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ABSTRACT

The objective of this study is the optimal design of helical spring based on
dynamic criteria. The most important dynamic performance criterion of a helical
spring is the resonance behavior, including dynamic stress, coil closing, and surge. In
order to perform computer aided optimization, the construction of an accurate
dynamic model is necessary. The more variables are considered as design variables,
the more flexible and better designs are possible. More design variables are also
making the description of dynamics more complex. In this study, predictive dynamic
models for variable pitch angle, variable wire diameter, and variable spring radius are
derived by fundamental mathematics and mechanics principles. These models are
nonlinear partial differential equations, in general more complex than the well
known and commonly used wave equation.

Numerical solution of these dynamic models is also called dynamic simulation.
In this study, finite difference method combined with moving boundary solutions are
applied to obtain the dynamic response. Dynamic responses as a time domain,
discrete data from various models are compared with data from physical dynamic
experiments to verify the accuracy of the models, and to improve the parameters in
the dynamic models. Fast Fourier Transform (FFT) is utilized as a tool to evaluate
severity of resonance in different models and in optimization process.

To verify that the use of finite difference in the simulation process is providing
stable and reliable results, the numerical solutions are compared with solutions
obtained using ABAQUS-MATLAB programs. Results in terms of system eigenvalue
calculation obtained by different programs, either commercial or Finite Difference
Method (FDM), showed very good agreements.

Numerical optimization results obtained in this study also showed that it is
worthwhile to introduce more design variables to increase the flexibility in an

optimal design process for obtaining better results.
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NOMENCLATURE

F: spring force, a function of time and displacement

K: spring rate, a function of time and displacment

x: the displacemnt of spring for one end when the other end is fixed
r: coil radius of helical springs, a function of helix length, s

D: coil diameter of helical springs, a funciton of helix length, s
d: wire diameter of helical springs

p: pitch angle

p(s): variable pitch angle

d(s): variable wire diameter

D(s): variable coil diameter

n: coil turns

G: shear modulus

J: polar moment of inertia of wire cross section

E:Young's Modulus

I: area moment of inertia

I,: area moment of inertia with respect to x axis

1,,: area moment of inertia with respect to y axis

s: the arc length along the spring helix

t:time

I,,,: mass moment of inertia

m: mass per unit length

p: density of spring material

[ : total helix length

M_;4sn: the clashed mass of wire segment

k: curvature of the helix, a function of time and location, (s, t)
T: torsion

Y: rotation of wire in radians

U;: the torsional strain energy

U,: the first bending strain energy

U;: the second bending strain energy

T;: the rotary kinetic energy

T,: the radial kinetic energy

T5: the translatonal kinetic energy

c¢': the damping force per unit length of the wire per unit of velocity

a: wave speed along the helix

xi



a;nst: the instant acceleration

4:the same as x

M: the mass of wire segment to be deformed
Ak: curvature change

At: torsion chagne

Ay: rotation change

e: the coefficient of restitution

b: the viscous damping coefficient determined by the measurement
a,, and b,,: the coefficients of Fourier Series
w: fundamental frequency = ZTT[

n:number of harmonics

7: period of cyclic motion

xii



Chapter 1 - Introduction

1.1  Background and Motivation

The documented study of helical compression spring dated back more than 300

years, when Hooke [1678] published his law of springs as:
F =Kx (1.1)

This equation relates spring force to spring displacement in a simple format. It is
fairly accurate when the spring is simple and under static loading condition. J. H.
Mitchell [1890] is probably the first person to consider spring wire motion in three
dimensions. His three dynamic equations were derived from the Lagrange equation,
with assumptions of no direct shear and no axial force. Each small spring segment in
his assumption has three degrees of freedom to move in Cartesian coordinate frame
and one degree of freedom to twist about the wire axis. Love [1944] developed more
advanced dynamic equations based partly from J.H. Mitchell’s equations. However,
Love did not solve the equations. Wahl [1935] derived a stress correction factor
taking into account the effects of curvature and direct shear. To study the elasticity of
curved beam Timoshenko [1951, 1956] modified the shear strength and included
effects of curvature and direct shear according to Wahl’s factor [Wahl, 1935].
Timoshenko [1963] published the Timoshenko-Beam theory, and applied his theory
to explain the lateral buckling of the helical spring. Due to the fact that the axial load
is complex if the effects of the pitch angle as well as curvature change are taken into
account, Ancker and Goodier [1958] obtained a solution by using a thin slice method
and expressed the pitch and curvature as basic variables. Ancker assumed that the
cross-section in variable pitch angle spring remained circular which was not accurate.
Wahl [1963] published most important book in springs for last 50 years, combining
his work from 1930s to 1950s.

The early spring research was focused on the static behavior. In modern
applications of helical springs, such as valve springs in any automotive engine or
recoil spring in automatic firearm, dynamic phenomena have dominant importance.
The research focus shifted from the static condition to the dynamic loading and
vibration suppression. Fig.1.1 and 1.2 show the main components in the valve train
of an automotive engine for two different types. Usually, the automotive engines
have a “red line” speed around 5000 RPM. Therefore, the simulation and dynamic

experiments in this thesis were carried out around 4800 RPM (referring to Chapter 5).
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According to Lin [1989], the valve spring is usually the first component to fail in valve
train for dynamic loading situation. As a consequence, improving spring
performance is the key in improving valve train performance. Wahl [1963] used the
force equilibrium to re-derive the wave equation, and proposed to use it to describe
the resonant of helical springs. Pisano and Freudenstein [1983] combined the spring
study and cam profile into a complete valve train dynamic model. The modified wave
equation [Lin, 1987] was published to offer a better result by using the extended
Hamilton’s Principle and calculus of variations. This thesis work is based on Lin and
his students’ previous work from last 20 years, and with additional theoretical

derivation, numerical and experimental results.

1.2 Approach and Organization

Using extended Hamilton’s Principle to derive helical spring with nonlinear
effects, then using finite difference method to solve the governing dynamic
equations, and optimally design helical springs are the main objective in this thesis.
For this goal, building an accurate model to get the vibration of valve spring is the
starting point.

Totally, there are six chapters in this thesis. Chapter One presents the
motivation, the approach and a brief introduction for spring research. More
literature review will be included in each chapter, when the diverse topics are
discussed.

Chapter Two focus on mathematical modeling, and the construction of various
dynamic models of helical springs. It starts from the limitation of the commonly used
wave equation, which is the simplest linear partial differential equation describing
many physical phenomena to a satisfactory degree of precision. If the pitch angle of a
helical spring is a function of a few design variables, then wave equation can no
longer accurately describe the dynamic behavior. In this study, not just pitch angle
will be considered a function defined by a few design variables, wire diameter and
coil diameter are also variables that are defined by a set of design variables. These
design variables can be the coefficients of a polynomial, or coefficients of a series
that gives precise description of the helical spring.

Chapter Three discusses methods for solving the dynamic equations. Finite
difference method is used for solving the nonlinear partial differential equations. Fast
Fourier Transform is used as a scope to view and measure the dynamic performance.
Since all solutions were first expressed as a discrete time domain sequence, the term
of “dynamic simulation” is used to present the solutions to various dynamic models,

as it has been done by other researchers in the literature.
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Chapter Four describes the dynamic experiments in order to verify the derived
dynamic equations and simulation are correct and accurate. Experimental data can
be divided into two sets. The first set is used to calibrate the quartz load washer, the
charge amplifier and data acquisition system. The second set is used to compare with
the numerical results obtained in Chapter Three.

Chapter Five compares eigenvalues obtained by different numerical tools. The
first one is using MATLAB programming to get difference solution as described in
Chapter Three. The second approach is to use MATLAB with the well known
commercial finite element analysis program, ABAQUS. Then, there are four types of
optimal designs to be demonstrated such as variable pitch angle, variable wire
diameter, variable coil diameter, and the combination of the first three types and
evaluate the results, obtained by finite difference solution.

Chapter Six is the summary of this thesis, with conclusion and suggestion for
further study of valve springs, or any helical springs that are used in high speed
loading situations.

Appendix section after Chapter Six contains the specifications of instruments
used in the investigation and dynamic testing. Experimental data and programs for
optimization and in ABAQUS-MATLAB are also attached.

Fig.1.1 The structure of newer valve train [Fujimoto, 2007]
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Chapter 2 - Dynamic Equation and Resonance

2.1 Introduction and Geometric Parameters

A valve spring is an energy storage device. For two springs with the same
displacement, the stiffer spring stores more energy. In order not over-load the spring
material, energy stored per volume is a constrained by the material. A number of
elementary optimization textbooks use the weight of the spring as the objective
function. Dynamically, stiffer springs will have a higher lowest natural frequency, to
optimize the design of a helical spring, one has to consider several aspects of the
valve spring like kinematic (force as a function of displacement) and dynamic
characteristic (natural frequency). The kinematics is usually specified by
displacement and acceleration requirements of the cam. Therefore, by changing the
spring parameters such as p(s), D(s), and d(s), one can design the stiffness
characteristic to the desired specification. These basic design parameters are shown
in Fig.2.1. In addition to those, the cross section and material properties of the wire
have direct influence on the stiffness. The valve spring is usually the softest
component with the lowest frequency in the valve train. Its influence on the overall
dynamics of the system is significant and cannot be ignored in a numerical model.
The dynamic response of the spring is substantially different from the static response
due to the internal dynamics of the spring. The internal oscillations in the spring are
commonly referred to as surge modes. The contact between the windings is
responsible for a large portion of the non-linearity of a spring, since it reduces the
number of active coils during spring compression. Another phenomenon in
conjunction with this contact is called coil clash, which happens when external
excitation generates waves in the spring with enough amplitudes for adjacent
windings to touch. This causes undesired force responses and has negative impact
on the durability of the spring [Lin, 1989].

In Fig.2.1, helical springs can be described in a local coordinate along three
directions, tangential, normal and binormal. The symbol t represents the tangential,
‘n’ normal, and ‘b’ binormal. The torsion works on the b-n plane, and the curvature
occurs on t-n or b-t plane [Greenwood, 1988; Kreyszig, 2006]. In this study, the
dynamic equations are expressed in as basic parameters and directions as possible.

Geometry and deformation of a helical spring can be completely described by
curvature and torsion at any location of the helix. To describe a helix by using

curvature and torsion, modern differential geometry started from Feret-Serret
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formula, then the expressions quickly get quite involved [Lin, 1988]. Before the dawn
of differential geometry, Lord Kelvin intuitively derived the curvature and torsion and

expressed them in very simple formulas which are still used commonly:

_cos?(p(s, 1))

k(s,t) = %5 (2.1)

Torsion is the main factor to affect potential energy, and the deformation of helical

springs and is expressed as

cos(p(s, t)) sin (p(s, 1))

,t) = 2.2
(s, t) .0 (2.2)
Another expression related to the torsion, rotation can be defined as

oY(s,t

% =1(s,t) — 17(s,0) (2.3)

where, 7(s,0) is initial torsion at the free height condition. Lin [1988] also pointed
out that these simple curvature and torsion formulas are accurate if the pitch and
spring radius remain constant. If the changes of spring radius and pitch are significant,

then more complex formulas must be used to avoid large error.

Fig.2.1 The helix description and parameters of helical springs



2.2 Dynamic Equation

Spring dynamic equations can be derived by force equilibrium or energy
equilibrium. Wahl [1963] used force equilibrium in a spring element for obtaining the
dynamic wave equation. This equation gives an accurate result. Also, Pisano and
Freudenstein [1984] derived the dynamic wave equation using energy equilibrium,
and offered a more accurate dynamic equation. For more accuracy, modified wave
equations were derived by inserting a virtual internal force. The modified wave

equation and the modified spring seat force equation are discussed below in detail.

2.2.1 Wave Equation Using Force Terms

The simplest wave equation is to have the second-order, linear relation derived
by Newton’s 2" Law and solved by d’Almbert in 1707.

2 2
0y _ 297 (2.4)

9z~ ¢ 3s2
d’Almbert solved this problem successfully by a simple difference method. For
spring dynamic applications, it has been derived in many technical papers [Love,
1927; Johnson, 1972; Pisano and Freudenstein, 1984]. In Wahl’s textbook [1963], the
wave equation with the damping term was derived by static force equilibrium, and its
result can describe the effects of natural frequency and resonance. Force analysis in a

valve spring is described as follows and shown in Fig.2.2.

The force acting to accelerate the element is
v d?ds p 0%y
@4 9tz (2.5)
The net force acting to accelerate the element:

nGd* 9%y

= 2 (2.6)
Fy 8D2 0s? 5

In addition, the damping force shall be considered as follows

Internal hysteresis in the spring material
Air damping

Damping due to friction in the end turns

PN Re

Damping due to loss of energy in the supports



Therefore, the damping force could be expressed as:

dy
F,=c —d 2.7
a=c'5ods (2.7)

Since

Fo=F, —Fy
This leads to a dynamic wave equation with the damping term

0%y [ 4c’ oy [Gd*]o%y
ot2  |md?p|at  [2D%p|as?

(2.8)

4c’

Where, [
nd?p

. . daz.
] is the damping term and [ZGDZp] is the wave speed term.

Fo

Fa

Fig.2.2 Force analysis of an element of helical springs

This damping term is a measure of the equivalent damping in the spring. For most
cases, this term varies with many factors such as material, amplitude of motion,
design of end turns, and rigidity of support. If the damping is zero here, it describes
the longitudinal wave transmission for the prismatic bar. The damping term is

usually determined by the experimental data and not easily determined by analytical
method [Wahl, 1963]. As a matter of fact, Equation (2.8) is relatively accurate to
describe the dynamic condition of valve springs with a constant pitch angle or a

small pitch angle variation. This approximate method for calculating spring dynamics
considers only torsion of the wire and ignores the effect of closed end coils. In reality,
the coil-to-coil contact should be taken into consideration and it allows the end coils



to leave their stops, using force equilibrium only, we take the torsional deflection of
the wire into consideration. In addition, for the better accuracy, the wave speed
term was modified using energy equilibrium by Pisano and Freudenstein [1984].

2.2.2  Wave Equation Using Energy Terms

The spring motion originates from the change in kinetic energy and potential
energy, and can be deduced from the Hamilton’s principle. Potential energy is energy
that is stored in an object. In the deformation of valve springs, it consists of torsional
strain energy, first bending strain energy, and second bending strain energy. On the
other hand, kinetic energy is energy due to motion composed of translational, radial,
and rotary kinetic energy terms. During spring compression and release, series of
energy conversion between potential energy and kinetic energy happen. As a result,
the wave equation in spring applications can be derived using energy equilibrium [Lin,
1987]. Let us discuss potential energy first. Torsion is the twisting of an object due to
an applied torque. In circular sections, the resultant shearing stress is perpendicular
to the radius. Bending characterizes the behavior of a slender structural element
subjected to an external load applied perpendicularly to an axis of the element. In
valve springs, that is, the first bending generates the deformation along the b axis,
and the second bending produces that along the n axis. Three potential energy terms

in terms of basic parameters are represented as

L1 9
U, = f (s lp(s t)) (2.9)
0
U, = fOL%EI(k(s, t) — k(s,0))%ds (2.10)
Lq
Us =L EEI(y”(s,t))zds (2.11)

Along the t axis, the spring element produces torsional strain energy U; . In fact, this
term is the largest among all the three potential energy terms and occupies over
ninety percent during the spring compression. When the local curvature is changed,
it generates first bending energy U,. It is much smaller in comparison with the
torsional strain energy. Second bending energy U; results from the local change in
pitch angle. The scale of this term is similar to the first bending energy term. The

three kinetic energy terms are defined as follows



T, = f 61,0(5 t)) (2.12)

f . ar(s t))zd (2.13)
2™
j % ay(s t))z (2.14)

Among these, translational kinetic energy T; is the only energy term considered in
most technical papers and research. T, is the radial kinetic energy and T; is the
rotary kinetic energy. By considering torsional energy, translational kinetic energy,
and rotary kinetic energy, a modified wave equation was derived as

0%y GJ azy
+])

ot2 nrzdz

p(

Any physical system always has the damping effect, hence by inserting one damping

term into the above equation we have,

62y+ bay GJ 0%y
ot? ot 7TT'2d2 0s?
o( +n]%°

(2.15)

Where, b is the viscous damping coefficient determined by the measurement.

Eqg. (2.15) can describe the spring with a constant pitch angle or a smaller pitch angle
variation. A smaller pitch angle means that it is less than 15° or deflection per turn is
less than D/4. For large deflections per turn, a deflection correction factor should be
employed. In this condition, bending stresses cannot be ignored and needs to be
considered. A stress correction factor K, was published to modify this problem by
Wahl [1963].

( _4c=1 0615
W 4c— 4 c

The first term on the right side describes the bending term, and the second term is
the shear stress factor. Eq. (2.8) ignored the bending effect, resulting in the variation.
In fact, the calculated wave speed values in Eq. (2.15) are relatively close to those in
Eqg. (2.8), but offer more accurate results. That comparison would be shown in
SECTION.2.2.3.3.

In reality, valve springs always have the coil clash to affect spring performance

and equation accuracy. For better accuracy, the extra clash force was considered in
10



the Eq. (2.15), and a more accurate equation Eq. (2.16) to approximate the real
engine condition is derived. This more accurate nonlinear wave equation was derived
by Lin and Pisano [1987].

02 d EI(Ak)? G 02
a_tz] +b G_Jt/ * andz) - T[TZd]Z 65}2] (2.18)
p( ) +J) p( ) +))

2.2.3 A New Nonlinear Wave Equation

This section describes another derived modified wave equation, helical springs
with design variables involving variable pitch angle, variable coil diameter, and

variable wire diameter in a polynomial expression.

2.2.3.1 Constant Pitch Angle

Eqg. (2.8) derived by Wahl [1963] can describe the constant pitch spring or the
smaller pitch angle variation. For most spring applications, it is accurate enough. In

comparison of Eq. (2.8), Eq. (2.15) also offers similar numeric solutions.

2.2.3.2 Variable Pitch Angle

As discussed previously, helical springs with smaller pitch angle variation can be
calculated by Eq. (2.8) or (2.15). In contrast, Eq. (2.16) offers a better fitting
considering the extra coil clash, but it is not as simple as determining Ak and]. As a
result, a simpler equation needs to be derived. We describe how to make variable
pitch springs first and then introduce a virtual internal force to derive that.

Modifying the wave equation to handle nonlinear conditions has been a problem.
The wave equation should be of simplest type in terms of basic design variables. In
fact, a variable pitch spring can be made by the method in Fig 2.3, using heat
treatment and external force that is applied at open end of the spring to compress or
to elongate the spring. After quenching and tempering in a low temperature, original
constant pitch angle springs were made to new variable pitch angle springs.
Therefore, it is reasonable to imagine that there is a virtual internal force formed in
this spring, which causes a permanent deformation, and presents a variable pitch
angle [Chironis, 1961].

11



Fig.2.3 How to make the multi-spring rate [Chironis, 1961]

Spring potential energy is defined as
E = =Kx? (2.17)

Gad* and x = 8FD3N

Where K =
8D3N Gd*

As helical springs are in a smaller pitch angle, substituting [ = NmD into Kand x,
hence the simplified K and x are given by

K = nGd* A= 8FD?l
~ 8Dzl " T nGar
And then from Eq. (2.17) we get:
. 4FD?1 (2.18)
"~ nGd* '

From the previous discussion and Fig.2.3, a virtual internal force considered is
reasonable, so that each mass element along the spring helix was drawn and
deformed, hence we have

Internal force term =

dE  4D%l OF 16D%l OF _ 16D%l nGd*dy 2 dy

oM~ nGd* md” p2Gd® ds  pm2Gde 8D%L ds  pmd? ds
7}

Where, M is mass of wire segment

The spring height along the spring helix could be defined as

12



y(s) = P153 + stz + D3S + Pa (2.19)

The curve in Eq. (2.19) is presented like Fig.4.1. When it is differentiated, its pitch
angle along the spring helix can be defined as

0
p(s) = a—z = 3p;52 + 2p,s + p3 (2.20)
And the pitch angle as a function of arc length is shown in Fig.4.1. Substituting Eq.
(2.20) into virtual internal force term, it is expressed as

0E 2
oM~ pmd?

p(s)

Inserting the virtual internal force term into equation (2.16) we have

62y+ 4c’ 6y+ 2 ) GJ] 0%y

— = p(s) =

9t ' md?p dt = pmd? nrid? | 0s? (2.21)
S pC7—+N

2.2.3.3 Variable Coil Diameter

According to a textbook [Nunney, 2007], variable pitch springs are usually limited
to elevate its fundamental natural frequency, hence the spring with variable coil
diameter was invented. This case has been used in the valve train system for a long
time and originated from the Formula One racing. This type of spring is also called
“conical Spring” or “beehive Spring”. Today, Formula One is using the valve train with
the hydraulic control instead of conventional springs. For Grand Prix cars, where
engine speeds of around 18,000 rpm are now being achieved, the motion of their
valve is controlled not by steel but by pneumatic springs. Its idea is to use the valve
stem plungers moving in chambers of compressed air to maintain the valves in
contact with their cams. The conical springs have many advantages such as, elevating
the fundamental natural frequency and an easy to manufacture. This type of spring

with variable coil diameter along the spring helix is like Fig.5.4 and is defined as
D(s) = D;s® + D,s? + D3s + Dy and r(s) = D(s)/2 (2.22)

In order to express the parameter J in Eq. (2.21) in a simpler expression, we need
to realize the area moment of inertia and polar moment of inertia first. The area
moment of inertia of a beams cross-sectional area measures the beams ability to
resist bending. The larger the Moment of Inertia the less the beam will bend. The

moment of inertia is a geometrical property of a beam and depends on the reference

13



axis. The smallest moment of inertia about any axis passes through the centroid. The
following are the moment of inertia in a mathematical expression:

I, = szdA

y: the distance from the x axis to an area element dA

x: the distance from the y axis to an area element dA

}.-l.

dA

o X X
Fig.2.4 A schematic shows the moment of inertia
The polar area moment Of inertia of a beams cross-sectional area measures the

beams ability to resist torsion. The larger the polar moment of inertia the less the

beam will twist. By the Perpendicular Axis Theorem, the polar moment of inertia in a
mathematic expression is as follows:

J= Ix+1y=j(x2+y2)dA

For a circular section with diameter d

wd*

b=l =5
md*
J=ltly ==

Substituting this expression | into the wave speed parameter a in Eq. (2.21), the

new wave speed parameter for this type of variable wire diameter is expressed as
follows:

14



Cd? 1/2
a=|————
[p(8r2 + dz)l

. . . s D
Besides, the coil radius 7 in this wave speed could be expressed as r = > and we

have

Gd* : (2.23)
L(Z[D(S)]Z + dz)l

The new dynamic wave equation with basic parameters is derived as

0%y  4c’ oy 2 G[d]? 0%y
2t oot zp(s) = 2 2 2
ot mdpdt pnd p(2[D(s)]* +d?) ds

(2.24)

From the above discussion, we found that the polar moment of inertia is only related
to wire diameter; as a result, the original wave speed term in Eq. (2.16) with the
polar moment of inertia can be simplified in terms of variable wire diameter. As
mentioned previously, the wave speed term in Eq. (2.8) is relatively approximate to
that in Eq. (2.16). That comparison is shown as follows, and the variation is not over
one percent. From this result, we can understand that torsion occupies over 95
percent of all strain energy. As the spring is in a small pitch angle variation, Eq. (2.8) is
enough for calculating the dynamic conditions.

2 11/2
aineq.(2.8) = I l

2D?p
1/2 12
aineq.(2.16) = o = [ Gd” l
q.(4.16) = 272 = 2 2
p(nr4d +)) p(2[D(s)]? + d?)

2.2.3.4 Variable Wire Diameter

Lin’s technical paper [1993] studied a new type of spring with variable wire
diameter and its features. In comparison with conventional springs, it offers a
relatively flexible design — variable wire diameter. The characteristic in this spring is
that the weight at each element is different, similar to that of conical spring. In

Optimization chapter, we can find this type of spring can provide the best

15



performance than variable pitch springs, even conical springs, but it has a serious
problem. The endured stress is reduced largely as the wire diameter is smaller; when
designing this spring, we need to take care of this problem. The wire diameter along

the spring helix is like Fig.5.6 and is defined as
d(s) =d;s® +d,s?+dzs+d, (2.25)

The wire diameter term in Eq. (2.24) can be substituted by Eq. (2.25) and the new

expression with design variables along the spring helix can be defined:

9%y ac’ oy Gld(s)]? 9%y

2
at? n[d(s)]zpa pr[d(s)]? p(s) = p(2[D(s)]?+[d(s)]?) ds?

(2.26)

if the coil diameter is constant, we can define
[Dli DZ' D3, D4] = [0, O, O' D]
If the pitch angle is constant, we can define

[pb P2, D3, p4] = [0' 0, 0, p]

Eqg. (2.26) can express any type of springs no matter it is variable pitch, variable coil
diameter, variable wire diameter, or the combination of these variable designs. For

the combination type, it is discussed below.

2.2.3.5 Variable Pitch Angle, Wire Diameter, and Coil Diameter

Eq. (2.26) can describe springs with variable pitch angle, variable coil diameter,
and variable wire diameter. As the natural frequency at each element along the
spring helix is completely different, it can offer the best performance due to its
extreme flexible design. In Optimization chapter, we will verify that. For helical
springs with a constant pitch angle, a constant coil diameter, and a constant wire
diameter, equation (2.26) can also be used to do the computation. Coefficients in
p(s) needs to be defined as follows:

[p1, D2, p3,P4] = [0,0,0,p]

As the wire diameter is constant, coefficients in d(s) need to be defined as follows:
[dy,d,,d3,ds] =[0,0,0,d]

As the coil diameter is constant, coefficientsin D(s) need to be defined as follows:
[Dy,D,,D3,D,] =[0,0,0,D]

Later in Optimization chapter, we have Eq. (2.26) to run optimization and the
16



simulation with different designs.

2.2.4  Spring Seat Force, Impact, and Collision

During spring compression and release, mainly twist and bending effects are

shown. The relation between them and force was derived as [Wahl, 1963]
F = %cos(p) At — %sin (p) Ak (2.27)

Eq. (2.27) takes into account the effect of the change in curvature and in torsion. In
fact, the change in torsion is very large during spring compression, so it is very easy
to predict the spring seat force. As discussed previously, Eg. (2.8) cannot describe a
larger pitch angle variation due to the ignored bending effect [Wahl, 1963]. As a
result, Eq. (2.27) was derived to describe a larger pitch variation by considering the
bending term. For the more accurate result, a better fitting equation is sought by Lin
[1987]. He used the Hamilton’s principle to insert another bending energy term Us,

The final term on the right hand side originates from the change in curvature.
However, it’s very difficult to solve directly and often needs Fourier series, Finite
Difference Method or Finite Element Method for getting the numeric values. In
Simulation chapter, we will use MATLAB to demonstrate that with Finite Difference
Method — Crank-Nicholson Method.

In the experiment, several interesting things were observed. For example, a
sudden decrease of force happened when the cam finished the rise (corresponding
to maximum spring compression). The faster the camshaft the greater the dip of the
spring seat force at maximum compression. For an intuitive explanation of this
phenomenon, consider sitting in an accelerating bus. When the bus accelerates
suddenly, the passengers feel the inertia force to pushing back. By contrast, when it
suddenly stops, the passenger will feel the force pushing forward. That relation is
shown in Fig 2.5.
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Fig.2.5 Impact of helical springs [Chironis, 1961]

This figure shows how the helical spring works in the valve train. In the stage 1,
an applied force F acts on the top end, and a spring seat force is generated at the
bottom end. When it reaches stage 2, the spring seat force reaches the maximum.
The process from the stage 2 to stage 3 is the most important one. When the spring
just leaves the stage 2 to stage 3, there is a fictitious force upward. In fact, the
process between stage 1 to 2 and stage 2 to 3 is similar, but in opposite direction,
that can be expressed as

dv

F=—-M—
dt

. ) av . ) ) .
Where, M is mass of wire segment, - s the instant acceleration. Hence Eq. (2.28) is

modified as

-4 _ B 9 (L 2) _ My
F=- cos(p) At - sin(p) Ak+ay (2 EI(6k) )

(2.29)

For the phenomenon, the faster the camshaft the greater the peak of spring
seat force, it is seen in Fig.2.7, and can also be explained by a fictitious force. Besides,
another phenomenon sometimes occurs in the spring, that is, coil clash, especially at
high speeds. In fact, the idea for coil clash is similar as the impulse idea, mentioned
above. The only difference is its direction due to collision. In order to understand that,
it is necessary to understand displacement, velocity, and acceleration resulting from
cam profile. In reality, the valve spring often cannot follow the cam profile at high
speeds. That is this phenomenon to cause excited surge (referring to SECTION.2.4.2).
The cam profile is shown in Simulation chapter (referring to Fig3.3). Cam velocity and
acceleration are shown in Fig.2.6 and Fig.2.7. The two figures present the standard
automotive characteristic cam curves [Rothbart, 2004]. The spring collision is
presented in Fig.2.8. The upper spring segment has mass A, and the lower one has
mass B. The upper A has higher velocity than the lower one due to its larger

18



deflection. The initial velocity on mass A is Va, and on mass B is Vb; When mass A
collides with mass B, their new velocities could be obtained as [Greenwood, 1988]

m, —em 1+e)m

Mo emy, Arem

Va' =
mg, +my mg, +my

and

1+e)m m, —em
_Qtemg  (my —emy)

Vb’ Vb

mg, +m, mg, +m,

If we assume the two mass segments are the same and it’s a perfectly elastic impact

as e =1, the expression Vb’ above can be reduced to

Vb = vativh+iva_Svp=v
—27%4T5 2 aTpyp=ra

and
Va' =Vb

After the collision, their velocities are exchanged and head in the same direction. The
initial velocity on mass B is Vb, but its new velocity is on mass A is Va. The velocity

difference is
AV =Va-Vb

Substituting impact with AV term in Eq. (2.29), the new spring force equation is
modified as

F =

Gl . <L 9 (L 2\ _ ¥ _ Av
- cos(p) At —sin (p) Ak % (2 EI(5k) ) M——Mcqasn - (2.30)

We need to consider one thing, that the last two terms on the right hand side of
equation (2.30) are different though both they are inertia force in nature, as one is
inertia impulse, and another is collided impulse. Eq. (2.30) offered a better curve
approximation for computing spring force in dynamic loading situation for valve

springs.
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Fig.2.6 Cam velocity

acceleration(m/s?)

_25 1 1 1 1 1 1 1
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Fig.2.7 Cam acceleration

Y i: Va > Vb % iivbwa'

Fig.2.8 Two spring segments collides on each other
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2.3 Numerical Solutions

2.3.1 Finite Difference Method

Because of the importance of the wave equation to a wide variety of fields, there
are many analytical solutions of that equation for a wide variety of initial and
boundary conditions. However, nonlinear partial differential equations are difficult to
solve by analytical methods, or where the analytical solution is even more difficult to
implement than a suitably accurate numerical solution. Here we will discuss one
particular method for FD, as FEM, is commonly considered a numeric but not
analytical solution of partial differential equations called the finite difference method.
The finite difference method begins with the discretization of space and time such
that there is an integer number of points in space and an integer number of times at
which we calculate the field variables, in this case just the displacement. The
resulting approximation is shown schematically in the simulation chapter. For
simplicity here we will assume equal spacing of the points s in one dimension with
intervals of size h, and equal spacing of the time steps t at intervals of size k. This
simplifies the system considerably, since instead of tracking a smooth function at an
infinite number of points, one just deals with a finite number of displacement values
at a finite number of locations and times. Basically, there are two types of finite
difference to express a continuous derivative: forward difference method and
difference method. The third type is a combination of these two, that is the central
difference for derivative expression. The following is the brief mathematical

description for the step size of three finite difference methods:
Forward Difference:
Apf(s) =f(s+h) —f(s)
Backward Difference:
Vif(s) =f(s)—f(s—h)

Central Difference:

1 1
61f(5) = f(s +5h) = f(s = 3h)

Where h: the space step shown in Fig.2.9

Then, for solving Partial Differential Equations numerically, there are explicit

method—solving one variable for the next time step in one equation, implicit
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method-solving all unknowns in the time step by solving coupled simultaneous
equations. According to the technical paper [Crank, John and Phyllis Nicolson, 1947],
Crank—Nicolson method is second order implicit method and it is unconditionally
stable solving partial differential equations. In addition, Reddy [1984] raised a family
of approximation 6 to check the stability of many methods, included in Finite
Element Method and Finite Difference Method.

6 = 0 -> Forward Difference scheme -> conditionally stable

1 . .
0 = 5 > Crank-Nicolson scheme -> unconditionally stable

0 = 2 -> Galerkin method -> unconditionally stable
6 = 1 ->Backward difference method -> conditionally stable

For accuracy and stability, Crank-Nicolson Finite Difference method is
implemented to compute Eq. (2.26). However, the approximate solutions can still
contain (decaying) spurious oscillations if the ratio of time step to the square of
space step is large (typically larger than 1/2) [Thomson, 1995].

2.3.1.1 Explicit Finite Difference Method

Using an explicit difference at time t,, and making a space derivative at
position s; shown in Fig.2.9. The time step is k and the space step is h. The time
index is j, and the space index is n. For the convenience of expressing simple

equations in Finite Difference Method, only basic parameters are shown below.

n+1
-
n g }( .
n-1
. B
j-1 j j*1

Fig.2.9 The grid on the space and time

Substituting the space and time derivatives (referring to Fig.2.10) into Eq. (2.26), we

have the recurrence equation as
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yj,n+1 - 2yj,n + yj,n—l yj,n+1 - yj,n—l ) yj+1,n - 2:Yj,n + yj—l,n
2 +b % +c=a PP

Where,
Gl 17
“T L(Z[D(s)]z +d?)
4c’
- nd?p

c= pndzp(S)

j, n+1

Fig.2.10 The explicit method stencil

It is seen that the above finite difference expression is necessary to distinguish
whether terms are known or unknown parameters. From Fig.2.10 we find only one
unknown y; 4 4; as a result, it is easy to solve that solution step by step till the
boundary condition is satisfied. Hence, this method is fast to obtain the solution, and
it uses a forward difference technique. Exchange parameters on both sides, the

expression can be written as

Yin+1 = k1()’j+1,n + Yj—1,n) + kz)’j,n—l + k3)’j,n + ky (2.31)

Where,
2
o = (%l)ak
(1+%)
o
(1+7)
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(1+%)

ck?
B bk
(1+%)
with the initial condition

y(s,0) = f(s) and @ = g(s) attimet=0

and the boundary condition
y(0,t) =0ats=0andy(l,t) = h(t)ats =1

However, the explicit method is known to be numerically unstable and its error is
proportional to the time step and the square of the space step, the stability factor p
is very important and is not always greater than one, to guarantee it is stable to
process the explicit differential method defined as [Thomson, 1993]

<1 (2.32)

=1 =

p=a

where p is the stability factor

2.3.1.2 Implicit Finite Difference Method

The difference between the implicit method and the explicit method is that the
implicit method needs to solve a set of equations one time. The process is similar as
the previous case, but just one difference is that it has two unknowns
Yj+1,n+1 @and Y; n4q, in @ row. In addition, each unknown value is function of known
values of the subsequent period — backward procedure. Substituting the space and

time derivatives (referring to Fig.2.11) into Eq. (2.26), the expression is written as

J/j,n+1—23c’12',n+Yj,n—1 + bJ’j,n+12—kJ’j,n—1 +c=q? J/j+1,n+1—2yi‘l,121+1+3’j—1,n+1
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Fig.2.11 The implicit method stencil
Exchange the terms on both sides, it can be expressed as
Vi+1n+1 = K1¥jn+1 T K2Vjn-1 + K3Vjn — Vj—1n+1 + Ka
Where,

el (o

Ty
h

Ty
k; =— 2 >
0

k, = ck?

with the initial condition
dy(s,0) .
y(s,0) = f(s) and . = 8(s) attimet=0

and the boundary condition

y(0,t) =0ats=0andy(l,t) = h(t)ats =1
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2.3.1.3 Crank-Nicholson Difference Method

The well-known Crank-Nicholson implicit method for solving the modified
wave equation involves taking the average of the right-hand side between the
beginning and end of the time-step (referring to Fig.2.12). In other words, an average

of the explicit method and implicit method is written as

Vin+1—2Yjn+tYjn- Yin+t1—Yjn—1 1 Vitin+1—2Yjn+1tYj-1,n+1
jn+1 kan jn 1+b jn Zk]n _I_C:Eaz(] n ;1121 j-1n +

Yit1n=2YjntYj-1n
w2 )

Q, n+1  j, n+1 iy. n+1
* 4
i1, n N j+1,n

j. n-1

Fig.2.12 The Crank-Nicholson method stencil

The unknown in this case is the same as in the case of implicit finite difference

method, thatis, y;;1n4+1andyjnq. It can be rewritten as
Yi+in+1 = k1)’j,n+1 + kz)’j,n—1 + k3}’j,n - (Yj—1,n+1 t Yjsin T yj—l,n) + ky

Where

with the initial condition
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y(s,0) = f(s) and @ = g(s) atthetimet=0

and the boundary condition
y(0,t) =0ats=0andy(l,t) = h(t)ats =1

In order to compute the solution more conveniently, we simplify this expression one

more step,
YVitin+1 = K1Yjn+1 — Vj—1n+1 T Ks (2.34)

where
ks = kyYin-1+ Kksyjn— (yj+1,n + yj—l,n) + kg

The above equation at the time step t,,,;can be expressed as a matrix

— k(l) —
E -k, 1 0] Yin+1 ?2)
|0 1 =k 0|[ }’z,n+1] ke
[: .. W]l Ve | = @
EERE]
0 0 _k1 11IYm+1,n+1 (7,;4.1)
|
And we have
[K1[Y] = [F]

Using the inverse of the matrix K, the matrix Y can be obtained as

[Y]=[K]7'[F] (2.35)
- k(l) -
52 [ Yin+1 1 1 -k 1 . 0
ké ) Y2n+1 0 1 —ky - 0
Where, [F] =] ;@ |, [Y]=| Ysn+1 [and[K]=]: - J e
F? : 0 0 1 0
(m+1) Ym+1,n+1 0 0 e =ky 1
D)

By the matrix, any displacement could be obtained fast and easy. We need to take

care that y,,41n+1 Should be satisfied with the boundary condition at s = [.

Another problem in this computation is the moving boundary problem. If both
end of the valve spring can follow the cam profile and be in contact with the top and
bottom plates, no moving boundary problem exists. In reality, in a valve train system
often spring jump, bounce or coil collision occurs, so both end of valve spring doesn’t

completely follows the cam profile within two plates. Due to the moving boundary,
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each computational node in Crank-Nicholson Finite Difference Method should have
tolerable error to approximate the real condition. We could add two extra derivative
boundary conditions to check the pitch angle of each element. Each element along
the spring helix should have a minimum pitch angle, and it is impossible to have the
pitch angle on upper elements is lower than the pitch angle on lower elements; as a

result, by Eqg. (2.20) the two moving boundary conditions can be defined as

p(s) =p(h) = p1(G)® + (i) + p3(h) + Pa = Djmin
Where j is space index in the grid and h is space step

In MATLAB, there are two types of computational methods - symbolic and
numeric expression. The symbolic expression is usually very powerful and easy-using,
but provides a slower calculation. For Crank-Nicolson method, it takes almost 2.5
hours to obtain the solution in a symbolic expression, but only takes 5 min in numeric

expression, the matrix expression in Eq. (2.27).

2.3.2  Fourier Series

There are other methods such as Fourier Series, that is, series solution of PDE.
Such solution is usually regarded as close form solution or analytical solution. In fact,
this method is very slow in comparison with Finite Difference Method. By the
method of separating variables, setting y(s,t) = f(s)g(t), we obtain two ODEs, one
for f(s), and the other one for g(t). Next step is to use the boundary condition to
determine the solution. Finally, using Fourier series by satisfying the initial condition
and boundary condition, a Fourier series representation is expressed as [Kreyszig,
2006]

[oe)

y(s,t) = Z e_Tbt(an cos(wt) + b,sin (wt))sin (? S)

n=1

However, it takes much more time to cumulate every term and not very efficient to

use practically. Hence, this method is not a good way to build the model.

2.3.3  Finite Element Method

Since FEM is a direct numerical solution, it is the main method to be
implemented in most commercial FEA software. We used FEA software (ABAQUS) in
this thesis. The continuum dynamics is used to describe the elasto-plasticity
dynamics. It recognizes the object with two viewpoints. One is dynamic and the
other is geometrical viewpoint. When element stiffness matrix is given, the solution
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will be obtained through the following process. By combining the mass matrix and
the stiffness matrix at each element to form a global matrix, the computational
speed is dependent on the chosen mesh seeds [Shimoseki, 2003].

1. the construction of global stiffness matrix
2. the provision of the boundary condition
3. the solution of the simultaneous equation

In Optimization chapter, in order to check if those optimal parameters are
accurate, ABAQUS-MATLAB is demonstrated to compare them.

2.4 Evaluation of Dynamic Performance

2.4.1 Fast Fourier Transform (FFT)

Surging, vibration and impact effects play very important roles in valve train
applications. At high speeds, the resonance may occur and cause some phenomenon
such as valve float and surging at a certain high frequency. The natural frequency of
springs depends on the stiffness and mass, so avoiding the resonance has been an
important issue in engine design. In the modern technology, there are many
methods to avoid this phenomenon, such as using conical spring or adding the
friction surface by double springs or dampers [Nunney, 2007]

For determining the fundamental natural frequency, Fast Fourier Transform (FFT)
has been used to evaluate spring performance for a long time. The ideal power
spectral density in valve springs should be as small as possible and has a larger
fundamental natural frequency. In Optimization chapter, this power spectral density
is taken as the objective function to process with other constraints such as force
constraint and other constraints. In any linear system, there is a direct linear
relationship between the input and the output represented in Fig.2.13. The input in

FFT should be force or displacement, and the output is the power spectrum.

input F{t) output y(t
— systemh() [ 7

Fig.2.13 The system transformation for the natural frequency
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This input-output relationship in terms of the frequency-response function can
be written as [Thomson, 1993]

y(t) = Hw)Foe™"

where Fye™tis a harmonic function

A Fast Fourier Transform (FFT) is a very efficient algorithm to compute the
Discrete Fourier Transform (DFT); the only difference between both is that FFT is
much faster. In addition, FFT provides a good evaluation for the power spectrum as
well. In optimization, we would use that as the objective function to obtain the
lowest power spectral density.

The valve-lift curve y = f(t) is assumed to consist of a large number of
sinusoidal and cosine terms [Thomson, 1993]

f@®) =

a, + a, cos(wt) + -+ a,, cos(mwt) +

. , (2.36)
bisin (wt) + -+ + by, sin (mwt)

where
f(t): the valve — lift curve
a,, and b,,: the coefficients of Fourier Series

21
w: fundamental frequency = -

m: number of harmonics

7: periodic motion of period

For a continuous system, the coefficients a,,, and b,, are determined as follows

2 T/2
Ay = — f(t)cos(mwt)dt
—-T/2
S5 (2.37)
by, =— f(t)sin(mwt)dt
-7/2

and C,, is the amplitudes of these harmonics used to evaluate frequency
performance. Another symbol ¢,, is phase, and are defined as

|Cm| = Z,Iamz -l'bm2

b
Pm = tan_l(a—m)

m

If this system is discrete, it is necessary to use other expressions to do the
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computation. Fourier series can be represented in terms of the exponential function.
Eqg. (2.36) can be simplified by the sum and difference formulas [Kreyszig, 2006] as

A, cos(mwt) + by, sin(mwt) = c,,sin (mwt + @,,)
Its expression only in terms of sinusoidal function is written as [Wahl, 1963]
f(t) = co + ¢y sin(wt + @;) + ¢, sin(2wt + @,) + -+ + cppsin (mwt + @)
Where

CO :_ao

Cm = E(am — iby)
cm(c1~cp): the amplitudes of these harmonics divided by two

@m(@1~¢m): phase

And the amplitudes on these harmonics are usually plotted as the absolute values.
Besides, we can use the exponential function to express the triangular functions.
Substituting

1 . ,
cos(mwt) = > (elmwt 4 g=imwty

sin(mwt) = 7i(eimwt — gmimwty

into Eq. (2.36), we get

f@) =
o . imwt 1 . —imwt | —
> + (am iby)e + > (ay + iby)e =
n=1
Co +Z C met_l_c met] — Z C elmwt
m€ m€

n=—oo

Assuming there are N samples in this system, the amplitude is

2 |

N
z F()e™ ™t =g —ib
) (2.38)

|C| = Va2, + b3,
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Here we need to consider the figure in Eq. (2.38) is like Fig.4.8, where n is number of
harmonics in X axis and C; is the amplitude in Y axis. The amplitudes on these
higher harmonics decrease as the increasing harmonic number. As a result, the
amplitude on the 1* harmonic number in Fig.4.8 is largest and then gradually
decreases till it approximates the excited number of harmonics and then keeps
decreasing [Wahl, 1963]. The numeric solution in the implemented finite difference
method is discrete. In Optimization chapter, Eq. (2.26), (2.30), (2.34) and (2.38) with

SQP technique are used to demonstrate helical spring optimization.

2.4.2 Natural Frequency

The earliest natural frequency phenomenon was discovered by Galileo Galilei
with pendulums and musical strings in 1602. Historically, the vibration problem was
studied by Jean le Rond d'Alembert, Leonhard Euler, Daniel Bernoulli, and
Joseph-Louis Lagrange. The natural frequency, electric field intensity and polarity
were also measured by Hertz in 1887. As a result, the study on vibrations made great
progress.

If a wave is created by a disturbance at one end of a swimming pool, this wave
will travel down the length of the pool, be reflected back at the far end, and
continue in the back-and-forth motion until it is finally damped out. The same effect
occurs in helical springs, and it is called spring surge. If one end of a compression
spring is held against a flat surface and the other end is disturbed, a stress wave is
created that travels back and forth from one end to the other exactly like the
swimming-pool wave. The automotive valve spring surge, in the worst possible
situation, is that the spring actually jumps out of the contact with the end plates.
When helical springs are used in applications requiring a rapid reciprocating motion,
the designer must be certain that the physical dimensions of the spring are not such
as to possess natural frequency close to the frequency of the applied force.
Otherwise resonance may occur, resulting in the surge of stresses that can have
many times of the stress for static loading. Another interesting thing is the phase
between the compressed valve spring and the cam profile. In general, the phase of
the compressed valve spring can follow the phase of the cam profile as the cam
rotates at low speeds. By contrast, its phase on the excited harmonic number
presents chaos as the cam rotates at high speeds (Referring to Fig.4.19 and
SECTION.3.2.2). The earliest natural frequency is defined for lumped parameter
system as [Galileo Galilei, 1602]
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f=z |~ (2.39)

Another method to calculate that is that the fundamental frequency of a wave in a
string with either both ends open or both ends closed can be found using the
following equation [Lin, 1987; Lain G. Main, 1988]:

na
f= opn=12..n (2.40)

It can be expressed in terms of design variables as [SMI, 2002]

nnd G
— (2.41)
ZnDZN 2Dl 2p

where n = 1 is the fundamental natural frequency

2.4.3 Special Designs to Reduce Resonance

To avoid resonance in any system containing a spring has been an important
subject for study and research. Various additional measures may be taken to
minimize surge. [Chironis, 1961; Wahl, 1963; Paranjpe, 1990; Kurisu, 1991; Nunney,
2007]

® Double springs — they are arranged concentrically about the valve stem,
each having a different natural frequency of vibration. Furthermore, the
outer diameter of the inner spring may be made equal to the inner
diameter of the outer spring, so that rubbing occurs between them. This
rubbing contact promotes a friction damping effect, which suppresses surge
by dissipating its energy as heat. The incidental advantages of using double
springs include greater spring stability and less risk of engine damage in the
event of a spring breaking.

® The valve spring with valve fingers — they are located from the stationary
ends of the valve spring and press inwards to make rubbing contact with its
centre coils. Alternatively, an internal sleeve may be installed within the
spring to reach the similar effect.

® Conical springs — this type is also commonly used to suppress surge. Springs
of this type are either close coiled at their stationary end or, less commonly,

utilize a volute form with the smallest diameter and hence stiffens coil at
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the moving end. The effect is to vary the number of active coils in the spring
during the valve lift, which produces change in its natural frequency of
vibration so that resonance is avoided. In general, space limitations are the
biggest problem in this type due to different coil diameters on both ends.
Variable wire diameter springs — the advantage is, it has original spring
height, and no space limitations. However, it is very difficult to manufacture

and the stress may be elevated over the original design.
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Chapter 3 - Experimental Setup and Description

3.1 Motivation and Goal

Valve spring motion was investigated with computer simulation technique in
Simulation chapter (Chapter 4). The modified wave equation was found accurately
predicting the valve train behavior. It was identified that a few lower frequency
harmonic components from the cam profile have significant effects on exciting the
first one or two lowest natural frequencies of the valve spring. The coil clash actually
was helping to decrease the excited resonance. These findings allowed the
development of a new valve spring form that can improve the performance of the
valve train at high speed loading. The derived equations and procedures in
Simulation chapter can be used by research investigators in understanding system
response, in developing and evaluating predictive dynamic models. In this chapter,
the experimental apparatus and setup are described. The accuracy of any math
model must be verified by physical model. Only if the numerical solutions agree and
describe the intricate dynamic behaviors from the physical experiments, then we can
say the math modeling is accurate and successful. .

3.2 Software

The data acquisition software package, WinDAQ (Appendix 5), offers a real time
display and disk streaming for the Windows environment. This real time display can
operate in a smooth scroll or triggered sweep mode of operation, and can be scaled
into any unit of measurement. Event markers with comments allow us to annotate
our data acquisition session with descriptive information as we are recording to disk.
The file can be saved in an EXCEL file format. MATLAB was used in doing the
frequency analysis and comparing with the simulation results via generated EXCEL
files by WinDAQ.

3.3 Experimental Apparatus

The experimental apparatus included a vehicle engine (1987 GM & Isuzu
four-cylinder with a displacement of 1.5L), an electrically powered AC motor to drive
the valve train, and instrumentation fitted to the valve train system. All moving
components not required for the operation of the valve train were removed from the
engine, hence no gas forces, combustion occurred in the engine. The electrically
driven cam shaft and valve train is illustrated in Fig.3.1.
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Oil Storage  Qil Return(b)
QOil Feeding

Motor _
Oil Pump Oil Return(a) " Of Engine

Fig.3.1 The components and setup of experiment

Valve Train System

Motor oil from an external pump was fed into the engine block via the oil tubes
to lubricate the valve train. The function of the pressure gauge is to make sure that
the oil in the engine block was at normal levels and at the regular oil pressure of
around 40 psi. The pulley was marked to measure the camshaft speed with a photo
sensor (Appendix 4.3). The following is a list of the major parts in the apparatus:

® GMA&ISUZU Engine (Appendix 4.1)

Dayton Compressor Duty Motor (Appendix 4.2)
Oil Pump

Oil Storage

Pressure Gauge

Cable (Appendix 4.9)

Oil Tube

Pulley (Appendix 4.8)

V-Belt (Appendix 4.7)

Motor Oil

Cen-Tech Photo Sensor Tachometer (Appendix 4.3)
KISTLER Force Transducer (Appendix 4.4)
KISTLER Charge Amplifier (Appendix 4.5)
DATAQ acquisition (Appendix 4.6)

3.4 Measurement

A piezoelectric force transducer installed under the valve spring seat recorded

the spring force applied to the engine block, as illustrated in Fig.3.2. A data
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acquisition system was utilized to collect the dynamic data, as illustrated in Fig.3.3.

.'i

Fig.3.2 The transducer under the spring seat

Engine

v Force
Transducer
4 Charge

Charge
Amplifier

¥ Voltage
Acquisition

il ‘U'Dltafe

Computer

Fig.3.3 The flow chart of signal for data acquisition

Quartz (piezoelectric element) was used in this transducer, especially its ultra
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high insulation resistance, static measurement are better with quartz than with any
other deformation induced force sensing material. The transducer in this experiment
is load washer type.

When the valve spring is compressed, the force transducer under the spring seat
induces a force downward as shown in Fig.3.4. The force transducer generates
electric charge. Then the charge was converted into voltage in a charge amplifier. The
simplified charge amplifier model is shown in Fig.3.5. It uses the inverting voltage
amplifier with a MOSFET or JFET as its input to form the high resistance. The output

voltage in this circuit can be written as [Kistler, 1989]

C.+C, +C, (3.1)

where
C;: transducer capacitance
C.: cable capacitance
C,: range(feedback) capacitor
R;: time constant resistor
R;: insulation resistance of input circuit
Q: charge generated by the transducer(input charge)
V,: output voltage

Force

Transducer Circuit

> <| Quartz Discs

Y

AN AR AN WA XX

Fig.3.4 Direct Force Measurement [Kistler, 1989]
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Fig.3.5 Simplified charge amplifier model [Bishop, 2008]

Because of the high open loop gain, Eq. (3.1) is reduced to the simplified type by

ignoring the capacitance terms, we have
VO = — (3.2)

From Appendix 4.5, Specifications of the Charge Amplifier, the range capacitor C»
can be found .The maximal force, F,,x is 6000N after the unit conversion. The
relation of force and voltage can be obtained using the simple ratio comparison
[Bishop, 2008].

Qmax = 5000pC in £10V - FE,, = 6000N (3.3)
Q=V,C,pCin £8V > F=7N (3.4)
The gain of charge amplifier K, in different voltage range is different, so we have
Q = VoG KR, pCin 10V » F=7?N (3.5)
Comparing (3.3) and (3.5), this leads to the relation of force and voltage.

V,C.K.R
— wpmax (3.6)

Qmax

where
V,: output voltage
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C,: range capacitor

K_:the gain of charge amplifier

R,: the ratio of the full voltage in the acquisiton and the standard full voltage
Q:max: the maximal charge in standard full voltage

F,0x: the maximal force in standard full voltage
Since parameters in Appendix 4.4 to 4.6, this leads to Eq. (3.7)
F(t) = 103.68V,(t)(Newton) (3.7)

Experimental data F(t) at different speeds are presented in Appendix 3.2.

Many important factors can affect the experimental accuracy. One of themis
the sample rate in the acquisition. The faster the acquisition the greater the accuracy.
The maximal sample rate in this DATAQ Acquisition is 14400 Hertz. Number of Data
points in one cycle at different speeds is expressed as Eq. (3.8). Data points at 1368
rpm are 632 in one cycle, and those at 2165 rpm are 399. They are presented in
Table.3.1.

sec
60 G (3.8)
camshaft speed(rpm)

Data points = (sample rate) X

Table 3.1 Numbers of data points read at different camshaft speeds

Camshaft Speed(rpm) Data Points one cycle
1368 632
2165 399

3.5 Comparison Group

There are 4 groups of data taken in the experiments, based on different speeds
and different installed spring direction (Appendix 3.1.1 to 3.1.2). They are presented
in the Table 3.2. The experimental data at 1368 rpm and 2165 rpm were included in
Appendix 3.2.1 to 3.2.4. The experimental data at 2372 rpm cited from Lin’s paper
[2006] was also included in Appendix 3.2.5 to 3.2.6. The maximal speed in this duty
motor (Appendix 4.2) is 3450 rpm. Different camshaft speeds were generated using
different groups of pulley (Appendix 4.8). The speed relation between motor and

camshaft is given by
rl Xxwl =r2 X w2

and
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rl
w2 =wl X —
r2

where w1 is the motor speed, rl is the pulley radius on the motor, w2 is the

camshaft speed, and r2 is the pulley radius on the camshaft

Table 3.2 The comparison groups in the experiment

Group Camshaft Speed(rpm) Spring Installed Direction
1 1368 Normal
2 1368 Opposite
3 2165 Normal
4 2165 Opposite
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Chapter 4 - Simulation

4.1 Introduction

This chapter provides a simple computational tool based on a finite difference
solution of the equations, Eq. (2.35), derived using an internal virtual force term and
Hamilton Principle for analyzing the dynamic modeling of helical valve springs
subjected to dynamic loading.

A computer program (Appendix 1) was written in MATLAB, and it took
approximately 5 minutes to obtain a converged solution on a laptop (INTEL Core Solo
processor T1350, DRAM= 1GB, CPU= 1.86 GHz).

One variable-pitch coil spring was used as the simulation model at three
different speeds, 1368, 2165 and 2372 rpm. Table 4.1 is the set of physical
parameters used in this simulation. Fig.4.1 is the first partial derivative of
displacement with respect to the arc length, and represents nonlinear curve. It is
assumed that the bottom end of the spring rests in a static reference plane, and the
top end of the spring follows the cam profile. Hence, for the boundary condition at

s =1, we have
y(l,t) = h(t) = spring installed length — cam profile

Fig.4.2 shows the cam profile. Another key in this simulation is to determine the
damping coefficient. In the same valve spring model at different speeds, the damping
coefficient is not always the same. It involves many factors (referring to
SECTION.2.2.1). Figd.1 and 4.2 are also the basic parameters in this simulation
besides those in Table 4.1.

Table 4.1 The related parameters of the helical spring in this simulation

Terms Value
D(coil diameter) 0.0255m
d(wire diameter) 0.004m
Original Free Height 0.0485(m)
Preloaded Height(without 0.0399(m)
transducer)
Preloaded Height(with 0.0386m
transducer)
Solid height 0.024m
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Displacement -0.2187s% + 0.1716s% + 0.0585s — 0.00009
parameters( with transducer)
Mass Density kg
7860m3
Shear Modulus 77.9Gpa
Camshaft speed (rpm) 1368, 2165, 2372
Damping coefficient(1368rpm) 60.7462(N.s/m)
Damping coefficient(2165rpm) 30.3731(N.s/m)
Damping coefficient(2372rpm) 70.8705(N.s/m)
Time increment k 0.000015(sec)
Spatial increment h(Node) 0.01(m)

Pitch angle at time is D
D11 T T T T T

0.1

0.09

0.0s

pitch anglefrad)

0.07

0.06

1 1 1 1 1
1] oos 01 015 02 0.25 0.3 035 04 0.45
spacial lengthirm)

0.05

Fig.4.1 The pitch angle of helical springs along arc length which is along the helix on
the initial condition without the preload
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Fig.4.2 The cam profile

4.2 Displacement, Force and Frequency

4.2.1 Displacement

This section shows the dynamic displacements. Fig.4.3 shows a snapshot of the
dynamic solution at t =0 and t = 0.0704 (sec) at 1368 rpm. Fig.4.4 is the dynamic
displacements at node 8, 21, and 34. The displacements on upper nodes should
always be larger than those on lower nodes (referring to SECTION.2.3.1.3, the moving
boundary section). Fig.4.5 has similar phenomenon as Fig.4.4, but it is for the pitch
angle, the first derivative of displacement (referring to Eq. (2.19) and (2.20). The
transducer is installed at the seating end of the valve spring, so the chosen node in
this simulation should be as near to lower nodes as possible. This simulation and
optimization program in Optimization chapter (Chapter 5) always uses node 5 to run
the computation. The solution looks reasonable and is verified with experimental
data. For experimental detail, please refer to Experiment and Verification chapter
(Chapter 4). In addition, they agreed well with the results in related technical papers
[Lin, 1987, 1989 and 2006].
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Fig.4.3 The spring length varies with preload, and compression at 1368 rpm
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Fig.4.4 The spring length on node 8, 21, and 34 varies at 2372 rpm
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the change of the pitch angle
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Fig.4.5 The change in pitch angle on node 5

4.2.2 Force and Frequency

Resonance occurs in a spring when one of the component frequencies of the
cyclic loading is near one of the natural spring frequencies. Resonance can increase
the individual coil deflection and stress levels well above the amounts predicted by
static loading conditions. Resonance can also cause spring surge, which can result in
considerably lower loads than calculated at the maximum spring deflection when the
spring force is needed most for the return of valve mass. To avoid resonance, lowest
natural spring frequency should be at least 13 times that of the base frequency of
the cyclic loading. A few related books or papers suggested it should be at least 15 or
even more.

For the accuracy of dynamic equations, numerical solutions were computed at
three different cam shaft speeds: 1368, 2165 and 2372 rpm. Then physical
experiments were performed at these speeds for comparison with numerical
solutions. Numerical solutions were not limited to just displacement at each node, in
addition, solution also included spring force data and the power spectrum with
different installed directions. These spring force figures are shown in Fig.4.6, 4.7, 4.10,
4.11, 4.14 and 4.15. It is observed in these figures that there are spikes in the spring
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force amplitude, indicating the occurrence of coil clash at the lower end of the spring.
In addition, the moving boundary solution is very accurate. Here the comparison of
numerical solutions with experimental data is based on Eq. (2.23.2) and (2.27).

In order to obtain the natural spring frequency, as mentioned in SECTION.2.4,
the input in FFT is spring force data. The output, power spectrum was obtained using
FFT (referring to SECTION.2.4.1). This process is shown in Fig.2.13. These power
spectral plots are shown in Fig.4.8, 4.9,4.12, 4.13, 4.16 and 4.17. The power spectral
curve of the valve spring force revealed the excitation of valve spring harmonics. At
1368 camshaft rpm, the harmonic content of the data was similar to those in 2165
and 2372 rpm. As the harmonic number increases, the amplitude on the harmonic
number gradually decreases till the excited harmonic number forms a spike. These
figures agreed qualitatively with those in some papers or textbooks [Wahl, 1963;
Pisano, 1983; Lin, 1993; Rothbart, 2004, Shigley, 2004]. In Fig.4.8 and 4.9, the
resonance of the valve spring with the 19" harmonic number was pronounced, so

the fundamental natural frequency is

1368(rpm)

the fundamental natural frequency = X 19(th) = 433.2(Hertz)

Furthermore, the phase can be used to determine the excited harmonic number.
Fig.4.19 shows the phase comparison between the simulation at 1368 rpm and the
cam profile. The phase is the displacement with respect to the excited force. Before
resonance of the valve spring is pronounced, its phase always follows the phase of
the cam profile. It is obvious to find out the phase on the 19" harmonic number
doesn’t follow that and shows chaos [Thomson, 1993]. As a result, the fundamental
natural frequency of the valve spring excited by the cam profile is the 19" harmonic.
The same method is used to determine the excited harmonic number in other phase
figures as well. In Fig.4.12 and 4.13, resonance of the valve spring with the 12t

harmonic number was pronounced, so the fundamental natural frequency could be

obtained as
2165(rpm)
the fundamental natural frequency = W X 12(th) = 433(Hertz)
0(——
min

In Fig.4.16 and 4.17, the resonance of the valve spring with the 11" harmonic
number was pronounced, so the fundamental natural frequency can also be

obtained as
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2372 (rpm)
0 (i)

The above results indicated the fundamental natural frequency of this valve spring is

the fundamental natural frequency = X 11(th) = 434.86(Hertz)

around 433 to 434 (Hertz). In order to verify that, more power spectra are simulated
at different speeds, and presented in Fig.4.18. The comparison table is presented in
Table 4.2. Besides the above method obtaining the natural frequency, other methods,
Eqg. (2.39 to 2.41), can be used for calculation as well. The valve spring presents
nonlinear variable pitch angle, hence it is obvious to find these below calculated
values presents a deviation.

d G
the fundamental natural frequency = 57 DZN % = 423.29(Hertz)
k
the fundamental natural frequency = 5 = 423.21(Hertz)

a
the fundamental natural frequency = o7l 422.02(Hertz)

k
where G = 79 x 10°Pa, p = 7860m—‘i,d = 0.004m,D = 0.0255m, and

[ = 0.42m, other parameters: Table 4.1

In the experiment, the valve spring was installed in a normal (smaller pitch end
is the stationary end) or opposite direction (smaller pitch end is the moving end)
presenting an opposite pitch curve and the computer program simulates that very
well. The simulation shows a phenomenon that springs should have better
performance in a normal installed direction than that in an opposite one due to the
smaller amplitude. Table 4.3 is the excited amplitude comparison table. In
Optimization chapter, the amplitude of the power spectra on the excited harmonic
number was used as the objective function for optimization by sequential quadratic
programming (SQP).
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Table 4.2 The excited harmonics comparison table

Camshaft speed (rpm) Excited Number Natural Frequency (Hertz)
1367 19 432.88
1443 18 432.9
1528 17 432.93
1624 16 433.06
1732 15 433
1856 14 433.06
1998 13 432.9
2165 12 433
2362 11 433.03
2598 10 433
2887 9 433.05

Table 4.3 The amplitude comparison table
Group Camshaft Installed Amplitude on an excited number of

Speed(rpm) Direction harmonics (Power Spectrum)

1 1368 Normal 4983.67

2 1368 Opposite 7133.64

3 2165 Normal 4807.59

4 2165 Opposite 6079.23

5 2372 Normal 6924.64

6 2372 Opposite 8340.4

4.3 Resonant Effects for the Stress

In this section, FEA software ABAQUS, was used to verify the resonant effects

for the stress. Fig.4.20 shows the standard valve spring model, not the valve spring in

this experiment. Fig.4.21 shows a spring with the loading around 150 Newton

downward and its stress distribution. The maximal stress in the dynamic loading

is 9.4 x 108 Pa. The first and second mode related stress graphical chart were

observed, and shown in Fig.4.22, and 4.23. Fig.4.22 shows a maximal stress 3.31 X

102 Pa on the first mode of excited resonance. According to Wahl’s papers [1963],

the first mode is most easily to take place. Fig.4.23 also shows the maximal stress up

to 5.01 X 1012 Pa on the second mode of excited harmonic number, over-torsion.

Destructive effects under resonance are very obvious.
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Fig.4.20 The three dimensional helical spring
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Chapter 5 - Optimization

5.1 Goal

A modified methodology for the optimum design of nonlinear helical springs is
presented in this chapter. A special objective function is implemented to optimize
the power spectral density on the excited harmonic number. Several design variables
that have an influence on the mechanical properties of the spring must be
considered: variable pitch angle p(s), variable coil diameter D(s), and variable wire
diameter d(s). The design goal is to reduce the maximal power spectral density on
the excited harmonic number. Taking into account the power spectral distribution
and a series of technological constraints, many types of springs were devised, among
which an optimal spring was selected for an automotive application, namely to
replace the valve spring of a sporty vehicle. The excited harmonic is also verified by
ABAQUS and shown in SECTION.5.5.

5.2 Algorithm

For this optimization problem, we use the sequential quadratic programming
(SQP) to solve that. For this method, it will solve the quadratic programming (QP)
subproblem at each iteration and then use the BFGS to estimate the Hessian of the
Lagrangian. The combination of the QP subproblem and a constrained steepest
descent method is called sequential quadratic programming (SQP). This method is
very powerful and useful, and could also treat the inequality and equality constraints.
We describe the equations and steps as follows [Vanderplaats, 1984; Arora, 2001;
Venkataraman, 2002]

1. Set iteration counter k=0, and estimate the initial x°, penalty parameter, R°,
and the constant, y. R¥ is the sum of all the Lagrange multipliers of the QP

subproblem at the point x*.Soitcan be expressed as

0<y<1- B =vld|?

where v{‘ is the Lagrange multipliers for the equality constraint and free in
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sign, ull‘ is the Lagrange multipliers for the inequality constraint, and d¥ is the
search direction
Then we can use that equation to calculate the step size.
2. At x¥, compute the cost and constraint functions and their gradients. Here,
we must find the maximum constraint violation, V¥
3. Use the cost, constraints functions, and their gradients we got from step 2 to
obtain the search direction, d¥,v¥*, and uk.

4. Check the convergence criterion
Vk < eland||d¥|| < e2.

If the criterion is satisfied here then we stop the steps.
Check the necessary condition of penalty parameter, R¥.
Set x¥*1 = x* + a,d¥, and then minimize the descent function to get the
step size, a¥, along the search direction.
Let the present penalty parameter R as R;,,. Update the iteration counter as k =

k + 1 and then return to step 2.

This method is gradient-based where the objective and constraints functions
have the continuous first derivatives. If the initial guessed solution was ideal the
program may not find the global optimal value. More guessed initial points need to
be used to search for the global optimal value.

5.3 Demonstration

For the accuracy and the computational speed, the commercial software MATLAB
is used to solve this optimization problem. In MATLAB, we could use the fmincon or
fminunc functions that are based on the SQP, Quasi-Newton, or other search
algorithms. The search result most likely would be dependent to the chosen
algorithm. The command, fmincon, could handle the optimization problem with
constraints. The default command, fminunc, is based on the interior-reflective
Newton method and uses the preconditioned conjugate gradients to search the
direction. The starting point would affect the performance of the algorithm based on
these commands, fmincon and fminunc. At some points, the QP subproblem may not
find the solution. Other guess initial points need to be used to search the optimal
value in MATLAB.

The FFT command in MATLAB is fft(data input), and it will generate C,,. Itis
composed of two parts, a real part a,, and aimaginary part b, (referring to
SECTION.2.4). Power spectrum is defined by these two coefficients as:
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C, = /a2 + b2

Spring performance can be evaluated.

5.4 Fast Fourier Transform in MATLAB

In order to evaluate resonance of valve springs, a Fast Fourier Transform was
performed on computed force data. It generated a power spectral plot. For the

amplitudes on these harmonics, referring to Eq. (2.38), we have

1 _ 3
Cn = 2528 y(s, Dyemm,

The force transducer in this experiment was installed at the stationary end of the
valve spring; as a result, the spatial length s should be close to zero at the stationary
end. In order to approximate the experimental data, the 5" hode along the spring
helix was chosen to process Fast Fourier Transform. The chosen node is expressed as
follows.

s =5h,j =5 and t = nk (ntime steps)
where nis0,1,2..N—1

This leads to the new expression

N-1
1 )
Cp = N E y(5h, (n — 1k)e~imwt
n=0

— }’5,n3_ith; (5_1)

where h is space step, k is time step, N is total samples,
m is the harmonic number, n is time index in the grid, and

j is space index in the grid.

Substituting Eq. (2.34) into Eq. (5.1), it leads to the power spectral amplitude
equation

N-1
1 )
Cn = Nz (k1y4,n + ks)e_lth- (5.2)
n=0
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The parameters k, and ke included p(s), d(s), and D(s), hence we have

Cn = fu(k1, ke) = fin(p(s),d(s),D(s))
= fm(D1, P2, P3, D4, d1,d3, d3,dy, Dy, Dy, D3, Dy)

where for m > 8 (the excited harmonic number always appears as m is larger than

or equal to eight due to the limited camshaft speed),

Total samples in Eq. (5.2) is obtained as follows:

=1

N (total samples) =

where k (time step) is 0.000015 (sec), w (camshaft speed) is 2372 (rpm), and

T (time of one cycle) is % = 0.02529511 (sec).

This leads to total samples as

T 0.02529511 _ 1686
k~ 0.000015 '

As a result, the objective function is defined as

Min fi (D1, P2, P3, Pa, d1, d, d3, dy, Dy, Dy, D3, D,y)
= the power spectral amplitude on the excited harmonic number

which is subject to the maximum spring force constraint
120 < g(x) < 230(N) (5.3)

and the spring height constraint
0.0385 <[ < 0.0387. (5.4)

In engine design, dimensions of valve train components are always constrained in a
certain range. In optimization, maximal spring force was constrained in a reasonable
range. In addition, spring height was also constrained as approximate as original
height (Appendix 4.1) for the convenience of comparison. Four types of optimization
were discussed in this chapter.

Variable Pitch Angle
Variable Coil Diameter (Conical Spring)

Variable Wire Diameter

A w N e

Variable Pitch Angle, Variable Coil Diameter, and Variable Wire Diameter

In this Chapter, the objective function (Eq. 5.2) and constraints (Egs. 5.3 - 5.4) are the
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same used in the four types of optimization. For upper and lower bound of the
design variables, each case is different and has been described at each section. The

optimization flow chart is shown in Fig.5.1.

input for many Simulation and Power Spectra
types [ Computation [T in higher order
of harmonics

L 4

X

Compute the Better| No | Evaluate the value

Design Variables is the minimum or
not(Constraints)

lYes

Show the Result
output

F

Fig.5.1 The flow chart of optimization program

5.4.1 Variable Pitch Angle

A variable pitch valve spring has different levels of compression. One end will
have a higher rigidity (or spring rate) than the other end, or it will look more
compressed on one side than the other. In this case, the diameter of the wire and the

mean coil diameter must be kept as constants, so we have

d1 = 0, dz = 0, d3 = 0, d4_ = 0004(771)
and
Dl = 0, Dz = 0, D3 = 0, D4 = 00255(171)

then the objective function is defined as

fm (D1, P2, D3, P4)

where m = 8 (the excited harmonic number always appears as m is larger than or

equal to eight due to the limited camshaft speed).

For the initial trial point in SQP, we have
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p, = —0.2187,p, = 0.1716,p5 = 0.0585,p, = —0.00009.

The original parameter is used as the initial trial point for the convenience of
comparison. Besides constraint (5.3) and (5.4), upper and lower bounds

of p1, 2, p3, and p, are constrained as follows, and their polynomial expression is
defined in Eq. (2.20).

—04<p; <0
~0.2<p, <03
~0.1<p; <01
~01<p, <01

After the optimization computation, the optimal parameter is obtained as
p1 = —0.268699 ,p, = 0.145742,p; = 0.079511,p, = —0.000198,

and Fig.5.2 shows the optimal variable pitch angle plot. The optimal results show
that maximum spring force is 159.11 (N). In comparison of the original value
182.63(N), it decreased. Fig.5.3 shows the power density comparison plot between
the optimal design and the original one. It is obvious to find, limited to minimize the
power spectral amplitude on the excited harmonic number. The optimal power
density on the 11t harmonic is 6911. In comparison with the original value 6924, this
original design was pretty good. Hence the improvement in this type is very small.
According to some technical papers [Wahl, 1963; Fujimoto, 2007], the power
spectral amplitude on the excited harmonic number can be reduced by variable pitch
springs and the denser end coil. In the ABAQUS-MATLAB program, this optimal
parameter was also verified in SECTION.5.5.1. In addition, this optimum result can
also be explained by the element natural frequency distribution. It is presented in
SECTION.5.6.
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5.4.2 Variable Coil Diameter (Conical Spring)

Conical compression springs are often specified where the large end is meant to
work in a bore and the small end is meant to work over a rod. They offer the
advantage of a reduced solid height compared to straight compression springs,
especially when capable of telescoping. Conical springs are cone-shaped
compression springs designed to provide a near constant spring rate and a solid
height lower than a normal spring. Each spring features a variable pitch to achieve
the constant spring rate and coils which nest during deflection to provide a solid
height approximately equal to two wire diameters. According to Handbook of Spring
Design [SMI, 2002], there are some features in conical springs.

Small solid height
Variable spring rate
Good stability

Resonance and vibration is reduced

Not easy installed in the valve train due to variable diameter

In this case, variable pitch angle and the diameter of the wire must be kept as
constants, so we have

p, = —0.2187,p, = 0.1716,p; = 0.0585, p, = —0.00009,
dl = 0, dz = O, d3 = O, and d4 = 0.004(771).

The mean coil diameter along the spatial length is defined in Eq. (2.22), and we have
the objective function as

fin(D1, Dz, D3, Dy),
where m > 8
For the initial trial point in SQP, we have
D; =0,D,=0,D; =0,D, = 0.0255(m).
Besides constraints (5.3) and (5.4), lower and upper bounds are listed as follows:

—0.0003 < D, < 0.0002
—0.004 < D, < 0.005
—0.006 < D3 < 0.004

0.022 <D, <£0.029

After the computation, the optimal parameters are obtained as:

D, = —0.000198, D? = 0.004731, D; = —0.004397,and D, = 0.02345.
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Fig.5.4 shows the variable coil diameter plot. For weight, it offered a lighter spring
due to the smaller mean coil diameter. Maximum spring force 195.52(N) in
comparison of the original one is very close. Fig.5.5 shows the power density
comparison figure. The power spectral amplitude on the 13th harmonic number is
3378. The original value in the 11" harmonic number is 6924. The improvement is up

to 51.22 percent.

D 0235 T T T T T T T T

0.0234

0.0232

0.023

coil diameter(m)

0.0228

0.0226

1 1 1 | 1
0 0.05 a.1 0.15 0.z 025 B3 03 04 0.45

0.0224

spacial length(m)

Fig.5.4 The optimal variable coil diameter in optimization case two
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two)

5.4.3 Variable Wire Diameter

Basically, this type of spring has the similar advantage as conical springs. They
offer the advantage of remaining the same height compared to conical springs which
have space limitations, especially when capable of flexible design. The features are
listed as follows.

The same spring height

Flexible rate

Good stability

Resonance and vibration is reduced

Shorter fatigue life due to larger stresses and smaller wire diameter

Difficultly manufacturing technique

In this case, variable pitch angle and the mean coil diameter must be kept as

constants as the original one, so we have

p, = —0.2187,p, = 0.1716,p; = 0.0585, p, = —0.00009,
Dl = 0, DZ = 0, D3 = O, and D4 = 0.0255(771).

The diameter of the wire along the spatial length is defined in Eq. (2.25), and we
68



have the objective function as

fm(dy,dz, d3, dy)
where m > 8
For the initial trial point in SQP, we have
dy =0,d, =0,d; =0,d, =0.004(m)

Besides constraints (5.3) and (5.4), lower and upper bounds are constrained as

follows.

—0.0001 < d; <£0.0003
—0.004 < d, < 0.008
—0.004 < d; < 0.002

—0.0035 <d, <0.0048

After the computation, the optimal parameter is obtained as
d, =0.000111,d, = 0.005998,d; = —0.001993 ,and d, = 0.0046.

Fig.5.6 shows the variable wire diameter curve. The original design value is a
constant 0.004 m. The weight is slightly increased due to the larger wire diameter.
From the results, the maximum spring force 166.78(N) in comparison with the
original one is relatively close. Fig.5.7 shows the power density comparison plot. The
optimal power density on the 13" harmonic number is 2752.11. It provided good
performance in comparison with the original value of 6924. The improved
percentage is up to 60.25 percent.
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5.4.4 Variable Pitch Angle, Wire Diameter, Coil Diameter

Theoretically, the more design variables the better the performance. By a
discussion of three previous optimal cases, the mean coil diameter and the diameter
of the wire more easily obtained better performance. This case included all design
variables, variable pitch angle, variable wire diameter and variable coil diameter —a
total of twelve design variables to be optimized. The predicted performance should
not be below the optimal case three — variable wire diameter. Its features should be
similar as variable wire diameter springs.

Small solid height
Variable spring rate
Good stability

Resonance and vibration is reduced

Difficult to manufacture the variable pitch angle, the mean coil diameter, and the
diameter of the wire along the spatial length are defined in Egs. 2.20, 2.22 and 2.25,
and we have the objective function as

fm (D1, D2, 3, P4, A1, d3, d3, dy, Dy, Dy, D3, Dy),

whereas for m = 8

For the initial trial point in SQP, these values are chosen as the same as the original
one, and we have

p, = —0.2187,p, = 0.1716,p; = 0.0585, p, = —0.00009,
d1 = 0, dz = 0, d3 = 0, d4_ = 0004‘(m),
D1 = 0, Dz = 0, D3 = 0, and D4_ = 00255(m)

Besides constraints (5.3) and (5.4), all bounds are listed as follows:

—04<p, <0
—02<p, <03
—0.1<p; <0.1
—0.1<p, <0.1

—0.0001 < d, < 0.0003

—0.004 < d, < 0.008
—0.004 < d; < 0.002
—0.0035 < d, < 0.0048
—0.0003 < D; < 0.0002
—0.004 < D, < 0.005
—0.006 < D < 0.004
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0.022 <D, <£0.029
After the computation, the result is shown as follows:

p, = —0.279762,p, = 0.149103 ,p; = 0.091418 ,p, = 0.001535
d, = —0.000072,d, = —0.000363 ,d; = 0.002625,d, = 0.004683
D, = —0.000231,D, = 0.001972 , D5 = 0.003628 ,and D, = 0.028783.

Fig.5.8 shows the variable pitch angle plot and has the similar result as Fig.5.2.
Fig.5.9 shows the variable coil diameter plot which has a significantly different curve
from Fig.5.4. Fig.5.10 shows the variable wire diameter plot. According to the design
specification of valve springs [Wahl, 1963; Shigley, 2004]], the performance springs
usually have the heavier bottom end, but this case shows that the top end is heavier.
That is a little bit unreasonable and contrary to those in optimization cases two and
three. In general, the spring with the larger coil diameter and the heavier weight on
the top end has the stability problem [Wahl, 1963]. The maximum spring force of
129.16(N) in comparison of the original value, decreased significantly. It is seen that
this type of spring presents an extreme nonlinear spring force along the spatial
length according to Fig.5.9 and 5.10. Fig.5.11 shows the power density comparison of
the case and the original one, and only has a peak 2159.9 on the 13" harmonic
number. All amplitudes on the harmonics are lower than those in the original design.
The improved efficiency is up to 68.8 percent. In reality, the deviation is often
happened in the manufacturing quality, and can be up to 10 percent. Let the
parameter

[P1, D2» P3» Par dq, dy, d3,dy, Dy, Dy, D3, D] + 10%,
and the optimal parameters with the upper deviation are as follows:

[P1, D2, P3» Pa» d1, dy, d3,dy, Dy, Dy, D3, Dy]
=[-0.2518, 0.1640, 0.1006, 0.0017, -0.0001, 0.0004, 0.0029, 0.0052, -0.0002, 0.002,
0.0040, 0.0317]

The power density of the excited harmonic is 3129.61.

In addition, the optimal parameters with the lower deviation are as follows:

[P1, D2, P3» Pa» d1, d3, d3,dy, Dy, Dy, D3, Dy]
=[-0.3077, 0.1342, 0.0823, 0.0014, -0.0001, 0.0003, 0.0024, 0.0042, -0.0003, 0.0018
0.0033, 0.0259]

The power density of the excited harmonic is 4944.26. The spring in this optimization
case four is very powerful with the lowest power density. However, as its
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manufacturing deviation is around 10 percent, the power density on the excited
harmonic increases over 30 percent. As a result, the manufacturing deviation would
affect spring performance so much.
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Fig.5.8 The optimal variable pitch angle in optimization case four
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Fig.5.9 The optimal variable coil diameter in optimization case four
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Fig.5.10 The optimal variable wire diameter in optimization four

w10 Power spectrum
35 T T T T T T T T T

. —-—--original value

: — — —optimal value
3 i p i

Power of Harmonics
w2

i SN e .
£ \\'x_ _,_r""} *,

I 1 B e o] et
] 2 4 G 3 10 12 14 16 18 20
Mumber of Harmonics

Fig.5.11 The power spectrum comparison of the original and the optimal designs

(case four)
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From these optimal results, it is seen that these optimal designs improved the
spring performance, and reduced the excited amplitude. For the excited amplitude,
there is a large room for improvement for the optimal cases two, three, and four. The
optimal case one can improve that as well, but its limitations is obvious. The optimal
case two, three and four don’t only reduce the excited amplitude, but also enlarge
the fundamental natural frequency. The fundamental natural frequency of the

optimal case two, three and four is

2372 (rpm
2372 (pm) . (th) = 514 (Hertz).

Table 5.1 shows the power density comparison of all optimal cases.

Table 5.1 The results from different optimal designs

term Weight | Max. Spring | The scale of the | The excited
(kg) Seat Force excited order(th)
(N) harmonics
Original 0.0415 182.63 6924.64 11
Vari. Pitch 0.0415 134.11 6911.68 11
Vari. Coil. Dia 0.0415 195.52 3378 13
Vari. Wire Dia 0.056 166.78 2752.11 13
Va. Pitch, Wire, Coil Dia | 0.0738 129.16 2159.9 13

5.5 Verification in ABAQUS-MATLAB Program

5.5.1 Introduction and Program Structure

This section involved the modeling and verification of the optimal valve spring
with the focus on the non-linear behavior of high speed valve springs - verification of
optimal results using finite element method. The optimal parameters in
SECTION.5.4.1 to 5.4.4 were used as an input in the analysis and implementation in
ABAQUS-MATLAB program. The role of MATLAB in this program is only to generate
the geometric model by the obtained optimal parameters in SECTION.5.4, then do
the natural frequency computation in ABAQUS. The verification flow chart for the
obtained optimal parameters in different programs is shown in Fig.5.12. The spring

model was developed systematically from a solid model, into a finite element model,
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and finally into a dynamic model. All development steps were continually checked
with experiments and simulations in previous chapters. The primary concept used in
this section is to check the obtained fundamental natural frequency in SECTION.5.4.
From the results, the dynamic model was verified and good correlations were found,

especially at high engine speeds where valve train dynamics play an important role.

MATLAB

v

Start —L 5 Geometry Shape Finite Difference Method —®| Spring Seat Force

| Not l
Optimal o timization Subroutine [«—| Fast Fourier Transform

h

Optimal
A The fundamental 5
Optimizatior natural frequency omparison
Result — ,Powe_r Spechal QNYs! and Verification
Amplitude ry
J' Optimal Geometric Parameters
Verification :
i L The Fundamental
Natural Frequency

ABAQUS

Fig.5.12 Flow chart for comparing results from different methods

5.5.2  Variable Pitch Angle

This fundamental natural frequency of the optimal parameter in SECTION.5.4.1
is 433 (Hertz) which is also verified in ABAQUS-MATLAB program. The verified result
is shown in Fig.5.13 which is has a fundamental natural frequency around 436 Hertz.
It is seen that the result is the same as the result of optimization program and shows
a limited improvement in a variable pitch angle type. A possible reason is that the
original design greatly improved. To lessen any tendency towards surging within
motion speed range of the engine, the valve springs are designed to have a high
natural frequency of vibration. Various additional measures may be taken to
minimize surge such as the use of double springs, mechanical spring dampers, and
progressive rate springs (referring to SECTION.2.4.4).
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U, Magnitude
+1.046e+00
+9.585e-01
+8.713e-01
+7.842e-01
+6.971e-01
+6.099e-01
+5.228e-01
+4.357e-01
+3.485e-01
+2.614e-01
+1.743e-01
+8.713e-02 7
+0.000e+00

ODB: Job-1.0db Abaqus/Stan igri 6.8-1  FriJul 03 13:34:03 CDT 2009

A Step: Frequency |, Extract modes and frequencies
/l\ Mode 1: Value = 7.51246E+06 Freq = 436.23 (cycles/time}
7 X Primary Var: U, Magnitude
Deformed Yar: U Deformation Scale Factor: +3.219e-03

Fig.5.13 The generated fundamental natural frequency by ABAQUS-MATLAB program

(Optimal parameters of optimization case one)

5.5.3 Variable Coil Diameter

The optimal parameter in SECTION.5.4.2 is taken into MATLAB-ABAQUS program
to verify the result. The verified result is shown in Fig.5.14 which has the similar
natural frequency around 510 Hertz as that in Fig.5.5. In fact, the two results show
the same phenomenon that the top end needs the smaller coil diameter, but the
bottom end needs the larger coil diameter to form a stable and lighter design. This
condition coincides to conical springs sold in the current spring market.

It’s clear to show the dynamic equation derived in this thesis is very accurate,
and can be used to improve spring performance. Here we could calculate easily the
engine speed limit by this result. We select the maximum harmonic order that could
affect the spring resonance is 13" order [SMI, 2002]. The calculation is expressed as

engine speed red line
2

1 /min
(rpm) X 5(;) x 13(th)

= fundamental natural frequency.

The original fundamental natural frequency is around 433 (Hertz), so the

calculated engine speed red line is round 4006 (rpm). The optimal parameter in
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conical springs design has a value around 514(Hertz), hence the engine speed red
line is elevated up to 4726 (rpm). It is improved around 700 (rpm) by this
optimization design.

U, Magnitude
+1.014e+00
+9.292e-01
+8.447e-01
+7.602e-01
+6.758e-01
+5.913e-01
+5.068e-01
+4.224e-01
+3.379e-01
+2.534e-01
+1.689e-01
+8.447e-02
+0.000e+00

CDB: Job-1.0db Abaqus/Stgndard Version 6.8-1  FriJul 03 13:41:38 CDT 2009

Mode 1: Value = 1.03011E+07 Freq = 510.81 (cycles/time}
Primary Var: U, Magnitude

/‘[\ Step: Frequency |, Extract modes.and frequencies
zZ A -
Deformed Var: U Deformation Scale Factor: +3.170e-03

Fig.5.14 The generated fundamental natural frequency by ABAQUS-MATLAB program

(Optimal parameters of optimization case two)

5.5.4 Limitation

Although the ABAQUS-MATLAB program in this section provided good
verification with optimal results in SECTION.5.4, unfortunately, it cannot handle
springs involving variable wire diameter due to the involving generating solid model
for variable cross-section along helix. As in the previous discussion in optimization
program, the combination of variable pitch angle, variable coil diameter, and variable
wire diameter shows the most powerful spring. The ABAQUS-MATLAB program at
least can be used to make sure the optimal results — case one and two, generated by
optimization program are correct and accurate. Another problem in this program is
that it is too slow due to the calculation of FEA mesh. Comparatively speaking, the
simulation by the finite difference method and optimization by FFT provided faster
and relative accurate result. The comparison of results obtained from optimal
parameters is shown in Table 5.2.
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Table 5.2 Comparison of fundamental natural frequencies in different optimization

cases
Optimization Optimal Parameter Natural Program
Design frequency(Hertz)
Variable Pitch p1 = —0.268699 433 Optimization
Angle p, = 0.145742 Program
p; = 0.079511 436 ABAQUS-MATLAB
ps = —0.000198 Program
Variable Coil D; = —0.000198 514 Optimization
Diameter D, = 0.004731 Program
D; = —0.004397 510 ABAQUS-MATLAB
D, = 0.02345 Program
Vari. Wire Dia Referring to SEC.5.4.3 514 Optimization
Program
X ABAQUS-MATLAB
PROGRAM
Combination Referring to SEC.5.4.4 514 Optimization
Program
X ABAQUS-MATLAB
PROGRAM
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Chapter 6 - Conclusion

6.1 Summary

1. This thesis offered a modified wave equation by inserting an internal virtual force
term into the original wave equation. This modified wave equation is applicable
to helical springs with variable pitch angle p(s), variable wire diameter d(s), and
variable coil diameter D(s).

2. Finite Difference method was used to solve the modified wave equation.
Because Crank-Nicolson’s method is unconditionally stable for solving partial
differential equations, it is used to solve this dynamic equation. While solving the
dynamic equation, to take the coil closing or clashing into consideration, a
moving boundary solution was programmed to take into account the coil closing
at the top and bottom boundaries. For improving the speed of numeric solution
using MATLAB, a faster computational algorithm in Crank-Nicolson method was
applied. It shortened the computational time, and had approximate solutions.
With these special techniques, the result represented an approximate but
sufficiently accurate simulation data to be compared with the experimental data.

3. For evaluating spring performance, a Fast Fourier Transform (FFT) was used to
evaluate the power spectral density. Because the numeric solution had been
verified by physical experiments to be accurate enough, these simulated results
were used in optimization. In Optimization chapter, the maximum power density
in higher order harmonics was defined as the objective function. The power
spectrum density in the best situation was improved for as much as 68.8 percent.
Some other scenarios, such as in variable coil diameter optimization, the
improvement is only 52 percent. The lowest natural frequency in this tested
engine, which is a GM-ISUZU 1987 engine, is close to 433 Hertz.

4. The most thorough approach to optimize a helical spring is to assume the spring
under consideration for optimization has variable pitch angle, variable wire
diameter, and variable coil diameter. In this situation not only the maximal power
density in 13" harmonic (which was exciting the lowest natural frequency) is

reduced to around 2200, but also its natural frequency is up to 512 Hertz.
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5. ABAQUS-MATLAB program was utilized to verify the obtained optimized design —
optimization case one and two, and its results agreed well with Finite Difference

results.

6.2  Suggested Future Works

1. Due to the difficulty in using programs to generate variable diameter wire in a
solid model, ABAQUS-MATLAB program was not able to do variable wire
diameter in Optimization chapter. It is possible to modify that by using the ACIS
3D Model to make the 3D model with different wire diameter along the helix. For
accuracy, each element between nodes should be sufficiently small. In the future,
3D solid model should be possibly based on ACIS description as input file for
ABAQUS. Then the optimal solution can be compared with the finite difference

solution, as an alternative and independent solution.

2. The obtained fundamental natural frequency in this thesis is based on processing
dynamic solution data using Fast Fourier Transform. For the latest technical
papers [Liu, 2009], the fundamental natural frequency of helical springs was
obtained by a different method analyzing the amount of coil closing. It should be
interesting to compare the result for the same spring using these two different

methods, and compared also with actual experimental data.

3. Although we know the type of spring with variable pitch angle, variable wire
diameter, and variable coil diameter performs very well dynamically, it is also very
difficult to manufacture. It is desirable to use special manufacturing technique to
make helical springs with variable wire diameter, and compare numerical solution
with experimental data based on real variable pitch angle, variable wire diameter

and variable coil diameter spring.
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Appendix

1. Program Code (Optimization program)

1.(A) Main Program
%the spring simulation program
%the program could be divided into many parts
%1: setup the basic parameters
%2: setup the preload for 15% height
%3:calculate the deflection
%4:play the spring movie
%5:calculate the spring seat force
%6:calculate the power spectrum
%7:output all data
clear;
clc;
fprintf('The Central Finite Difference Method\n');
G = 77e9; %the shear modulus
mu = 7.86e3;%the material weight density
d = 0.004; % the radius of the cross-section of wire
r=0.01275; %the radius of the coil
D = 2*r; % the diameter of every coil
J=2.62e-11; % polar moment of inertia
po = 0.3; %poissoin ratio
¢ = D/d; % the spring index
yf =0.0386; % the free height
ys = 0.024; % the solid height
cr =1 - ys/yf; % compression ratio
L = 0.42; %total length of the spring
ws = 2400; %the rotational speed
ei = (1+po)*G*J; % G times J changes to E times |
mg = mu*(pi*d.A2/4*L); %the weight of the spring
cc = 8; %the damping force per unit length of the wire per unit of velocity
b = cc*L/mg; %the damping coefficient
fre_surge = d/(2*D*L)*sqrt(G/2/mu); %frequency of surge waves
a =sqrt((G*d.A2)/(mu*(8*r.A2+d.A2))); %the wave speed
F = 10; %the internal force in the spring causes the nonlinear deformation
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ff = ei*(cos(5*pi/180)/r-cos(6*pi/180)/r).A2;%add on an force term to let the
wave equation as nonlinear

kc = pi*d.~4*G/(8*D.2); % k1 x L is the spring constant
km = (4*c-1)/(4*c-4)+ 0.615/c; % the correction factor
k1 = kc/(pi*D*5); %the spring constant

%output the data

fprintf('The diameter of this coil spring: %9.4f(m)\n',D);
fprintf('The diameter of the cross wire: %9.4f(m)\n', d);
fprintf('The free height: %9.4f(m)\n',yf);

fprintf('The solid height: %9.4f(m)\n',ys);

fprintf('The spring density: %6.2f(kg/m”3)\n',mu);
fprintf('The weight: %9.4f(kg)\n',mg);

fprintf('The spring rate: %9.4f(N/m)\n',k1);

fprintf('The wave speed: %9.4f(m/s)\n',a);

fprintf('The damping coefficient: %6.2f(m/s)\n',b);
fprintf('The rotaional speed: %7.2f(rpm)\n',ws);

fprintf('The frequency of surege waves: %7.2f(hertz)\n', fre_surge);

dx = 0.01; %the length interval between every two points
x = 0:dx:L; %divide the length
nx = length(x); % the size of dx
dt =0.000027; %the time interval between every two points
w = ws/60; %rev/min / 60 = rev/sec
t = 0:dt:(1/w*4); %the time
t1 = 0:dt:(1/w); % it's used to calculate the cam profile for one cycle
nt = length(t); % the size of dt
lamda = a*dt/dx; %calculate the stability of the finite difference method
fprintf('The amplification factor for the stability of the finite difference method:
%6.4f \n',lamda);
if (lamda <=1)
fprintf('The simulation of this model is stable.\n');
else
fprintf('The simulation of this model is not stable.\n');

end;
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%calculate the spatial curve of the spring when it is installed in the
%opposed direction

ppo =[-0.2187 0.1716 0.0585 -0.00009]; %the curve of the spring installed on
the normal direction

ppn = c_pp_cal(L,ppo); %calculate the curve of the spring installed on the
opposed direction

%preload

preload_ratio = 0.15;

yd = [0 0 0:0.00001:yf*preload_ratio];%preload is 10%

yt = zeros(length(yd),nx);

yt(1,:) = ppo(1).*x.A3+ppo(2).*x.A2+ppo(3).*x +ppo(4); %initial condition for
y(x,0) = f(x)

yo = vyt(1,:); %store the initial curve of the spring

yt(:,1) = 0; %boundary condition atx=0

yt(:,nx) = yt(1,nx) - yd;

yt(2,:) = yt(1,:); %initial condition for dy(x,0) = g(x)

%calcaulate the pitch angle
ypitch = 3*ppo(1).*x.A2+2*ppo(2).*x+ppo(3);

=1
n=1;
%calculate the deflection
fprintf('‘computating the spring deflection...\n'");
while(n <= length(yd)-2)
while(j <= (nx-2))
temp = ((dt/dx*a).A2.*(yt(n+1,j+2)-2*yt(n+1,j+1)+ yt(n+1,j)) + 2*yt(n+1,j+1)
- yt(n,j+1) + b*dt/2*yt(n,j+1));
ta = (1 + b*dt/2)*yt(n,j+1)+temp;
tb = sqrt((-ta).A2-4*(1+b*dt/2)*(dt.A2*ff+temp*yt(n,j+1)));
yt(n+2,j+1) = real((ta-tb)/(2*(1+b*dt/2)));

j=i+l;
end;
i=1
n=n+1;
end;

pp = polyfit(x,yt(length(yd),:),3);
ytempa = polyval(pp,x);
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ytempal = ytempa(nx);
ynratio = ytempa(nx)/L;
clear ytempa;

yt = zeros(nt,nx);

yt(1,:) = ynratio*x;

yr = cam_rise(t1,dt,w);
yr=[yrOyr0yrO0yr];
yr = yr(1:length(yr)-3);
yt(:,nx) = yt(1,nx) - yr(:);
yt(2,:) = yt(1,:); %initial condition for dy(x,0) = g(x)
ytl =yt;

n=1;

clear t1;

%calculate every value on the grid,

%length and time, by the finite difference method

syms a0l a02 a03 a04 a05 a06 a07 a08 a09 a10 all al2 al3 al4 al5al6al7
al8 al9 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36
a37 a38 a39 a40 a41

while(n <= nt-2)

fO1 = (dx/dt/a).~2.*¥2.*(a01 - 2*yt(n+1,2) + yt(n,2)) -(yt(n+1,3) - 2*yt(n+1,2) +
yt(n+1,1)) -(a02 -2*a01 + yt(3,1)) + b/dt*(dx/a).~2*(a01 - yt(n,2)) +
2*(dx/a).A2*F*a02/L;

f02 = (dx/dt/a).*2.*¥2.*(a02 - 2*yt(n+1,3) + yt(n,3)) -(yt(n+1,4) - 2*yt(n+1,3) +
yt(n+1,2)) -(a03 -2*a02 + a01) + b/dt*(dx/a).*2*(a02 - yt(n,3)) +
2*(dx/a).A2*F*a03/L;

f03 = (dx/dt/a).*2.*¥2.*(a03 - 2*yt(n+1,4) + yt(n,4)) -(yt(n+1,5) - 2*yt(n+1,4) +
yt(n+1,3)) -(a04 -2*a03 + a02) + b/dt*(dx/a).*2*(a03 - yt(n,4)) +
2*(dx/a).A2*F*a04/L;

fo4 = (dx/dt/a).»2.*¥2.*(a04 - 2*yt(n+1,5) + yt(n,5)) -(yt(n+1,6) - 2*yt(n+1,5) +
yt(n+1,4)) -(a05 -2*a04 + a03) + b/dt*(dx/a).*2*(a04 - yt(n,5)) +
2*(dx/a).A2*F*a05/L;

fO5 = (dx/dt/a).~2.*¥2.*(a05 - 2*yt(n+1,6) + yt(n,6)) -(yt(n+1,7) - 2*yt(n+1,6) +
yt(n+1,5)) -(a06 -2*a05 + a04) + b/dt*(dx/a).A2*(a05 - yt(n,6)) +
2*(dx/a).A2*F*a06/L;

fo6 = (dx/dt/a).*2.*¥2.*(a06 - 2*yt(n+1,7) + yt(n,7)) -(yt(n+1,8) - 2*yt(n+1,7) +
yt(n+1,6)) -(a07 -2*a06 + a05) + b/dt*(dx/a).*2*(a06 - yt(n,7)) +
2*(dx/a).A2*F*a07/L;
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f07 = (dx/dt/a).*2.*¥2.*(a07 - 2*yt(n+1,8) + yt(n,8)) -(yt(n+1,9) - 2*yt(n+1,8) +
yt(n+1,7)) -(a08 -2*a07 + a06) + b/dt*(dx/a).*2*(a07 - yt(n,8)) +
2*(dx/a).A2*F*a08/L;

fO8 = (dx/dt/a)."2.*¥2.*(a08 - 2*yt(n+1,9) + yt(n,9)) -(yt(n+1,10) - 2*yt(n+1,9) +
yt(n+1,8)) -(a09 -2*a08 + a07) + b/dt*(dx/a).*2*(a08 - yt(n,9)) +
2*(dx/a).A2*F*a09/L;

f09 = (dx/dt/a).A2.¥2.*(a09 - 2*yt(n+1,10) + yt(n,10)) -(yt(n+1,11) - 2*yt(n+1,10)
+yt(n+1,9)) -(a10 -2*a09 + a08) + b/dt*(dx/a).A2*(a09 - yt(n,10)) +
2*(dx/a).A2*F*al10/L;

f10 = (dx/dt/a).~2.¥2.*(a10 - 2*yt(n+1,11) + yt(n,11)) -(yt(n+1,12) - 2*yt(n+1,11)
+yt(n+1,10)) -(a11 -2*a10 + a09) + b/dt*(dx/a).*2*(a10 - yt(n,11)) +
2*(dx/a).A2*F*al11/L;

f11 = (dx/dt/a).~2.¥2.*(all - 2*yt(n+1,12) + yt(n,12)) -(yt(n+1,13) - 2*yt(n+1,12)
+yt(n+1,11))-(a12 -2*all + al0) + b/dt*(dx/a).A2*(all - yt(n,12)) +
2*(dx/a).A2*F*al12/L;

f12 = (dx/dt/a).A2.¥2.*(al12 - 2*yt(n+1,13) + yt(n,13)) -(yt(n+1,14) - 2*yt(n+1,13)
+yt(n+1,12)) -(a13 -2*a12 + all) + b/dt*(dx/a).*2*(a12 - yt(n,13)) +
2*(dx/a).A2*F*al13/L;

f13 = (dx/dt/a).~2.¥2.*(a13 - 2*yt(n+1,14) + yt(n,14)) -(yt(n+1,15) - 2*yt(n+1,14)
+yt(n+1,13)) -(a14 -2*a13 + al2) + b/dt*(dx/a).*2*(a13 - yt(n,14)) +
2*(dx/a).A2*F*al4/L;

f14 = (dx/dt/a).~2.¥2.*(al4 - 2*yt(n+1,15) + yt(n,15)) -(yt(n+1,16) - 2*yt(n+1,15)
+yt(n+1,14))-(a1l5 -2*al4 + al3) + b/dt*(dx/a).*2*(a14 - yt(n,15)) +
2*(dx/a).A2*F*al5/L;

f15 = (dx/dt/a).~2.¥2.*(al5 - 2*yt(n+1,16) + yt(n,16)) -(yt(n+1,17) - 2*yt(n+1,16)
+yt(n+1,15)) -(a16 -2*al5 + al4) + b/dt*(dx/a).*2*(al5 - yt(n,16)) +
2*(dx/a).A2*F*al6/L;

f16 = (dx/dt/a).A2.¥2.*(al6 - 2*yt(n+1,17) + yt(n,17)) -(yt(n+1,18) - 2*yt(n+1,17)
+yt(n+1,16)) -(a17 -2*a16 + al5) + b/dt*(dx/a).*2*(a16 - yt(n,17)) +
2*(dx/a).A2*F*al7/L;

f17 = (dx/dt/a).A2.¥2.*(al7 - 2*yt(n+1,18) + yt(n,18)) -(yt(n+1,19) - 2*yt(n+1,18)
+yt(n+1,17)) -(a18 -2*al7 + al6) + b/dt*(dx/a).*2*(al7 - yt(n,18)) +
2*(dx/a).A2*F*al18/L;

f18 = (dx/dt/a).A2.¥2.*(al8 - 2*yt(n+1,19) + yt(n,19)) -(yt(n+1,20) - 2*yt(n+1,19)
+yt(n+1,18))-(a19 -2*al18 + al7) + b/dt*(dx/a).*2*(a18 - yt(n,19)) +
2*(dx/a).A2*F*a19/L;

f19 = (dx/dt/a).~2.¥2.*(a19 - 2*yt(n+1,20) + yt(n,20)) -(yt(n+1,21) - 2*yt(n+1,20)
+yt(n+1,19))-(a20 -2*a19 + al8) + b/dt*(dx/a).*2*(a19 - yt(n,20)) +
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2*(dx/a)."2*F*a20/L;
f20=
+ (dx/dt/a).~2.*¥2.%(a20 - 2*yt(n+1,21) + yt(n,21
JE(+1,20))-(a21 -2%a20 + a19) + b/dt*{dx/a).: ) -yt(n+1,22) - 2*yt(n+1,21)
2*(dx/a).A2*F*a21/L; x/a)."2*(a20 - yt(n,21)) +
f21 = (dx/dt/a).»
N2.%¥2.%(a21 - 2%
yt(n+1,22) + yt
+yt(n+1,21))-(a22 -2*a21 + a20) + b/dt*(d y (':,2*2)) -(yt(n+1,23) - 2*yt(n+1,22)
2*(dx/a)."2*F*a22/L; x/a)-"2*(a21 - yt(n,22)) +
f22 = (dx/dt/a).A
N2.¥2 %(a22 - 2%
yt(n+1,23) +
+ ’ yt(n,23)) -
>|?/'[(I'1+1,22))-(323 2%a22 + a21) + b/dt*(dx/ (A ) )) -(yt(n+1,24) - 2*yt(n+1,23)
2*(dx/a).A2*F*a23/L; x/a)."2*(a22 - yt(n,23)) +
f23 =
Fyt (dx/dt/a).A2.*2.%(a23 - 2*yt(n+1,24) + yt(n,24
YHin+1,23)Ha24 -2%23 + a22) + bt (ch/ n24)) -y, 25) - 27ye{e 24
2%(dx/a)."2*F*a24/L; x/a)."2*(a23 - yt(n,24)) +
f24 = (dx/dt/a).»
N2.¥2.%(a24 - 2%
yt(n+1,25) + yt
+:/t(n+1,24))-(325 2%224 + 323) + b/dt*(d /v (:,2*5)) ~(yt(n+1,26) - 2*yt(n+1,25)
2*(dx/a).A2*F*a25/L; x/a)."2*(a24 - yt(n,25)) +
f25 = (dx/dt/a).A
N2.%¥2.%(a25 - 2*
yt(n+1,26) + yt
+ yt(n+1,25))-(a26 -2*a25 + a24) + b/dt*(d y (:,2*6)) L(yt(n+1,27) - 2*yt(n+1,26)
2*(dx/a).A2*F*a26/L; x/a)."2*(a25 - yt(n,26)) +
f26 =
+ 6t (dx/dt/a).A2.%2.%(a26 - 2*yt(n+1,27) + yt(n,27)
YAIn+1,26)) {a27 -2°226 + a25) + b/t (d/ v27) -ytined,28) - 27y, 27)
2*(dx/a).A2*F*a27/L; x/a)."2*(a26 - yt(n,27)) +
f27 = (dx/dt/a).A
N2.¥2 %(a27 - 2*
yt(n+1,28) +
+ vt ’ yt n,28 -
YeIn+1,27))- (a28-2°227 + a26) + b/t (d/ (n28) -{yt{n+1,29) - 27yt{n+, 28)
2*(dx/a).A2*F*a28/L; x/a)."2*(a27 - yt(n,28)) +
£28 = (dx/dt/a).A
N2.¥2.%(a28 - 2*
yt(n+1,29) +
+yt ’ yt(n,29)) -
YHn+1,28)) (229 27228 + 227) + bfct*(dxfa)." 2 ytln1,30) ~27yi(n+, 29)
2*(dx/a).A2*F*a29/L; x/a)."2*(a28 - yt(n,29)) +
f29 =
i 9t (dx/dt/a).A2.%¥2.%(a29 - 2*yt(n+1,30) + yt(n,30)
:’ (n+1,29)) -(a30 -2*a29 + a28) + b/dt*(dx/ A’ ) ) -(yt(n+1,31) - 2*yt(n+1,30)
2*(dx/a).A2*F*a30/L; x/a)."2*(a29 - yt(n,30)) +
£30 = (dx/dt/a).A
AN2.%¥2.%(a30 - 2*
yt(n+1,31) +
+ ’ yt(n,31)) -
:/t(n+1,30)) (231 -2%a30 + 229) + b/dt*(dx/ ( o )) -(yt(n+1,32) - 2*yt(n+1,31)
2 (dx/a)-"Z*F*a31/|_; X a)- 2 (a3o-yt(n’31)) +
f31 = (dx/dt/a).»
N2.%¥2 %(a31 - 2%
yt(n+1,32) +
+ ’ yt(n,32)) -
Ytin+1,31))-{a32 27231 + 30 + bt "{ch/ (n32) -{ytln+1,33) - 2%yt{n+, 32)
2*(dx/a).A2*F*a32/L; x/a)."2*(a31 - yt(n,32)) +
£32 = (dx/dt/a).A2.*
).A2.%2.*%(a32 - 2*yt(n+1,33) + yt(n,33
,33)) -(yt(n+1,34) - 2*yt(n+1,33)
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+yt(n+1,32)) -(a33 -2*a32 + a31) + b/dt*(dx/a).*2*(a32 - yt(n,33)) +
2*(dx/a).A2*F*a33/L;

f33 = (dx/dt/a).~2.¥2.*(a33 - 2*yt(n+1,34) + yt(n,34)) -(yt(n+1,35) - 2*yt(n+1,34)
+yt(n+1,33)) -(a34 -2*a33 + a32) + b/dt*(dx/a).*2*(a33 - yt(n,34)) +
2*(dx/a).A2*F*a34/L;

f34 = (dx/dt/a).A2.¥2.*(a34 - 2*yt(n+1,35) + yt(n,35)) -(yt(n+1,36) - 2*yt(n+1,35)
+yt(n+1,34)) -(a35 -2*a34 + a33) + b/dt*(dx/a).*2*(a34 - yt(n,35)) +
2*(dx/a).A2*F*a35/L;

f35 = (dx/dt/a).~2.¥2.*(a35 - 2*yt(n+1,36) + yt(n,36)) -(yt(n+1,37) - 2*yt(n+1,36)
+yt(n+1,35)) -(a36 -2*a35 + a34) + b/dt*(dx/a).*2*(a35 - yt(n,36)) +
2*(dx/a).A2*F*a36/L;

f36 = (dx/dt/a).A2.¥2.*(a36 - 2*yt(n+1,37) + yt(n,37)) -(yt(n+1,38) - 2*yt(n+1,37)
+yt(n+1,36)) -(a37 -2*a36 + a35) + b/dt*(dx/a).*2*(a36 - yt(n,37)) +
2*(dx/a).A2*F*a37/L;

f37 = (dx/dt/a).A2.¥2.*(a37 - 2*yt(n+1,38) + yt(n,38)) -(yt(n+1,39) - 2*yt(n+1,38)
+yt(n+1,37)) -(a38 -2*a37 + a36) + b/dt*(dx/a).*2*(a37 - yt(n,38)) +
2*(dx/a).A2*F*a38/L;

f38 = (dx/dt/a).A2.*¥2.*(a38 - 2*yt(n+1,39) + yt(n,39)) -(yt(n+1,40) - 2*yt(n+1,39)
+yt(n+1,38)) -(a39 -2*a38 + a37) + b/dt*(dx/a).*2*(a38 - yt(n,39)) +
2*(dx/a).A2*F*a39/L;

f39 = (dx/dt/a).~2.¥2.*(a39 - 2*yt(n+1,40) + yt(n,40)) -(yt(n+1,41) - 2*yt(n+1,40)
+yt(n+1,39)) -(a40 -2*a39 + a38) + b/dt*(dx/a).*2*(a39 - yt(n,40)) +
2*(dx/a).A2*F*a40/L;

f40 = (dx/dt/a).A2.¥2.*(a40 - 2*yt(n+1,41) + yt(n,41)) -(yt(n+1,42) - 2*yt(n+1,41)
+yt(n+1,40)) -(a41 -2*a40 + a39) + b/dt*(dx/a).*2*(a40 - yt(n,41)) +
2*(dx/a).A2*F*a41/L;

fA41 = (dx/dt/a).A2.%2.*(a41 - 2*yt(n+1,42) + yt(n,42)) -(yt(n+1,nx) - 2*yt(n+1,42)
+yt(n+1,41)) -(yt(n+2,nx) -2*a41 + a40) + b/dt*(dx/a).A2*(a41 - yt(n,42)) +
2*(dx/a).A2*F;

result =
solve(f01,f02,f03,f04,f05,f06,f07,f08,f09,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f
20,f21,f22,f23,f24,25,f26,f27,f28,f29,f30,f31,f32,f33,f34,f35,f36,f37,f38,f39,f40
,f41);

yt(n+2,2) = double(vpa(result.a01));

yt(n+2,3) = double(vpa(result.a02));

yt(n+2,4) = double(vpa(result.a03));

yt(n+2,5) = double(vpa(result.a04));

yt(n+2,6) = double(vpa(result.a05));

90



yt(n+2,7) = double(vpa(result.a06));
yt(n+2,8) = double(vpa(result.a07));
yt(n+2,9) = double(vpa(result.a08));
yt(n+2,10) = double(vpa(result.a09));
yt(n+2,11) = double(vpa(result.a10));
yt(n+2,12) = double(vpa(result.all));
yt(n+2,13) = double(vpa(result.al2));
yt(n+2,14) = double(vpa(result.al3));
yt(n+2,15) = double(vpa(result.al4));
yt(n+2,16) = double(vpa(result.al5));
yt(n+2,17) = double(vpa(result.al6));
yt(n+2,18) = double(vpa(result.al7));
yt(n+2,19) = double(vpa(result.a18));
yt(n+2,20) = double(vpa(result.a19));
yt(n+2,21) = double(vpa(result.a20));
yt(n+2,22) = double(vpa(result.a21));
yt(n+2,23) = double(vpa(result.a22));
yt(n+2,24) = double(vpa(result.a23));
yt(n+2,25) = double(vpa(result.a24));
yt(n+2,26) = double(vpa(result.a25));
yt(n+2,27) = double(vpa(result.a26));
yt(n+2,28) = double(vpa(result.a27));
yt(n+2,29) = double(vpa(result.a28));
yt(n+2,30) = double(vpa(result.a29));
yt(n+2,31) = double(vpa(result.a30));
yt(n+2,32) = double(vpa(result.a31));
yt(n+2,33) = double(vpa(result.a32));
yt(n+2,34) = double(vpa(result.a33));
yt(n+2,35) = double(vpa(result.a34));
yt(n+2,36) = double(vpa(result.a35));
yt(n+2,37) = double(vpa(result.a36));
yt(n+2,38) = double(vpa(result.a37));
yt(n+2,39) = double(vpa(result.a38));
yt(n+2,40) = double(vpa(result.a39));
yt(n+2,41) = double(vpa(result.a40));
yt(n+2,42) = double(vpa(result.a41));
ytl(n+2,:) = yt(n+2,:) + (pp(1).*x.A3+pp(2).*x.22+pp(3).*x+pp(4) -
ynratio.*x)*(1-yr(n+2)/(ytempal - ys));
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n=n+1;
end;
fprintf('Finished computating the spring deflection....\n');

%play the spring animation

play_movie(x,yt1,L,r,nt);

nn = 6; %used node
i=1,
pps = 0; %calculate the change condition of the pitch angle on the seat
while(i <= nt)
pps(i) = ((yt1(i,nn) - yt1(i,nn-1))/(x(nn) - x(nn-1)));
i=i+1;

end;

%calculate the velocity
i=1,
va = 0;%the velocity of the spring fall down
fa = 0;%the impulse force -M*dv/dt
while(i <= nt)
if(i==1)
va(i) = (yt1(i+1,nn) - yti(i,nn))/dt;
fa(i) = mg/L*x(nn)*va(i)/dt;
else if(i < (nt-1))
va(i) = ((yt1(i+1,nn) - yt1(i,nn))/dt + (yt1(i,nn) - yt1(i-1,nn))/dt)/2;
fa(i) = mg/L*x(nn)*va(i)/dt;
else
va(i) = (yt1(i,nn) - yt1(i-1,nn))/dt;
fa(i) = mg/L*x(nn)*va(i)/dt;
end;
end;
i=i+1;

end;

%calculate the spring seat force
i=1,;
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g2=0;
g3=0;
g4=0;
ri = 0; %the new change radius when the spring is compressed
Fe = 0; %The Spring Force by Wahl's equation F = GJ/r*cos(p)*delta(torsion) -
El/r*sin(p)*delta(curvature) - M*dv/dt
while(i <= nt)
ri = r*cos(pps(i))/cos(pps(1));
g1(i) = (sin(pps(i)) *cos(pps(i))/ri - sin(pps(1))*cos(pps(1))/r);
g2(i) = G*J*cos(pps(i))/ri*gl(i);
g3(i) = (cos(ppsf(i)).A2/ri - cos(pps(1)).72/r);
g4(i) = ei*sin(pps(i))/ri*g3(i);
Fe(i) = -(g2(i) - g4(i));
i=i+1;
end;
Fe(3:nt) = Fe(3:nt) - Fe(3); %cut the beginning error
Fe = Fe +fa;

i=1,
% The modifed spring Force by the energy terms, torsion and bending terms
%F=GJ/r*cos(p)*delta(torsion) - El/r*sin(p)*delta(curvature) +
%1/2*EI*(delta(curvature)).A2/dy - M*dv/dt
Fe2 = 0; %setup the modified force
h4 = 0; %the second bending force 1/2*EI*(d”2y/ds"2).A2
while(i <= nt)

h4(i) = 1/2*ei*((pps(i)-pps(1))/(x(nn)-x(nn-1))).A2;

Fe2(i) = Fe(i) + h4(i);

i=i+1;
end;
fprintf('The Maximum Spring Seat Force: %7.2f(N)\n',max(Fe2));

%read the experimental data

ytc = read_expt_op(); %read the experimental data
t1 = linspace(0.0575,0.0828,1401);

%t1 = linspace(0.0583,0.082,1401);

%calculate the spectrum of the spring
sp = cal_spec(Fe2(926*2+1:926*3));
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[spmax,spi] = max(sp(8:20));

fprintf('The %7.2f th harmonic would be excited\n',8+spi-1);
fprintf('The scale of the spectra at this harmonic is %7.2f\n',spmax);
fprintf('The fundamental natural frequency is %7.2f(hertz)\n',a/2/L);

%output the data

subplot(3,2,1);
plot(t,yt1(:,8),t,yt1(:,21),t,yt1(:,34));
axis([0.055 0.085 0 0.05]);
legend('node 8','node 21','node 34');
xlabel('time(s)');
ylabel('displacement(m)’);
subplot(3,2,2);
plot(x,yo,x,yt1(3,:),x,yt1(1525,:));
legend('no preload','time is 0 with preload’,'time is 0.0152 with preload',2);
xlabel('spatial length(m)');
ylabel('displacement(m)’);
title('variable pitch angle by the CTCS');
subplot(3,2,3);
plot(t,Fe2,'-.",t1,ytc,"');

axis([0.0575 0.075 -50 200]);
legend('modified eq','experimental data');
xlabel('Time(s)');

ylabel('Spring Seat Force(N)');
subplot(3,2,4);

plot(sp(1:20));

xlabel('Number of Harmonics');
ylabel('Power of Harmonics');
title('Power spectrum’);
subplot(3,2,5);

plot(x,ypitch);

xlabel('spatial length(m)');
ylabel('pitch angle(rad)');

title('Pitch angle at time is 0');
subplot(3,2,6);

plot(t,pps);
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axis([0.055 0.085 0.06 0.08]);
xlabel('time(s)');

ylabel('the pitch angle');

title('the change of the pitch angle');

1.(B)Calculate the Curve of the Opposite Installation Direction
%calcuate the curve of the spring installed on the opposed direction
function ppn =c_pp_cal(L,ppo)
x =0:0.001:L;
nx = length(x);

y1 = pp0(1).*x.A3+ppo(2).*x.A2+ppo(3).*x +ppo(4);
ymax = max(y1);
y2 =ymax - yl;
i=1,
imax = length(x);
while(i <= imax)
y3(i) = y2(imax - i + 1);
i=i+1;
end;
ppn = polyfit(x,y3,3); %get the curve coefficients

1.(C)Read the Cam Profile

%read cam profile

%insert the values into the cam profile to get that

function yr = cam_rise(t,dt,w)

%l......deg........ . displacement];

dg = 1.40625;

cp = 0:dg:360;

nc=123.75/1.40625 + 1;

cp(2,1:nc) =0;

ncl =298.125/dg + 1;

nc2 =360/dg + 1;

cp(2,ncl:nc2) =0;

cp(2,(nc+1):(nc1-1))=[591317 17 22 26 34 43 56....
7289106 123 144 161 178 195 216 238....
259 284 314 348 386 432 483 542 606 678....
758 847 945 1050 1169 1292 1427 1571 1728 1884....
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2045 2215 2388 2557 2731 2909 3078 3247 3413 3578....
3734 3899 4069 4238 4399 4560 4716 4860 4996 5114....
52295326 5411 5478 5533 5576 5601 5610 5605 5584....
5546 5483 5394 5284 5124 4983 4788 4577 4344 4103....
3849 3586 3336 3095 2858 2621 2397 2189 1986 1795....
1618 1457 1309 1169 1042 923 818 720 635 559....
492 432 381 339 301 267 242 216 195 178....
161149132 119 106 94 81 68 56 39 26 13 5]/1000000;
theta = 2*pi*w.*t/pi*180;
i_max = length(t);
yr=0;
i=1,
i=1
%calcualte the cam values
while(i <= i_max)
if(theta(1) == cp(1,1))
yr(1) = cp(1,1);
end;
while(theta(i) > cp(1,j))
j=i+1
end;
if(i>1)
yr(i) = (theta(i) - cp(1,j-1))/(cp(1,j) - cp(1,j-1))*(cp(2,j) - cp(2,j-1)) + cp(2,j-1);
end;

1.(D)  Play Spring Animation
%play the spring animation(the same coil diameter)
function play_movie(x,yt1,L,r,nt)
fprintf('Computing the spring animation....\n');
i=1;
ni = 1; %the initial play index
ni_max = 2;%the play times
kk = 0.01389; %the approximate length for one turn coil
xx = 0:0.001:L;
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xttl = r.*cos(xx./kk); %the x coordinate of the spring
yttl = r.*sin(xx./kk); %the y coordiante of the spring
fprintf('Playing the movie\n');
while(i<=nt)
ppt = polyfit(x,yt1(i,:),3);
zttl = ppt(1).*xx.A3+ppt(2).*xx.A2+ppt(3). *xx+ppt(4);
plot3(xtt1,ytt1,ztt1);
axis([-0.02 0.02 -0.02 0.02 -0.01 0.04]);
title('Playing time is 0 ~ 0.1(sec)');
pause(0.01);
i=i+10;
if(i == nt & ni <=ni_max)
i=1,;
ni=ni+1;
end;
end;
fprintf('Finished the animation playing\n');

1.(E)Read the Experimental Data
%Experimental data of the spring
function C = read_expt()
A=[experimental data ];
B=-A;
C=(B+210);

1.(F) Calculate the Power Spectrum
%calcualte the spectrum of spring

%input the spring seat force for one cycle
function sp = cal_spec(fe)

a = fft(fe);

b = real(a);%get the real part

c =imag(a);%get the imaginary part

sp = sqrt(b.*b + c.*c); %get the power spectrum

1.(G)The Main Optimization File

%spring optimization

%function x = cal_ops(d,D,L)

%p = [pl p2 p3 p4]; %the coefficients of the height profile
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%w = [wl w2 w3 w4]; %the coefficients of the wire diameter

%c = [c1 c2 c3 c4]; %the coefficients of the coil diameter

%x0 = [p w c];

x0=[-0.2187 0.1716 0.0585 -0.00009 000 0.004 00 00.0255];

%the coefficient of the spactial length

x0 =[-0.2817 0.1716 0.0585 -0.00009 0 0 0 0.004 0 0 0 0.0255]; %]

Ib =[-0.4-0.2 -0.1-0.1 -0.0002 -0.007 -0.003 0.0035 -0.0003 -0.004 -0.006 0.022];
%lower bounds

ub =[00.30.10.10.0002 0.007 0.003 0.0048 0.0002 0.005 0.004 0.029]; %upper
bounds

%set up the large or medium scale

options = optimset('LargeScale’,'off');

%x is the optimal value, fval is the optimal value of the objective function

[x, fval] = fmincon(@objfun,x0,[],[1,[1,[],1b,ub, @confun,options);

%tranfer the optimal value to the constraint to get the constraint values

[c ceq] = confun(x);

1.(H) Objective Function
%objective function

%[p1 p2 p3 p4 wl w2 w3 w4 cl c2 c3 c4]
function obj = objfun(x)

%point the path to the main program

obj = 'simulation main program’;

1.()  Constraint Function

%constraint function

%[p1 p2 p3 p4 wl w2 w3 w4 cl c2 c3 c4]

function [c ceq] = confun(x)

xf = 0.42; %the total helix length

¢ = ['the main program to call the maximum spring force' - 210;

-'the main program to call the maximum spring force' + 120;];

ceq = [J;

1.(J) Natural Frequency Distribution
clear;

clc;

% original one
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p0 =[-0.2187 0.1716 0.0585 -0.00009];
% constant pitch type
pf=[000.0386/0.42 0];

%optimization types

% type 1

pl=[-0.268699 0.145742 0.079511 -0.000198];
% type 4

p4 =[-0.279762 0.149103 0.091418 0.001535];

% variable pitch angle -> frequency distribution equation

ps = p0;

s1=0;

n =50;

dy = 0.0386/n;

ddy =1;

ds =0.00001;

s2=0;

s2t=0;

i=1,;

while (i <=n)

while (ddy >= 0.0001)
ddy =dy - (ps(1).*(s2.3 - s1.A3) + ps(2).*(s2.22 - s1.72) + ps(3).*(s2 - s1));
s2 =52 +ds;

end;
s2t(i+1) =s2 - ds;
dSL(i)= s2t(i+1) - s1;
s12(i) = (s1 + s2t(i+1))/2;
s1 =s2t(i+1);
ddy =1;
i=i+1;

end;
G =77e9; %shear modulus

mu = 7.86e3; %mass density

% original one
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d0=[0000.004];
DO =[0000.0255];

%optimization types
%type 2
d2 =[0.000111 0.005998 -0.001993 0.0046];

%type 3
D3 =[-0.000198 0.004731 -0.004397 0.02345];

%type 4

p4 =[-0.279762 0.149103 0.091418 0.001535];
d4 = [-0.000072 -0.000363 0.002625 0.004683];
D4 =[-0.000231 0.001972 0.003628 0.028783];

%variable wire diameter -> frequnecy distribution equation
d=do0;

%variable coil diameter -> frequnecy distribution equation

D =DO;

% frequnecy distribution equation

fre = sqrt((G.*(d(1).*s12.23 + d(2).*¥s12.A2 + d(3).*s12 +
d(4)).22)./(mu.*(2.*((D(1).*s12.A3 + D(2).¥s12.A2 + D(3).*s12 +
D(4)).A2)+(d(1).*s12.A3 + d(2).*s12.A2 + d(3).*s12 + d(4).72))))./dSL;
plot(s12,fre,'.r-');

xlabel('spatial length(m)');

ylabel('Frequency Distribution at each element');

title('Frequency Distribution')

2. Program Code (ABAQUS-MATLAB program)

2.(A) Main File

function Fre = opt_spring(as, bs, cs, ds)

format long;

%the parameter of the variable pitch angle

py = [-0.2187 0.1716 0.0585 -0.00009];

%the parameter of the variable coil diameter(optimization input)
D = [as bs cs ds];

d = 0.004;%wire diameter
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yf = 0.0386;%preloaded height
ys = 0.024;%solid height
L = 0.42;%total spatial length
t = 0:0.0001:10*2*pi;
x(1:length(t)) = 0;
y(1:length(t)) = 0;
X(1) = (D(1).*0.~3 + D(2).*0.~2 + D(3).*0 + D(4))/2;
i=1,
=1
s =0.002;
SS=S5;
syt=1;
tx(1) = x(1);
ty(1) =0;
tz(1) = 0;
f(1) =1,
k=2;
%compute the coordinate of the spring with the variable pitch angle
%and variable coil diameter
while ss <= L+s
DD =D(1).*ss.A3 + D(2).*ss.A2 + D(3).*ss + D(4);
while syt == 1;
x2 = DD/2*cos(t(j));
x1 = DD/2*cos(t(i));
y2 = DD/2*sin(t(j));
y1 = DD/2*sin(t(i));
dl = sgrt((x2-x1).A2 + (y2-y1).72);
dsl = s*cos(3*py(1).*ss.22+2*py(2).*ss+py(3));
f(2) =dl - dsl;
if(abs(f(2)) >= abs(f(1)))
syt=2;
tx(k) = DD/2*cos(t(j-1));
ty(k) = DD/2*sin(t(j-1));
tz(k) = py(1).*ss.23 + py(2).*ss5.A2 + py(3).*ss + py(4);
SS=SS+S;
k=k+1;
i=];

f(1) =1;
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else
f(1) = f(2);
end;
j=i+1
end;
syt=1;

end;

clearxy;

X = tx;

y=ty;

z=1z;

clear tx ty tz;

max_xy = length(x);

%write a IGES wire file

fidw = fopen('partl.igs','wt');

%write start section

fidr = fopen('gl.txt','rt');

while 1
tline = fgetl(fidr);
if ~ischar(tline),  break,
fprintf(fidw,tline(1:80));
fprintf(fidw,"\n');

end

fclose(fidr);

is=1,;

%write global section

fidr = fopen('g2.txt','rt");

while 1
tline = fgetl(fidr);
if ~ischar(tline),  break,
fprintf(fidw,tline(1:80));
fprintf(fidw,'\n');

end

fclose(fidr);

ig =4,

end

end
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fid_de = fopen('temp_de.txt','wt');

count=1;

i=1

%write DE section

while(count <= 2*(max_xy-1))

de(1,:)=[" 110' numstr(j," ") 0 0 10000
000000001' numstr(count,'D")];

fprintf(fid_de,[de(1,:) '\n']);

count = count +1;

de(2,:)=[' 110 0 0 1 0
0' numstr(count,'D")];

fprintf(fid_de,[de(2,:) '\n']);

count = count +1;

j=i+1

end;

fclose(fid_de);

fidr = fopen('temp_de.txt','rt');

while 1
tline = fgetl(fidr);
if ~ischar(tline), break, end
fprintf(fidw,tline(1:80));
fprintf(fidw,'\n');

end

fclose(fidr);

id = 2*(max_xy-1);

count=1;
=1
%write the parameter section

while(count <= (max_xy-1))

st1 =['110,' num2str(x(count),'%6.5f') ',' num2str(y(count),'%6.5f') ','

num2str(z(count),'%6.5f') ',' num2str(x(count+1),'%6.5f') ',

num2str(y(count+1),'%6.5f') ',' num2str(z(count+1),'%6.5f') ',' '0,0;'];

stl = [st1 blanks(64-length(st1)) numstr(j,' ') numstr(count,'P')];
fprintf(fidw,[st1 "\n']);
count =count +1;
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i=i+2;
end;

ip = max_xy-1;

%write the terminate section
temp_t = [numstr(is,'S') numstr(ig,'G') numstr(id,'D') numstr(ip,'P')];
fprintf(fidw,[temp_t blanks(72-length(temp_t)) numstr(1,'T")]);

fclose(fidw);

fidw = fopen('opt_spring.py','wt');
fidr = fopen('template_p1.txt', 'rt');
while 1
tline = fgetl(fidr);
if ~ischar(tline), break, end
fprintf(fidw,tline);
fprintf(fidw,'\n');
end
fclose(fidr);

%check the current working directory
workdic = pwd;
i=1,;
imax = length(workdic);
while(i<=imax)

if(workdic(i) =="\)

workdic(i) ='/";

end;

i=i+1;
end;
fprintf(fidw,['igsFile ="' """ workdic '/partl.igs' "' '\n']);

fidr = fopen('template_p2.txt', 'rt');
while 1
tline = fgetl(fidr);
if ~ischar(tline), break, end
fprintf(fidw,tline);
fprintf(fidw,'\n');
end
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fclose(fidr);

fprintf(fidw,['mdb.models[modelName].CircularProfile(name="CircularProfile", r=
num2str(d/2) ') "\n']);

fidr = fopen('template_p3.txt', 'rt');
while 1
tline = fgetl(fidr);
if ~ischar(tline), break, end
fprintf(fidw,tline);
fprintf(fidw,'\n');
end
fclose(fidr);

fclose(fidw);

fprintf('The parameter: %8.7f %8.7f %8.7f %8.7f\n',as, bs, cs, ds);
%run the Abagqus

fprintf('The Finite Element Analysis in ABAQUS is processing\n');
[istatus,result] = dos('ABAQUS cae noGUl=opt_spring.py');
fprintf('The Finite Element Analysis in ABAQUS is done...\n');

%read the field report in ABAQUS

i=1,
i_max=29;
Vmax = 0;
Fre =0;

fidr = fopen('spring_report.rpt’, 'rt');
while i <=i_max
tline = fgetl(fidr);
if ~ischar(tline), break, end
if(i ==9)
if(tline(27:31) == 'Value')
Vmax = str2num(tline(35:46));
Fre = str2num(tline(55:62));
end;
end;

i=i+1;
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end

fclose(fidr);

%outoput the result

fprintf('The fundamental natural frequency is %6.2f\n',Fre);
fprintf('The value at this frequency is %7.5e\n',Vmax);

2.(B) Optimization Main File

%optimal main program

clear;

clc;

x0 =[-0.2187 0.1716 0.0585 -0.00009];

%lower bound

Ib=[-0.4-0.2-0.1-0.1];

%upper bound

ub=[00.30.10.1];

%set up the optimization option

options = psoptimset;

options.Display = 'iter’;

%x is the optimal value, fval is the optimal value of the objective function
fprintf('Valve Spring Optimization\n');

fprintf('This program was designed by Yu-Cheng Su\n');

fprintf('in University of Missouri at Columbia\n');
fprintf('06.20.2009\n');

fprintf('Running the wire frame mode\n');

[x fval] = patternsearch(@objfuni,x0,[],[],[1,[],Ib,ub,@confunl,options);
%tranfer the optimal value to the constraint to get the constraint values
[c ceq] = confun1(x);

fprintf('the best parameter: %16.15f %16.15f %16.15f\n"',x(1),x(2),x(3),x(4));

fprintf('the optimal fundamental natural frequency: %6.4f\n’, fval);

2.(C)  Objective Function
%objective function

%minimize the maximal stress
function obj = objfun1(x)

%point the path to the main program
obj = -opt_spring(x(1),x(2),x(3),x(4));

2.(D) Constraint Function
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%constraint function
function [c ceq] = confuni(x)
xi =0;

c=];

ceq = [J;
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3. Experimental Data

3.1 Installation Direction

Appendix 3.1.2 Spring opposite installation
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3.2 The Force Figures at 1368, 2165, and 2372 (rpm)

3.2.1 Normal Installation at 1368rpm

speed:1368rpm Normal Installation
180 T T T T T T

Force(MN)

| | 1 | 1 1 1 1
a 0.008 0.01 0o1s 002 0.025 0.03 0.035 0.04 0.045
time(sec)

Appendix 3.2.1 Force with a normal installation at 1368rpm

3.2.2 Opposite Installation at 1368rpm

speed:1365rpm Opposite Installation
200 - -

180

100

Force(M)

50

50 I L L L L 1 1
o 0.005 ool 0015 ooz 0025 0.03 0035 0.04 0.045

time(sec)

Appendix 3.2.2 Force with an opposite installation at 1368rpm
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3.2.3 Normal Installation at 2165rpm

speed:2165rpm Opposite Installation
200 T T T

Farce(M)

-0
o

1 1 | 1 |
0.005 0.0 0.015 Doz 0.025 0.03
tirme(sec)

Appendix 3.2.3 Force with a normal installation at 2165rpm

3.2.4 Opposite Installation at 2165rpm

speed 2165mm Opposite Installation

200 T .

150 - -

Farce(M)

50 -

&0 I 1 1 1 I
0 0.005 oo 0o01s 0.02 0.025 0o3
time(sec)

Appendix 3.2.4 Force with an opposite installation at 2165rpm
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3.2.5 Normal Installation at 2372rpm

200 T T

180 .

100 | .

50 .

_5D 1 |
1] 500 1000 1500

Appendix 3.2.5 Force with an opposite installation at 2372rpm

3.2.6  Opposite Installation at 2372rpm

200

150

100

50

50 : :
0 500 1000 1500

Appendix 3.2.6 Force with an opposite installation at 2372rpm
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4. Equipment in the Experiment

4.1 GM-ISUZU Engine
YEAR: 1987
DISPLACEMENT: 90inch® or 1.5 liters
HP@RPM: 70@5400
TORQUE Ft.Lbs@RPM: 87 @3400
Compression Ratio: 9.6:1
Bore: 77mm
Stroke: 79mm
Camshaft: 25.932~25.96mm for journal diameter
0.05~0.1mm for Clearance
Valve Spring: Free Length: 48.50mm
Valve Closed Length: 21.5kg@39.9mm

4.2 Dayton Compressor Duty Motor

SPECIFICATIONS
“ELECTRICAL ’
Mersslution: « To 1250 cycles por shak reveluion fio 000 cowsks per nrvolution with sxfernal 4 couniing cinauiy
Light seusrea: & Gallium AMgminum Arsenids LED ratod for 100,000 hours MTAF {manulachier's spscificaiion)
Light sansars: # Photavoltaie colls for count channels, phatalransisior for 280 relerence
rapusl pawer * SONER: 5wl [£5%) 8t 125 ma (maximum], 153; 5 wic (+5%) &t 175 ma (maximum), N
Quiput lormal: = Two couni chanmel gutputs (A and B) In phase guadraiue with an optional zem mlerence (ZA) oulput
‘Quadriurs ap eciicatian: = 907 £307 {al 10 KHE aulput Tneguency’]
Symmueiry speciication: = &0 £10% {ai 10 KHz ouiput frequency)

Risw and fall imes:
Fraquaney respanss:

Zera relerence angulnr widthe
Tero relarence slignment:

* { ugee (maximum) Inte 1000 pf losd capacitance

* 50 KHz dorcount channals, 10 KHz for zar refarence.

= ASOU1520 1 & U2 coul channalcyel. 153 104, (174 cyehs bn standard ared i desigrated as G7)

& 150/152: There ia no apecified aligamant betwsan the ZA and courd channale. 153: GZ aligne with oulpal quadmnl AR
& Channaei A laads Channal 8 for clockwisa rotation of tha shait as viewsd from the shait end of the unit.

Phasa ssns:
Fin conneclionsc ¥ See Table 1
Outpirt apecifeations:
Wayalorm: Slgnal levels:
Slnawave » Count charmels: Sinewave sutpuls wih amoitudes of 30 my g-g (mirimur) inlo 8 (user-supphed) 2K load ot 50
[See Figure 1) KMz cutpui frequency ar 2,000 RPM whichewer ccours frsl. OC off2et i & 10% of p-p signal output maximum.
AT,
+ Taro redereron: 100my (mirimum) usable signal fevel inlo a SKO lead resistar 1o ground (ser-suppied) ab 10 KHz
e ehannel euiput requenty.
Squarpwawe ®  TTL conmaatities commplesmsantany sitpus fmema 7404 output stags providing 96 ma sink curmnt
(Sen Flgure 2] #| TTL compatile ditierential lins driver culputs wilh S0 ma sink and —40 ma souies susrent ifam a TS158% oulput stage
Outpul oplians: = Reversed phaso sense—Channe| B keads Channed A for clockwise rolalion
*+ 7408° cpen coliarior oulput stage with 40 mar30 canakilty
= Cuslom glecirgrics can be provided fora non-ecurring charge,
MECHANICAL
dlne dimensions: * Sen Figure 3
it I dlinige ® 5 b4, axially and radiaily {maximum)
Shall radisl runout: » 00" TLR

Slariing forque at 28" C:

Shall anguler acseleration:
Momeni of Inerile:

* Mpdals with shislded hearings: 0.1 az.-in. (maeimrasm)
* Models wilh sealed bearings: 0.5 oz.=in. (maximum)
= 109 radiana’sect {maximum)

= 1.0x W0 az-in-sec” (maximum)

Braring type: = ABEC Class 5 (seated ar shialded)

Bearing Hfe: # 1 x 107 revolutions af ful load [manulackurer's specificalians)
Ehalt material: ® 300 saries stainiess sisal

Cover matariai: = Aluminum or plastic (Vo)™

Slew spead: * & 000 APM .
Mazimum cperaling speed: » 3000RPM or 50 KHz putput equency, whicheser accurs fmt.
Weight: ® G (maximum)

Errer: * Sempg @

Conneclen * Mot supplled on stardard unita

ENVIRONMENTAL

Cperaiing lemperaiure;
Blarage lemperaliire:

-0 et C
* -25" o HO0°C

Shesk: = 10G's for 11 millseconds duration
Vikratlan: * 20 Hz ba 2000 Hz at B3's
Husmddity: # 10 88% RH. (nan-candensing)
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4.3 Cen-Tech Photo Sensor Tachometer

L RPM range: 2.5~99999
Digital photo

] Stores last minimum and maximum

® Auto-zero adjustment

+/- 0.05% accuracy
[ ) 5 digits LCD display

Appendix 4.3 Photo Sensor Tachometer

4.4 KISTLER Force Transducer
Model: 9031A

4.5 KISTLER Charge Amplifier
Model: 5004
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Appendix 4.5 The charge Amplifier

The data of the charge Amplifier:
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4.6 DATAQ Acquisition
Model: DI-158UP

e

__Analog cp,

cﬁro“"‘c‘f&;‘b o o,

[ ll - mfﬂﬁf{?&lg‘

Hatag.com

Di-158y

!

- Ta ADG
apr -
—e
_'
“ElRctronic Switch [dosed for HY cperation)
'A-188-UP
1001
AGncb-—\f\f\/\ » To PC Gnd
Appendix 4.6 DATAQ Acquisition
Data:
Di-158 Seties
Spedifications
Analog Inputs USB Interface
Number of Channels: 4 Connecior: USE
Channel Configuration: Fined Diferantial Max data tramefer rate: 14,400 samplss per second
Measurement range (Full Scale), Accuracy, and Resolation Anaiog ﬂ.@ms
Gain  Ranpe Accuracy . Resolution ‘Number of channels: 2
DLISS: 1 #10V  +25%ofFSR =485m0 Resolotion: 17 bits
X =W  £2F%GofF5R =1HmV Intezral Nonlinearity: =1 L5B
4 223V L£B%efFSE <1XNmV Output Noise:  250iVims
B =135V  +=35%efFSR- 06wV Ouiput Current:  =300p4
D-I5EUE: 1 Hi4V  =25%ef FSR.  =313mV Outpat short circuif carrent:  15m4
e = v s Voltage output dew rate; Load = 40pF- 0.4 Vius
cheainoption) 5 46y £29%afFSR =781mV Output voltsgs swing: 0V 1o 1357
g =8V =25%efF5E.  £10mV Startup fime:  10us
16 =4V =15%ofFRR =105mV Fh
1 =W =3TGofFSR =076uV Digital /0 s
8 =V =2 ofFSR =4 Sl Y D _
18 205V +2GofFSR =y Output valtage levels: :;— —E;— 3(‘}"'4;;!;5' Ef‘;ﬁ““?“?ﬁ
256 =025V =1L ofFSE =123V - R i
511 =015V £25%ofFSR  =SipV : M ::T :'::emia
Input Impedance: FO0K sither inpar to ground I . SR
R put voltsge level::  Min required 17 IV
_ IMQ differential TR s
Input bias corrent:  10wA fora 10V inpar, single chamme] G i
Max normalmode voltage: 100V peak EHet I
Max common mode vollage: 60 peak !Zl;llm.'lmhn: Two, § position terminal blocks
Common mode rejection;  60db @ Gain=1, 1KS mbalance Operating Environment:  (°C 1o 70°C
Channel-to-chanmel crosstalle  100db Enclosure:  Malded ABS plastic
rejection: Dimepsions: 261 « 26W « 11D inches
Cain femperature coefficient:  100ppm’C e AN BO AR e
Offset temperature coef-  1000V/'C Weight: 3oz (852
ficient: FPower Requirements
Tt USB Models: 30mA max. @ 3 VDC. Mo external power
AID Characteristics . o i 2 ;
Type: Successive approximation PR
Hll“m. 5 E_rén Scanning Characteristics
c ORaisN i Max thronghput sample rate: 14,400 Hz
i et s Min throughput sample rate:  0.0137334 Hz
Calibration . Timing acouracy: 100 pom of sample it
Calibration cycle:  Cne year Max scan bist size: 6 enriss
Calibration mefhod: Digiral calibration with scale and offser con- Sample buffer size:  1kb
ErI R T e g
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4.7 V-Belt
Manufacturer: Goodyear
Type:
® V-Belt, HY-T PLUS, 59”7, B56(5L590) X1
® V-Belt, HY-T PLUS, 63”, B60(5L630) X1

4.8 Timing Pulley

Type:
Mean Radius: 2.1cm X1
Mean Radius: 3.2cm X1
Mean Radius: 5.5cm X1
Mean Radius: 6 cm X1

Appendix 4.8 The pulleys with different size

4.9 KISTLER Cable
Model: 1361A(X)
Function: to connect the transducer and the charge amplifier
® Wide Temperature range:-195 to 240°C
® Capacitance: 30pF/ft
® Specify length to 30 meters
([ J

“A” versions available in standard lengths of 1 through 5 meters
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5. Software

® WINDAQ Ver. 2.49 —to be used to acquire the experimental data

® MATLAB R2007b — to run optimization program one and two with the
derived dynamic equations in this thesis or FEA software, ABAQUS

® CATIAV5R17 — plot the spring 3D structure

® ABAQUS Ver. 6.8.1 — use Finite Element Method to verify the optimal results
based on the derived dynamic equation and the solutions in Finite
Difference Method
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