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ABSTRACT 

 The objective of this study is the optimal design of helical spring based on 

dynamic criteria. The most important dynamic performance criterion of a helical 

spring is the resonance behavior, including dynamic stress, coil closing, and surge. In 

order to perform computer aided optimization, the construction of an accurate 

dynamic model is necessary. The more variables are considered as design variables, 

the more flexible and better designs are possible. More design variables are also 

making the description of dynamics more complex. In this study, predictive dynamic 

models for variable pitch angle, variable wire diameter, and variable spring radius are 

derived by fundamental mathematics and mechanics principles. These models are 

nonlinear partial differential equations, in general more complex than the well 

known and commonly used wave equation.   

Numerical solution of these dynamic models is also called dynamic simulation.  

In this study, finite difference method combined with moving boundary solutions are 

applied to obtain the dynamic response. Dynamic responses as a time domain, 

discrete data from various models are compared with data from physical dynamic 

experiments to verify the accuracy of the models, and to improve the parameters in 

the dynamic models. Fast Fourier Transform (FFT) is utilized as a tool to evaluate 

severity of resonance in different models and in optimization process. 

 To verify that the use of finite difference in the simulation process is providing 

stable and reliable results, the numerical solutions are compared with solutions 

obtained using ABAQUS-MATLAB programs. Results in terms of system eigenvalue 

calculation obtained by different programs, either commercial or Finite Difference 

Method (FDM), showed very good agreements. 

 Numerical optimization results obtained in this study also showed that it is 

worthwhile to introduce more design variables to increase the flexibility in an 

optimal design process for obtaining better results.   
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Chapter 1 – Introduction 

1.1  Background and Motivation 

The documented study of helical compression spring dated back more than 300 

years, when Hooke [1678] published his law of springs as: 

� Q ��                                                     (1.1) 

This equation relates spring force to spring displacement in a simple format. It is 

fairly accurate when the spring is simple and under static loading condition. J. H. 

Mitchell [1890] is probably the first person to consider spring wire motion in three 

dimensions. His three dynamic equations were derived from the Lagrange equation, 

with assumptions of no direct shear and no axial force. Each small spring segment in 

his assumption has three degrees of freedom to move in Cartesian coordinate frame 

and one degree of freedom to twist about the wire axis. Love [1944] developed more 

advanced dynamic equations based partly from J.H. Mitchell’s equations. However, 

Love did not solve the equations. Wahl [1935] derived a stress correction factor 

taking into account the effects of curvature and direct shear. To study the elasticity of 

curved beam Timoshenko [1951, 1956] modified the shear strength and included 

effects of curvature and direct shear according to Wahl’s factor [Wahl, 1935]. 

Timoshenko [1963] published the Timoshenko-Beam theory, and applied his theory 

to explain the lateral buckling of the helical spring. Due to the fact that the axial load 

is complex if the effects of the pitch angle as well as curvature change are taken into 

account, Ancker and Goodier [1958] obtained a solution by using a thin slice method 

and expressed the pitch and curvature as basic variables. Ancker assumed that the 

cross-section in variable pitch angle spring remained circular which was not accurate. 

Wahl [1963] published most important book in springs for last 50 years, combining 

his work from 1930s to 1950s. 

The early spring research was focused on the static behavior. In modern 

applications of helical springs, such as valve springs in any automotive engine or 

recoil spring in automatic firearm, dynamic phenomena have dominant importance.  

The research focus shifted from the static condition to the dynamic loading and 

vibration suppression. Fig.1.1 and 1.2 show the main components in the valve train 

of an automotive engine for two different types. Usually, the automotive engines 

have a “red line” speed around 5000 RPM. Therefore, the simulation and dynamic 

experiments in this thesis were carried out around 4800 RPM (referring to Chapter 5). 
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According to Lin [1989], the valve spring is usually the first component to fail in valve 

train for dynamic loading situation.  As a consequence, improving spring 

performance is the key in improving valve train performance. Wahl [1963] used the 

force equilibrium to re-derive the wave equation, and proposed to use it to describe 

the resonant of helical springs. Pisano and Freudenstein [1983] combined the spring 

study and cam profile into a complete valve train dynamic model. The modified wave 

equation [Lin, 1987] was published to offer a better result by using the extended 

Hamilton’s Principle and calculus of variations. This thesis work is based on Lin and 

his students’ previous work from last 20 years, and with additional theoretical 

derivation, numerical and experimental results. 

 

1.2  Approach and Organization 

Using extended Hamilton’s Principle to derive helical spring with nonlinear 

effects, then using finite difference method to solve the governing dynamic 

equations, and optimally design helical springs are the main objective in this thesis. 

For this goal, building an accurate model to get the vibration of valve spring is the 

starting point.   

Totally, there are six chapters in this thesis. Chapter One presents the 

motivation, the approach and a brief introduction for spring research. More 

literature review will be included in each chapter, when the diverse topics are 

discussed.   

Chapter Two focus on mathematical modeling, and the construction of various 

dynamic models of helical springs. It starts from the limitation of the commonly used 

wave equation, which is the simplest linear partial differential equation describing 

many physical phenomena to a satisfactory degree of precision. If the pitch angle of a 

helical spring is a function of a few design variables, then wave equation can no 

longer accurately describe the dynamic behavior. In this study, not just pitch angle 

will be considered a function defined by a few design variables, wire diameter and 

coil diameter are also variables that are defined by a set of design variables. These 

design variables can be the coefficients of a polynomial, or coefficients of a series 

that gives precise description of the helical spring. 

Chapter Three discusses methods for solving the dynamic equations. Finite 

difference method is used for solving the nonlinear partial differential equations. Fast 

Fourier Transform is used as a scope to view and measure the dynamic performance. 

Since all solutions were first expressed as a discrete time domain sequence, the term 

of “dynamic simulation” is used to present the solutions to various dynamic models, 

as it has been done by other researchers in the literature.   
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Chapter Four describes the dynamic experiments in order to verify the derived 

dynamic equations and simulation are correct and accurate. Experimental data can 

be divided into two sets. The first set is used to calibrate the quartz load washer, the 

charge amplifier and data acquisition system. The second set is used to compare with 

the numerical results obtained in Chapter Three.   

Chapter Five compares eigenvalues obtained by different numerical tools. The 

first one is using MATLAB programming to get difference solution as described in 

Chapter Three. The second approach is to use MATLAB with the well known 

commercial finite element analysis program, ABAQUS. Then, there are four types of 

optimal designs to be demonstrated such as variable pitch angle, variable wire 

diameter, variable coil diameter, and the combination of the first three types and 

evaluate the results, obtained by finite difference solution. 

Chapter Six is the summary of this thesis, with conclusion and suggestion for 

further study of valve springs, or any helical springs that are used in high speed 

loading situations. 

Appendix section after Chapter Six contains the specifications of instruments 

used in the investigation and dynamic testing. Experimental data and programs for 

optimization and in ABAQUS-MATLAB are also attached.   

 

 

 

Fig.1.1 The structure of newer valve train [Fujimoto, 2007] 
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Fig.1.2 The structure of older valve train [Fujimoto, 2007] 
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Chapter 2 - Dynamic Equation and Resonance 

2.1  Introduction and Geometric Parameters 

A valve spring is an energy storage device. For two springs with the same 

displacement, the stiffer spring stores more energy. In order not over-load the spring 

material, energy stored per volume is a constrained by the material. A number of 

elementary optimization textbooks use the weight of the spring as the objective 

function. Dynamically, stiffer springs will have a higher lowest natural frequency, to 

optimize the design of a helical spring, one has to consider several aspects of the 

valve spring like kinematic (force as a function of displacement) and dynamic 

characteristic (natural frequency). The kinematics is usually specified by 

displacement and acceleration requirements of the cam. Therefore, by changing the 

spring parameters such as p(s), D(s), and d(s), one can design the stiffness 

characteristic to the desired specification. These basic design parameters are shown 

in Fig.2.1. In addition to those, the cross section and material properties of the wire 

have direct influence on the stiffness. The valve spring is usually the softest 

component with the lowest frequency in the valve train. Its influence on the overall 

dynamics of the system is significant and cannot be ignored in a numerical model. 

The dynamic response of the spring is substantially different from the static response 

due to the internal dynamics of the spring. The internal oscillations in the spring are 

commonly referred to as surge modes. The contact between the windings is 

responsible for a large portion of the non-linearity of a spring, since it reduces the 

number of active coils during spring compression. Another phenomenon in 

conjunction with this contact is called coil clash, which happens when external 

excitation generates waves in the spring with enough amplitudes for adjacent 

windings to touch. This causes undesired force responses and has negative impact 

on the durability of the spring [Lin, 1989].  

In Fig.2.1, helical springs can be described in a local coordinate along three 

directions, tangential, normal and binormal. The symbol t represents the tangential, 

‘n’ normal, and ‘b’ binormal. The torsion works on the b-n plane, and the curvature 

occurs on t-n or b-t plane [Greenwood, 1988; Kreyszig, 2006]. In this study, the 

dynamic equations are expressed in as basic parameters and directions as possible. 

Geometry and deformation of a helical spring can be completely described by 

curvature and torsion at any location of the helix. To describe a helix by using 

curvature and torsion, modern differential geometry started from Feret-Serret 



 

formula, then the expressions quickly g

of differential geometry, Lord Kelvin intuitively derived the curvature and torsion and 

expressed them in very simple formulas 

 

Torsion is the main factor 

springs and is expressed as

 <
Another expression related to the torsion

 

where, <� , 0! is initial torsion at the free height condition. Lin [1988] also pointed 

out that these simple curvature and torsion formulas are ac

spring radius remain constant. If the changes of spring radius and pitch are significant, 

then more complex formulas must be used to avoid large error.

 

Fig.2.1 The helix description 
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formula, then the expressions quickly get quite involved [Lin, 1988]. Before the dawn 

of differential geometry, Lord Kelvin intuitively derived the curvature and torsion and 

expressed them in very simple formulas which are still used commonly:   

;� , /! Q DV @��� , /!!�� , /!  

 to affect potential energy, and the deformation of helical 

as 

<� , /! Q cosW�� , /!X sin ��� , /!!�� , /!  

related to the torsion, rotation can be defined as 

Y=� , /!Y Q <� , /! Z <� , 0! 

is initial torsion at the free height condition. Lin [1988] also pointed 

out that these simple curvature and torsion formulas are accurate if the pitch and 

spring radius remain constant. If the changes of spring radius and pitch are significant, 

then more complex formulas must be used to avoid large error. 

 

he helix description and parameters of helical springs

Before the dawn 

of differential geometry, Lord Kelvin intuitively derived the curvature and torsion and 

which are still used commonly:    

(2.1)  

the deformation of helical 

(2.2)  

 

(2.3)  

is initial torsion at the free height condition. Lin [1988] also pointed 

curate if the pitch and 

spring radius remain constant. If the changes of spring radius and pitch are significant, 

of helical springs 
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2.2  Dynamic Equation 

Spring dynamic equations can be derived by force equilibrium or energy 

equilibrium. Wahl [1963] used force equilibrium in a spring element for obtaining the 

dynamic wave equation. This equation gives an accurate result. Also, Pisano and 

Freudenstein [1984] derived the dynamic wave equation using energy equilibrium, 

and offered a more accurate dynamic equation. For more accuracy, modified wave 

equations were derived by inserting a virtual internal force. The modified wave 

equation and the modified spring seat force equation are discussed below in detail. 

 

2.2.1 Wave Equation Using Force Terms 

The simplest wave equation is to have the second-order, linear relation derived 

by Newton’s 2
nd

 Law and solved by d’Almbert in 1707. 

 
Y@[Y/@ Q E@ Y@[Y @  (2.4)  

d’Almbert solved this problem successfully by a simple difference method. For 

spring dynamic applications, it has been derived in many technical papers [Love, 

1927; Johnson, 1972; Pisano and Freudenstein, 1984]. In Wahl’s textbook [1963], the 

wave equation with the damping term was derived by static force equilibrium, and its 

result can describe the effects of natural frequency and resonance. Force analysis in a 

valve spring is described as follows and shown in Fig.2.2. 

The force acting to accelerate the element is 

 
�8 Q \�@�  24 Y@[Y/@  

    

(2.5)  

The net force acting to accelerate the element: 

 �̂ Q \%�_8�@ Y@[Y @ �  (2.6)  

In addition, the damping force shall be considered as follows  

1. Internal hysteresis in the spring material 

2. Air damping 

3. Damping due to friction in the end turns 

4. Damping due to loss of energy in the supports 
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Therefore, the damping force could be expressed as: 

 �a Q D) Y[Y/ �  (2.7)  

Since 

�8 Q �̂ Z �a  

This leads to a dynamic wave equation with the damping term 

 
Y@[Y/@ b c 4D)\�@2d Y[Y/ Q c %�@2�@2d Y@[Y @  (2.8)  

Where,  e _6f
gahij is the damping term and e kah

@lhij is the wave speed term. 

 

Fig.2.2 Force analysis of an element of helical springs 

This damping term is a measure of the equivalent damping in the spring. For most 

cases, this term varies with many factors such as material, amplitude of motion, 

design of end turns, and rigidity of support. If the damping is zero here, it describes 

the longitudinal wave transmission for the prismatic bar. The damping term is 

usually determined by the experimental data and not easily determined by analytical 

method [Wahl, 1963]. As a matter of fact, Equation (2.8) is relatively accurate to 

describe the dynamic condition of valve springs with a constant pitch angle or a 

small pitch angle variation. This approximate method for calculating spring dynamics 

considers only torsion of the wire and ignores the effect of closed end coils. In reality, 

the coil-to-coil contact should be taken into consideration and it allows the end coils 
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to leave their stops, using force equilibrium only, we take the torsional deflection of 

the wire into consideration. In addition, for the better accuracy, the wave speed 

term was modified using energy equilibrium by Pisano and Freudenstein [1984]. 

 

2.2.2 Wave Equation Using Energy Terms 

The spring motion originates from the change in kinetic energy and potential 

energy, and can be deduced from the Hamilton’s principle. Potential energy is energy 

that is stored in an object. In the deformation of valve springs, it consists of torsional 

strain energy, first bending strain energy, and second bending strain energy. On the 

other hand, kinetic energy is energy due to motion composed of translational, radial, 

and rotary kinetic energy terms. During spring compression and release, series of 

energy conversion between potential energy and kinetic energy happen. As a result, 

the wave equation in spring applications can be derived using energy equilibrium [Lin, 

1987]. Let us discuss potential energy first. Torsion is the twisting of an object due to 

an applied torque. In circular sections, the resultant shearing stress is perpendicular 

to the radius. Bending characterizes the behavior of a slender structural element 

subjected to an external load applied perpendicularly to an axis of the element. In 

valve springs, that is, the first bending generates the deformation along the b axis, 

and the second bending produces that along the n axis. Three potential energy terms 

in terms of basic parameters are represented as 

 >? Q m 12 %&�Y=� , /!Y !@� o
p  (2.9)  

 >@ Q q ?@ '+�;� , /! Z ;� , 0!!@� op    (2.10)  

 >A Q m 12 '+�[))� , /!!@� o
p  (2.11)  

Along the t axis, the spring element produces torsional strain energy >?. In fact, this 

term is the largest among all the three potential energy terms and occupies over 

ninety percent during the spring compression. When the local curvature is changed, 

it generates first bending energy >@. It is much smaller in comparison with the 

torsional strain energy. Second bending energy >A results from the local change in 

pitch angle. The scale of this term is similar to the first bending energy term. The 

three kinetic energy terms are defined as follows 
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 B? Q m 12 +0�Y=� , /!Y/ !@� o
p  (2.12)  

 B@ Q m 12 1�Y�� , /!Y/ !@� o
p  (2.13)  

 BA Q m 12 1�Y[� , /!Y/ !@� o
p  (2.14)  

Among these, translational kinetic energy TA is the only energy term considered in 

most technical papers and research. T@ is the radial kinetic energy and T? is the 

rotary kinetic energy. By considering torsional energy, translational kinetic energy, 

and rotary kinetic energy, a modified wave equation was derived as 

Y@[Y/@ Q s %&
2�\�@�@4 b &!t Y@[Y @  

Any physical system always has the damping effect, hence by inserting one damping 

term into the above equation we have, 

 
Y@[Y/@ b L Y[Y/ Q s %&

2�\�@�@4 b &!t Y@[Y @  (2.15)  

Where, b is the viscous damping coefficient determined by the measurement. 

Eq. (2.15) can describe the spring with a constant pitch angle or a smaller pitch angle 

variation. A smaller pitch angle means that it is less than 15° or deflection per turn is 

less than D/4. For large deflections per turn, a deflection correction factor should be 

employed. In this condition, bending stresses cannot be ignored and needs to be 

considered. A stress correction factor �w was published to modify this problem by 

Wahl [1963].  

�w Q 4D Z 14D Z 4 b 0.615D  

The first term on the right side describes the bending term, and the second term is 

the shear stress factor. Eq. (2.8) ignored the bending effect, resulting in the variation. 

In fact, the calculated wave speed values in Eq. (2.15) are relatively close to those in 

Eq. (2.8), but offer more accurate results. That comparison would be shown in 

SECTION.2.2.3.3. 

In reality, valve springs always have the coil clash to affect spring performance 

and equation accuracy. For better accuracy, the extra clash force was considered in 
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the Eq. (2.15), and a more accurate equation Eq. (2.16) to approximate the real 

engine condition is derived. This more accurate nonlinear wave equation was derived 

by Lin and Pisano [1987]. 

 
Y@[Y/@ b L Y[Y/ b '+�∆;!@

2�\�@�@4 b &! Q s %&
2�\�@�@4 b &!t Y@[Y @  (2.16)  

 

2.2.3 A New Nonlinear Wave Equation 

This section describes another derived modified wave equation, helical springs 

with design variables involving variable pitch angle, variable coil diameter, and 

variable wire diameter in a polynomial expression. 

 

2.2.3.1  Constant Pitch Angle 

Eq. (2.8) derived by Wahl [1963] can describe the constant pitch spring or the 

smaller pitch angle variation. For most spring applications, it is accurate enough. In 

comparison of Eq. (2.8), Eq. (2.15) also offers similar numeric solutions. 

 

2.2.3.2  Variable Pitch Angle 

As discussed previously, helical springs with smaller pitch angle variation can be 

calculated by Eq. (2.8) or (2.15). In contrast, Eq. (2.16) offers a better fitting 

considering the extra coil clash, but it is not as simple as determining ∆; and J. As a 

result, a simpler equation needs to be derived. We describe how to make variable 

pitch springs first and then introduce a virtual internal force to derive that. 

Modifying the wave equation to handle nonlinear conditions has been a problem. 

The wave equation should be of simplest type in terms of basic design variables. In 

fact, a variable pitch spring can be made by the method in Fig 2.3, using heat 

treatment and external force that is applied at open end of the spring to compress or 

to elongate the spring. After quenching and tempering in a low temperature, original 

constant pitch angle springs were made to new variable pitch angle springs. 

Therefore, it is reasonable to imagine that there is a virtual internal force formed in 

this spring, which causes a permanent deformation, and presents a variable pitch 

angle [Chironis, 1961]. 
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Fig.2.3 How to make the multi-spring rate [Chironis, 1961] 

Spring potential energy is defined as 

 ' Q  12 ��@ (2.17)  

Where � Q  ka|
}l~� and � Q }�l~�ka|  

As helical springs are in a smaller pitch angle, substituting 3 � �\� into K and x, 

hence the simplified � and � are given by 

� Q \%�_8�@3  and � Q 8��@3\%�_  

And then from Eq. (2.17) we get: 

 ' Q 4��@3\%�_  (2.18)  

From the previous discussion and Fig.2.3, a virtual internal force considered is 

reasonable, so that each mass element along the spring helix was drawn and 

deformed, hence we have  

Internal force term = 

Y'Y5 Q 4�@3\%�_ Y�
2 \�@4 Y Q 16�@32\@%�� Y�Y Q 16�@32\@%�� \%�_8�@3 Y[Y Q 22\�@ Y[Y  

Where, 5 is mass of wire segment 

The spring height along the spring helix could be defined as 
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 [� ! Q �? A b �@ @ b �A b �_ (2.19)  

The curve in Eq. (2.19) is presented like Fig.4.1. When it is differentiated, its pitch 

angle along the spring helix can be defined as 

 �� ! Q Y[Y Q 3�? @ b 2�@ b �A (2.20)  

And the pitch angle as a function of arc length is shown in Fig.4.1. Substituting Eq. 

(2.20) into virtual internal force term, it is expressed as 

Y'Y5 Q 22\�@ �� ! 

Inserting the virtual internal force term into equation (2.16) we have 

 
Y@[Y/@ b 4D)\�@2 Y[Y/ b 22\�@ �� ! Q %&

2�\�@�@4 b &!
Y@[Y @  (2.21)  

 

2.2.3.3  Variable Coil Diameter 

According to a textbook [Nunney, 2007], variable pitch springs are usually limited 

to elevate its fundamental natural frequency, hence the spring with variable coil 

diameter was invented. This case has been used in the valve train system for a long 

time and originated from the Formula One racing. This type of spring is also called 

“conical Spring” or “beehive Spring”. Today, Formula One is using the valve train with 

the hydraulic control instead of conventional springs. For Grand Prix cars, where 

engine speeds of around 18,000 rpm are now being achieved, the motion of their 

valve is controlled not by steel but by pneumatic springs. Its idea is to use the valve 

stem plungers moving in chambers of compressed air to maintain the valves in 

contact with their cams. The conical springs have many advantages such as, elevating 

the fundamental natural frequency and an easy to manufacture. This type of spring 

with variable coil diameter along the spring helix is like Fig.5.4 and is defined as 

 �� ! Q �? A b �@ @ b �A b �_ and �� ! Q �� !/2 (2.22)  

In order to express the parameter J in Eq. (2.21) in a simpler expression, we need 

to realize the area moment of inertia and polar moment of inertia first. The area 

moment of inertia of a beams cross-sectional area measures the beams ability to 

resist bending. The larger the Moment of Inertia the less the beam will bend. The 

moment of inertia is a geometrical property of a beam and depends on the reference 
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axis. The smallest moment of inertia about any axis passes through the centroid. The 

following are the moment of inertia in a mathematical expression: 

+, Q  m [@�� 

+- Q m �@�� 

y: the distance from the x axis to an area element dA 

x: the distance from the y axis to an area element dA 

 

Fig.2.4 A schematic shows the moment of inertia 

 

The polar area moment Of inertia of a beams cross-sectional area measures the 

beams ability to resist torsion. The larger the polar moment of inertia the less the 

beam will twist. By the Perpendicular Axis Theorem, the polar moment of inertia in a 

mathematic expression is as follows: 

& Q  +, b +- Q m��@ b [@!�� 

For a circular section with diameter d 

+, Q +- Q \�_64  

& Q +, b +- Q \�_32  

 

Substituting this expression & into the wave speed parameter E in Eq. (2.21), the 

new wave speed parameter for this type of variable wire diameter is expressed as 

follows: 
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E Q � %�@2�8�@ b �@!�?/@
 

Besides, the coil radius �  in this wave speed could be expressed as � Q l@ , and we 

have 

 E Q � %�@2�2��� !�@ b �@!�?@
 (2.23)  

The new dynamic wave equation with basic parameters is derived as 

 

  Y@[Y/@ b 4D)\�@2 Y[Y/ b 22\�@ ��s! Q %���@2�2��� !�@ b �@! Y@[Y @  

    

(2.24)  

From the above discussion, we found that the polar moment of inertia is only related 

to wire diameter; as a result, the original wave speed term in Eq. (2.16) with the 

polar moment of inertia can be simplified in terms of variable wire diameter. As 

mentioned previously, the wave speed term in Eq. (2.8) is relatively approximate to 

that in Eq. (2.16). That comparison is shown as follows, and the variation is not over 

one percent. From this result, we can understand that torsion occupies over 95 

percent of all strain energy. As the spring is in a small pitch angle variation, Eq. (2.8) is 

enough for calculating the dynamic conditions. 

E in eq. �2.8! Q c %�@2�@2d?/@
 

E in eq. �2.16! Q s %&
2�\�@�@4 b &!t

?/@
Q � %�@2�2��� !�@ b �@!�?/@

 

  

 

2.2.3.4  Variable Wire Diameter 

Lin’s technical paper [1993] studied a new type of spring with variable wire 

diameter and its features. In comparison with conventional springs, it offers a 

relatively flexible design – variable wire diameter. The characteristic in this spring is 

that the weight at each element is different, similar to that of conical spring. In 

Optimization chapter, we can find this type of spring can provide the best 
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performance than variable pitch springs, even conical springs, but it has a serious 

problem. The endured stress is reduced largely as the wire diameter is smaller; when 

designing this spring, we need to take care of this problem. The wire diameter along 

the spring helix is like Fig.5.6 and is defined as 

 �� ! Q �? A b �@ @ b �A b �_ (2.25)  

The wire diameter term in Eq. (2.24) can be substituted by Eq. (2.25) and the new 

expression with design variables along the spring helix can be defined: 

 
�h-�Hh b _6f

g�a�9!�hi �-�H b @ig�a�9!�h �� ! Q k�a�9!�h
i�@�l�9!�h��a�9!�h! �h-�9h   (2.26)  

if the coil diameter is constant, we can define  

��?, �@, �A, �_� Q �0, 0, 0, �� 

If the pitch angle is constant, we can define 

��?, �@, �A, �_� Q �0, 0, 0, �� 

Eq. (2.26) can express any type of springs no matter it is variable pitch, variable coil 

diameter, variable wire diameter, or the combination of these variable designs. For 

the combination type, it is discussed below. 

 

2.2.3.5  Variable Pitch Angle, Wire Diameter, and Coil Diameter 

Eq. (2.26) can describe springs with variable pitch angle, variable coil diameter, 

and variable wire diameter. As the natural frequency at each element along the 

spring helix is completely different, it can offer the best performance due to its 

extreme flexible design. In Optimization chapter, we will verify that. For helical 

springs with a constant pitch angle, a constant coil diameter, and a constant wire 

diameter, equation (2.26) can also be used to do the computation. Coefficients in �� ! needs to be defined as follows: 

��?, �@, �A, �_� Q �0, 0, 0, �� 

As the wire diameter is constant, coefficients in �� ! need to be defined as follows: 

��?, �@, �A, �_� Q �0, 0, 0, �� 

As the coil diameter is constant, coefficients in �� ! need to be defined as follows: 

��?, �@, �A, �_� Q �0, 0, 0, �� 

Later in Optimization chapter, we have Eq. (2.26) to run optimization and the 
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simulation with different designs. 

 

2.2.4 Spring Seat Force, Impact, and Collision 

During spring compression and release, mainly twist and bending effects are 

shown. The relation between them and force was derived as [Wahl, 1963] 

 � Q  k�� cos��! ∆< Z ��� sin ��! ∆;   (2.27)  

Eq. (2.27) takes into account the effect of the change in curvature and in torsion. In 

fact, the change in torsion is very large during spring compression, so it is very easy 

to predict the spring seat force. As discussed previously, Eq. (2.8) cannot describe a 

larger pitch angle variation due to the ignored bending effect [Wahl, 1963]. As a 

result, Eq. (2.27) was derived to describe a larger pitch variation by considering the 

bending term. For the more accurate result, a better fitting equation is sought by Lin 

[1987]. He used the Hamilton’s principle to insert another bending energy term >A, 

to fit more accurate results. 

 � Q  %&� cos��! ∆< Z  '+� sin ��! ∆; b YY[ �12 '+�I;!@!  (2.28)  

The final term on the right hand side originates from the change in curvature. 

However, it’s very difficult to solve directly and often needs Fourier series, Finite 

Difference Method or Finite Element Method for getting the numeric values. In 

Simulation chapter, we will use MATLAB to demonstrate that with Finite Difference 

Method – Crank-Nicholson Method. 

In the experiment, several interesting things were observed. For example, a 

sudden decrease of force happened when the cam finished the rise (corresponding 

to maximum spring compression). The faster the camshaft the greater the dip of the 

spring seat force at maximum compression. For an intuitive explanation of this 

phenomenon, consider sitting in an accelerating bus. When the bus accelerates 

suddenly, the passengers feel the inertia force to pushing back. By contrast, when it 

suddenly stops, the passenger will feel the force pushing forward. That relation is 

shown in Fig 2.5.  
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Fig.2.5 Impact of helical springs [Chironis, 1961] 

This figure shows how the helical spring works in the valve train. In the stage 1, 

an applied force F acts on the top end, and a spring seat force is generated at the 

bottom end. When it reaches stage 2, the spring seat force reaches the maximum. 

The process from the stage 2 to stage 3 is the most important one. When the spring 

just leaves the stage 2 to stage 3, there is a fictitious force upward. In fact, the 

process between stage 1 to 2 and stage 2 to 3 is similar, but in opposite direction, 

that can be expressed as 

� Q  Z5 ���/  

Where, M is mass of wire segment, 
a�aH  is the instant acceleration. Hence Eq. (2.28) is 

modified as 

 � Q  k�� cos��! ∆< Z ��� sin��! ∆; b ��- �?@ '+�I;!@� Z �a�aH   (2.29)  

For the phenomenon, the faster the camshaft the greater the peak of spring 

seat force, it is seen in Fig.2.7, and can also be explained by a fictitious force. Besides, 

another phenomenon sometimes occurs in the spring, that is, coil clash, especially at 

high speeds. In fact, the idea for coil clash is similar as the impulse idea, mentioned 

above. The only difference is its direction due to collision. In order to understand that, 

it is necessary to understand displacement, velocity, and acceleration resulting from 

cam profile. In reality, the valve spring often cannot follow the cam profile at high 

speeds. That is this phenomenon to cause excited surge (referring to SECTION.2.4.2). 

The cam profile is shown in Simulation chapter (referring to Fig3.3). Cam velocity and 

acceleration are shown in Fig.2.6 and Fig.2.7. The two figures present the standard 

automotive characteristic cam curves [Rothbart, 2004]. The spring collision is 

presented in Fig.2.8. The upper spring segment has mass A, and the lower one has 

mass B. The upper A has higher velocity than the lower one due to its larger 
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deflection. The initial velocity on mass A is Va, and on mass B is Vb; When mass A 

collides with mass B, their new velocities could be obtained as [Greenwood, 1988] 

�E) Q 18 Z K1^18 b 1^ �E b �1 b K!1^18 b 1^ �L 

and 

�L) Q �1 b K!1818 b 1^ �E b �1^ Z K18!18 b 1^ �L 

If we assume the two mass segments are the same and it’s a perfectly elastic impact 

as e = 1, the expression �L) above can be reduced to 

�L) Q 12 �E b 12 �L b K2 �E Z K2 �L Q �E 

and 

�E) Q �L 

After the collision, their velocities are exchanged and head in the same direction. The 

initial velocity on mass B is Vb, but its new velocity is on mass A is Va. The velocity 

difference is 

∆� Q �E Z �L 

Substituting impact with ∆� term in Eq. (2.29), the new spring force equation is 

modified as 

� Q 

  k�� cos��! ∆< Z  ��� sin ��! ∆; ��- �?@ '+�I;!@� Z 5 a�aH Z56789: ∆�∆H   (2.30)  

We need to consider one thing, that the last two terms on the right hand side of 

equation (2.30) are different though both they are inertia force in nature, as one is 

inertia impulse, and another is collided impulse. Eq. (2.30) offered a better curve 

approximation for computing spring force in dynamic loading situation for valve 

springs. 
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Fig.2.6 Cam velocity 

 

 

Fig.2.7 Cam acceleration 

 

 

Fig.2.8 Two spring segments collides on each other  
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2.3  Numerical Solutions 

2.3.1 Finite Difference Method 

Because of the importance of the wave equation to a wide variety of fields, there 

are many analytical solutions of that equation for a wide variety of initial and 

boundary conditions. However, nonlinear partial differential equations are difficult to 

solve by analytical methods, or where the analytical solution is even more difficult to 

implement than a suitably accurate numerical solution. Here we will discuss one 

particular method for FD, as FEM, is commonly considered a numeric but not 

analytical solution of partial differential equations called the finite difference method. 

The finite difference method begins with the discretization of space and time such 

that there is an integer number of points in space and an integer number of times at 

which we calculate the field variables, in this case just the displacement. The 

resulting approximation is shown schematically in the simulation chapter. For 

simplicity here we will assume equal spacing of the points s in one dimension with 

intervals of size �, and equal spacing of the time steps / at intervals of size ;. This 

simplifies the system considerably, since instead of tracking a smooth function at an 

infinite number of points, one just deals with a finite number of displacement values 

at a finite number of locations and times. Basically, there are two types of finite 

difference to express a continuous derivative: forward difference method and 

difference method. The third type is a combination of these two, that is the central 

difference for derivative expression. The following is the brief mathematical 

description for the step size of three finite difference methods: 

Forward Difference: 

∆:�� ! Q �� b �! Z �� ! 

Backward Difference: 

�:�� ! Q �� ! Z �� Z �! 

Central Difference: 

I:�� ! Q �� b 12 �! Z �� Z 12 �! 

Where �: the space step shown in Fig.2.9 

Then, for solving Partial Differential Equations numerically, there are explicit 

method—solving one variable for the next time step in one equation, implicit 



 

method-solving all unknowns in the time step by solving c

equations. According to the 

Crank–Nicolson method is 

stable solving partial differential 

of approximation � to check the stability of many methods

Element Method and Finite Difference Method� Q 0 -> Forward Difference scheme 

� Q ?@ -> Crank-Nicolson scheme 

� Q @A -> Galerkin method 

� Q 1 -> Backward difference method 

For accuracy and stability, Crank

implemented to compute Eq. (2.2

contain (decaying) spurious oscillations if the ratio of time step to the square of 

space step is large (typically larger than 1/2)

 

2.3.1.1  Explicit Finite Difference Method

Using an explicit difference at time 

position  � shown in Fig.2.

index is �, and the space index is

equations in Finite Difference Method, only basic parameters are shown below.

Fig

Substituting the space and time derivatives (referring to Fig.2.

have the recurrence equation

22 

solving all unknowns in the time step by solving coupled simultaneous 

the technical paper [Crank, John and Phyllis Nicolson

n method is second order implicit method and it is unconditionally

partial differential equations. In addition, Reddy [1984] raised a family 

to check the stability of many methods, included in Finite 

Element Method and Finite Difference Method. 

> Forward Difference scheme -> conditionally stable 

Nicolson scheme -> unconditionally stable 

> Galerkin method -> unconditionally stable 

ackward difference method -> conditionally stable 

For accuracy and stability, Crank-Nicolson Finite Difference method 

to compute Eq. (2.26). However, the approximate solutions can still 

ious oscillations if the ratio of time step to the square of 

space step is large (typically larger than 1/2) [Thomson, 1995]. 

Explicit Finite Difference Method 

difference at time /G and making a space derivative at 

2.9. The time step is ; and the space step is 
, and the space index is $. For the convenience of expressing simple 

equations in Finite Difference Method, only basic parameters are shown below.

 

ig.2.9 The grid on the space and time 

the space and time derivatives (referring to Fig.2.10) into Eq. (2.2

the recurrence equation as 

oupled simultaneous 

and Phyllis Nicolson, 1947], 

unconditionally 

raised a family 

, included in Finite 

method is 

However, the approximate solutions can still 

ious oscillations if the ratio of time step to the square of 

a space derivative at  �. The time 

convenience of expressing simple 

equations in Finite Difference Method, only basic parameters are shown below. 

) into Eq. (2.26), we 
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[�,G�? Z 2[�,G b [�,G�?;@ b L [�,G�? Z [�,G�?2; b D Q E@ [��?,G Z 2[�,G b [��?,G�@  

Where,  

E Q � %��� !�@2�2��� !�@ b �@!�?/@
 

L Q 4D)\�@2 

D Q 22\�@ �� ! 

 

Fig.2.10 The explicit method stencil 

It is seen that the above finite difference expression is necessary to distinguish 

whether terms are known or unknown parameters. From Fig.2.10 we find only one 

unknown [�,G�?; as a result, it is easy to solve that solution step by step till the 

boundary condition is satisfied. Hence, this method is fast to obtain the solution, and 

it uses a forward difference technique. Exchange parameters on both sides, the 

expression can be written as 

 [�,G�? Q ;?W[��?,G b [��?,GX b ;@[�,G�? b ;A[�,G b ;_ (2.31)  

Where, 

;? Q �E;� �@
�1 b L;2 � 

;@ Q Z �1 Z L;2 �
�1 b L;2 � 



24 

 

;A QQ �2 Z 2 �E;� �@�
�1 b L;2 �  

;_ Q Z D;@
�1 b L;2 � 

with the initial condition 

 y�s, 0! Q f�s! and  ¡�¢,p! £ Q g�s! at time t = 0 

and the boundary condition 

 y�0, t! Q 0 at s Q 0 and y�3, t! Q  h�t! at s Q 3 

However, the explicit method is known to be numerically unstable and its error is 

proportional to the time step and the square of the space step, the stability factor p 

is very important and is not always greater than one, to guarantee it is stable to 

process the explicit differential method defined as [Thomson, 1993] 

 � Q E ;� ¤ 1 (2.32)  

where p is the stability factor 

 

2.3.1.2  Implicit Finite Difference Method 

The difference between the implicit method and the explicit method is that the 

implicit method needs to solve a set of equations one time. The process is similar as 

the previous case, but just one difference is that it has two unknowns [��?,G�? and [�,G�?, in a row. In addition, each unknown value is function of known 

values of the subsequent period – backward procedure. Substituting the space and 

time derivatives (referring to Fig.2.11) into Eq. (2.26), the expression is written as 

-¥,¦§¨�@-¥,¦�-¥,¦©¨ªh b L -¥,¦§¨�-¥,¦©¨@ª b D Q E@ -¥§¨,¦§¨�@-¥,¦§¨�-¥©¨,¦§¨:h   
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Fig.2.11 The implicit method stencil 

Exchange the terms on both sides, it can be expressed as 

 y«�?,¬�? Q k?y«,¬�? b ;@[�,G�? b ;A[�,G Z [��?,G�? b ;_ (2.33)  

Where, 

;? Q 1 b L;2 b �E;� �@

�E;� �@  

;@ Q �1 Z L;2 �
�E;� �@  

;A Q Z 2
�E;� �@ 

;_ Q D;@
�E;� �@ 

 

with the initial condition 

 y�s, 0! Q f�s! and  ¡�¢,p! £ Q g�s! at time t = 0 

and the boundary condition 

 y�0, t! Q 0 at s Q 0 and y�3, t! Q  h�t! at s Q 3 
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2.3.1.3  Crank-Nicholson Difference Method 

The well-known Crank-Nicholson implicit method for solving the modified 

wave equation involves taking the average of the right-hand side between the 

beginning and end of the time-step (referring to Fig.2.12). In other words, an average 

of the explicit method and implicit method is written as  

-¥,¦§¨�@-¥,¦�-¥,¦©¨ªh b L -¥,¦§¨�-¥,¦©¨@ª b D Q ?@ E@�-¥§¨,¦§¨�@-¥,¦§¨�-¥©¨,¦§¨:h b
-¥§¨,¦�@-¥,¦�-¥©¨,¦:h !  

 

Fig.2.12 The Crank-Nicholson method stencil 

The unknown in this case is the same as in the case of implicit finite difference 

method, that is,  [��?,G�? and [�,G�?. It can be rewritten as 

y«�?,¬�? Q ;?[�,G�? b ;@[�,G�? b ;A[�,G Z W[��?,G�? b [��?,G b [��?,GX b ;_ 

Where 

;? Q 1 b L;2 b �L;� �@
12 �E;� �@  

;@ Q 1 Z L;212 �E;� �@ 

;A Q 2 Z 4�@�E;!@ 

;_ Q D;@
12 �E;� �@ 

 

with the initial condition 
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 y�s, 0! Q f�s! and  ¡�¢,p! £ Q g�s! at the time t = 0 

and the boundary condition 

 y�0, t! Q 0 at s Q 0 and y�3, t! Q  h�t! at s Q 3 

In order to compute the solution more conveniently, we simplify this expression one 

more step,  

 [��?,G�? Q ;?[�,G�? Z [��?,G�? b ;­ (2.34)  

where ;­ Q ;@[�,G�? b ;A[�,G Z W[��?,G b [��?,GX b ;_ 

The above equation at the time step t¬�?can be expressed as a matrix  

®̄
¯̄
°1 Z;? 10   1 Z;?

  ±    0  ±    0²0   ± 0       ³     ±0  0      ±
±1 ²0Z;? 1 µ́µ

µ¶
®̄
¯̄
° [?,G�?[@,G�?[A,G�?²[0�?,G�?µ́µµ

¶ Q
®̄
¯̄̄
°̄ ;­�?!

;­�@!
;­�A!²;­�0�?!µ́µµ

µµ
¶
 

And we have 

����·� Q ��� 

Using the inverse of the matrix K, the matrix Y can be obtained as 

 �·� Q ����?��� (2.35)  

Where, ��� Q
®̄
¯̄̄
°̄ ;­�?!

;­�@!
;­�A!²;­�0�?!µ́µµ

µµ
¶

, �·� Q
®̄
¯̄
° [?,G�?[@,G�?[A,G�?²[0�?,G�?µ́µµ

¶  and ��� Q
®̄
¯̄
°1 Z;? 10    1 Z;?

  ±    0  ±    0²0   ±   0       ³     ±0   0      ±
±1 ²0Z;? 1 µ́µ

µ¶
 

By the matrix, any displacement could be obtained fast and easy. We need to take 

care that [0�?,G�? should be satisfied with the boundary condition at  Q 3.  
Another problem in this computation is the moving boundary problem. If both 

end of the valve spring can follow the cam profile and be in contact with the top and 

bottom plates, no moving boundary problem exists. In reality, in a valve train system 

often spring jump, bounce or coil collision occurs, so both end of valve spring doesn’t   

completely follows the cam profile within two plates. Due to the moving boundary, 
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each computational node in Crank-Nicholson Finite Difference Method should have 

tolerable error to approximate the real condition. We could add two extra derivative 

boundary conditions to check the pitch angle of each element. Each element along 

the spring helix should have a minimum pitch angle, and it is impossible to have the 

pitch angle on upper elements is lower than the pitch angle on lower elements; as a 

result, by Eq. (2.20) the two moving boundary conditions can be defined as 

�� ! Q ����! Q �?���!A b �@���!@ b �A���! b �_ ¸ ��,0FG 

Where � is space index in the grid and � is space step 

In MATLAB, there are two types of computational methods - symbolic and 

numeric expression. The symbolic expression is usually very powerful and easy-using, 

but provides a slower calculation. For Crank-Nicolson method, it takes almost 2.5 

hours to obtain the solution in a symbolic expression, but only takes 5 min in numeric 

expression, the matrix expression in Eq. (2.27).  

 

2.3.2 Fourier Series 

There are other methods such as Fourier Series, that is, series solution of PDE.  

Such solution is usually regarded as close form solution or analytical solution. In fact, 

this method is very slow in comparison with Finite Difference Method. By the 

method of separating variables, setting y�s, t! Q f�s!g�t!, we obtain two ODEs, one 

for f(s), and the other one for g(t). Next step is to use the boundary condition to 

determine the solution. Finally, using Fourier series by satisfying the initial condition 

and boundary condition, a Fourier series representation is expressed as [Kreyszig, 

2006] 

y�s, t! Q ¹ e�º@ £�a¬ cos�wt! b b¬sin �wt!»
¬¼? !sin �nπl s! 

However, it takes much more time to cumulate every term and not very efficient to 

use practically. Hence, this method is not a good way to build the model. 

 

2.3.3 Finite Element Method 

Since FEM is a direct numerical solution, it is the main method to be 

implemented in most commercial FEA software. We used FEA software (ABAQUS) in 

this thesis. The continuum dynamics is used to describe the elasto-plasticity 

dynamics. It recognizes the object with two viewpoints. One is dynamic and the 

other is geometrical viewpoint. When element stiffness matrix is given, the solution 
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will be obtained through the following process. By combining the mass matrix and 

the stiffness matrix at each element to form a global matrix, the computational 

speed is dependent on the chosen mesh seeds [Shimoseki, 2003]. 

1. the construction of global stiffness matrix 

2. the provision of the boundary condition 

3. the solution of the simultaneous equation 

In Optimization chapter, in order to check if those optimal parameters are 

accurate, ABAQUS-MATLAB is demonstrated to compare them.  

 

2.4  Evaluation of Dynamic Performance  

2.4.1  Fast Fourier Transform (FFT) 

Surging, vibration and impact effects play very important roles in valve train 

applications. At high speeds, the resonance may occur and cause some phenomenon 

such as valve float and surging at a certain high frequency. The natural frequency of 

springs depends on the stiffness and mass, so avoiding the resonance has been an 

important issue in engine design. In the modern technology, there are many 

methods to avoid this phenomenon, such as using conical spring or adding the 

friction surface by double springs or dampers [Nunney, 2007] 

For determining the fundamental natural frequency, Fast Fourier Transform (FFT) 

has been used to evaluate spring performance for a long time. The ideal power 

spectral density in valve springs should be as small as possible and has a larger 

fundamental natural frequency. In Optimization chapter, this power spectral density 

is taken as the objective function to process with other constraints such as force 

constraint and other constraints. In any linear system, there is a direct linear 

relationship between the input and the output represented in Fig.2.13. The input in 

FFT should be force or displacement, and the output is the power spectrum. 

 

Fig.2.13 The system transformation for the natural frequency 
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This input-output relationship in terms of the frequency-response function can 

be written as [Thomson, 1993] 

[�/! Q ½�O!�pKFwH 

where �pKFwH is a harmonic function 

A Fast Fourier Transform (FFT) is a very efficient algorithm to compute the 

Discrete Fourier Transform (DFT); the only difference between both is that FFT is 

much faster. In addition, FFT provides a good evaluation for the power spectrum as 

well. In optimization, we would use that as the objective function to obtain the 

lowest power spectral density. 

The valve-lift curve [ Q ��/! is assumed to consist of a large number of 

sinusoidal and cosine terms [Thomson, 1993] 

��/! Q 

 
Ep b E? DV �O/! b ± E0 DV �1O/! b 

                L?sin �O/! b ± b L0 ¾$ �1O/! 
(2.36)  

where  ��/!: the valve Z lift curve E0 E$� L0: the coef�icients of Fourier Series 

O: fundamental frequency Q 2\<  

1: number of harmonics <: periodic motion of period 

For a continuous system, the coefficients a¿ and b¿ are determined as follows 

 

E0 Q 2< m ��/!DV �1O/!�/À/@
�À/@  

L0 Q 2< m ��/! ¾$�1O/!�/À/@
�À/@  

(2.37)  

and Á0 is the amplitudes of these harmonics used to evaluate frequency 

performance. Another symbol Â0 is phase, and are defined as 

|C¿| Q Åa¿@ b b¿@h
 

φ¿ Q tan�?�b¿a¿! 

If this system is discrete, it is necessary to use other expressions to do the 
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computation. Fourier series can be represented in terms of the exponential function. 

Eq. (2.36) can be simplified by the sum and difference formulas [Kreyszig, 2006] as 

E0 cos�1O/! b L0 sin�1O/! Q D0sin �1O/ b Â0! 

Its expression only in terms of sinusoidal function is written as [Wahl, 1963] 

��/! Q Dp b D? sin�O/ b Â?! b D@ sin�2O/ b Â@! b ± b D0sin �1O/ b Â0! 

Where 

Dp Q 12 Ep 

D0 Q 12 �E0 Z ¾L0! 

D0�D?~D0!: the amplitudes of these harmonics divided by two Â0�Â?~Â0!: phase 

And the amplitudes on these harmonics are usually plotted as the absolute values. 

Besides, we can use the exponential function to express the triangular functions. 

Substituting 

DV �1O/! Q 12 �KF0wH b K�F0wH! 

 ¾$�1O/! Q Z12 ¾�KF0wH Z K�F0wH! 

into Eq. (2.36), we get 

��/! Q 

Ep2 b ¹ È12 �E0 Z ¾L0!KF0wH b 12 �E0 b ¾L0!K�F0wHÉ»
G¼? Q 

Dp b ¹�D0KF0wH b D0Ê
»

G¼? K�F0wH� Q  ¹ Á0KF0wH»
G¼�»  

Assuming there are N samples in this system, the amplitude is 

 
Á0 Q 1� ¹ ��/!K�F0wH��?

G¼p Q E0 Z ¾L0 

|Á0| Q ËE0@ b L0@h
 

(2.38)  
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Here we need to consider the figure in Eq. (2.38) is like Fig.4.8, where n is number of 

harmonics in X axis and ÁF is the amplitude in Y axis. The amplitudes on these 

higher harmonics decrease as the increasing harmonic number. As a result, the 

amplitude on the 1
st

 harmonic number in Fig.4.8 is largest and then gradually 

decreases till it approximates the excited number of harmonics and then keeps 

decreasing [Wahl, 1963]. The numeric solution in the implemented finite difference 

method is discrete. In Optimization chapter, Eq. (2.26), (2.30), (2.34) and (2.38) with 

SQP technique are used to demonstrate helical spring optimization. 

 

2.4.2  Natural Frequency 

The earliest natural frequency phenomenon was discovered by Galileo Galilei 

with pendulums and musical strings in 1602. Historically, the vibration problem was 

studied by Jean le Rond d'Alembert, Leonhard Euler, Daniel Bernoulli, and 

Joseph-Louis Lagrange. The natural frequency, electric field intensity and polarity 

were also measured by Hertz in 1887. As a result, the study on vibrations made great 

progress. 

If a wave is created by a disturbance at one end of a swimming pool, this wave 

will travel down the length of the pool, be reflected back at the far end, and 

continue in the back-and-forth motion until it is finally damped out. The same effect 

occurs in helical springs, and it is called spring surge. If one end of a compression 

spring is held against a flat surface and the other end is disturbed, a stress wave is 

created that travels back and forth from one end to the other exactly like the 

swimming-pool wave. The automotive valve spring surge, in the worst possible 

situation, is that the spring actually jumps out of the contact with the end plates. 

When helical springs are used in applications requiring a rapid reciprocating motion, 

the designer must be certain that the physical dimensions of the spring are not such 

as to possess natural frequency close to the frequency of the applied force. 

Otherwise resonance may occur, resulting in the surge of stresses that can have 

many times of the stress for static loading. Another interesting thing is the phase 

between the compressed valve spring and the cam profile. In general, the phase of 

the compressed valve spring can follow the phase of the cam profile as the cam 

rotates at low speeds. By contrast, its phase on the excited harmonic number 

presents chaos as the cam rotates at high speeds (Referring to Fig.4.19 and 

SECTION.3.2.2). The earliest natural frequency is defined for lumped parameter 

system as [Galileo Galilei, 1602] 
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 � Q $2 Ì ;1  (2.39)  

Another method to calculate that is that the fundamental frequency of a wave in a 

string with either both ends open or both ends closed can be found using the 

following equation [Lin, 1987; Lain G. Main, 1988]: 

 � Q $E23 , $ Q 1,2, … $ (2.40)  

It can be expressed in terms of design variables as [SMI, 2002] 

 � Q $�2\�@� Ì %22 � \$�2�3 Ì %22 (2.41)  

where n = 1 is the fundamental natural frequency 

2.4.3 Special Designs to Reduce Resonance 

To avoid resonance in any system containing a spring has been an important 

subject for study and research. Various additional measures may be taken to 

minimize surge. [Chironis, 1961; Wahl, 1963; Paranjpe, 1990; Kurisu, 1991; Nunney, 

2007] 

� Double springs – they are arranged concentrically about the valve stem, 

each having a different natural frequency of vibration. Furthermore, the 

outer diameter of the inner spring may be made equal to the inner 

diameter of the outer spring, so that rubbing occurs between them. This 

rubbing contact promotes a friction damping effect, which suppresses surge 

by dissipating its energy as heat. The incidental advantages of using double 

springs include greater spring stability and less risk of engine damage in the 

event of a spring breaking.  

� The valve spring with valve fingers – they are located from the stationary 

ends of the valve spring and press inwards to make rubbing contact with its 

centre coils. Alternatively, an internal sleeve may be installed within the 

spring to reach the similar effect. 

� Conical springs – this type is also commonly used to suppress surge. Springs 

of this type are either close coiled at their stationary end or, less commonly, 

utilize a volute form with the smallest diameter and hence stiffens coil at 
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the moving end. The effect is to vary the number of active coils in the spring 

during the valve lift, which produces change in its natural frequency of 

vibration so that resonance is avoided. In general, space limitations are the 

biggest problem in this type due to different coil diameters on both ends. 

� Variable wire diameter springs – the advantage is, it has original spring 

height, and no space limitations. However, it is very difficult to manufacture 

and the stress may be elevated over the original design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

Chapter 3 – Experimental Setup and Description 

3.1  Motivation and Goal 

Valve spring motion was investigated with computer simulation technique in 

Simulation chapter (Chapter 4). The modified wave equation was found accurately 

predicting the valve train behavior. It was identified that a few lower frequency 

harmonic components from the cam profile have significant effects on exciting the 

first one or two lowest natural frequencies of the valve spring. The coil clash actually 

was helping to decrease the excited resonance. These findings allowed the 

development of a new valve spring form that can improve the performance of the 

valve train at high speed loading. The derived equations and procedures in 

Simulation chapter can be used by research investigators in understanding system 

response, in developing and evaluating predictive dynamic models. In this chapter, 

the experimental apparatus and setup are described. The accuracy of any math 

model must be verified by physical model. Only if the numerical solutions agree and 

describe the intricate dynamic behaviors from the physical experiments, then we can 

say the math modeling is accurate and successful. . 

 

3.2  Software 

The data acquisition software package, WinDAQ (Appendix 5), offers a real time 

display and disk streaming for the Windows environment. This real time display can 

operate in a smooth scroll or triggered sweep mode of operation, and can be scaled 

into any unit of measurement. Event markers with comments allow us to annotate 

our data acquisition session with descriptive information as we are recording to disk. 

The file can be saved in an EXCEL file format. MATLAB was used in doing the 

frequency analysis and comparing with the simulation results via generated EXCEL 

files by WinDAQ. 

 

3.3  Experimental Apparatus 

The experimental apparatus included a vehicle engine (1987 GM & Isuzu 

four-cylinder with a displacement of 1.5L), an electrically powered AC motor to drive 

the valve train, and instrumentation fitted to the valve train system. All moving 

components not required for the operation of the valve train were removed from the 

engine, hence no gas forces, combustion occurred in the engine. The electrically 

driven cam shaft and valve train is illustrated in Fig.3.1.  
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Fig.3.1 The components and setup of experiment 

 

Motor oil from an external pump was fed into the engine block via the oil tubes 

to lubricate the valve train. The function of the pressure gauge is to make sure that 

the oil in the engine block was at normal levels and at the regular oil pressure of 

around 40 psi. The pulley was marked to measure the camshaft speed with a photo 

sensor (Appendix 4.3). The following is a list of the major parts in the apparatus: 

� GM&ISUZU Engine (Appendix 4.1) 

� Dayton Compressor Duty Motor (Appendix 4.2) 

� Oil Pump 

� Oil Storage 

� Pressure Gauge 

� Cable (Appendix 4.9) 

� Oil Tube 

� Pulley (Appendix 4.8) 

� V-Belt (Appendix 4.7) 

� Motor Oil 

� Cen-Tech Photo Sensor Tachometer (Appendix 4.3) 

� KISTLER Force Transducer (Appendix 4.4) 

� KISTLER Charge Amplifier (Appendix 4.5) 

� DATAQ acquisition (Appendix 4.6) 

 

3.4  Measurement 

A piezoelectric force transducer installed under the valve spring seat recorded 

the spring force applied to the engine block, as illustrated in Fig.3.2. A data 
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acquisition system was utilized to collect the dynamic data, as illustrated in Fig.3.3.  

 

 

Fig.3.2 The transducer under the spring seat 

 

 

Fig.3.3 The flow chart of signal for data acquisition 

 

Quartz (piezoelectric element) was used in this transducer, especially its ultra 
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high insulation resistance, static measurement are better with quartz than with any 

other deformation induced force sensing material. The transducer in this experiment 

is load washer type. 

When the valve spring is compressed, the force transducer under the spring seat 

induces a force downward as shown in Fig.3.4. The force transducer generates 

electric charge. Then the charge was converted into voltage in a charge amplifier. The 

simplified charge amplifier model is shown in Fig.3.5. It uses the inverting voltage 

amplifier with a MOSFET or JFET as its input to form the high resistance. The output 

voltage in this circuit can be written as [Kistler, 1989] 

 

 
�p Q ZÎÁ�

1
1 b 1� �ÁH b Á� b Á6Á� � 

(3.1)  

where ÁH: transducer capacitance Á6: cable capacitance Á�: range�feedback! capacitor ÏH: time constant resistor ÏF: insulation resistance of input circuit Î: charge generated by the transducer�input charge! �p: output voltage 

 

 

Fig.3.4 Direct Force Measurement [Kistler, 1989] 
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Fig.3.5 Simplified charge amplifier model [Bishop, 2008] 

 

Because of the high open loop gain, Eq. (3.1) is reduced to the simplified type by 

ignoring the capacitance terms, we have 

 �p Q ZÎÁ�  (3.2)  

From Appendix 4.5, Specifications of the Charge Amplifier, the range capacitor  

can be found .The maximal force, F¿ÐÑ is 6000N after the unit conversion. The 

relation of force and voltage can be obtained using the simple ratio comparison 

[Bishop, 2008]. 

 

 Î08, Q 5000�Á ¾$ Ò 10�  Ó    �08, Q 6000� (3.3)  

 Î Q  �pÁ� �Á ¾$ Ò 8� Ó   � Q ? � (3.4)  

The gain of charge amplifier �6 in different voltage range is different, so we have 

 Î Q  �pÁ��6ÏÕ �Á ¾$ Ò 10� Ó   � Q ? � (3.5)  

Comparing (3.3) and (3.5), this leads to the relation of force and voltage. 

 � Q �pÁ��6ÏÕÎ08, �08,  (3.6)  

where �p: output voltage 
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Á�: range capacitor �6: the gain of charge ampli�ier ÏÕ: the ratio of the full voltage in the acquisiton and the standard full voltage Î08,: the maximal charge in standard full voltage �08,: the maximal force in standard full voltage 

Since parameters in Appendix 4.4 to 4.6, this leads to Eq. (3.7) 

 ��/! Q 103.68�p�/!�Newton! (3.7)  

Experimental data ��/! at different speeds are presented in Appendix 3.2. 

Many important factors can affect the experimental accuracy. One of them is 

the sample rate in the acquisition. The faster the acquisition the greater the accuracy. 

The maximal sample rate in this DATAQ Acquisition is 14400 Hertz. Number of Data 

points in one cycle at different speeds is expressed as Eq. (3.8). Data points at 1368 

rpm are 632 in one cycle, and those at 2165 rpm are 399. They are presented in 

Table.3.1. 

 Data points Q �sample rate! Ø 60�  KDmin!camshaft speed�rpm! (3.8)  

 

Table 3.1 Numbers of data points read at different camshaft speeds 

Camshaft Speed(rpm) Data Points one cycle 

1368 632 

2165 399 

 

3.5  Comparison Group 

There are 4 groups of data taken in the experiments, based on different speeds 

and different installed spring direction (Appendix 3.1.1 to 3.1.2). They are presented 

in the Table 3.2. The experimental data at 1368 rpm and 2165 rpm were included in 

Appendix 3.2.1 to 3.2.4. The experimental data at 2372 rpm cited from Lin’s paper 

[2006] was also included in Appendix 3.2.5 to 3.2.6. The maximal speed in this duty 

motor (Appendix 4.2) is 3450 rpm. Different camshaft speeds were generated using 

different groups of pulley (Appendix 4.8). The speed relation between motor and 

camshaft is given by 

r1 Ø w1 Q r2 Ø w2 

and  
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w2 Q w1 Ø r1r2 

where w1 is the motor speed, r1 is the pulley radius on the motor, w2 is the 

camshaft speed, and r2 is the pulley radius on the camshaft 

 

Table 3.2 The comparison groups in the experiment 

Group Camshaft Speed(rpm) Spring Installed Direction 

1 1368 Normal 

2 1368 Opposite 

3 2165 Normal 

4 2165 Opposite 
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Chapter 4 – Simulation 

4.1  Introduction 

This chapter provides a simple computational tool based on a finite difference 

solution of the equations, Eq. (2.35), derived using an internal virtual force term and 

Hamilton Principle for analyzing the dynamic modeling of helical valve springs 

subjected to dynamic loading.   

A computer program (Appendix 1) was written in MATLAB, and it took 

approximately 5 minutes to obtain a converged solution on a laptop (INTEL Core Solo 

processor T1350, DRAM= 1GB, CPU= 1.86 GHz). 

One variable-pitch coil spring was used as the simulation model at three 

different speeds, 1368, 2165 and 2372 rpm. Table 4.1 is the set of physical 

parameters used in this simulation. Fig.4.1 is the first partial derivative of 

displacement with respect to the arc length, and represents nonlinear curve. It is 

assumed that the bottom end of the spring rests in a static reference plane, and the 

top end of the spring follows the cam profile. Hence, for the boundary condition at 

we have 

y�3, t! Q  h�t! Q spring installed length Z cam pro�ile 

Fig.4.2 shows the cam profile. Another key in this simulation is to determine the 

damping coefficient. In the same valve spring model at different speeds, the damping 

coefficient is not always the same. It involves many factors (referring to 

SECTION.2.2.1). Fig4.1 and 4.2 are also the basic parameters in this simulation 

besides those in Table 4.1. 

 

Table 4.1 The related parameters of the helical spring in this simulation 

Terms Value 

D(coil diameter) 0.0255m 

d(wire diameter) 0.004m 

Original Free Height 0.0485(m) 

Preloaded Height(without 

transducer) 

0.0399(m) 

Preloaded Height(with 

transducer) 

0.0386m 

Solid height 0.024m 
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Displacement 

parameters( with transducer) 

 

Mass Density 

7860  

Shear Modulus 77.9Gpa 

Camshaft speed (rpm) 1368, 2165, 2372 

Damping coefficient(1368rpm) 60.7462(N.s/m) 

Damping coefficient(2165rpm) 30.3731(N.s/m) 

Damping coefficient(2372rpm) 70.8705(N.s/m) 

Time increment k 0.000015(sec) 

Spatial increment h(Node) 0.01(m) 

 

 

Fig.4.1 The pitch angle of helical springs along arc length which is along the helix on 

the initial condition without the preload 
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Fig.4.2 The cam profile 

 

 

4.2  Displacement, Force and Frequency 

4.2.1 Displacement 

This section shows the dynamic displacements. Fig.4.3 shows a snapshot of the 

dynamic solution at t = 0 and t = 0.0704 (sec) at 1368 rpm. Fig.4.4 is the dynamic 

displacements at node 8, 21, and 34. The displacements on upper nodes should 

always be larger than those on lower nodes (referring to SECTION.2.3.1.3, the moving 

boundary section). Fig.4.5 has similar phenomenon as Fig.4.4, but it is for the pitch 

angle, the first derivative of displacement (referring to Eq. (2.19) and (2.20). The 

transducer is installed at the seating end of the valve spring, so the chosen node in 

this simulation should be as near to lower nodes as possible. This simulation and 

optimization program in Optimization chapter (Chapter 5) always uses node 5 to run 

the computation. The solution looks reasonable and is verified with experimental 

data. For experimental detail, please refer to Experiment and Verification chapter 

(Chapter 4). In addition, they agreed well with the results in related technical papers 

[Lin, 1987, 1989 and 2006]. 
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Fig.4.3 The spring length varies with preload, and compression at 1368 rpm 

 

 

Fig.4.4 The spring length on node 8, 21, and 34 varies at 2372 rpm 
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Fig.4.5 The change in pitch angle on node 5 

 

 

4.2.2 Force and Frequency 

Resonance occurs in a spring when one of the component frequencies of the 

cyclic loading is near one of the natural spring frequencies. Resonance can increase 

the individual coil deflection and stress levels well above the amounts predicted by 

static loading conditions. Resonance can also cause spring surge, which can result in 

considerably lower loads than calculated at the maximum spring deflection when the 

spring force is needed most for the return of valve mass. To avoid resonance, lowest 

natural spring frequency should be at least 13 times that of the base frequency of 

the cyclic loading. A few related books or papers suggested it should be at least 15 or 

even more. 

For the accuracy of dynamic equations, numerical solutions were computed at 

three different cam shaft speeds: 1368, 2165 and 2372 rpm. Then physical 

experiments were performed at these speeds for comparison with numerical 

solutions. Numerical solutions were not limited to just displacement at each node, in 

addition, solution also included spring force data and the power spectrum with 

different installed directions. These spring force figures are shown in Fig.4.6, 4.7, 4.10, 

4.11, 4.14 and 4.15. It is observed in these figures that there are spikes in the spring 
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force amplitude, indicating the occurrence of coil clash at the lower end of the spring. 

In addition, the moving boundary solution is very accurate. Here the comparison of 

numerical solutions with experimental data is based on Eq. (2.23.2) and (2.27). 

In order to obtain the natural spring frequency, as mentioned in SECTION.2.4, 

the input in FFT is spring force data. The output, power spectrum was obtained using 

FFT (referring to SECTION.2.4.1). This process is shown in Fig.2.13. These power 

spectral plots are shown in Fig.4.8, 4.9, 4.12, 4.13, 4.16 and 4.17. The power spectral 

curve of the valve spring force revealed the excitation of valve spring harmonics. At 

1368 camshaft rpm, the harmonic content of the data was similar to those in 2165 

and 2372 rpm. As the harmonic number increases, the amplitude on the harmonic 

number gradually decreases till the excited harmonic number forms a spike. These 

figures agreed qualitatively with those in some papers or textbooks [Wahl, 1963; 

Pisano, 1983; Lin, 1993; Rothbart, 2004; Shigley, 2004]. In Fig.4.8 and 4.9, the 

resonance of the valve spring with the 19
th

 harmonic number was pronounced, so 

the fundamental natural frequency is 

the fundamental natural frequency Q  1368���1!60�  KDmin! Ø 19�/�! Q 433.2�Hertz! 

Furthermore, the phase can be used to determine the excited harmonic number. 

Fig.4.19 shows the phase comparison between the simulation at 1368 rpm and the 

cam profile. The phase is the displacement with respect to the excited force. Before 

resonance of the valve spring is pronounced, its phase always follows the phase of 

the cam profile. It is obvious to find out the phase on the 19
th

 harmonic number 

doesn’t follow that and shows chaos [Thomson, 1993]. As a result, the fundamental 

natural frequency of the valve spring excited by the cam profile is the 19
th

 harmonic. 

The same method is used to determine the excited harmonic number in other phase 

figures as well. In Fig.4.12 and 4.13, resonance of the valve spring with the 12
th

 

harmonic number was pronounced, so the fundamental natural frequency could be 

obtained as 

the fundamental natural frequency Q 2165���1!60 � KDmin� Ø 12�/�! Q 433�Hertz! 

In Fig.4.16 and 4.17, the resonance of the valve spring with the 11
th

 harmonic 

number was pronounced, so the fundamental natural frequency can also be 

obtained as 
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the fundamental natural frequency Q 2372���1!60 � KDmin� Ø 11�/�! Q 434.86�Hertz! 

The above results indicated the fundamental natural frequency of this valve spring is 

around 433 to 434 (Hertz). In order to verify that, more power spectra are simulated 

at different speeds, and presented in Fig.4.18. The comparison table is presented in 

Table 4.2. Besides the above method obtaining the natural frequency, other methods, 

Eq. (2.39 to 2.41), can be used for calculation as well. The valve spring presents 

nonlinear variable pitch angle, hence it is obvious to find these below calculated 

values presents a deviation. 

the fundamental natural frequency Q �2\�@� Ì %22 Q 423.29�Hertz! 

the fundamental natural frequency Q 12 Ì ;1 Q 423.21�Hertz! 

the fundamental natural frequency Q E23 Q 422.02�Hertz! 

where % Q 79 Ø 10ÝÞE, 2 Q 7860 ;ß1A , � Q 0.0041, � Q 0.02551, and  
3 Q 0.421, other parameters: Table 4.1 

In the experiment, the valve spring was installed in a normal (smaller pitch end 

is the stationary end) or opposite direction (smaller pitch end is the moving end) 

presenting an opposite pitch curve and the computer program simulates that very 

well. The simulation shows a phenomenon that springs should have better 

performance in a normal installed direction than that in an opposite one due to the 

smaller amplitude. Table 4.3 is the excited amplitude comparison table. In 

Optimization chapter, the amplitude of the power spectra on the excited harmonic 

number was used as the objective function for optimization by sequential quadratic 

programming (SQP).  
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Fig.4.6 A normal installed direction at 1368 rpm in the simulation 

 

 

Fig.4.7 An opposite installed direction at 1368 rpm 

 

 



50 

 

 

Fig.4.8 The power spectrum with a normal installation at 1368 rpm 

 

 

 

Fig.4.9 The power spectrum with an opposite installation at 1368rpm 
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Fig.4.10 A normal installed direction at 2165rpm 

 

 
Fig.4.11 An opposite installed direction at 2165rpm 
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Fig.4.12 The power spectrum with a normal installation at 2165rpm 

 

 
Fig.4.13 The power spectrum with an opposite installation at 2165rpm 
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Fig.4.14 A normal installed direction at 2372rpm 

 

 

Fig.4.15 An opposite installed direction at 2372rpm 

 

 



54 

 

 

Fig.4.16 The power spectrum with a normal installation at 2372rpm 

 

 

 

Fig.4.17 The power spectrum with an opposite installation at 2372rpm 
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Fig.4.18 The power spectrum at different speeds 

 

 

Fig.4.19 The phase comparison between the simulation at 1368 rpm and the cam 

profile 
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Table 4.2 The excited harmonics comparison table  

Camshaft speed (rpm) Excited Number Natural Frequency (Hertz) 

1367 19 432.88 

1443 18 432.9 

1528 17 432.93 

1624 16 433.06 

1732 15 433 

1856 14 433.06 

1998 13 432.9 

2165 12 433 

2362 11 433.03 

2598 10 433 

2887 9 433.05 

 

Table 4.3 The amplitude comparison table 

Group Camshaft 

Speed(rpm) 

Installed 

Direction 

Amplitude on an excited number of 

harmonics (Power Spectrum) 

1 1368 Normal 4983.67 

2 1368 Opposite 7133.64 

3 2165 Normal 4807.59 

4 2165 Opposite 6079.23 

5 2372 Normal 6924.64 

6 2372 Opposite 8340.4 

 

 

4.3  Resonant Effects for the Stress 

In this section, FEA software ABAQUS, was used to verify the resonant effects 

for the stress. Fig.4.20 shows the standard valve spring model, not the valve spring in 

this experiment. Fig.4.21 shows a spring with the loading around 150 Newton 

downward and its stress distribution. The maximal stress in the dynamic loading 

is 9.4 Ø 10} Pa. The first and second mode related stress graphical chart were 

observed, and shown in Fig.4.22, and 4.23. Fig.4.22 shows a maximal stress 3.31 Ø10?@ Pa on the first mode of excited resonance. According to Wahl’s papers [1963], 

the first mode is most easily to take place. Fig.4.23 also shows the maximal stress up 

to 5.01 Ø 10?@ Pa on the second mode of excited harmonic number, over-torsion. 

Destructive effects under resonance are very obvious. 
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Fig.4.20 The three dimensional helical spring 

 

 

 

Fig.4.21 The stress distribution under a normal static loading 



58 

 

 

 

 

Fig.4.22 The first mode of excited resonance 

 

 

Fig.4.23 The second mode of excited resonance 
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Chapter 5 - Optimization 

5.1  Goal 

A modified methodology for the optimum design of nonlinear helical springs is 

presented in this chapter. A special objective function is implemented to optimize 

the power spectral density on the excited harmonic number. Several design variables 

that have an influence on the mechanical properties of the spring must be 

considered: variable pitch angle p(s), variable coil diameter D(s), and variable wire 

diameter d(s). The design goal is to reduce the maximal power spectral density on 

the excited harmonic number. Taking into account the power spectral distribution 

and a series of technological constraints, many types of springs were devised, among 

which an optimal spring was selected for an automotive application, namely to 

replace the valve spring of a sporty vehicle. The excited harmonic is also verified by 

ABAQUS and shown in SECTION.5.5. 

 

5.2  Algorithm 

For this optimization problem, we use the sequential quadratic programming 

(SQP) to solve that. For this method, it will solve the quadratic programming (QP) 

subproblem at each iteration and then use the BFGS to estimate the Hessian of the 

Lagrangian. The combination of the QP subproblem and a constrained steepest 

descent method is called sequential quadratic programming (SQP). This method is 

very powerful and useful, and could also treat the inequality and equality constraints. 

We describe the equations and steps as follows [Vanderplaats, 1984; Arora, 2001; 

Venkataraman, 2002] 

1. Set iteration counter k=0, and estimate the initial �p, penalty parameter, Ïp, 

and the constant, á.  Ïª is the sum of all the Lagrange multipliers of the QP 

subproblem at the point �ª. So it can  be expressed as  

Ï ¸ ¹âãFªâÕ
F¼? b ¹ äFª

0
F¼?  

0 å á å 1 Ó æª Q áç�ªç@ 

where ãFª ¾  the Lagrange multipliers for the equality constraint and free in 
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sign,  äFª is the Lagrange multipliers for the inequality constraint, and �ª is the 

search direction 

      Then we can use that equation to calculate the step size. 

2. At �ª, compute the cost and constraint functions and their gradients. Here, 

we must find the maximum constraint violation, �ª 

3. Use the cost, constraints functions, and their gradients we got from step 2 to 

obtain the search direction, �ª, ãª , E$� äª. 

4. Check the convergence criterion 

�ª ¤ è1 and ç�ªç ¤ é2. 

If the criterion is satisfied here then we stop the steps. 

5. Check the necessary condition of penalty parameter, Ïª. 

6. Set �ª�? Q �ª b êª�ª, and then minimize the descent function to get the 

step size, êª, along the search direction. 

Let the present penalty parameter Ï E  Ïª�?. Update the iteration counter as k = 

k + 1 and then return to step 2. 

This method is gradient-based where the objective and constraints functions 

have the continuous first derivatives. If the initial guessed solution was ideal the 

program may not find the global optimal value. More guessed initial points need to 

be used to search for the global optimal value. 

 

5.3  Demonstration 

For the accuracy and the computational speed, the commercial software MATLAB 

is used to solve this optimization problem. In MATLAB, we could use the fmincon or 

fminunc functions that are based on the SQP, Quasi-Newton, or other search 

algorithms. The search result most likely would be dependent to the chosen 

algorithm. The command, fmincon, could handle the optimization problem with 

constraints. The default command, fminunc, is based on the interior-reflective 

Newton method and uses the preconditioned conjugate gradients to search the 

direction. The starting point would affect the performance of the algorithm based on 

these commands, fmincon and fminunc. At some points, the QP subproblem may not 

find the solution. Other guess initial points need to be used to search the optimal 

value in MATLAB. 

The FFT command in MATLAB is fft(data input), and it will generate C¬. It is 

composed of two parts, a real part a¬ and a imaginary part b¬ (referring to 

SECTION.2.4). Power spectrum is defined by these two coefficients as: 
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C¬ Q Ëa¬@ b b¬@h
 

Spring performance can be evaluated. 

 

5.4  Fast Fourier Transform in MATLAB 

In order to evaluate resonance of valve springs, a Fast Fourier Transform was 

performed on computed force data. It generated a power spectral plot. For the 

amplitudes on these harmonics, referring to Eq. (2.38), we have 

Á0 Q ?� ∑ [� , /!K�F0wH��?G¼p . 

The force transducer in this experiment was installed at the stationary end of the 

valve spring; as a result, the spatial length   should be close to zero at the stationary 

end. In order to approximate the experimental data, the 5
th

 node along the spring 

helix was chosen to process Fast Fourier Transform. The chosen node is expressed as 

follows. 

 Q 5�, � Q 5 and / Q $; (n time steps) 

where $ is 0,1,2 … N Z 1 

This leads to the new expression 

Á0 Q 1� ¹ [�5�, �$ Z 1!;!K�F0wH��?
G¼p  

 Q 1� ¹ [­,GK�F0wH��?
G¼p , (5.1)  

where � is space step, ; is time step, � is total samples, 1 is the harmonic number, $ is time index in the grid, and � is space index in the grid. 
Substituting Eq. (2.34) into Eq. (5.1), it leads to the power spectral amplitude 

equation 

 Á0 Q 1� ¹�;?[_,G b ;­!K�F0wH��?
G¼p . (5.2)  
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The parameters ;? and ;­ included �� !, �� !, and �� !, hence we have 

Á0 Q �0�;?, ;_! Q �0W�� !, �� !, �� !X Q �0��?, �@, �A, �_, �?, �@, �A, �_, �?, �@, �A, �_! 

where for 1 ¸ 8 (the excited harmonic number always appears as m is larger than 

or equal to eight due to the limited camshaft speed), 

Total samples in Eq. (5.2) is obtained as follows: 

��total sample ! Q <; 

where ; �time step! is 0.000015 �sec!, O �camshaft speed! is 2372 �rpm!, and 

τ �time of one cycle! is  �pw Q 0.02529511 �sec!. 
This leads to total samples as 

� Q <; Q 0.025295110.000015 Q 1686. 
As a result, the objective function is defined as 

min �0��?, �@, �A, �_, �?, �@, �A, �_, �?, �@, �A, �_! Q the power spectral amplitude on the excited harmonic number  

which is subject to the maximum spring force constraint 

 120 ¤ ß��! ¤ 230��! (5.3)  

and the spring height constraint 

 0.0385 ¤ 3 ¤ 0.0387. (5.4)  

In engine design, dimensions of valve train components are always constrained in a 

certain range. In optimization, maximal spring force was constrained in a reasonable 

range. In addition, spring height was also constrained as approximate as original 

height (Appendix 4.1) for the convenience of comparison. Four types of optimization 

were discussed in this chapter. 

1. Variable Pitch Angle 

2. Variable Coil Diameter (Conical Spring) 

3. Variable Wire Diameter 

4. Variable Pitch Angle, Variable Coil Diameter, and Variable Wire Diameter 

In this Chapter, the objective function (Eq. 5.2) and constraints (Eqs. 5.3 - 5.4) are the 
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same used in the four types of optimization. For upper and lower bound of the 

design variables, each case is different and has been described at each section. The 

optimization flow chart is shown in Fig.5.1. 

 

 

 

Fig.5.1 The flow chart of optimization program 

 

 

5.4.1 Variable Pitch Angle 

A variable pitch valve spring has different levels of compression. One end will 

have a higher rigidity (or spring rate) than the other end, or it will look more 

compressed on one side than the other. In this case, the diameter of the wire and the 

mean coil diameter must be kept as constants, so we have 

�? Q 0, �@ Q 0, �A Q 0, �_ Q 0.004�1! 

and �? Q 0, �@ Q 0, �A Q 0, �_ Q 0.0255�1! 

then the objective function is defined as 

�0��?, �@, �A, �_! 

where 1 ¸ 8 (the excited harmonic number always appears as m is larger than or 

equal to eight due to the limited camshaft speed). 

For the initial trial point in SQP, we have 
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�? Q Z0.2187, �@ Q 0.1716, �A Q 0.0585, �_ Q Z0.00009. 
The original parameter is used as the initial trial point for the convenience of 

comparison. Besides constraint (5.3) and (5.4), upper and lower bounds 

of �?, �@, �A, E$� �_ are constrained as follows, and their polynomial expression is 

defined in Eq. (2.20). 

Z0.4 ¤ �? ¤ 0 Z0.2 ¤ �@ ¤ 0.3 Z0.1 ¤ �A ¤ 0.1 Z0.1 ¤ �_ ¤ 0.1 

After the optimization computation, the optimal parameter is obtained as 

�? Q Z0.268699 , �@ Q 0.145742, �A Q 0.079511, �_ Q Z0.000198, 
and Fig.5.2 shows the optimal variable pitch angle plot. The optimal results show 

that maximum spring force is 159.11 (N). In comparison of the original value 

182.63(N), it decreased. Fig.5.3 shows the power density comparison plot between 

the optimal design and the original one. It is obvious to find, limited to minimize the 

power spectral amplitude on the excited harmonic number. The optimal power 

density on the 11th harmonic is 6911. In comparison with the original value 6924, this 

original design was pretty good. Hence the improvement in this type is very small. 

According to some technical papers [Wahl, 1963; Fujimoto, 2007], the power 

spectral amplitude on the excited harmonic number can be reduced by variable pitch 

springs and the denser end coil. In the ABAQUS-MATLAB program, this optimal 

parameter was also verified in SECTION.5.5.1. In addition, this optimum result can 

also be explained by the element natural frequency distribution. It is presented in 

SECTION.5.6.  
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Fig.5.2 The optimal variable pitch angle in optimization case one 

 

 

Fig.5.3 The power spectrum comparison of the original and the optimal designs (case 

one) 
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5.4.2 Variable Coil Diameter (Conical Spring) 

Conical compression springs are often specified where the large end is meant to 

work in a bore and the small end is meant to work over a rod. They offer the 

advantage of a reduced solid height compared to straight compression springs, 

especially when capable of telescoping. Conical springs are cone-shaped 

compression springs designed to provide a near constant spring rate and a solid 

height lower than a normal spring. Each spring features a variable pitch to achieve 

the constant spring rate and coils which nest during deflection to provide a solid 

height approximately equal to two wire diameters. According to Handbook of Spring 

Design [SMI, 2002], there are some features in conical springs. 

� Small solid height 

� Variable spring rate 

� Good stability 

� Resonance and vibration is reduced 

� Not easy installed in the valve train due to variable diameter 

In this case, variable pitch angle and the diameter of the wire must be kept as 

constants, so we have 

�? Q Z0.2187, �@ Q 0.1716, �A Q 0.0585, �_ Q Z0.00009, �? Q 0, �@ Q 0, �A Q 0, and �_ Q 0.004�1!. 
The mean coil diameter along the spatial length is defined in Eq. (2.22), and we have 

the objective function as 

�0��?, �@, �A, �_!, 
where 1 ¸ 8  

For the initial trial point in SQP, we have 

�? Q 0, �@ Q 0, �A Q 0, �_ Q 0.0255�1!. 
Besides constraints (5.3) and (5.4), lower and upper bounds are listed as follows: 

Z0.0003 ¤ �? ¤ 0.0002 Z0.004 ¤ �@ ¤ 0.005 Z0.006 ¤ �A ¤ 0.004 0.022 ¤ �_ ¤ 0.029 

After the computation, the optimal parameters are obtained as: 

�? Q Z0.000198, �@ Q 0.004731, �A Q Z0.004397, and �_ Q 0.02345. 
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Fig.5.4 shows the variable coil diameter plot. For weight, it offered a lighter spring 

due to the smaller mean coil diameter. Maximum spring force 195.52(N) in 

comparison of the original one is very close. Fig.5.5 shows the power density 

comparison figure. The power spectral amplitude on the 13th harmonic number is 

3378. The original value in the 11
th

 harmonic number is 6924. The improvement is up 

to 51.22 percent. 

 

 

Fig.5.4 The optimal variable coil diameter in optimization case two 
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Fig.5.5 The power spectrum comparison of the original and the optimal designs (case 

two) 

 

 

5.4.3 Variable Wire Diameter 

Basically, this type of spring has the similar advantage as conical springs. They 

offer the advantage of remaining the same height compared to conical springs which 

have space limitations, especially when capable of flexible design. The features are 

listed as follows. 

� The same spring height 

� Flexible rate 

� Good stability 

� Resonance and vibration is reduced 

� Shorter fatigue life due to larger stresses and smaller wire diameter 

� Difficultly manufacturing technique 

In this case, variable pitch angle and the mean coil diameter must be kept as 

constants as the original one, so we have 

�? Q Z0.2187, �@ Q 0.1716, �A Q 0.0585, �_ Q Z0.00009, �? Q 0, �@ Q 0, �A Q 0, and �_ Q 0.0255�1!. 
The diameter of the wire along the spatial length is defined in Eq. (2.25), and we 
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have the objective function as 

�0��?, �@, �A, �_! 

where 1 ¸ 8  

For the initial trial point in SQP, we have 

�? Q 0, �@ Q 0, �A Q 0, �_ Q 0.004�1! 

Besides constraints (5.3) and (5.4), lower and upper bounds are constrained as 

follows.  

Z0.0001 ¤ �? ¤ 0.0003 Z0.004 ¤ �@ ¤ 0.008 Z0.004 ¤ �A ¤ 0.002 Z0.0035 ¤ �_ ¤ 0.0048 

After the computation, the optimal parameter is obtained as 

�? Q 0.000111, �@ Q 0.005998, �A Q Z0.001993 , and �_ Q 0.0046. 
Fig.5.6 shows the variable wire diameter curve. The original design value is a 

constant 0.004 m. The weight is slightly increased due to the larger wire diameter. 

From the results, the maximum spring force 166.78(N) in comparison with the 

original one is relatively close. Fig.5.7 shows the power density comparison plot. The 

optimal power density on the 13
th

 harmonic number is 2752.11. It provided good 

performance in comparison with the original value of 6924. The improved 

percentage is up to 60.25 percent. 
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Fig.5.6 The optimal variable wire diameter in optimization case three 

 

 

Fig.5.7 The power spectrum comparison of the original and the optimal designs (case 

three) 

 

 



71 

 

5.4.4 Variable Pitch Angle, Wire Diameter, Coil Diameter 

Theoretically, the more design variables the better the performance. By a 

discussion of three previous optimal cases, the mean coil diameter and the diameter 

of the wire more easily obtained better performance. This case included all design 

variables, variable pitch angle, variable wire diameter and variable coil diameter – a 

total of twelve design variables to be optimized. The predicted performance should 

not be below the optimal case three – variable wire diameter. Its features should be 

similar as variable wire diameter springs. 

� Small solid height 

� Variable spring rate 

� Good stability 

� Resonance and vibration is reduced 

Difficult to manufacture the variable pitch angle, the mean coil diameter, and the 

diameter of the wire along the spatial length are defined in Eqs. 2.20, 2.22 and 2.25, 

and we have the objective function as 

�0��?, �@, �A, �_, �?, �@, �A, �_, �?, �@, �A, �_!, 
whereas for 1 ¸ 8  

For the initial trial point in SQP, these values are chosen as the same as the original 

one, and we have 

�? Q Z0.2187, �@ Q 0.1716, �A Q 0.0585, �_ Q Z0.00009, �? Q 0, �@ Q 0, �A Q 0, �_ Q 0.004�1!, �? Q 0, �@ Q 0, �A Q 0, and �_ Q 0.0255�1!. 
Besides constraints (5.3) and (5.4), all bounds are listed as follows: 

Z0.4 ¤ �? ¤ 0 Z0.2 ¤ �@ ¤ 0.3 Z0.1 ¤ �A ¤ 0.1 Z0.1 ¤ �_ ¤ 0.1 Z0.0001 ¤ �? ¤ 0.0003 Z0.004 ¤ �@ ¤ 0.008 Z0.004 ¤ �A ¤ 0.002 Z0.0035 ¤ �_ ¤ 0.0048 Z0.0003 ¤ �? ¤ 0.0002 Z0.004 ¤ �@ ¤ 0.005 Z0.006 ¤ �A ¤ 0.004 
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0.022 ¤ �_ ¤ 0.029 

After the computation, the result is shown as follows: 

 �? Q Z0.279762, �@ Q 0.149103 , �A Q 0.091418 , �_ Q 0.001535 

    �? Q Z0.000072 , �@ Q Z0.000363 , �A Q 0.002625 , �_ Q 0.004683 

    �? Q Z0.000231 , �@ Q 0.001972  , �A Q 0.003628 , and �_ Q 0.028783. 
Fig.5.8 shows the variable pitch angle plot and has the similar result as Fig.5.2. 

Fig.5.9 shows the variable coil diameter plot which has a significantly different curve 

from Fig.5.4. Fig.5.10 shows the variable wire diameter plot. According to the design 

specification of valve springs [Wahl, 1963; Shigley, 2004]], the performance springs 

usually have the heavier bottom end, but this case shows that the top end is heavier. 

That is a little bit unreasonable and contrary to those in optimization cases two and 

three. In general, the spring with the larger coil diameter and the heavier weight on 

the top end has the stability problem [Wahl, 1963]. The maximum spring force of 

129.16(N) in comparison of the original value, decreased significantly. It is seen that 

this type of spring presents an extreme nonlinear spring force along the spatial 

length according to Fig.5.9 and 5.10. Fig.5.11 shows the power density comparison of 

the case and the original one, and only has a peak 2159.9 on the 13
th

 harmonic 

number. All amplitudes on the harmonics are lower than those in the original design. 

The improved efficiency is up to 68.8 percent. In reality, the deviation is often 

happened in the manufacturing quality, and can be up to 10 percent. Let the 

parameter 

[�?,  �@,  �A,  �_,  �?,  �@,  �A, �_,  �?,  �@,  �A,  �_�  Ò  10%, 

and the optimal parameters with the upper deviation are as follows: 

[�?,  �@,  �A,  �_,  �?,  �@,  �A, �_,  �?,  �@,  �A,  �_� 

= [-0.2518, 0.1640, 0.1006, 0.0017, -0.0001, 0.0004, 0.0029, 0.0052, -0.0002, 0.002, 

0.0040, 0.0317] 

The power density of the excited harmonic is 3129.61. 

 

In addition, the optimal parameters with the lower deviation are as follows: 

[�?,  �@,  �A,  �_,  �?,  �@,  �A, �_,  �?,  �@,  �A,  �_� 

= [-0.3077, 0.1342, 0.0823, 0.0014, -0.0001, 0.0003, 0.0024, 0.0042, -0.0003, 0.0018    

0.0033, 0.0259] 

The power density of the excited harmonic is 4944.26. The spring in this optimization 

case four is very powerful with the lowest power density. However, as its 
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manufacturing deviation is around 10 percent, the power density on the excited 

harmonic increases over 30 percent. As a result, the manufacturing deviation would 

affect spring performance so much. 

 

 

Fig.5.8 The optimal variable pitch angle in optimization case four 

 

Fig.5.9 The optimal variable coil diameter in optimization case four 
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Fig.5.10 The optimal variable wire diameter in optimization four 

 

 

 

Fig.5.11 The power spectrum comparison of the original and the optimal designs 

(case four) 
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From these optimal results, it is seen that these optimal designs improved the 

spring performance, and reduced the excited amplitude. For the excited amplitude, 

there is a large room for improvement for the optimal cases two, three, and four. The 

optimal case one can improve that as well, but its limitations is obvious. The optimal 

case two, three and four don’t only reduce the excited amplitude, but also enlarge 

the fundamental natural frequency. The fundamental natural frequency of the 

optimal case two, three and four is 

2372 �rpm!60 � secmin! Ø 13 �th! Q 514 �Hertz!. 
Table 5.1 shows the power density comparison of all optimal cases. 

 

Table 5.1 The results from different optimal designs 

term Weight 

(kg) 

Max. Spring 

Seat Force 

(N) 

The scale of the 

excited 

harmonics 

The excited 

order(th) 

Original 0.0415 182.63 6924.64 11 

Vari. Pitch 0.0415 134.11 6911.68 11 

Vari. Coil. Dia 0.0415 195.52 3378 13 

Vari. Wire Dia 0.056 166.78 2752.11 13 

Va. Pitch, Wire, Coil Dia 0.0738 129.16 2159.9 13 

 

 

5.5  Verification in ABAQUS-MATLAB Program 

5.5.1 Introduction and Program Structure 

 This section involved the modeling and verification of the optimal valve spring 

with the focus on the non-linear behavior of high speed valve springs - verification of 

optimal results using finite element method. The optimal parameters in 

SECTION.5.4.1 to 5.4.4 were used as an input in the analysis and implementation in 

ABAQUS-MATLAB program. The role of MATLAB in this program is only to generate 

the geometric model by the obtained optimal parameters in SECTION.5.4, then do 

the natural frequency computation in ABAQUS. The verification flow chart for the 

obtained optimal parameters in different programs is shown in Fig.5.12. The spring 

model was developed systematically from a solid model, into a finite element model, 
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and finally into a dynamic model. All development steps were continually checked 

with experiments and simulations in previous chapters. The primary concept used in 

this section is to check the obtained fundamental natural frequency in SECTION.5.4. 

From the results, the dynamic model was verified and good correlations were found, 

especially at high engine speeds where valve train dynamics play an important role. 

 

 

Fig.5.12 Flow chart for comparing results from different methods 

 

 

5.5.2 Variable Pitch Angle 

This fundamental natural frequency of the optimal parameter in SECTION.5.4.1 

is 433 (Hertz) which is also verified in ABAQUS-MATLAB program. The verified result 

is shown in Fig.5.13 which is has a fundamental natural frequency around 436 Hertz. 

It is seen that the result is the same as the result of optimization program and shows 

a limited improvement in a variable pitch angle type. A possible reason is that the 

original design greatly improved. To lessen any tendency towards surging within 

motion speed range of the engine, the valve springs are designed to have a high 

natural frequency of vibration. Various additional measures may be taken to 

minimize surge such as the use of double springs, mechanical spring dampers, and 

progressive rate springs (referring to SECTION.2.4.4).  
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Fig.5.13 The generated fundamental natural frequency by ABAQUS-MATLAB program 

(Optimal parameters of optimization case one) 

 

 

5.5.3 Variable Coil Diameter 

The optimal parameter in SECTION.5.4.2 is taken into MATLAB-ABAQUS program 

to verify the result. The verified result is shown in Fig.5.14 which has the similar 

natural frequency around 510 Hertz as that in Fig.5.5. In fact, the two results show 

the same phenomenon that the top end needs the smaller coil diameter, but the 

bottom end needs the larger coil diameter to form a stable and lighter design. This 

condition coincides to conical springs sold in the current spring market. 

It’s clear to show the dynamic equation derived in this thesis is very accurate, 

and can be used to improve spring performance. Here we could calculate easily the 

engine speed limit by this result. We select the maximum harmonic order that could 

affect the spring resonance is 13
th

 order [SMI, 2002]. The calculation is expressed as 

engine speed red line2 �rpm! Ø 160 íminsec î Ø 13�th! 

Q fundamental natural frequency. 
The original fundamental natural frequency is around 433 (Hertz), so the 

calculated engine speed red line is round 4006 (rpm). The optimal parameter in 
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conical springs design has a value around 514(Hertz), hence the engine speed red 

line is elevated up to 4726 (rpm). It is improved around 700 (rpm) by this 

optimization design. 

 

 

Fig.5.14 The generated fundamental natural frequency by ABAQUS-MATLAB program 

(Optimal parameters of optimization case two) 

 

5.5.4 Limitation 

Although the ABAQUS-MATLAB program in this section provided good 

verification with optimal results in SECTION.5.4, unfortunately, it cannot handle 

springs involving variable wire diameter due to the involving generating solid model 

for variable cross-section along helix. As in the previous discussion in optimization 

program, the combination of variable pitch angle, variable coil diameter, and variable 

wire diameter shows the most powerful spring. The ABAQUS-MATLAB program at 

least can be used to make sure the optimal results – case one and two, generated by 

optimization program are correct and accurate. Another problem in this program is 

that it is too slow due to the calculation of FEA mesh. Comparatively speaking, the 

simulation by the finite difference method and optimization by FFT provided faster 

and relative accurate result. The comparison of results obtained from optimal 

parameters is shown in Table 5.2. 
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Table 5.2 Comparison of fundamental natural frequencies in different optimization 

cases 

Optimization 

Design 

Optimal Parameter Natural 

frequency(Hertz) 

Program 

Variable Pitch 

Angle 

�? Q Z0.268699 �@ Q 0.145742 �A Q 0.079511 �_ Q Z0.000198 

 

433 Optimization 

Program 

436 ABAQUS-MATLAB 

Program 

Variable Coil 

Diameter 

�? Q Z0.000198   �@ Q 0.004731   �A Q Z0.004397   �_ Q 0.02345 

 

514 Optimization 

Program 

510 ABAQUS-MATLAB 

Program 

Vari. Wire Dia Referring to SEC.5.4.3 514 Optimization 

Program 

X ABAQUS-MATLAB 

PROGRAM 

Combination Referring to SEC.5.4.4 514 Optimization 

Program 

X ABAQUS-MATLAB 

PROGRAM 
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Chapter 6 - Conclusion 

6.1  Summary 

1. This thesis offered a modified wave equation by inserting an internal virtual force 

term into the original wave equation. This modified wave equation is applicable 

to helical springs with variable pitch angle p(s), variable wire diameter d(s), and 

variable coil diameter D(s).  

 

2. Finite Difference method was used to solve the modified wave equation.  

Because Crank-Nicolson’s method is unconditionally stable for solving partial 

differential equations, it is used to solve this dynamic equation. While solving the 

dynamic equation, to take the coil closing or clashing into consideration, a 

moving boundary solution was programmed to take into account the coil closing 

at the top and bottom boundaries. For improving the speed of numeric solution 

using MATLAB, a faster computational algorithm in Crank-Nicolson method was 

applied. It shortened the computational time, and had approximate solutions. 

With these special techniques, the result represented an approximate but 

sufficiently accurate simulation data to be compared with the experimental data. 

 

3. For evaluating spring performance, a Fast Fourier Transform (FFT) was used to 

evaluate the power spectral density. Because the numeric solution had been 

verified by physical experiments to be accurate enough, these simulated results 

were used in optimization. In Optimization chapter, the maximum power density 

in higher order harmonics was defined as the objective function. The power 

spectrum density in the best situation was improved for as much as 68.8 percent. 

Some other scenarios, such as in variable coil diameter optimization, the 

improvement is only 52 percent. The lowest natural frequency in this tested 

engine, which is a GM-ISUZU 1987 engine, is close to 433 Hertz.  

 

4. The most thorough approach to optimize a helical spring is to assume the spring 

under consideration for optimization has variable pitch angle, variable wire 

diameter, and variable coil diameter. In this situation not only the maximal power 

density in 13
th

 harmonic (which was exciting the lowest natural frequency) is 

reduced to around 2200, but also its natural frequency is up to 512 Hertz.  
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5. ABAQUS-MATLAB program was utilized to verify the obtained optimized design – 

optimization case one and two, and its results agreed well with Finite Difference 

results.    

6.2  Suggested Future Works 

1. Due to the difficulty in using programs to generate variable diameter wire in a 

solid model, ABAQUS-MATLAB program was not able to do variable wire 

diameter in Optimization chapter. It is possible to modify that by using the ACIS 

3D Model to make the 3D model with different wire diameter along the helix. For 

accuracy, each element between nodes should be sufficiently small. In the future, 

3D solid model should be possibly based on ACIS description as input file for 

ABAQUS. Then the optimal solution can be compared with the finite difference 

solution, as an alternative and independent solution. 

 

2. The obtained fundamental natural frequency in this thesis is based on processing 

dynamic solution data using Fast Fourier Transform. For the latest technical 

papers [Liu, 2009], the fundamental natural frequency of helical springs was 

obtained by a different method analyzing the amount of coil closing. It should be 

interesting to compare the result for the same spring using these two different 

methods, and compared also with actual experimental data.  

 

3. Although we know the type of spring with variable pitch angle, variable wire 

diameter, and variable coil diameter performs very well dynamically, it is also very 

difficult to manufacture. It is desirable to use special manufacturing technique to 

make helical springs with variable wire diameter, and compare numerical solution 

with experimental data based on real variable pitch angle, variable wire diameter 

and variable coil diameter spring.   
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Appendix 

1. Program Code (Optimization program) 

1.(A) Main Program 

%the spring simulation program 

%the program could be divided into many parts 

%1: setup the basic parameters 

%2: setup the preload for 15% height 

%3:calculate the deflection 

%4:play the spring movie 

%5:calculate the spring seat force 

%6:calculate the power spectrum 

%7:output all data 

clear; 

clc; 

fprintf('The Central Finite Difference Method\n'); 

G = 77e9; %the shear modulus 

mu = 7.86e3;%the material weight density 

d = 0.004; % the radius of the cross-section of wire 

r = 0.01275; %the radius of the coil 

D = 2*r; % the diameter of every coil 

J = 2.62e-11; % polar moment of inertia 

po = 0.3; %poissoin ratio 

c = D/d; % the spring index 

yf = 0.0386; % the free height 

ys = 0.024; % the solid height 

cr = 1 - ys/yf; % compression ratio 

L = 0.42; %total length of the spring 

ws = 2400; %the rotational speed 

ei = (1+po)*G*J; % G times J changes to E times I 

mg = mu*(pi*d.^2/4*L); %the weight of the spring 

cc = 8; %the damping force per unit length of the wire per unit of velocity 

b = cc*L/mg; %the damping coefficient 

fre_surge = d/(2*D*L)*sqrt(G/2/mu); %frequency of surge waves 

a = sqrt((G*d.^2)/(mu*(8*r.^2+d.^2))); %the wave speed  

F = 10; %the internal force in the spring causes the nonlinear deformation 
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ff = ei*(cos(5*pi/180)/r-cos(6*pi/180)/r).^2;%add on an force term to let the 

wave equation as nonlinear 

kc = pi*d.^4*G/(8*D.^2); % k1 x L  is the spring constant 

km = (4*c - 1)/(4*c - 4) + 0.615/c; % the correction factor 

k1 = kc/(pi*D*5); %the spring constant 

%output the data 

fprintf('The diameter of this coil spring: %9.4f(m)\n',D); 

fprintf('The diameter of the cross wire: %9.4f(m)\n', d); 

fprintf('The free height: %9.4f(m)\n',yf); 

fprintf('The solid height: %9.4f(m)\n',ys); 

fprintf('The spring density: %6.2f(kg/m^3)\n',mu); 

fprintf('The weight: %9.4f(kg)\n',mg); 

fprintf('The spring rate: %9.4f(N/m)\n',k1); 

fprintf('The wave speed: %9.4f(m/s)\n',a); 

fprintf('The damping coefficient: %6.2f(m/s)\n',b); 

fprintf('The rotaional speed: %7.2f(rpm)\n',ws); 

fprintf('The frequency of surege waves: %7.2f(hertz)\n', fre_surge); 

 

 

 

dx = 0.01; %the length interval between every two points  

x = 0:dx:L; %divide the length 

nx = length(x); % the size of dx 

dt = 0.000027; %the time interval between every two points  

w = ws/60; %rev/min / 60 = rev/sec 

t = 0:dt:(1/w*4); %the time 

t1 = 0:dt:(1/w); % it's used to calculate the cam profile for one cycle 

nt = length(t); % the size of dt 

lamda = a*dt/dx; %calculate the stability of the finite difference method 

fprintf('The amplification factor for the stability of the finite difference method: 

%6.4f \n',lamda); 

if (lamda <= 1) 

    fprintf('The simulation of this model is stable.\n'); 

else 

    fprintf('The simulation of this model is not stable.\n'); 

end; 
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%calculate the spatial curve of the spring when it is installed in the 

%opposed direction 

ppo = [-0.2187 0.1716 0.0585 -0.00009]; %the curve of the spring installed on 

the normal direction 

ppn = c_pp_cal(L,ppo); %calculate the curve of the spring installed on the 

opposed direction 

%preload 

preload_ratio = 0.15; 

yd = [0 0 0:0.00001:yf*preload_ratio];%preload is 10% 

yt = zeros(length(yd),nx); 

yt(1,:) = ppo(1).*x.^3+ppo(2).*x.^2+ppo(3).*x +ppo(4); %initial condition for 

y(x,0) = f(x) 

yo = yt(1,:); %store the initial curve of the spring 

yt(:,1) = 0;       %boundary condition at x = 0 

yt(:,nx) = yt(1,nx) - yd; 

yt(2,:) = yt(1,:); %initial condition for dy(x,0) = g(x) 

 

%calcaulate the pitch angle 

ypitch = 3*ppo(1).*x.^2+2*ppo(2).*x+ppo(3); 

 

j = 1; 

n = 1; 

%calculate the deflection 

fprintf('computating the spring deflection....\n'); 

while(n <= length(yd)-2)     

while(j <= (nx-2)) 

    temp = ((dt/dx*a).^2.*(yt(n+1,j+2)-2*yt(n+1,j+1)+ yt(n+1,j)) + 2*yt(n+1,j+1) 

- yt(n,j+1) + b*dt/2*yt(n,j+1)); 

    ta = (1 + b*dt/2)*yt(n,j+1)+temp; 

    tb = sqrt((-ta).^2-4*(1+b*dt/2)*(dt.^2*ff+temp*yt(n,j+1))); 

    yt(n+2,j+1) = real((ta-tb)/(2*(1+b*dt/2))); 

    j = j +1; 

end; 

j = 1; 

n = n + 1; 

end; 

pp = polyfit(x,yt(length(yd),:),3); 

ytempa = polyval(pp,x); 
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ytempaL = ytempa(nx); 

ynratio = ytempa(nx)/L; 

clear ytempa; 

yt = zeros(nt,nx); 

yt(1,:) = ynratio*x; 

yr = cam_rise(t1,dt,w); 

yr = [yr 0 yr 0 yr 0 yr]; 

yr = yr(1:length(yr)-3); 

yt(:,nx) = yt(1,nx) - yr(:); 

yt(2,:) = yt(1,:); %initial condition for dy(x,0) = g(x) 

yt1 = yt; 

n = 1; 

clear t1; 

 

%calculate every value on the grid,  

%length and time, by the finite difference method 

syms a01 a02 a03 a04 a05 a06 a07 a08 a09 a10 a11 a12 a13 a14 a15 a16 a17 

a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 

a37 a38 a39 a40 a41 

while(n <= nt-2) 

f01 = (dx/dt/a).^2.*2.*(a01 - 2*yt(n+1,2) + yt(n,2)) -(yt(n+1,3) - 2*yt(n+1,2) + 

yt(n+1,1)) -(a02 -2*a01 + yt(3,1)) + b/dt*(dx/a).^2*(a01 - yt(n,2)) + 

2*(dx/a).^2*F*a02/L; 

f02 = (dx/dt/a).^2.*2.*(a02 - 2*yt(n+1,3) + yt(n,3)) -(yt(n+1,4) - 2*yt(n+1,3) + 

yt(n+1,2)) -(a03 -2*a02 + a01) + b/dt*(dx/a).^2*(a02 - yt(n,3)) + 

2*(dx/a).^2*F*a03/L; 

f03 = (dx/dt/a).^2.*2.*(a03 - 2*yt(n+1,4) + yt(n,4)) -(yt(n+1,5) - 2*yt(n+1,4) + 

yt(n+1,3)) -(a04 -2*a03 + a02) + b/dt*(dx/a).^2*(a03 - yt(n,4)) + 

2*(dx/a).^2*F*a04/L; 

f04 = (dx/dt/a).^2.*2.*(a04 - 2*yt(n+1,5) + yt(n,5)) -(yt(n+1,6) - 2*yt(n+1,5) + 

yt(n+1,4)) -(a05 -2*a04 + a03) + b/dt*(dx/a).^2*(a04 - yt(n,5)) + 

2*(dx/a).^2*F*a05/L; 

f05 = (dx/dt/a).^2.*2.*(a05 - 2*yt(n+1,6) + yt(n,6)) -(yt(n+1,7) - 2*yt(n+1,6) + 

yt(n+1,5)) -(a06 -2*a05 + a04) + b/dt*(dx/a).^2*(a05 - yt(n,6)) + 

2*(dx/a).^2*F*a06/L; 

f06 = (dx/dt/a).^2.*2.*(a06 - 2*yt(n+1,7) + yt(n,7)) -(yt(n+1,8) - 2*yt(n+1,7) + 

yt(n+1,6)) -(a07 -2*a06 + a05) + b/dt*(dx/a).^2*(a06 - yt(n,7)) + 

2*(dx/a).^2*F*a07/L; 
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f07 = (dx/dt/a).^2.*2.*(a07 - 2*yt(n+1,8) + yt(n,8)) -(yt(n+1,9) - 2*yt(n+1,8) + 

yt(n+1,7)) -(a08 -2*a07 + a06) + b/dt*(dx/a).^2*(a07 - yt(n,8)) + 

2*(dx/a).^2*F*a08/L; 

f08 = (dx/dt/a).^2.*2.*(a08 - 2*yt(n+1,9) + yt(n,9)) -(yt(n+1,10) - 2*yt(n+1,9) + 

yt(n+1,8)) -(a09 -2*a08 + a07) + b/dt*(dx/a).^2*(a08 - yt(n,9)) + 

2*(dx/a).^2*F*a09/L; 

f09 = (dx/dt/a).^2.*2.*(a09 - 2*yt(n+1,10) + yt(n,10)) -(yt(n+1,11) - 2*yt(n+1,10) 

+ yt(n+1,9)) -(a10 -2*a09 + a08) + b/dt*(dx/a).^2*(a09 - yt(n,10)) + 

2*(dx/a).^2*F*a10/L; 

f10 = (dx/dt/a).^2.*2.*(a10 - 2*yt(n+1,11) + yt(n,11)) -(yt(n+1,12) - 2*yt(n+1,11) 

+ yt(n+1,10)) -(a11 -2*a10 + a09) + b/dt*(dx/a).^2*(a10 - yt(n,11)) + 

2*(dx/a).^2*F*a11/L; 

f11 = (dx/dt/a).^2.*2.*(a11 - 2*yt(n+1,12) + yt(n,12)) -(yt(n+1,13) - 2*yt(n+1,12) 

+ yt(n+1,11))-(a12 -2*a11 + a10) + b/dt*(dx/a).^2*(a11 - yt(n,12)) + 

2*(dx/a).^2*F*a12/L; 

f12 = (dx/dt/a).^2.*2.*(a12 - 2*yt(n+1,13) + yt(n,13)) -(yt(n+1,14) - 2*yt(n+1,13) 

+ yt(n+1,12)) -(a13 -2*a12 + a11) + b/dt*(dx/a).^2*(a12 - yt(n,13)) + 

2*(dx/a).^2*F*a13/L; 

f13 = (dx/dt/a).^2.*2.*(a13 - 2*yt(n+1,14) + yt(n,14)) -(yt(n+1,15) - 2*yt(n+1,14) 

+ yt(n+1,13)) -(a14 -2*a13 + a12) + b/dt*(dx/a).^2*(a13 - yt(n,14)) + 

2*(dx/a).^2*F*a14/L; 

f14 = (dx/dt/a).^2.*2.*(a14 - 2*yt(n+1,15) + yt(n,15)) -(yt(n+1,16) - 2*yt(n+1,15) 

+ yt(n+1,14))-(a15 -2*a14 + a13) + b/dt*(dx/a).^2*(a14 - yt(n,15)) + 

2*(dx/a).^2*F*a15/L; 

f15 = (dx/dt/a).^2.*2.*(a15 - 2*yt(n+1,16) + yt(n,16)) -(yt(n+1,17) - 2*yt(n+1,16) 

+ yt(n+1,15)) -(a16 -2*a15 + a14) + b/dt*(dx/a).^2*(a15 - yt(n,16)) + 

2*(dx/a).^2*F*a16/L; 

f16 = (dx/dt/a).^2.*2.*(a16 - 2*yt(n+1,17) + yt(n,17)) -(yt(n+1,18) - 2*yt(n+1,17) 

+ yt(n+1,16)) -(a17 -2*a16 + a15) + b/dt*(dx/a).^2*(a16 - yt(n,17)) + 

2*(dx/a).^2*F*a17/L; 

f17 = (dx/dt/a).^2.*2.*(a17 - 2*yt(n+1,18) + yt(n,18)) -(yt(n+1,19) - 2*yt(n+1,18) 

+ yt(n+1,17)) -(a18 -2*a17 + a16) + b/dt*(dx/a).^2*(a17 - yt(n,18)) + 

2*(dx/a).^2*F*a18/L; 

f18 = (dx/dt/a).^2.*2.*(a18 - 2*yt(n+1,19) + yt(n,19)) -(yt(n+1,20) - 2*yt(n+1,19) 

+ yt(n+1,18))-(a19 -2*a18 + a17) + b/dt*(dx/a).^2*(a18 - yt(n,19)) + 

2*(dx/a).^2*F*a19/L; 

f19 = (dx/dt/a).^2.*2.*(a19 - 2*yt(n+1,20) + yt(n,20)) -(yt(n+1,21) - 2*yt(n+1,20) 

+ yt(n+1,19))-(a20 -2*a19 + a18) + b/dt*(dx/a).^2*(a19 - yt(n,20)) + 
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2*(dx/a).^2*F*a20/L; 

f20 = (dx/dt/a).^2.*2.*(a20 - 2*yt(n+1,21) + yt(n,21)) -(yt(n+1,22) - 2*yt(n+1,21) 

+ yt(n+1,20))-(a21 -2*a20 + a19) + b/dt*(dx/a).^2*(a20 - yt(n,21)) + 

2*(dx/a).^2*F*a21/L; 

f21 = (dx/dt/a).^2.*2.*(a21 - 2*yt(n+1,22) + yt(n,22)) -(yt(n+1,23) - 2*yt(n+1,22) 

+ yt(n+1,21))-(a22 -2*a21 + a20) + b/dt*(dx/a).^2*(a21 - yt(n,22)) + 

2*(dx/a).^2*F*a22/L; 

f22 = (dx/dt/a).^2.*2.*(a22 - 2*yt(n+1,23) + yt(n,23)) -(yt(n+1,24) - 2*yt(n+1,23) 

+ yt(n+1,22))-(a23 -2*a22 + a21) + b/dt*(dx/a).^2*(a22 - yt(n,23)) + 

2*(dx/a).^2*F*a23/L; 

f23 = (dx/dt/a).^2.*2.*(a23 - 2*yt(n+1,24) + yt(n,24)) -(yt(n+1,25) - 2*yt(n+1,24) 

+ yt(n+1,23))-(a24 -2*a23 + a22) + b/dt*(dx/a).^2*(a23 - yt(n,24)) + 

2*(dx/a).^2*F*a24/L; 

f24 = (dx/dt/a).^2.*2.*(a24 - 2*yt(n+1,25) + yt(n,25)) -(yt(n+1,26) - 2*yt(n+1,25) 

+ yt(n+1,24))-(a25 -2*a24 + a23) + b/dt*(dx/a).^2*(a24 - yt(n,25)) + 

2*(dx/a).^2*F*a25/L; 

f25 = (dx/dt/a).^2.*2.*(a25 - 2*yt(n+1,26) + yt(n,26)) -(yt(n+1,27) - 2*yt(n+1,26) 

+ yt(n+1,25))-(a26 -2*a25 + a24) + b/dt*(dx/a).^2*(a25 - yt(n,26)) + 

2*(dx/a).^2*F*a26/L; 

f26 = (dx/dt/a).^2.*2.*(a26 - 2*yt(n+1,27) + yt(n,27)) -(yt(n+1,28) - 2*yt(n+1,27) 

+ yt(n+1,26)) -(a27 -2*a26 + a25) + b/dt*(dx/a).^2*(a26 - yt(n,27)) + 

2*(dx/a).^2*F*a27/L; 

f27 = (dx/dt/a).^2.*2.*(a27 - 2*yt(n+1,28) + yt(n,28)) -(yt(n+1,29) - 2*yt(n+1,28) 

+ yt(n+1,27))- (a28 -2*a27 + a26) + b/dt*(dx/a).^2*(a27 - yt(n,28)) + 

2*(dx/a).^2*F*a28/L; 

f28 = (dx/dt/a).^2.*2.*(a28 - 2*yt(n+1,29) + yt(n,29)) -(yt(n+1,30) - 2*yt(n+1,29) 

+ yt(n+1,28)) -(a29 -2*a28 + a27) + b/dt*(dx/a).^2*(a28 - yt(n,29)) + 

2*(dx/a).^2*F*a29/L; 

f29 = (dx/dt/a).^2.*2.*(a29 - 2*yt(n+1,30) + yt(n,30)) -(yt(n+1,31) - 2*yt(n+1,30) 

+ yt(n+1,29)) -(a30 -2*a29 + a28) + b/dt*(dx/a).^2*(a29 - yt(n,30)) + 

2*(dx/a).^2*F*a30/L; 

f30 = (dx/dt/a).^2.*2.*(a30 - 2*yt(n+1,31) + yt(n,31)) -(yt(n+1,32) - 2*yt(n+1,31) 

+ yt(n+1,30)) -(a31 -2*a30 + a29) + b/dt*(dx/a).^2*(a30 - yt(n,31)) + 

2*(dx/a).^2*F*a31/L; 

f31 = (dx/dt/a).^2.*2.*(a31 - 2*yt(n+1,32) + yt(n,32)) -(yt(n+1,33) - 2*yt(n+1,32) 

+ yt(n+1,31)) -(a32 -2*a31 + a30) + b/dt*(dx/a).^2*(a31 - yt(n,32)) + 

2*(dx/a).^2*F*a32/L; 

f32 = (dx/dt/a).^2.*2.*(a32 - 2*yt(n+1,33) + yt(n,33)) -(yt(n+1,34) - 2*yt(n+1,33) 
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+ yt(n+1,32)) -(a33 -2*a32 + a31) + b/dt*(dx/a).^2*(a32 - yt(n,33)) + 

2*(dx/a).^2*F*a33/L; 

f33 = (dx/dt/a).^2.*2.*(a33 - 2*yt(n+1,34) + yt(n,34)) -(yt(n+1,35) - 2*yt(n+1,34) 

+ yt(n+1,33)) -(a34 -2*a33 + a32) + b/dt*(dx/a).^2*(a33 - yt(n,34)) + 

2*(dx/a).^2*F*a34/L; 

f34 = (dx/dt/a).^2.*2.*(a34 - 2*yt(n+1,35) + yt(n,35)) -(yt(n+1,36) - 2*yt(n+1,35) 

+ yt(n+1,34)) -(a35 -2*a34 + a33) + b/dt*(dx/a).^2*(a34 - yt(n,35)) + 

2*(dx/a).^2*F*a35/L; 

f35 = (dx/dt/a).^2.*2.*(a35 - 2*yt(n+1,36) + yt(n,36)) -(yt(n+1,37) - 2*yt(n+1,36) 

+ yt(n+1,35)) -(a36 -2*a35 + a34) + b/dt*(dx/a).^2*(a35 - yt(n,36)) + 

2*(dx/a).^2*F*a36/L; 

f36 = (dx/dt/a).^2.*2.*(a36 - 2*yt(n+1,37) + yt(n,37)) -(yt(n+1,38) - 2*yt(n+1,37) 

+ yt(n+1,36)) -(a37 -2*a36 + a35) + b/dt*(dx/a).^2*(a36 - yt(n,37)) + 

2*(dx/a).^2*F*a37/L; 

f37 = (dx/dt/a).^2.*2.*(a37 - 2*yt(n+1,38) + yt(n,38)) -(yt(n+1,39) - 2*yt(n+1,38) 

+ yt(n+1,37)) -(a38 -2*a37 + a36) + b/dt*(dx/a).^2*(a37 - yt(n,38)) + 

2*(dx/a).^2*F*a38/L; 

f38 = (dx/dt/a).^2.*2.*(a38 - 2*yt(n+1,39) + yt(n,39)) -(yt(n+1,40) - 2*yt(n+1,39) 

+ yt(n+1,38)) -(a39 -2*a38 + a37) + b/dt*(dx/a).^2*(a38 - yt(n,39)) + 

2*(dx/a).^2*F*a39/L; 

f39 = (dx/dt/a).^2.*2.*(a39 - 2*yt(n+1,40) + yt(n,40)) -(yt(n+1,41) - 2*yt(n+1,40) 

+ yt(n+1,39)) -(a40 -2*a39 + a38) + b/dt*(dx/a).^2*(a39 - yt(n,40)) + 

2*(dx/a).^2*F*a40/L; 

f40 = (dx/dt/a).^2.*2.*(a40 - 2*yt(n+1,41) + yt(n,41)) -(yt(n+1,42) - 2*yt(n+1,41) 

+ yt(n+1,40)) -(a41 -2*a40 + a39) + b/dt*(dx/a).^2*(a40 - yt(n,41)) + 

2*(dx/a).^2*F*a41/L; 

f41 = (dx/dt/a).^2.*2.*(a41 - 2*yt(n+1,42) + yt(n,42)) -(yt(n+1,nx) - 2*yt(n+1,42) 

+ yt(n+1,41)) -(yt(n+2,nx) -2*a41 + a40) + b/dt*(dx/a).^2*(a41 - yt(n,42)) + 

2*(dx/a).^2*F; 

result = 

solve(f01,f02,f03,f04,f05,f06,f07,f08,f09,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f

20,f21,f22,f23,f24,f25,f26,f27,f28,f29,f30,f31,f32,f33,f34,f35,f36,f37,f38,f39,f40

,f41); 

yt(n+2,2) = double(vpa(result.a01)); 

yt(n+2,3) = double(vpa(result.a02)); 

yt(n+2,4) = double(vpa(result.a03)); 

yt(n+2,5) = double(vpa(result.a04)); 

yt(n+2,6) = double(vpa(result.a05)); 
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yt(n+2,7) = double(vpa(result.a06)); 

yt(n+2,8) = double(vpa(result.a07)); 

yt(n+2,9) = double(vpa(result.a08)); 

yt(n+2,10) = double(vpa(result.a09)); 

yt(n+2,11) = double(vpa(result.a10)); 

yt(n+2,12) = double(vpa(result.a11)); 

yt(n+2,13) = double(vpa(result.a12)); 

yt(n+2,14) = double(vpa(result.a13)); 

yt(n+2,15) = double(vpa(result.a14)); 

yt(n+2,16) = double(vpa(result.a15)); 

yt(n+2,17) = double(vpa(result.a16)); 

yt(n+2,18) = double(vpa(result.a17)); 

yt(n+2,19) = double(vpa(result.a18)); 

yt(n+2,20) = double(vpa(result.a19)); 

yt(n+2,21) = double(vpa(result.a20)); 

yt(n+2,22) = double(vpa(result.a21)); 

yt(n+2,23) = double(vpa(result.a22)); 

yt(n+2,24) = double(vpa(result.a23)); 

yt(n+2,25) = double(vpa(result.a24)); 

yt(n+2,26) = double(vpa(result.a25)); 

yt(n+2,27) = double(vpa(result.a26)); 

yt(n+2,28) = double(vpa(result.a27)); 

yt(n+2,29) = double(vpa(result.a28)); 

yt(n+2,30) = double(vpa(result.a29)); 

yt(n+2,31) = double(vpa(result.a30)); 

yt(n+2,32) = double(vpa(result.a31)); 

yt(n+2,33) = double(vpa(result.a32)); 

yt(n+2,34) = double(vpa(result.a33)); 

yt(n+2,35) = double(vpa(result.a34)); 

yt(n+2,36) = double(vpa(result.a35)); 

yt(n+2,37) = double(vpa(result.a36)); 

yt(n+2,38) = double(vpa(result.a37)); 

yt(n+2,39) = double(vpa(result.a38)); 

yt(n+2,40) = double(vpa(result.a39)); 

yt(n+2,41) = double(vpa(result.a40)); 

yt(n+2,42) = double(vpa(result.a41)); 

yt1(n+2,:) = yt(n+2,:) + (pp(1).*x.^3+pp(2).*x.^2+pp(3).*x+pp(4) - 

ynratio.*x)*(1-yr(n+2)/(ytempaL - ys));  
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n = n + 1; 

end; 

fprintf('Finished computating the spring deflection....\n'); 

 

%play the spring animation 

play_movie(x,yt1,L,r,nt); 

 

nn = 6; %used node 

i = 1; 

pps = 0; %calculate the change condition of the pitch angle on the seat 

while(i <= nt) 

    pps(i) = ((yt1(i,nn) - yt1(i,nn-1))/(x(nn) - x(nn-1))); 

    i = i + 1; 

end; 

 

%calculate the velocity 

i = 1; 

va = 0;%the velocity of the spring fall down 

fa = 0;%the impulse force -M*dv/dt 

while(i <= nt) 

    if(i==1) 

        va(i) = (yt1(i+1,nn) - yt1(i,nn))/dt; 

        fa(i) = mg/L*x(nn)*va(i)/dt; 

    else if(i < (nt-1)) 

           va(i) = ((yt1(i+1,nn) - yt1(i,nn))/dt +  (yt1(i,nn) - yt1(i-1,nn))/dt)/2; 

           fa(i) = mg/L*x(nn)*va(i)/dt; 

        else 

            va(i) = (yt1(i,nn) - yt1(i-1,nn))/dt; 

            fa(i) = mg/L*x(nn)*va(i)/dt; 

        end; 

    end; 

    i = i + 1; 

end; 

 

%calculate the spring seat force  

i = 1; 

g1 = 0; 
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g2 = 0; 

g3 = 0; 

g4 = 0; 

ri = 0; %the new change radius when the spring is compressed 

Fe = 0; %The Spring Force by Wahl's equation F = GJ/r*cos(p)*delta(torsion) - 

EI/r*sin(p)*delta(curvature) - M*dv/dt 

while(i <= nt) 

    ri = r*cos(pps(i))/cos(pps(1)); 

    g1(i) = (sin(pps(i))*cos(pps(i))/ri - sin(pps(1))*cos(pps(1))/r); 

    g2(i) = G*J*cos(pps(i))/ri*g1(i); 

    g3(i) = (cos(pps(i)).^2/ri - cos(pps(1)).^2/r); 

    g4(i) = ei*sin(pps(i))/ri*g3(i); 

    Fe(i) = -(g2(i) - g4(i)); 

    i = i + 1; 

end; 

    Fe(3:nt) = Fe(3:nt) - Fe(3); %cut the beginning error 

    Fe = Fe + fa; 

 

i = 1; 

% The modifed spring Force by the energy terms, torsion and bending terms  

%F=GJ/r*cos(p)*delta(torsion) - EI/r*sin(p)*delta(curvature) + 

%1/2*EI*(delta(curvature)).^2/dy - M*dv/dt 

Fe2 = 0; %setup the modified force 

h4 = 0; %the second bending force 1/2*EI*(d^2y/ds^2).^2 

while(i <= nt) 

    h4(i) = 1/2*ei*((pps(i)-pps(1))/(x(nn)-x(nn-1))).^2; 

    Fe2(i) = Fe(i) + h4(i); 

    i = i + 1; 

end; 

fprintf('The Maximum Spring Seat Force: %7.2f(N)\n',max(Fe2)); 

 

%read the experimental data 

ytc = read_expt_op(); %read the experimental data 

t1 = linspace(0.0575,0.0828,1401); 

%t1 = linspace(0.0583,0.082,1401); 

 

%calculate the spectrum of the spring 

sp = cal_spec(Fe2(926*2+1:926*3)); 
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[spmax,spi] = max(sp(8:20)); 

fprintf('The %7.2f th harmonic would be excited\n',8+spi-1); 

fprintf('The scale of the spectra at this harmonic is %7.2f\n',spmax); 

fprintf('The fundamental natural frequency is %7.2f(hertz)\n',a/2/L); 

 

 

 

%output the data 

subplot(3,2,1); 

plot(t,yt1(:,8),t,yt1(:,21),t,yt1(:,34)); 

axis([0.055 0.085 0 0.05]); 

legend('node 8','node 21','node 34'); 

xlabel('time(s)'); 

ylabel('displacement(m)'); 

subplot(3,2,2); 

plot(x,yo,x,yt1(3,:),x,yt1(1525,:)); 

legend('no preload','time is 0 with preload','time is 0.0152 with preload',2); 

xlabel('spatial length(m)'); 

ylabel('displacement(m)'); 

title('variable pitch angle by the CTCS'); 

subplot(3,2,3); 

plot(t,Fe2,'-.',t1,ytc,':'); 

axis([0.0575 0.075 -50 200]); 

legend('modified eq','experimental data'); 

xlabel('Time(s)'); 

ylabel('Spring Seat Force(N)'); 

subplot(3,2,4); 

plot(sp(1:20)); 

xlabel('Number of Harmonics'); 

ylabel('Power of Harmonics'); 

title('Power spectrum'); 

subplot(3,2,5); 

plot(x,ypitch); 

xlabel('spatial length(m)'); 

ylabel('pitch angle(rad)'); 

title('Pitch angle at time is 0'); 

subplot(3,2,6); 

plot(t,pps); 
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axis([0.055 0.085 0.06 0.08]); 

xlabel('time(s)'); 

ylabel('the pitch angle'); 

title('the change of the pitch angle'); 

 

1.(B) Calculate the Curve of the Opposite Installation Direction 

%calcuate the curve of the spring installed on the opposed direction 

function ppn = c_pp_cal(L,ppo) 

x = 0:0.001:L; 

nx = length(x); 

 

y1 = pp0(1).*x.^3+ppo(2).*x.^2+ppo(3).*x +ppo(4); 

ymax = max(y1); 

y2 = ymax - y1; 

i = 1; 

imax = length(x); 

while(i <= imax) 

    y3(i) = y2(imax - i + 1); 

    i = i + 1; 

end; 

ppn = polyfit(x,y3,3); %get the curve coefficients 

   

1.(C) Read the Cam Profile 

%read cam profile 

%insert the values into the cam profile to get that 

function yr = cam_rise(t,dt,w) 

%[......deg........;.......displacement]; 

dg = 1.40625; 

cp = 0:dg:360;     

nc = 123.75/1.40625 + 1;             

cp(2,1:nc) = 0;  

nc1 = 298.125/dg + 1; 

nc2 = 360/dg + 1; 

cp(2,nc1:nc2) = 0; 

cp(2,(nc+1):(nc1-1)) = [5 9 13 17 17 22 26 34 43 56....  

    72 89 106 123 144 161 178 195 216 238....  

    259 284 314 348 386 432 483 542 606 678.... 

    758 847 945 1050 1169 1292 1427 1571 1728 1884.... 
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    2045 2215 2388 2557 2731 2909 3078 3247 3413 3578.... 

    3734 3899 4069 4238 4399 4560 4716 4860 4996 5114.... 

    5229 5326 5411 5478 5533 5576 5601 5610 5605 5584.... 

    5546 5483 5394 5284 5124 4983 4788 4577 4344 4103.... 

    3849 3586 3336 3095 2858 2621 2397 2189 1986 1795.... 

    1618 1457 1309 1169 1042 923 818 720 635 559.... 

    492 432 381 339 301 267 242 216 195 178.... 

    161 149 132 119 106 94 81 68 56 39 26 13 5]/1000000; 

theta = 2*pi*w.*t/pi*180; 

i_max = length(t); 

yr = 0; 

i = 1; 

j = 1; 

%calcualte the cam values 

while(i <= i_max) 

    if(theta(1) == cp(1,1)) 

        yr(1) = cp(1,1); 

    end; 

    while(theta(i) > cp(1,j)) 

        j = j + 1; 

    end; 

    if(i>1) 

    yr(i) = (theta(i) - cp(1,j-1))/(cp(1,j) - cp(1,j-1))*(cp(2,j) - cp(2,j-1)) + cp(2,j-1); 

    end; 

     

    j = 1; 

    i = i + 1; 

end; 

     

1.(D) Play Spring Animation 

%play the spring animation(the same coil diameter) 

function  play_movie(x,yt1,L,r,nt) 

fprintf('Computing the spring animation....\n'); 

i=1; 

ni = 1; %the initial play index 

ni_max = 2;%the play times 

kk = 0.01389; %the approximate length for one turn coil 

xx = 0:0.001:L; 
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xtt1 = r.*cos(xx./kk); %the x coordinate of the spring 

ytt1 = r.*sin(xx./kk); %the y coordiante of the spring 

fprintf('Playing the movie\n'); 

while(i<=nt) 

    ppt = polyfit(x,yt1(i,:),3); 

    ztt1 = ppt(1).*xx.^3+ppt(2).*xx.^2+ppt(3).*xx+ppt(4); 

    plot3(xtt1,ytt1,ztt1); 

    axis([-0.02 0.02 -0.02 0.02 -0.01 0.04]); 

    title('Playing time is 0 ~ 0.1(sec)'); 

    pause(0.01); 

    i = i + 10; 

    if(i == nt & ni <=ni_max) 

        i = 1; 

        ni = ni + 1; 

    end; 

end; 

fprintf('Finished the animation playing\n'); 

 

1.(E) Read the Experimental Data 

%Experimental data of the spring 

function C = read_expt() 

A=[experimental data ]; 

B=-A; 

C=(B+210); 

 

1.(F) Calculate the Power Spectrum  

%calcualte the spectrum of spring 

%input the spring seat force for one cycle 

function sp = cal_spec(fe) 

a = fft(fe); 

b = real(a);%get the real part 

c = imag(a);%get the imaginary part 

sp = sqrt(b.*b + c.*c); %get the power spectrum 

 

1.(G) The Main Optimization File 

%spring optimization 

%function x = cal_ops(d,D,L) 

%p = [p1 p2 p3 p4]; %the coefficients of the height profile 
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%w = [w1 w2 w3 w4]; %the coefficients of the wire diameter 

%c = [c1 c2 c3 c4]; %the coefficients of the coil diameter 

%x0 = [p w c]; 

x0 = [-0.2187   0.1716   0.0585  -0.00009 0 0 0 0.004 0 0 0 0.0255];  

%the coefficient of the spactial length 

x0 = [-0.2817 0.1716 0.0585 -0.00009 0 0 0 0.004 0 0 0 0.0255]; %[] 

lb = [-0.4 -0.2 -0.1 -0.1 -0.0002 -0.007 -0.003 0.0035 -0.0003 -0.004 -0.006 0.022];  

%lower bounds 

ub = [0 0.3 0.1 0.1 0.0002 0.007 0.003 0.0048 0.0002 0.005 0.004 0.029]; %upper 

bounds 

%set up the large or medium scale 

options = optimset('LargeScale','off');  

%x is the optimal value, fval is the optimal value of the objective function 

[x, fval] = fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options); 

%tranfer the optimal value to the constraint to get the constraint values 

[c ceq] = confun(x); 

 

1.(H)   Objective Function 

%objective function 

%[p1 p2 p3 p4 w1 w2 w3 w4 c1 c2 c3 c4] 

function obj = objfun(x)  

%point the path to the main program 

obj = 'simulation main program'; 

 

1.(I)   Constraint Function 

%constraint function 

%[p1 p2 p3 p4 w1 w2 w3 w4 c1 c2 c3 c4] 

function [c ceq] = confun(x) 

xf = 0.42; %the total helix length 

c = ['the main program to call the maximum spring force' - 210; 

        -'the main program to call the maximum spring force' + 120;]; 

ceq = []; 

 

1.(J)   Natural Frequency Distribution 

clear; 

clc; 

 

% original one 
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p0 = [-0.2187 0.1716 0.0585 -0.00009]; 

% constant pitch type 

pf = [ 0 0 0.0386/0.42 0]; 

 

%optimization types 

% type 1 

p1 = [-0.268699 0.145742 0.079511 -0.000198]; 

% type 4 

p4 = [-0.279762 0.149103 0.091418 0.001535]; 

 

% variable pitch angle -> frequency distribution equation 

ps = p0; 

 

s1 = 0; 

n = 50; 

dy = 0.0386/n; 

ddy = 1; 

ds = 0.00001; 

s2 = 0; 

s2t = 0; 

i = 1; 

while (i <= n) 

while (ddy >= 0.0001) 

    ddy = dy - (ps(1).*(s2.^3 - s1.^3) + ps(2).*(s2.^2 - s1.^2) + ps(3).*(s2 - s1)); 

    s2 = s2 + ds; 

end; 

    s2t(i+1) = s2 - ds; 

    dSL(i)= s2t(i+1) - s1; 

    s12(i) = (s1 + s2t(i+1))/2; 

    s1 = s2t(i+1); 

    ddy = 1; 

    i = i + 1; 

end; 

    G = 77e9; %shear modulus 

    mu = 7.86e3; %mass density 

 

 

% original one 
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d0 = [0 0 0 0.004]; 

D0 = [0 0 0 0.0255]; 

 

%optimization types 

%type 2 

d2 = [0.000111 0.005998 -0.001993 0.0046]; 

 

%type 3 

D3 = [-0.000198 0.004731 -0.004397 0.02345]; 

 

%type 4 

p4 = [-0.279762 0.149103 0.091418 0.001535]; 

d4 = [-0.000072 -0.000363 0.002625 0.004683]; 

D4 = [-0.000231 0.001972 0.003628 0.028783]; 

 

%variable wire diameter -> frequnecy distribution equation 

d = d0;  

%variable coil diameter -> frequnecy distribution equation 

D = D0; 

% frequnecy distribution equation 

fre = sqrt((G.*(d(1).*s12.^3 + d(2).*s12.^2 + d(3).*s12 + 

d(4)).^2)./(mu.*(2.*((D(1).*s12.^3 + D(2).*s12.^2 + D(3).*s12 + 

D(4)).^2)+(d(1).*s12.^3 + d(2).*s12.^2 + d(3).*s12 + d(4).^2))))./dSL; 

plot(s12,fre,'.r-'); 

xlabel('spatial length(m)'); 

ylabel('Frequency Distribution at each element'); 

title('Frequency Distribution') 

2. Program Code (ABAQUS-MATLAB program) 

2.(A) Main File 

function Fre = opt_spring(as, bs, cs, ds) 

format long; 

%the parameter of the variable pitch angle 

py = [-0.2187 0.1716 0.0585 -0.00009]; 

%the parameter of the variable coil diameter(optimization input) 

D = [as bs cs ds]; 

d = 0.004;%wire diameter 
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yf = 0.0386;%preloaded height 

ys = 0.024;%solid height 

L = 0.42;%total spatial length 

t = 0:0.0001:10*2*pi; 

x(1:length(t)) = 0; 

y(1:length(t)) = 0; 

x(1) = (D(1).*0.^3 + D(2).*0.^2 + D(3).*0 + D(4))/2; 

i = 1; 

j = 1; 

s = 0.002; 

ss = s; 

syt = 1; 

tx(1) = x(1); 

ty(1) = 0; 

tz(1) = 0; 

f(1) = 1; 

k = 2; 

%compute the coordinate of the spring with the variable pitch angle 

%and variable coil diameter 

while ss <= L+s 

    DD = D(1).*ss.^3 + D(2).*ss.^2 + D(3).*ss + D(4); 

    while syt == 1; 

        x2 = DD/2*cos(t(j)); 

        x1 = DD/2*cos(t(i)); 

        y2 = DD/2*sin(t(j)); 

        y1 = DD/2*sin(t(i)); 

        dl = sqrt((x2-x1).^2 + (y2-y1).^2); 

        dsl = s*cos(3*py(1).*ss.^2+2*py(2).*ss+py(3)); 

        f(2) = dl - dsl; 

    if(abs(f(2)) >= abs(f(1))) 

    syt = 2; 

    tx(k) = DD/2*cos(t(j-1)); 

    ty(k) = DD/2*sin(t(j-1)); 

    tz(k) = py(1).*ss.^3 + py(2).*ss.^2 + py(3).*ss + py(4); 

    ss = ss + s; 

    k = k + 1; 

    i = j; 

    f(1) = 1; 
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    else 

        f(1) = f(2); 

    end; 

    j = j + 1; 

    end; 

   syt = 1; 

end; 

clear x y; 

x = tx; 

y = ty; 

z = tz; 

clear tx ty tz; 

max_xy = length(x); 

  

%write a IGES wire file 

fidw = fopen('part1.igs','wt'); 

  

%write start section 

fidr = fopen('g1.txt','rt'); 

while 1 

    tline = fgetl(fidr); 

    if ~ischar(tline),   break,   end 

    fprintf(fidw,tline(1:80)); 

    fprintf(fidw,'\n'); 

end 

fclose(fidr); 

is = 1; 

  

%write global section 

fidr = fopen('g2.txt','rt'); 

while 1 

    tline = fgetl(fidr); 

    if ~ischar(tline),   break,   end 

    fprintf(fidw,tline(1:80)); 

    fprintf(fidw,'\n'); 

end 

fclose(fidr); 

ig = 4; 
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fid_de = fopen('temp_de.txt','wt'); 

count = 1; 

j = 1; 

%write DE section 

while(count <= 2*(max_xy-1)) 

de(1,:)=['     110' numstr(j,' ') '       0       0   10000       0       0       

000000001' numstr(count,'D')]; 

fprintf(fid_de,[de(1,:) '\n']); 

count = count + 1; 

de(2,:)=['     110       0       0       1       0                Line           

0' numstr(count,'D')]; 

fprintf(fid_de,[de(2,:) '\n']); 

count = count + 1; 

j = j + 1; 

end; 

fclose(fid_de); 

  

fidr = fopen('temp_de.txt','rt'); 

while 1 

    tline = fgetl(fidr); 

    if ~ischar(tline),   break,   end 

    fprintf(fidw,tline(1:80)); 

    fprintf(fidw,'\n'); 

end 

fclose(fidr); 

id = 2*(max_xy-1); 

  

count = 1; 

j = 1; 

%write the parameter section 

while(count <= (max_xy-1)) 

st1 = ['110,' num2str(x(count),'%6.5f') ',' num2str(y(count),'%6.5f') ',' 

num2str(z(count),'%6.5f') ',' num2str(x(count+1),'%6.5f') ',' 

num2str(y(count+1),'%6.5f') ',' num2str(z(count+1),'%6.5f') ',' '0,0;'];  

st1 = [st1 blanks(64-length(st1)) numstr(j,' ') numstr(count,'P')]; 

fprintf(fidw,[st1 '\n']); 

count = count + 1; 
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j = j + 2; 

end; 

ip = max_xy-1; 

  

%write the terminate section 

temp_t = [numstr(is,'S') numstr(ig,'G') numstr(id,'D') numstr(ip,'P')]; 

fprintf(fidw,[temp_t blanks(72-length(temp_t)) numstr(1,'T')]); 

fclose(fidw); 

  

fidw = fopen('opt_spring.py','wt'); 

fidr = fopen('template_p1.txt', 'rt'); 

while 1 

    tline = fgetl(fidr); 

    if ~ischar(tline),   break,   end 

    fprintf(fidw,tline); 

    fprintf(fidw,'\n'); 

end 

fclose(fidr); 

  

%check the current working directory 

workdic = pwd; 

i = 1; 

imax = length(workdic); 

while(i<=imax) 

    if(workdic(i) == '\') 

        workdic(i) = '/'; 

    end; 

    i = i + 1; 

end; 

fprintf(fidw,['igsFile =' '"'  workdic '/part1.igs' '"' '\n']); 

  

fidr = fopen('template_p2.txt', 'rt'); 

while 1 

    tline = fgetl(fidr); 

    if ~ischar(tline),   break,   end 

    fprintf(fidw,tline); 

    fprintf(fidw,'\n'); 

end 
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fclose(fidr); 

  

fprintf(fidw,['mdb.models[modelName].CircularProfile(name=''CircularProfile'', r=' 

num2str(d/2) ')' '\n']); 

  

  

fidr = fopen('template_p3.txt', 'rt'); 

while 1 

    tline = fgetl(fidr); 

    if ~ischar(tline),   break,   end 

    fprintf(fidw,tline); 

    fprintf(fidw,'\n'); 

end 

fclose(fidr); 

fclose(fidw); 

  

fprintf('The parameter: %8.7f %8.7f %8.7f %8.7f\n',as, bs, cs, ds); 

%run the Abaqqus 

fprintf('The Finite Element Analysis in ABAQUS is processing\n'); 

[istatus,result] = dos('ABAQUS cae noGUI=opt_spring.py'); 

fprintf('The Finite Element Analysis in ABAQUS is done...\n'); 

  

%read the field report in ABAQUS 

i = 1; 

i_max = 9; 

Vmax = 0; 

Fre = 0; 

fidr = fopen('spring_report.rpt', 'rt'); 

while i <= i_max 

    tline = fgetl(fidr); 

    if ~ischar(tline),   break,   end 

    if(i == 9) 

    if(tline(27:31) == 'Value') 

        Vmax = str2num(tline(35:46)); 

        Fre = str2num(tline(55:62)); 

    end; 

    end; 

    i = i + 1; 
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end 

fclose(fidr); 

%outoput the result 

fprintf('The fundamental natural frequency is %6.2f\n',Fre); 

fprintf('The value at this frequency is %7.5e\n',Vmax); 

 

2.(B) Optimization Main File 

%optimal main program 

clear; 

clc; 

x0 = [-0.2187 0.1716 0.0585 -0.00009]; 

%lower bound 

lb = [-0.4 -0.2 -0.1 -0.1]; 

%upper bound 

ub = [0 0.3 0.1 0.1]; 

%set up the optimization option 

options = psoptimset; 

options.Display = 'iter'; 

%x is the optimal value, fval is the optimal value of the objective function 

fprintf('Valve Spring Optimization\n'); 

fprintf('This program was designed by Yu-Cheng Su\n'); 

fprintf('in University of Missouri at Columbia\n'); 

fprintf('06.20.2009\n'); 

fprintf('Running the wire frame mode\n'); 

[x fval] = patternsearch(@objfun1,x0,[],[],[],[],lb,ub,@confun1,options); 

%tranfer the optimal value to the constraint to get the constraint values 

[c ceq] = confun1(x);  

fprintf('the best parameter: %16.15f %16.15f %16.15f\n',x(1),x(2),x(3),x(4)); 

fprintf('the optimal fundamental natural frequency: %6.4f\n', fval); 

 

2.(C) Objective Function 

%objective function 

%minimize the maximal stress 

function obj = objfun1(x)  

%point the path to the main program 

obj = -opt_spring(x(1),x(2),x(3),x(4)); 

 

2.(D) Constraint Function 
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%constraint function 

function [c ceq] = confun1(x) 

xi = 0; 

c = []; 

ceq = []; 
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3. Experimental Data 

3.1  Installation Direction 

 

Appendix 3.1.1 Spring normal installation 

 

 

Appendix 3.1.2 Spring opposite installation 

 



109 

 

3.2 The Force Figures at 1368, 2165, and 2372 (rpm) 

3.2.1 Normal Installation at 1368rpm 

 
Appendix 3.2.1 Force with a normal installation at 1368rpm 

 

3.2.2 Opposite Installation at 1368rpm 

 

Appendix 3.2.2 Force with an opposite installation at 1368rpm 
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3.2.3 Normal Installation at 2165rpm 

 

Appendix 3.2.3 Force with a normal installation at 2165rpm 

 

3.2.4 Opposite Installation at 2165rpm 

 

Appendix 3.2.4 Force with an opposite installation at 2165rpm 
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3.2.5 Normal Installation at 2372rpm 

 

Appendix 3.2.5 Force with an opposite installation at 2372rpm 

 

3.2.6 Opposite Installation at 2372rpm 

 

 

Appendix 3.2.6 Force with an opposite installation at 2372rpm 
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4. Equipment in the Experiment 

4.1  GM-ISUZU Engine 

YEAR: 1987 

DISPLACEMENT: 90inchA or 1.5 liters 

HP@RPM: 70@5400 

TORQUE Ft.Lbs@RPM: 87@3400 

Compression Ratio: 9.6:1 

Bore: 77mm 

Stroke: 79mm 

Camshaft: 25.932~25.96mm for journal diameter  

0.05~0.1mm for Clearance 

    Valve Spring: Free Length: 48.50mm 

                     Valve Closed Length: 21.5kg@39.9mm 

 

4.2  Dayton Compressor Duty Motor 
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4.3  Cen-Tech Photo Sensor Tachometer 

 

� RPM range: 2.5~99999 

� Digital photo 

� Stores last minimum and maximum 

           

� Auto-zero adjustment 

� +/- 0.05% accuracy 

� 5 digits LCD display 

 

Appendix 4.3 Photo Sensor Tachometer 

 

4.4  KISTLER Force Transducer 

Model: 9031A 

 

 

4.5  KISTLER Charge Amplifier 

Model: 5004 
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Appendix 4.5 The charge Amplifier 

 

The data of the charge Amplifier: 
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4.6  DATAQ Acquisition 

Model: DI-158UP 

 

Appendix 4.6 DATAQ Acquisition 

 

Data: 
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4.7  V-Belt 

Manufacturer: Goodyear 

Type:  

� V-Belt, HY-T PLUS, 59”, B56(5L590)   X 1 

� V-Belt, HY-T PLUS, 63”, B60(5L630)   X 1 

 

4.8  Timing Pulley 

Type: 

� Mean Radius: 2.1 cm  X1 

� Mean Radius: 3.2 cm  X1 

� Mean Radius: 5.5 cm  X1 

� Mean Radius: 6  cm  X1 

 

Appendix 4.8 The pulleys with different size 

  

4.9  KISTLER Cable 

Model: 1361A(X) 

Function: to connect the transducer and the charge amplifier 

� Wide Temperature range:-195 to 240ï 

� Capacitance: 30pF/ft 

� Specify length to 30 meters 

� “A” versions available in standard lengths of 1 through 5 meters 
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5. Software 

� WINDAQ Ver. 2.49 – to be used to acquire the experimental data 

� MATLAB R2007b – to run optimization program one and two with the 

derived dynamic equations in this thesis or FEA software, ABAQUS 

� CATIA V5R17 – plot the spring 3D structure 

� ABAQUS Ver. 6.8.1 – use Finite Element Method to verify the optimal results 

based on the derived dynamic equation and the solutions in Finite 

Difference Method 

 

 


