, and 186 occlusion frames. Frames are labeled as “occlusion” if

more than half of the VFs are occluded, disappear, or couldn’t be recognized in the image.

“LAR” class includes fully closed and partially closed VF frames. A partially closed state

happens before and after the fully closed state, usually within one or two time steps, and

the remained partially open area only occupies within 10% of the full open VFs area. All

remaining frames are labeled as “non-LAR.” Directly classifying video frames into VFs’

open, closed, or occluded states is a challenging task because of numerous factors such

as anatomical variations; diverse illumination conditions, artifacts, and camera focus prob-

lems, and motion blur; scale variations; camera or patient motion; partial or full visual

obstruction, saliva accumulation, camera position, and motion of the surrounding anatom-

ical structure. A summary of the challenging cases and their frequency in the training and

test datasets is summarized in Table 4.1. A single video frame can suffer from multiple

types of problems at the same time (i.e. an out-of-focus image with low-light conditions).

In those cases, the same frame is counted towards all the associated problem cases. The

training and testing procedures are run on a single GTX 1060 6GB GPU.

System performance is evaluated in terms of precision, recall, and F1-score:

precision =
T P

T P + FP
(4.9)
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Table 4.3. Contribution of the different network components to the classification performance.

Network Backbone
#

Streams
Hist

Equal
ORS

Temporal
Context

Average
F1 score

LARNet-S1R ResNet-34 1 N N N 0.7663
LARNet-S1Re ResNet-34 1 Y N N 0.8993
LARNet ResNet-18 2 Y Y N 0.9288
LARNet-STC LARNet 2 Y Y Y 0.9402

recall =
T P

T P + FN
(4.10)

F1score =
2 ∗ precision ∗ recall

precision + recall
(4.11)

where T P represents true positive, FP represents false positive, and FN represents false

negative outputs.

4.5.1 Ablation Study of LARNet-STC

The contribution of the different network components to the classification performance

is summarized in Table 4.3. As we can see in the first two rows of Table 4.3, under the

same classification network, the histogram equalization process helps improve the average

F1 score by 13.30%. The second, third, and fourth rows demonstrate that incorporating the

ORS subnetwork increases the average F1 score by 2.95% and temporal context informa-

tion increases the average F1 score by 1.14%.

In order to better understand the contributions of the different components of the pro-

posed approach, we have designed and trained five additional networks for spatial only

single image classification, and four additional networks for spatio-temporal context-based

image classification whose features are summarized in Table 4.4. For reference, Table

4.5 provides the corresponding number of parameters, memory cost, and the computa-

tional cost of each of those networks. For the single image classification, we compare
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Table 4.4. Feature summary of the proposed network and the comparison networks. The archi-
tectural differences between the four spatio-temporal context-based networks are illustrated in Fig-
ure 4.6.

Network Backbone # Streams Hist ORS Temporal
Equal Context

LARNet-S1V VGG-13 1 N N N
LARNet-S1Ve VGG-13 1 Y N N
LARNet-S1R ResNet-34 1 N N N
LARNet-S1Re ResNet-34 1 Y N N
LARNet-S2Re ResNet-18 2 Y N N
LARNet ResNet-18 2 Y Y N
LARNet-ST2Le-Conv LARNet 2 Y Y Y
LARNet-ST2Le-Elem LARNet 2 Y Y Y
LARNet-ST2Le-Elem-Flip LARNet 2 Y Y Y
LARNet-ST2Le-LSTM LARNet 2 Y Y Y
LARNet-STC LARNet 2 Y Y Y

Table 4.5. Networks Features

Network
Number of
parameters
(million)

Memory
cost

(Megabyte)

Computational
cost

(frames per
second)

LARNet-S1V 128.96 515.85 84.02
LARNet-S1Ve 128.96 515.85 84.02
LARNet-S1R 24.45 97.89 125.08
LARNet-S1Re 24.45 97.89 125.08
LARNet-S2Re 23.40 93.69 111.57
LARNet 24.45 97.89 27.01
LARNet-ST2Le-Conv 71.00 284.24 4.84
LARNet-ST2Le-Elem 71.00 284.24 4.83
LARNet-ST2Le-Elem-Flip 71.00 284.24 4.82
LARNet-ST2Le-LSTM 71.21 285.08 5.09
LARNet-STC 71.46 286.07 4.27
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our proposed VF state estimation network with the other five networks. The first two

networks, LARNet-S1V and LARNet-S1Ve, are single-stream networks with pre-trained

VGG-13 [9]. The second two networks, LARNet-S1R and LARNet-S1Re, are another

single-stream networks with pre-trained ResNet-34 [126]. These four networks are without

temporal contextual information and trained with original and histogram equalized images

respectively. The fifth network, LARNet-S2Re, is a two-stream network similar to the VF

state estimation network, but without the ORS subnetwork. LARNet-S2Re has two inputs,

one is a 224-by-224 original image, the other is a 224-by-224 histogram equalized image

without cropping. The two inputs are processed by two individual pre-trained ResNet-18

networks. Output feature vectors from the two ResNet-18 networks are concatenated to-

gether, followed by another two fully connected layers like in the proposed LARNet. The

detailed evaluations of these five architectures are reported in rows 1 to 5 of Table 4.6.

For the spatio-temporal context-based image classification, we examine four architectures,

LARNet-ST2Le-Conv, LARNet-ST2Le-Elem, LARNet-ST2Le-Elem-Flip, and LARNet-

ST2Le-LSTM, to abstract and combine the spatio-temporal contextual information on top

of the VF state estimation network. The four architectures are shown in Figure 4.6. The

inputs of these four architectures are the 5 × 256 feature matrix outputted directly from

the VFs state estimation network for an image block. In the first three architectures, the

target image feature and its contextual information inside the 5 × 256 feature matrix are

convolved together without concatenation to get the final classification result. In the fourth

architecture, the 5 × 256 feature matrix is sent into the Long Short-Term Memory (LSTM)

to incorporate temporal information, followed by two fully-connected layers for classifica-

tion. Evaluations of these four architectures are shown in rows 7 to 10 of Table 4.6.
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4.5.2 Results of LARNet-STC

A summary of our VFs state estimation performance analysis results based on the test-

ing set is reported in Table 4.6. Five-fold cross-validation results for the proposed LARNet-

STC network are listed in Table 4.7.

4.5.2.1 Single Image Classification using LARNet

In this subsection, we will discuss single image classification networks without tempo-

ral contextual information. As we can see from the first four rows of Table 4.6, LARNet-

S1Ve out-performs LARNet-S1V, and LARNet-S1Re out-performs LARNet-S1R. LARNet-

S1Ve and LARNet-S1V have identical VGG-13 single-stream architectures, LARNet-S1Re

and LARNet-S1R have identical ResNet-34 single-stream architectures. These results (the

first four rows of Table 4.6) indicate that, under the same classification network, image

preprocessing, specifically histogram equalization, in this case, improves the classification

accuracy.

In the fifth row of Table 4.6, LARNet-S2Re, the two-stream network, which simply

concatenates ResNet-18 features from the original image and histogram equalized images,

respectively, results in the highest recall of LAR. However, without the ORS subnetwork as

in the proposed system, this custom network doesn’t perform as well as LARNet-S1Re us-

ing the histogram equalized images. The results for the proposed VFs state estimation

network that combines image preprocessing, two-stream processing, and an ORS sub-

network are shown in the sixth row of Table 4.6. Precision for the non-LAR cases is

slightly lower compared to LARNet-S1R (≤ 0.22%). Recall for the LAR cases is slightly

lower than LARNet-S2Re (≤ 0.84%). However, in all other aspects, the VFs state estima-

tion network outperforms the LARNet-S1V, LARNet-S1Ve, LARNet-S1R, LARNet-S1Re,

and LARNet-S2Re networks. LAR detection precision improves by 49.13% compared

to LARNet-S1Ve, 26.52% compared to LARNet-S1R, and 7.93% compared to LARNet-

S1Re. As a result, the proposed network improves at least 5.08% in the F1 score of LAR,
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2.90% in the F1 score of occlusion, and 0.86% in the F1 score of non-LAR. The above

results demonstrate that the use of image preprocessing, the fusion of global and local in-

formation through the two-stream network, and the proposed orthogonal region selection

subnetwork improve the VFs state estimation process without the knowledge of contextual

information.

4.5.2.2 Spatio-temporal Context-based Image Classification using LARNet-STC

In order to improve single image classification results, we combined the proposed VF

state estimation network with spatio-temporal video contextual information. The results of

spatio-temporal context-based networks are shown in the last five rows in the Table 4.6. As

we can see in the table, combining temporal information into the classification networks

brings over 3.09% improvements in the precision of LAR and over 2.61% improvements in

the recall of occlusion. Except for the F1 score of non-LAR in LARNet-ST2Le-Conv, all

the spatio-temporal context-based networks achieve overall improvements in the F1 score

of all three VF states compared to the single image classification networks. The results for

the proposed LARNet-STC shown in the 11th row of Table 4.6 out-perform the other four

context-based networks, LARNet-ST2Le-Conv, LARNet-ST2Le-Elem, LARNet-ST2Le-

Elem-Flip, and LARNet-ST2Le-LSTM. The precision of LAR in the 11th row of the table

is at least 2.41% better than the other four context-based networks and 6.79% better than

the VFs state estimation network. The results of the proposed network demonstrate that

the concatenation of the spatio-temporal contextual information vector and the target im-

age feature vector works more efficiently than convolution only on the spatio-temporal

contextual information vector alone as well as LSTM, indicating the importance of consid-

ering jointly single-frame-based classification and context-based classification. The pro-

posed spatio-temporal context-based orthogonal region selection network improves 0.18%,

2.08%, and 1.17% of the F1 score of non-LAR, LAR, and occlusion respectively compared

to the VF state estimation network of our previous work.
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To evaluate the effect of temporal window on performance, we tested the proposed

LARNet-STC network with temporal windows of three and seven frames (Table 4.6 last

two rows). Temporal windows of three frames improves average recall and F1 score com-

pared to the spatial-only LARNet, but not as much as the proposed LARNet-STC network

with five frames. The proposed LARNet-STC network with longer temporal windows leads

to lower average precision, recall, and F1 score compared to the spatial-only LARNet. Best

performance is observed for temporal window size of five frames. This is the window size

closest to average duration of fully-closed state of the VFs during LAR events (5.6 frames).

4.5.2.3 K-fold Cross-validation of LARNet-STC

We have further evaluated the performance of the proposed LARNet-STC network us-

ing five-fold cross-validation. The total number of videos in each fold and cross-validation

results are reported in the Table 4.7.

In the fifth fold, we notice that the precision of the occlusion class is relatively low.

This is because of the manually labeled non-LAR frames predicted as occlusion frames

by the network. Further visual inspection of these ”misclassified” frames revealed that in

these frames vocal folds were in fact partially occluded by the surrounding tissue and the

images were out-of-focus. However, since our occlusion criteria for manual labeling was

occlusion of at least half of the vocal folds, these frames were labeled as non-LAR even

though they were partially occluded. For these misclassified frames, the second-largest pre-

diction probability happens at the non-LAR class, which means that the system potentially

considers these frames as non-LAR, but because of the out-of-focus image conditions and

partial occlusion, the system classifies them as occlusion.

For comparison, the same five-fold cross-validation is applied to LARNet and LARNet-

ST2Le-Conv, the results are shown in Table 4.8.
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4.5.2.4 Statistical Significance of LARNet-STC

We have used the K-fold cross-validation paired t test [130] to evaluate the statistical

significance of the results obtained by the proposed networks with respect to each other.

The five-fold cross-validated paired t test is defined as:

t =
p̄ ·
√

n√∑n−1
i=1 (p(i)− p̄)2

n−1

(4.12)

where p̄ is the mean score difference between the two networks over the five folds, p(i)

is the score difference of the ith fold. n is the number of folds, which is five here. The

paired t test score and the corresponding p-value between different networks are shown

in Table 4.9. We have performed a two-tailed paired t test and computed p-value for a

significance level of alpha = 0.05. These results show that while the difference between our

two spatio-temporal networks (LARNet-ST2Le-Conv and LARNet-STC) is not significant,

the difference between spatial-only network LARNet and the spatio-temporal networks

LARNet-ST2Le-Conv and LARNet-STC are statistically significant with p-values of 0.029

and 0.004 respectively. These results demonstrate the significance of temporal context in

LAR event detection.

Boxplot of the F1 scores of the five-fold cross-validation of the LARNet, LARNet-

ST2Le-Conv, and LARNet-STC networks is shown in Figure 4.7. The green triangle is

the mean over the five folds. As we can see in Figure 4.7, the proposed LARNet-STC

shows the best performance with a mean F1 score of F1 = 0.9308 ± 0.0179 (the second

Table 4.8. The five-fold cross-validation results comparison of LARNet, LARNet-ST2Le-Conv,
and the proposed LARNet-STC. The first value is mean, the second value is standard deviation.

Network Mean Precision Mean Recall Mean F1
LARNet 0.8546±0.0436 0.9173±0.0226 0.8811±0.0242
LARNet-ST2Le-Conv 0.8913±0.0393 0.9674±0.0219 0.9230±0.0282
LARNet-STC 0.9043±0.0157 0.9649±0.0255 0.9308±0.0179
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Table 4.9. Statistical significance analysis. The five-fold cross-validated paired t test of the F1
scores of three different networks.

Methods t-score p-value (alpha=0.05)
LARNet-ST2Le-Conv & LARNet-STC -1.0120 0.3688
LARNet-ST2Le-Conv & LARNet 3.3216 0.0293
LARNet-STC & LARNet 5.9344 0.0040

value is the standard deviation) over the five folds, which shows a nearly 5% improvement

after introducing the temporal context compared to the LARNet (F1 = 0.8811 ± 0.0242).

The medians of the F1 scores over the five folds of LARNet-ST2Le-Conv and LARNet-

STC are similar. However, the mean F1 score over the five folds of LARNet-ST2Le-Conv

(F1 = 0.9230±0.0282) is lower than the LARNet-STC. The 25th percentile of the LARNet-

ST2Le-Conv is slightly higher than the one of the LARNet-STC (≥0.22%). However, the

75th percentile of the LARNet-STC is higher than the one of the LARNet-ST2Le-Conv

(≥0.5%). As we can see in the boxplot, the range of the F1 score of the proposed LARNet-

STC is smaller than the other two networks, indicating that the proposed LARNet-STC is

more robust across all five folds compared to the others. In the boxplot, both of the spatio-

temporal networks LARNet-ST2Le-Conv and LARNet-STC improve the mean F1 score

by 4.20% and 4.97% respectively compared to the spatial-only LARNet, demonstrating

that the temporal contextual information further improves the accuracy compared to the

spatial-only information.

4.5.2.5 Quantitative Evaluation of LAR Event Durations

We have further evaluated the proposed LARNet-STC based on the event durations.

For every video in the five-folds cross-validation output, we computed the frame error e

between the ground truth number of frames and the predicted number of frames for every

LAR event i, which is defined as:

ei = | fGTi − fpredi |, i ∈ N (4.13)
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Figure 4.7. Boxplot of the F1 scores for the five-fold cross-validation of three proposed networks.
The green triangle is the mean across five folds.

(c)

(d)(b)

(a)

A B C D

Figure 4.8. Quantification evaluation of LAR event durations (number of frames). (a) Histogram
of the distribution of ground truth LAR event durations. (b) cumulative distribution of the frame
error of LAR event prediction. (c) Comparison of the ground truth and prediction of VF states for a
single video. (d) Sample original video frames at timestamps A, B, C, and D in (c).
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where fGTi is the ground truth number of frames for the event i, fpredi is the predicted number

of frames for the event i. N is total number of LAR events.

Figure 4.8(a) shows the distribution of ground truth LAR event durations. In the ground

truth durations of LAR events, 77.33% of the LAR events last within 10 frames (0.33

seconds). Figure 4.8(b) shows the cumulative distribution of frame error n ( {#i|ei≤n}
N , i ∈ N)

for LAR events. As we can see in Figure 4.8(b), 63.6% of the LAR events have no error,

and 87% of the LAR events have equal to or less than one frame error, which corresponds

to an error rate of 17.86%, considering that the average duration of the fully-closed state of

the VFs during the LAR event is 5.6 frames. Most frame errors occur at the beginning and

end of the LAR events. This type of error is due to the discrepancy between the ground

truth and prediction of the start and end points of a LAR event. As an example, Figure

4.8(c) shows the comparison of ground truth and prediction of VF states for a single video,

and Figure 4.8(d) shows the sample original video frames. We pick four timestamps A,

B, C, and D from Figure 4.8(c), and display the sample original video frames at these

four timestamps in Figure 4.8(d). As we can see in the sample original video frames, the

FEEST triggered laryngeal adductor reflex (LAR) starts at timestamp A, leading to the

LAR prediction in image A. In images B and C (timestamps B and C), the vocal folds are

fully closed and correctly detected as LAR events. Image D is the first frame VFs start to

open. Manual ground truth lists it as non-LAR, while the proposed network predicts it as

LAR.

4.5.2.6 Using Glottal Region Segmentation for LAR Event Detection

To further justify the need for an explicit LAR/non-LAR classification network as pro-

posed in this chapter, we ran three deep-learning-based glottal region (region between the

VFs) segmentation networks on our test laryngoscopy videos, and inferred the LAR versus

non-LAR states by thresholding the glottal region area indicated by the resulting segmenta-

tion masks. The evaluated segmentation networks are: (1) U-LSTM network [5]; (2) FCRN
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[6]; and (3) FCRN+HE+ORS, FCRN [6] network with inputs preprocessed as LARNet and

LARNet-STC (histogram equalized and cropped using ORS subnetwork). U-LSTM net-

work [5] was recently proposed to study VF vibrations during speech production using

high-speed video (HSV) acquired using rigid transoral (through the mouth) laryngoscopy.

FCRN [6] is our group’s earlier network developed to study VF motion dynamics through

glottal region segmentation on videos acquired using flexible transnasal endoscopy. We

have tested and evaluated five different area threshold values (200, 250, 300, 500, and 700

pixels) to infer LAR versus non-LAR states from the segmentation masks. A threshold

value higher than zero is used because in some LAR cases, a slight opening is still left

between the VFs when they are closed. The LAR/non-LAR classification results inferred

from glottal region segmentation masks were compared to the ground truth class labels and

compared to the performance of the proposed direct classification network LARNet-STC.

The F1 scores for non-LAR and LAR frames of different methods are reported in Table

4.10 and Table 4.11 respectively, and shown in Figure 4.9 and Figure 4.10.

Best segmentation-based LAR detection results are obtained for the FCRN+HE+ORS

method with an area threshold of 200. While acceptable results are obtained for non-

LAR cases (F1=0.89), all segmentation networks fail during the LAR events (best per-

formance is F1=0.38). Accurate detection of the LAR events is the core of the Flexible

Endoscopic Evaluation of Swallowing with Sensory Testing (FEESST) used to assess life-

threatening VF dysfunctions affecting breathing and swallowing. The low performance by

segmentation-based methods is mainly due to false glottal region detections during LAR

events. While it is feasible to accurately segment (or track) the VFs during their regular

vibratory states (i.e. during speech or breathing). The suddenness and rarity of the LAR

events, large appearance variations of the VFs and the glottal region prevent reliable seg-

mentation or tracking of the VFs during the LAR events and lead to much lower scores

compared to the proposed network.
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Table 4.10. Segmentation-derived LAR/non-LAR classification results. Average F1 scores for non-
LAR frames.

Segmentation
Algorithm

threshold=

200 pixels
threshold=

250 pixels
threshold=

300 pixels
threshold=

500 pixels
threshold=

700 pixels
U-LSTM [5] 0.8267 0.8196 0.8072 0.7935 0.7506
FCRN [6] 0.8908 0.6859 0.6790 0.6480 0.6428
FCRN [6]
+ histogram
equalization
+ ORS

0.8933 0.8724 0.8362 0.6620 0.4746

Proposed:
LARNet-STC 0.9926 0.9926 0.9926 0.9926 0.9926

Table 4.11. Segmentation-derived LAR/non-LAR classification results. Average F1 scores for LAR
frames.

Segmentation
Algorithm

threshold=

200 pixels
threshold=

250 pixels
threshold=

300 pixels
threshold=

500 pixels
threshold=

700 pixels
U-LSTM [5] 0.0699 0.0678 0.1020 0.1055 0.1013
FCRN [6] 0.0000 0.1280 0.1304 0.1239 0.1226
FCRN [6]
+ histogram
equalization
+ ORS

0.3825 0.3817 0.3645 0.2910 0.2428

Proposed:
LARNet-STC 0.9067 0.9067 0.9067 0.9067 0.9067
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Figure 4.9. Segmentation-derived LAR/non-LAR classification results. Average F1 scores for non-
LAR frames. VFs segmentation algorithms (U-LSTM [5], FCRN [6], and FCRN [6] + histogram
equalization + ORS) and the proposed LARNet-STC.
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Figure 4.10. Segmentation-derived LAR/non-LAR classification results. Average F1 scores for
LAR frames. VFs segmentation algorithms (U-LSTM [5], FCRN [6], and FCRN [6] + histogram
equalization + ORS) and the proposed LARNet-STC.
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Figure 4.11. Visual explanation of the LARNet-STC network output using Grad-CAM visual-
ization [7]. Top row: subregions automatically selected by Orthogonal Region Selection (ORS)
subnetwork. Bottom row: regions corresponding to high score for the predicted class marked with
highlights changing from red to blue corresponding to higher to lower impact regions.

4.5.2.7 Visual Explanation for LARNet-STC

Grad-CAM [7] visual analysis software visualizes image regions leading to high scores

for the class predicted by a network. We have used Grad-CAM to visually explore the VF

state class prediction behavior of the proposed LARNet-STC network. Figure 4.11 demon-

strates that: (1) ORS subnetwork successfully selects the image subregions containing the

VFs; and (2) the LARNet-STC networks bases its prediction based on VF regions, even

though the system does not include an explicit VF segmentation module.

4.5.2.8 Discussion

Figure 4.12 shows the confusion matrix of the results of testing data from the proposed

LARNet-STC. As we can see in the confusion matrix, the majority of the errors occur
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in predicting some non-LAR images as LAR, LAR as non-LAR, and occlusion as LAR.

The errors are due to two main factors: labeling protocol and LAR-occlusion appearance

similarity. LAR images include fully closed and partially open/closed images, and the

partially open area only occupies within 10% of the fully open VFs area. However, the

non-LAR image could have a marginal change in terms of the partially open VFs area

compared to the adjacent LAR image and will cause confusion between non-LAR and

LAR in the classifier (the middle figure of the first row in Figure 4.13). Independent of

VF open/closed state, our ground-truth labeling protocol marks all cases where more than

half of the VFs are not visible as occluded. The glottal region, the gap between the VFs,

is not visible when either the VFs are closed or occluded, resulting in confusion between

occlusion and LAR classes. The middle figure of the third row in Figure 4.13 shows the

vocal folds are occluded during the laryngoscopy being pulled out. The third figure of the

first row in Figure 4.13 shows the vocal folds are partially occluded (less than a half) by

the anatomical structure, but still can be recognized as non-LAR.

The introduction of temporal information for single frame classification only brings

limited improvements compared to our previous work. The performance is due to two

main reasons: misclassification with the contextual information and the classification error

from the previous VFs state estimation network (LARNet). While some of the video frames

classification results get corrected with the aid of temporal information, some of the video

frames get misclassified. Sample sequential video frames are shown in Figure 4.14. As we

can see in the middle figure of Figure 4.14, the ground truth of the frame-8 is occlusion

due to the half occluded vocal folds area caused by the artifact, while the prediction of

the frame-8 is non-LAR derived by the non-LAR prediction of the frame 6 to frame 10.

Randomly separating labeled human laryngoscopy videos into training and testing dataset

makes the testing dataset have new imaging problems and anatomical variations that never

happened in the training dataset. Under these circumstances, our proposed spatio-temporal
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Figure 4.12. The confusion matrix of the results from the proposed context-based orthogonal region
selection network (LARNet-STC).

context-based orthogonal region selection network can still achieve over 94% of the testing

average F1 score, showing its robustness.

4.6 Conclusion

Laryngeal adductor reflex (LAR) is an airway protection mechanism where the vocal

folds (VFs) close abruptly to prevent the entry of foreign materials into the upper airway.

VF function and LAR are affected by numerous medical conditions including stroke, tu-

mor, and neurological disorders. LAR impairment increases the risk of aspiration pneu-

monia and death. In this chapter, we presented deep learning-based systems for automated

assessment of the LAR events in laryngeal endoscopy videos. The proposed deep learning

networks, LARNet and LARNet-STC, incorporates our novel orthogonal region selection

network that acts like an unsupervised spatial attention mechanism and temporal context

from the surrounding video frames for robust spatio-temporal reasoning. The network

learns to directly map its input (a laryngeal endoscopy image) to a VF open/closed state

without prior knowledge of the region of interest (i.e. VF segmentation mask, VF bound-
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Figure 4.13. Sample outputs from the proposed system. Red label represents ground truth. Green
label represents prediction.

Figure 4.14. Sampled non-LAR sequential video frames (frame 6-10) with visual occlusion from
laryngoscopy videos.
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ing box, VF motion trajectories). This direct approach considerably reduces the annotation

workload needed to train the network. Experimental results showed promising performance

towards the automated, objective, quantitative analysis of the LAR events. We have demon-

strated that the combination of spatial attention and temporal context greatly improves the

LAR detection performance.

We have three main future directions.

(1) Extension of the proposed system to identify different stages of the LAR event: The

proposed system classifies its input into open, closed, and occluded states of the VFs. Our

first future direction is the extension of the proposed system to identify different stages

during the LAR events. Specifically, we are interested in identifying the VF adduction

(moving towards) and abduction (parting away) stages. In addition to a more detailed

analysis, this extension is expected to further improve LAR duration estimation. While the

start of the LAR events is abrupt, the end of the LAR events tends to be more gradually

changing to partially open/closed states, which are currently assigned to either open or

closed VF states. This extension will resolve ambiguity for these cases where the VFs are in

the process of opening or closing and will lead to more precise localization of the LAR start

and end time points. Since our current network already involves both spatial and temporal

features, drastic network architecture change is not expected. However, the training of the

extended network requires considerably more detailed and precise annotations.

(2) Development of a user-friendly full video processing system to ease adoption in

clinical settings: We have demonstrated video analytics capabilities on short video clips of

interest manually extracted by scientists from clinical test videos. Integration of the current

video analytics system into a user-friendly real-time software system that captures and

processes the endoscopy video and presents the outputs to the user is needed to facilitate

wide clinical adoption. Our first step towards this goal is improving computational cost,

and dealing with image quality issues with more robust image preprocessing steps.
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(3) Clinical studies to assess the utility of the proposed VF state estimation and LAR

detection system: Our interdisciplinary team’s ultimate goal is the development of robust

machine learning and computer vision systems for objective and quantitative monitoring of

disease progression and treatment outcomes associated with VF function and their adop-

tion in clinical settings. The proposed solution will be used as a step forward toward this

goal. Our ultimate future direction is to conduct clinical studies to assess the utility of

the proposed system in disease vs. healthy behavior discrimination, monitoring disease

progression, and treatment efficacy; and to assess its potential for early detection of upper

airway dysfunction.
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CHAPTER 5

3-D VOLUME SEGMENTATION: ENSEMBLE OF DEEP

LEARNING CASCADES WITH GLOBAL SOFT ATTENTION

This chapter introduces an ensemble of deep learning cascade architecture for 2-D im-

age segmentation. Both deep-learning cascades combine unique global soft attention mech-

anisms, aiming at recall and precision scores respectively. The ensemble mechanism fur-

ther improves the overall segmentation accuracy of the system. This proposed architecture

has been published in [29]. The proposed ensemble of deep learning cascade architecture is

applied to 2-D confocal microscopy images for extracting quantitative results for confocal

microscopy images.

5.1 Introduction

Detection, segmentation, and quantification of microvascular structures are the main

steps towards studying microvascular remodeling. Combined with appropriate staining,

confocal microscopy imaging enables exploration of the full 3D anatomical characteristics

of microvascular systems. Segmentation of confocal microscopy images is a challenging

task due to complexity of anatomical structures, staining and imaging issues, and lack of

annotated training data. In this chapter, we propose a deep learning system for robust seg-

mentation of cranial vasculature of mice in confocal microscopy images. The proposed

system is an ensemble of two deep-learning cascades consisting of two coarse-to-fine sub-

networks with skip connections in between. One cascade aims to improve sensitivity, while

the other aims to improve precision of the segmentation results. Our experiments on mice
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cranial vasculature showed promising results achieving segmentation accuracy of 92.02%

and dice score of 81.45% despite being trained on very limited confocal microscopy data.

Serious intracranial pathologic conditions, such as dural sinus thrombosis, dural arte-

riovenous fistulas, and aneurysms, involve the vessels, not of the brain itself, but its outer

fibrous membrane, the dura mater. These conditions, resulting in significant neurologic

morbidity and reduced cognitive abilities [131][132], have been associated with vascular

abnormalities. Meningeal vascular networks contribute to brain metabolic clearance and

venous blood outflow. They constantly adjust to tissue metabolic demands through struc-

tural and functional remodeling. Defective vascular remodeling under certain pathological

conditions leads to tissue damage and limits its repair. Acute damage to meningeal vas-

culature caused by traumatic brain injury, resulting in disruption of meningeal vascular in-

tegrity and peripheral immune response can lead to life-threatening situations [132]. While

impaired vascular integrity, capillary rarefaction, and aberrant angio-architecture can also

develop under chronic conditions, for example, associated with sex hormone deprivation

[133].

Detection, segmentation, and quantification of microvascular structures are the main

steps towards studying microvascular remodeling. Confocal microscopy [134] allows 3-D

image capture using optical sectioning or depth discrimination by blocking light emitted

from out-of-focus planes. Each single focus image captures the details of the specimen

regions that lie close to its focal plane, while the remaining regions are imaged with poor

contrast. Combined with appropriate staining, confocal microscopy imaging enables ex-

ploration of the full 3-D anatomical characteristics of microvascular systems.

While segmentation of vessels on traditional angiogram-based imagery or retinal im-

agery has advanced considerably [135, 136, 22, 83, 84, 85, 137, 138], segmentation of

microvasculature in confocal microscopy images remains to be a challenging task. The

main challenges are due to complexities of anatomical structures such as irregular shape

and varying scale of the vessels; staining issues such as non-homogeneous staining within
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slice #93 slice #110slice #70 XY-plane projection fusion

slice #70 slice #190slice #140 XY-plane projection fusion

Figure 5.1. Sample blood microvascular structures imaged using confocal microscopy. The first
three columns show sample single focus slices. The last column shows fused multi-focus image.

the lumen and excessive stain in the background due to leakage; imaging issues such as low

contrast or background clutter due to out of focus structures. Figure 5.1 that shows sample

slices and xy-plane projections for two sample confocal microscopy stacks illustrates some

of these challenges. In addition to aforementioned challenges, unlike angiogram-based or

retinal vessel imagery, manually annotated training data needed for supervised machine

learning approaches is severely lacking for confocal microscopy images of microvascula-

ture. This is due to the size of data (hundreds of slices per stack), complexity of the vascular

structures, and difficulty of 3-D annotation.

In this chapter, we propose a segmentation system for the confocal microscopy image

segmentation, which is a fusion of two deep-learning cascades. The two cascades focus

on improving sensitivity (recall) and precision of the segmentation results respectively. To

compensate for limited confocal microscopy training data, the proposed network is first
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trained with an epifluorescence microscopy image dataset, then fine-tuned with a small set

of fused confocal microscopy images of mice cranial microvasculature.

5.2 Ensemble of Deep Learning Cascades for Vessel Segmentation

5.2.1 Image Preprocessing

The proposed preprocessing scheme consists of two steps: (1) multi-focus image fu-

sion, and (2) contrast enhancement. Each confocal microscopy image stack consists of

hundreds of single focus slices capturing only a small portion of the microvascular net-

work. We use the multi-focus image fusion approach described in [139] to produce a sin-

gle multi-focus image out of hundred of single-focus slices within a confocal microscopy

stack. The resulting multi-focus image (as the original set of slices) typically suffers from

staining issues (i.e. non-homogeneous staining within the lumen and excessive stain in

the background due to leakage), imaging issues (i.e. low contrast), and background clutter

due to out of focus structures. To improve image contrast, we apply adaptive histogram

equalization [140] to the fused multi-focus image. Sample fused, multi-focus, confocal

microscopy images before and after adaptive histogram equalization are shown in Figure

5.2.

5.2.2 Network Architecture

For robust and precise segmentation of microvascular structures on confocal microscopy

images we have developed two deep learning network cascades: (1) deep binary attention

cascade (DBAC), and (2) deep distance map attention cascade (DDMAC). The DBAC net-

work is designed for improving sensitivity (recall) scores, while the DDMAC network is

designed for improving precision scores of microvascular image segmentation results. Each

cascade generates two outputs: an intermediate output from the first subnetwork acting as

attention map for the second network and a final refined segmentation mask from the sec-
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Figure 5.2. Sample confocal microscopy fused multi-focus images before (first column) and after
(second column) adaptive histogram equalization.
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ond subnetwork. The two final predictions from the DBAC and DDMAC networks are

fused together to produce one final segmentation mask.

5.2.2.1 Deep Binary Attention Cascade (DBAC)

The attention module

concatenate
residual block + ReLU
down sample + residual block + ReLU
upsample + residual block + ReLU

upsample + concatenate

skip connection

U-Net U-Net++

image with 
preprocessing 

segmentation 
maskM

Attention 
map

x

Wij

ReLU

I

Pij

Figure 5.3. Architecture of the proposed deep binary attention cascade (DBAC).
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probability 
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I

conv

concatenate
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Figure 5.4. Architecture of the proposed deep distance map attention cascade (DDMAC).

The cascade network involves two subnetworks: a classical semantic segmentation net-

work, UNet [26], followed by a deeper UNet++ [141] designed to exploit the convolutional

features at different scales. The architecture of the proposed DBAC is shown in Figure 5.3.

The convolutional layers have channels 32, 64, 128, 256, and 512 respectively from shallow
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to deeper encoder layers in both U-Net and U-Net++. The decoder layers have symmetric

number of channels. Each convolutional layer is replaced with a residual block [129].

The first subnetwork takes the input image and learns to predict a soft attention map

where higher values indicate likelihood of vessel presence. The second subnetwork takes

the input image and is guided by the soft attention map to performs coarse-to-fine refine-

ment of the vessel segmentation mask from the first subnetwork.

The proposed attention module connecting the two subnetworks is defined as:

Pi j = max(0,Wi j) (5.1)

M = I × P (5.2)

where W is the convolutional feature map from the first subnetwork, P is the 1-channel

attention map prediction from the first subnetwork trained with a binary mask, where the

positive values represent foreground and the negative values represent background. I is the

input image, and M is the input to the second subnetwork.

We further extend this cascade by adding two shortcut connections that feed-forward

the first subnetwork at different levels of the decoder to the corresponding levels of the

decoder in the second subnetwork. The forwarded feature map and target feature map are

concatenated together to prevent gradient vanishing as well as to directly forward feature

maps from the first network to the second network.

The proposed network is trained on 60 epifluorescence microscopy images with reso-

lution of 1360 × 1036 pixels [22][23], using binary cross-entropy loss [142] function and

stochastic gradient descent (SGD) optimizer for the first and second subnetworks. Data

augmentation is applied during the training and fine-tuning processes including random

cropping (crop size is 448 × 448), rotation, flipping, scale, brightness, and contrast adjust-

ment.
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5.2.2.2 Deep Distance Map Attention Cascade (DDMAC)

As can be observed from Figure 5.1, cranial vasculature’s diameter varies largely within

even a small field of view. To better capture the varying size and shape of the vessels and to

be able to detect thin vessels, we propose deep distance map attention cascade (DDMAC)

shown in Figure 5.4. Dilated probability regression module (first subnetwork) aims to

improve the precision score of the segmentation by applying multi-channels attention (the

orange map in Figure 5.4) to the input image and then concatenating it with the dilated

probability map Q (the green map in Figure 5.4).

Convolutional feature map Q is a 1-channel prediction from the first subnetwork of

DDMAC and is trained with dilated probability map D, which is defined as:

D = distance trans f orm(1 − V) (5.3)

D = {k|D>k} (5.4)

D = 1 −
D

max(D)
(5.5)

where V represents the binary mask (vessel is positive, background is negative) used for

training the proposed system. k is the upper bound of the pixel distance in D, which is set

to be 20 in this study. The dilated probability regression module is defined as:

W =
eWi jk∑3

k=1 eWi jk
(5.6)

W ′ = W × I (5.7)

M′ = concatenate(W ′,Q) (5.8)

where Wi jk is the convolutional feature map with size i × j × k representing height, width,

and channels respectively. In this study, i, j are the same as the height and width of the

input image, and k = 3. The output M′ is the input to the second subnetwork. The second
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subnetwork takes M′ and performs coarse-to-fine refinement of the vessel segmentation

mask Q from the first subnetwork.

The proposed DDMAC network is trained on 60 epifluorescence microscopy images

with resolution 1360 × 1036 [22][23] using the same data augmentation strategies as the

described DBAC network. Mean square error (MSE) [142] and binary cross-entropy loss

functions are used to train the first and the second subnetworks respectively. SGD is used

as training optimizer.

5.2.3 Decision Fusion (Late Classifier Fusion)

For robust vessel segmentation performance, outputs of the two proposed networks

DBAC and DDMAC are fused. Two decision fusion (late classifier fusion) mechanisms,

average and maximum are considered:

Average : S i j =
Li j+Ni j

2 (5.9)

Maximum : S i j = max(Li j,Ni j) (5.10)

where L and N denote the 1-channel segmentation probability maps generated by the

proposed DBAC and DDMAC networks respectively, and i j refers to pixel coordinates.

Binary segmentation masks are produced by performing hysteresis thresholding [143] on

the fused probability maps S . Mathematical morphology operations are applied to the

predicted binary mask to fill small gaps and to remove small fragments.

5.3 Experimental Results

5.3.1 Data Collection

In this study, 7-8 weeks old C57BL/6J female mice were used to generate 80 3-D

confocal microscopy image stacks. Following sacrifice, the entire body of the mouse

was perfused through the heart with Kreb’s/albumin solution containing AlexaFluor 594-

conjugated soybean agglutinin (SBA) lectin to stain and identify blood microvessels [144].
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Skull caps with dura mater were isolated and fixed in 10% formaldehyde. Images were

acquired at 20x magnification on confocal FluoView FV1000 inverted microscope system

(Olympus). The 160-270 mm thick Z-stacks were acquired with step size 1 mm. All animal

experimental procedures were approved by the University of Missouri Institutional Animal

Care and Use Committee.

The single focus Z-stacks microscopy images were fused using the method presented in

[139] to produce eighty 512×512 multi-focus images. Out of those multi-focus images, 62

images were selected for training and 18 images were selected for testing. Silver truth (ST)

segmentation masks were generated for all the training & test images by a combination

of computer-generated segmentation masks and manual annotation. More precise ground

truth (GT) segmentation masks were generated for the 18 test images by further inspection

and manual correction by a domain expert.

5.3.2 Evaluation Metrics

Segmentation evaluations were carried out by sensitivity (recall), precision, specificity,

accuracy, and dice score measures as defined below:

S ensitivity =
T P

T P + FN
(5.11)

Precision =
T P

T P + FP
(5.12)

S peci f icity =
T N

T N + FP
(5.13)

Accuracy =
T P + T N

FN + FP + T P + T N
(5.14)

Dice =
2 ∗ T P

2 ∗ T P + FP + FN
(5.15)

where T P, T N, FP, FN represent number of true positive, true negative, false positive, and

FN false negative pixels respectively.
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Table 5.1. Number of trainable parameters of the compared networks.

Methods Number of trainable parameters
U-Net++ [141] 71,106,794
deeper U-Net++ 80,171,050
proposed DBAC 80,190,922
proposed DDMAC 80,210,861

5.3.3 Network Inference on 2-D Multi-focus Images

Because of limited amount of confocal microscopy training data, the proposed networks

and their subnetworks were first trained with 60 epifluorescence microscopy images and

their ground truth segmentation masks described in [22, 23]. Then the same networks were

fine-tuned with 62 multi-focus confocal microscopy images and their associated silver truth

masks described above. Both set of networks (with and without fine-tuning) were tested

on the 18 multi-focus confocal microscopy test images and evaluated using corresponding

ground truth segmentation masks.

5.3.3.1 Single Network Segmentation Performances

First, we compare segmentation performances of the proposed DBAC and DDMAC

networks with state-of-the-art segmentation network UNet++ [141] and its deeper version

with number of trainable parameters comparable to the proposed networks. The total num-

ber of trainable parameters of these networks are listed in Table 5.1.

The 1-channel probability maps outputted from the proposed DBAC and DDMAC

networks are binarized using hysteresis thresholding [143] (lower bound=0.45, higher

bound=0.95). Segmentation performances of the compared networks with and without

fine-tuning are listed in Table 5.2. In order to better preserve the very thin vessels, up-

sampled images (size 1024 × 1024) are inputted to the proposed DBAC network. Original

sized images (512 × 512) are used with the proposed DDMAC network since regression to

distance map is more robust to scale variations.
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As we can see in Table 5.2, fine-tuning improves the dice score of all the deep learning

networks by at least 1.4%. The proposed DBAC and DDMAC networks achieve the best

sensitivity (recall) and precision scores respectively with and without fine-tuning. The

distance based DDMAC network results in the best dice scores with and without fine-

tuning.

dice=69.21% dice=72.72% dice=74.66%

(a) input image (b) attention
module ground
truth

(c) dilated prob-
ability module
ground truth

dice=70.67%

(d) prediction
from the DBAC
with input size
1024 × 1024

dice=76.64%

(e) predic-
tion from the
DDMAC with
input size
512 × 512

dice=79.24%

(f) final fused
segmentation
mask

Figure 5.5. Intermediate and final segmentation results for two sample multi-focus input images.
(a) input images, (b-c) ground truth maps for the binary attention module in DBAC and dilated
probability module in DDMAC, (d-f) predicted segmentation masks versus ground truth for DBAC,
DDMAC, and ensemble networks. The red, blue, and white regions represent false-positive, false-
negative, and true positive predictions respectively.

5.3.3.2 Ensemble Network Segmentation Performances

Table 5.3 summarizes segmentation performances of different configurations of the pro-

posed ensemble network consisting of DBAC and DDMAC networks. The table explores

two different input image sizes and two different decision fusion (late classifier fusion)

mechanisms, average and maximum. All configurations of the proposed ensemble net-

work outperform the best single network. Upsampling input images increases the preci-

sion scores. Ensemble network using average fusion and upscaled inputs for the proposed
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Figure 5.6. Sample outputs from the proposed system. (a) multi-focus confocal microscopy im-
age enhanced with adaptive histogram equalization; (b) predicted segmentation mask versus ground
truth where the red, blue, and white regions represent false-positive, false-negative, and true positive
predictions respectively. (c-d) 3-D segmentation masks obtained by applying the proposed 2-D seg-
mentation network to the individual single focus images forming the confocal microscopy volume.
Visualization of the 3-D segmentation results were generated using the Chimera software [8]. Color
fades with increasing depth.

DBAC network improves the dice score of the best performing single network by 2.29%

reaching the best dice score of 81.45%.

Figure 5.5 shows single network and ensemble network segmentation results for two

sample multi-focus images. Red and blue pixels represent false-positive and false-negative

predictions respectively. False detections (false-positives) are typically caused by adverse

effects of adaptive histogram equalization. Missed detections (false-negatives) are caused

by thin vessels and low contrast between microvasculature and background. Fusing the

outputs of the DBAC and DDMAC networks lead to recovery of some missed vessels and

removal of some spurious detections (Figure 5.5f).
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5.3.4 Network Inference on 3-D Image Stacks

The 3-D confocal microscopy image stacks in this study contain hundreds of slices.

Each single slice captures the details of the specimen regions that lie close to its focal

plane, while the remaining regions are imaged with poor contrast. Segmentation and visu-

alization of the 3-D image stack allow comprehensive visualization and quantification of

the anatomical structure of the 3-D microvasculature. 3-D deep learning networks could be

employed to capture and learn the full 3-D morphological and anatomical characteristics

of the microvasculature. However, demanding computational requirements and more im-

portantly, the need for 3-D annotation for training limit their usability. In this section, we

utilize the proposed 2-D image segmentation network to independently segment the single

focus Z-stacks of a 3-D confocal microscopy volume.

Figure 5.6 shows 2-D multi-focus images, corresponding 2-D segmentation masks, and

3-D segmentation masks for two sample confocal microscopy volumes. The 2-D multi-

focus images were obtained using the multi-focus fusion method described in [139]. 3-D

segmentation masks were obtained by applying the proposed 2-D segmentation network to

the individual single focus images forming the confocal microscopy volume. Each input

slice has been preprocessed with linear contrast enhancement. Visualization of the 3-D

segmentation results were generated using the Chimera software [8]. Figure 5.6c and 5.6d

show promising 3-D segmentation results. In the first row of Figure 5.6, missed detec-

tions in 2-D (Figure 5.6b, blue pixels within green rectangles) caused by low contrast are

recovered in 3-D (Figure 5.6c and 5.6d) thanks to linear contrast enhancement. In the sec-

ond row of Figure 5.6, missed detections in 3-D (Figure 5.6c, green rectangle) caused by

lack of semantic context in each slice can be corrected by the segmentation result of the

corresponding 2-D multi-focus image (second row in Figure 5.6b).
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5.4 Conclusion

In this chapter, we presented an ensemble of deep learning cascades for robust seg-

mentation of blood vessels in confocal microscopy images. The proposed ensemble is

composed of two complementary deep-learning cascades aiming to improve sensitivity

and precision of the segmentation results. The proposed cascades first learn to predict two

soft attention maps, one based on binary pixel classification, the other based on regression

to a distance map. The attention maps guide the networks to predict an accurate vessel

segmentation mask. Experiments demonstrated promising results towards segmention of

microvasculatures in both 2-D and 3-D datasets. Segmentation is the key first step towards

objective, and quantitative analysis of microvascular systems. The proposed segmentation

system will be used to study microvascular remodeling.
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CHAPTER 6

DISCRETE FOURIER TRANSFORM CLASS ACTIVATION MAP

(DFT-CAM) AND WEAKLY-SUPERVISED SEGMENTATION

This chapter first introduces a Discrete Fourier Transform driven class activation map

(DFT-CAM), then introduces the DFT-CAM based weakly-supervised object localization

and segmentation systems.

We first introduce the DFT-CAM, a novel class activation map method that combines

discrete Fourier transform based feature encoding with an orthogonality-based feature se-

lection scheme. DFT-CAM doesn’t require any training, better captures semantic informa-

tion and aggregates only the most representative convolutional features. Besides, the pro-

posed DFT-CAM can be applied to existing deep classification networks without changing

the network architecture. To our best knowledge, the DFT-CAM is the first frequency-

domain-based class activation map. Based on the DFT-CAM, we then proposed weakly-

supervised object localization and segmentation systems using inexact data supervision

strategies for 2-D image analysis.

In this chapter, we first introduce the background and basic idea of the class activation

map and weakly-supervised learning. Then we introduce the details of the proposed DFT-

CAM. Based on the DFT-CAM, we then proposed weakly-supervised object localization

and segmentation systems. Experiments are conducted on both weakly-supervised object

localization and segmentation systems using the ImageNet Large Scale Visual Recognition

Challenge 2012 (ILSVRC2012) dataset [27] and human laryngeal endoscopy video data

respectively. Finally, we conclude this chapter at the end.
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6.1 Introduction

Deep learning has revolutionized computer vision tasks. Deep image classification

networks such as CNN [11], VGG [9], residual network [129] and their variants; image

segmentation networks such as fully convolutional network [145], U-Net [26], DeepLab

[146] and their variants show promising results in many applications of image analysis and

computer vision. While deep learning brings promising results in many fields, a signifi-

cant problem is catching more and more attention, which is the need for large amounts of

annotated data for deep learning training and testing.

Deep learning network training and testing require a huge amount of annotated data

to learn from and evaluate, which is time-consuming and labor-intensive. In biomedical

fields, the lack of annotated biomedical datasets is more severe than nature images, because

of the difficulties in data acquisition and the expertise requirement for labeling. Weakly-

supervised learning, a branch of machine learning, recently has received enormous atten-

tion, aiming to reduce data annotation workload and still keep the promising output preci-

sion. Based on the types of training data, weakly-supervised learning can be categorized

into three types: (1) incomplete supervision, which means only a subset of training data

is labeled; (2) inexact supervision, which means that the training data is coarse-grained;

(3) inaccurate supervision, which means the training labels can be wrong [97]. We target

inexact supervision in this chapter. Different methods have been proposed to attempt to

achieve the goal, for example, methods that are based on specific system architectures and

training strategies [98][96].

Recently, the class activation map (CAM) technique, which was originally developed

for explainable AI, has been proposed to serve weakly-supervised learning. Basically, the

CAM methods generate a discriminate saliency map for a specific class from the deep

classification network, showing the pixel-wise probability of a pixel being used for the

final class label prediction. A larger probability means a higher chance of the pixel belongs

to the target object. This transformation from image-level (class label) to pixel-level (class
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activation map) enables pixel-wise precision output by only using image-level ground truth

labels, which can reduce a lot of data annotation workload. Therefore, CAM techniques

have recently been applied to weakly-supervised learning tasks such as weakly-supervised

object localization (WSOL) [98][96] and weakly-supervised object segmentation [147], as

they bring up a possible way of reducing the annotation workload of training data.

Several CAM methods have been proposed, such as gradient-free methods CAM [91]

and Ablation-CAM [92], or gradient-based methods such as Grad-CAM [93] and Grad-

CAM++ [94]. To generate a saliency map, these methods often combine information from

all the channels from a convolutional layer using a weighted sum operation. This process

can blend unrelated regions of the target object and affect the energy distribution of the

saliency map, thus, lowering the accuracy of the downstream tasks.

The vocal folds (VFs) are a pair of muscles in the larynx, the tubular structure that con-

nects the throat to the windpipe (trachea). The VFs function like a valve in the upper airway,

opening, and closing as needed for breathing, swallowing, and speaking [108]. Therefore,

VF dysfunction can cause breathing difficulty (dyspnea), swallowing dysfunction (dys-

phagia), and/or voice impairment (dysphonia), all of which can significantly reduce the

patient’s quality of life, even cause life-threatening situations [110] [111].

Flexible Endoscopic Evaluation of Swallowing with Sensory Testing (FEESST) is a

clinical test used by speech-language pathologists (SLPs) and otolaryngologists to exam-

ine motor and sensory functions of the VFs and to assess the risk of aspiration [114]. The

FEESST procedure involves passing a thin flexible endoscope through the nose into the

pharynx and larynx to visualize the VFs. Small puffs of air are delivered through the en-

doscope to stimulate the laryngeal mucosa near the VFs, triggering the laryngeal adductor

reflex (LAR). During this airway protective reflex, the VFs abruptly close momentarily

(less than 1 second) to prevent invasion of “foreign” material into the lungs. However,

the FEESST-generated videos (if they are even recorded) are only visually inspected, re-

sulting in the loss of potentially clinically valuable information to facilitate diagnosis and
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guide treatment planning. Besides, vocal fold motion analysis is needed to detect subtle

VF dysfunction that may be missed by visual inspection alone, as well as to objectively

monitor disease progression or treatment response. The current practice of vocal fold mo-

tion analysis mainly relies on fully-supervised deep-learning semantic segmentation, which

requires labor-intensive and time-consuming pixel-level annotation of the glottal region in

endoscopy images [148] [149] [6]. Also, most of the proposed glottal region segmentation

methods are designed for high-speed transoral videoendoscopy, which has a high frame

rate, resolution, and image quality. In this chapter, we focus on the more challenging anal-

ysis of VF videos obtained by transnasal flexible endoscopy, which has a low frame rate,

resolution, and image quality.

In this chapter, we first proposed a Discrete Fourier Transform driven class activation

map method named DFT-CAM. Then, based on the DFT-CAM, we proposed a weakly-

supervised object localization system.

6.2 Related Works

6.2.1 Weakly-supervised Learning in Biomedical

Recently, weakly-supervised deep learning has caught tons of attention due to its ability

to reduce the human workload of data annotation and improve training efficiency. Weakly-

supervised learning can be categorized into three main categories: incomplete, inaccurate,

and inexact learning [97]. Weakly-supervised learning has been adapted for the biomedical

application of deep learning, aiming to relieve the lack of annotated biomedical data, such

as [150] for pharyngeal phase analysis and [151] for tumor lesions segmentation. To our

best knowledge, we are the first team to develop weakly-supervised learning to segment

the glottal region in a low-speed transnasal laryngeal endoscopy video.
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6.2.2 Laryngeal Endoscopy Video Analysis

Studying the vocal fold motion in a laryngeal endoscopy video is one of the crucial

ways to extract objective and quantitative information that can be used to analyze vocal fold

dysfunction, which can cause dyspnea, dysphagia, and dysphonia. Considering the output

data modalities, analysis related to vocal fold motion can be divided into segmentation-

based methods and classification-based methods. Segmentation-based methods are usually

intended to segment the vocal fold related regions from the input images, for example,

the glottis and two pairs of vocal fold muscles. The segmented areas are then used to

further extract motion data such as supraglottic index and glottic anterior angle [47] [5]

[152] [153]. Among them, deep learning based methods require manual-annotated pixel-

level labels for training, which is time-consuming. These segmentation-based methods

are mainly designed for high-speed videoendoscopy, where VFs are fully visible. They

often detect spurious regions when VFs are fully-closed, occluded, or are not in the field of

view of the endoscope, which usually happened in the application of low-speed transnasal

endoscopy videos. Current classification-based methods [30] [25] [154] are designed to

classify each low-speed transnasal laryngeal endoscopy image into one of three classes:

non-LAR (open VFs), LAR (closed VFs), and visual occlusion (where the VFs are either

obstructed by other anatomical structures or are out of the endoscope camera field of view).

This type of method only needs image-level labels of the vocal fold, which can reduce

human workload. However, image-level labels can only provide limited details about the

vocal fold motion.

While a great improvement over the previous works, both segmentation-based and

classification-based methods have flaws in their applications. In order to tackle these prob-

lems, we first proposed a weakly-supervised glottal region segmentation network to reduce

the annotation workload and provide detailed vocal fold motion information. Then, we

further proposed a multi-task laryngeal analysis system of low-speed transnasal endoscopy

video at the end of this chapter, which concatenates the glottal region segmentation results
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with image-based vocal fold classification results to improve the overall robustness of the

laryngeal endoscopy video analysis.
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Figure 6.1. Processing steps of the proposed discrete Fourier transform driven class activation map
DFT-CAM. The figure illustrates selection of k representative channels out of m original channels
through DFT-based feature encoding and orthogonality-based feature selection. Selected feature
channels are then aggregated to produce the proposed class activation map.

6.3 Method of DFT-CAM

In this section, we propose a gradient-free, discrete Fourier transform driven, class ac-

tivation map method named DFT-CAM. DFT-CAM is inspired by the hierarchical feature

learning capabilities of deep classification networks and the effectiveness of frequency-

domain representations in image compression [155]. Discrete Fourier Transform (DFT)

converts spatial domain information in the images into the frequency domain. Frequency

domain representation allows better separation of significant semantic information from

image details and noise. These representations can be used to summarize geometrical

characteristics of spatial information [24]. The proposed DFT-CAM method first uses

discrete Fourier transform (DFT) based representation to summarize learned features in

convolutional feature maps; then uses feature orthogonality to automatically select the

most representative semantic features while preventing the inclusion of less-contributed

features. Feature orthogonality has been shown to be effective in region selection [25]

and hyper-parameters selection [156][157] in deep learning. The proposed two-step DFT

and orthogonality-based approach result in a more accurate class activation map of target

foreground objects.
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Without loss of generality, we use a classical 2D convolutional neural networks (CNN)

[11] to demonstrate the proposed DFT-CAM algorithm. We pick the last convolutional

layer Q located before the first fully-connected layer of the CNN. Given an m-channel

convolutional feature map L outputted from the convolutional layer Q, the proposed DFT-

CAM is computed as follows.

Step-1: Discrete Fourier transform (DFT) [24] is computed for each W × H feature map at

channel Li:

Fi[s, t] =
1

WH

W∑
w=1

H∑
h=1

Li[w, h]e− j2π( s
W w+ t

H h) (6.1)

The output is converted to a 1 × n DFT feature vector where n = W × H. Concatenation

of channel level feature vectors results in an m × n feature matrix Fmn. Fmn serves as a

convolutional feature summary of the W × H × m convolutional feature map L.

Step-2: Using Fmn and dot product operation, we can compute the orthogonality between

each pair of convolutional channels of L using the corresponding 1-D flattened DFT feature

vectors as follows:

Omm = Fmn · Fmn − diag(Fmn · Fmn) (6.2)

Here, we eliminate the diagonal elements from the dot product results to remove the or-

thogonality between a single channel and itself. Omm is the output orthogonal matrix with

size m × m, where each row represents the orthogonalities between a single channel and

other channels. The orthogonality (also called uniqueness) of each feature channel Li is

computed by the sum of the rows in Omm as follows:

Oi =

m∑
j=1

Omm(i, j) (6.3)

Step-3: We first determine indices of the feature maps with top k orthogonality values:

K = Top k
i∈{1,..,n}

(Oi) (6.4)
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Then, the k feature maps corresponding to the index set K are aggregated to generate a

single channel response as follows:

R(x, y) =
∑
i∈K

Li(x, y) (6.5)

Following the common activation operation in Grad-CAM [93], Ablation-CAM [92], and

Grad-CAM++ [94], we apply a rectified linear unit (ReLU) [158] and normalization after

the previous steps to generate the final DFT-CAM output, so as to only keep the positive

part of the CAM and normalize the class activation map to [0, 1]. This process is defined

as:

D = ReLU(R) (6.6)

DFT-CAM =
D − min(D)

max(D) − min(D)
(6.7)

The proposed DFT-CAM adopts DFT encoding to summarize learned convolutional

features from a specific convolutional layer. The summarized information is then used to

select the most representative convolutional channels through a maximum orthogonality

criterion to form the final CAM. The proposed DFT-CAM can be easily applied to exist-

ing deep learning networks for generating CAM visualization without modification of the

architecture.

LARNet-STC

Classification label

Pseudo 
binary mask

Classification

UNet
Segmentation

Train

Test

Histogram equalization 
& Normalization

DFT-CAM

Class Activate Map 
with range [0,1]

Thresholded &

Active Contour

Figure 6.2. Weakly-supervised glottal region segmentation.
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Figure 6.3. Processing steps of the proposed Discrete Fourier Transform driven class activation map
DFT-CAM. The figure illustrates selection of k representative channels out of m original channels
through DFT-based feature encoding and orthogonality-based feature selection. Selected feature
channels are then aggregated to produce the proposed class activation map.

6.4 Method of DFT-CAM Based Weakly-supervised Glottal Region Segmentation

In this section, we describe the technical details of the proposed weakly-supervised

glottal region segmentation. The whole system is shown in Figure 6.2. The proposed

pipeline involves three main modules:

1. Deep classification module. This module uses our previously proposed deep clas-

sification network LARNet-STC [25] to predict an image class label for the input

image.

2. Pseudo binary mask generation. Our proposed Discrete Fourier Transform driven

class activation map (DFT-CAM) is used to generate a class activation map from

the LARNet-STC during the inference. The generated CAM is then processed by

classical image-processing techniques to produce a pseudo binary mask of the glottal

region.

3. Weakly-supervised segmentation. A two-outputs UNet [26] is trained using all the

pseudo binary masks to segment the glottal region from the input image.

Details about each module are introduced in the following sub-sections.
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6.4.1 Deep Classification Module

Previously, we have developed two deep classification networks for human laryngeal

closure detection. One is using spatial information of the transnasal endoscopy image,

called LARNet [30]. Another one is built on top of the LARNet, which is using spatial-

temporal information of the video, named LARNet-STC [25]. These two networks are

trained and tested on human transnasal endoscopy images using image-level labels, aiming

at classifying each image into one of three classes: non-LAR (open VFs), LAR (closed

VFs), and visual occlusion (the VFs are either masked/covered by other anatomical struc-

tures or out of the camera field of view). In this chapter, we will use LARNet-STC to

generate convolutional maps for the input transnasal endoscopy image.

6.4.1.1 Classical Image-processing Based Pseudo Binary Mask Generation

By applying the DFT-CAM, we have generated a class activation map (CAM) for the

input transnasal endoscopy image. The generated CAM is a map of pixel-wise probabil-

ities, where each map pixel has a probability about itself being used for the class label

prediction. The larger the probability, the more likely it is that the pixel belongs to the

target object. Since the CAM is a pixel-level prediction, we can use the CAM to generate a

pseudo segmentation mask for the glottal region in the input image. First, we threshold the

DFT-CAM output and generate a coarse segmentation mask. From this coarse segmenta-

tion mask, we apply Active contour [24] to generate a pseudo binary mask of glottal region,

where positive values indicate glottal region and zeros indicate background region. Mor-

phological methods such as binary erosion and dilation are applied for further refinement.

The quality of the pseudo segmentation masks are depending on the CAM and the Active

contour accuracy.

6.4.2 Weakly-supervised Glottal Region Segmentation

Since the pseudo segmentation masks are generated using the error-prone CAM and

the Active contour, the accuracy of the pseudo segmentation masks is changing between
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different input images, depending on image quality and deep classification network perfor-

mance. We want the segmentation network to learn from good pseudo segmentation masks

and correct those poor segmentation results.

After we generated pseudo segmentation masks for all images, we train an UNet [26]

to predict a binary mask for the glottal region in an input image. The UNet architecture is

shown in Figure 6.4. This UNet has two prediction outputs, one is a binary mask for the

glottal region, and the other one is a binary mask of the edge of the glottal region. To train

this UNet, we generate two kinds of datasets, one is the pseudo binary masks generated

directly from Section 6.4.1.1, and the other one is glottal region edge masks, which are

generated by subtracting the binary erosion of the pseudo binary mask from the pseudo

binary mask.

Besides, the inaccurate pseudo segmentation masks will confuse the deep segmentation

network during training and thus lowers the accuracy of the deep segmentation network.

To tackle this problem, we design a training data filtering strategy. During the first 20

epochs, the UNet learns from all the available training data. Starting from the 21st epochs,

for every 10 epochs, we check for each training image to see if its glottal region mask

prediction accuracy is lower than a certain threshold. If it satisfied the condition, we will

remove this image in the following training epochs. In the experiment, we set the threshold

to be 60% of the average prediction Intersection over Union (IoU) of the previous training

epoch.

Both prediction outputs are trained with a combination of Binary Cross Entropy loss

and Dice loss. Optimizer is Adam optimizer. The number of training epochs is a hundred.

6.5 Experimental Results of Weakly-supervised Object Localization

In this section, we evaluate the proposed DFT-CAM method in terms of its weakly-

supervised object localization performance. Weakly-supervised object localization (WSOL)

aims to localize objects in an image using only image-level class labels. The first CAM-
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Figure 6.4. UNet architecture with two prediction outputs, one is a binary mask for the glottal
region, and the other one is a binary mask for the edge of the glottal region. Numbers above the
convolutional blocks are the corresponding numbers of convolutional channels.

based WSOL approach has been proposed in [91]. The process consists of the computation

of class activation maps from deep classification networks, followed by thresholding of the

obtained class activation maps to generate binary segmentation masks or object bounding

boxes. These WSOL schemes attract great attention because they reduce labor-intensive

annotation needs.

6.5.1 Dataset

All evaluations and comparisons in this study have been performed using the valida-

tion set of the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)

dataset [27]. The ILSVRC2012 dataset contains 1.2 million training images of 1,000

classes. The validation set contains 50,000 images with associated ground truth class labels

and object bounding boxes.
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Table 6.1. Average Intersection over Union (IoU) (%) scores between the ground truth and the
CAM-generated bounding boxes. Bold fonts mark the best results, underlined fonts mark the
second-best results.

Methods AlexNet [159] VGG-16 [9] ResNet-101 [129] Inception v3 [160]
Grad-CAM [93] 50.30 50.85 50.29 48.72
Grad-CAM++ [94] 47.96 49.05 48.39 48.09
Ablation-CAM [92] 48.44 50.69 48.49 48.29
Eigen-gradcam [161] 39.24 40.78 47.60 47.68
Layer-CAM [162] 47.45 48.89 48.18 48.07
Conv-CAM (ours) 48.09 51.25 49.42 48.64
DFT-CAM (ours) 51.06 54.22 48.67 48.72

6.5.2 Weakly-supervised Object Localization (WSOL)

We evaluated the proposed DFT-CAM method in terms of its weakly-supervised object

localization (WSOL) performance and compared to the recent state-of-the-art CAM meth-

ods including Grad-CAM [93], Grad-CAM++ [94], Ablation-CAM [92], Eigen-gradCAM

[161], and Layer-CAM [162]. Two main innovations of the proposed DFT-CAM approach

are (1) feature encoding using discrete Fourier transform, and (2) orthogonality-based fea-

ture selection. In order to further assess the role of DFT in DFT-CAM performance,

we have built another CAM method named Conv-CAM. Conv-CAM relies on the same

orthogonality-based feature selection scheme but performs feature selection on a raw con-

volutional feature map without DFT encoding. The experiments were conducted on four

deep learning classification networks, AlexNet [159], VGG-16 [9], ResNet-101 [129], and

Inception v3 [160]. The object bounding boxes were generated as follows:

1. Classification networks (AlexNet [159], VGG-16 [9], ResNet-101 [129], and Incep-

tion v3 [160]) were directly loaded from PyTorch [163] models library with their

corresponding pre-trained weights.

2. CAM methods were applied to the feature maps outputted from the last convolutional

layer (preceding the fully-connected layers) of the selected deep networks.

109



3. All CAMs outputs C(i, j) were binarized to generate binary segmentation masks MC:

MC(i, j) =


1 if C(i, j) > 0.15 × max(C)

0 otherwise
(this process was applied only to network outputs with correct class predictions)

4. Object bounding boxes B were computed around the largest connected components

of the binary masks MC.

In this experiment, we only considered the top-1 classification results for all the net-

works, and top k = 5 feature channels for the DFT-CAM and Conv-CAM methods.

6.5.3 Evaluation of Weakly-supervised Object Localization

We evaluated the CAM results in terms of intersection over union scores, IoU(BC,BG) =

|BC ∩ BG| / |BC ∪ BG|, between the CAM-generated (BC) and the ground truth (BG) bound-

ing boxes. The IoU scores for the proposed DFT-CAM, Conv-CAM, and the other state-

of-the-art CAM methods are listed in Table 6.1. As we can see in Table 6.1, the proposed

DFT-CAM results in the best IoU scores on three of the deep learning networks (four net-

works in total) including AlexNet [159], VGG-16 [9], and Inception v3 [160].

When the two proposed feature orthogonality-based CAM methods are compared, the

DFT-CAM with discrete Fourier transform (DFT)-based feature encoding outperforms the

Conv-CAM, demonstrating the importance of DFT encoding. Meanwhile, the Conv-CAM

achieves the 2nd best results in VGG-16 [9], ResNet-101 [129], Inception v3 [160], and

the 3rd best result in AlexNet [159], illustrating the effectiveness of orthogonality in con-

volutional feature selection.

Figure 6.5 shows sample WSOL results for different CAM methods using VGG-16 [9]

classification network on the ILSVRC2012 validation set [27]. As we can see in Figure

6.5, the proposed DFT-CAM method generates more accurate CAMs for target objects.

For example, in Figure 6.5 on the 2nd row, Grad-CAM++ [94], Ablation-CAM [92], and

Layer-CAM [162] highlight both foreground and background regions, whereas, the pro-
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Figure 6.5. Sample weakly-supervised object localization results obtained from the VGG-16 classi-
fication network [9] outputs using the different class activation map (CAM) methods. The heatmaps
overlayed on the original images illustrate the CAM results. The red to blue colormap represents
high to low probabilities. All bounding boxes were generated from the class activation maps as
described in Section 6.5.2. Each column shows the outputs from the same CAM method. Each row
shows the same input image and its class label. The green and red bounding boxes correspond to
the ground truth and CAM bounding boxes respectively. The number below each image represents
the IoU score between the ground truth and CAM boxes.

Table 6.2. DFT-CAM weakly-supervised object localization IoU scores (%) for different k values.

AlexNet [159] VGG-16 [9] ResNet-101 [129] Inception v3 [160]
k = 1 47.03 49.86 48.89 48.57
k = 3 50.38 53.17 48.70 48.72
k = 5 51.06 54.22 48.67 48.72

posed DFT-CAM method better highlights only the target object parts. Also, in Figure 6.5

on the 3rd row, Ablation-CAM [92] and Eigen-gradCAM [161] mainly highlight the head

of the Afghan hound but miss part of the body, as the comparison, the proposed DFT-CAM

detects the whole body of the target object. The experimental results demonstrate the better

capabilities of the proposed DFT-CAM method for the localization of target objects under

different circumstances.
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6.5.4 Ablation Study of DFT-CAM

We analyzed the performance of the proposed DFT-CAM method for different number

of selected feature channels k.

As we can see in Table 6.2, for AlexNet [159], VGG-16 [9], and Inception v3 [160]

networks, the IoU score increases when k increases. For the ResNet-101 [129] network,

the IoU score decreases as k increases. This can be due to the residual connections in the

ResNet-101 which can learn sparse and unique features in different channels of the last

convolutional layer. This results in smaller orthogonality between channels of the last con-

volutional layer and is harder to find the most representative target object features. Mean-

while, background features can be brought into the CAM output as the k value increases,

thus lowering the IoU score of the WSOL task.

6.6 Experimental Results of Weakly-supervised Glottal Region Segmentation

Table 6.3. Average Intersection over Union (IoU) (%) scores between the ground truth and the
predicted bounding boxes of the glottal region. Bold fonts mark the best results.

CAM
methods

CAM
threshold values

Active contour
(Average %)

UNet segmentation
(Average %)

Grad-CAM 0.4 25.76 37.98
Grad-CAM 0.5 31.50 36.65
Grad-CAM 0.6 34.55 32.24
Grad-CAM 0.7 32.02 42.76
Grad-CAM 0.8 22.11 47.17
Grad-CAM 0.9 14.01 21.94
DFT-CAM (ours) 0.4 36.13 43.68
DFT-CAM (ours) 0.5 37.32 68.32
DFT-CAM (ours) 0.6 32.83 65.54

6.6.1 Dataset

Our video dataset was collected with a 3.7-mm outer-diameter endoscope with a 1.5-

mm inner-diameter working channel (11302BD2, Karl Storz), at a frame rate of 30 FPS
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(frames per second). The endoscope tip was positioned at a typical level for viewing la-

ryngeal pathology to permit visualization of the bilateral VFs throughout the procedure.

Twenty healthy nonsmoking human subjects (7 men and 13 women) aged 20 to 40 years

were recruited and tested. In total 58 videos were collected, and each video frame is with

size 480 × 720 × 3. The data collection protocol was approved by the University of Mis-

souri Institutional Review Board. We randomly separate 58 videos into training and testing

videos. The training set has 46 videos (79.3%). The testing set has 12 videos (20.7%). The

training set is only used to train the LARNet-STC [25] for classification.

Original video frames extracted from the raw endoscopy videos come with a black

region surrounding the round visual area. We generate a tight bounding box around the

visual area and crop the black region outside the bounding box. The cropped images are

then resized to 224 × 224 following the setting in LARNet-STC paper [25].

Two ground truth datasets are used in this experiment for evaluation. One is the glottal

region bounding box, which is generated for all the frames in the testing video set. The

other one is the glottal region segmentation mask, which is manually annotated only for two

testing videos due to the timing issue. The glottal region segmentation mask has positive

values for the foreground and zeros for the background.

6.6.2 Weakly-supervised Glottal Region Segmentation

The experiment is conducted as follows:

1. The trained LARNet-STC [25] is used to predict a classification label for each frame

in the testing video set.

2. Class activation map method is applied to a specific convolutional layer in the LARNet-

STC [25] during the inference. In this experiment, the selected convolutional layer is

the last convolutional layer of ResNet-18 from the original-image stream in LARNet,

which is located at the third input image feature extraction stream in LARNet-STC.
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3. Active contour and morphological methods are applied to the thresholded class ac-

tivation map to generate pseodo binary mask M for the glottal region. Additionally,

masks of glottal region edge E will be generated by subtracting the binary erosion of

the pseudo binary mask from the pseudo binary mask (E = M − erosion(M)).

4. All generated glottal region and glottal region edge pseodo binary masks are used to

train the two-outputs UNet. All masks have positive values for the foreground and

zeros for the background. The input images of the two-outputs UNet are histogram

equalized video frames, the same as LARNet-STC [25].

5. The trained UNet will be used to predict glottal region segmentation mask for the

testing video set. If multiple segments are predicted for the glottal region in the same

image, we will only keep the one with the maximum average probability. A bounding

box will be generated surrounding the positive region in the final mask.

As a comparison to our proposed DFT-CAM, we use Grad-CAM [93] to generate class

activation maps in Step 2 mentioned above. Other steps stay the same. For simplification,

we called the two-outputs UNet trained with DFT-CAM outputs “UNet-DFT”, and the

two-outputs UNet trained with Grad-CAM outputs “UNet-Grad”.

6.6.3 Quantitative Evaluation of Segmentation

We evaluated the segmentation results in terms of intersection over union scores (IoU)

for both bounding box and segmentation mask ground truth, IoU(BP,BG) = |BP ∩ BG| / |BP ∪ BG|,

between the prediction (BP) and the ground truth (BG).

First, we evaluate our proposed weakly-supervised glottal region segmentation pipeline

using glottal region bounding box ground truth. The average IoU scores are listed in Table

6.3. As we can see in Table 6.3, our proposed DFT-CAM with threshold 0.5 reaches the best

average IoU regarding the bounding boxes evaluation, for both Active contour and UNet,

showing the effectiveness of our proposed DFT-CAM in locating the region of the target
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Table 6.4. Average Intersection over Union (IoU) (%) scores between the ground truth and the
predicted glottal region masks. Bold fonts mark the best results.

CAM
threshold
values

Methods
Active contour
(Average %)

UNet
(Average %)

0.8 Grad-CAM 27.41 47.48
0.5 DFT-CAM (ours) 48.54 54.74

object. As a comparison to our proposed DFT-CAM, we set different threshold values

ranging from 0.4 to 0.9 for the Grad-CAM and generated their corresponding bounding

boxes from segmentation masks generated by Active contour and UNet. However, the best

average IoU score of Grad-CAM at the Active contour column is 34.55%, which is 2.77%

lower than the best score of DFT-CAM. Also, the best average IoU score of Grad-CAM at

the UNet segmentation column is 47.17%, which is 21.15% lower than the best score of

DFT-CAM.

Secondly, by comparing the IoU scores of Active contour and UNet segmentation, we

can see that by training the two-outputs UNet using pseudo binary masks generated from

the Active contour, the average IoU scores of the UNet received remarkable improvements

for both Grad-CAM and the proposed DFT-CAM compared to Active contour, except for

the one that generated by Grad-CAM with a threshold value 0.6. Regarding our pro-

posed DFT-CAM with a threshold value 0.5, applying the weakly-supervised segmentation

method increases the bounding box accuracy from 37.32% to 68.32%, which is an ∼ 83%

improvement compared to the IoU score of Active contour of DFT-CAM.

Finally, we evaluate our proposed weakly-supervised segmentation pipeline on manually-

annotated glottal region masks ground truth. This ground truth set is generated only for

two videos, and these two videos contain frames belonging to non-LAR (open VFs), LAR

(closed VFs), and visual occlusion (the VFs are either masked/covered by other anatomical

structures or out of the camera field of view) classes. UNet-DFT is following the same
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#1-14: non-LAR #1-33: non-LAR #1-40: LAR #1-61: non-LAR #1-74: occlusion

#2-41: non-LAR #2-95: non-LAR #2-127: occlusion #2-157: non-LAR #2-170: non-LAR

(a) Predictions from the UNet-DFT

#1-14: non-LAR #1-33: non-LAR #1-40: LAR #1-61: non-LAR #1-74: occlusion

#2-41: non-LAR #2-95: non-LAR #2-127: occlusion #2-157: non-LAR #2-170: non-LAR

(b) Predictions from the UNet-Grad

Figure 6.6. Visualization comparison of UNet-DFT and UNet-Grad predictions. The yellow trans-
parent mask is the UNet prediction. The solid grey mask is the glottal region segmentation ground
truth mask. The index below each image indicates “#video sequence index - frame index: class
label” of that image. (a) contains segmentation outputs predicted by the two-outputs UNet that is
trained using DFT-CAM’s outputs. (b) contains segmentation outputs predicted by the two-outputs
UNet that is trained using Grad-CAM’s outputs. Some of the frames don’t have glottal region seg-
mentation ground truth masks because they are either LAR (VFs closed) or occluded, and the vocal
fold is not visible in these cases.

116



setting as before. From Table 6.3 we can see that, the best IoU score of the UNet-Grad

is produced by using a threshold value of 0.8, and the best IoU score of the UNet-DFT is

produced by using a threshold value of 0.5. Thus, in this evaluation, we generate glottal

region segmentation masks using two-outputs UNet that trained with Grad-CAM outputs

with a threshold value of 0.8 and DFT-CAM outputs with a threshold value of 0.5, respec-

tively. The IoU scores comparison is shown in Table 6.4. As we can see in Table 6.4, our

proposed DFT-CAM reaches the best IoU in both Active contour and UNet methods, pre-

senting the robustness of the DFT-CAM in locating the target region using convolutional

features. Also, IoU scores of both UNet-DFT and UNet-Grad are increased compared to

the Active contour column, presenting the powerfulness of the proposed weakly-supervised

segmentation pipeline.

In the end, we compared our proposed UNet-DFT (CAM threshold=0.5) with other

deep-learning glottal region segmentation methods. We directly used code from U-LSTM

[5], OpenHSV [153], and Hamad et al. [6]. U-LSTM [5], OpenHSV [153] are designed and

trained on high-speed trans-oral laryngeal endoscopy video. Hamad et al. [6] is developed

for low-speed trans-nasal laryngeal endoscopy video analysis, which has the same type

of images as ours. The input images are from the two manually-annotated videos. The

ground truth dataset we use for this comparison includes glottal region bounding boxes and

manually-annotated segmentation binary masks. The comparison is shown in Table 6.5.

As we can see in Table 6.5, deep learning networks that are designed for high-speed

trans-oral laryngeal videoendoscopy are not feasible for our low-speed trans-nasal laryn-

geal endoscopy, which result in low IoU scores. Our proposed UNet-DFT achieves the

best compared to other methods, showing that although our proposed method is not fully-

supervised on glottal region segmentation mask ground truth, it can still predict promising

results.
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Table 6.5. Average Intersection over Union (IoU) (%) scores comparison between multiple glottal
region segmentation methods

Method
Glottal region
bounding box

(Avg. %)

Glottal region
binary mask

(Avg. %)
U-LSTM [5] 9.45 3.23
OpenHSV [153] 5.71 2.55
Hamad et al. [6] 46.17 29.50
UNet-DFT (ours,
CAM threshold=0.5) 57.94 54.74

6.6.4 Qualitative Evaluation of Segmentation

Qualitative comparisons of predictions from UNet-DFT and UNet-Grad are shown in

Figure 6.6. The yellow transparent mask is the UNet output. The grey solid mask is the

glottal region segmentation ground truth mask. The index below each image indicates

“#video sequence index - frame index: class label” of that image. As we can see in Figure

6.6, predictions from UNet-DFT are more precisely compared to the ones with UNet-Grad.

Especially for occlusion and LAR cases, where the vocal fold is not visible, UNet-DFT pre-

dicts small or no false positive regions. However, UNet-Grad predicts large false positive

regions. Note that the two images #2-157 and #2-170 in Figure 6.6 are out-of-focus and

with low resolution, the UNet-DFT can still detect regions at the glottal area, however, the

UNet-Grad detects other regions outside the glottal area. These comparison results show

the robustness of the proposed weakly-supervised segmentation pipeline in the glottal re-

gion segmentation task.

6.6.5 Multi-task Analysis for Human Laryngeal Trans-nasal Endoscopy Video Data

Furthermore, we proposed a multi-task laryngeal analysis system of low-speed transnasal

endoscopy video which concatenates both image-level and pixel-level information. For

each input image, we generate both image-level and pixel-level labels. The image-level

labels are predicted by the deep classification network [25] used at the beginning of the
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Figure 6.7. Output of the multi-task laryngeal analysis system for a low-speed transnasal endoscopy
video. The X-axis is the video frame index. The Y-axis is the glottal region size. The blue signal rep-
resents the classification result-corrected glottal region sizes. The orange signal represents ground
truth glottal region sizes. The green dash represents the UNet segmented glottal region sizes. The
red signal represents the ground truth classification label, where the low signal is “non-LAR” class,
the median-high signal is “LAR” class, and the highest signal is “occlusion” class (note that the
ground truth classification label doesn’t reflect the glottal region size of the corresponding frame).
The grey region represents the predicted “LAR” class. The green region represents the predicted
“occlusion” class. The white region besides grey and green represents the predicted “non-LAR”
class.

weakly-supervised glottal region segmentation. The pixel-level labels are generated by the

weakly-supervised glottal region segmentation network. The multi-task laryngeal analysis

system combines the image-level and pixel-level predictions of the input video sequence,

enabling a comprehensive analysis of the laryngeal endoscopy video. The multi-task laryn-

geal analysis system has the following advantages:

1. The proposed system, which predicts both image-level and pixel-level labels, only

requires image-level ground truth labels for training that can save a great amount of

annotation workload compared to pixel-level labels.

2. The system predicts both image-level and pixel-level labels for an input image. The

image-level label can help distinguish the all-zero mask prediction between LAR
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class (closed VFs) and visual occlusion (where the VFs are either obstructed by other

anatomical structures or are out of the endoscope camera field of view).

3. The system provides richer details about the vocal fold motion compared to classification-

based laryngeal endoscopy analysis [30] [25] [154].

A sample output of the multi-task laryngeal analysis system is shown in Figure 6.7.

In Figure 6.7, the X and Y axes represent the video frame index and glottal region size.

The orange signal represents ground truth glottal region sizes. The green dash represents

the UNet segmented glottal region sizes. The blue signal represents the glottal region

sizes corrected by the corresponding LARNet-STC [25] classification labels of LAR and

occlusion classes. The red signal represents the ground truth classification label, where

the low signal is the “non-LAR” class, the median-high signal is the “LAR” class, and

the highest signal is the “occlusion” class. Note that the ground truth classification label

doesn’t reflect the glottal region size of the corresponding frame. The grey and green

regions represent the predicted “LAR” and “occlusion” classes. The white region besides

grey and green represents the predicted “non-LAR” class.

By simultaneously analyzing results generated by the classification-based and segmentation-

based methods of laryngeal endoscopy video, the overall robustness of the laryngeal en-

doscopy video analysis is improved and more comprehensive information about the input

laryngeal endoscopy video is provided.

6.7 Conclusion

Deep learning has been applied to many fields and produced promising results. How-

ever, training deep learning networks usually requires a huge amount of annotated data.

Data annotation is time-consuming and labor-intensive. Specifically, in the biomedical

field, annotated data is even harder to acquire compared to nature images because of pri-

vacy concerns and expertise requirements.
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In this chapter, we proposed a Discrete Fourier Transform Driven Class Activation Map

(DFT-CAM) and DFT-CAM based weakly-supervised object localization and segmentation

systems, which utilize image-level labels for training and are able to predict pixel-level

labels. The DFT-CAM is a novel discrete Fourier transform (DFT) driven class discrim-

ination map. The proposed method uses DFT to better encode the semantic information

captured in each feature channel and uses feature orthogonality criterion to select the most

representative convolutional features. This scheme improves the overall WSOL accuracy

by preventing the inclusion of less-essential convolutional features to the class activation

map. Promising results were obtained for WSOL task across different deep learning clas-

sification networks.

Then a weakly-supervised object segmentation system is proposed. The proposed sys-

tem first uses the LARNet-STC network to predict a classification label for the input im-

age. Then, DFT-CAM is applied to generate a class activation map from the LARNet-STC

during the inference. The generated class activation maps are processed with classical

image-processing methods to produce pseudo binary masks of glottal regions. Finally, a

two-outputs UNet trained with all pseudo binary masks will predict a glottal region segmen-

tation mask for the input image. To further improve the robustness and comprehensiveness

of the laryngeal endoscopy video analysis, we proposed a multi-task analysis system, which

concatenates the classification and segmentation results together.

Experimental results conducted on both object localization and segmentation tasks

show the robustness of the proposed pipelines.

Acknowledgement

This work is partially supported by awards from US NIH NINDS R01NS110915. Any

opinions, findings, and conclusions or recommendations expressed in this publication are

those of the authors and do not necessarily reflect the views of the U. S. Government or

agency thereof.

121



CHAPTER 7

CONCLUSION

In this dissertation, we proposed novel deep-learning solutions involving various atten-

tion mechanisms, supervision manners, information selection, and fusion methods, deep-

learning visualization approaches, and network architectures. The proposed algorithms

enable the analysis of different data modalities involving 1-D signal + time, 2-D image and

3-D image volume, and 2-D image + time (video), as well as their associated biomedical

signal, images, and video analysis problems.

For 1-D signal + time data analysis, we proposed DeepDDK and multi-modal multi-

scale DeepDDK that allow weakly supervised learning for oral-diadochokinesis syllable

events detection in audio files using syllable timestamps training data, which reduces lots

of manual annotation of oral-DDK syllables compared to other deep learning based oral-

DDK solutions. For 2-D image and 3-D image volume analysis, we proposed the ensemble

of deep learning cascades using global soft attention mechanisms aimed at the improve-

ment of recall and precision respectively. These methods were applied to the segmentation

of meningeal vascular networks in confocal microscopy images. The proposed 2-D image

segmentation system allows weakly supervised learning using a very small amount of train-

ing data. For 2-D + time (video) analysis, we proposed LARNet and LARNet-STC using

global hard attention mechanisms, which allow rare and short-term video events detec-

tion in laryngoscopy videos without segmenting and tracking the target object in the video

and thereby considerably reducing manual annotation workload. Within the LARNet and

LARNet-STC, the proposed orthogonal region selection network (ORS) can extract the re-
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gion of interest from an image using global hard attention in an unsupervised manner and

improve the overall classification accuracy. Furthermore, explainable artificial intelligence

visualization has been applied to justify the effectiveness of our proposed LARNet and

LARNet-STC networks, as well as to improve the overall reliability and interpretability of

our proposed deep learning solutions. Besides, for explainable-AI and weakly-supervised

learning, we proposed Discrete Fourier Transform driven class activation map (DFT-CAM),

which is a gradient-free method to generate a class activation map from deep classification

networks. The proposed DFT-CAM was applied to LARNet and LARNet-STC to visualize

the spatial regions in the input images that led to correct classification response. The pro-

posed DFT-CAM method can be applied to arbitrary deep classification networks without

changing the network architecture. Based on the DFT-CAM method, we further proposed

weakly-supervised object localization and segmentation systems. These detection and seg-

mentation systems do not require expensive manual annotation of object bounding boxes

or segmentation masks for training.

In this dissertation, we dealt with three different types of data modalities associated

with four different biomedical data analysis tasks. In 1-D signal + time data analysis, we

focused on speech and swallow studies involving oral-diadochokinesis (oral-DDK) audio

data. In 2-D image analysis, we focused on meningeal vascular system studies involving

confocal microscopy. In 2-D + time (video) analysis, we focused on vocal folds motion

studies involving vocal folds laryngoscopy video data.

By developing novel deep learning based solutions, we enabled automated, objective,

and quantitative analysis of multi-modal multi-dimensional biomedical data. Experimental

results showed robustness and promising results for the proposed deep learning algorithms

regarding different biomedical datasets. Furthermore, the proposed explainable artificial

intelligence techniques increased the reliability and improved interpretability of our pro-

posed deep learning networks, and enabled weakly-supervised learning for reducing data

annotation workload. Accurate, objective, and quantitative analysis of biomedical data is of
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great significance because these analyses can be potentially used in early diagnosis, disease

progress monitoring, and treatment development.

This dissertation can be further extended by incorporating the proposed methods and

tools into a cross-platform, multi-modal, and multi-dimensional biomedical data analysis

system, which combines information from all involved data modalities to provide a com-

prehensive analysis of neurological disorders.
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166. T. Grósz, R. Busa-Fekete, G. Gosztolya, and L. Tóth, “Assessing the degree of na-
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