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ABSTRACT 

Bus transit is a crucial component of transportation networks, especially in urban areas. 

Bus agencies must enhance the quality of their real-time bus travel information service to 

serve their passengers better and attract more travelers. Various models have recently been 

developed for estimating bus travel times to increase the quality of real-time information 

service. However, most are concentrated on smaller road networks due to their generally 

subpar performance in densely populated urban regions on a vast network and failure to 

produce good results with long-range dependencies.  This paper develops a deep learning-

based architecture using a single-step multi-station forecasting approach to predict average 

bus travel times for numerous routes, stops, and trips on a large-scale network using 

heterogeneous bus transit data collected from the GTFS database and the vehicle probe 

data. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. 

This study developed a multi-headed self-attention mechanism-based Univariate 

Transformer neural network to predict the mean vehicle travel times for different hours of 

the day for multiple stations across multiple routes. In addition, we developed Multivariate 

GRU and LSTM neural network models for our research to compare the prediction 

accuracy and comprehend the robustness of the Transformer model. To validate the 

Transformer Model's performance more in comparison to the GRU and LSTM models, we 

employed the Historical Average Model and XGBoost model as benchmark models. 

Historical time steps and prediction horizon were set up to 5 and 1, respectively, which 

means that five hours of historical average travel time data were used to predict average 

travel time for the following hour. Only the historical average bus travel time was used as 

the input parameter for the Transformer model. Other features, including spatial and 
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temporal information, volatility measures (e.g., the standard deviation and variance of 

travel time), dwell time, expected travel time, jam factors, hours of a day, etc., were 

captured from our dataset. These parameters were employed to develop the Multivariate 

GRU and LSTM models. The model's performance was evaluated based on a performance 

metric called Mean Absolute Percentage Error (MAPE). The results showed that the 

Transformer model outperformed other models for one-hour ahead prediction having 

minimum and mean MAPE values of 4.32% and 8.29%, respectively. We also investigated 

that the Transformer model performed the best during different traffic conditions (e.g., 

peak and off-peak hours). Furthermore, we also displayed the model computation time for 

the prediction; XGBoost was found to be the quickest, with a prediction time of 6.28 

seconds, while the Transformer model had a prediction time of 7.42 seconds. The study's 

findings demonstrate that the Transformer model showed its applicability for real-time 

travel time prediction and guaranteed the high quality of the predictions produced by the 

model in the context of a complicated extensive transportation network in high-density 

urban areas and capturing long-range dependencies. 
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CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND 

The efficient running of transportation systems is essential as daily transportation demand 

rises. Over the past ten years, the number of vehicle miles driven on US highways has 

increased by 10.1%, reaching 274.4 billion in January 2022 [1]. In the same period, 

Missouri has seen a more than two-fold increase in the number of miles driven. Missouri 

was the fourth-highest state for average annual mileage driven, with travelers covering 

18,521 miles on average there [2]. In St. Louis, Missouri's second-largest city, there was a 

decrease in public transit use by 8%, with buses accounting up 64% of all trips taken on 

public transportation in 2018 [3]. Federal data gathered by the American Public 

Transportation Association for the United States as a whole reveal that there were 883 

million fewer public-transit rides nationally in the third quarter of 2022 than there were in 

the same quarter in 2019. Given the continuously rising demand for transportation and the 

concurrent decline in the use of public transportation, it is crucial to make the service 

dependable and user-friendly. Apart from that, many problems have been brought on 

around the globe in recent years due to increased usage of private vehicles, including 

congested roads, increased greenhouse gas emissions, longer travel times, and a general 

degradation in the quality of life. Longer travel times have been a problem in many parts 

of the world because they make passengers wait longer at stops, which increases anxiety, 

fuel consumption, and pollution, stresses the transportation infrastructure, and decreases 

accessibility and mobility. To handle these concerns, including making the bus transit 

service user-friendly to people, accurate prediction of travel times is necessary. 
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Accurate prediction of bus travel times is essential for the efficient functioning of the 

Intelligent Public Transportation System (IPTS). IPTS often uses various sensors and 

technologies, including GPS, traffic cameras, and weather sensors, to collect real-time data 

from buses and the surrounding area. The IPTS software then processes and analyzes this 

data to precisely forecast the bus travel times. Therefore, it's important to precisely 

anticipate bus travel times, which also aids in the effective administration of the IPTS. 

However, predicting bus travel times accurately is challenging because of the complex 

interactions between various nonlinear factors such as traffic conditions, incidents, weather 

conditions, dwell times, passenger load, passenger boarding/alighting time, number of 

signalized intersections, etc. Conventional modeling techniques are unable to capture these 

interactions, and more sophisticated machine learning and deep learning algorithms that 

incorporate real-time data are needed to provide accurate predictions. Furthermore, finding 

the datasets required to create precise predictive models is typically impossible. Although 

using big data might produce useful results, their developments should be carefully 

considered before application [4]. Traditional methods have, therefore, only proven 

effective in estimating bus travel times for smaller road networks: for single routes, over a 

brief period, one or few stations at a time. Exploiting non-linear correlations is very rare in 

current studies [5] and for that reason the current study work looks at to characterize the 

link between the non-linear elements impacting bus travel times across a broad network 

having multiple routes. This framework makes use of recent developments in deep machine 

learning techniques and the current generation of graphical processing units (GPUs). A 

large, heterogeneous dataset that was obtained from regional transportation and traffic 

databases serves as the basis for the developed modeling approach. The resulting model 
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forecasts average bus travel times on a network level for many routes, numerous buses, 

and multiple stop locations at once and at different hours of the day. The underlying model 

used a univariate multi-headed self-attention-based transformer neural network for single-

step multi-station forecasting to estimate average bus travel times at various times of the 

day. The current study also developed deep learning frameworks using the multivariate 

GRU and LSTM algorithms. The suggested univariate Transformer model was empirically 

assessed and contrasted to these developed multivariate GRU and LSTM models along 

with other well-known models such as the XGBoost model and the Historical Average 

model. As far as the authors are aware, it was the first time an estimate of bus travel time 

in Saint Louis City had been made. Hence, an empirical investigation and comparison 

analysis were carried out to determine the applicability of a deep learning neural network 

model based on a multi-headed self-attention-based transformer. 

1.2 PROBLEM STATEMENT 

Bus transportation is an integral part of the public transit network in many countries. The 

comfort and contentment of passengers depend on buses arriving and departing on 

schedule. Yet, erratic bus travel times are a frequent problem that undermines the 

dependability of bus services, inconveniencing and upsetting passengers. To increase the 

dependability of bus transit, precise models must be created to forecast bus travel times. 

Existing studies have attempted to solve this issue by using a variety of modeling 

techniques, such as various machine learning techniques, including regression models, 

artificial neural networks, the XGBoost method, and support vector machine techniques. 

Nowadays, the research includes different deep learning techniques like LSTM, GRU, 

Convolution Neural Networks, and different hybrid models. However, these models have 
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some limitations in terms of accuracy and robustness due to the complexity of the bus travel 

time prediction. Generally, bus travel times are influenced by different external factors 

such as traffic conditions, weather conditions, passenger boarding or alighting, and route 

characteristics. Moreover, in terms of long-range dependencies, most models failed to 

develop robust models. That’s why maximum researchers tried to develop the model based 

on a smaller road network with fewer stations along a route. Furthermore, there is a lack of 

studies that focused on multiple routes; rather, they focused on single routes. As a result, 

this work aims to develop an extensive model using a multi-headed self-attention 

mechanism-based Transformer Neural Network Model for estimating mean bus travel 

times at different hours of the day by considering heterogeneous traffic conditions and 

multiple routes with multiple stations and long-range connections. 

1.3 SCOPE OF THE STUDY 

The scope of the study is discussed below: 

• The scope of the study includes identifying and incorporating relevant data sources 

such as GTFS data, static data, and probe data. The GTFS data needs to be collected 

in a standardized way through cloud-based APIs by making it easier with other 

systems and services. 

• The study can choose and develop the best deep learning architectures for 

predicting average bus travel times. It can also investigate how these model 

frameworks affect the precision of model predictions with long-range 

dependencies. 
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• Another scope of the study is to be able to extract different transit features (e.g., 

dwell time, headways, delays, etc.) that can be extracted from the datasets and how 

they may impact the prediction models.  

• The scope of the study includes how different training techniques can improve the 

model’s performances, such as normalization of data, shuffling of data, attention 

mechanism, and hyperparameter tuning. 

1.4  OBJECTIVES OF THE STUDY 

The objectives of the study are summarized below: 

• Prediction Accuracy: The study’s main objective is to develop multiple deep 

learning frameworks for predicting average bus travel times at different hours of 

the day that can improve the prediction accuracy compared to traditional machine 

learning and regression models. 

• Learning from the GTFS Data:  Another objective of our study is to be able to 

develop deep learning models that can learn from the General Transit Feed 

Specification (GTFS) data. GTFS data is rarely used for predicting bus travel times. 

Our study developed these predictive models using GTFS, scheduled transit, and 

probe data. 

• Model Performance on Different Traffic Conditions: This study also 

investigates how the model performed during traffic conditions, such as Peak and 

Off-Peak hours. 

• Prediction Computation Time: Reducing the computation time is another 

objective of the current study. We will develop different models and compare the 

computation time it takes to predict. 
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• Impact of External Factors: Bus travel time model predictions can be 

significantly influenced by spatio-temporal features (e.g., station distances, station 

sequences, hour of day, etc.) and external factors such as dwell time, jam factor, 

and expected travel time. The current study tries to examine how these features 

improve the predictability of outcomes. 

• Handling Complex Relationships: Predicting bus travel times is a challenging 

issue that considers a variety of factors, such as traffic congestion, weather, 

passenger boarding/alighting, and route characteristics. Deep learning models are 

particularly suited for this purpose because they can capture intricate non-linear 

correlations between these factors. Our study aims to handle those complex 

relationships and develop different robust frameworks. 

1.5 CHAPTER REVIEW  

This chapter covers the background and necessity of predicting bus travel times, the 

problem statement of our research work, and the objectives and scopes of our research 

work. The remaining sections of the study are presented in the following order. Existing 

research works in bus travel time prediction of public transit buses are summarized in 

Chapter 2 in the “Literature Review” part.  Chapter 3 describes data sources, data analysis, 

cleaning and preprocessing, the proposed methodology, and the various model features. 

The different model architectures, the input parameters we used to develop these models, 

and the model training and testing process will all be covered in the following chapter. 

Chapter 5 will discuss the findings of the different model performances, comparisons, and 

insights of the study. The future research directions and the study's conclusion will be 

presented in Chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 

 
2.1 OVERVIEW  

Bus transit is an essential part of transportation networks, particularly in urban areas. Any 

intelligent transportation system must have precise real-time information on bus transit 

travel times. Bus travel time prediction is one practical method for enhancing service 

dependability, optimizing travel patterns, and reducing traffic issues. Bus travel time 

prediction is determining how long it will take a bus to travel between two points along a 

specific route, considering several variables that can affect travel time, including traffic 

congestion, weather, and the times when passengers board and alight the bus. The benefits 

of accurate real-time travel time information include decreased waiting times for 

passengers, reduced anxiety, improved ease of boarding or transferring buses, enriched 

types of public transit services, improved public transit's image and desirability, and a 

rational basis for scheduling. One can plan routes with fewer delays and lower stop waiting 

times by having accurate arrival and departure information. Accurate bus travel time 

forecasts can also assist transportation organizations or agencies in enhancing the general 

effectiveness and quality of their services by enabling them to more efficiently manage 

their fleets and allocate resources. However, it is very challenging to predict travel times 

precisely for a large-scale transportation network consisting of multiple routes, trips, and 

stops, due to the high degree of complexity. 
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2.2 RELATED WORKS 

In recent years, numerous models have been developed for predicting bus arrival/ travel 

times. Various types of data, including Global Positioning System (GPS) data, Automatic 

Vehicle Location (AVL) data, real-time traffic data, etc., are used to develop these models. 

The predictive models are based on historical average models, linear regression models, 

and nonparametric regression models. Others include the filtering (Kalman) method, 

artificial neural networks, machine learning, and deep learning models. The following 

sections will give a brief idea about the works related to average bus travel time predictions. 

2.2.1  Review of Different Methods for Collecting Transit Data 

In the past, researchers have employed a range of input data from many sources including 

Global Positioning System (GPS) Data, Automatic Vehicle Location (AVL), manually 

gathered, surveys, mobile phone footprints, and social media data, etc. The emergence of 

big data technologies and its applications in traffic and public transportation have created 

a foundation for the delivery of data-driven solutions to connected issues. The Global 

Positioning System (GPS) data for buses is frequently used and a common data collection 

technique to build spatiotemporal models that can capture the intricate interactions between 

many factors and accurately predict bus travel times. Several studies used GPS based 

tracking system to collect the vehicle data for predicting bus travel times and arrival times 

[6]–[14]. Automatic Vehicle Location (AVL) Data is also widely used data for predicting 

bus travel times [15]. The location and movement of a bus are constantly tracked using 

AVL data, which is normally gathered using GPS technology. Using real-time AVL, 

Farooq et al. [16] presented a prediction system for public transport arrival time. GPS and 

AVL are examples of technology solutions, however, they are limited in their use of 
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historical data and their disregard for space features. Smart card data and smartphone data 

were other sources of data that were used to develop frameworks for bus travel time 

predictions [17], [18]. Nowadays, Probe data and weather data are combined with different 

datasets to understand the weather effect and the effect of traffic incidents on bus travel 

time predictions. Data gathered from GPS sensors fitted in automobiles, lorries, and buses 

are referred to as probe data. Traffic patterns, such as speed, journey time, and congestion, 

can be studied using this data to track the flow of vehicles. The causes of traffic incidents, 

such as accidents and road closures, can also be determined and examined using probe 

data. This information can be employed to enhance traffic flow and optimize transportation 

operations. Weather data refers to data collected from weather monitoring stations, 

satellites, and other sources. This data includes information such as temperature, humidity, 

precipitation, wind speed, and visibility. Dhivyabharathi et al. [19]  fitted probe vehicle 

data with the GPS data for predicting bus travel time which was also studied in India. Alam 

et al. [20] used GPS data and weather data for predicting arrival times of transit buses. In 

another study, Yu et al. [21] added weather data to the passenger board and alighting data 

collected from the APC system and AVL data to estimate bus travel times in Pennsylvania, 

USA.   

Real time traffic data such as GTFS data is nowadays used for bus travel time 

predictions. GTFS real-time feed data are generated automatically through sensors at 

regular intervals. The scheduled data is typically published by transit agencies as a set of 

text files that conform to the GTFS standard. Shoman et al. [22] used vehicle probe data 

and massive heterogeneous bus transit data (GTFS) to construct a deep learning framework 

to predict bus delays on several routes. Barnes et al. [23] used GTFS real-time traffic data 
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for predicting bus travel times and found significant results. Elliott and Lumley [24] also 

recently developed a model framework to predict transit vehicle travel times using GTFS- 

based road network data. 

However, these large, heterogeneous datasets are rarely used to predict bus travel 

times. Most of the past researchers are focused on GPS and AVL datasets to develop bus 

travel time prediction models. In this study, we will use the real-time GTFS feed data, 

scheduled transit data (static data), and vehicle probe data to predict travel times across 

multiple routes. 

2.2.2  Traditional Approaches for Bus Travel Time Predictions 

Previously researchers predicted travel times using several traditional approaches such as 

the Linear Regression models, and Support Vector Machines (SVMs). For instance, 

Taparia and Brady [25] employed the Linear Regression model and compared the results 

to Gradient Boosting (XGBoost) approach to estimate the bus travel times between stops 

for a single route with numerous trips. He found that the Linear Regression Model showed 

approximately 1 min higher MaxAE (Maximum Absolute Error), 0.13 mins higher MAE, 

and 0.30 mins higher RMSE compared to Gradient Boosting method. In another study, 

Ashwini et al. [26] performed comparative analysis between different Linear Machine 

Learning models with Non-Linear Machine Learning models to predict the travel times, 

where he found that Non-Linear Machine Learning models totally outperformed the Linear 

Regression model. Yu et al. [27] investigated Random Forests Near Neighbors model 

achieving higher accuracy than Linear Regression model. Linear regression models 

generally use a mathematical function to predict travel times, which is formed by different 

independent variables. Explanatory variables must be statistically distinct from one another 
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in linear regression models. Although many of the factors affecting transportation networks 

are highly connected [28]. For that reason, it is challenging to use regression models to 

handle complex non-linear interactions. Moreover, the primary limitation of these models 

is their delayed response to changes in traffic conditions, which makes them unreliable in 

the event of accidents or traffic jams. Support Vector Machines was another popular 

algorithm for predicting bus travel times [29]–[31] . Li et al. [30] developed a model using 

SVM combined with GPS to predict bus arrival times. Peng et al. [32] proposed a principal 

component analysis-genetic algorithm-support vector machine (PCA-GA-SVM) approach 

to precisely predict bus arrival time. However, these models are widely used as they are 

simple regarding the necessary data preparation and the required computational tools. 

Nowadays, these models are simply used as a baseline for comparison with different 

algorithms. 

Many studies used nonparametric regression models for predicting bus arrival 

times/ travel times. Nonparametric models are easy to use due to the lesser number of 

estimated parameters. k-Nearest Neighbors is one of the most popular ones among them. 

Ashwini et al. [26] used the k-Nearest Neighbors method for predicting travel time based 

on time of day, day of week, and direction of travel as key inputs. Chang et al. [33] and 

Jairam et al. [34] used k-Nearest Neighbors method for their respective studies. Kumar et 

al. [35] employed k-NN classifier for real time bus travel time prediction. However, for 

larger datasets, k-NN doesn’t perform well due to the limited accuracy. This model tends 

to provide good accuracy for smaller datasets. 

Kalman Filtering (KFT) method and Gradient Boosting Decision Tree (GBDT) 

were followed for predicting bus travel times previously. KFT is the popular method among 
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all of them, which uses a series of recursive estimate methods and the least mean square 

error as its best estimation criterion. Using the state-space model of signal and noise, it 

updates the estimation of state variables by using the estimated value of the past time and 

the observed value of the present time to obtain the estimated value of the present time. It 

can be used for computer operations and real-time processing. A multi-parameter, time-

varying, complicated, large system with a high level of uncertainty, Kalman filters are 

excellent for conventional metropolitan transit systems. Zhang et al. [36] used KFT method 

for predicting travel times for a single bus based on a single line-detection and found to be 

performed well with higher accuracy in one-step prediction. Kumar et al. [37] also followed 

the same procedure to predict travel times under heterogeneous traffic conditions using day 

of the week as significant input and got better results. Achar et al. [38] was able to learn 

spatial and temporal correlations with bus arrival time prediction through the application 

of KFT. Schwinger explored that the combination of KFT with k-medoids can improve the 

quality of short-term bus travel time prediction. The linearity of Kalman filter models 

makes them computationally straightforward, but at the same time, it limits their ability to 

predict intricate nonlinear space-time algorithms. Additionally, the model doesn’t tend to 

perform well for sequential road segments or time steps. Recently, Cheng et al. [39] and 

Kawatani et al. [40] proposed a GBDT model for multi-step prediction for travel time 

forecasting.  

Researchers also used statistical based probabilistic methods or clustering 

algorithms in transportation engineering to predict travel times [6], [41]–[44]. Ide and Kato 

[45] tested Gaussian Process Regression with realistic traffic data for probabilistic travel 

time prediction. Bayesian framework is another tool that has been used nowadays for 
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forecasting. Isukapati et al. [46] developed a Bayesian Framework for bus dwell time 

prediction. In another study, Buchel and Corman [47] employed probabilistic bus delay 

prediction approach with Bayesian networks in Switzerland. 

Artificial neural networks (ANN) have shown promising results in solving 

transportation challenges. The application of ANN in predicting bus arrival times reported 

better results compared to other methods [48], [49]. In a study, Kumar et al. [50] examined 

the effectiveness of the model-based data-driven artificial neural network (ANN) method 

and Kalman filter (KF) technique for predicting bus travel times. The experimental results 

demonstrated that the data-driven ANN can perform better than KF, but that the model 

requires a large amount of data to train its neural networks. ANNs can model complex 

nonlinear relationships between independent variables defining traffic flow and travel time 

along road segments. However, due to the computational difficulty, authors tried to use 

hybrid models to reduce the complexity. For example, Bai et al. [51] developed a combined 

model consisting of ANN and KFT for multiple bus routes to predict bus travel time and 

compare it with other models. The dynamic model outperformed all other models in terms 

of accuracy. Although ANN has shown some proven success in solving complex problems 

in recent times, it requires a larger dataset for training.  

2.2.3 Development of Deep Learning Frameworks in Bus Travel Time Predictions 

The transportation research community has recently become more interested in data-driven 

methodologies due to the growing amount of computer power presently available and the 

massive amount of data created by ITSs. By analyzing large amounts of urban traffic data, 

deep learning has an edge over traditional machine learning methods. For instance, 

Treethidtaphat et al. [52] found that the Deep Neural Network (DNN) model performed 
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55% better than the OLS regression model. Yuan et al. [53] implemented RNN and DNN 

for bus dynamic travel time prediction. However, LSTM neural network has become a 

popular deep learning tool for predicting bus travel times nowadays. Recently, numerous 

studies applied LSTM model to get better prediction results [54]–[59]. Agafonov and 

Yumaganov [55] tried to employ a recurrent LSTM neural network tool to predict bus 

arrival time for heterogeneous traffic conditions and compared it with a multilayer 

perceptron model. The LSTM model performed better than the multilayer perceptron 

model. Pang et al. [60]  proposed to capture the long-range dependencies for predicting bus 

travel times with a combination of RNN and LSTM. Panyo et al. [56] compared the LSTM 

model with the SVM model in terms of accuracy for predicting the arrival times of 3 

electric buses on 4 different routes. The results showed that LSTM had much higher 

accuracy than SVM. In another study, He et al. [61] used LSTM model to learn 

heterogeneous traffic patterns from the data while predicting bus travel times. 

Hybrid models using Convolutional Neural Network are popular technique 

nowadays to predict travel times. Hou and Edara [62] presented long short-term memory 

(LSTM) and convolutional neural networks (CNN) to predict travel time in a road network. 

They found that the two models had approximately 3% higher accuracy than the baseline 

estimates and when compared to random forests (RFs) and gradient boosting machines 

(GBMs), the standard deviation of MAPE measures for both models were higher. Petersen 

et al. [63] proposed a multi-output, multi-time-step method for predicting bus trip times on 

a single bus line in Copenhagen using the convolutional LSTM. The findings suggested 

that the Convolutional LSTM model showed 2-7 % better accuracy than the Historical 

Average, LSTM, and Google Traffic predictions. Xin et al. [64] also produced a 
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Convolutional LSTM model for multi-step prediction of bus arrival time, and it was found 

to be best performer among other tested models. Khayyer et al. [65] constructed a hybrid 

deep neural network framework using LSTM, RNN and MLP for predicting public transit 

arrival times. 

2.2.4 Application of Attention Mechanism in Bus Travel Time Predictions 

Attention Mechanism is a powerful tool used in many forecasting models. Recently, it is 

applied in traditional deep learning models like LSTM and GRU to predict the bus travel 

times. One potential benefit of adding attention mechanism layer in bus travel time 

prediction models is to analyze the historical data of traffic conditions and other relevant 

factors, such as weather, time of day, and dwell time, that may affect the bus travel time. 

Wu et al. [66]  explored a convolutional LSTM model with a self-attention mechanism that 

accurately predicted the travel time and waiting time at each station, ensuring the 

robustness of the model to capture long-range dependence in time series data. To capture 

temporal information and to satisfy the temporal dependence requirements for dynamic bus 

travel time predictions, Yuan et al. [67] developed an attention mechanism-based Recurrent 

Neural Network (RNN) model. According to the results, the approach performed better 

than conventional machine learning models and was 4.82% better than the Deep Neural 

Network used on the initial feature space. 

 

2.3 RESEARCH GAP 

According to the discussions in Section 2.2, most studies are concentrated on smaller road 

networks with single bus lines or routes and few stations for the development of predictive 

models. They were unable to predict accurately when a large-scale road network with 
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multiple routes and stops was present. Very few studies have been able to solve these 

complex issues with long-range dependencies. As we have seen in Section 2.2.3, Wu et al. 

[66] tried to overcome this issue by applying an attention mechanism with convolutional 

LSTM. The model results got improved with this technique, however, there was not much 

significant improvement compared to LSTM and convolutional LSTM results. Due to this, 

in the current study, we proposed developing a model for predicting the average bus travel 

time using a Transformer Neural Network on a vast network in St. Louis, Missouri, with 

numerous routes and stations, which can demonstrate significantly improved performance 

compared to the GRU and LSTM models. The reason we chose the Transformer model is 

that it is unique as it relies solely on a self-attention mechanism, which allows it to capture 

the relationships between all elements of the input sequence in a single pass. This is 

different from other sequence-to-sequence models, such as recurrent neural networks 

(RNNs), which process the input sequence one element at a time. The self-attention 

mechanism in the Transformer model allows it to selectively attend to different parts of the 

input sequence, giving it the ability to model long-range dependencies and handle variable-

length input sequences.  

Moreover, from the above studies, we observed that most researchers used the data 

collected from the GPS-based tracking system (GPS data) and AVL data for developing 

models. Only few of them used the real-time GTFS data and so we tried to develop a 

framework that can learn from the real-time GTFS data incorporating with static transit 

data and vehicle probe data.  

In our study, we also tried to examine the impact of spatio-temporal features and 

external factors on model performance. A very few studies discussed how spatiotemporal 



17 
 

features and external factors affect prediction accuracy. For instance, Kumar et al. [68] and 

Shaji et al. [69] captured spatio-temporal correlations for dynamic bus travel time 

prediction. Lee et al. [70] also explored how the external factors like passenger-related 

variables, weather variables, and link-related variables played a massive role in improving 

the model’s accuracy. Although we didn’t include these parameters in the Transformer 

model, we tried to understand their impact through other developed models. 

As a result, in our study, we'll propose a univariate Transformer Model and assess 

how it performs against other well-known deep learning models, such as multivariate GRU 

and LSTM based on the MAPE at various times of the day and under various traffic 

conditions. We will also observe how long it takes a model to compute predictions. The 

Transformer model performance will also be compared to some other traditional models 

such as XGBoost, and Historical Average Model. Additionally, we will illustrate the 

impact of adding the external features from the developed GRU model by showing the 

Mean Absolute Percentage Errors (MAPE) at different hours of the day. To the best of our 

knowledge, this is the first time a Transformer Model has been attempted to use to forecast 

bus travel times. We will ensure the high quality of the predictions made by our proposed 

Transformer Model and demonstrate its applicability for real-time travel time prediction of 

public transportation in the case of a complex transportation network.  

 

2.4 CHAPTER REVIEW 

Chapter 2 covers the existing works related to bus travel time predictions. We talked about 

the review of different data collection methods that are typically used for travel time 

prediction modeling, traditional approaches and algorithms, deep learning frameworks for 
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modeling. We also highlighted the research gap of our current study and the application of 

attention-mechanism in travel time prediction modeling. 
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CHAPTER 3: DATA DESCRIPTION, DATA ANALYSIS & 

PROPOSED METHODOLOGY  

 
3.1  INTRODUCTION  

The purpose of this component of the study was to provide specifics regarding the data 

source, the methods of data collection, the various types of data, the preprocessing of 

datasets, and our suggested approach. By aggregating and geographically merging the 

various datasets, mapping the closest stations, and computing journey times at various 

stations along various routes on a vast network, the suggested methodology will 

demonstrate how to perform these things. It will also go through how to calculate the 

average travel time at various times of day and how to extract various features that can be 

extracted from the dataset. 

3.2 DATA DESCRIPTION  

There are a variety of data types that can be used in research focused on predicting transit 

network travel times. Bus GPS data is frequently used to develop spatiotemporal models 

that capture intricate interactions between many factors and accurately estimate bus 

journey times. GPS data is obtained from GPS devices fitted on buses. Predictive models 

are also trained using historical bus data, which allows researchers to spot patterns and 

trends that may be used to increase the model's forecasting accuracy. Real-time traffic data 

collected by sensors and cameras (e.g., GTFS Data, Probe Data) is another source of data 

that can reveal information about the trip and the vehicle, as well as arrival and departure 

times, levels of congestion, accidents, and other incidents that may have an impact on bus 
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travel times. Weather information is sometimes used in studies to determine how weather 

variables like temperature, precipitation, wind speed, and snowfall affect bus travel times. 

Transit schedule data can also be used to develop models that consider how delays and 

adherence to the schedule affect bus travel times. The prediction architectures for our study 

was developed using data from three main sources: the real-time bus transit data from the 

GTFS, the scheduled bus transit data (static data), and probe data. The details of these three 

data sources are described in the following sections. 

3.2.1 Real-Time GTFS Data 

The real-time General Transit Feed Specification (GTFS) data was gathered through an 

API provided by St. Louis Metro requested for every 30 s from December 12, 2022, to 

December 19, 2022. We formatted the essential feed information after making a request to 

extract data from the St. Louis Metro API so that each request could deliver the data we 

needed for our research. Each request was inserted into a SQL Database and the request 

timer was set for 30 seconds. The complete Data Collection Python code was set up in this 

manner. The seven days' worth of data was then gathered in Cloud SQL after the code had 

been run on a Google Cloud Server via Compute Engine.  

 

Figure 3.1: Flowchart of GTFS Data Collection 
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Figure 3.1 displays a general flowchart of the data collection process. Each request 

returns a range of trip-related details, including timestamps, request times, start dates and 

times, route ID, trip ID, vehicle ID, direction ID, shape ID, vehicle label, vehicle latitudes 

and longitudes, and some other information. A total of roughly 3 million records with a 

size of about 0.8 GB were stored, including data on 58 different routes and 260 distinct 

vehicles. Table 3.1 shows the sample of our collected real-time GTFS data. 

Table 3.1: Sample of Real-time GTFS Dataset 

Feed Information Values 

trip_id 3031816 

timestamp 2022-12-12 15:02:46 

route_id 18125 

latitude 38.6092300415091 

longitude -90.15199279785156 

vehicle_id 7566 

vehicle_label 41 Lee - SOUTH 

request_time 2022-12-12 15:03:04 

start_datetime 2022-12-12 14:55:00 

block_id 69161 

direction_id 1 

shape_id 110609 

3.2.2 Scheduled Data (Static Data) 

The static data was collected from https://metrostlouis.org/Transit/google_transit.zip 

website, which contains schedules and arrival times for all vehicles operating the St. Louis 

metro region. This static data has very few updates per month and is smaller in size in 

https://metrostlouis.org/Transit/google_transit.zip
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comparison to the real-time GTFS data. For the same period that bus real-time GTFS data 

was being gathered, static data was also requested. Text files, including information about 

stops, stop times, routes, trips, schedules, shapes, calendars, and transit agencies, make up 

the static data. These text files are merged to get the combined information on different 

stops.  

 

Figure 3.2: Static Data Collection 

Figure 3.2 illustrates the static data collection method in our study. A sample of 

the static dataset is shown in Table 3.2. With the use of this dataset, the closest stop 

locations for various vehicle time points in real-time data were obtained, and the travel 

time was then calculated.  

Table 3.2: Sample of Scheduled Data (Static Data) 

Items Values 

stop_id 127 

stop_name THEKLA @ EMERSON SB 

stop_desc NEAR SIDE THEKLA @ EMERSON SB 

stop_lat 38.69486 

stop_lon -90.245546 

trip_id 3027550 

arrival_time 23:37:00 
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Items Values 

departure_time 23:37:00 

stop_sequence 21 

shape_dist_traveled 5295.833213 

route_id 18125 

service_id 2 

direction_id 0 

block_id 65345 

shape_id 110478 

trip_headsign TO CIVIC CENTER TC 

3.2.3 Probe Data 

The Probe data was collected from Regional Integrated Transportation System (RITIS) 

website by queried through Google Cloud platform (Figure 3.3). The probe data provides 

information on traffic conditions for road segments such as capped speed, uncapped speed, 

free flow speed, congestion factor, segment length, start latitude and longitude, end latitude 

and longitude, etc.  

  

Figure 3.3: Probe Data Collection 
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probe data offers a lot of information about the road, we will use the capped and uncapped 

speed, segment length, and jam factor in our model and conflate "tmc" code when mapping 

bus stops (point) to relevant road segments (line). Our obtained probe data locations around 

St. Louis are shown in Figure 3.4. 

Table 3.3: Sample of Collected Probe Data 

 

Items Values 

tmc 119+00842 

link 12866 

speed_capped 55.30 

speed_uncapped 60.38 

free_flow_speed 54.93 

jam_factor 2.78940 

confidence 0.73 

main_road I-55/I-64 

cross_street Clark Ave 

direction SOUTHBOUND 

length 0.70725 

start_lat 38.61884 

start_long -90.18619 

end_lat 38.61681 

end_long -90.17825 

county ST LOUIS CITY 

pub_millis 2022-12-12 17:02:50 
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Figure 3.4: Probe Data Location around St. Louis 

3.3 Proposed Methodology 

A series of steps were undertaken to accomplish our research goals. Figure 3.5 illustrates 

the critical elements of the research approach used to forecast mean bus travel times for 

various periods of the day. After collecting data, the first step was to preprocess all the data 

so that the data quality was improved and the chances for any missing values, 

dimensionality problems, and other errors were reduced. The next stage entails locating the 

closest stops or stations for each time point on all routes and constructing and choosing the 

top six routes with the most stations in St. Louis, Missouri. Next, we conflated the probe 

data by location into our dataset. In this way, we combined all the datasets, which mapped 

the datasets into a single data layer. In the third stage, we calculated variables such as bus 

travel times, station distances, etc. We next determined the mean travel time, our intended 

target variable, and set up the dataset for our models. From the dataset, we also extracted 
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and computed some additional parameters, including volatility (standard deviation and 

variance of trip time), and dwell time. The deep learning models used these parameters as 

input parameters to make the model more robust. 

3.3.1 Mapping the Closest Stations 

In our research, our target variable is average bus travel times which we will predict using 

different input parameters. Then, we must map the closest stations to determine travel 

times. The nearest stops from the static data were mapped to each timepoint of the GTFS 

real-time feed using the haversine formula. The haversine theorem gives a great circle 

distance between two points on a sphere from their latitudes and longitudes. The haversine 

formula is given below: 

𝑑 = 2𝑟 𝑎𝑟𝑐𝑠𝑖𝑛√(ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛(𝜑2 − 𝜑1) + 𝑐𝑜𝑠𝜑1𝑐𝑜𝑠𝜑2ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛(𝜆2 − 𝜆1)) 

where d = distance; r = radius of the earth (6,378.1 km); 𝜑1 𝑎𝑛𝑑 𝜑2 indicate the latitudes 

of vehicles stops; 𝜆1 𝑎𝑛𝑑 𝜆2 indicate the longitudes of vehicles and stops. The haversine 

theorem maps the closest stations but the stop IDs were not assigned in a corrected way. 

So, we applied an algorithm that is described in the next section. 

3.3.2 Assigning Stop IDs 

We discovered that the vehicle points that passed a certain stop were awarded to that stop 

rather than the stop after it. As an illustration, stop 2 was assigned to the two circled vehicle 

spots in Figure 3.6. To calculate the trip travel times for each station, we must designate 

the point that passes a particular stop as the next nearby stop. So, we followed an algorithm 

where we calculated the distances between two adjacent stops (distance 1), distances 

between a vehicle point and its previous stop (distance 2); and distances between a vehicle 
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Figure 3.5: Flowchart of our Proposed Methodology 
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next station. By following this algorithm, we were able to assign the circled points to the 

stop -3. 

 

 

 

 

 

 

Figure 3.6: Mapping the Closest Stops – Schematic Diagram 

 

Next, we identified the latitudes and longitudes of the beginning and ending points 

for each vehicle on each route. To identify the origin and destination of buses, we 

designated the name as "stop ID from -stop ID to" (Table 3.4). Then, using the Haversine 

formula, we determined the station distances for each station along each of the routes after 

giving each one a unique station sequence number. Station distance and the station 

sequence number will be used as model input parameters. 

3.3.3 Conflation 

Point-to-line conflation was used to combine the bus position (point) and probe (line 

segment) datasets after mapping the closest stops and obtaining the merged dataset between 

the real-time feed and static dataset. Using the Python "Geopandas" packages, we applied 
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a spatial merging technique for point-to-line conflation. First, we created a “LineString” 

using the start latitude and longitude and end latitude and longitude information from the  

Table 3.4: Sample of Integrated and Modified Dataset 

Items Values 

route_id 18146 

station_sequence 17 

station_dist 0.453405509 

latitude 38.6866493 

longitude -90.3587875 

stop_id_from 2584 

stop_id_to 2585 

stop_lat_to 38.686609 

stop_lon_to 38.686377 

station 2584-2585 

tmc 119+00068 

link 4149 

Speed_capped 35.71 

Speed_uncapped 35.71 

Free_flow_speed 39.64 

Jam_factor 0.79461 

main_road I-170 

cross_street MO-340/Olive Blvd/Exit 3 

direction NORTHBOUND 

length 0.70725 

probe dataset. Finally, we attempted to match the stations' latitudes and longitudes within 

a 0.01 km radius of the newly formed line string. In this way, we combined all the datasets 
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and managed to get the traffic speeds, segment length, and congestion information. Table 

3.4 displays an example of the final integrated and modified dataset. 

3.3.4 Route Construction and Travel Time Calculation 

The top 6 routes were selected based on the highest number of stations along a route. We 

wanted to explore our research around the St. Louis region, so we selected those six routes 

in the St. Louis area. The six selected route IDs are 18125, 18128, 1839, 18144, 18145,  

 

Figure 3.7: Six Routes around St. Louis 

and 18146 (Figure 3.7). Then, to determine the bus travel times, we extracted the date from 

the timestamps and identified the unique trips for each route. By subtracting the previous 

station's closest timestamp from the next station's closest timestamp after performing 

"Unique Trip Identification," we can easily determine the travel times for each station. In 

our investigation, each trip ID and vehicle ID represent one unique trip each day. Each  
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Figure 3.8: Bus Travel Time Calculation 

individual trip may contain several stops, and there may be a number of time points 

between any two adjacent stations. The travel time for each station will then be calculated 

using the two points that are the furthest apart. The schematic diagram for calculating the 

travel time between each station is shown in Figure 3.8. For example, we deducted the two 

yellow circled time points to calculate the travel time between station-1 and station -2, and 

for station - 2 to station -3, we used the red circled time points. Using this approach, we 

calculated the travel times for each station for each route. 

Upon closer inspection of the real-time feed being gathered, it became apparent that 

some trips had location problems, causing the record to include multiple locations far from 

the scheduled stops. These location errors can be caused due to one of the following 

reasons: 

• The real-time feed didn’t return feed at that time. 

• Bus rapidly departed from the stop. 

• The driver disregarded the stop signal. 

To resolve this problem, we interpolated the journey time based on the distance 

between the two time points and the station distance. For instance, in Figure 3.8, the two 

Station-1 Station -2 Station-3 

Unique Trip 
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time points that follow station 3 are far from the stations that are next to them. In this 

instance, we subtracted the time intervals and determined the distance between the two 

spots. We calculated the travel time between stations 3 and 4 using the distance and the 

estimated travel time. 

3.3.5 Mean Travel Time Computation  

We extracted the hour and the days of the week from the timestamps. Next, we determined 

the mean bus travel time by aggregating the travel times for different hours of the day for 

each route and station and taking the mean of those. The mean travel time is our target 

variable, which we will be predicting using different input parameters.  
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Figure 3.9: Mean Bus Travel Time (Seconds) Frequency for Six Routes 

Figure 3.9 depicts the mean bus travel time-frequency plots in seconds for the six 

routes we selected. Mostly the mean travel time ranges between 20 to 75 seconds. There 

are few occasions where the travel time is much higher, which may be caused due to 

various factors such as congestion, dwell time or waiting time for passengers, weather 

conditions, and other traffic conditions.  

3.4 EXTRACTING DIFFERENT TRANSIT DATA ATTRIBUTES 

Several features from our dataset will be used as inputs to our model, including historical 

travel times, hours, station distances, traffic speed, jam factors, etc. In addition to these 

parameters, other transit attributes can be employed, such as dwell time, delays, headways, 

etc. to make the model learn quickly. The volatility measures such as standard deviation 

may also be helpful in predicting bus travel times. The details of how these features can be 

extracted from our dataset are presented in the following sections. 

Route 18145 Route 18146 
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3.4.1 Dwell Time  

Dwell time, sometimes known as terminal dwell time, is the amount of time a moving 

vehicle, such as a bus or train for public transportation, stays at a designated stop before 

going on to allow passengers to board or alight. Dwell time can have a significant impact 

on bus travel time prediction models because it affects the overall travel time of the bus. A 

bus's total travel time may be delayed in general if passengers waiting at bus stops for 

extended periods of time. Many factors, such as the number of people boarding or alighting, 

how they pay, and the bus stop's accessibility features, can contribute to this delay. Hence, 

it's critical to calculate dwell time precisely for estimating bus travel times. For computing 

dwell time, we first see if the latitude and longitudes of a vehicle in a station change or not. 

If the locations of the bus are not changing, but the timestamps are gradually changing, we 

can conclude it is waiting at that station. Then, we deduct the last timestamp from the first  

 

 

 

Figure 3.10 : Dwell Time Calculation 

 

timestamp to calculate the dwell time (Figure 3.10).  This approach is made for all the 

selected routes. For instance, a vehicle at station 1 has multiple time points, indicating that 

it is temporarily staying there. We can determine the dwell duration by deducting the final 

time point to the initial time point during its stay in that station. 

Station-1 
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3.4.2 Headways 

Bus headways are the intervals of time between the arrival of two buses in a row at a certain 

bus stop or station. Essentially, it refers to the interval between buses on a specific route. 

Headways are a crucial indicator of how frequently and reliably a bus service runs, and 

they can greatly impact passenger satisfaction and ridership. Buses arrive more frequently 

with a shorter headway, decreasing wait times and making transit more convenient and 

appealing to riders. Headways can be calculated by sorting the values based on timestamps 

and taking a difference between the arrival times of buses in each hour. 

3.4.3 Bus Delays 

The term "bus delay" describes the amount of time a bus takes to reach its destination after 

its scheduled or anticipated arrival time. Numerous things, including heavy traffic, blocked 

roads, collisions, inclement weather, bus technical problems, and other unforeseen 

occurrences, can cause delays. By sorting the timestamps and subtracting the scheduled 

departure time from the actual bus departure time, bus delays can be easily calculated from 

our dataset. The first timestamp after a bus leaves a station can be used to determine the 

actual bus departure time. The equation for the bus delays: 

𝐵𝑢𝑠 𝐷𝑒𝑙𝑎𝑦𝑠 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐵𝑢𝑠 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑇𝑖𝑚𝑒 − 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝐵𝑢𝑠 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑇𝑖𝑚𝑒 

3.4.4 Expected Travel Time  

By the expected travel time, we mean the travel time we expect based on the probe data 

information. We were able to identify the tmc and link number for each station sequence 

(origin-destination) from our integrated dataset, which also provided the segment length 

and vehicle cap speed. We computed the segment travel time using the speed and the 
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segment length. The expected travel time in seconds was then determined based on the 

station distance, segment length, and segment travel time. 

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 =
𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑐𝑎𝑝𝑝𝑒𝑑 𝑠𝑝𝑒𝑒𝑑
 

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 = (
𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
) × (𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

3.4.5 Volatility Measures 

The volatility measures – standard deviation and variance of bus travel time are also 

computed to add as our model inputs. Standard deviation provides an idea of how dispersed 

the value is concerning the mean travel time. A low standard deviation indicates values are 

clustered around the mean travel time, and a high standard deviation indicates the values 

are more spread out. Contrarily, variance is a measure of dispersion that considers the range 

of all the data set's values. It's basically the square of the standard deviation. These volatility 

measures may help the deep learning models quickly understand the relationship between 

inputs and target variables. The next chapters will discuss how the volatility measures and 

other model features will be used in our models and how they will improve the model 

results. 

3.5 CHAPTER REVIEW  

In this chapter, we talked about the different datasets such as the real-time GTFS dataset, 

scheduled (static) dataset, and probe dataset. We covered the data description and the data 

collection procedure of these datasets. The sample of the collected datasets and the final 

integrated datasets were illustrated in tables. In this chapter, we outlined the suggested 

methodology for our research. The procedure of mapping the closest stations in the dataset, 
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the conflation and merging techniques of different datasets as well as the method of 

calculating the average bus travel times were also covered in this chapter. Finally, we talked 

about the many transit data attributes that may be retrieved from the dataset, including 

dwell time, bus headways, bus delays, expected travel times, and volatility measures.  
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CHAPTER 4: DEEP LEARNING FRAMEWORKS FOR AVERAGE 

BUS TRAVEL TIME PREDICTION  

 

4.1 INTRODUCTION  

This study's part aimed to discuss about numerous deep-learning neural network models 

using a single-step multi-station forecasting approach. For predicting bus travel times, a 

variety of models, including the univariate Transformer, multivariate LSTM and GRU 

neural network models, the XGBoost Model, and Historical Average Model have been 

developed. In the previous chapter, we discussed about our proposed methodology and 

how we aggregated the different datasets. In this chapter, we will discuss about the different 

deep learning model architectures, how we used our integrated dataset in the models, model 

training process, whereas the Chapter 5 will detail the Model Results and Analysis.  The 

framework of our proposed approach has been shown in the Figure 4.1.  

  

 

 

Figure 4.1: Framework of the Proposed Modeling Approach 
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4.2 UNIVARIATE TRANSFORMER MODEL 

4.2.1  Model Architecture 

The transformer model is a neural network model which was first introduced by Vaswani 

et al. [71]. The transformer model is highly capable of capturing long-range dependencies 

in a sequence, which is one of the main differences between the Transformer model and 

the conventional recurrent neural network (RNN) model. The Transformer's self-attention 

mechanism enables the model to concentrate on relevant segments of the input sequence 

and capture dependencies that are significantly longer than what is generally feasible with 

RNNs. In particular, the Transformer's multi-head attention mechanism allows the model 

to focus on several elements of the input sequence at once, which is crucial for accurately 

capturing long-distance connections. The model may determine associations between 

distant tokens and incorporate that knowledge into its predictions by paying attention to  

 

Figure 4.2: Transformer Model Architecture  
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various aspects of the input sequence. Figure 4.2 shows the model architecture of a 

Transformer model. The encoder and the decoder are the two principal elements that make 

up the Transformer model architecture. Both elements are made up of multiple layers of 

feed-forward and self-attention neural networks.  

4.2.2 How the Transformer Model Works? 

The brief points on how the transformer model works are given below: 

• Input Encoding: The input is first tokenized into individual sub words or 

characters, and then these tokens are mapped to their corresponding embeddings. 

Positional encodings are added to the embeddings to convey information about the 

position of each token in the input sequence. 

• Multi-Head Self-Attention: The encoded input sequence is fed into the multi-head 

self-attention layer, where each token attends to every other token in the input 

sequence. This is done by computing a weighted sum of all the other tokens' 

embeddings, where the weights are determined by the similarity between the 

current token and the other tokens. 

• Layer Normalization: After computing the self-attention weights, the output is 

passed through a layer normalization step to normalize the activations. 

• Feedforward Neural Network: The normalized activations are then passed 

through a feedforward neural network with two linear layers and a non-linear 

activation function in between them. 

• Residual Connections and Layer Normalization: The output of the feedforward 

network is added to the input embeddings to create a residual connection. This is 

followed by another layer normalization step to normalize the activations. 
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• Encoder Stacking: The above steps are repeated for a fixed number of times, 

typically referred to as the number of encoder layers. 

• Encoder-Decoder Attention (for Decoder Only):  In the decoder, another multi-

head attention layer is introduced, which takes as input the encoder outputs and 

attends to them in addition to the self-attention layer. 

• Output Layer: Finally, the output of the last layer of the decoder is passed through 

a linear layer and a SoftMax activation function to produce the final probability 

distribution over the output vocabulary. 

Figure 4.3 illustrates the flow diagram of how the Transformer model works. 

 

Figure 4.3: Flow Diagram of Transformer Model 

4.2.3 Input Data Normalization  

Before reshaping, we normalized all the variables of our dataset. Normalization is an 

important data processing technique that helps to reduce the scale and variability of input 
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features, making it simpler for the model to learn the underlying patterns in the data. 

Normalization can also improve the deep learning model performance by reducing the 

likelihood of vanishing or exploding gradients, which can cause the model to converge too 

slowly or not at all. It can help prevent overfitting by decreasing the impact of outliers or 

extreme values in the input data. Our calculated historical average travel time data was 

used as the input of our Transformer model. To normalize our dataset variables, the 

following formula is used: 

𝑥𝑛𝑜𝑟𝑚 = ( 𝑥𝑖 − 𝑥𝑚𝑖𝑛)/( 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) 

where 𝑥𝑛𝑜𝑟𝑚 = The ith normalized value in the dataset, 𝑥𝑖 = The ith value in the dataset,  

𝑥𝑚𝑎𝑥 = The maximum value in the dataset, 𝑥𝑚𝑖𝑛 = The minimum value in the dataset 

4.2.4 Input Data Structuring 

We reshaped our dataset to fit it inside the Transformer model.  The dataset was reshaped 

and structured as in Figure 4.4. The data was compiled using a one-hour interval, which is 

represented by the reshaped data frame's index. The column numbers represent the order 

of stations along a route and the inside values are the normalized travel time values. 

  

Figure 4.4: Input Data Structuring for Transformer Model 



43 
 

4.2.5 Model Training  

After reshaping and restructuring dataset, the model was trained using 80 % of the 

dataset. The ratio of data used for training, validation, and testing is 0.8:0.9:1.0. Historical 

timesteps and prediction horizon were set up to 5 and 1, respectively, which means that 

previous 5-time steps of our data were used to predict the mean bus travel times for the 

following hour. We used data loader for training, which provides an efficient way to load 

large datasets into memory in batches, reducing memory usage and improving training 

speed. We used a batch size of 2, which makes the batch input size of (2,5,1) and batch 

output size of (2,1). Then the datasets were pushed for model training (see Figure 4.5). 

 

 

Figure 4.5: Model Training Process for Transformer Model 

Table 4.1 summarizes the hyperparameters we used for training the model and Table 

4.2 shows the baseline model configuration. 

• NUM_COL - The number of features or columns in the input data. This will be the 

number of station sequences along a route. 

• INPUT_LEN - The number of timesteps in the input sequence. It will be 5 in our 

case, as we used the previous five timesteps. 

• PRED_LEN - The number of timesteps in the output or prediction sequence. It will 

be 1 as our prediction horizon is 1. 

• LEARNING_RATE - The learning rate used in the optimizer during training. We 

used 0.0001 as learning rate. 
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• NUM_EPOCHS - The number of epochs or passes through the entire training 

dataset. We ran 100 epochs for training our dataset. 

• MIN_DELTA - The minimum change in the monitored metric to qualify as an 

improvement, used in early stopping.  

• PATIENCE - The number of epochs with no improvement after which training 

will be stopped, used in early stopping. 

There are some other baseline configurations, which are listed below: 

▪ BASELINE_MODEL_DIMENSION: The number of dimensions used for the 

input and output of each Transformer block. 

▪ BASELINE_MODEL_NUMBER_OF_HEADS: The number of attention heads 

used in each multi-head attention layer in the Transformer blocks. 

▪ BASELINE_MODEL_NUMBER_OF_LAYERS: The number of Transformer 

blocks used in the model. 

▪ BASELINE_MODEL_DROPOUT_PROB: The probability of dropping out 

each input element during training, which is used to prevent overfitting. 

Table 4.1: Model Hyperparameters for Transformer Model 

Hyperparameters Values 

NUM_COL Varies with different routes 

INPUT_LEN 5 

PRED_LEN 1 

LEARNING_RATE 0.0001 
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Hyperparameters Values 

NUM_EPOCHS 100 

MIN_DELTA 0.0005 

PATIENCE 10 

 

Table 4.2: Baseline Configurations for Transformer Model 

Baseline Configurations Values 

BASELINE_MODEL_DIMENSION 256 

BASELINE_MODEL_NUMBER_OF_HEADS 8 

BASELINE_MODEL_NUMBER_OF_LAYERS 6 

BASELINE_MODEL_DROPOUT_PROB 0.3 

 

4.2.5.1 Training and Testing Losses  

We used an early stopping approach to run the model for 100 iterations. After running for 

14 epochs, the model was stopped early, and the best model was preserved based on train 

loss and valid test loss. The Figure 4.6 shows the train and valid test loss and how it was 

converged and the process of early stopped. Figure 4.7 plots the training and testing losses, 

and the plot demonstrates how the training and testing losses converged. 



46 
 

 

Figure 4.6: Train Loss and Valid Loss for Transformer Model 

 

Figure 4.7: Training Loss and Testing Loss Plot for Transformer Model 

4.2.6 Single-Step Forecasting 

This section evaluates the performance of the trained Transformer model against a test 

dataset which consisted of the full dataset for six routes. We perform single step forecasting 

throughout all hours of the day, using the previous 5 hours to predict the future one hour. 

For example, we predicted the 5th hour predictions using 0-4th hour travel time values and 

predicted the 6th hour predictions using 1st – 5th hour values and so on (Figure 4.8). The 
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main task is to use the Transformer model algorithm in predicting the average bus travel 

times on a vast transportation network having multiple stations. This procedure of Figure 

4.8 is followed for each station along a route. Eventually, we forecast the average bus travel 

times on every hour of the whole day for each station along a route by performing a single-

step multi-station forecasting approach (Figure 4.8). 

  

 

Figure 4.8: Testing Data Hourly Prediction Process 

4.3 MULTIVARIATE GATED RECURRENT UNIT (GRU) MODEL 

The second model we developed to validate the accuracy and robustness of our proposed 

Transformer Model is the multivariate GRU model. A Gated Recurrent Unit (GRU) is a 

type of recurrent neural network (RNN) architecture that is developed to improve the 

limitations of standard RNNs such as vanishing gradients, and long-term dependencies. A 

typical RNN is appropriate for sequence-to-sequence problems because the output of each 

hidden state is fed back into the subsequent iteration. Standard RNNs, however, find it 
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challenging to maintain long-term dependencies due to the vanishing gradient problem, 

which makes modeling long-term sequences challenging. Figure 4.9 shows the GRU 

model architecture. 

 

Figure 4.9: GRU Model Architecture 

By including gating mechanisms that control the flow of information into and out 

of the hidden state, GRU addresses this limitation. The reset gate and the update gate are 

two of the gates found in the GRU cell. The reset gate determines how much of the previous 

hidden state to forget, while the update gate determines how much of the current input 

should be included in the new hidden state. This process continues like a relay system, 

producing the desired output. 

4.3.1 Model Training and Testing  

As before, we used the previous five hours of historical data inputs to predict the travel 

time for the next hour, where our horizon is one (H =1). The ratio of the training and testing 

dataset was 0.8: 0.2. To train our model, we first reshaped our inputs into an N × T × D 
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format, where N denotes the number of rows, T is the number of historical data points (5 

in our study) we utilized for predicting, in this case, and D denotes the number of input 

channels which is 8 and they are historical travel times, hour, station sequences, station 

distances, standard deviation of travel time, dwell time, expected travel time and jam factor. 

We experimented with developing the GRU model by adding input features in various 

combinations. As an illustration, we initially created the model with just the Historical 

Travel Times, and then we included the Hour and other variables. When all 8 features were 

used as inputs, the GRU Model output had the lowest Mean Absolute Percentage Error 

(MAPE). The input details are listed in Table 4.3. The data loader technique was used with 

a batch size of 512.  In a GRU model, the input data is typically represented as a sequence 

of feature vectors. The final shape size of our input data is (512, 5, 8), and the output data 

is (512, 1). The flowchart for model training process is shown in the graph (Figure 4.10). 

 

 

Figure 4.10: Model Training Process for GRU Model 

Mean Squared Error (MSE) loss criterion and the torch Adam optimizer optimization 

method were used for training. We ran 1000 epochs for training the model. Table 4.4 

contains a summary of the model hyperparameters that we used to create this GRU model. 

20 Hidden Layers and 2 Recurrent Neural Network Layers were used to develop the model. 

Figure 4.11 shows the internal structure of how the hidden layers and recurrent layers of a 

GRU model looks like. Figure 4.12 illustrates how the model was converged and the loss 

plot with epochs. 
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Table 4.3: Multivariate GRU Model Input Parameters 

Input Parameters Normalization 

Historical Travel Times Normalized 

Hour Normalized 

Station Sequences Not Normalized 

Station Distances Not Normalized 

Standard Deviation Not Normalized 

Dwell Time Normalized 

Expected Travel Time Normalized 

Jam Factor Normalized 

Table 4.4: GRU Model Hyperparameters 

Hyperparameters Values 

Hidden Layers 20 

RNN Layers 2 

Learning Rate 0.0001 

 

 

 

 

 

 

 

Figure 4.11: Internal Structure of GRU Neural Network 

N
 

T =5 
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The single step forecasting approach was used for model testing as we did before 

in the Transformer model. We used the full dataset for testing and tried to find out the mean 

absolute percentage error for average bus travel times in each hour for each station along 

every route. We used this multivariate GRU model to predict our average bus travel time 

values.  

  

Figure 4.12:  GRU Model Convergence 

4.4 MULTIVARIATE LONG SHORT-TERM MEMORY (LSTM) MODEL 

The third model we developed to validate the accuracy and robustness of our proposed 

Transformer Model is multivariate LSTM model. Long Short-Term Memory (LSTM) is 

another type of neural network that has three types of gates that control the flow of 

information into and out of the cell. They are forget gate, input gate, and output gate. 

Figure 4.13 shows the LSTM model architecture. The forget gate determines which 

information to discard from the cell's memory. Input gate decided which information  
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Figure 4.13: LSTM Model Architecture 

should be added to the memory cell. It outputs a value between 0 and 1 for each component 

of the memory cell after receiving as inputs the previous output and the current input. A 

value of 0 indicates that the information shouldn't be added, whereas a value of 1 indicates 

that it should. Output gate determines which information to output from the memory cell. 

It outputs a value between 0 and 1 for each memory cell element based on the inputs of the 

previous output and the current input. The current output is multiplied by this value before 

being forwarded to the following time step. 

The multivariate LSTM model was trained in the same way how we trained the 

multivariate GRU model in section 4.3.1. The same number of features were used to train 

the LSTM model. Like GRU, the LSTM model also showed the best output when we used 

the eight features that were used in the GRU model. Figure 4.14 shows how the model and 

test loss was converged, and the graph shows the plot of loss vs epochs. The model 

hyperparameters we used for LSTM Model Architecture was 50 hidden layers, 3 RNN 

layers and 0.0001 learning. Table 4.5 summarized the model hypermeters. 
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Figure 4.14: LSTM Model Convergence 

Table 4.5: LSTM Model Hyperparameters 

Hyperparameters Values 

Hidden Layers 50 

RNN Layers 3 

Learning Rate 0.0001 

 

4.5 HISTORICAL AVERAGE (HA) MODEL 

The first benchmark model used to validate the accuracy and robustness of our proposed 

Transformer model is a simple historical average model. Historical Average model is a 

simple forecasting technique that uses the average of past observations to predict the future 

values. In our study, we considered the previous 5 hours of mean travel times for each 

station to predict the mean bus travel time for the next hour of that station. For each station, 

the historical mean travel time data was filtered based on the selected route id. After 

filtering the data, the model calculates the mean of previous five travel time values for each 

hour and used it as the forecast value. Then the predicted values and ground truth values 

for each hour for each station along each route were evaluated based on MAPE. 
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4.6 XGBOOST MODEL 

The second benchmark model used to validate the accuracy and robustness of our proposed 

Transformer model is an XGBoost model. XGBoost (Extreme Gradient Boosting) is a 

scalable, distributed gradient-boosted decision tree (GBDT) machine learning algorithm 

that is widely used for forecasting modeling. A series of decision trees are trained 

repeatedly by XGBoost, with each new tree being trained to fix the flaws of the prior one. 

This process, called boosting, aids in enhancing the model's accuracy over time. Other 

methods including regularization, learning rate shrinkage, and feature subsampling are also 

incorporated by XGBoost to increase the model's accuracy. These methods enhance the 

model's ability for generalization and prevent overfitting. Figure 4.15 gives a brief 

illustration how the gradient boosting tree works.  

 

Figure 4.15: XGBoost Model Algorithm 

(Source: https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html)  

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html
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We used “XGBRegressor” class from the XGBoost library in python. Root Mean 

Squared Error (RMSE) was used as the evaluation metrics for training the model. The early 

stopping round was set to 40, which means that training will stop if the RMSE on the testing 

dataset doesn’t improve for 40 consecutive rounds. The model training was converged and 

stopped when the best iteration on validation RMSE was found. Figure 4.16 shows the 

snippet of how the model was trained. The same input parameters were used to train the 

model as we did for the GRU and LSTM model for predicting average bus travel times on 

different hours. 

 

Figure 4.16: XGBoost Model Training 

 

4.7 CHAPTER REVIEW 

We talked about many model frameworks in this chapter, including the Transformer 

Model, GRU, LSTM, Historical Average Model, and XGBoost Model. We discussed the 

many parameters and hyperparameters we utilized to develop these models as well as how 

the models operate. We also discussed how we trained these models to forecast the average 

bus travel times. To give readers a quick overview of how the models operated, the process 

diagrams, tables, figures, and algorithms were added. 
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CHAPTER 5: COMPARATIVE ANALYSIS BETWEEN VARIOUS 

MODELS FOR AVERAGE BUS TRAVEL TIME PREDICTIONS: 

RESULTS AND INSIGHTS  

 

5.1 INTRODUCTION  

The results, analyses, and findings from the various models described in Chapter 4 will be 

covered in this chapter.  In Chapter 4, we talked about the different model architect features 

we used to develop the Univariate Transformer Model, Multivariate GRU Model, and 

Multivariate LSTM Model. We also discussed our benchmark models – The historical 

Average Model and the XGBoost Model, which will be used to compare the performances 

of our developed models. The models' performances will be evaluated based on a metric 

called Mean Absolute Percentage Error (MAPE), a measure of the prediction accuracy of 

a forecasting model. We will demonstrate how the results of the different models vary 

across multiple routes. The performances of our model in different traffic conditions, such 

as peak hours and off-peak hours, and the comparison of computation times for prediction 

will also be illustrated in this chapter. Additionally, we will demonstrate the impact of 

adding external variables such as the expected travel time, dwell time and jam factors to 

our models and discuss how it improves the model results. 

5.2 1-HOUR AHEAD TRAVEL TIME PREDICTION RESULTS 

We will illustrate the one-hour ahead travel time predictions on the six routes we selected. 

The predictions results will be evaluated based on a performance metric called Mean 

Absolute Percentage Error (MAPE). MAPE is a commonly used measure of accuracy for 

forecasted data. It is a percentage-based error metric that measures the average absolute 
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percentage difference between the actual and predicted values of a time series. MAPE is 

computed as the following equation: 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑡𝑖 − 𝑡𝑖̂

𝑡𝑖
|

𝑁

𝑖=1

 

Where 𝑡𝑖 is the actual travel time, 𝑡𝑖̂ is the predicted or forecasted travel time, and 𝑁 is the 

total number of observations. 

 

           (a) Univariate Transformer                              (b) Multivariate GRU  

 

(c) Multivariate LSTM 

Figure 5.1: Sample 1-Hour Ahead Prediction Trends 
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Figures of 5.1 illustrates an example of how the model trends and patterns look for 

our developed Transformer, GRU, and LSTM models. The univariate Transformer model 

was able to pick up the sharp peaks much better than the other two models, which indicates 

that even with using only the travel times as input, the Transformer model was able to 

handle complex patterns more. Again, the Mean Absolute Percentage errors for the three 

models are respectively 7.15%, 10.61%, and 10.99%, meaning that the Transformer model 

had the lowest MAPE. Table 5.1 provides a summary of the Mean Absolute Percentage 

Errors (MAPE) for all the models for our forecasts at the ninth hour along each route. The 

outcomes show that the Univariate Transformer Model had the highest prediction accuracy 

across all six of the routes we considered for our study.  

Table 5.1: 9th Hour Predictions for the Six Routes 

 

 

Table 5.2 summarizes the percentages of better prediction accuracy Transformer 

Model gives than all other models for predicting the average bus travel times at the 9th Hour 

which can be considered as busy traffic hour. As can be shown, for all six routes, the 

univariate Transformer Model outperformed the multivariate GRU and LSTM models. 

Model Names 

MAPE (%) 

Route 

18125 

Route 

18128 

Route 

18139 

Route 

18144 

Route 

18145 
Route 18146 

Univariate Transformer 

Model 
8.1931 % 8.1885 % 7.2594 % 5.9545 % 6.7964 % 5.5367 % 

Multivariate GRU Model 11.6446 % 13.5734 % 7.8969 % 7.3952 % 13.1124% 8.5709 % 

Multivariate LSTM Model 11.3841 % 12.0381 % 8.3290 % 8.3385 % 13.542 % 9.5329 % 

Historical Average Model 10.8579 % 12.3125 % 9.2378 % 7.6359 % 7.6359 % 7.6729 % 

XGBoost Model 9.7582 % 8.4419 % 7.6414 % 6.9381 % 6.9381 % 7.2245 % 
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Also, compared to the Historical Average Model and XGBoost Model, it offered greater 

accuracy. The ground truth and predicted value plots from Figure 5.1 also show that the 

Transformer Model can pick the shapes much better compared to the GRU and LSTM 

models. The second-best model for all the six routes at the 9th hour according to the Table 

5.1 and 5.2 was the XGBoost model, which performed better than the Multivariate GRU 

and LSTM models in most cases. This result is shown for a single hour, and the results for 

the entire day will be demonstrated in the following section. 

Table 5.2: Transformer Model Performance Comparison at the 9th hour 

Models 

Route 

18125 

Route 

18128 

Route 

18139 

Route 

18144 

Route 

18145 

Route 

18146 

Multivariate GRU 29.64 % 39.67 % 8.07 % 19.48 % 48.17 % 35.40 % 

Multivariate LSTM 28.03 % 31.97 % 12.84% 28.59 % 49.81 % 41.92 % 

Historical Average 24.54 % 33.49 % 21.42 % 22.02 % 10.99 % 27.84 % 

XGBoost Model 16.04 % 3 % 5 % 14.18 % 2.04 % 23.36 % 

 

5.3 COMPARATIVE ANALYSIS BETWEEN DIFFERENT MODELS – ALL 

HOUR PREDICTIONS 

5.3.1 One-Hour Ahead Predictions – All Hours 

By demonstrating various comparative analyses based on the model performances, this part 

analyzes the robustness of our suggested univariate Transformer model. We displayed the 

outcomes for a specific hour (9th Hour) in the previous section. To see how the 

Transformer model outperforms than other models, we plotted the average MAPEs for all 
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the routes from 5 am – 12 pm at various times of the day. The graph plots indicate how the 

average travel time looks at different hours of a day. 

 

(a) Comparative Analysis between different models on Route 18125 

 

(b) Comparative Analysis between different models on Route 18128 
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(c) Comparative Analysis between different models on Route 18139 

 

(d) Comparative Analysis between different models on Route 18144 
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(e) Comparative Analysis between different models on Route 18145 

 

 

 

(f) Comparative Analysis between different models on Route 18146 

Figure 5.2: One-hour prediction results for different models across multiple routes 
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Figures 5.2 (a) to 5.2 (f) show that the Transformer model demonstrated greater accuracy 

than other models in most of the scenarios. There are only a few instances for Routes 18128 

and 18145 where the XGBoost displayed improved results for a few hours. Transformer 

model might have overfitted on some of the data, which would explain why it performed 

worse than XGBoost in those cases. The model hypermeters might be another factor. It's 

likely that the hyperparameters selected for the XGBoost model were better suited in some 

of the situations where XGBoost shown greater performance. Figures 5.3 (a) – 5.3 (e) 

show the heatmaps for Mean Absolute Percentage Errors for different models we 

developed for predicting average bus travel times at different hours of a day. 

 

(a) Heatmap of 1-Hour Ahead Prediction Results – Transformer  
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(b) Heatmap of 1-Hour Ahead Prediction Results – GRU  

 

(c) Heatmap of 1-Hour Ahead Prediction Results – LSTM  
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(d) Heatmap of 1-Hour Ahead Prediction Results – HA Model 

 

(e) Heatmap of 1-Hour Ahead Prediction Results – XGBoost Model 

Figure 5.3: 1-Hour Ahead Prediction MAPE Heatmaps for different Models across 

Multiple Routes 
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 In contrast to other models, the Transformer model has the lowest minimum, 

maximum, and median MAPE values, according to the error bar plots for the minimum, 

maximum, and median MAPEs in Figure 5.4. The transformer model was able to capture  

 

Figure 5.4: Error Bar Plots (Minimum, Maximum, and Median MAPEs) 

  

               (a) Univariate Transformer Model                    (b) XGBoost Model  

Figure 5.5: Transformer and XGBoost Model Trend 
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the sharp trends better than the XGBoost model, even though their medians are extremely 

close to each other (see Figure 5.5). The Transformer model can handle complex patterns 

well even when only using the mean travel times as input. 

Table 5.3: Summarized Model Results 

Models 

MAPE 

Minimum Mean SD 

Univariate Transformer 4.32 % 8.29 % 2.19 % 

Multivariate GRU 7.40 % 11.62 % 2.71 % 

Multivariate LSTM 8.34 % 12.18 % 2.38 % 

Historical Average 8.61 % 12.36 % 2.84 % 

XGBoost 6.15 % 8.71 % 1.82 % 

Note:  SD = Standard Deviation 

Section 5.2 and 5.3 demonstrates that the Univariate Transformer model showed 

the best results among all other models. We also figured out the Minimum, Mean, and 

Standard Deviation of MAPEs for all the models, which is summarized in Table 5.3. The 

minimum MAPE measures of 1-Hour ahead average travel time prediction for the 

Transformer Model is 4.32%, which is the lowest compared to other models. The mean 

MAPE measure of the Transformer model is 8.29 %, which is close to XGBoost Model, 

but performs much better than the GRU, LSTM, and HA models. However, the 

Transformer model had a higher standard deviation of MAPE than the XGBoost model but 

lower than other deep learning models. Given that there are more parameters to estimate in 

the deep learning training process than in the XGBoost, the results of deep learning 
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prediction should have a higher level of randomness. The deep learning models also have 

many hyperparameters that need to be tuned. The optimal value of these hyperparameters 

can vary depending on the dataset, which may cause higher standard deviation.  

5.3.2 Transformer Model Outperforms Other Models: Discussions and Insights 

From the discussions in the sections 5.2 and 5.3, it became clear that the Transformer 

delivered the best results. Below are some hypotheses as to why Transformer Model may 

be working so well: 

• The Transformer Model relies solely on a multi-headed self-attention mechanism, 

which allows it to capture the relationships between all input sequence elements in 

a single pass. This differs from other sequence-to-sequence models, such as GRU 

and LSTM, which process the input sequence one element at a time. The self-

attention mechanism in Transformer model allows it to selectively attend to 

different parts of the input sequence, giving the ability to model long-range 

dependencies and handle variable-length input sequences.  

• The multiheaded self-attention mechanism enables the Transformer to learn 

various representations of the input sequence simultaneously. The ability of each 

attention head to focus on a distinct feature of the input enables the model to 

capture various dependencies and interactions between the sequence's 

components. 

• Transformers also take advantage of residual connections, letting the model 

remember data from the previous layers and simplifying learning long-term 

dependencies. The residual connections also help to mitigate the vanishing 
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gradient problem that can occur in deep neural networks. The residual connections 

can be represented mathematically as: 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝐼𝑛𝑝𝑢𝑡)  +  𝐼𝑛𝑝𝑢𝑡) 

The multi-headed self-attention sub-layer or the feedforward sub-layer are the two 

sub-layer kinds employed in the Transformer. The original input is added to the 

sub-layer's output, and the sum is then put through a layer normalization step. The 

network's next sub-layer receives this output as input. 

5.3.3 XGBoost Model Outperformed GRU and LSTM: Discussions and Insights 

The second-best model from the above discussions, we got was the XGBoost model, which 

outperformed the GRU and LSTM models. These are the possible reasons behind: 

• XGBoost is a gradient boosting algorithm that can handle non-linear patterns in the 

data, which is crucial in capturing complex long-range dependencies. In contrast, 

GRU and LSTM models can also handle non-linear patterns well. Still, they can 

suffer from vanishing or exploding gradients when trying to propagate information 

over long sequences.  

• XGBoost is faster and computationally efficient than GRU and LSTM, especially 

when dealing with larger datasets. This is because XGBoost parallelizes the training 

process, while GRU and LSTM are inherently sequential. 
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5.4 MODEL PERFORMANCES FOR DIFFERENT STATIONS ALONG 

MULTIPLE ROUTES 

The previous section showed the MAPE along different routes in particular hours of a day. 

This section will illustrate how the MAPE varies for different models in different stations 

along the six different routes we selected. We produced some heatmaps based on model 

performances for multiple stations along different routes. We calculated the MAPEs for 

each station along each route and using the latitude and longitude, we showed the values 

in the map. The red marks in the heatmap indicate areas of high intensity or higher values 

of MAPE. The heatmap color scale typically goes from blue (low intensity) to yellow 

(medium intensity) to red intensity (high intensity). 

 

(a) Transformer 
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(b) GRU                                                       (c) LSTM   

     

              (d) HA                                                       (e) XGBoost 

Figure 5.6: Model Performances Along Different Routes – Heatmaps 

Figure 5.6 (a) shows that Historical Average Model, LSTM, and GRU all have 

significantly more red marks than the Transformer model. Notably, the XGBoost 

outperformed GRU, LSTM, and the Historical Average Model rather favorably. The 

XGBoost model, however, performed worse than the Transformer model. The results are 
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like those of the MAPE comparison of several models for hourly forecasts in earlier parts. 

The Transformer Model fared best, with the XGBoost Model coming in second. 

5.5 MODEL PERFORMANCES FOR PEAK AND OFF-PEAK HOURS 

The model's performances under different traffic conditions, such as peak and off-peak 

hours, are shown in Table 5.4. Peak hour is regarded as the hours of 7:00 to 10:00 am in 

the morning and 4:00 to 7:00 pm in the evening. It is observed that the Transformer model 

performed significantly better than other models in both traffic conditions for all the routes.  

Table 5.4: Model Performances for Peak and Off-Peak Hours 

Model 

Route 18125 Route 18128 Route 18139 Route 18144 Route 18145 Route 18146 

Peak 

Off-

Peak Peak 

Off-

Peak Peak 

Off-

Peak Peak 

Off-

Peak Peak 

Off-

Peak Peak 

Off-

Peak 

Transformer 8.8% 10.4% 6.51% 8.87% 6.14% 7.78% 6.22% 8.96% 7.69% 9.17% 6.36% 7.30% 

GRU 11.2% 11.82% 14.17% 14.89% 8.92% 10.19% 8.36% 10.77% 12.52% 14.33% 8.85% 10.3% 

LSTM 11.58% 12.84% 14.47% 15.07% 9.94% 11.32% 9.25% 11.85% 12.63% 13.77% 9.53% 10.8% 

HA 11.47% 12.73% 13.61% 13.37% 8.94% 9.61% 8.91% 11.12% 13.05% 13.62% 8.11% 9.57% 

XGBoost 8.94% 11.04% 6.96% 9.46% 7.8% 9.04% 7.96% 10.08% 7.63% 8.58% 7.35% 8.21% 

Table 5.4 further shows that for all models, peak hour forecast accuracy is 

consistently higher than off-peak hour prediction accuracy. This is expected because during 

the peak hours the availability of data was much more compared to the off-peak hours. As 

a result, the models were able to train with more data during the peak hours resulted in 

better accuracy.  
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5.6 COMPUTATION TIME OF DIFFERENT MODELS 

Computation time is important in bus travel time prediction models. To provide accurate 

predictions the prediction model must be able to process large amounts of data quickly. 

Moreover, it is important to optimize resource utilization to run the bus travel time 

prediction models. This includes using the available computing resources effectively, such 

as minimizing memory usage and GPU utilization. The models are also required to be 

updated regularly to ensure that they continue to provide accurate predictions. If the 

computation time is too slow, it may take a long time to update the model, which can result 

in outdated predictions. Table 5.5 summarizes the average computation time to predict the 

travel time for the five models on an 11th Gen Intel(R) Core (TM) i9-11900 @ 2.50GHz 

processor with 32-GB random access memory. We ran the models on Google Colab using 

Graphics Processing Unit (GPU) with standard GPU class and runtime shape. 

Table 5.5: Computation Time for Different Models 

Model Prediction Time 

Univariate Transformer 7.42 s 

Multivariate GRU 6.99 s 

Multivariate LSTM 8.67 s 

Historical Average 6.34 s 

XGBoost 6.28 s 
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Figure 5.7: Model Prediction Computation Times 

Table 5.5 and Figure 5.7 show that LSTM model has the highest prediction computation time while 

XGBoost has the lowest. That is expected as XGBoost is faster and trained quickly due to 

lesser complexities than deep learning models. The average computation time for the 

Transformer model is about 7.42 s, which isn't much that much longer than the XGBoost, GRU 

and Historical Average Models. 

5.7 IMPACT OF EXTERNAL FEATURES ON TRAVEL TIME PREDICTION 

One of the additional insights we found from our study is the impact of different external 

transit features on bus travel time prediction. External factors such as the expected travel 

time from one station to another, dwell time, and jam factor were all input features that we 

used while developing the GRU and LSTM models. Nonetheless, as we suggested the 

univariate Transformer model in this study, we didn't take them into account when building 

the Transformer model. However, by using the GRU and LSTM models that we developed,  

0

1

2

3

4

5

6

7

8

9

10

Transformer GRU LSTM Historical
Averaging Method

XGBoost

C
o

m
p

u
ta

ti
o

n
 T

im
e 

(s
)

Model Names

Computation Time Comparisons



75 
 

 

(a) Without adding external factors                 (b) After adding the external factors 

Figure 5.8: Impact of external factors (GRU Model) 

we can see how well these features work to improve the accuracy of these models. The 

addition of those elements improved the performance of both. In this section, we are 

showing the performances of GRU model to understand the impact of these factors. The 

instances in Figure 5.8 illustrates how the model was able to learn the complex trends and 

patterns better after adding these external factors. In Figure 5.8 (a), we didn't consider the 

factors like expected travel time, dwell time, and jam factor. On the other hand, we included 

those factors in Figure 5.8 (b), which also boosted the model's performance by a good 

margin. The Mean Absolute Percentage Error in Figure 5.8 (a) is around 14%, while it is 

approximately 8.5% in Figure 5.8 (b). Compared to the first instance, where the external 

parameters weren't considered, it shows a 40% improvement in accuracy. 
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(a) Route 18125 

 

(b) Route 18128 
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(c) Route 18139 

 

 

(d) Route 18144 
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(e) Route 18145 

 

(f) Route 18146 

Figure 5.9: Impact of External Factors on Bus Travel Time Predictions 
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               From the Figures 5.7 above, it is notable that for all the routes, the bus travel time 

predictions are much accurate when we added the external factors such as dwell time, the 

expected time and jam factor. Jam factor refers to the congestion level on the roadways. 

High levels of traffic congestion can slow down buses and increase travel times. Dwell 

time refers to the amount of time a bus spends at a station to pick up or drop off passengers. 

Longer dwell times can add to the overall time of the bus. Expected travel time is the time 

we expect to travel from one station to another based on the probe data information. The 

improved outcomes with the addition of these features suggest that the created GRU model 

was able to learn the trends and patterns of bus trip times more effectively, indicating the 

stronger effectiveness of these external features. 

5.8 CHAPTER REVIEW  

Chapter 5 covers the results and insights of the different models and comparative analysis 

between different models. In this chapter, we demonstrated the one-hour ahead prediction 

results from 5th hour to 23rd hour for all the routes. We showed the graphical comparisons 

and heatmaps to compare the model results in this chapter. Apart from that graphical 

heatmaps were also shown for all models to identify the intensity of MAPE values in 

different stations across multiple routes. Chapter 5 included illustrations of how the models 

performed during Peak Hour and Off-Peak Hour traffic. This chapter also discussed the 

computation time for each prediction model. 
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CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 

The scope of forecasting bus travel times more accurately has greatly increased due to the 

quick development of machine learning and high-performance computing. In the current 

study, we implemented three deep learning-based algorithms - Univariate Transformer, 

Multivariate GRU, and Multivariate LSTM for predicting average bus travel times 

incorporating heterogeneous datasets across multiple bus routes on an extensive network 

in the St. Louis region. Using the information of the previous 5-time steps (5 hours) of one 

station-to-station segment along a route, we predicted the average bus travel time for the 

following hour for the same segment. We followed this approach for all six routes, which 

were selected based on the greatest number of stops. We attempted to determine how well 

these models work when it comes to predicting travel times for long-range dependencies 

and contrasted our findings with those of other conventional machine learning models, 

such as the Historical Average Model and XGBoost model. The results showed that the 

Transformer model outperformed other models in prediction accuracy when we compared 

it with the one-hour ahead prediction results for each hour. We computed the minimum, 

mean, and standard deviation of MAPE for each model to summarize the results. The 

results show that the minimum and mean MAPE values of the Univariate Transformer 

Model were 4.32% and 8.29%, respectively. The second-best performer was XGBoost, 

which had values of 6.15% and 8.71%, respectively. We also plotted the heatmaps for all 

the routes to understand the intensity of MAPE values for each station along each route. 

The heatmap results also indicated that the Transformer model had the lowest intensity of 

MAPE values compared to other models. Additionally, we illustrated how these models 

perform during different traffic conditions, such as peak and off-peak Hours. The outputs 
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demonstrated that the prediction accuracy during the peak hours was always higher than 

the off-peak hours. We also identified that for both conditions Transformer model 

performed significantly better than other models. Finally, we showed the model 

computation time for the prediction, where we found that XGBoost Model had the quickest 

computing time having a 6.28-second prediction time. The univariate Transformer model 

had a 7.42-second prediction time which is not far from the XGBoost model. The 

Univariate Transformer model was by far the best performer among all the frameworks we 

developed. In conclusion, it can be said that even with only historical travel times as input, 

a Transformer model can still capture some degree of long-range dependency through its 

self-attention mechanism. The model can use self-attention to weigh the importance of 

different historical travel times in the context of the entire bus route, allowing it to 

understand better the complex relationships between different parts of the route and their 

impact on travel times. Other factors that may affect travel times, such as traffic congestion, 

dwell times, and unexpected delays, could significantly impact the travel times of buses. 

By including this additional information in the model's input, the model may be better able 

to capture long-range dependencies and make more accurate predictions. 

 The future of bus travel time prediction modeling using transformer models looks 

promising. With the advancement in technology and the availability of large-scale datasets, 

these models have the potential to improve the accuracy of bus travel time predictions 

significantly. In the current study, we used the univariate Transformer model to predict the 

bus travel times for long-range scale road networks. However, in the future, the 

multivariate transformer model can be developed to predict the bus travel times using all 

the factors we used for the GRU and LSTM deep learning neural network models, such as 
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jam factors, traffic speeds, expected travel time, dwell time, etc. to better capture long-

range dependencies and make more accurate predictions. Researchers could also look at 

the use of cutting-edge data sources to enhance the conventional sources of data utilized in 

the Transformer Model, such as real-time GPS data or social media data. Furthermore, 

researchers could explore the use of ensemble techniques to combine multiple transformer 

models and multi-step forecasting approach to improve the accuracy of bus travel time 

prediction modeling. Ensemble methods have been shown to be effective in improving 

prediction accuracy in other domains, and their application in bus travel time prediction 

modeling could yield similar benefits. 
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APPENDIX 

 

Transformer Model Predictions for 5th Hour to 23rd Hour – Route 18125  
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Transformer Model Predictions for 5th Hour to 23rd Hour – Route 18128 
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Transformer Model Predictions for 5th Hour to 23rd Hour – Route 18139 
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Transformer Model Predictions for 5th Hour to 23rd Hour – Route 18144 
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Transformer Model Predictions for 5th Hour to 23rd Hour – Route 18145 

 



95 
 

     

        

          

             



96 
 

 

 

 

 



97 
 

 

Transformer Model Predictions for 5th Hour to 23rd Hour – Route 18146 
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