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ABSTRACT 

Recent advances in key technologies have enabled the deployment of surveillance 

video cameras on various platforms, including stationary security cameras for infrastruc-

ture protection and public safety, UAV (unmanned aerial vehicles) cameras for persistent 

surveillance of battlefield, and cameras on mobile agents, such as vehicles, robots, and 

soldiers for site survey. There is an urgent need to develop advanced computational me-

thods and tools for automated video processing and scene understanding to support vari-

ous applications.  

In this dissertation, we develop advanced video processing and computer vision me-

thods for automated video processing and scene understanding. We concentrate our ef-

forts on the following four tightly coupled tasks:  

(1) Aerial video registration and moving object detection. We develop new similarity 

measures for local motion estimation and a reliability model to analyze the reliabili-

ty of local motion estimation. Based on these two components, we develop a fast 

and reliable global camera motion estimation and video registration for aerial video 

surveillance.  

(2) 3-D change detection from moving cameras. We study the problem of detecting 

changes from multi-source videos which are captured by different moving cameras 

with unknown parameters at different times. We attack this problem by exploring a 

hierarchy of view-invariant image patch descriptors. Based on multi-scale local bi-

nary pattern (LBP) description of super-pixels and middle-level image patch labe-
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ling, we construct a hierarchy of image patch descriptors and detect changes in the 

video scene using multi-scale information fusion.  

(3) Cross-view building matching and retrieval from aerial surveillance videos. Identi-

fying and matching buildings between camera views is useful for scene understand-

ing, battlefield surveillance, geo-location and geo-tagging of videos and photos. Our 

central idea is to construct a semantically rich sketch-based representation for build-

ings which is invariant under large scale and perspective changes.  

(4) Collaborative video compression for UAV surveillance network. We study the prob-

lem of a network of small UAVs with limited computational and communication 

resources to perform collaborative video surveillance of the target environment. 

Based on distributed video coding, we develop a collaborative video compression 

scheme for a UAV surveillance network.  

Our extensive experimental results demonstrate that the proposed methods and tools 

for automated video processing and scene understanding are efficient and promising for 

surveillance applications.  
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CHAPTER 1 

 INTRODUCTION 

 

 

Recent advances in key technologies have enabled the deployment of surveillance 

video cameras on various platforms, including stationary security cameras for infrastruc-

ture protection and public safety, UAV (unmanned aerial vehicles) cameras for persistent 

surveillance of battlefield, and cameras on mobile agents, such as vehicles, robots, and 

soldiers for site survey. The amount of information generated by an integrated suite of 

motion imagery sensors is massive, especially in ubiquitous and persistent aerial video 

surveillance. Important video segments and interesting events are often buried in the 

massive source video and hidden in crowds of uninteresting objects. Simply bringing all 

source information directly to human analysts is a cognitive disaster. There is an urgent 

need to develop advanced computational methods and tools for automated video 

processing and scene understanding to support various applications. 

Video surveillance usually aims at detecting and locating target for tactical intelli-

gence as in role of maritime patrol missions [104]. Information mining in the cluttered 

video syntax is challenging even for human analysts. Therefore, in this ubiquitous and 

content-rich environment it exhibits a critical need for automated video processing. The 

fundamental toward video geospatial exploitation is registration [5, 10]. By definition, 

registration is to establish the correspondence across images. It is the enabling step to-

ward video summarization functionalities of geo-tagging, tracking and change detection. 
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Registration approach usually involve direct, [11], and indirect, [6, 7], approaches to ex-

plore the spatial-temporal behavior of video frames.  

In order to perform imagery data exploitation, the automated processing also hinges 

on large-scale multi-source information retrieval, [108]. The deployments of various sur-

veillance cameras acquire massive video footage in the rapid pace nowadays. Bringing 

the raw videos direct to human analyst is a tedious cognitive challenge. Therefore, con-

tent-based video retrieval (CBVR) has become a promising direction, [102].   

Automated video content retrieval is at the core of intelligence video surveillance. 

Despite the active research activity for content-based image retrieval, [103], video re-

trieval still leverage the traditional annotation in searching engine, e.g. text and audio. 

Recent research of video retrieval usually based on visual feature descriptor and the simi-

larity metric defined accordingly, e.g. SIFT-like features and GLOH, [23]. Video retriev-

al also works in conjunction with a variety of important applications for surveillance 

practice such as object recognition and tracking [21, 82], scene understanding [30] and 

traffic flow monitoring, [105]. 

With the development of key technology, ground-aerial surveillance networking has 

become an increasingly important source of intelligence for situational awareness and 

decision making [3, 84]. A swarm of unmanned ground vehicle (UGV) and UAVs can 

coordinated a network as autonomous agents, [106]. The idea of mobile video surveil-

lance network poses an extended dimensionality for video exploitation from multi-source 

videos. This new dimension is expanded on collaborative video processing of wide base-

line matching [62], multi-view stereo [55, 97] and object tracking [59]. In need of effi-
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cient video archiving, there have been active research of distributive video coding (DVC) 

to cope with the multi-source scenario, [77, 80]. 

In this work, we aim to develop a set of automatic computation and communication 

tools to support intelligent video surveillance. As illustrated in Figure 1.1, a typical video 

surveillance for battlefield intelligence consists of aerial and ground video surveillance. 

For aerial video surveillance, a network of aerial vehicles, such as UAVs, collaborate 

with each other to collect important information on the ground. In this collaborative sur-

veillance platform, the master UAV is larger in size, flying at a higher altitude, and guid-

ing a group of slave M-UAVs that can fly at much lower altitudes. Here we assume that 

the master UAV has sufficient computational resources for real-time geospatial registra-

tion and is able to communicate with the control center over a wireless channel. After 

precise geospatial registration and global motion compensation of its camera view, the 

master UAV identifies and selects both static and dynamic targets for more detailed sur-

veillance. The master UAV distributes the geospatial locations and visual target context 

to the slave M-UAVs, directing and guiding them to track each target. The slave M-

UAV, flying a lower altitude, tracks and locks the target inside its camera view to capture 

detailed video information. After highly efficient video compression, the slave M-UAV 

forwards the compressed target video information to the master UAV. The master UAV 

multiplexes all the target video information from the slave M-UAVs and the geospatial 

location meta data of each target, and forwards these to the control center for automatic 

or semi-automatic (with human assistance) target recognition, information analysis, and 

decision making.  
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Figure 1.1: Illustration of air-ground intelligent video surveillance. 

On the ground, we have soldiers and ground combat vehicles. They have cameras on-

board to survey the operation environment. One important task in ground-level surveil-

lance or street-level survey missions is to identify changes, which might indicate adver-

sary actions or potential hazards. This is the so-called 3-D change detection problem. 

Furthermore, the soldiers wish to have a global awareness of the operation environment. 

For example, before they decide to enter an unknown building, they wish to retrieve and 

access the aerials surveillance video database to understand how the building looks like 

from different perspectives and its surrounding environment. To this end, we propose to 

develop air-ground building matching methods to efficiently retrieve aerial surveillance 

videos using ground-level images or videos. In the following, we provide a brief over-

view of the four major problems to be studied in this dissertation. 
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A) Aerial Video Registration and Moving Object Detection 

Airborne surveillance has been proven an effective and importance practice for in-

formation analysis in national security. Remote sensors carried by man-pilot aircraft or 

unmanned aerial vehicles can monitor and secure a wide-range area for execution of spe-

cified tasks such as target searching and land cover survey. To interpret the information 

gathered by on-board sensors is the essential part of airborne surveillance. In the mission 

of man-pilot aircraft remote sensing, data analysis can be done simultaneously by human 

intelligence, along way the cruise. With unmanned aerial vehicles (UAVs), however, the 

absence of on-board human analysts would lead us to solutions like automated system or 

offline ground control for data processing and analysis. To achieve the real-time tactical 

airborne surveillance, specifically with the unmanned aerial vehicles without ground con-

trol, a visual intelligence system with computer vision tool is highly demanded. In this 

section we will introduce common applications of airborne surveillance and how the au-

tomated video processing plays an important role in airborne imagery.  

Global motion estimation is the enabling step for many important video exploitation 

tasks in aerial video surveillance, including video registration, moving object detection 

and tracking. An efficient global motion estimation scheme for aerial video surveillance 

should be low-complexity, accurate, and reliable. In this work, we explore a number of 

methods and approaches to deal with the inherent uncertainty in motion estimation and 

develop a low-complexity, accurate and reliable scheme to estimate global camera mo-

tion for video registration and moving object detection. More specifically, we develop a 

block-based image data classification scheme to select those image regions, called struc-

tural blocks, which have distinctive features for reliable motion estimation. We use sa-
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lient image features which are invariant to scale changes, camera zooming, and rotations 

and develop an adaptive compound distance metric for robust local motion estimation. 

We analyze the reliability of local motion estimation results and use this reliability meas-

ure as a weighting factor to determine the importance level of each local motion estima-

tion result in global camera motion estimation. We develop a progressive scheme to 

detect moving objects, separate them from the background, and refine the global motion 

estimation. Our extensive simulation results and performance comparison with existing 

global motion estimation algorithms demonstrate that the proposed scheme is accurate, 

reliable, and has low computational complexity. 

B) Air-Ground Cross-View Building Matching and Aerial Video Retrieval 

In this work, we address the problem of building recognition across two camera views 

with large changes in scales and viewpoints. The main idea is to construct a semantically 

rich sketch-based representation for buildings which is invariant under large scale and 

perspective changes. After multi-scale maximally stable extremal regions (MSER) detec-

tion, the proposed approach finds repeated structural components of buildings, such as 

window, doors, and facades, and extracts semantically rich features, which are organized 

into a sketch-based representation of buildings. These descriptors are then clustered in 

association with different planes of the building and matched across video frames using 

spectral graph analysis. Our experiments demonstrate that the proposed approach outper-

forms SIFT-based matching schemes, especially for images with large viewpoint 

changes. 
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C) 3-D Change Detection from Multi-Source Videos  

We study the problem of detecting changes from multi-source videos which are cap-

tured by different moving cameras with unknown parameters at different times. We at-

tack this problem by exploring a hierarchy of view-invariant image patch descriptors. Us-

ing the five-point algorithm, SIFT and RANSAC, we track the relative camera pose with-

in each video and obtain an approximate cross-view registration and alignment of se-

lected video frames. Based on multi-scale local binary pattern (LBP) description of su-

per-pixels and middle-level image patch labeling, we construct a hierarchy of image 

patch descriptors and detect changes in the video scene using multi-scale information fu-

sion with Choquet integrals. We have established an image/video database for 3-D 

change detection and will make it available for public use. Our extensive experimental 

results demonstrate that the proposed method achieves a detection rate of 61% at a false 

alarm rate of 2% while other approaches based on conventional local photometric image 

descriptors fail to detect changes in the 3-D environment. 

D) Distributed Coding for Collaborative Aerial Video Surveillance  

This work focuses on building a power-efficient video encoder for a collaborative 

surveillance network. The key idea of this work is to remove the computational burden 

from the onboard encoder and shift the bulk of computing to its decoder. Here a channel 

coding scheme is introduced to build the efficient video encoder. With this idea, for a 

routine-fly UAV drone, it only needs to encode video with few parity-check or syndrome 

bits. Unseen object or changed areas are recorded by correcting the previously footage on 

its flight routine. This codec suits even better for fixed-camera surveillance video, since 

the lack of camera motion renders high correlation on video frames. Here we focus on 
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tackling the aerial surveillance problem because mobile units require efficient codec to 

cope with the power consumption problem. 

The rest of the chapters are organized as following: Chapter 2 presents a work of ro-

bust motion field analysis paradigm for video registration. Chapter 3 elaborates a video 

retrieval problem of manmade structures with a CBVR solution. A 3D change detection 

problem for multi-source videos is discussed in chapter 4. Chapter 5 details a collabo-

rated video coding scheme which copes with the multi-source video encoding.   
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CHAPTER 2  

MOTION ANALYSIS FOR VIDEO REGISTRATION 

 

 

Recent advances in key technologies have enabled the development of a widening va-

riety of platforms, including unmanned aerial vehicles (UAV), for surveillance and intel-

ligence gathering. Aerial surveillance videos have become an increasingly important 

source of information for situational awareness and decision making [3, 84]. In aerial 

video surveillance, the UAVs fly over the areas of interest, capture videos about targets, 

events, and their environmental context for further information analysis and decision 

making. Compared to conventional videos, such as movies, news and sports videos, aerial 

surveillance videos have their unique characteristics: the content change in the video se-

quence is dominated by global camera motion. Here, the global camera motion includes 

camera zooming, rotation, and changes in position and perspective [2]. Although there 

might be local motion of objects (e.g. persons and vehicles), they only contribute to a 

small portion of the video scene [1, 4]. 
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Figure 2.1: Sample video frames from an aerial surveillance video. 

Fig. 2.1 shows some sample video frames from an aerial surveillance video sequence. 

We can see that the video frames experience translation camera motion, camera zoom 

in/out, rotation, as well as perspective changes. Two video frames are related by a pers-

pective transform [2, 83]. For example, let (x, y) be the pixel position of a point object in 

frame In, where n is the frame index. After global camera motion, this point object moves 

to a new pixel location in frame In+1, denoted by (X, Y), as illustrated in Fig. 2.2. The rela-

tionship between (x, y) and (X, Y) is given by 

 
𝑋 ∗ 𝑊
𝑌 ∗ 𝑊

𝑊
 =  

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 𝑕 1

  
𝑥
𝑦
1
  

                                            (2.1) 

Or, equivalently, 

𝑋 =
𝑎𝑥 + 𝑏𝑦 + 𝑐

𝑔𝑥 + 𝑕𝑦 + 1
 

𝑌 =
𝑑𝑥 + 𝑒𝑦 + 𝑓

𝑔𝑥 + 𝑕𝑦 + 1
  

(2.2) 
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The objective of global motion estimation is to determine the following model para-

meters {a, b, c, d, e, f, g, h}. Note that camera translation, zoom in/out, rotation, affine 

transforms, are special cases of the transform in (2.2) [2]. For example, when a, b, d, e, g, 

and h are all zeros, the global camera motion in (2.2) reduces to camera translation. 

 

Figure 2.2: Illustration of global camera motion between two video frames. 

Global motion estimation (GME) is the enabling step for many important motion im-

agery data exploitation tasks, including video registration which warps video frames into 

a common coordinate system so as to create a mosaic of the surveillance scene, moving 

object detection, tracking, geo-location, recognition, activity analysis, event characteriza-

tion, and scene understanding [1, 4]. Global motion estimation and compensation has also 

been used in MPEG-4 sprite coding and Advanced Simple Profile (ASP) video coding [6, 

12, 13, 5]. 
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An efficient GME and video registration algorithm for aerial video surveillance 

should satisfy the following basic requirements. (1) The algorithm should have low com-

putational complexity. This requirement becomes more critical when the algorithm oper-

ates on UAVs for online data processing, such as GME-based video compression, be-

cause the UAV often has limited computational resources. (2) The GME algorithm 

should be able to handle generic perspective changes. This is because the UAV, being 

tasked to capture detailed visual information about targets on the ground, has to fly at rel-

atively low altitudes and often circle around the targets so as to put more image pixels on 

them. In this case, the camera often experiences consistent perspective changes. (3) The 

GME and video registration algorithm has to be resilient to noise and errors. Video cap-

ture, in practice, often has a significant amount of noise in the digital video data, includ-

ing A/D (analog to digital) conversion noise, camera lens distortion, color distortion, 

changing light conditions, etc. The GME and registration algorithm should be sufficiently 

robust to survive the image noise [1]. 

There are two basic approaches to GME, feature-based and featureless GME algo-

rithms. A number of feature-based GME methods are proposed in the literature [10, 11]. 

The work by [10] selects a subset of pixels, called dominant pixels, from the video frame 

and then uses a gradient method to determine the global motion parameters by minimiz-

ing the matching error of these dominant pixels between two neighboring video frames. 

Anchor points and invariant regions are used to establish accurate correspondence be-

tween views for global camera motion estimation. Featureless GME methods can be ca-

tegorized into direct and indirect GMEs [5]. The direct GMEs determines the global mo-

tion parameters by minimizing the prediction error between corresponding pair of pixels 
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in two frames using gradient search or other iterative methods [6, 7, 85]. This type of 

GME methods is able to handle generic camera model, such as the eight-parameter pers-

pective transform and robust to image noise. However, they often suffer from high com-

putational complexity. The indirect GME often consists of two stages; the first stage per-

forms local motion estimation or coarse sampling in the motion field. Then the second 

stage follows up to refine or estimate the parametric camera models from the local mo-

tion field [5, 8, 9, 86]. The indirect GME methods often have much lower computational 

complexity than direct GME methods and are more suitable for real-time applications. 

Although significant bodies of algorithms and methods have been developed for 

global motion estimation, there are a number of issues that have not been sufficiently ad-

dressed. First, the tradeoff between complexity and accuracy in global motion estimation 

has not been well characterized and understood. Second, motion estimation or correspon-

dence matching between video frames often involves a significant amount of ambiguity 

and uncertainty. We need to develop an efficiently algorithm to manage this uncertainty 

to achieve reliable global motion estimation. Third, most aerial surveillance video scenes 

have moving objects (persons or vehicles). Since their motion is different from the back-

ground motion and is considered as noise during global motion estimation. This moving 

object issue needs to be carefully addressed during global motion estimation and video 

registration. 

In this work, we propose a low-complexity reliable GME scheme for video registra-

tion and moving object detection. We propose to choose the indirect featureless global 

motion estimation approach because of it low computational complexity. The major con-

tributions of this work include: 
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(1) Developing a block-based classification scheme to improve the accuracy of global 

motion estimation while reducing its computational complexity; 

(2) Developing an adaptive compound distance metric for accurate motion estimation 

for aerial surveillance videos; 

(3) Introducing a scheme to analyze the reliability of local motion estimation results 

and use this reliability information as a weighting factor during GME to improve 

its accuracy and robustness; 

(4) Developing an iterative scheme to detect moving objects and progressively im-

prove the performance of global motion estimation. 

The rest of the paper is organized as follows. In Section 2.1, we give an overview of 

the proposed framework for global motion estimation. In Section 2.2, we present the 

block classification scheme and analyze its performance. Section 2.3 introduces the adap-

tive compound distance metric for local motion estimation. The reliability analysis is pre-

sented in Section 2.4. The proposed GME algorithm is presented in Section 2.5. Section 

2.6 presents our experimental results. Section 2.7 concludes this work. 

 

2.1 Overview of the Proposed Algorithm for Global Motion estimation 

Fig. 2.3 illustrates the proposed framework for GME, video registration and moving 

object detection. We first classify the input aerial surveillance video into two types of 

blocks: structural and non-structural blocks. Structural blocks have distinctive features 

for reliable motion estimation. We observe that the motion estimation results of different 
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structural blocks have different levels of accuracy and reliability. Those structural blocks 

with more accurate and reliable motion estimation should contribute more to the overall 

GME result. Therefore, we use this reliability information to weigh the importance of the 

corresponding structural block in the GME. Once the global camera motion parameters 

are obtained, we warp the video frames into a common coordinate system for video regis-

tration. After registration, we come back to estimate the local motion of non-structural 

blocks. Moving objects, which could be structural or non-structural blocks, are detected if 

their motion does not satisfy the global camera motion equation. These blocks belonging 

to moving objects are considered as noise for GME and removed from the list of structur-

al blocks. The updated list of structural blocks is then used to refine the GME result. 

These two steps of moving object detection and global motion estimation could be re-

peated to detect more objects with subtle local motion and to further improve the GME 

accuracy. In the following sections, we will explain each component of the proposed 

scheme in more detail. 

 

Figure 2.3: The proposed framework for global motion estimation and moving object detection. 
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2.2 Block Classification for Fast and Reliable Motion Analysis 

In featureless global motion estimation schemes [5, 8, 9], the video frame is often 

partitioned into blocks, local motion estimation is performed at every image block; and 

motion information of all blocks (or regions) are used to determine the global camera mo-

tion. We observe that this is not efficient. Some image blocks, for example, those in the 

grass area of Fig. 2.4(a) and those in the flat area of Fig. 2.4(b), have no distinctive image 

features and their motion estimation results are usually unreliable and noisy. This noisy 

motion information will degrade the overall performance of GME. Furthermore, the 

computational resource is also wasted on these image blocks. 

Motivated by this observation, we propose to classify the image blocks into two cate-

gories: structural blocks and non-structural blocks. Structural blocks, such as buildings 

edges, corners, road lines, contours and patterns, have distinctive features for accurate 

and reliable motion estimation. Methods for detecting corner, line and curvilinear fea-

tures have been developed in the literature and used for motion estimation, object track-

ing, and image registration [1]. These methods often operate on assumptions about the 

image content and are not able to handle generic videos in aerial video surveillance. For 

example, image registration and object tracking methods based on corner detection and 

tracking work well on videos of urban scenes with a lot of buildings and may fail on vid-

eos of rural or natural scenes. In addition, they often have high computational complexi-

ty. 

In this work, we propose a simple yet efficient method for image content classifica-

tion. Our basic idea is that, if an image block has strong low-to-medium frequency com-

ponents, it often contains a significant amount of structural information, such as edges, 
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corners, contours, or patterns. We partition the image into blocks, for example, 8×8 or 

16×16 blocks. We then apply discrete cosine transform (DCT) to each block. Let {xi | 0 ≤ 

i ≤ S−1} be the DCT coefficients with x0 being the DC coefficient. For each block, we 

define 

𝑅 =
 (𝑥 𝑖)2𝛾(𝑆−1)

𝑖=1

 (𝑥 𝑖)2𝑆−1
𝑖=1

 

                                                         (2.3) 

Here, 𝛾 is a parameter between 0 and 0.5 and R represents the ratio between the ener-

gy of low-to-medium frequency components and the overall energy. In this work, we set 

γ to be 0.2. We select the fraction of blocks, for example the top 15%, which have the 

highest structural energy ratios, as the structural blocks, and with the rest being classified 

as non-structural ones. Fig. 2.4 shows two examples of classification results. The struc-

tural blocks are highlighted with white boxes. In Section 2.6, we will present experimen-

tal results to demonstrate the advantage of this structural block classification scheme in 

GME. 

 

(a)                                              (b) 
Figure 2.4:  Classification into structural (highlighted with white boxes) and non-structural 

blocks. 
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2.3  Motion Search Using Invariant Distance Metrics 

The next step of our GME scheme is to determine the motion of structural blocks. 

Basically, for each structural block, we need to find a block in the previous frame which 

has the minimum distance to it. In aerial video surveillance, the camera often experiences 

consistent camera motion and parameter changes, such as rotation, zooming, and changes 

in camera position and perspective. A desired distance metric should be invariant to cam-

era motion, local object motion, and robust to image noise [1, 14]. In this work, we pro-

pose to explore three distance metrics: (1) sum of absolute difference, (2) intensity pro-

file, and (3) histogram of gradient. Since each of them has both advantages and disadvan-

tages in GME on aerial surveillance videos, we propose to form an adaptive compound 

distance metric from them for accurate and reliable motion estimation. 

 

2.3.1 Sum of Absolute Difference 

The sum of absolute difference (SAD) has been extensively used for motion estima-

tion in video coding [6]. Let A and B be two image blocks and {aij} and {bij} be their 

pixels. The SAD between blocks A and B is given by 

 

𝑑0 𝐴, 𝐵 =   𝑎𝑖𝑗 − 𝑏𝑖𝑗  

𝑖𝑗

 

                                             (2.4) 
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One of the major advantages of this SAD metric is its low computational complexity. 

However, it is invariant only under translational motion and is not efficient for estimating 

other types of camera motion, such as rotation, zooming, and perspective changes. 

 

2.3.2 Intensity Profile 

To handle other types of camera motions, such as rotation, zoom in/out, and perspec-

tive changes, we introduce the second distance metric called intensity profile. Fig. 2.5 

shows two example video frames with camera rotation and zooming. If a distance metric 

is invariant under camera rotation and zooming, those two white dots in Figs. 2.5(A) and 

(B) should have the minimum (or even zero) distance. 

The intensity profile aims to characterize the intensity distribution in an image region 

around a point location. Let OA = (xA, yA) be the center position (pixel) of block A. Let 

C(OA, r) be a circle centered at OA with a radius r, as illustrated in Fig. 2.5. The average 

intensity on this circle is given by 

𝑚 𝑂𝐴, 𝑟 =
1

|𝐶 𝑂𝐴, 𝑟 |
 𝐼𝑡(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐶(𝑂𝐴 ,𝑟)

 

                                 (2.5) 

where R is the maximum radius to search. For example, we can set R to be the block 

width. The function m(OA, r) is called the intensity profile for pixel OA or block A. Simi-

larly, we can define the intensity profile for the center pixel of block B: 

𝑚 𝑂𝐵 , 𝑟 =
1

|𝐶 𝑂𝐵 , 𝑟 |
 𝐼𝑡−1(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐶(𝑂𝐵 ,𝑟)

 

                            (2.6) 
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We can see that if pixel OA in frame It−1 moves to OB in frame It, the intensity profiles 

m(OB, r) and m(OA, r) will be the same even with camera rotation. However, with camera 

zoom, m(OB, r) and m(OA, r) will be different. For example, if the camera zooms out, 

m(OA, r) will match the first segment of m(OB, r) after being scaled horizontally (either 

compressed or stretched), as illustrated in Fig. 2.5. Based on this observation, we can de-

fine a new distance measure, called intensity profile distance, as follows: 

𝑑1 𝐴, 𝐵 = min
 1−𝛿 <𝜆<(1+𝛿)

max
0<𝑟<(𝑅/𝜆)

|𝑚 𝑂𝐴, 𝜆 ∙ 𝑅 − 𝑚(𝑂𝐵 , 𝑟)| 

           (2.7) 

where 𝜆 is the scaling factor, and [1 −𝛿, 1 + 𝛿] is the search range for 𝜆. It can be seen 

that the distance (or similarity) metric d1(A,B) is invariant under camera rotation and 

zoom. 

To compute the intensity profile distance, we first need to compute the average pixel 

value m(OA, r). Here, r can be integers. For example, we can choose r = 1, 2, 3, · · ·, 16. 

This computation involves table look-up to find the pixels on the circles and additions to 

compute their average. The min-max operation in (2.7) is performed on a 1-D array of a 

small size. Therefore, the overall computational complexity is acceptable. Certainly, its 

complexity is higher than that of SAD. In Section 2.5, we will characterize the computa-

tional complexity and performance improvement of this new distance metric in GME. 
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Figure 2.5: Definition of intensity profile for blocks. 

 

2.3.3 Histogram of Gradient 

The SAD captures the average difference between two blocks. The intensity profile 

captures the intensity distribution around a point location. We observe that, for accurate 

and reliable motion estimation, it is also important to consider the structural information 

within the neighborhood. Histogram of gradient (HOG) has been used as a descriptor in 

SIFT (scale-invariant feature transform) to describe key points for object recognition and 

tracking [14]. In this work, we propose to modify HOG to form a distance metric for ac-

curate and reliable motion estimation. To computer HOG, we partition the block into ba-

sic units. For example, as illustrated in Fig. 2.6, we partition a 16 × 16 block into M units. 

For example, we can choose M to be 8 or 16. We compute the gradient for each unit. The 

direction of the gradient can be obtained by correlating the unit with a set of units with 

directional patterns and finding the direction with the maximum correlation [14]. For the 

convenience of computation and implementation, we can uniformly quantize this direc-

tion into K discrete values. Let HA = {HA[m] | 1 ≤ m ≤ M} be the HOG of all sub-blocks 
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in block A. Similarly, we can compute the HOG HB for block B. If block B is rotated 

from block A, then HB will be a circular shifted version of HA, i.e., 

𝐻𝐵[𝑚] = 𝐻𝐴[𝑚 ⊕ Δ𝑚] 

                                            (2.8) 

for some integer ∆m. Here, ⊕ represents addition with modulo M and ∆m is related to 

the amount of camera rotation. Let 

𝐻𝐴
Δ𝑚 = {𝐻𝐴 𝑚 ⊕△ 𝑚  1 < 𝑚 < 𝑀)} 

                                  (2.9) 

A new distance metric between blocks A and B can be then defined as 

𝑑2 𝐴, 𝐵 = min
△𝑚

 𝐻𝐴
△𝑚 − 𝐻𝐵 𝑝 

                                   (2.10) 

Here, || · ||p represents the Lp-norm of the vector. In this work, we set p = 1. It can be 

seen that distance metric is invariant under camera rotation. The HOG is able to capture 

some structural information about the block and may help us improve the accuracy and 

reliability of motion estimation. Certainly, this distance metric has higher computational 

complexity than the SAD. In Section 2.5, we will analyze the computational complexity 

and performance improvement by this new distance metric in GME. 

 

Figure 2.6: Illustration of histogram of gradient. 
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2.3.4 A Compound Feature for Accurate and Reliable Motion Estimation 

The SAD is efficient only for estimating translational motion while the other two are 

efficient in handling more complicated camera motion, such as rotation and zooming. 

However, they have higher computational complexity than SAD. We also observe that, in 

aerial video surveillance, the camera motion changes over time. During most of the time, 

the camera just has translational motion when the aerial vehicle is flying forward. Occa-

sionally, it has zooming or rotation when the camera is adjusted by a human operator or 

perspective change when the vehicle is making turns. Therefore, the selection of the dis-

tance metric should be adaptive and dynamic. Motivated by this observation, we propose 

to use an adaptive compound distance metric for motion search: 

𝑑 𝐴, 𝐵 = 𝑤0 ⋅ 𝑑0 𝐴, 𝐵 + 𝑤1 ⋅ 𝑑1 𝐴, 𝐵 + 𝑤2 ⋅ 𝑑2(𝐴, 𝐵) 

                  (2.11) 

where wi ∈ {0, 1}. w = [w0, w1, w2] will be adaptively chosen according to the current 

camera motion pattern. For example, if we know from the previous frames that the cam-

era translation motion is dominant, we set w = [1, 0, 0] and only compute the SAD which 

has low computational complexity. If the camera zoom is dominant, we set w = [0, 1, 0] 

and only compute the intensity profile. We may also compute SAD and set w = [δ, 1, 0] 

where δ is a small value between 0 and 0.5. In this way, we can fuse the information from 

two distance metrics and hopefully increase the robustness of motion search. When the 

camera rotation is dominant, we may set w = [δ, 1, 0] or w = [δ, 0, 1]. In this work, we 

just use the above heuristic approach to determine w. In our feature work, we shall devel-

op a more systematic way to determine w. 
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Once the distance metric is established, for each structural block B in frame It, we can 

find its best match A* in frame It-1 which has the minimum distance to B: 

𝐴∗ = arg min
𝐴∈𝑁(𝐵)

𝑑(𝐴, 𝐵) 

                                    (2.12) 

Here, N(B) represents the neighborhood (or search window) around the center posi-

tion of block B in frame It-1. 

 

2.4 Reliability Analysis for Global Motion Estimation 

In this work, the camera motion parameters are determined from local motion estima-

tion results of structural blocks using a least mean squared error (LSME) approach, which 

will be explained in Section 2.5.1. We observe that the estimation results of some struc-

tural blocks are much more accurate and reliable than those of other blocks because they 

have more distinctive image features. We would like those blocks with more reliable lo-

cal motion estimation to play a more important role in GME. On the other hand, we 

would like to de-emphasize those blocks with noisy and unreliable local motion estima-

tion when determining the global camera motion parameters. To this end, we propose to 

analyze the reliability of local motion estimation and use this reliability measure as a 

weighting factor during LMSE for camera parameter estimation. 
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Figure 2.7: Illustration of reliability definition. 

 

Fig. 2.7 shows two cases of local motion estimation within a neighborhood where a 

minimum distance is found. In case (A), the distance at the minimum location is distinc-

tively smaller than those in its neighborhood. While in case (B), the minimum distance is 

not distinctively smaller or there might be multiple minimum locations. This implies that 

this minimum location or estimated motion vector is not reliable because there are many 

other locations or motion vectors with similar distance values. Certainly, the larger the 

variance of these motion vectors is, the more unreliable the local motion estimation is. 

Based on this observation, we define the reliability for local motion estimation. 

Let {B
m
|1 ≤ m ≤ M} be the set of structural blocks in frame It that we have selected 

from block classification. For each structural block B
m
, we find the top L best matches for 

B
m
 in the previous frame It−1 and the estimation results are denoted by 

 Λ = {(Vj
m , dj

m )|1 < 𝑗 < 𝐿} where 𝑉𝑗
𝑚 = (𝑥 𝑗

𝑚 , 𝑦 𝑗
𝑚 ) represents the motion vector and 𝑑𝑗

𝑚  

is the corresponding distance. Let V
m
 be the motion vector determined by the local mo-

tion estimation and 𝑑_
𝑚  be the corresponding distance. Certainly, 

𝑑_
𝑚 = min

𝑗
𝑑𝑗

𝑚  

                                                  (2.13) 



 

26 
 

We also define 

𝑑+
𝑚 = max

𝑗
𝑑𝑗

𝑚  

                                                  (2.14) 

Let 

𝑑0
𝑚 = 𝑑_

𝑚 + 𝛼 ⋅ (𝑑_
𝑚 − 𝑑+

𝑚 ) 

                                      (2.15) 

where 𝛼 is a threshold value between 0 and 1. By default, we set 𝛼 = 0.1. Here, 𝛼 can be 

considered as the level of image noise. We choose a subset of those motion vectors in Λ 

whose distance measurements are very close to the minimum 𝑑_
𝑚 , and denote this subset 

by 

Λ_ = {(𝑉𝑘
𝑚 , 𝑑𝑘

𝑚 )|𝑑𝑘
𝑚 < 𝑑_

𝑚 } 

                                       (2.16) 

Here, we re-label the elements in the set Λ_ by index k, 1 ≤ k ≤ Km < L. Certainly, V
m
 

∈ Λ_. We define the reliability measure as 

𝛾𝑚 =
1

1 + 𝜂 ⋅   𝑉𝑘
𝑚 − 𝑉𝑚 

2

𝐾𝑚

𝑘=1

 

                                         (2.17) 

Here, 𝜂 is a positive penalty rate and || · ||2 represents the L2-norm. We can see that 0 

< 𝛾𝑚  < 1. If the value of Km is small (close to 1) or the motion vectors 𝑉𝑘
𝑚 are very close 

to V
m
, the corresponding reliability measure 𝛾𝑚   will be very close to 1. Otherwise, 𝛾𝑚  

will be small and approaching 0. Fig. 2.8(a) shows one example video frame. We use all 

blocks as structural blocks and estimate their local motion and compute its reliability. 
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Fig. 2.8(b) shows the reliability of each block. We can see that the blocks in the top-right 

region are almost flat and their reliability values are very small. The blocks in the center-

left region have very high reliability because they do have distinctive image features. It is 

interesting to see that those blocks in the parking lot (top-center) area have medium relia-

bility because they do look similar to each other and cause some uncertainty during local 

motion estimation. 

 

Figure 2.8: (a) A sample video frame from aerial surveillance videos. 
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Figure 2.8: (b) Reliability map of Fig. 2.8: (a). 

 

In the following, we use one example to demonstrate the importance of reliability 

analysis in global motion estimation. Fig. 2.9 shows two consecutive video frames in 

which a rectangular object moves towards bottom-right in the camera view. In local mo-

tion estimation, we partition the image into blocks and select a fraction, e.g. 15%, of them 

as structural blocks. Most likely, those blocks along the edges will be selected. We then 

find the local motion for each structural block. We can see that each block on the edge 

will match any block along the edge with the same distance value. By default, the motion 

estimation will choose the first best match which yields a motion vector pointing down-

wards, as illustrated in Fig. 2.9. However, the four blocks at corners will find their correct 

motion vectors, which point to bottom-right. Since we have a lot more edge blocks than 

corner blocks, if we treat them equally important, the GME will determine that the object 

moves downwards, which is incorrect. If we perform the above reliability analysis, those 

edge blocks will have a very small reliability since they have many similar best matches, 

while those corner blocks will have a very high (close to 1.0) reliability value. In this 
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case, the global motion estimation will automatically rely more on those corner blocks 

than those edge blocks and generate the correct object motion. Certainly, this is just one 

simple example to illustrate the importance of reliability analysis. In actual GME and reg-

istration of aerial surveillance videos, we observe that the reliability analysis enables us 

to discover the most salient image features in a statistical manner without sophisticated 

and computationally intensive computer vision processing. 

 

Figure 2.9: A rectangular object moving in a video scene. 

 

2.5 Global Motion Estimation  

As discussed in Section 2.1, if a video sequence experiences global camera motion, 

two consecutive video frames are then associated by a perspective transform defined in 

(2.2). (2.2) is also called the global motion equation. It has 8 parameters. Theoretically, if 

we know the local motion vectors of 8 points, more specifically, if we know the pixel po-

sition (x, y) of each point in frame It-1 is mapped into a new position (X, Y) in frame It, we 

can then solve this global motion equation and obtain the 8 global motion parameters [a, 

b, c, d, e, f, g, h]. However, in practice, local motion estimation often involves a signifi-
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cant amount of uncertainty and ambiguity and it is often hard to accurately find the true 

motion vector for point. Therefore, we employ a large number of correspondence pairs 

and determine the 8 global motion parameters by a weighted least mean squared error 

(LMSE) procedure. 

Let {B
m
|1 ≤ m ≤ M} be the set of structural blocks in frame It. Let (xm, ym) be the cen-

ter position of block B
m
. We estimate its local motion and determine that (xm, ym) is 

mapped to (Xm, Ym) in frame It+1. According to the global motion equation in (2.2), we 

have 

𝑋𝑚 =
𝑎 ⋅ 𝑥𝑚 + 𝑏 ⋅ 𝑦𝑚 + 𝑐

𝑔 ⋅ 𝑥𝑚 + 𝑕 ⋅ 𝑦𝑚 + 1
 

𝑌𝑚 =
𝑑 ⋅ 𝑥𝑚 + 𝑒 ⋅ 𝑦𝑚 + 𝑓

𝑔 ⋅ 𝑥𝑚 + 𝑕 ⋅ 𝑦𝑚 + 1
  

(2.18) 

It can be rewritten into the following linear form: 

𝑃𝑚 ⋅ 𝐺 = 𝑄𝑚  

                                                  (2.19) 

where 

𝑃𝑚 =  
𝑥𝑚

0
 
𝑦𝑚

0
 
1
0

 
0
𝑥𝑚

  
0
𝑦𝑚

 
0
1

 
−𝑥𝑚 ⋅ 𝑋𝑚

−𝑥𝑚 ⋅ 𝑌𝑚
 
−𝑦𝑚 ⋅ 𝑋𝑚

−𝑦𝑚 ⋅ 𝑌𝑚
  

                           (2.20) 

𝐺 =  𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 𝑕 𝑇  

                                          (2.21) 

and 

𝑄𝑚 =  𝑋𝑚  𝑌𝑚  𝑇 

                                                (2.22) 
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In this work, we use a least mean square error (LMSE) procedure to determine the 

global motion parameters G which aims to minimize the following the square error: 

𝐸 =   𝑃𝑚 ∙ 𝐺 − 𝑄𝑚  𝑇 ⋅  𝑃𝑚 ⋅ 𝐺 − 𝑄𝑚  

𝑀

𝑚=1

 

                               (2.23) 

Note that the reliability of block B
m
 is 𝛾𝑚 . If we use 𝛾𝑚  as a weight, the square error 

becomes 

𝐸𝑊 =  𝛾𝑚 ∙  𝑃𝑚 ∙ 𝐺 − 𝑄𝑚  𝑇 ⋅  𝑃𝑚 ⋅ 𝐺 − 𝑄𝑚  

𝑀

𝑚=1

 

                      (2.24) 

Write 

𝑃 =  

𝑃1

𝑃2

⋮
𝑃𝑚

  𝑎𝑛𝑑 𝑄 =  

𝑄1

𝑄2

⋮
𝑄𝑚

  

                                          (2.25) 

Define 

𝑊 = 𝑑𝑖𝑎𝑔{𝛾1 , 𝛾1 , 𝛾2 , 𝛾2 , … , 𝛾𝑀𝛾𝑀} 

                               (2.26) 

The solution to the LMSE problem in (2.24) is given by 

𝐺 = (𝑃𝑇𝑊𝑃)−1𝑃𝑇𝑊𝑄 

                                         (2.27) 
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Once the camera parameters are determined, we can warp the video frame into a 

common coordinate system so as to create a mosaic for the video sequence. 

 

2.5.1 Moving Object Detection and Global Motion Refinement 

Typical aerial surveillance videos have moving objects (persons or vehicles) in the 

scene. It should be noted that those structural blocks that are used for GME could have 

blocks from moving objects. The motion estimation of these structural blocks could also 

have high reliability levels. Note that the motion of moving objects is different from the 

global camera motion. In this case, the motion information of the moving objects will act 

as noise and degrade the overall GME performance. Therefore, it is very important to 

detect moving objects; separate them out from the background, and refine the GME re-

sult. 

 

Figure 2.10: Moving object detection and global motion refinement. 

 

We consider moving object detection as a hypothesis testing problem. An object is 

considered as moving if its motion does not satisfy the global motion equation. We ob-

serve that the moving object detection and global motion refinement is a mutually depen-
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dent and recursive process, as illustrated in Fig. 2.10. Initially, when the moving objects 

are included in the GME process, the estimated global camera motion won’t be very ac-

curate. Using this global motion equation, we can only detect those fast moving objects 

whose motion is significantly different from the global motion. Once these objects are 

detected and excluded, the global motion estimation will be more accurate. With this 

more accurate global motion equation, we can detect objects with slower motion. This 

process can be repeated to further improve the GME accuracy and detect more moving 

objects. In Figs. 2.11 and 2.12, we plot the values of the eight global motion parameters 

(a, b, c, d, e, f, g, h) at each iteration for test Video (5) in Fig. 2.15. We can see that, with 

moving object detection and global motion refinement, these global motion parameters 

quickly converges to their true values. To measure the accuracy of GME, we warp the 

current frame It+1 into the coordinate system of frame It and measure the average pixel-

level registration error. Fig. 2.13 shows the average registration error (in unit of pixels) as 

a function of iteration number. We can see that the registration error is reduced signifi-

cantly with the iterative motion object detection and global motion refinement. 
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Figure 2.11: Convergence of transform estimation. 

 

It should be noted that when we refine the GME, we only need to re-compute the 

global motion parameters G using (2.27). Since moving objects could also be classified 

as non-structural blocks, we need to estimate the local motion for all non-structural 

blocks. Before the local motion estimation, we remove the global camera motion by 

warping the two neighboring video frames into a common coordinate system. We ob-

serve that, once the global motion is removed, the object motion is usually translational. 

Therefore, for low computational complexity, we can use the SAD distance metric for 

motion estimation of non-structural blocks. 
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Figure 2.12: Convergence of transform estimation. 

 

 

2.5.2 Algorithm Description 

In this section, we summarize the proposed algorithm for GME and moving object 

detection. 

Step 1: block classification. Partition the video frame into blocks. Apply DCT to each 

block. Compute the energy ratio using (2.3). Classify the blocks into struc-

tural and non-structural blocks based on their energy ratios. 

Step 2: local motion estimation of structural blocks. Using the compound distance 

metric in (2.11), estimate the motion vector of each structural block. As dis-

cussed in Section 2.3.4, the distance metric selection should be adaptive 

based on the camera motion of previous frames. 
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Step 3: reliability analysis. Compute the reliability m of each structural block using 

(2.17). 

Step 4: compute global motion parameters. Based on the motion vectors of structural 

blocks and their reliability values, compute the global motion parameters G 

using (2.27). 

Step 5: motion estimation for non-structural blocks. Based on the global motion pa-

rameters, warp the video frame into the coordinate system of the previous 

frame. Estimate the motion vectors of non-structural blocks. 

Step 6: moving object detection. Detect moving objects. An object is considered as 

moving if its motion does not satisfy the global motion equation. 

Step 7: iteration. Repeat Steps 4 and 6 to refine global motion estimation and detect 

more moving objects. The iteration can be stopped when the changes of 

global motion parameters become very small. 

 

Figure 2.13: Average registration error to iterations. 
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It can be seen that the computational complexity of the proposed GME algorithm lies 

in three major components: block classification, local motion search, and global camera 

parameters estimation. Table 1 shows the average computational complexity of these 

three components (in percentage of overall complexity). It can be seen that the major 

complexity lies in local motion search. As in standard video compression systems, such 

as MPEG-4 or H.263 [6], block-based local motion search can be implemented at low 

complexity using fast search algorithms, such as diamond search and three step search 

[17, 18]. Therefore, the proposed global motion estimation algorithm has a similar level 

of computational complexity as a simple-profile MPEG-4 or H.263 video encoder. In 

Section 2.6.4, we will conduct complexity comparison with existing GME algorithms. 

 

 

Table 2.1: Computational complexity of major components. 

Component Complexity (%) 

Block Classification 13.22% 

Local Motion Search 75.15% 

Global Motion Estimation 6.63% 

Others 5% 
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2.6 Experimental Results 

In this section, we evaluate the proposed algorithm for GME. The experimental eval-

uation consists of two parts. First, we provide experimental results to justify the proposed 

ideas and methods, such as block classification, adaptive selection of distance metrics, 

and reliability analysis. Second, we compare the proposed algorithm with other GME al-

gorithms in terms of both computational complexity and estimation accuracy. Although a 

number of GME algorithms have been proposed in the literature, due to the lack of suffi-

cient technical detail, it is often difficult to implement them and achieve the same level of 

performance. In this work, we choose to compare the proposed algorithm against the 

GME algorithm provided by the Microsoft MPEG-4 Visual Reference Software [19], one 

of the state-of-the-art algorithms for GME. We refer to this algorithm as MS-GME. 

 

2.6.1 Experimental Setup 

To evaluate the algorithm performance, especially, the estimation accuracy of global 

camera parameters, we need the ground truth of these camera parameters. However, 

many aerial surveillance videos do not come along with camera meta data. Even in some 

cases where the meta data is available, it is often not sufficiently accurate because of sen-

sor measurement noise. For example, the GPS sensor for camera location and gyroscope 

for camera orientation may have measurement noise. In this work, we propose two ap-

proaches to addressing this issue. First, we develop a MATLAB tool to simulate aerial 

video surveillance on a computer. More specifically, we set one large satellite picture on 

the ground plane, move the camera along a trajectory, vary the camera parameters, and 

capture a sequence of video frames based on a virtual camera model specified by these 



 

39 
 

parameters. In this case, we know and have full control of the ground-truth camera para-

meters. From the video sequence, we use the GME algorithms to estimate the global 

camera parameters. For every pixel in the current frame, we use both the ground-truth 

global camera parameters and those obtained from GME to warp the pixel into the coor-

dinate system of the previous frame. The location difference between these two warped 

pixels is called pixel registration error. We use the mean and variance of pixel registra-

tion errors of all pixels for performance evaluation. 

 

Figure 2.14: Illustration of computer simulation of aerial video surveillance. 

Fig. 2.15 shows the test video sequences that we use for performance evaluation. The 

top row, videos (1) to (4) are obtained from computer simulation. Besides these simulated 

aerial surveillance videos, we also use aerial surveillance videos collected from field dep-

loyment of UAVs (unmanned aerial vehicles), as shown in the bottom row of Fig. 2.15. 

All test videos have a resolution of 640×480 at 30 frames per second. Unfortunately, 

some field aerial surveillance videos do not have camera parameter meta data. Although 

some videos do have the meta data, it is not sufficiently accurate to be used as ground-

truth for performance comparison. In this case, we propose to introduce a new measure, 
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called pixel intensity difference, to measure the performance. More specifically, after 

global motion estimation for two neighboring frames It-1 and It, we use the global camera 

parameters to warp frame In into the coordinate system of It−1 using (2). Let Ω(n − 1, n) 

be the overlapped image area of It−1 and It (after warping). If the estimation is accurate, at 

every location z in Ω, two pixels from It-1 and It, denoted by It-1[z] and It[z], should have 

the same intensity value. Motivated by this observation, we use the average pixel intensi-

ty difference: 

𝑃𝐷 𝑡 − 1, 𝑡 =
1

 Ω(𝑡 − 1, 𝑡) 
  𝐼𝑡−1 𝑧 − 𝐼𝑡[𝑧] 

𝑧∈Ω(𝑡−1,𝑡)
 

                 (2.28) 

to measure the accuracy of GME. Here, | Ω (t − 1, t)| represents the total number pixels 

in the overlapped area. 

 

Figure 2.15: Test video clips. 
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2.6.2 Experimental Justification of the Proposed Algorithm 

In this section, we present experimental results to justify the proposed ideas and me-

thods, including block classification, adaptive distance metric, and reliability analysis, 

and characterize their impact on the overall performance of GME. As discussed in Sec-

tion 2.3, the block classification selects blocks with distinctive features for reliable mo-

tion estimation and therefore improves the performance of GME. Fig. 2.16 shows the 

mean and variance of pixel registration errors of GME on Video (1) with different per-

centages of structural blocks. The result for Video (2) is shown in Fig. 2.17. It can be 

seen that as we choose more and more structural blocks, the registration error reduces. 

However, if we choose all blocks as structural blocks, which implies no block classifica-

tion, the registration error is significantly increased. This demonstrates that block classi-

fication improves the performance of GME. Simulation results over other test videos 

yield similar results. In this work, based on our experience, we choose the top 30-40% of 

blocks as structural blocks. 

As discussed in Section 2.4, the reliability analysis emphasizes the importance of 

structural blocks which have reliable and accurate location motion estimation. Fig. 2.18 

shows the mean of pixel registration errors of GME on Video (4) with and without relia-

bility analysis. It can be seen that, with reliability analysis, the average registration error 

is significantly reduced. 
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Figure 2.16: Mean and variance of pixel registration errors of GME on 

Video (1) with different percentages of structural blocks. 

 

In Section 2.3.4, we propose an adaptive compound distance metric for local motion 

estimation based on three distance metrics, SAD, intensity profile, and histogram of gra-

dients. We observe that these three have both advantages and disadvantages in terms of 

computational complexity and motion estimation performance. For video sequences with 

different global camera motion characteristics, we need to select different combinations 

of them in an adaptive manner, as illustrated in (2.11). In the following experiment, we 

choose different weight vectors in (2.11), obtain different compound distance metrics, 

and evaluate their performance in GME. Table 2 lists the average pixel registration errors 

for test videos (1) to (4). The minimum values are indicated in bold. We can see that a 

combination of SAD and intensity profile has the minimum average pixel registration er-

ror on Videos (1) and (4); a combination of SAD and histogram of gradients has the min-

imum on Video (2); and intensity profile has the minimum on Video (3). We can also see 

that SAD itself ([1 0 0]) is not efficient for estimating global camera motion and it is not 
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helpful to use all of these three distance metrics simultaneously ([1, 1, 1]), either. These 

experimental results justify the need of the adaptive compound distance metric. 

Table 2.2: Average pixel registration error of GME with different compound distance metrics. 

Weight [ 1 0 0 ] [0 0 1] [0 1 0] [1 0 1] [0 1 1] [1 1 0] [1 1 1] 

Video (1) 0.3081 0.3080 0.3898 0.3081 0.2950 0.2300 0.2821 

Video (2) 0.4642 0.5065 0.6751 0.3652 0.4272 0.4680 0.3766 

Video (3) 5.6243 4.2064 0.5059 5.6203 2.7651 2.8858 3.7973 

Video (4) 0.4182 0.3683 0.3028 0.5023 0.3170 0.3011 0.4880 

 

 

 

 

Figure 2.17: Mean and variance of pixel registration errors of GME on 

Video (2) with different percentages of structural blocks. 
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2.6.3 Performance Comparison with MS-GME 

In the following, we compare the proposed GME algorithm with the MS-GME algo-

rithm implemented in the Microsoft MPEG-4 Visual Reference Software [19]. We eva-

luate their computational complexity and GME performance. We use the field aerial sur-

veillance videos for test and use the pixel intensity difference for performance measure-

ment. Fig. 2.19 shows the running time (in seconds per frame) comparison between MS-

GME and the proposed algorithm on Video (5). Fig. 2.20 shows its GME accuracy com-

parison results. Simulation results on Video (7) are shown in Fig. 2.21 and Fig. 2.22, re-

spectively. Comparison results for the average running time (in seconds per frame) and 

the average pixel intensity difference on Videos (5), (7), and (8) are listed in Table 2.3. It 

can be seen that the proposed GME algorithm achieves much higher estimation accuracy 

than the MS-GME algorithm while its computational complexity is significantly (about 

15-20 times) lower than that of MS-GME. In addition, the computational complexity of 

the proposed algorithm does not vary much with different input videos. This is highly 

desirable in practical software/hardware implementation of GME. 

 

2.6.4 Video Registration and Moving Object Detection 

In this section, we demonstrate the application of the proposed GME algorithm in 

video registration and moving object detection. Once the global camera motion parame-

ters are estimated, we can use them to warp the video frames into a common coordinate 

system with (2.2) so as to create a mosaic for the video scene. Once the background cam-

era motion is removed, we can detect moving objects using simple background subtrac-

tion and silhouette extraction algorithms that have been developed for stationary cameras 
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[15, 16]. Figs. 2.23 and 2.24 show the video registration results for Videos (2) and (5), 

respectively. It can be seen that image features, such as road edges, are well aligned. Fig. 

2.25 shows the moving objects detection results for three test videos (7), (8), and (5). The 

first two videos (7) and (8) contain a single moving object, as indicated by a bounding 

box in the first two rows of Fig. 2.25. The third video (5) has multiple vehicles. Fig. 2.25 

(the third row) shows the moving trajectory of each vehicle. 

 

Figure 2.18: Average registration error of GME on Video (4) with and without re-

liability analysis. 

 

Table 2.3: Performance comparison with MS-GME. 

Test Running Time (s) Average Pixel Intensity  

Difference 

Video This Work MS-GME This Work MS-GME 
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Video(5) 0.046 0.634 1.615 

 

3.386 

Video(6) 0.042 0.616 1.017 3.918 

Video(7) 0.046 1.233 2.529 4.296 

 

 

 

2.7 Discussion 

GME is the enabling step for video registration, moving object detection and tracking 

in aerial video surveillance. In this work, we have explored various methods to deal with 

the inherent uncertainty and image noise in motion analysis, and developed a low-

complexity, accurate and reliable scheme to estimate the global camera motion for video 

registration and moving object detection. More specifically, we have introduced a block-

based image data classification scheme to select those image regions, called structural 

blocks, with distinctive features for reliable motion estimation. We have introduced an 

adaptive compound distance metric for motion estimation which is able to efficiently 

handle camera rotation and zoom. We have develop a scheme to analyze the reliability of 

local motion estimation and use this reliability measure to as a weighting factor to influ-

ence the importance level of each structural block in global camera motion estimation. A 

progressive iterative scheme is proposed to detect moving objects, separate them from the 

background, and refine the GME. Our extensive simulation results demonstrate that the 

proposed GME scheme is accurate, reliable, and has low complexity. In our future work, 

we shall develop a systematic approach to determine the weighting vector for the com-



 

47 
 

pound distance metric. We also need to explore more sophisticated image features and 

distance metrics for accurate and reliable motion estimation. 

 

Figure 2.19: Running time comparison with the MS-GME scheme on Video (5). 
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Figure 2.20: Estimation accuracy comparison with the MS-GME scheme on 

Video (5). 

 

Figure 2.21: Running time comparison with the MS-GME scheme on Video (7). 
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Figure 2.22: Estimation accuracy comparison with the MS-GME scheme on Video (7). 

 

 

Figure 2.23: Video registration results for Video (2). 
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Figure 2.24: Video registration results for Video (5). 

 

 

Figure 2.25: Moving object detection results for Videos (6), (7), and (8). 
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CHAPTER 3 

CONTENT-BASED BUILDING RETRIEVAL FROM  

AERIAL SURVEILLANCE VIDEOS 

 

 

Identifying and matching buildings between camera views is useful for scene under-

standing, robot navigation, battlefield surveillance, geo-location and geo-tagging of vid-

eos and photos [20]. For example, within the context of battlefield surveillance, a solider 

can take a photo using a hand-held camera of a building, retrieve and review the video 

clips from the aerial surveillance video database which have continuous surrounding 

views of the same building to understand the environment for situational awareness and 

informed action planning. In this work, we propose to develop a method for building rec-

ognition using sketch-based representation and spectral graph matching.  

 

Figure 3.1: (A) and (B): Building identification between two videos with large 

changes in scales and perspectives. 
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Figure 3.1: (C) and (D): SIFT matching results. 

Recent years have seen great advances in developing local appearance descriptors for 

objects, such as SIFT [21], PCA-SIFT [22], GLOH (gradient location and orientation his-

togram) [23], shape context [24], steerable filters [25], etc. These local image descriptors 

have found many important applications in computer vision, such as wide-baseline 

matching [26], object recognition and tracking [21, 82], texture matching [27, 90], image 

retrieval [28], robot navigation [29], and scene understanding [30]. The central goal of 

developing local image descriptors is to make them invariant under image transforms and 

camera motion, such as image rotations, camera zoom, changes in scale and perspectives, 

and image noise, while maintaining high repeatability and discriminative power. Accord-

ing to the comprehensive performance evaluation conducted by Mikolajczyk and Schmid 

[23], SIFT and SIFT-like GLOH features exhibit the highest matching accuracies and re-

call rates, especially for scales changes in the range 2-2.5 and image rotations in the 

range 30 to 45 degrees. Performance for all local descriptors degraded with image blur-

ring which affects the accuracy and reliability of edge, shape, and gradient information 

used in these local descriptors. In the practice of building recognition, images are often 

taken by different persons at different times from different platforms (e.g. ground-level or 
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airborne surveillance cameras). These types of images typically have large changes in 

scales, camera perspectives, illuminations, and strong image blurring due to camera mo-

tion, where existing local feature matching methods are not able to provide satisfying per-

formance.  Figure 3.1 (C) and (D) show one example of SIFT matching. SIFT has found 

4547 and 2179 key points in images (C) and (D). However, only very few matches are 

found between them. Here, we set the distance ratio to be 0.65.  

Man-made structure detection has been studied in the literature [20, 89]. For aerial 

images, especially those collected at high altitudes, roof-top and shadow detection is the 

key step to building detection [33]. To this end, low-level image primitives, e.g. edges, 

lines and corners, are extracted and then grouped together using either geometric models 

[31] or statistical models, e.g. Markov Random Field (MRF) [32]. Within the context of 

ground-level images, approaches to building detection are much different. Kumar and 

Hebert [20] show how to classify man-made structures from landscape using causal mul-

ti-scale random field. Color and texture features have been used in [36, 37] to segment 

buildings from scenes. Vailaya et al. [35] use the edge coherence histograms for scene 

classification and building detection. Sarkar and Soundararajan [34] develop a perceptual 

organization framework to group low-level edge features that belong to a building using 

spectral graph partitioning.  

While a number of approaches have been developed for man-made structure detec-

tion, few methods have been developed in the literature for building retrieval or matching 

between camera views. In their recent work, Rajashekhar et al. proposed a method for 

building retrieval using cross-ratio which is invariant under perspective changes. This 

method relies on accurate and reliable line detection and is mainly used for buildings with 
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crossing linear features. Zhang and Košecká [47] developed a promising approach for 

building recognition based on SIFT and voting and a probabilistic model. On the ZuBuD 

database, they reported an average of 90.4% correction recognition. It should be noted 

that most building views in the ZuBuD have relatively small viewpoint changes. 

To develop an efficient scheme for building recognition with large viewpoint 

changes, we propose to explore a sketch-based representation which is semantically rich 

and largely invariant under large scale and perspective changes. Human visual system has 

a remarkable capability in recognizing and matching objects under drastically different 

viewing conditions. As we perceive and recognize a building, we often attempt to re-

member its outline, major structural components (e.g. windows and doors), their appear-

ance characteristics and spatial configurations. In this work, we propose to capture this 

type of representation by a sketch. We focus our efforts on office buildings, which typi-

cally have repeated structural components, such as windows, doors, poles, exterior deco-

rations, etc. After multi-scale maximally stable extremal regions (MSER) detection, the 

proposed approach attempts to find major structural components of buildings, and extract 

patterned semantic features, which are organized into a sketch-based representation of 

buildings. These descriptors are then clustered in association with different planes of the 

building and matched across video frames using spectral graph analysis. 

This work has the following three major contributions: (1) detection of patterned 

structural components of buildings; (2) construction of a sketch-based representation of 

buildings; and (3) extension of spectral graph analysis for global image matching under 

large changes in scale and perspectives.  
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The rest of the chapter is organized as follows. The multi-resolution MSER detection 

is presented in Section 3.2. Section 3.3 explains the detailed procedure to construct a 

sketch-based representation of buildings. The extension of spectral graph analysis for 

global image matching under large changes in scale and perspectives is presented in Sec-

tion 3.4. Section 3.5 presents our experimental results. Section 3.6 concludes the paper 

with further discussions and future work.  

 

3.1 Multi-Scale MSER Detection 

Our first step to capturing the major appearance characteristics of buildings is based 

on MSER detection. The original concept of maximally stable extremal regions 

(MSERs) was proposed by Matas et al.[38]. MSER detection finds a set of distinguished 

image regions where each inner-pixel intensity value is less (greater) than a certain thre-

shold, and all intensities around the boundary are greater (less) than the same threshold. 

An extremal region is maximally stable when the area (or the boundary length) of the 

segment changes the least with respect to the threshold. The set of MSERs is closed un-

der continuous geometric transformations and is invariant to affine intensity changes, 

providing a highly efficient region detector for local image matching [23, 39].  

We note that structural components of buildings, such as windows and doors, have 

different physical sizes and their sizes in the image depends on the image resolution. To 

address this issue, we follow Forssén and Lowe’s approach in [39], extending the MSER 

detector to multiple scales. We construct a Gaussian pyramid and apply the MSER detec-

tion separately at each resolution. Fig. 3.2 (B) shows the MSER detection results for the 
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image in Fig. 3.2(A). A closer look of the building area is shown in Fig. 3.2(C). We can 

see that all window areas have been successfully detected. Fig. 3.2(D) shows the ex-

tracted MSERs. Figs. 3.2(E) and (F) show the extracted MSERs at scales 2 and 3.  

If the camera parameters and physical sampling distance of the images are known, 

e.g. in airborne video surveillance, we can carefully choose a subset of scales which re-

flects the typical sizes of buildings components. 

 

Figure 3.2: MSER detection results. (A) the original image; (B) MSER detection re-

sults indicated with red ellipses; (C) a close look at the parking garage area; (D) de-

tected MSERs; (E) MSER detection results at scale 2; and (F) MSER detection re-

sults at scale 3. 
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3.2 A Sketch-Based Representation 

After MSER detection, typically, the next step in image matching is to extract local 

image features [23, 39]. As discussed in Section 3.1, in the practice of building recogni-

tion, the image pairs often have large changes in scales, camera perspectives, illumina-

tions, and strong image blurring due to camera motion, where existing low-level local 

feature matching methods are not able to provide satisfying performance. To address this 

problem, we propose to construct a semantically rich sketch-based representation of 

buildings so as to extract higher-level features which are largely invariant under severe 

changes in scales and perspectives.  

 

Figure 3.3: a sketch-based representation of a building in two dif-

ferent views.  
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Our approach is mainly motivated by the following observation: office buildings typ-

ically have repeated structural components, such as windows, doors, and exterior decora-

tions, being configured in certain spatial patterns in various styles, as shown in Figs. 3.1 

and 3.6. These types of regularity and patterns provide reliable features for building rec-

ognition. To detect repeated structural components from MSERs, we take the following 

major steps: 

1. Normalization. To improve its scale and affine invariant capability, a normalization 

operation is applied to the elliptic regions detected by MSER: all regions are mapped 

to circular patches of constant radius [23]. More specifically, we compute the singular 

value decomposition (SVD) each patch’s covariance matrix 𝑪 = 𝑼𝑫𝑼𝑇  and rectify 

each patch using the following transform: 

𝒙 = 𝑠𝑨𝒙 + 𝒎, 𝑨 = 2𝑼𝑫1/2 

                                    (3.1) 

Here, 𝑠 is a scaling factor to control the normalized patch size [38]. In this work, we 

set the size to be 41 pixels. 

2. Extracting local appearance features. Let {𝑩𝑘 |1 ≤ 𝑘 ≤ 𝐾} be the set of normalized 

patches. For each path, we use HOG (Histogram of Oriented Gradients) [44] as the 

local patch descriptor. To differentiate image patches on different sides / planes of the 

3-D building, we also include the principle direction (𝜃𝑥 , 𝜃𝑦) of each patch into the 

feature vector. Let {𝒇𝑘|1 ≤ 𝑘 ≤ 𝐾} be the set of features for all normalized patches. 

3. Clustering for regularity detection. We then apply the 𝑘-means algorithm to cluster 

patches {𝑩𝑘}. Fig. 3.3(A) shows an example of clustering results. We can see that the 
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image patches of windows are separated into clusters with different shapes on differ-

ent sides of the building, indicated by different colors. 

4. Regularity-driven spatial extension. We observe that this initial step of regularity de-

tection is not able to detect all repeated structural components due to the limited dis-

criminative power of local features, image noise and illumination variations, sha-

dows, and the inherent ambiguity in clustering and classification. To improve the de-

tection results, we assume that the repeated structural components have a lattice spa-

tial configuration. We compute the principle directions of the lattice using voting. We 

then incrementally search the MSER near the lattice to identify additional structural 

component in each cluster. Fig. 3.3(A) shows an example of two missing windows 

being detected using this procedure. 

We also extract HOG features describe the façade of the building, i.e. surrounding 

areas of these structural components. These clusters of structural components, their fea-

tures (described in Section 3.2), and descriptors of their surveillance areas form a sketch 

representation of the building, as shown in Figs. 3.3(D) and (E). 

 

Figure 3.4: geometrical invariants of point patterns. 
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3.3   Spectral Graph Matching 

Spectral graph theory, [91], attempts to characterize the global structure of graphs us-

ing the eigen-values and eigenvectors of the node adjacency matrix. Recently, researchers 

have applies spectral graph theory for object recognition, image matching, and segmenta-

tion. In his earlier work [40], Umeyama developed an eigen-decomposition approach for 

matching graphs of the same size. Scott and Longuet-Higgins were among the first to ap-

ply spectral graph analysis for matching 2-D point features between two arbitrary shapes 

or point patterns [41]. They use a proximity matrix to describe the affinity of all possible 

pair-wise matches, and the eigenvectors of this matrix are used to determine the point 

correspondences. One of its major drawbacks is that it cannot cope with relatively large 

rotations in the image plane. Shapiro and Brady proposed an improved method in [42] by 

comparing the eigenvectors of the point proximity matrix for more accurate and robust 

point matching. Sclaroff and Pentland [43] proposed an algorithm based on the eigen-

modes of a shape matrix for point correspondence and shape recognition. Carcassoni and 

Hancock [90] embedded spectral graph analysis into the framework of EM algorithm and 

significantly improve the method’s robustness to noise and error in point features. 

During our experiments, we observe that Shapiro and Brady’s algorithm is simple, re-

liable, and is able to deal with relatively large changes in scales and perspective changes. 

We recognize that local appearance features, such as SIFT and HOG features, are insuffi-

cient for our task of building recognition. This is because a building is represented by a 

collection of repeated structural components (nodes). Within each cluster, nodes share 

similar appearance. To address this issue, we propose to incorporate the following geo-

metrical invariants to characterize the spatial configuration of nodes. 
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(1) Area ratio of triangle pairs.  As illustrated in Fig. 3.4(B), for each cluster of nodes 

in the building sketch, we perform Delaunay triangulation and compute its area ratio of 

neighboring triangle pairs. Van Gool et al. [45] demonstrate that this geometric feature is 

invariant under perspective transform. In this work, we will use the average, minimum, 

and maximum area ratio of neighboring triangle pairs as our first set of geometric fea-

tures. 

(2) Configuration entropy of k-hop neighbors.  We note that the area ratio feature has 

a strong discriminative power only when the cluster has a non-uniform pattern. To pro-

vide complimentary information for spatial configuration, we introduce the second fea-

tures: the spatial distribution of 𝑘-hop neighbors. As illustrated in Figs. 3.4(C), on the 

Delaunay triangulation, we find the set of 𝑘-hop neighbors for each node, denoted by 

𝒩𝑖 =  𝑜𝑖1 , 𝑜𝑖2 , ⋯ 𝑜𝑖𝐿 , which will partition the circular area around the node into 𝐿 sec-

tions, as shown in Fig. 3.4(D). Let 𝑝𝑙  be the area of section 𝑜𝑙  normalized by the total 

area of the circle. We define the following configuration entropy: 

𝑯𝒌 𝒩𝑖 =  𝑝𝑖𝑙

𝐿

𝑙=1

log2

1

𝑝𝑖𝑙
                       

                     (3.2) 

During our experiments, we find that 𝑯 𝒩𝑜  is very effective in differentiating boun-

dary, corner, and inside nodes. In this work, we use the entropy of up to 3-hop neighbors 

as our second set of geometric features: 

𝑯 𝒩𝑖 = [ 𝑯𝟏 𝒩𝑖 , 𝑯𝟐 𝒩𝑖 , 𝑯𝟑 𝒩𝑖 ]          

                      (3.3) 
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We note that different clusters of structural components may reside on different 

planes / sides of the 3-D building. To avoid the 3-D matching problem, we propose to 

perform spectral graph matching on each cluster independently and a joint decision is 

made on matching results of clusters for building recognition. An image region is deter-

mined to be match of the building in the query image if this region contains matches to 

all or most clusters in the query image. Let {𝑭𝑖 = [ 𝒇𝑖   𝜶𝑖 , 𝑯 𝒩𝑖    | 1 ≤ 𝑖 ≤ 𝑁} be the 

set of augmented features for node 𝑖 in the query image. Here, 𝒇𝑖 is the HOG appearance 

feature, 𝛼𝑖  represents the area ratio statistics of neighboring triangle pairs, and 𝑯 𝒩𝑖  is 

the entropy of 𝑘-hop neighbors. Let {𝒈𝒌|1 ≤ 𝑘 ≤ 𝑀} be the corresponding feature set for 

the reference image. For the query image, we construct a Gaussian-weighted proximity 

matrix: 

𝑭 = [𝑭𝑖𝑗 ]𝑁×𝑁 , 𝑭𝑖𝑗 = 𝑒
−
𝑑 𝒇𝑖 ,𝒇𝒋 

2𝜍2 .             

                             (3.4) 

Here, 𝑑 𝒇𝑖 , 𝒇𝒋  represents the distance between two features. Similarly, we can con-

struct the proximity matrix 

𝑮 = [𝑮𝑘𝑙 ]𝑀×𝑀 , 𝑮𝑖𝑗 = 𝑒
−
𝑑 𝑔𝑘 , 𝒈𝒍 

2𝜍2                 

                          (3.5) 
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Figure 3.5: spectral graph matching: (A) with local appearance feature only and (B) using both appearance 

and geometric invariants of nodes. 

for the reference image. Note that both are symmetric square matrices. Let  

𝑭 = 𝑽𝟏𝑫1𝑽1
𝑇 , 𝑮 = 𝑽𝟐𝑫2𝑽2

𝑇 ,               

                          (3.6) 

be their singular value decomposition. Note that these two clusters in the query and refer-

ences may have different number of nodes, i.e., 𝑁 ≠ 𝑀. Let 𝐾 = min 𝑁, 𝑀 . Let 

{𝜉𝑖
1}1≤𝑖≤𝐾  and  {𝜉𝑖

2}1≤𝑖≤𝐾  be the first 𝐾 row vectors of matrices 𝑽𝟏 and 𝑽𝟐, respectively. 

We construct the following association matrix  

𝒁 = [𝑍𝑖𝑗 ]𝐾×𝐾 , 𝑍𝑖𝑗 = ||𝜉𝑖
1 − 𝜉𝑖

2||2 

                                     (3.7) 
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Figure 3.6: sample images from the ZuBuD and our Ground-Aerial 

datasets. 

using the Euclidean distance. Following Shapiro and Brady’s approach [42], we deter-

mine the node-to-node correspondence as follows: if 𝑍𝑖𝑗  is the minimum of row 𝑖 of ma-

trix 𝒁, then node 𝑖 in the query image is matched to node 𝑗 in the reference image. Fig. 

3.5 shows one example of matching result on point patterns. We assign the features ex-

tracted from the query image to points labeled with circles and those extracted from the 

reference image to points labeled with crosses. Fig. 3.5(A) shows the spectral graph 

matching results with local appearance feature only while Fig. 3.5(B) shows the results 

with both appearance and geometric features. We observe that the appearance features 

are useful in inter-cluster matching while the geometric features are useful in intra-cluster 

matching. In Section 3.4, we will conduct detailed evaluation on the matching perfor-

mance. 
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During our building recognition, we first detect the MSERs in both query and refer-

ence images and identify clusters of structural components, as discussed in Section 3.1. 

Then, for each cluster in the query image, we perform the above spectral graph matching 

procedure to find the matching (a cluster) in the reference image. We also extract HOG 

features describe the façade of the building, i.e. surrounding areas of these structural 

components. A region in the reference image is determined to the match if it has the best 

overall matching performance on all clusters and the surrounding area.  

 

3.4  Experimental Results 

Experiments were conducted on two datasets. The first one is the ZuBuD database 

which has 201 buildings with 5 images per building. All buildings are randomly selected 

in Zurich, Switzerland. A detailed description of this database is provided in [46]. The 

second dataset, called Ground-Aerial, simulates the ground-aerial battlefield surveillance 

scenario discussed in Section 1. The dataset was about 500-1000 feet above the ground 

and collected continuous aerial videos of 23 buildings (mainly office buildings) on the 

ground. The dataset also has images about these buildings taken by a ground-level cam-

era. Some example images from these two datasets are shown in Fig. 3.6. The top three 

pairs are from the Ground-Aerial and the bottom three pairs are from ZuBuD. 

Our performance evaluation consists of two parts. First, we evaluate the local match-

ing performance of the proposed method at the image patch level. Second, we evaluate its 

performance in building retrieval.  
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(1) Local Matching Performance Evaluation 

For each test image pair, we select those MSERs for major structural components of 

buildings, such as windows, doors, and exterior decorations. We then use the SIFT algo-

rithm and our method to find the match for each MSER. We visually examine the cor-

rectness of matching and calculate the recall statistics: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐𝑕𝑒𝑠

# 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒𝑠
 × 100%.          

                        (3.8) 

Table I summarizes the recall statistics of both methods on both datasets. We can see 

that, by using semantically rich pattern-level features, the proposed method outperforms 

SIFT in matching the major structural components of buildings. It should be noted that, 

although the patch-level recall is low, especially on the challenging Ground-Aerial data-

set, the overall building recognition performance will be much higher after aggregating 

the decision on a large number of image patches.  
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Table 3.1: Image patch matching performance (recall in %) 

Method Ground-

Aerial 

ZuBuD  

SIFT 21.0% 53.1% 

This Work 50.3% 66.8% 

 

 

 

 

Figure 3.7: building matching performance comparison. 

Left: results by SIFT-based matching; right: results by 

this work. 
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(2) Building matching performance 

In this experiment, we use a query image, i.e. one camera view of a building, to find 

the building from a database which has images of other buildings and other views of the 

same building. We compare our method with the Zhang and Košecká’s method [47] 

which is based on SIFT and voting and a probabilistic model. On the ZuBuD database, 

they reported an average of 90.4% correction recognition. During our experiments, we 

find that, for image with relatively small viewpoint changes, SIFT-based matching is very 

efficient and our algorithm has no clear advantage.  

As discussed in Section 3.1, the focus of our effort is to address the challenge in 

building recognition with large changes in viewpoints. We select those 25 building image 

pairs with the largest changes in scales and viewpoints from the ZuBuD and Ground-

Aerial datasets. Our algorithm achieves 81% correct recognition while the SIFT-based 

matching algorithm has 48% correct recognition. Fig. 3.7 shows 4 examples of building 

matching results with SIFT-based matching [47] and the proposed algorithm. It can be 

seen that the proposed algorithm is able to match building between images with large 

viewpoint changes. 

 

3.5  Discussion 

In this work, we have considered the problem of building recognition between images 

with large changes in scales and viewpoints. Based on multi-scale MSER detection, we 

detect repeated structural components of buildings and construct a sketch representation 

of building. Based on spectral graph analysis, we develop building recognition scheme. 
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Our experimental results demonstrated that the proposed method outperforms SIFT-based 

recognition schemes, especially for images with large viewpoint changes. In our future 

work, we shall extend this method to more generic building types by considering addi-

tional modalities of features, such as contour.  
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CHAPTER 4 

3-D Change Detection from Multi-Source Videos 

 

 

We study the problem of detecting changes from multi-source videos which are cap-

tured by different moving cameras with unknown parameters at different times. The ob-

jective of 3-D change detection is to identify keypoints, image patches or features that 

cannot find matches across camera views. As the key challenge, we need to make sure 

that these unmatched image patches only belong to new objects in the scene and nowhere 

else. We attack this problem by exploring a hierarchy of view-invariant image patch de-

scriptors. Using the five-point algorithm, SIFT and RANSAC, we track the relative cam-

era pose within each video and obtain an approximate cross-view registration and align-

ment of selected video frames. Based on multi-scale local binary pattern (LBP) descrip-

tion of super-pixels and middle-level image patch labeling, we construct a hierarchy of 

image patch descriptors and detect changes in the video scene using multi-scale informa-

tion fusion with Choquet integrals. We have established an image/video database for 3-D 

change detection and will make it available for public use. Our extensive experimental 

results demonstrate that the proposed method achieves a detection rate of 61% at a false 

alarm rate of 2% while other approaches based on conventional local photometric image 

descriptors fail to detect changes in the 3-D environment. 
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4.1 Introduction 

3-D change detection from multi-source videos has great potentials in battlefield in-

telligence, infrastructure security, robot navigation, etc. For example, a video cam-era can 

be deployed on a soldier, a convoy, or an un-manned ground vehicle (UGV) to automati-

cally detect changes in its surrounding environment when it passes through a combat 

zone which has been surveyed before. Changes might indicate adversary actions and po-

tential hazards. 3-D change detection, if successfully developed, can be also used in many 

homeland security scenarios to detect new modifications or damages to infrastructures, 

such as buildings, bridges, and driveways, as well as left objects from patrol vehicles in 

areas which cannot be covered by stationary surveillance cameras. This task might be 

hard or even impossible for human beings due to our limited memory and data processing 

capabilities.  

In 3-D change detection from multi-source videos, we need to compare two video se-

quences captured by different cameras with unknown parameters at different times. Be-

cause of the unrestricted motion of persons or vehicles which carries the camera, there 

are often large changes in scales and perspectives between these two camera views. This 

poses significant challenges in 3-D change detection from multi-source videos. In con-

ventional problems of wide baseline matching [62], multi-view stereo [55, 97], and object 

tracking [59], the objective is to find matches between camera views. However, in 3-D 

change detection, the problem becomes more challenging. First, we need to make sure 

image patches belonging to the existing scene accurately match across camera views. 

Second, we need to identify keypoints, image patches or features that cannot find 
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matches across camera views and make sure that they only belong to new objects and 

nowhere else. 

 

Figure 4.1: 3-D change detection; (a) and (b): two videos taken by different cameras 

at different times; (c) detection result. The red box represents changes that indicate 

new object(s). 

 

4.1.1  Related Work 

In the past decade, we have seen significant advances in the development of local 

photometric descriptors for image matching, such as SIFT [59], PCA-SIFT [63], HoG 

(histogram of oriented gradients) [60], shape context [64], etc. The central goal of local 

image description is to make them invariant under image transforms and camera motion, 

such as image rotations, camera zoom, changes in scale and perspectives, and image 

noise, while maintaining high repeatability and discriminative power [59, 60, 96]. There 

are two major issues in direct use of these local image descriptors for 3-D change detec-

tion. First, due to large changes in camera scales and perspectives, there are often a large 

number of unmatched keypoints, which are not necessarily new objects. In our experi-

ments, we observe that SIFT keypoints with the largest feature distance are not necessary 

on the new objects. For example, in Figure 4.2, we show the top 5%, 10%, and 25% of 
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keypoints in the input image. We can see that most keypoints with the largest distance are 

not on the new object, the yellow box. Second, keypoints may not be generated or se-

lected on the new objects. In this case, the new objects will be missed during change de-

tection. 

 

Figure 4.2: SIFT matching for change detection by assuming 

that keypoints with largest matching distance are from the new 

objects. Here, we show the top 5%, 10%, and 25% of key-

points with the largest distance. 

For stationary cameras, change detection is often formulated as background model-

ing, subtraction, and moving object detection problem [49, 94]. A thorough survey of 

such algorithms is given in [50]. Change detection has also been well-studied in the area 

of aerial surveillance for detecting moving vehicles, new constructions of buildings and 

roads [65]. When the aircraft is flying high and the camera viewing distance is large and 

the ground object structure is relatively small, this problem reduces to geospatial video 
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registration and pixel or image patch classification, distinguish significant changes such 

as new buildings from insignificant changes in vegetation, weather, and lighting condi-

tions [65, 70, 71]. When the 3-D structure of ground objects, such as buildings, becomes 

more significant, occlusion and motion parallax are two major issues in change detection 

[72, 93]. Pollard and Mundy developed a 3-D voxel-based method for change detection 

in an urban environment from aerial surveillance images, where probability distributions 

for surface occupancy and image appearance are stored in each voxel [48]. This method 

is able to efficiently handle occlusion and motion parallax. Image registration and change 

detection have also been studied for medical image analysis [57, 58]. 

The ideal situation in 3-D chance detection is to create a 3-D model of the scene from 

both videos and compare their models in the 3-D domain. Differences between models 

then indicate new objects. A number of promising algorithms have been developed in the 

literature for 3-D scene reconstruction using structure from motion [51, 53] or stereovi-

sion [54] methods. Saxena et al developed a learning-based method to infer 3-D struc-

tures from a single image using Markov Random Field (MRF) analysis [52, 92]. It has 

successfully created qualitatively correct 3-d models for 64.9% of 588 images down-

loaded from the internet. Many algorithms are able to create photo-realistic 3-d models 

which are both qualitatively accurate and visually pleasing. However, because of the in-

trinsic ambiguity between local image features and the 3-d location of the point, it re-

mains a very challenging task to construct a quantitatively accurate 3-D model from im-

ages [54, 55, 56]. If the 3-D model is not quantitatively accurate and the local alignment 

is precise, it will generate a large number of false positives during change detection. Fur-
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thermore, 3-D modeling and scene reconstruction often suffer from computational com-

plexity. 

 

4.2 Camera Pose Tracking and Frame Registration 

To detect changes, we first need to make sure that two video frames under compari-

son have sufficient overlap of camera views. To this end, we need to track the relative 

pose of the camera in each video to determine the subset of video frames from both vid-

eos that have sufficient overlap of camera views. This consists of two major operations, 

intra-view camera pose tracking and inter-view frame registration. For the intra-view 

camera pose tracking, we follow Nistér’s five-point algorithm [61]. More specifically, we 

find SIFT matching between adjacent frames within each video sequence. With the ran-

dom sample consensus scheme (RANSAC), we estimate the fundamental matrix and 

camera parameters up to a scaling factor [61]. In the mean time, we also perform cross-

view SIFT matching in a one-to-multiple manner. More specifically, let 𝐹𝐴(𝑛) and  

𝐹𝐵(𝑚) be the 𝑛-th and 𝑚-th frames of videos 𝐴 and 𝐵, respectively. We apply SIFT 

matching between these two frames and let 𝑑𝑆 𝐹𝐴 𝑛 ,  𝐹𝐵 𝑚   be the average distance of 

matched keypoints. Let 𝜌𝑆[𝐹𝐴 𝑛 , 𝐹𝐵 𝑚 ] be fraction of keypoints that are matched be-

tween these two frames. We define the following distance metric  

𝐷 𝐹𝐴 𝑛 ,  𝐹𝐵 𝑚  = 𝛽 ⋅ 𝑑𝑆 𝐹𝐴 𝑛 ,  𝐹𝐵 𝑚  +    𝜌𝑆[𝐹𝐴 𝑛 , 𝐹𝐵 𝑚 ]  

                (4.1) 

where 𝛽 is a normalization parameter. This distance metric is used to measure the content 

similarity between two video frames. It consists two major indicators: the fraction of 
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matched keypoints 𝜌𝑆[𝐹𝐴 𝑛 , 𝐹𝐵 𝑚 ] and the average matching distance 

𝑑𝑆 𝐹𝐴 𝑛 ,  𝐹𝐵 𝑚  . We observed that video frames from these two views may often lose 

their synchronization even after their initial synchronization. Therefore, we need to find 

its best match within a neighborhood. More specifically, for frame 𝐹𝐴(𝑛) in Video 𝐴, we 

find its best match by minimizing the distance metric in (4.1) as follows: 

𝑚∗ = arg min
𝑚∈[𝑛−𝛥,𝑛+𝛥]

𝐷[𝐹𝐴 𝑛 , 𝐹𝐵 𝑚 ].            

                            (4.2) 

Here, Δ is the size of the search window in units of frames. Once the best matching 

has been found, we can determine the homography between these two frames. In this 

work, we use the following 8-parameter perspective transform: 

 
𝑋 ⋅ 𝑊
𝑌 ⋅ 𝑊
𝑊

 =  
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 𝑕 1

  
𝑥
𝑦
1
 ,                     

                                   (4.3) 

where [𝑥, 𝑦] and [𝑋, 𝑌] are the keypoint coordinates in frames 𝐹𝐴(𝑛) and 𝐹𝐵(𝑚∗), respec-

tively. With bundle adjustment, we can find the optimal set of parameters 

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, 𝑕, } to best fit the matched SIFT keypoints. Figure 4.4 shows one exam-

ple of view registration results. It should be noted, even after this registration, the frame-

to-frame alignment error could still be large due to the 3-D structure of the video scene.  
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Figure 4.3: relative camera pose tracking and approximate view registration. 

 

Figure 4.4: camera pose tracking and inter-view frame registration result. 

Note that the above inter-view registration operation is computationally intensive. We 

can couple the intra-view camera pose tracking with this inter-view synchronization. 

Specifically, from the camera-pose tracking of both videos, we can determine the video 

segments where their camera views are similar. We then perform the inter-view synchro-

nization and registration only within these segments for change detection.  

 



 

78 
 

4.3 Hierarchical View-Invariant Image Patch Description 

We observe that existing local photometric descriptors for image matching such as 

SIFT [59, 98] and HoG (histogram of oriented gradients) [60] cannot be directly used for 

our purpose of 3-D change detection due to the following two reasons. First, these low-

level image features are still sensitive to large changes in camera scale and perspective, 

which will generate a large number of mismatches. Second, selected keypoints might not 

be on the new objects, which will result in missed detection. For accurate and reliable 3-

D change detection, we propose to use a multi-scale fusion-based approach for change 

detection based on super-pixels and view-invariant image patch descriptors. 

4.3.1  Multi-Scale Super-Pixel and LBP Features 

First, we find small homogeneous regions in the image, called super-pixels and use 

them as our basic unit of image matching and change detection [52, 66, and 67]. We use 

Vedaldi and Soatto’s quick shift and kernel method to construct super-pixels from the 

original video frame [67, 95]. We observe that high-frequency image components, such 

as textures and local gradients, are sensitive to changes in camera scales and perspectives. 

To control the amount of high-frequency details being incorporated in the local descrip-

tor, we use multi-scale super-pixels. Figure 4.5 shows one example of multi-scale super-

pixels produced with different kernel sizes. 

For the super-pixel image at each scale, we use the local binary pattern (LBP) de-

scriptions and their histograms. At different scales, the LBP operator is extended to dif-

ferent neighborhood sizes. The video frame under comparison is partitioned into blocks. 

For each block in frame 𝐹𝐴 𝑛 , we search all blocks with its neighborhood in frame 
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𝐹𝐵(𝑚∗) and find the best match block with the minimum LBP feature distance. This dis-

tance will be used later for computing the confidence map for change detection. 

 

Figure 4.5: Super-pixels generation with different kernel sizes using Ve-

daldi and Soatto’s quick shift and kernel method [67]. 

 

4.3.2  Middle-level Image Patch Description 

We observe that the above multi-scale LBP description of super-pixels is not suffi-

cient for accurate and reliable change detection. At large scales, it is only able to detect 

image patches with significant changes and rough location of the new objects. When the 

scale reduces, more high-frequency components are incorporated into the local patch de-

scription, making the matching and change detection more sensitive and less stable with 

scale and perspective changes. To address this issue, we introduce a middle-level descrip-

tion of image patches which is view-invariant and is able to further refine the change de-

tection results. 

Our basic idea is to label each local image patch based on its internal texture pattern 

and use the histogram of its neighboring patch labels as a middle-level patch descriptor. 
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More specifically, using a learning-based approach, we label each image patch into the 

following 6 categories: smooth, with a single extreme, with smooth transition, with a sin-

gle edge, with multiple edges, and with random textures, as illustrated in Figure 4.6. To 

this end, we first use the HoG features [60]. To more efficiently capture the internal edge 

pattern of the image patch, we propose to use the finite ridgelet transform which has 

found successful applications in image denoising, restoration, and compression [68].  

 

Figure 4.6: automatic labeling of image patches into 6 categories: 

smooth, with a single extreme, with smooth transition, with a single 

edge, with multiple edges, and with random textures. 

 

Given an integrable 2-D function 𝑓(𝒙), for example, an image, its continuous ridgelet 

transform (CRT) is defined as 

ℜ𝑓 𝑎, 𝑏, 𝜃 =  𝜙 𝑎, 𝑏, 𝜃  𝒙 𝑓 𝒙 𝑑𝒙,            

                           (4.4) 
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where the ridgetlets 𝜙 𝑎, 𝑏, 𝜃  𝒙  in 2-D are defined by a wavelet-type function: 

𝜙 𝑎, 𝑏, 𝜃  𝒙 = 𝑎− 
1
2  𝜙  

𝑥1𝑐𝑜𝑠𝜃 + 𝑥2𝑠𝑖𝑛𝜃 − 𝑏

𝑎
    

                              (4.5) 

In practice, an image is a discrete set of pixels. Its discrete ridgelet transform, or finite 

ridgelet transform (FRT), [099], can be implemented by summations of image pixels 

along a certain set of lines. These lines are defined in a finite geometry. Let 𝑍𝑝 =

{0, 1, ⋯ , 𝑝 − 1} be a finite field with modulo 𝑝 operations, where 𝑝 is a prime number 

[17].  The FRT of an image patch of size 𝑝 × 𝑝 is defined as 

𝑓𝑅 𝑘, 𝑙 =
1

 𝑝
 𝐹 𝑛 [𝑖, 𝑗]

 𝑖,𝑗  ∈𝐿𝑘𝑙   

.                  

                        (4.6) 

Here, 𝐿𝑘𝑙  denotes a line of pixels or a scanning pattern of the image patch: 

𝐿𝑘𝑙 =   𝑖, 𝑗 ∶ 𝑗 = 𝑘𝑖 + 𝑙   𝑚𝑜𝑑 𝑝 , 𝑖 ∈ 𝑍𝑝          

                        (4.7) 

and as a special case 

𝐿𝑝𝑙 =   𝑙, 𝑗 ∶ 𝑗 ∈ 𝑍𝑝 .                          

                           (4.8) 

Figure 4.7 shows one example of these scanning line patterns for an image patch of 

size 7 × 7. After FRT, we use the histogram of the 𝑓𝑅 𝑘, 𝑙  as our second set of features. 

We hand label a large set of training set of image patches and use SVM (support vector 

machine) to learn the classifier. Once each image patch is labeled into one of those 6 cat-

egories, we use the histogram of neighboring patch labels as a feature to find the best 
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match in its neighborhood and obtain its minimum distance. The minimum distance will 

be used later to compute the confidence for change detection.  

 

Figure 4.7: lines used finite ridgetlet transform of a 7×7 image patch. Each 

sub-figure is indexed by 𝑘, which represents the slope of the lines. Pixels of 

the same intensity with the same value of 𝑙 are averaged together to produce 

the FRT output 𝑓𝑅  𝑘, 𝑙 . 

 

4.4 Multi-Scale Fusion for Change Detection 

Our approach to change detection hinges on the ability to automatically fuse various 

pieces of partial evidence at multi-scales into a global assessment. At each scale, using 

the LBP description of super-pixels, the middle-level patch description, correlation-based 

matching with the neighborhood, we can obtain distance map for each patch in the video 

frame. Patches of large distance values will more likely be new objects. To form a joint 

decision of change detection, we propose to aggregate this type of uncertainty informa-

tion (described in the form of probability or membership function) at multiple scales us-
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ing Choquet integral [69]. The Choquet integral considers a non-additive measure and 

confidence outputs over a set 𝑋 of information sources, such as features, samples classifi-

cation, clustering analysis results, etc. A non-additive measure is a set function  𝑔: 2𝑋 →

[0, 1], such that  

(a) 𝑔 ∅ = 0; 𝑔 𝑋 = 1; 

(b) 𝑔 𝐵 ≥ 𝑔(𝐴) if 𝐵 ⊃ 𝐴; 

(c) lim 𝑔 𝐴𝑖 = 𝑔(∪ 𝐴𝑖) if ⋯ ⊃ 𝐴𝑖 ⊃ ⋯ ⊃ 𝐴1. 

Let 𝑕: 𝑋 → [0, 1] be a confidence function. The continuous version of Choquet 

integral is given by 

𝐶 =  𝑕 𝑥 ∘ 𝑔 =  𝑔 𝐴𝛼 𝑑𝛼
1

0𝑋

,                     

                                (4.9) 

where  

𝐴𝛼 =  𝑥  𝑕 𝑥 ≥ 𝛼}.                         

                                    (4.10) 

Its discrete version can be computed with the following summation [69]: 

𝐶 =  𝑕 𝑥𝑖 [𝑔(𝐴𝑖)

𝑛

𝑖=1

−  𝑔 𝐴𝑖+1 ]  =  [𝑕 𝑥𝑖 − 𝑕 𝑥𝑖+1 𝑔 𝐴𝑖                   

𝑛

𝑖=1

 

                           (4.11) 

In this work, the non-additive measure 𝑔(𝐴) represents the probability for an image 

patch 𝐴 to be a change, which is computed based on its matching distance in comparison 

with the decision threshold. In our experiments, we assume that the distances of image 

patches follow a zero-mean half-normal distribution with variance 𝜍2 and set  
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𝑔 𝐴 =
2𝜍

𝜋
𝑒−𝑑 𝐴 2𝜍2/𝜋 ,                       

                             (4.12) 

where 𝑑(𝐴) is the best matched feature distance for patch 𝐴. The Choquet integral will 

produce an fused confidence map indicating the probability for a patch to be a change. 

We select the region with the maximum likelihood, for example, top 5%, as the change 

detection output.  

 

4.5 Experimental Results 

In this section, we describe our database for performance evaluation and present the 

experimental results. 

 

Figure 4.8: sample video frames from our database. Here, we show 6 pairs of video frames 

with new objects being hand labeled with a bounding box. 
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4.5.1  Database for 3-D Change Detection 

We have established a database for 3-D change detection. We have collected im-

age/video samples from 12 indoor and outdoor environments. We then introduce 1-2 new 

objects in the scene, such as boxes or bags, walk over the same scene from different pers-

pective and record a set of samples. The set size ranges from 20 to 30. From this set, we 

can choose any pair and use them as test data for 3-D change detection. That means, we 

have more than  
2

20
 × 12= 4560 possible test cases. For each sample with new objects, 

we hand label the location of new objects with one or more bounding boxes, as shown in 

Figure 4.8. This dataset will be made available for public use. 
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4.5.2  3-D Change Detection with SIFT 

To our best knowledge, our work is among the first to detect changes in a 3-D envi-

ronment from videos captured by moving cameras with large view variations. We could 

not identify similar work in the literature for effective performance comparison. Instead, 

we adapt the SIFT matching for 3-D change detection and use it for performance compar-

ison. Specifically, we find SIFT points on two video frames F_A (n)   and F_B (m
*
) un-

der comparison. For each keypoint in F_A (n), we find its the minimum distance to those 

keypoints in F_B (m
*
). We choose the top μ% of keypoints with the largest distance as 

indicators of new objects.  We refer to these keypoints as new keypoints. We then com-

pare it with the hand labeled ground-truth and compute the fraction of new keypoints, 

denoted by β, that are within the bounding box of the new object. In Figure 4.9, we show 

the percentage of new keypoints that fall onto the new objects using the original images 

as the input. The x-axis is the percentage of keypoints being chosen as new keypoints that 

have the largest distance. It also shows the results if we use the warped images after view 

registration. We can see that very few, less than 7% of new keypoints, are falling onto the 

new objects. Furthermore, the view registration does not help the SIFT matching. Instead, 

it even degrades the performance since the local gradient information has been distorted 

by the registration process. Figure 4.10 shows one example with 5%, 10%, and 25% of 

keypoints. This shows that 3-D change detection using conventional local photometric 

descriptors do not work. 
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4.5.3  3-D Change Detection Using the Proposed Algorithm 

We implement the proposed 3-D change detection method and test its performance 

using our image database de-scribed in Section 4.1. Figure 4.11 shows four examples of 

3-D change detection results. Our criterion for successful detection is that, if the fraction 

of detected image patches is larger than 50%, we claim a successful detection. Figure 

4.12 shows the ROC curve obtained. It can be seen that the proposed method achieves a 

61% of object detection rate at a false alarm rate of 2%. This level of performance is very 

promising, given that 3-D change detection remains an open and challenging problem. In 

Singh et al’s recent work [73], they have achieved near 70% of detection rate at a false 

alarm rate of 2% on the PETS 2006 database. It should be noted that these are surveil-

lance videos captured by stationary cameras. To our best knowledge, our work is among 

the first attempting to detect changes in a 3-D environment from multi-source videos cap-

tured by different moving cameras. The problem is much more challenging. This work is 

the first step of our efforts on this challenging problem. In our future work, we shall fur-

ther refine the algorithm and improve the detection performance. 

 

4.6 Conclusion 

In this work, we studied the problem of change detection in a 3-D environment from 

multi-source videos captured by different cameras at different times. The key challenge 

here is to make sure image patches in the existing video scene are able to accurately find 

matches between camera views with relatively large changes in scales and perspectives. 

In the meantime, we need to make sure that t image patches belonging to the new object 



 

88 
 

cannot find good matches and those unmatched patches are only within the new object. 

To address these issues, we proposed a hierarchy of view-invariant image patch descrip-

tors based on multi-scale super-pixels representation, LBP features, and middle-level 

patch labeling. We developed a multi-scale fusion scheme for change detection based 

Choquet integrals. Our experimental results demonstrated that the proposed method 

achieves very promising performance.  

In our future work, we shall further improve the detection accuracy and reliability of 

the method. One interesting method we would like to explore is the learning-based ap-

proach, learning the characteristics of image patches from past video frames and the ref-

erence videos for change detection. We will also couple object tracking with 3-D change 

detection and extend the fusion process to multiple video frames. We expect that this will 

significantly improve the overall performance and reduce the computational complexity. 

 

Figure 4.9: the percentage of SIFT keypoints with the largest dis-

tance that fall onto the new objects with and without view registra-

tion. 
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Figure 4.10: SIFT matching for change detection by assuming 

that keypoints with largest matching distance are from the new 

objects. Here, we show the top 5%, 10%, and 25% of keypoints 

with the largest distance. 
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Figure 4.11: examples of change detection results. The first row 

shows video frames from the reference video; the second row shows 

frames from the input video; the third row shows the hand labeled 

ground-truth; and the fourth row shows the detection results. 
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Figure 4.12: ROC curve of the proposed 3-D change detection. 
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CHAPTER 5 

DISTRIBUTED CODING FOR SURVEILLANCE NET-

WORK 

 

 

Chapters 2 to 4 are devoted to an elaboration upon computer vision tools that tackle 

the tedious task of video summarization for intelligence. In this chapter, video processing 

will go beyond content retrieval to explore the possibility of building an efficient video 

coding paradigm wherein surveillance network. This is to consider a power-limited sur-

veillance network of cameras mounted on mobile units which differ from those tethered 

in a ground-wired system. In application as airborne surveillance, UAVs require low-

complexity acquisition-and-storage devices. Therefore the video coder and decoder (co-

dec) need to be power-efficient and it shall increase the capability of mobile surveillance 

network via prolonged coverage with proper video coding choice. 

 

5.1  Introduction 

Many advanced video archiving codec as the ITU-T H.26x or MPEG utilizing motion 

compensation and entropy coding. As shown in table 2.1 from chapter 2 the motion 

search would consume the most computational complexity in motion compensation. The 

mobile units, however, cannot acquire unlimited power supply while operating and must 

have efficient video encoding. Hence, it is a straight forward solution to adopt a low-
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complexity encoder which shifts the bulk of computation to the decoder. Without losing 

generality, this work narrows the problem to study a network of small UAVs with limited 

computational and communication channel resources yet to perform collaborative video 

surveillance. Based on Wyner and Ziv's theoretic results from 1970s and channel codes, 

we develop a distributed video compression scheme for a UAV network. The idea is for 

small UAVs to perform channel coding instead of source coding to limit the cost on vid-

eo acquisition. The computational cost is then shifted to the decoder end which could be 

Eagle Eye or ground command base.  In this way, all the intensive computation is done 

by the decoding and leave encoder with power-efficient task to encode videos. Neverthe-

less, its rate-distortion behavior has to be carefully studied for the control of video quali-

ty.  The simulated results in section 5.4 will demonstrate the promising performance of 

this work and its potentials. 

Starting with section 5.2, an overview is given to brief the integration of distributed 

video coding (DVC), channel code and the UAV surveillance platform. Section 5.3 ex-

pends the history of DVC and its potential on this work. A simulated video rate-distortion 

analysis is given in section 5.4 for a comparison of existing works and our edge. Section 

5.5 sums up the challenge and potentials of this work.  

 

5.2 Collaborative Video Compression Using Distribution Video Coding 

In a surveillance network, autonomous vehicle mounted with video camera has high 

mobility and safe for patrolling on the battlefield and hazardous area in industry. Air-

borne surveillance usually employs unmanned vehicles to patrol or monitor the sky. An 
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unmanned airborne vehicle (UAV) is piloted by onboard computer with global position 

system or navigated with ground base control. One or multiple video cameras combined 

can provide a wide coverage over a broad surveillance area. In practice videos are regis-

tered offline to perform content analysis such as change detection. Video sequences are 

stitched together to create a bigger picture of view so called panorama, as shown in Fig. 

2.23. Hence, archived airborne videos that panned over a wide area or circled around 

have mutual information that shares with each other and may overlap with the new in-

coming video footage. This makes the side information required by distributed video cod-

ing (DVC) available from image registration and enable the low-complexity encoder us-

ing DVC.  

In video compression, the basic thinking is to remove the redundant information 

which only needed to be encoded once. Encoder verifies the essential but repeated ele-

ments and only to code new or the changed portions. The post processing for surveillance 

video, such as background extraction or registration introduced in chapter 2, works as 

information fusion and sum up the essential but redundant portion of video footages. The 

key idea of this work is to utilize the coded footage as side information and remove the 

computational burden from the onboard encoder. Here the channel coding scheme is in-

troduced to build the efficient video encoder. With this idea, for a routine-fly UAV drone, 

it only needs to encode video with few parity-check or syndrome bits. Unseen object or 

changed areas are recorded by correcting the previously footage on its flight routine. This 

codec suits even better for fixed-camera surveillance video, since the lack of camera mo-

tion renders high correlation on video frames. Here we focus on tackling the aerial sur-
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veillance problem because mobile units require efficient codec to cope with the power 

consumption problem. 

Another question may be raised is, how does channel or distributed coding compared 

to the conventional source coding in terms of performance. In the scenario of airborne 

video surveillance, an on-board video camera must be power efficient and memory-

saving for storage. For the state-of-art video encoding, high compression rate or low data 

bit rate cost high computational power at the encoder end. On the other hand, if introduc-

ing intra-coding, simple video encoder scheme would save on computational power 

which prolongs the battery life but shortens the playback time in videos. These lead to 

one tradeoff problem between power saving for video encoder scheme and limited mem-

ory storage quota. The state of art video transcoder can encode a video sequence with less 

than a bit rate of 50 kbps to perform an over 40 dB PSNR visual quality. Draw back from 

the advanced video encoding, however, is that the computational cost is high in terms of 

power consumption and compression time. 

In this chapter a channel codec, Low-Density Parity-Check Accumulate (LDPCA) 

code [75], without feedback channel is introduced and shows its potential application on 

a power-efficient encoding scheme for video surveillance. Figure 5.1 gives an overview 

for the proposed system. At the encoder side onboard an UAV, distributed coder with 

transform-domain bit-plane channel coding is used to compress the video. The acquired 

sequence can be archived for post processing or transmitted via an error-prone channel in 

real-time. At the decoder end, the side information for the acquired sequence is registered 

from another pass of the video archiving which can be footage from high-altitude air pa-

trol or satellite remote sensing. The channel decoder, LDPCA, then joint the side infor-
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mation and parity bit to decode the video. In case few bit planes fail in decoding, the de-

coder can replace the bit plane with the coarser version from the side information. This 

gives us a better error resistant in rate-distortion behavior while operating with lower 

bandwidth or severe noise. 

 

Figure 5.1: The layout of distributed coding for mobile surveillance network. 

The next section will walk through the background of distributed video coding and 

details the design and implementation of proposed coding scheme. 

 

5.3 Distributed Video Coding 

A majority of lossless video coding belongs to source coding which intends to re-

move the redundant information from source signal sequence and achieve high compres-

sion rate. In the state of art codec such as H.264 standard, two coding approaches are 

adopted to explore the redundant information. First, intra-frame coding exploits the pixel 

correlation lie within single video frame and removes the redundant information. The in-

ter-frame coding, on the other hand, exploits the spatial-temporal pixel correlation and 
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removes redundancy across video frames inside a group of picture (GOP). Theoretically, 

intra-coding is with low complexity comparing to inter-coding yet introduce more redun-

dancy on compressed video sequence. These two combined also result in an asymmetry 

that encoding has typically 5 to 10 times more complexity than decoding task in current 

video coders. 

In 1976, Wyner-Ziv video coding [74] revealed a possibility to achieve inter-frame 

coding efficiency with an hybrid intra-frame encoder and inter-frame decoder video co-

dec. It was started by Slepian and Wolf's work in 1973, [100], that proving two depen-

dent sources, it can be jointly decoded and approaching the channel capacity according to 

Shannon's limit. The work has shortly been followed by Wyner and Ziv to provide a 

counterpart of distributed coding that does lossy compression.  

Distributed coding refers to encoding sources A and B (or more) independently but to 

perform joined decoding for these multiple sources. It also introduced the idea of side 

information which is an erroneous version of original encoded message. For instance, we 

refer a coarse version of A as the side information of B since these two sources are de-

pendent and can be jointly decoded. Based on side information provided for B, the de-

coder can simply pull parity bits of B to correct the broken message and recovers the 

original sequence. It is of our interest to study the case that the side information is not 

available at the encoder, and how to predict the minimum (parity check) bit rate to recov-

er the original message at the decoder end.  

Among the most popular implementations of Slepian-Wolf and Wyner-Ziv codec, a 

feedback channel is required for decoder to retrieve an increment of bits from encoders. 
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Upon requiring each increment bits, decoders can improve the bit-error rate and achieve 

the desired rate-distortion performance. 

The state of art distributed video transcoder has also made the most from convention-

al inta-frame motion compensation because of its high compression rate. Most of distri-

buted codec which required side information introduce a hybrid coding scheme. For in-

stance [77] and [78] encode half of its frames as key frames with conventional intra-

coded image. The side information for Wyner-zive frames are then obtained by interpola-

tion or motion compensation between key frames in a GOP. Nevertheless, the complexity 

and computational cost for intra coding remains uncut and needed feedback channel to 

adapt its bit rate. It is not feasible for airborne video capture to bear on the computational 

cost introduced by motion-compensated coding nor is the feedback channel available. 

Hence, this work focus on utilizing computer vision tools to register the side information 

at the decoder end. It not only shifts the computational complexity to the decoder but also 

proposes a solution to rate allocation in the circumstance that there is no real-time feed-

back channel for the UAV surveillance. The next section will expand on retrieving and 

preparing side information for distributed coding that achieves good visual quality and 

robust to noise. 

 

5.3.1  Side Information  

In conventional DVC, the side information for decoder came from independent chan-

nel coders. People become interested in WZ-DVC because of its error resistance behavior 

in the lower bit rate. Therefore it has been a great effort made toward an adapted version 
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of hybrid codec combining source coding and channel coding, [75]. The preceding works 

in the literature, however, only coded even frames (or sub-frame rate) with DVC. This is 

to acquire the side information from motion-compensated frames or through interpola-

tion. Indeed it is one way to adopt DVC coding but the rate-distortion performance only 

counted for a portion of original video sequence. Unlike broadcasting or video archiving 

application, fortunately, video surveillance records similar and repetitive content in it 

natural practice. One obvious example is in the warehouse security cam which has almost 

the same footage (background). That highly dependent video footage is a perfect fit for 

distributed coding. While the idea seems promising for us to adopt DVC for surveillance 

video, there is still one trick lying behind until we can practice it for airborne surveillance 

- the camera motion. To acquire the side information and enable the joint decoding for 

airborne video, this work proposes using geo-tagging information for decoders to retrieve 

dependent video footage. Combining onboard GPS and gyroscope, all surveillance video 

can be geo-tagged and the extra data rate is trivial comparing to video itself. Figure 5.2 

shows a set of simulated side information (the second row) prepared in the decoder end, it 

serves as a coarse version of original sequence (top row) to be recovered. One most ob-

vious corruption perceived on side information is the blocky effect due to down sam-

pling. 
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Figure 5.2: Simulated side information (the second row) prepared in the decoder end for 

the original video (the first row). 

In this way, encoder is able to encode each frame without tucking intra-coded frames 

required for side information. Theoretically intra encoding is low-complexity but with 

higher data rate. Distributed coding allow statistically dependent sources, in our case vid-

eo, to be intra-encoded with low data rate and inter-decoded without lose of reconstruc-

tion quality. This is all made possible with archived side information registered from arc-

hived video footages. In video surveillance, recorded sequence could be thousands of 

hours and covering every inch in the secured area. Video data are all statistically depen-

dent in terms of spatial overlapping of scenes. The main reason we can exploit the statis-

tical dependency from airborne videos is that the entire camera array is calibrated and 

geo-located. Onboard airborne cameras are all calibrated for offline video processing not 

only to stitch multiple camera views but also make it possible to store the geo-location of 

video frames. This camera calibration allows us to exploit the redundancy across video 

data to perform distributed video coding. 
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In the following, the side information is referred to the archived imagery and video 

footages that is statistically dependent with new video inputs. Videos from different mis-

sion may carry the same scenes despite image resolution or perspective change. With 

multiple unmanned airborne vehicles or other remote sensing imagery e.g. satellite im-

age, the decoder can use side information collectively from other source to reconstruct 

video sequence. Hence, the redundancy can be efficiently removed in the encoder end.  
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5.3.2  Distributed Video Coding 

The UAV onboard independent encoder is designed based on a LDPCA syndrome 

code. LDPCA code is a hard competition to Turbo code not only because the comparable 

performance but also its less complex encoder scheme. Similar to Turbo code, its decoder 

uses iterative belief propagation and log likelihood ratio, however, punctured turbo codec 

need to be selected carefully or it will easily lose the error resistance. An elaboration of 

the proposed compression paradigm will be given in the following sections.  

 

Figure 5.3: Encoding layers for distributed video coding. 

A   Transform-Domain Encoding 

For each frame, DCT is applied to generate sub-band channels across all macro 

blocks of image, as layer 2 in Figure 5.3. The same sub-channel response is then grouped 

together to form a sub-band stream. For instance, applying a 4-by-4 DCT will end up 
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with 16 sub-band streams for a single image. After interleaving of DCT channels, each 

sub-band is further broken in to bit planes and apply LDPCA code, layer 3 and 4 in Fig-

ure 5.3. Note that for a fixed DCT size it renders a fixed length of sub-channel sequence. 

For instance, applying a 4-by-4 DCT on a 20-by-20 image gives you a sub-channel 

stream of length 25. In selection of LDPCA code, it needs to be made sure that the gener-

ation matrix can cover the total length of sub-channel bit planes. It is obvious that the 

compression is low-complexity and no intensive motion field analysis required for this 

video transcoder. 

B   Feedback-Channel-Free Decoding 

At the decoder, side-information is acquired via registration with the tagged geo-

information in videos. It can be seen as original source image traveled through a noise-

prone channel. Distributed video decoding requires dependency model describing this 

noise channel for massage-passing iterative decoding. Since only side information is 

available, the parametric model is built upon exploiting its partial statistics. To model the 

correlation between original message and the corrupted version (side information frame), 

most people use Laplace virtual noise channel model which is an error probability density 

function of a sequence. With the estimated error probability density function, the LDPCA 

are able to predict the log likelihood ratio for each bit in a bit plane layer of each DCT 

sub-band.  

Usually the virtual noise channel model is a statistical dependency model based on 

the variance of each sub-band of side information. This work adopts a model proposed by 

Chien and Karam [76] while it requires conventional intra-coding to provide motion-
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compensated key frames. To be free from transmitting reference key frames, a geo-

registered low resolution images based on videos' META data is provided as side infor-

mation in this work. If we see the side information and the original sequence are two de-

pendent sources independently coded, which is true because they are identical image with 

vary resolutions (and bias from registration), the dependency model can be built from the 

side information and project the real dependency between the original message and side 

information at the decoder. This gives us the advantage to leave the feedback channel be-

hind and still efficiently decode the source with required parity/syndrome bits.  

In order to describe the difference between the original sequence and its coarse ver-

sion, i.e. side information, a quantized Laplace distribution of PDF is usually used. This 

work adopts the model used in BLAST-DVC [76],  

 

𝑃 𝐷 = 𝑑 =

 
  
 

  
  0.5 ∙ 𝜍 ∙ 𝑒𝑥𝑝(−𝜍|𝑥|)𝑑𝑥,

∞
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          (5.1), 

or in another form given in [101], 

𝑃 𝐷 = 𝑑 =
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, here 𝜍 is the variance of DCT sub-band from acquired side information at the decoder. 

In this work one modification is made on Chien and Karam's work to better predict the 

noise channel.  The modification is to flatten the DC's PDF and make it uniform distri-

buted because DC has huge variance according to experimental observation. 

The work by Westerlaken et al. [79] gives a close estimation of bit plane conditional 

probability to compute log likelihood ratio based on (5.2): 

𝑝𝑟 0 = 𝑃 𝑄 𝑏 = 0 𝑌 = 𝑦, 𝑄 𝑏+1 , … , 𝑄 𝐿−1  =  𝑃𝑁(𝑞(𝑥𝑝 , 2𝑏+1) ∙ 2𝑏+1 + 𝑖 − 𝑦)

2𝑏−1

𝑖=0

 

   (5.3) 

𝑝𝑟 1 = 𝑃 𝑄 𝑏 = 1 𝑌 = 𝑦, 𝑄 𝑏+1 , … , 𝑄 𝐿−1  =  𝑃𝑁(𝑞(𝑥𝑝 , 2𝑏+1) ∙ 2𝑏+1 + 𝑖 − 𝑦)

2𝑏+1−1

𝑖=2𝑏

 

(5.4) 

with 𝑄 𝑏 equals the b
th 

biplane value, Y the symbol value, Laplacian PDF PN(n) from 

(5.2), q(x,y) equals the log2(y)
th
 bit plane value of x and  𝑥𝑝 =  𝑄(𝑖) ∙ 2𝑖𝐿−1

𝑖=𝑏+1 . 

The LDPCA then utilizes  𝑝𝑟 1 / 𝑝𝑟 0  as intrinsic log likelihood ratio to decode video 

sequence through belief propagation. 
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5.3.3 Rate Control  

One major contribution of this work is a proposed DVC paradigm without feedback 

channel. A majority of hybrid video compression paradigm introduce feedback from de-

coder to request an increment on bit rate. Indeed, without feedback channel, LDPC may 

not be achieving the theoretical channel capacity limit. It is because of the nature of pari-

ty check bit which is introduced as redundancy in channel coding to correct error instead 

of carry information. Hence it is simple for decoder to report failure and require extra 

parity bits. This is not feasible for most video surveillance since decoding is not required 

in sync with encoding, especially for airborne surveillance.   

To achieve sub-optimum performance, this work builds a rate-control function based 

on channel error probability model and the entropy of estimated channel-coded bits. The 

proposed compression scheme is also able to evaluate the higher bit rates performance by 

means of the quantization matrix in [80] for the transform domain Wyner-Ziv coding.  

As shown in figure 5.3, to allocate proper parity-check/syndrome bits for each frame, 

each sub-band coefficients are decomposed into bit plane layers. Based on bit-plane layer 

decomposition, for each bit plane the conditional entropy is computed according to (5.3) 

and (5.4): 

𝑅𝑏
𝑞

= 𝜌 ∙  
𝐻𝑥𝑞𝑦𝑞

𝑏

𝐵𝑏 ∙ 𝐿𝑁
  

                                                      (5.5) 

where 𝑅𝑏
𝑞
 is the number of bits assigned for the q

th
 bit plane of sub-band b, 𝐵𝑏  is the 

number of bit plane assigned for the DCT band according to [80], 𝐿𝑁 is the full syndrome 
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length of the chosen LDPCA and  𝐻𝑥𝑞𝑦𝑞
𝑏  is the q

th
 plane-wise predicted conditional entro-

py of sub-band b. A rate-allowance factor 𝜌 is set to 1.1 reflecting the strength of camera 

motion field. In practice, the rate control also make exception for the MSB and bit planes 

to have the full code length. 

Note that there is a difference between this rate control function and source-entropy 

coding. We cannot allocate bits based on the randomness of bit stream directly because 

we have no knowledge of the side information on the decoder end. In other words, direct 

entropy coding cannot reflect the channel noise effect on side information and might not 

recover the original message due to lack of parity bits. On the other hand, (5.5) utilizes 

the prediction of channel error and works the bit allocation accordingly. Thus the signi-

ficance of each bit plane with consideration of its channel response can be measured by 

its conditional entropy. Similar to entropy coder idea we share with source coding, the bit 

budget is then allocated to each bit plane proportionally. 

Another contribution of this work is, instead of simulating the distributed video cod-

ing only with sub-frame rate disregarding the key frame, [77], video sequences are coded 

with DVC thoroughly. In our experimental results, videos are reconstructed with a rate-

distortion behavior close to the state of art hybrid video coding. 

 

5.4  Experimental Results  

The encoding efficiency of distributed compression hinges on the quality of retrieved 

side information image from video footages. Side information prepared in this work is 

generated by the virtual motion video simulator used in chapter 2 to render the ground 
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truth for camera motion-field analysis. To prepare experimental videos, first the original 

UAV video is generated with known flight trajectory and perspective angles. The coarse 

version of original video, i.e. side information, is registered from the same video cover-

age given a large-scale remote sensing image and known camera trajectory. For side in-

formation, however, video is down sampled with a vertical scaling factor of 2.5 and ap-

plied 2D smoothing afterward. Figure 5.4 give an example of the maximum absolute dif-

ference between one of experimental UAV video and its side information. 

  

 

Figure 5.4: Pixel-level difference between simulated side information and origi-

nal frames. 

 

Figure 5.5 and Figure 5.6 demonstrate the estimation of DCT-domain bit-plane error 

PDF based on eq. (5.2). The data are centered at 1023 in the buffer because in our im-
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plementation it means to deal with the pixel depth up to 512 for fixed-point computation.  

It shows that DC band caries larger variance than AC bands according to the model and it 

was proven true that more bit planes should be dedicated to DC across the image. 

In both figure 5.7 and figure 5.8, the top notches are made by distributed coding with 

LDPCA and feedback channels. Decoder with feedback channel make request of incre-

mental parity bits until it achieve the optimum PSNR constrained by quantization. The 

bottom rate-distortion behavior demonstrates the DVC without feedback channel. Rate 

control in this case is also lack of intelligence that allowing each bit plane to have uni-

form quota budget which perform the worst. The reconstruction quality of videos with 

proposed DVC in this work is about 1dB off the optimum DVC with feedback channel. It 

is encouraging that through exploiting the partial statistics of side information we can 

compete with DCV with feedback channel enabled.  

 

Figure 5.5: Practical DC-channel error PDF for fixed-point computation. 
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Figure 5.6: Practical AC-channel error PDF for fixed-point computation. 

 

Figure 5.7: LDPCA rate-distortion performance of proposed distributed video 

coding on airborne video A. 
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Figure 5.8: LDPCA rate-distortion performance of proposed distributed video 

coding on airborne video B. 

 

5.5  Conclusion  

In this work a distributed channel coding paradigm is proposed for mobile video sur-

veillance network. It manages to have a low-complexity encoder and shift the bulk of 

computation to the decoder end. The main idea is form image geo-registration that makes 

side information available for decoder to share mutual information with encoder. The ex-

perimental results also show its potential to compete with the state-of-art hybrid DCV 

transcoder only this work requires no feedback channel. Another contribution from this 

collaborative coding is to investigate the possibility of full DVC scheme for video sur-
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veillance networks. Hence the total frame rate is objectively referred to Wyner-ziv coder 

without any bias.  

Because of its better error-resistance in lower transmission rate to protect the visual 

quality, DVC can be used to cope with noise-prone channel in some extreme practice 

such as airborne surveillance. For challenges posted by video surveillance such as ther-

mal noise and motion blur, distributed code can also minimized the abruptness of video 

quality. One foreseen improvement is to close the performance gap between two-way 

channel decoder and the feed-forward channel only decoder. 
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CHAPTER 6 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 

 

 

In this dissertation, we have developed advanced video processing and computer vi-

sion methods for automated video processing and scene understanding in the following 

four areas: (1) Aerial video registration and moving object detection; (2) 3-D change de-

tection from moving cameras; (3) Cross-view building matching and retrieval from aerial 

surveillance videos; (4) Collaborative video compression for UAV surveillance network. 

Computational intelligence is a promising tool for information analysis. Simply bringing 

all source information directly to human analysts is a cognitive disaster. There is an ur-

gent need to develop advanced computational methods and tools for automated video 

processing and scene understanding. It is important to make decisions with refined, di-

gested and unbiased information because the less but systematic access to information 

always makes more sense. 

In our future work, to further extend our existing capabilities in aerial video surveil-

lance and intelligent video processing, we shall conduct further research in the following 

areas: 

1. Automated ground-aerial coordination for a swarm of ground unmanned vehicles 

and plane-style drones. The network shall allow autonomous agents to communi-

cate with each other and adapt with environmental obstacles to retrieve more com-

prehensive information.  
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2. Real-time situational awareness with embedded target classifier for tactical intelli-

gence. This application need to leverage with the advance of computational intelli-

gence to cope with power-limited mobile agent system. 
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