Bayesian Smoothing Spline
Analysis of Variance Models

A Dissertation Presented to
the Faculty of the Graduate School
University of Missouri

In Partial Fulfillment Of the
Requirements for the Degree
Doctor of Philosophy

by
Chin-I Cheng

Dr. Paul Speckman
Dissertation Supervisor

August 2009
The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled.

Bayesian Smoothing Spline Analysis of Variance Models

Presented by Chin-I Cheng

A candidate for the degree of Doctor of Philosophy

And hereby certify that in their opinion it is worthy of acceptance.

Dr. Paul Speckman

Dr. Sounak Chakraborty

Dr. Athanasios Micheas

Dr. Shawn Xiaoguang Ni

Dr. Dongchu Sun
To my father and the memory of my mother.
Acknowledgements

I would like to express my sincere appreciation to my advisor, Dr. Paul Speckman, for his patience, encouragement and guidance throughout my graduate study, which has been a rewarding journey to me. This dissertation could not have been written without his facilitation.

I am also grateful to other members of my advisory committee: Dr. Sounak Chakraborty, Dr. Athanasios Micheas, Dr. Shawn Xiaoguang Ni and Dr. Dongchu Sun for their valuable inputs and supports.

I would also like to express gratitude to the Statistics Department faculty members, staffs and my graduate fellows for their support, assistance and friendships that had made my graduate study in our department a great experience.

At the last, I would like to thank my family members, my husband, my son, my parents and my siblings, for their love and patience.
Table of Contents

Acknowledgements

Table of Contents

List of Tables

List of Figures

Abstract

1 Introduction

1.1 Introduction ... 1

2 Smoothing Spline Models

2.1 Smoothing Spline for One Variable 4

2.2 Reproducing Kernel Hilbert Space 5

2.3 Tensor Sum Decomposition of Inner Product Spaces 9

2.4 Reproducing Kernel Solution to Smoothing Spline 11

2.5 Bayesian interpretation for Reproducing Kernel Solution to Smoothing Spline .. 14

2.6 Bayesian approach for Reproducing Kernel Solution to Smoothing Spline .. 16

2.7 Smoothing Spline ANOVA Models 20

3 Bayesian Smoothing Spline ANOVA

3.1 Fully Bayesian approach to Smoothing Splines 30

3.1.1 Bayesian hierarchical model 31
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Bayes factors in simulated example</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Bayes factors in manufacturing example</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>The λs for each term in Model 7 giving the desirable effective degrees of freedom.</td>
<td>65</td>
</tr>
<tr>
<td>3.4</td>
<td>The Bayes factors for testing each term in model 7 adapted both the scaled χ^2_1 and the Pareto priors in all the terms except $l_2(x_2)$ and $l_1(x_1)$, which received Zellner-Siow priors.</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>The λs for each term in Model 7 giving the desirable effective degrees of freedom.</td>
<td>67</td>
</tr>
<tr>
<td>3.6</td>
<td>The Bayes factors for testing each term in model 7 adapted both scaled χ^2_1 and Pareto priors in all the terms except l_2(dog) and l_1($group$), which received Zellner-Siow priors.</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>The λs for each term in Model 6 giving the desirable effective degrees of freedom.</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>The Bayes factors for testing each term in model 6 adapted both scaled χ^2_1 and Pareto priors.</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>The λs for each term in Model 13 giving the desirable effective degrees of freedom.</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>The Bayes factors for testing each term in model 13 with scaled χ^2_1 priors.</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>The λs for each term in Model 6 giving the desirable effective degrees of freedom.</td>
<td>79</td>
</tr>
</tbody>
</table>
4.6 The Bayes factors for testing each term in model 6 with scaled χ^2_1 priors.
List of Figures

3.1 MCMC trace plots for samples of the log(\(\lambda\)) from the models with \(a_0=0.001\), \(a_0=0.0001\), \(a_0=0.00001\) and \(a_0=0.000001\) for the simulated example in Section 3.1.3. This is based on 50,000 iterations with 5,000 iterations for burnin.

3.2 The estimated \(f(x_2)\) of the models with \(a_0=0.001\) (dashed line), \(a_0=0.0001\) (dotted line), \(a_0=0.00001\) (dotdash line) and \(a_0=0.000001\) (longdash line). The fits for \(a_0=0.00001\) and \(a_0=0.000001\) are overlapped. The solid line represents the true function. This is for the simulated example in Section 3.1.3 and based on 50,000 iterations with 5,000 iterations for burnin.

3.3 MCMC trace plots for samples of the log(\(\lambda\)) from the models with \(a_0 = 1 \times 10^{-5}\), \(a_0 = 1 \times 10^{-6}\), \(a_0 = 1 \times 10^{-7}\) and \(a_0 = 1 \times 10^{-8}\) for the manufacturing example in Section 3.1.4. This is based on 50,000 iterations with 5,000 iterations for burnin.

3.4 The estimated \(f(x_2)\) of the models with \(a_0 = 1 \times 10^{-5}\) (dotted line), \(a_0 = 1 \times 10^{-6}\) (dashed line), \(a_0 = 1 \times 10^{-7}\) (dotdash line) and \(a_0 = 1 \times 10^{-8}\) (longdash line). The fits for \(a_0 = 1 \times 10^{-6}\), \(a_0 = 1 \times 10^{-7}\) and \(a_0 = 1 \times 10^{-8}\) are almost overlapped. This is for the manufacturing example in Section 3.1.4 and based on 50,000 iterations with 5,000 iterations for burnin.
3.5 The estimated f of the model 0, model 1, model 2, model 3 and model 4 (corresponds to panels a, b, c, d and e) for the simulated example in Section 3.2.5 when $a_0=0.001$. This is based on 30,000 iterations with 5,000 iterations for burnin. 86

3.6 The estimated f of the model 2, model 3 and model 4 (corresponds to panels a, b and c) for the manufacturing example in Section 3.2.6 when $a_0=0.001$. This is based on 30,000 iterations with 5,000 iterations for burnin. 87

3.7 MCMC trace plots for samples of the u_{10}, the 10th component of u, λ_1, λ_2 and δ_0 (corresponds to panels a, b, c and d) under model 2 in equation (3.70) for the Example 3.2 in Section 3.2.7. This is based on 30,000 iterations with 5,000 iterations for burnin. 88

3.8 MCMC trace plots for samples of the u_{10}, the 10th component of u, λ_1, λ_2 and δ_0 (corresponds to panels a, b, c and d) under model 2 in equation (3.71) for the Example 3.2 in Section 3.2.7. This is based on 30,000 iterations with 5,000 iterations for burnin. 89

3.9 MCMC trace plots for samples of the u_{10}, the 10th component of u, λ_1, λ_2 and δ_0 (corresponds to panels a, b, c and d) under model 2 for manufacturing example in Section 3.2.7. This is based on 30,000 iterations with 5,000 iterations for burnin. 90

3.10 MCMC trace plots for samples of the u_{10}, the 10th component of u, λ_1, λ_2, λ_3, λ_4, λ_5, λ_6, λ_7 and δ_0 (corresponds to panels a, b, c, d, e, f, g, h and i) under model 7 in equation (3.73) with scaled χ_1^2 priors for the Simulated Example 1 in Section 3.2.8. This is based on 30,000 iterations with 5,000 iterations for burnin. 91

3.11 The estimated f of the model 7, model 3, model 1 and model 0 for the Simulated Example 1 in Section 3.2.8. This is based on 30,000 iterations with 5,000 iterations for burnin. 92
3.12 MCMC trace plots for samples of the u_{10}, the 10th component of u, λ_1, λ_2, λ_3, λ_4, $\log(\lambda_5)$, $\log(\lambda_6)$, $\log(\lambda_7)$ and δ_0 (corresponds to panels a, b, c, d, e, f, g, h and i) under model 7 with scaled χ^2_1 priors for the Dogs Example in Section 3.2.9. This is based on 30,000 iterations with 5,000 iterations for burnin.

3.13 The estimated f of the model 7, model 3, model 1 and model 0 for the Dogs Example in Section 3.2.9. This is based on 30,000 iterations with 5,000 iterations for burnin.

4.1 MCMC trace plots for samples of the u_{10}, the 10th component of u, $\log(\lambda_1)$, $\log(\lambda_2)$, $\log(\lambda_3)$, $\log(\lambda_4)$ and $\log(\lambda_5)$ (corresponds to panels a, b, c, d, e and f) under model 6 in equation (4.8) with scaled χ^2_1 priors for the Simulated Example 2 in Section 4.1.1. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.

4.2 The estimate of each component in Model 6, $s_1(x_1)$, $s_2(x_2)$, $ls_{12}(x_1, x_2)$, $sl_{12}(x_1, x_2)$, $s_{12}(x_1, x_2)$ and the fit by model 6 in equation (4.8) with scaled χ^2_1 priors for the Simulated Example 2 in Section 4.1.1. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.

4.3 The estimates of $s_{12}(0.5, x_2)$, $ls_{12}(0.5, x_2)$, $s_2(x_2)$, $s_{12}(x_1, 0.5)$, $sl_{12}(x_1, 0.5)$ and $s_1(x_1)$ with 95% credible sets in Model 6 with scaled χ^2_1 priors for the Simulated Example 2 in Section 4.1.1 (corresponds to panels a, b, c, d, e and f). Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
4.4 MCMC trace plots for samples of the $\log(\lambda_1)$, $\log(\lambda_2)$, $\log(\lambda_3)$, $\log(\lambda_4)$, $\log(\lambda_5)$ and $\log(\lambda_6)$ (corresponds to panels a, b, c, d, e and f) under model 13 in equation (4.14) with scaled χ_1^2 priors for the Diabetic Retinopathy Example in Section 4.1.2. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.

4.5 MCMC trace plots for samples of the u_{10}, the 10th component of u, $\log(\lambda_1)$, $\log(\lambda_2)$, $\log(\lambda_3)$, $\log(\lambda_4)$, and $\log(\lambda_5)$ (corresponds to panels a, b, c, d, e and f) under model 6 in equation (4.22) with scaled χ_1^2 priors for the Diabetic Retinopathy Example in Section 4.1.2. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.

4.6 The estimates of $s_3(bmi)$ and $s_2(dur)$ with 95% credible sets in Model 3 and the fit by model 3 in equation (4.25) (corresponds to panels a, b and c) with scaled χ_1^2 priors for the Diabetic Retinopathy Example in Section 4.1.2. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
Bayesian Smoothing Spline Analysis of Variance Models

Chin-I Cheng

Dr. Paul Speckman
Dissertation Supervisor

Abstract

Based on the pioneering work by Wahba (1990) in smoothing splines for nonparametric regression, Gu (2002) decomposed the regression function based on a tensor sum decomposition of inner product spaces into orthogonal subspaces so the estimated functions from each subspaces can be viewed separately. This is based on an ANOVA type decomposition and is called the smoothing spline ANOVA (SSANOVA) model. Current research related to smoothing spline ANOVA focuses on the frequentist approach for statistical inference in estimation and prediction. In this dissertation, we apply a fully Bayesian approach in SSANOVA to extend statistical inference not only for estimation and prediction but to model testing and selection. The prior selected for the smoothing parameter in level effects is a variant of the Zellner-Siow prior. Two sets of priors, the Pareto and the scaled χ^2_1, are used for the smoothing parameters corresponding to smooth effects. We study this fully Bayesian SSANOVA model for Gaussian response variables and also extend it to generalized additive models with binary response variables. Bayesian
SSANOVA methods are illustrated by simulated examples and also by application to real datasets, potassium measurement on dogs and a Wisconsin epidemiological study of diabetic retinopathy. The flexibility of hypothesis testing provides a powerful tool in statistical inference when dealing with real datasets to come up with the most parsimonious models.
Chapter 1

Introduction

1.1 Introduction

Additive regression models with fixed effects and smooth effects are among the most popular models used in practice. Their usage in semiparametric regression (e.g. Ruppert et al., 2003) and in nonparametric regression (e.g. Stone, 1985; Hastie and Tibshirani, 1999) has broadened the applications of regression. For nonparametric regression in additive models, Buja et al. (1989) proposed backfitting to fit the model. For variable selection and estimation in nonparametric regression, there are several popular proposals such as CART (Breiman et al., 1984), TURBO (Friedman and Silverman, 1989), BRUTO (Hastie, 1989), MARS (Friedman, 1991), Luo and Wahba (1997), Wahba (1990) and Eubank (1988).

In the Bayesian approach, Eubank (1988) describes Bayesian polynomial regression and its close relationship to splines and time series analysis. Some of the proposed solutions are Smith and Kohn (1996), Kleinman and Ibrahim (1998), Speckman and Sun (2003), Smith et al. (1998) and others. Dey et al. (1998) provide another resource for Bayesian nonparametric and semipara-
metric regression methods. One of the directions for nonparametric regression is focused on full Bayesian analysis by simulation techniques such as Markov Chain Monte Carlo (MCMC) (Gelfand and Smith, 1990).

Based on the pioneering work by Wahba (1990) in smoothing splines for nonparametric regression, Gu (2002) decomposed the regression function based on a tensor sum decomposition of inner product spaces into orthogonal subspaces so the estimated function from each subspace can be viewed separately. This is based on an ANOVA-type decomposition and is called the smoothing spline ANOVA (SSANOVA) model. The decomposition of the estimated function into main effects and interaction effects provides not only flexibility to the fitted model but also makes it possible to select a parsimonious model from a large class of semiparametric additive models.

Estimating unknown functions has attracted many researchers’ attention. Luo (1998) applied backfitting in SSANOVA, and Karcher and Wang (2001) proposed a Markov Chain Monte Carlo (MCMC) method, which leads to asymptotically consistent estimates for the SSANOVA model. To popularize the application of SSANOVA, Wang (1997) has developed a user-friendly package as an R function called ASSIST. Several different methods have been proposed for variable selection and model building in SSANOVA models. In the Gaussian regression setting, Gu (1992) proposed using cosine diagnostics as model checking tools after model fitting. For regression in exponential families, Zhang et al. (2004) proposed likelihood basis pursuit. Zhang and Lin (2006) used the COSSO-type penalized likelihood method to develop a computational algorithm for variable selection in SSANOVA for exponential families.

Current research related to smoothing spline ANOVA focuses on the fre-
quentist approach. We apply a Bayesian approach in SSANOVA to extend the statistical inference to model selection. After providing suitable prior distributions to the parameters of the model, the posterior distribution provides sufficient information for statistical inference. Model selection can be done through Bayes factors.

In the next section, we start with an introduction of smoothing splines in Section 2.1. Calculating the smoothing spline requires some fundamental theory of reproducing kernel Hilbert spaces, which will be covered in Section 2.2. The reproducing kernel solution to smoothing splines and the Bayesian interpretation of that solution is in Section 2.4. Details for a Bayesian approach to SSANOVA will be in Section 2.7.
Chapter 2

Smoothing Spline Models

2.1 Smoothing Spline for One Variable

Consider a nonparametric regression model with one independent variable x_i and response variable y_i,

$$y_i = f(x_i) + \varepsilon_i, \; i = 1, \ldots, n,$$ \hspace{1cm} (2.1)

where $x_i \in [0, 1]$, the ε_i are independent $N(0, \delta_0)$ random variables and f is an unknown smooth function. The smoothing spline \hat{f} minimizes the penalized likelihood

$$\sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \lambda \int_{0}^{1} (f^{(m)}(x))^2 dx,$$ \hspace{1cm} (2.2)

where $f^{(m)} = d^m f/dx^m$, and λ is a smoothing parameter. The first term measures closeness to the data, while the second term penalizes curvature in the function. As $\lambda \rightarrow 0$, \hat{f} converges to an interpolating spline. As $\lambda \rightarrow \infty$, \hat{f} approaches the least squares linear regression curve of degree $m-1$. Those two extreme cases have the function varying from very rough to very smooth, and
the choice of $\lambda \in (0, \infty)$ indexes an interesting class of functions in between. The focus of our project is in the cubic smoothing spline, where \hat{f} minimizes the penalized likelihood,

$$\sum_{i=1}^{n}(y_i - f(x_i))^2 + \lambda \int_{0}^{1}(f''(x))^2dx.$$ \hspace{1cm} (2.3)

The unknown function f can be approximated by a linear combination of terms from an appropriate basis. For a regular function, the number of basis terms doesn’t need to be large, while still ensuring the estimated function is nearly without bias (Smith and Kohn, 1996). Choices of bases include reproducing kernel bases (Wahba, 1990), cubic polynomial splines (Friedman and Silverman, 1989; Friedman, 1991; Smith and Kohn, 1996), linear natural splines (Wahba, 1990), mixed radial bases, and others.

The exact solution for equation (2.3) is constructed based on reproducing kernel Hilbert spaces (Wahba, 1990), discussed in the next section.

2.2 Reproducing Kernel Hilbert Space

A space \mathcal{L} is called **linear** if $x, y \in \mathcal{L}$ implies that $\alpha x + \beta y \in \mathcal{L}$ for all $\alpha, \beta \in \mathbb{R}$. A bilinear form (x, y) in a linear space \mathcal{L} satisfies $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$, and $(x, \alpha y + \beta z) = \alpha(x, y) + \beta(x, z)$ for all $x, y, z \in \mathcal{L}$ and all $\alpha, \beta \in \mathbb{R}$. A linear space is often equipped with an inner product, a positive definite bilinear form with notation $\langle \cdot, \cdot \rangle$. A Hilbert space \mathcal{H} is a complete inner product linear space. Consider a Hilbert space \mathcal{H} of functions on domain \mathcal{X}. If the evaluation function $[x]f = f(x)$ is continuous in \mathcal{H} for all $x \in \mathcal{X}$, then \mathcal{H} is called a reproducing kernel Hilbert space. By the Riesz
representation theorem, there exists \(R_x \in \mathcal{H} \), the representer of the evaluation functional \([x](\cdot) \), such that \(\langle R_x, f \rangle = f(x) \) for all \(f \in \mathcal{H} \). The symmetric bivariate function \(R(x, y) = R_x(y) = \langle R_x, R_y \rangle \) has the reproducing property \(\langle R(x, \cdot), f(\cdot) \rangle = f(x) \) and is called the reproducing kernel of the space \(\mathcal{H} \).

The reproducing kernel is unique when exists. It can be shown that for every non-negative definite function \(R(x, y) \) on \(\mathcal{X} \), there corresponds a unique reproducing kernel Hilbert space \(\mathcal{H} \) that has \(R(x, y) \) as its reproducing kernel. So one can construct a reproducing kernel Hilbert space by specifying a non-negative definite function as its reproducing kernel (Gu, 2002).

If the reproducing kernel \(R \) of a space \(\mathcal{H} \) on domain \(\mathcal{X} \) can be decomposed into \(R = R_0 + R_1 \), where \(R_0 \) and \(R_1 \) are both non-negative definite, \(R_0(x, \cdot), R_1(x, \cdot) \in \mathcal{H} \) for all \(x \in \mathcal{X} \), and \(\langle R_0(x, \cdot), R_1(y, \cdot) \rangle = 0 \) for all \(x, y \in \mathcal{X} \), then the spaces \(\mathcal{H}_0 \) and \(\mathcal{H}_1 \) corresponding respectively to \(R_0 \) and \(R_1 \) form a tensor sum decomposition of \(\mathcal{H} \) (Gu, 2002) that is introduced in the next section. The following introduces examples of reproducing kernels for each of \(\mathcal{X} = [0, 1] \) and \(\mathcal{X} = \{1, \ldots, K\} \).

Example 2.1

For \(f \in C^{(m)}[0, 1] \), the standard Taylor expansion with integral remainder gives

\[
 f(x) = \sum_{\nu=0}^{m-1} \frac{x^\nu}{\nu!} f^{(m)}(0) + \int_0^1 \frac{(x-u)^{m-1}}{(m-1)!} f^{(m)}(u) \, du, \tag{2.4}
\]

where \((\cdot)_+ = \max\{0, \cdot\} \). Define the inner product

\[
 \langle f, g \rangle = \sum_{\nu=0}^{m-1} f^{(\nu)}(0) g^{(\nu)}(0) + \int_0^1 f^{(m)}(u) g^{(m)}(u) \, du. \tag{2.5}
\]

6
The representor of evaluation \([x]f = f(x)\) is

\[
R_x(y) = R_0(x, y) + R_1(x, y)
= \sum_{\nu=0}^{m-1} \frac{x^\nu y^\nu}{\nu! \cdot \nu!} + \int_0^1 \frac{(x-u)^{m-1}}{(m-1)!} \frac{(y-u)^{m-1}}{(m-1)!} \, du.
\]

Note that

\[
R_0(x, y) = \sum_{\nu=0}^{m-1} \frac{x^\nu y^\nu}{\nu! \cdot \nu!}, \tag{2.6}
\]

\[
R_1(x, y) = \int_0^1 \frac{(x-u)^{m-1}}{(m-1)!} \frac{(y-u)^{m-1}}{(m-1)!} \, du. \tag{2.7}
\]

Now take derivatives with respect to \(y\) for both \(R_0(x, y)\) and \(R_1(x, y)\), evaluated at \(y = 0\) for \(R_0(x, y)\), evaluated at \(y\) for \(R_1(x, y)\).

\[
\frac{\partial^{m-1}}{\partial y^{m-1}} R_0(x, y) \bigg|_{y=0} = \frac{x^{(m-1)}}{(m-1)!},
\]

\[
\frac{\partial}{\partial y} R_1(x, y) = \int_0^1 \frac{(x-u)^{m-1}}{(m-1)!} \frac{(y-u)^{m-2}}{(m-2)!} \, du,
\]

\[
\frac{\partial^{m-1}}{\partial y^{m-1}} R_1(x, y) = \int_0^1 \frac{(x-u)^{m-1}}{(m-1)!} (y-u)^0 \, du = \int_0^u \frac{(x-u)^{m-1}}{(m-1)!} \, du,
\]

\[
\frac{\partial^m}{\partial y^m} R_1(x, y) \bigg|_{y} = \frac{(x-y)^{m-1}}{(m-1)!}.
\]

Then

\[
R^{(\nu)}_0(x, 0) = \frac{x^{(\nu)}}{\nu!}, \quad \nu = 0, \ldots, m - 1,
\]

\[
R^{(m)}_1(x, y) = \frac{(x-y)^{m-1}}{(m-1)!}.
\]

Now set \(g = R_x\) and plugging the \(g\) into equation (2.5), we obtain equation (2.4). Thus \(\langle R_x, f \rangle = f(x)\), which proves that \(R_x\) is the reproducing kernel.
Moreover, the non-negative definite functions $R_0(x, y)$ and $R_1(x, y)$ are the reproducing kernels for spaces \mathcal{H}_0 and \mathcal{H}_1 respectively. The kernel R_0 corresponds to the space of polynomials $\mathcal{H}_0 = \{ f \in \mathcal{H} : f^{(m)} = 0 \}$ with inner product $\langle f, g \rangle_{\mathcal{H}_0} = \sum_{\nu=0}^{m-1} f^{(\nu)}(0)g^{(\nu)}(0)$, and R_1 corresponds to the orthogonal complement of \mathcal{H}_0,

$$\mathcal{H}_1 = \{ f \in \mathcal{H} : f^{(\nu)}(0) = 0, \nu = 0, 1, \ldots, m - 1, \int_0^1 (f^{(m)}(x))^2 \, dx < \infty \}$$

with inner product $\langle f, g \rangle_{\mathcal{H}_1} = \int_0^1 f^{(m)}g^{(m)} \, dx$.

Example 2.2

For a function on the discrete domain $\mathcal{X} = \{1, \ldots, K\}$, write $\mathcal{H} = \mathcal{R}^K$. For any $f \in \mathcal{H}$, let $f = (f(1), \ldots, f(K))'$. Set $e_x = (0, \ldots, 0, 1, 0, \ldots, 0)'$, the xth unit vector. With an inner product

$$\langle f, g \rangle = f'g,$$

we have

$$\langle f, e_x \rangle = f' e_x = f(x).$$

Thus the representor of evaluation $[x]f = f(x)$ is e_x. Hence, the reproducing kernel is given by $R(x, y) = \langle e_x, e_y \rangle = I_{\{x=y\}}$. Consider a decomposition of the reproducing kernel, $R(x, y) = 1/K + (I_{\{x=y\}} - 1/K) = R_0(x, y) + R_1(x, y)$. Since $(11'/K)(I - 11'/K) = 0_{K \times K}$, the inner product $\langle R_0(x, \cdot), R_1(y, \cdot) \rangle = 0$, for all x, y. This decomposition defines a tensor sum decomposition of the space $\mathcal{R}^K = \mathcal{H}_0 \oplus \mathcal{H}_1$, where $\mathcal{H}_0 = \{ f : f(1) = \cdots = f(K) \}$ and $\mathcal{H}_1 = \{ f :
∑_{x=1}^{K} f(x) = 0}. The inner product for \(\mathcal{H}_0 \) is \(\langle f, g \rangle_{\mathcal{H}_0} = f'(11'/K)g \) and for \(\mathcal{H}_1 \) is \(\langle f, g \rangle_{\mathcal{H}_1} = f'(I - 11'/K)g \).

2.3 Tensor Sum Decomposition of Inner Product Spaces

The distance between a point \(f \in \mathcal{H} \) and a closed linear subspace \(\mathcal{G} \subset \mathcal{H} \) is defined by \(D[f, \mathcal{G}] = \inf_{g \in \mathcal{G}} \| f - g \| \). Since \(\mathcal{G} \) is closed, there exists an \(f_{\mathcal{G}} \in \mathcal{G} \), called the projection of \(f \) in \(\mathcal{G} \), such that \(\| f - f_{\mathcal{G}} \| = D[f, \mathcal{G}] \). It can be shown that \((f - f_{\mathcal{G}}, g) = 0 \) for all \(g \in \mathcal{G} \). The linear subspace \(\mathcal{G}^c = \{ f : (f, g) = 0, \forall g \in \mathcal{G} \} \) is called the orthogonal complement of \(\mathcal{G} \). It can be verified that \(\| f - f_{\mathcal{G}} - f_{\mathcal{G}^c} \|^2 = 0 \), where \(f_{\mathcal{G}} \in \mathcal{G} \) and \(f_{\mathcal{G}^c} \in \mathcal{G}^c \) are the projections of \(f \) in \(\mathcal{G} \) and \(\mathcal{G}^c \), respectively. Therefore, there exists a unique decomposition \(f = f_{\mathcal{G}} + f_{\mathcal{G}^c} \) for every \(f \in \mathcal{H} \). It is clear that \((\mathcal{G}^c)^c = \mathcal{G} \). The decomposition \(f = f_{\mathcal{G}} + f_{\mathcal{G}^c} \) is called the tensor sum decomposition (Murray and Von Neumann, 1936) and is denoted by \(\mathcal{H} = \mathcal{G} \oplus \mathcal{G}^c \), \(\mathcal{G}^c = \mathcal{H} \ominus \mathcal{G} \), or \(\mathcal{G} = \mathcal{H} \ominus \mathcal{G}^c \). Multiple term tensor sum decompositions can be derived similarly.

A non-negative definite bilinear form \(J(f, g) \) in a linear space \(\mathcal{H} \) defines a semi-inner product in \(\mathcal{H} \) that induces a seminorm \(J(f) = J(f, f) \). Unless \(J(f, g) \) is positive definite, the null space \(\mathcal{N}_J = \{ f : J(f, f) = 0, f \in \mathcal{H} \} \) is a linear subspace of \(\mathcal{H} \) containing elements other than 0. Now suppose there is another non-negative definite bilinear form \(\tilde{J}(f, g) \) in \(\mathcal{H} \) satisfying the following conditions: (i) it is positive definite when restricted to \(\mathcal{N}_J \), so \(\tilde{J}(f) = \tilde{J}(f, f) \) defines a full norm in \(\mathcal{N}_J \) and (ii) for every \(f \in \mathcal{H} \), there exists a \(g \in \mathcal{N}_J \) such that \(\tilde{J}(f - g) = 0 \). With such an \(\tilde{J}(f, g) \), it can be verified that \(J(f, g) \) is positive definite in the linear subspace \(\mathcal{N}_{\tilde{J}} = \{ f : \tilde{J}(f, f) = 0, f \in \mathcal{H} \} \) and that \((J + \tilde{J})(f, g) \) is positive definite in \(\mathcal{H} \). Hence, a semi-inner product
can be made a full inner product either via restriction to a subspace or via augmentation by an extra term, a new inner product on its null sapce. So if \mathcal{H} is complete under the norm induced by $(J + \tilde{J})(f, g)$, then N_J and $N_{\tilde{J}}$ form a tensor sum decomposition of \mathcal{H}.

Example 2.3 refer to Gu (2002)

All square integrable functions on $[0, 1]$ form a Hilbert space

$$L_2[0, 1] = \{ f : \int_0^1 f^2 dx < \infty \}$$

with inner product $\langle f, g \rangle = \int_0^1 fg \, dx$. The space

$$\mathcal{G} = \{ f : f = gI_{[x \leq 0.5]}, g \in L_2[0, 1] \}$$

is a closed linear subspace with orthogonal complement

$$\mathcal{G}^c = \{ f : f = gI_{[x \geq 0.5]}, g \in L_2[0, 1] \}.$$

The bilinear form $J(f, g) = \int_0^{0.5} fg \, dx$ defines a semi-inner product in $L_2[0, 1]$, with null space

$$N_J = \mathcal{G}^c = \{ f : f = gI_{[x \geq 0.5]}, g \in L_2[0, 1] \}.$$

Define $\tilde{J}(f, g) = C \int_{0.5}^1 fg \, dx$, with $C > 0$ a constant; one has an inner product $\langle f, g \rangle = (J + \tilde{J})(f, g) = \int_0^{0.5} fg \, dx + C \int_{0.5}^1 fg \, dx$ on $L_2[0, 1]$. On $\mathcal{G} = L_2 \oplus N_J$, $J(f, g)$ is a full inner product.

Example 2.4
For a function on the discrete domain \(X \in \{1, \ldots, K\} \), consider the inner product
\[
\langle f, g \rangle = \sum_{x=1}^{K} f(x)g(x) = f'g.
\]

From Example 1.2, the space \(\mathcal{G} = \mathcal{H}_0 = \{f : f(1) = \cdots = f(K)\} \) is a closed linear subspace with orthogonal complement \(\mathcal{G}^c = \mathcal{H}_1 = \{f : \sum_{x=1}^{K} f(x) = 0\} \). The bilinear form \(J(f, g) = \langle f, g \rangle_{\mathcal{H}_1} = f'(I - 11'/K)g \) defines a semi-inner product with null space \(\mathcal{N}_J = \mathcal{G} = \mathcal{H}_0 = \{f : f(1) = \cdots = f(K)\} \). Define \(\tilde{J}(f, g) = cf'(11'/K)g \), with \(c > 0 \) a constant; one has an inner product,
\[
\langle f, g \rangle = (J + \tilde{J})(f, g) = f'(I + \frac{c-1}{K}11')g,
\]
which reduces to the Euclidean inner product when \(c = 1 \). On \(\mathcal{G}^c = \mathcal{H}_1 = \{f : \sum_{x=1}^{K} f(x) = 0\} \), \(J(f, g) \) is a full inner product.

The application of tensor sum decompositions in smoothing splineF ANOVA will be illustrated in later sections.

2.4 Reproducing Kernel Solution to Smoothing Spline

Suppose that
\[
\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1,
\]
where \(\mathcal{H}_0 \) is a finite dimensional space with basis functions \(\phi_1(t), \ldots, \phi_M(t) \), and \(\mathcal{H}_1 \) is a reproducing kernel Hilbert space with reproducing kernel \(R_1(s, t) \). To compute the minimizer \(\hat{f} \) for equation (2.2), we consider the following
penalized least squares equation,

$$\sum_{i=1}^{n} \{y_i - L_i f\}^2 + \lambda \|P_1 f\|^2; \quad (2.9)$$

where L_i is the evaluation functional at observed points: $L_i f = f(t_i) = \langle \xi_i, f \rangle$ with the representer ξ_i, P_1 is the orthogonal projection operator of f onto H_1 in H and λ is the smoothing parameter. The representer $\xi_i(t) = L_i R_1(t, \cdot)$ is exactly the reproducing kernel $R_1(t, t_i)$. It can be shown (Wahba, 1990) that the minimizer of equation (2.9) lies in the span of the null space \{1, $\phi_1(t), \ldots, \phi_M(t)$\} plus the evaluator functionals \{ξ_1, \ldots, ξ_n\}. Thus

$$\hat{f}(t) = \sum_{i=0}^{M} d_i \phi_i(t) + \sum_{j=1}^{n} c_j \xi_j(t). \quad (2.10)$$

Define the matrix

$$\Sigma = \{(\xi_i, \xi_j)\}_{n \times n} = \{R_1(t_i, t_j)\},$$

and let $c = (c_1, \ldots, c_n)'$. Note that

$$\|P_1 \hat{f}\|^2 = \|P_1(\sum_{i=0}^{M} d_i \phi_i(t) + \sum_{j=1}^{n} c_j \xi_j(t))\|^2 = \|\sum_{j=1}^{n} c_j \xi_j(t)\|^2 = \|\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j \langle \xi_i, \xi_j \rangle = c' \Sigma c,$$

which is a seminorm induced by the semi-inner product in H. If $d = (d_1, \ldots, d_M)'$ and

$$T = (\phi_i(t_j))_{n \times M}, \quad (2.11)$$
equation (2.9) can be written as

$$\| y - Td - \Sigma c \| + \lambda c' \Sigma c. \quad (2.12)$$

Then the estimated \(\hat{f} = (\hat{f}(t_1), \ldots, \hat{f}(t_n))' \) has the following form shown by (Kimeldorf and Wahba, 1971):

$$\hat{f} = Td + \Sigma c. \quad (2.13)$$

Equation (2.13) is over parameterized. Following Wahba (1990), one solution is obtained by solving

$$\begin{align*}
(\Sigma + \lambda I)c + Td &= y, \quad (2.14) \\
T'c &= 0. \quad (2.15)
\end{align*}$$

Again following Wahba (1990), consider the spectral decomposition of \(TT' \), i.e.,

$$TT' = F \Lambda F', \quad (2.16)$$

where \(F \) is an orthogonal matrix of eigenvectors and \(\Lambda \) is a diagonal matrix with eigenvalues as the elements. We write \(F \) as

$$F = (F_1, F_2), \quad (2.17)$$
where F_1 is the $n \times M$ matrix of vectors spanning the column space of T and F_2 has dimension $n \times (n - M)$. So $T = F_1R$, where $R = F'_1T$ is an $M \times M$ nonsingular matrix. Because F is orthonormal, $F'_1F_2 = 0$ and $F'F = I_{n \times n}$. Since $T'c = 0$,

$$c = F_2\gamma$$

(2.18)

for some γ. By equations (2.14) and (2.15), the solutions for γ and d are

$$\gamma = (F'_2MF_2)^{-1}F'_2y,$$

(2.19)

$$d = (F'_1T)^{-1}F'_1(y - Mc),$$

(2.20)

where $M = \Sigma + \lambda I$.

So far the smoothing parameter λ has been fixed. Good choice of λ is crucial to the performance of the spline estimates (Wahba, 1990). Several methods have been proposed including cross-validation (CV), generalized cross-validation (GCV), generalized maximum likelihood (GML) and unbiased risk (UBR) methods (Gu, 2002).

2.5 Bayesian interpretation for Reproducing Kernel Solution to Smoothing Spline

As shown first by Kimeldorf and Wahba (1971), the solution to the penalized likelihood equation (2.3) is equivalent to the Bayes estimate to a certain Bayes model with a limiting Gaussian prior.

Example 2.5
Consider the classical one-way ANOVA model with independent observations $y_i \sim N(\eta(x_i), \delta_0), i = 1, \ldots, n$, where $x_i \in \{1, \ldots, K\}$. Set $\eta = \alpha 1 + \eta_1$ with independent priors $\alpha \sim N(0, \tau^2)$ for the mean and $\eta_1 \sim N(0, \frac{\delta_0}{\lambda}(I - 11'/K))$. Note that $\eta_1'1 = 0$ almost surely and that $\eta = \sum_{x=1}^{K} \eta(x)/K = \alpha$.

The posterior mean of η is given by the minimizer of

$$
\frac{1}{\delta_0} \sum_{i=1}^{n} (y_i - \eta(x_i))^2 + \frac{1}{\tau^2} \eta'^2 + \frac{\lambda}{\delta_0} \sum_{x=1}^{K} (\eta(x) - \bar{\eta})^2.
$$

Letting $\tau \to \infty$ implies α has a flat prior.

Example 2.6

Consider $\eta(x) = \eta_0(x) + \eta_1(x)$ on $[0, 1]$, with $\eta_0(x)$ and $\eta_1(x)$ having independent Gaussian priors with mean 0 and covariance matrices,

$$
E[\eta_0(x)\eta_0(y)] = \tau^2 R_0(x, y) = \tau^2 \sum_{v=0}^{m-1} \frac{x^v}{v!} \frac{y^v}{v!},
$$

$$
E[\eta_1(x)\eta_1(y)] = bR_1(x, y) = b \int_0^1 \frac{(x-u)^{m-1}}{(m-1)!} \frac{(y-u)^{m-1}}{(m-1)!} du.
$$

Observing $y_i \sim N(\eta(x_i), \delta_0), i = 1, \ldots, n$, the joint distribution of y and $\eta(x)$ is normal with mean zero and covariance matrix

$$
\begin{pmatrix}
 b\Sigma + \tau^2 TT' + \delta_0 I & b\xi + \tau^2 T\phi \\
 b\xi' + \tau^2 \phi'T' & bR_1(x, x) + \tau^2 \phi'\phi
\end{pmatrix},
$$

where Σ is $n \times n$ with the (i, j)th entry $R_1(x_i, x_j)$, T is $n \times M$ with the (i, ν)th entry $x_i^{\nu-1}/(\nu - 1)!$, ξ is $n \times 1$ with the ith entry $R_1(x_i, x_i)$, and ϕ is $M \times 1$ with the νth entry $x^{\nu-1}/(\nu - 1)!$. Using a standard result from the multivariate
normal distribution, the posterior mean of $\eta(x)$ given y is

$$E[\eta(x) \mid y] = (b\xi' + \tau^2 \phi'T')(b\Sigma + \tau^2 TT' + \delta_0 I)^{-1}y$$

$$= \xi'(\Sigma + \rho TT' + \lambda I)^{-1}y + \phi'\rho T'(\Sigma + \rho TT' + \lambda I)^{-1}y,$$

where $\rho = \tau^2/b$ and $b = \delta_0/\lambda$. Letting $\rho \to \infty$, it can be shown that the posterior mean $E[\eta(x) \mid y]$ is of the form $\xi'c + \phi'd$, with the coefficients given by

$$c = (M^{-1} - M^{-1}T(T'M^{-1}T)^{-1}T'M^{-1})y,$$

$$d = (T'M^{-1}T)^{-1}T'M^{-1}y,$$

where $M = \Sigma + \lambda I$ (Wahba, 1990).

These two cases demonstrate that the limiting posterior mean for the Bayesian problem is the same as the smoothing spline solution (2.18), (2.19) and (2.20). The setting for those two cases is based on equation (2.12). The penalty term is $\lambda c'\Sigma c$, which implies the prior for c has a Gaussian distribution with mean zero and covariance matrix Σ^-/λ. The inverse covariance matrices (the precision matrices) are proportional to the reproducing kernel R_1.

2.6 Bayesian approach for Reproducing Kernel Solution to Smoothing Spline

Now an alternative for the prior distribution is proposed. Instead of working with a precision matrix derived from a reproducing kernel, after certain
transformations we have the covariance matrix for the prior itself derived from the reproducing kernel. The setting for the posterior distribution stays the same. But there are some advantages to this transformation. This transformation has better properties for Bayesian computation. And the reproducing kernel as the covariance matrix in the prior distribution provides flexibility in decomposing the covariance components in the smoothing spline ANOVA, which is the focus in a later section.

Now set $\eta = \Sigma c$, so

$$\eta' \Sigma^{-1} \eta = c' \Sigma \Sigma^{-1} \Sigma c = c' \Sigma c.$$ \hfill (2.23)

Maximizing (2.12) is equivalent to minimizing

$$-\frac{1}{2\delta_0} \| y - Td - \eta \|^2 - \frac{\lambda}{2\delta_0} \eta' \Sigma^{-1} \eta,$$ \hfill (2.24)

which implies the corresponding prior distribution for η is

$$\eta \mid \delta_0, \lambda \sim N_n\left(0, \frac{\delta_0}{\lambda} \Sigma\right).$$ \hfill (2.25)

Assign the prior distribution for d as

$$d \mid \tau \sim N_M(0, \tau I_M).$$ \hfill (2.26)

In order to improve the MCMC in Bayesian computation, we will be working in the coordinates obtained by transforming the data using F, the eigenvectors
from the spectral decomposition of TT'. Set $v = Td + \eta$ and $u = F'v$. Then

$$v = Td + \eta \mid \tau, \delta_0, \lambda \sim N_n \left(0, \tau TT' + \frac{\delta_0}{\lambda} \Sigma \right)$$

(2.27)

and

$$u = F'v \mid \tau, \delta_0, \lambda \sim N_n \left(0, F' \left[\tau TT' + \frac{\delta_0}{\lambda} \Sigma \right] F \right).$$

(2.28)

To work in the orthogonal coordinates, also transform y, so

$$y \mid v, \delta_0 \sim N_n(v, \delta_0 I_n),$$

(2.29)

$$F'y \mid u, \delta_0 \sim N_n(u, \delta_0 I_n).$$

(2.30)

The joint distribution of u and $F'y$ is

$$\begin{pmatrix} u \\ F'y \end{pmatrix} \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} F' \left[\tau TT' + \frac{\delta_0}{\lambda} \Sigma \right] F & F' \left[\tau TT' + \frac{\delta_0}{\lambda} \Sigma \right] F \\ F' \left[\tau TT' + \frac{\delta_0}{\lambda} \Sigma \right] F & \delta_0 I_{n \times n} + F' \left[\tau TT' + \frac{\delta_0}{\lambda} \Sigma \right] F \end{pmatrix}$$

Using a standard result on multivariate normal distribution (e.g. Johnson and Wichern, 1998), the conditional distribution for $u \mid \delta_0, \lambda, \tau$ is

$$u \mid y, \delta_0, \lambda, \tau \sim N(B_{\tau}^{-1} F'y, \delta_0 B_{\tau}^{-1}),$$

(2.31)

where $B_{\tau} = I_n + \left(F' \left(\frac{\tau}{\delta_0} TT' + \frac{1}{\lambda} \Sigma \right) F \right)^{-1}$.

18
The spectral decomposition showed $TT' = F\Lambda F'$ and $F'F = I_n$, so

$$F'(TT')F = F'(F\Lambda F')F = \Lambda = \begin{pmatrix} \Lambda_1 & 0_{M \times (n-M)} \\ 0_{(n-M) \times M} & 0_{(n-M) \times (n-M)} \end{pmatrix}, \tag{2.32}$$

where Λ_1 is an $M \times M$ diagonal matrix. Also

$$F'\Sigma F = \begin{pmatrix} F'_1 & F'_2 \end{pmatrix} \Sigma(F_1, F_2) = \begin{pmatrix} F'_1 \Sigma F_1 & F'_1 \Sigma F_2 \\ F'_2 \Sigma F_1 & F'_2 \Sigma F_2 \end{pmatrix}. \tag{2.33}$$

We have

$$\left(F' \left(\frac{\tau}{\delta_0} TT' \right) F + \frac{1}{\lambda} F'\Sigma F \right)^{-1} = \left(\frac{\tau}{\delta_0} \Lambda_1 + \frac{1}{\lambda} F'_1 \Sigma F_1 | \frac{1}{\lambda} F'_1 \Sigma F_2 \\ \frac{1}{\lambda} F'_2 \Sigma F_1 | \frac{1}{\lambda} F'_2 \Sigma F_2 \right)^{-1} \tag{2.34}$$

Applying the well-known result (e.g. Horn and Johnson, 1985) for the inverse of a block matrix and letting $\tau \to \infty$, which leads to a noninformative prior distribution on d,

$$\left(\frac{\tau}{\delta_0} \Lambda_1 + \frac{1}{\lambda} F'_1 \Sigma F_1 | \frac{1}{\lambda} F'_1 \Sigma F_2 \\ \frac{1}{\lambda} F'_2 \Sigma F_1 | \frac{1}{\lambda} F'_2 \Sigma F_2 \right)^{-1} \to \left(0_{M \times M} | 0_{M \times (n-M)} \\ 0_{(n-M) \times M} | \lambda(F'_2 \Sigma F_2)^{-1} \right) \tag{2.35}$$

From (2.31), the limiting conditional distribution for $u \mid \delta_0, \lambda$ is

$$u \mid y, \delta_0, \lambda \sim N(B^{-1}F'y, \delta_0B^{-1}), \tag{2.36}$$
where

\[
B = \begin{pmatrix}
I_M & 0 \\
0 & I_{(n-M)\times(n-M)} + \lambda(F_2'\Sigma F_2)^{-1}
\end{pmatrix}
\] \hfill (2.37)

Note that letting \(\tau \to \infty\) in the prior distribution of \(d\) is the same as putting a flat prior on \(d\). Now we have to transform \(u\) back to the original scale \(v\), so

\[
v \mid y, \delta_0, \lambda \sim N(FB^{-1}F'y, \delta_0 FB^{-1}F)\] \hfill (2.38)

2.7 Smoothing Spline ANOVA Models

Smoothing spline ANOVA is a function estimate based on an ANOVA type decomposition of the unknown mean function \(f\). Before we go in to detail, we start this section with a two-way ANOVA example.

Example 2.7

Consider \(\alpha \in \mathcal{X}_1 = \{1, \ldots, K_1\}\) and \(\beta \in \mathcal{X}_2 = \{1, \ldots, K_2\}\). The usual model is

\[
E(y_{jk}) = \mu + \alpha_j + \beta_k + \gamma_{jk}, \quad j = 1, \ldots, K_1, \quad k = 1, \ldots, K_2, \] \hfill (2.39)

with side conditions \(\sum_{j=1}^{K_1} \alpha_j = \sum_{k=1}^{K_2} \beta_k = \sum_{j=1}^{K_1} \gamma_{jk} = \sum_{k=1}^{K_2} \gamma_{jk} = 0\). Define the averaging operators as \(A_1f = \sum_{j=1}^{K_1} f(j, k)/J = \overline{f}_j\) and \(A_2f = \sum_{k=1}^{K_2} f(j, K)/K = \overline{f}_k\). The side conditions imply \(A_1(I - A_1) = A_2(I - A_2) = 0\). The effects of each component in the two-way ANOVA model are defined
in terms of the averaging operators applied to \(f \) to obtain \(\mu, \alpha, \beta \) and \(\gamma \) by

\[
A_1A_2f = A_1\overline{f}_k = \overline{f}_.,
\]

\[
(I - A_1)A_2f = (I - A_1)\overline{f}_j = \overline{f}_j - \overline{f}_.,
\]

\[
A_1(I - A_2)f = A_1f - A_1A_2f = \overline{f}_k - \overline{f}_.,
\]

\[
(I - A_1)(I - A_2)f = (I - A_1 - A_2 + A_1A_2)f = f - \overline{f}_j - \overline{f}_k - \overline{f}_.,
\]

where \(A_1A_2f \) represents the constant, \((I - A_1)A_2f \) represents the main effect of \(\alpha \), \(A_1(I - A_2)f \) represents the main effect of \(\beta \), and \((I - A_1)(I - A_2)f \) represents the interaction effect between \(\alpha \) and \(\beta \). The averaging operators, \(A_1 \) and \(A_2 \), decompose \(f \) into four parts, and each part is in a subspace which is orthogonal to the others.

This idea of ordinary ANOVA decomposition has been borrowed and applied to the decomposition of functions in a Hilbert \(\mathcal{H} \) space. Suppose one has reproducing kernel Hilbert spaces \(\mathcal{H}(\gamma) \) on domains \(\mathcal{X}_\gamma, \gamma = 1, \ldots, \Gamma \), respectively. Further, assume that each space \(\mathcal{H}(\gamma) \) has a one-way ANOVA decomposition built in via the tensor sum decompositions

\[
\mathcal{H}(\gamma) = \mathcal{H}_0(\gamma) \oplus \mathcal{H}_1(\gamma),
\]

where \(\mathcal{H}_0(\gamma) = \{ f : f \propto 1 \} \) has a reproducing kernel \(R_0(\gamma) \propto 1 \) and \(\mathcal{H}_1(\gamma) \) has a reproducing kernel \(R_1(\gamma) \) satisfying side conditions \(A_\gamma R_1(\gamma)(x(\gamma), \cdot) = 0 \), for all \(x(\gamma) \in \mathcal{X}_\gamma \), where the \(A_\gamma \) are the averaging operators defining the one-way ANOVA decompositions on \(\mathcal{X}_\gamma \). The tensor product space \(\mathcal{H} = \otimes_{\gamma=1}^{\Gamma} \mathcal{H}(\gamma) \) has a tensor sum decomposition

\[
\mathcal{H} = \otimes_{\gamma=1}^{\Gamma} (\mathcal{H}_0(\gamma) \oplus \mathcal{H}_1(\gamma)). \tag{2.40}
\]
If $\Gamma = 2$, then

$$\mathcal{H} = \otimes_{\gamma = 1}^{2} (\mathcal{H}_{0(\gamma)} \oplus \mathcal{H}_{1(\gamma)})$$

$$= (\mathcal{H}_{0(x_1)} \otimes \mathcal{H}_{0(x_2)}) \oplus (\mathcal{H}_{1(x_1)} \otimes \mathcal{H}_{0(x_2)})$$

$$\oplus (\mathcal{H}_{0(x_1)} \otimes \mathcal{H}_{1(x_2)}) \oplus (\mathcal{H}_{1(x_1)} \otimes \mathcal{H}_{1(x_2)}), \tag{2.41}$$

where $\mathcal{H}_{0(x_1)} \otimes \mathcal{H}_{0(x_2)}$ is the space of constants, $\mathcal{H}_{1(x_1)} \otimes \mathcal{H}_{0(x_2)}$ is space of main effects in x_1, $\mathcal{H}_{0(x_1)} \otimes \mathcal{H}_{1(x_2)}$ is space of main effects in x_2, and $\mathcal{H}_{1(x_1)} \otimes \mathcal{H}_{1(x_2)}$ is the space of interaction effects between x_1 and x_2.

With reproducing kernel Hilbert space \mathcal{H} with two discrete variables in $x_1 \in \mathcal{X}_1 = \{1, \ldots, K_1\}$ and $x_2 \in \mathcal{X}_2 = \{1, \ldots, K_2\}$, Example 2.7 can be reinterpreted. Set $\mathcal{H} = \{\mu : \mu \in \mathbb{R}^{K_1 \times K_2}\}$, where $\mathbf{u} = (u_{11}, \ldots, u_{1K_2}, \ldots, u_{K_11}, \ldots, u_{K_1K_2})'$. The representer ξ_{ij} in \mathcal{H} is $\mathbf{e}_{ij} = (0, \ldots, 0, 1, 0, \ldots, 0)'$, the ijth unit vector, such that

$$\langle \xi_{ij}, \mu \rangle = \langle \mathbf{e}_{ij}, \mu \rangle = \mu_{ij}. \tag{2.42}$$

This defines the reproducing kernel

$$R((i, j), (k, l)) = \langle \mathbf{e}_{ij}, \mathbf{e}_{kl} \rangle = I_{\{i, j\} = \{k, l\}}. \tag{2.43}$$

The null space is

$$\mathcal{H}_0 = \{\mu : \mu_{ij} = c, \forall i, j, i.e. \mu = c \mathbf{1}_{K_1K_2}\}. \tag{2.44}$$
Since
\[\mu = \langle \frac{1}{K_1K_2} 1_{K_1K_2}, \mu \rangle = \langle \xi_{ij}, u \rangle, \] (2.45)
the reproducing kernel is
\[R_0((i, j), (k, l)) = \langle \xi_{ij}, \xi_{ij} \rangle = \langle \frac{1}{K_1K_2} 1_{K_1K_2}, \frac{1}{K_1K_2} 1_{K_1K_2} \rangle = \frac{1}{K_1K_2} 1_{K_1K_2} \] (2.46)
where \(1_k = (1, \ldots, 1)'\) is with \(k\) terms of 1 in a vector.

Consider the main effect at level \(x_1 \in X_1\) with reproducing kernel Hilbert space is \(\mathcal{H}_{1(x_1)}\). The main effects for \(x_1\) are defined to be
\[\mu_i - \mu_\cdot = e_{ij}' \mu - \frac{1}{K_1K_2} 1_{K_1K_2}' \mu \]
\[= \langle e_{ij} - \frac{1}{K_1K_2} 1_{K_1K_2}, \mu \rangle = \langle \xi_{ij}, \mu \rangle, \] (2.47)
where \(e_{ij} = (0, \ldots, 0, 1/K_2, \ldots, 1/K_2, 0, \ldots, 0)'\), the \(i\)th block with elements \(1/K_2\). The representer is \(\xi_{ij} = e_{ij} - \frac{1}{K_1K_2} 1_{K_1K_2}\), which is
\[\xi_{ij}(k, l) = \begin{cases} \frac{1}{K_2} - \frac{1}{K_1K_2} & \text{if } i = k \\ -\frac{1}{K_1K_2} & \text{if } i \neq k \end{cases}. \]

The reproducing kernel is defined as
\[R_{1(x_1)}((i, j), (k, l)) = \langle \xi_{ij}, \xi_{kl} \rangle \]
\[= \begin{cases} \frac{1}{K_2} - \frac{1}{K_1K_2} & \text{if } i = k \\ -\frac{1}{K_1K_2} & \text{if } i \neq k \end{cases}. \]

23
Thus the tensor product space for $\mathcal{H}(x_1) = \{ \mu \in \mathbb{R}^{K_1 \times K_2} : \mu_{ij} = \overline{\mu}_i, \forall i, j \}$ can be expressed as

$$
\mathcal{H}(x_1) = \mathcal{H}_0(x_1) \oplus \mathcal{H}_1(x_1).
$$ \hspace{1cm} (2.49)

The reproducing kernel under subspace $\mathcal{H}_0(x_1)$ is R_0 in equation (2.46), and the reproducing kernel for subspace $\mathcal{H}_1(x_1)$ is $R_1(x_1)$ in equation (2.48).

With the same approach applied to x_2, the tensor product space for $\mathcal{H}(x_2) = \{ \mu \in \mathbb{R}^{K_1 \times K_2} : \mu_{ij} = \overline{\mu}_j, \forall i, j \}$ can be expressed as

$$
\mathcal{H}(x_2) = \mathcal{H}_0(x_2) \oplus \mathcal{H}_1(x_2).
$$ \hspace{1cm} (2.50)

The reproducing kernels under subspace $\mathcal{H}_0(x_2)$ is R_0 in equation (2.46) and $\mathcal{H}_1(x_2)$ is

$$
R_1(x_2)((i, j), (k, l)) = \frac{1}{K_1} \left(I_{j=l} - \frac{1}{K_2} \right).
$$ \hspace{1cm} (2.51)

Thus the tensor product space can be expressed as

$$
\mathcal{H} = (\mathcal{H}_0(x_1) \oplus \mathcal{H}_1(x_1)) \otimes (\mathcal{H}_0(x_2) \oplus \mathcal{H}_1(x_2))
\hspace{1cm} = (\mathcal{H}_0(x_1) \otimes \mathcal{H}_0(x_2)) \oplus (\mathcal{H}_1(x_1) \otimes \mathcal{H}_0(x_2)) \oplus (\mathcal{H}_0(x_1) \otimes \mathcal{H}_1(x_2)) \oplus (\mathcal{H}_1(x_1) \otimes \mathcal{H}_1(x_2))
\hspace{1cm} = \mathcal{H}_0 \oplus \mathcal{H}_{(x_1)} \oplus \mathcal{H}_{(x_2)} \oplus \mathcal{H}_{(x_1,x_2)},
$$ \hspace{1cm} (2.52)

where \mathcal{H}_0 is the space of constants, $\mathcal{H}_{(x_1)}$ is the space of main effects for
x_1, $\mathcal{H}_{(x_2)}$ is the space of main effects for x_2 and $\mathcal{H}_{(x_1,x_2)}$ is the space of the interaction effects. The corresponding reproducing kernels for each subspace are $R_0((i,j),(k,l))$ in equation (2.46), $R_{1(x_1)}((i,j),(k,l))$ in equation (2.48), $R_{1(x_2)}((i,j),(k,l))$ in equation (2.51) and

$$R_{1(x_1,x_2)}((i,j),(k,l)) = R((i,j),(k,l)) - R_0((i,j),(k,l)) - R_{1(x_1)}((i,j),(k,l)) - R_{1(x_2)}((i,j),(k,l)).$$ \hspace{1cm} (2.53)

Example 2.8

Now consider two variables, $x_1 \in \mathcal{X}_1 = \{1, \ldots, K_1\}$ and $x_2 \in \mathcal{X}_2 = [0,1]$. Consider reproducing kernel Hilbert spaces $\mathcal{H}_{(x_1)} = \mathcal{H}_{0(x_1)} \oplus \mathcal{H}_{1(x_1)}$ on domain \mathcal{X}_1 and $\mathcal{H}_{(x_2)} = \mathcal{H}_{0(x_2)} \oplus \mathcal{H}_{1(x_2)}$ on domain \mathcal{X}_2 with the linear spline. Analogous to Example 2.7, the reproducing kernels for the discrete variable x_1 under subspaces $\mathcal{H}_{0(x_1)} = \{\mu 1_{K_1} : \mu \in \mathbb{R}\}$ and $\mathcal{H}_{1(x_1)} = \{\mu \in \mathbb{R}^{K_1}, s.t. \langle \mu, 1_{K_1}\rangle = 0, i.e. \sum_{i=1}^{K_1} \mu_i = 0\}$ are

$$R_{0(x_1)}(i,j) = \frac{1}{K_1},$$

$$R_{1(x_1)}(i,j) = I\{i=j\} - \frac{1}{K_1}. \hspace{1cm} (2.54)$$

The reproducing kernel Hilbert spaces for x_2 are

$$\mathcal{H}_{0(x_2)} = \{f : f' = 0\},$$

$$\mathcal{H}_{1(x_2)} = \{f : f(0) = 0, \int_0^1 (f')^2 dx < \infty\}. \hspace{1cm} (2.55)$$

Refer to equation (2.6) and (2.7). When $m = 1$, the reproducing kernels for
The tensor product space is the same as Example 2.7,

\[\mathcal{H} = (\mathcal{H}_0(x_1) \otimes \mathcal{H}_0(x_2)) \oplus (\mathcal{H}_1(x_1) \otimes \mathcal{H}_0(x_2)) \oplus (\mathcal{H}_0(x_1) \otimes \mathcal{H}_1(x_2)) \oplus (\mathcal{H}_1(x_1) \otimes \mathcal{H}_1(x_2)) \]

\[= \mathcal{H}_0 \oplus \mathcal{H}(x_1) \oplus \mathcal{H}(x_2) \oplus \mathcal{H}(x_1,x_2). \]

The reproducing kernels for each of the subspaces are

\[\mathcal{H}_0 : \quad R_{0(x_2)}(x,y) = 1, \]
\[\mathcal{H}(x_1) : \quad R_{1(x_1)}(x,y) = \int_0^1 (x-u)(y-u)\,du = x \wedge y. \quad (2.56) \]
\[\mathcal{H}(x_2) : \quad R_{0(x_1)}(x,y) = (1 - \frac{1}{K_1})(x \wedge y), \]
\[\mathcal{H}(x_1,x_2) : \quad R_{1(x_1)}(x,y) = (I_{i=j} - \frac{1}{K_1})(x \wedge y). \]

Example 2.9

Another case to consider is with the same two spaces in \(x_1 \in \mathcal{X}_1 = \{1, \ldots, K_1\} \) and \(x_2 \in \mathcal{X}_2 = [0,1] \) but with cubic spline smoothing on \(x_2 \).

The reproducing kernel Hilbert space for \(x_1 \in \mathcal{X}_1 \) stays the same with \(\mathcal{H}(x_1) = \mathcal{H}_0(x_1) \oplus \mathcal{H}_1(x_1) \). Now the reproducing kernel Hilbert space for \(x_2 \in \mathcal{X}_2 \) with cubic spline is \(\mathcal{H}(x_2) = \mathcal{H}_{00}(x_2) \oplus \mathcal{H}_{01}(x_2) \oplus \mathcal{H}_{11}(x_2) \). With \(m = 2 \), equation (2.6)
showed

\[R_{0}(x_2)(x, y) = R_{00}(x_2)(x, y) + R_{01}(x_2)(x, y) = 1 + xy, \]

\[R_{11}(x_2)(x, y) = \int_{0}^{1} (x - u)_+(y - u)_+ \, du = (x \land y)^2 (3(x \lor y) - (x \land y))/6. \]

The reproducing kernel \(R_{0}(x_2)(x, y) \) is decomposed into \(R_{00}(x_2)(x, y) \) plus \(R_{01}(x_2)(x, y) \) for the corresponding reproducing kernel Hilbert spaces \(\mathcal{H}_{00}(x_2) \) and \(\mathcal{H}_{01}(x_2) \).

The space \(\mathcal{H}_{00}(x_2) = \{ f : f(x_2) = c \} \) is the space of constants, \(\mathcal{H}_{01}(x_2) = \{ f : f(x_2) = bx_2 \} \) is the space of linear effects, and \(\mathcal{H}_{11}(x_2) = \{ f : f(0) = f'(0) = 0, \int_{0}^{1} (f'')^2 \, dx < \infty \} \) is the space of smooth effects.

Thus the corresponding reproducing kernels under each subspace are

\[R_{0}(x_1)(i, j) = \frac{1}{K_1}, \]

\[R_{1}(x_1)(i, j) = I_{i=j} - \frac{1}{K_1}, \]

\[R_{00}(x_2)(x, y) = 1, \]

\[R_{01}(x_2)(x, y) = xy, \]

\[R_{11}(x_2)(x, y) = (x \land y)^2 (3(x \lor y) - (x \land y))/6. \quad (2.57) \]

We construct a tensor product space with six tensor sum terms,

\[\mathcal{H} = (\mathcal{H}_{0}(x_1) \oplus \mathcal{H}_{1}(x_1)) \otimes (\mathcal{H}_{00}(x_2) \oplus \mathcal{H}_{01}(x_2) \oplus \mathcal{H}_{11}(x_2)) \]

\[= (\mathcal{H}_{0}(x_1) \otimes \mathcal{H}_{00}(x_2)) \oplus (\mathcal{H}_{0}(x_1) \otimes \mathcal{H}_{01}(x_2)) \oplus (\mathcal{H}_{0}(x_1) \otimes \mathcal{H}_{11}(x_2)) \]

\[\oplus (\mathcal{H}_{1}(x_1) \otimes \mathcal{H}_{00}(x_2)) \oplus (\mathcal{H}_{1}(x_1) \otimes \mathcal{H}_{01}(x_2)) \oplus (\mathcal{H}_{1}(x_1) \otimes \mathcal{H}_{11}(x_2)) \quad (2.58) \]

where \(\mathcal{H}_{0}(x_1) \otimes \mathcal{H}_{00}(x_2) \) is the space of constants, \(\mathcal{H}_{0}(x_1) \otimes \mathcal{H}_{01}(x_2) \) is the one
dimensional space of a linear effect in \(x_2\), \(H_{0(x_1) \otimes H_{11(x_2)}}\) is the space of smooth effects in \(x_2\), \(H_{1(x_1) \otimes H_{00(x_2)}}\) is the space of level effects in \(x_1\), \(H_{1(x_1) \otimes H_{01(x_2)}}\) is the space of interaction effects between level effects in \(x_1\) and linear effects in \(x_2\), and \(H_{1(x_1) \otimes H_{11(x_2)}}\) is the space of interaction effects between level effects in \(x_1\) and smooth effects in \(x_2\). The corresponding reproducing kernels for each subspace are

\[
H_{0(x_1) \otimes H_{00(x_2)}} : R_{0(x_1)}(i, x)R_{00(x_2)}(j, y) = \frac{1}{K_1}, \quad (2.59)
\]

\[
H_{0(x_1) \otimes H_{01(x_2)}} : R_{0(x_1)}(i, x)R_{01(x_2)}(j, y) = (\frac{1}{K_1})_{(xy)}, \quad (2.60)
\]

\[
H_{0(x_1) \otimes H_{11(x_2)}} : R_{0(x_1)}(i, x)R_{11(x_2)}(j, y) = \left(I_{\{i=j\}} - \frac{1}{K_1} \right) \times
((x \land y)^2(3(x \lor y) - (x \land y))/6), \quad (2.61)
\]

\[
H_{1(x_1) \otimes H_{00(x_2)}} : R_{1(x_1)}(i, x)R_{00(x_2)}(j, y) = \left(I_{\{i=j\}} - \frac{1}{K_1} \right), \quad (2.62)
\]

\[
H_{1(x_1) \otimes H_{01(x_2)}} : R_{1(x_1)}(i, x)R_{01(x_2)}(j, y) = \left(I_{\{i=j\}} - \frac{1}{K_1} \right)_{(xy)}, \quad (2.63)
\]

\[
H_{1(x_1) \otimes H_{11(x_2)}} : R_{1(x_1)}(i, x)R_{11(x_2)}(j, y) = \left(I_{\{i=j\}} - \frac{1}{K_1} \right) \times
(x \land y)^2(3(x \lor y) - (x \land y))/6), \quad (2.64)
\]

respectively.

For each of the cases discussed above, the reproducing kernel Hilbert space has decomposition as \(\mathcal{H} = H_0 \oplus \sum_{k=1}^{p} H_k \), where \(H_0 \) is the space that is not penalized, and each \(H_k \) is a reproducing kernel Hilbert space with reproducing kernel \(R_k \). The SSANOVA model is constructed based on \(H_0 \oplus \sum_{k=1}^{p} H_k \). The estimate of \(f \) is the minimizer of

\[
\sum_{i=1}^{n} \{y_i - L_i f\}^2 + \lambda \sum_{k=1}^{p} \theta_{k}^{-1} \|P_k f\|^2, \quad (2.65)
\]
where P_k is the orthogonal projection operator of f onto \mathcal{H}_k in \mathcal{H}. Let $\xi_{ki}(t) = L_i R_k(t, \cdot)$ and $\Sigma_k = \{\langle \xi_{ki}, \xi_{kj} \rangle\}_{n \times n}$. The solution to equation (2.65) is

$$\hat{f}(t) = \sum_{i=1}^{M} d_i \phi_i(t) + \sum_{j=1}^{n} c_j \left(\sum_{k=1}^{p} \theta_k \xi_{kj}(t) \right)$$

$$\hat{f} = Td + \Sigma c,$$ \hspace{1cm} (2.66)

where c and d are solutions to equation (2.7) with Σ replaced by $\sum_{k=1}^{p} \theta_k \Sigma_k$.

Smoothing parameters $\lambda/\theta_1, \ldots, \lambda/\theta_p$ can be estimated similarly using GCV, GML, and UBR methods. Wang (1997) has developed an R function “ssri” to fit SSANOVA models. Gu (2002) has an algorithm to solve for c, d, and $\lambda/\theta_1, \ldots, \lambda/\theta_p$ with GCV, GML, and UBR methods simultaneously.

We propose a Bayesian approach in the next chapter to estimate the parameters c and d and smoothing parameters simultaneously through MCMC.
Chapter 3

Bayesian Smoothing Spline ANOVA

With the Bayesian interpretation for the reproducing kernel solution to smoothing splines, it’s natural to consider a fully Bayesian approach. In this chapter, we discuss a fully Bayesian approach to smoothing splines and SSANOVA.

3.1 Fully Bayesian approach to Smoothing Splines

In Section 2.5, we discussed a Bayesian interpretation for the reproducing kernel solution to smoothing splines following Kimeldorf and Wahba (1971). The Bayesian interpretation is based on equation (2.12), which implies the prior for \(c \) has a Gaussian distribution with mean zero and covariance matrix \(\delta_0/\lambda \Sigma^{-1} \). To implement a Bayesian approach, the computation could be intensive since each MCMC step requires the precision of \(\Sigma \). The alternative we propose in Section 2.6 transforms the model so the prior has a Gaussian distribution with covariance matrix proportional to \(\Sigma \). This not only improves MCMC computation but facilitates the construction of priors in the Bayesian approach to SSANOVA. This alternative provides the conditional distribution
for \(\bm{u} \) in equation (2.36). So the solution for the smoothing spline is \(\bm{v} = \bm{F} \bm{u} \) given \(\delta_0 \) and \(\lambda \).

3.1.1 Bayesian hierarchical model

To implement a fully Bayesian approach in a hierarchical model, we require priors for \(\delta_0 \) and \(\lambda \). Since we took \(\tau \to \infty \), we applied the result of equation (2.35). The prior distribution for \(\bm{u} = (\bm{u}_1', \bm{u}_2')' \) in equation (2.28) is now

\[
\bm{u}_2 | \delta_0, \lambda \sim N_{(n-M)} \left(\mathbf{0}, \frac{\delta_0}{\lambda} (\bm{F}'_2 \Sigma \bm{F}_2) \right).
\]
(3.1)

Following many authors seeking objective priors for regression models, we will use the Jeffrey’s (invariance) prior for \(\delta_0 \). We will follow White (2006) and Liang et al. (2008) and use the Pareto for \(\lambda \). Thus we have

\[
\begin{align*}
[\delta_0] &\propto \frac{1}{\delta_0}, \quad \delta_0 > 0, \\
[\lambda | a_0] &\propto \frac{a_0}{(a_0 + \lambda)^2}, \quad \lambda \geq 0.
\end{align*}
\]
(3.2)

To sample from the Pareto distribution efficiently, we use a hierarchical structure as in White (2006). With

\[
\begin{align*}
\lambda | \phi &\sim \text{Exp}(\phi), \\
\phi | a_0 &\sim \text{Exp}(a_0),
\end{align*}
\]
(3.3)

the marginal for \(\lambda \) is the Pareto distribution (3.2). Since \(\bm{F}'_2 \Sigma \bm{F}_2 \) may be singular, we may need a full rank parameterization. Let \(\bm{F}'_2 \Sigma \bm{F}_2 = \bm{Q} \bm{D} \bm{Q}' \) be the spectral decomposition, where \(\bm{Q} \) is the matrix of eigenvectors corresponding
to the nonzero eigenvalues and D is the diagonal matrix with the nonzero eigenvalues in the diagonals. Letting $u_2 = Qv$, then

$$v | \delta_0, \lambda \sim N\left(0, \frac{\delta_0}{\lambda} D\right). \tag{3.4}$$

The full conditionals for each of the parameters are

$$d | \delta_0 \sim N((T'F_1F_1'T)^{-1}T'F_1F_1'y, \delta_0(T'F_1F_1'T)^{-1}),$$

$$v | \lambda, \delta_0 \sim N((I_r + \lambda D^{-1})^{-1}Q'F_2'y, \delta_0(I_r + \lambda D^{-1})),$$

$$\lambda | v, \delta_0, \phi \sim Gamma\left(\frac{r}{2} + 1, \frac{2\delta_0}{v'D^{-1}v + 2\delta_0\phi}\right),$$

$$\phi | \lambda, a_0 \sim Gamma\left(2, \frac{1}{\lambda + a_0}\right),$$

$$\delta_0 | \lambda \sim \text{Inverse Gamma}\left(\frac{n + r}{2}, \frac{(F_2'y - u_2)^2}{2} + \frac{\lambda v'D^{-1}v}{2}\right) \tag{3.5}$$

where r is the rank of D. We demonstrate this model by a simulated example first, and then apply the model to a dataset from a manufacturing production line.

3.1.2 Effective Degrees of Freedom in Smoothing Spline and Prior for λ

Equation (2.38) showed the conditional distribution of v in a Bayesian smoothing spline model. The Bayes estimate for v given λ is the smoothing spline estimate,

$$v = \hat{y} = FB^{-1}F'y. \tag{3.6}$$
where

\[
B = \begin{pmatrix}
I_M & 0 \\
0 & I_{(n-M)} + \lambda(F_2'\Sigma F_2)^{-1}
\end{pmatrix}.
\] (3.7)

Thus the matrix $FB^{-1}F'$ is known as the smoother matrix. Following Hastie et al. (2001), the complexity of a model can be described by the “effective number of parameters,” which is defined to be the trace of the smoother matrix. The smoother matrix $S(\lambda)$ is

\[
S(\lambda) = FB^{-1}F' = (F_1, F_2)
\begin{pmatrix}
I_M & 0 \\
0 & (I_{(n-M)} + \lambda(F_2'\Sigma F_2)^{-1})^{-1}
\end{pmatrix}
\begin{pmatrix}
F_1' \\
F_2'
\end{pmatrix}.
\] (3.8)

Thus the trace of this smoother matrix is

\[
d(\lambda) = tr(S(\lambda)) = tr\left[F_1F_1' + F_2(I_{(n-M)} + \lambda(F_2'\Sigma F_2)^{-1})^{-1}F_2' \right] \\
= M + \sum_{i=1}^r \frac{1}{1 + \lambda d_i^{-1}}.
\] (3.9)

This equation shows how λ is related to the complexity of the model. The trace of the smoother matrix $d(\lambda)$ defines the effective degrees of freedom of a smoothing spline. This very useful tool allows us a more intuitive way to specify a prior for λ. In the next two examples we discuss how does the effective degrees of freedom facilitate us to select the prior information on λ. Following White (2006), since $d(\lambda)$ is a monotone function of λ, the median of the prior distribution of $d(\lambda)$ is $d(\lambda_m)$, where λ_m is the median of the prior on λ. For the Pareto distribution (3.2), the median is a_0. Thus the median for the prior on $d(\lambda)$ is $d(a_0)$. White (2006) suggested choosing a_0 by trial and error to have
a desirable prior degrees of freedom.

3.1.3 Simulated Example

Consider a simple simulation from a balanced design. The independent variables include a discrete variable \((x_1)\) with two levels and a continuous variable \((x_2)\). Let \(e = (1, \ldots, m)'/m\), \(1_1 = (1,1)'\) and \(1_2 = (1, \ldots, 1)'_{m \times 1}\) where \(m = 10\). Take \(x_1 = (1,2)' \otimes 1_2\), \(x_2 = e \otimes 1_1\) and \(y_i = 1 + 2I_{\{x_{1i}=1\}} + 3 \sin(2\pi x_{2i} - \pi) + \varepsilon_i\) with \(\delta_0 = 1\). The sample size is \(n = 20\). The model proposed is a smoothing spline function

\[
f(x_2) = \mu + \beta x_2 + s_2(x_2),\tag{3.10}
\]

where \(\mu\) is the constant term, \(\beta\) is the coefficient for the linear effect in \(x_2\) and \(s_2(x_2)\) is the smooth effect of \(x_2\).

After assigning a value for the parameter \(a_0\), all the parameters can be sampled by Gibbs sampler in MCMC from their full conditionals by (3.5). Then the Bayes estimates for each parameter are their posterior means.

The parameter \(a_0\) is the median of the Pareto distribution for the prior distribution of \(\lambda\). Even though the Pareto distribution has no mean or variance, the choice of median is still informative (refer to Section 3.1.2 for details). So what is a reasonable choice for \(a_0\)? Following Hastie et al. (2001), the complexity of a model can be described by the “effective number of parameters,” which is defined to be the trace of the smoother matrix as defined in equation (3.9). Based on the smoother matrix, effective number of parameters are 7.9, 7.2, 4.8 and 2.4 when \(\lambda\) is set to 0.000001, 0.00001, 0.0001 and 0.001 respec-
tively. We chose a_0 to be 0.0001, which provided about 5 effective degrees of freedom. Note that includes 1 degree of freedom in the linear term plus 5 degrees of freedom from the smooth term to give 6 degrees of freedom for the fit. This fit should be able to catch the curve effect in the data. To observe the smoothing effect of λ, we tried different values $a_0 = 0.000001$, 0.00001, 0.0001 and 0.001 in the prior distribution for λ. The Bayes estimates for λ are 0.0006, 0.00062, 0.001 and 0.005, which corresponds to equivalent degrees of freedom of 2.9, 2.8, 2.2 and 1.3 in (3.8) respectively. Figures 3.1 shows the MCMC trace plots for samples of the log(λ) from the models with $a_0 = 0.001$, $a_0 = 0.0001$, $a_0 = 0.00001$ and $a_0 = 0.000001$. Convergence is rapid in all cases. Figure 3.2 shows the fits of the models with $a_0 = 0.001$, $a_0 = 0.0001$, $a_0 = 0.00001$, $a_0 = 0.000001$ and the true function. The fits for $a_0 = 0.00001$ and $a_0 = 0.000001$ are almost identical. The fit is quite robust to choice of a_0. With the a_0 ranges from 0.001 to 0.000001, those fits are similar. The results suggest that the prior has little influence in estimating λ.

3.1.4 Manufacturing Example

The data used to illustrate this model come from the monitoring process for a production line stamping parts for circuit breakers. Regular measurements were taken on the metal parts and measured in inches. The data consists of 474 measurements of the metal parts along with the corresponding date and time when the measurements took place and the operators who took the measurements. There were 18 operators. The date and time variable has been converted into Julian date, which transforms the variable into a continuous scale. In this analysis, we used only nonrepeated measurements. We will use
the full dataset in later analysis.

The model proposed is again the smoothing spline function

\[f(x_2) = \mu + \beta x_2 + s_2(x_2), \quad (3.11) \]

where \(\mu \) is the constant term, \(\beta \) is the coefficient for the linear effect in \(x_2 \) and \(s_2(x_2) \) represents the smooth effect of \(x_2 \).

Based on the smoother matrix (3.8), the effective number of parameters are 50.7, 30.4, 17.4 and 9.6 when \(\lambda \) is set to \(a_0 = 1 \times 10^{-8}, a_0 = 1 \times 10^{-7}, a_0 = 1 \times 10^{-6} \) and \(a_0 = 1 \times 10^{-5} \) respectively. So \(a_0 \), the median of the Pareto distribution, was chosen to be \(a_0 = 1 \times 10^{-6} \), which provided about 17.4 effective degrees of freedom. (Again note that this includes 1 degree of freedom in the linear term plus 17.4 degrees of freedom from the smooth term, leading to 18.4 degrees of freedom for the median of the prior distribution.)

The Bayes estimate for \(\lambda \) is \(1.77 \times 10^{-5} \), which corresponds to 8.2 effective degrees of freedom. To observe the smoothing effect of \(\lambda \), we select different values \(a_0 = 1 \times 10^{-8}, 1 \times 10^{-7} \) and \(1 \times 10^{-5} \) in the prior distribution for \(\lambda \). The Bayes estimates for \(\lambda \) are \(1.70 \times 10^{-5}, 1.63 \times 10^{-5} \) and \(4.76 \times 10^{-5} \), which corresponds to equivalent degrees of freedom of 8.3, 8.4 and 6.2. Figures 3.3 shows the MCMC trace plots for samples of \(\log(\lambda) \) from the models with \(a_0 = 1 \times 10^{-5}, a_0 = 1 \times 10^{-6}, a_0 = 1 \times 10^{-7} \) and \(a_0 = 1 \times 10^{-8} \). Convergence is rapid in all cases. Figure 3.4 shows the fits of the models with \(a_0 = 1 \times 10^{-5}, a_0 = 1 \times 10^{-6}, a_0 = 1 \times 10^{-7} \) and \(a_0 = 1 \times 10^{-8} \). The fits for \(a_0 = 1 \times 10^{-6}, a_0 = 1 \times 10^{-7} \) and \(a_0 = 1 \times 10^{-8} \) are almost identical. With \(a_0 \) ranges from \(1 \times 10^{-5} \) to \(1 \times 10^{-8} \), the fits are similar. The results suggest that the fit is
not sensitive to the choice of λ when the right range of degrees of freedom is chosen.

This section discussed Bayesian smoothing splines with fully Bayesian estimates. With the posterior distribution, other statistical inference can be done for the fitted model such as credible sets. While these quantities can be computed with GCV, GML and UBR, the uncertainty due to estimating δ_0 and λ are not included in the total inference.

3.2 Fully Bayesian approach in SSANOVA

In Section 2.7 we discussed the frequentist approach to SSANOVA based on Gu (2002). In this section, we will extend the work to a fully Bayesian approach. As mentioned in the previous section, the alternative proposed to improve the MCMC computation will also facilitate the construction of SSANOVA in the Bayesian approach. So we continue to adopt this alternative approach.

The advantage of Bayesian SSANOVA over Bayesian smoothing splines is the added flexibility of testing fixed effects and interaction effects. After decomposing the estimated function into several subspaces, we can test each component in the model and come out with the most parsimonious model.

3.2.1 Bayesian hierarchical SSANOVA model

Based on the procedure discussed in Section 2.7, consider a variable x in domain \mathcal{X} and a Hilbert space \mathcal{H} of functions on \mathcal{X}. A tensor sum decomposition
of the reproducing kernel Hilbert space H has the form

$$H = \bigoplus_{k=0}^{p} H_k$$ \hspace{1cm} (3.12)

with inner product

$$\langle f, g \rangle = \sum_{k=0}^{p} \langle f, g \rangle_k = \sum_{k=0}^{p} \langle f_k, g_k \rangle_k$$ \hspace{1cm} (3.13)

and a reproducing kernel

$$R(x, y) = \sum_{k=0}^{p} R_k(x, y),$$ \hspace{1cm} (3.14)

where $\langle f, g \rangle_k$ is an inner product in H_k with corresponding reproducing kernel R_k, f_k is the projection of f in H_k, and H_0 is a finite dimensional space with no penalty.

As discussed in Examples 2.7, 2.8 and 2.9, consider two variables $x_1 \in X_1$ and $x_2 \in X_2$ in an experiment with n observations. Suppose $H_{(x_1)}$ consists of functions on X_1 and $H_{(x_2)}$ consists of functions on X_2, and assume the reproducing kernel Hilbert space is $H = H_{(x_1)} \otimes H_{(x_2)}$. As in equation (3.12), suppose $H_{(x_1)}$ and $H_{(x_2)}$ have tensor sum decompositions

$$H_{(x_1)} = \bigoplus_{i=0}^{p_1} H_{i(x_1)},$$

$$H_{(x_2)} = \bigoplus_{j=0}^{p_2} H_{j(x_2)}.$$

Thus $H = H_{(x_1)} \otimes H_{(x_2)} = \bigoplus_p H_p$, where p is the number of all the pairwise combinations of $i = 0, \ldots, p_1$ and $j = 0, \ldots, p_2$. Each orthogonal space H_p
is constructed by taking the product of subspaces \(\mathcal{H}_{i(x_1)} \) and \(\mathcal{H}_{j(x_2)} \) of \(\mathcal{H}_{(x_1)} \) and \(\mathcal{H}_{(x_2)} \) respectively. The subspace \(\mathcal{H}_{i(x_1)} \) is from the \(i \)th tensor sum decomposition of \(\mathcal{H}_{(x_1)} \), and \(H_{j(x_2)} \) is from the \(j \)th tensor sum decomposition of \(H_{(x_2)} \). Moreover, the corresponding reproducing kernel \(R_p \) is the product of reproducing kernels under \(\mathcal{H}_{i(x_1)} \) and \(\mathcal{H}_{j(x_2)} \).

After the model is selected, the reproducing kernel Hilbert space can be rewritten as \(\mathcal{H} = \mathcal{H}_0 \oplus \sum_{k=1}^{p} \mathcal{H}_k \), and the reproducing kernel \(R_k \) in \(\mathcal{H}_k \) is the product of \(R_{i(x_1)} \) in \(\mathcal{H}_{(x_1)} \) and \(R_{j(x_2)} \) in \(\mathcal{H}_{(x_2)} \). Define

\[
\Sigma = \sum_{k=1}^{p} \Sigma_k, \tag{3.15}
\]

where \(\Sigma_k \) is the \(n \times n \) matrix with the \((i, j)\)th entry \(R_k((x_{1i}, x_{2i}), (x_{1j}, x_{2j})) \).

To view the effect of each \(\Sigma_k \), we assigned different weights, \(\theta_k \), to each term and assume

\[
\Sigma = \sum_{k=1}^{p} \theta_k \Sigma_k. \tag{3.16}
\]

Under a fully Bayesian approach, those weights will be estimated through the smoothing parameters \(\lambda_k = \lambda/\theta_k \). Instead of estimating the \(\theta_k \) directly, we will get the Bayes estimates for each \(\lambda_k \), which controls the smoothing effect under each \(\Sigma_k \).

The minimizer for equation (2.65) now is

\[
\hat{f}(t) = Td + \Sigma c = Td + \left(\sum_{k=1}^{p} \Sigma_k \right) c. \tag{3.17}
\]

As the alternative approach considered in equation (2.24), the prior distribu-

39
tion for η is

$$\eta \mid \delta_0, \lambda \sim N_n\left(0, \frac{\delta_0}{\lambda} \Sigma\right). \quad (3.18)$$

To apply the SSANOVA decomposition, refer to the setup for u_2 in equation (3.24), which has a diffuse prior in \mathcal{H}_0. The covariance matrix for u_2 is $F'_2 \Sigma F_2$. We decompose this covariance matrix according to the reproducing kernel under each subspace,

$$F'_2 \Sigma F_2 = \sum_{k=1}^{p} \theta_k F'_2 \Sigma_k F_2. \quad (3.19)$$

So each covariance matrix $\theta_k F'_2 \Sigma_k F_2$ corresponds to a prior distribution w_k for each subspace k from the penalty term. Let

$$u_2 = \sum_{k=1}^{p} w_k.$$

If the priors on the w_k are independent, the prior on w_k satisfies

$$w_k \sim N\left(0, \lambda_k F'_2 \Sigma_k F_2\right), \quad k = 1, \ldots, p,$$

where $\lambda_k = \lambda/\theta_k$, $k = 1, \ldots, p$. Then u_2 has the required prior distribution (3.24). To implement a fully Bayesian hierarchical model, we need to assign prior distribution to the smoothing parameter $\lambda_k = \lambda/\theta_k$.

We now take the prior distributions for δ_0 and λ_k to be

$$[\delta_0] \propto \frac{1}{\delta_0}, \quad \delta_0 > 0, \quad (3.20)$$
\[
[\lambda_k \mid a_k] = \frac{a_k}{(a_k + \lambda_k)^2}, \quad \lambda_k \geq 0, \quad k = 1, \ldots, p, \quad (3.21)
\]

where the Pareto distribution will be sampled based on the hierarchical structure in White (2006). Since the covariance matrix \(F_k' \Sigma_k F_2 \) might be singular, again take the spectral decomposition

\[
F_k' \Sigma_k F_2 = Q_k D_k Q_k' \quad k = 1, \ldots, p, \quad (3.22)
\]

where \(Q_k \) is the matrix of eigenvectors corresponding to the nonzero eigenvalues at \(F_k' \Sigma_k F_2 \) and \(D_k \) is the diagonal matrix with the nonzero eigenvalues on the diagonal.

Set \(w_k = Q_k v_k \). Then the prior on \(v_k \) and \(u_2 \) is given by

\[
v_k \mid \delta_0, \lambda_k \sim N \left(0, \frac{\delta_0}{\lambda_k} D_k \right) \quad k = 1, \ldots, p, \quad (3.23)
\]

\[
u_2 = \sum_{k=1}^{p} Q_k v_k. \quad (3.24)
\]

The full conditionals for each of the parameters are easily calculated:

\[
d \mid \delta_0 \sim N \left((T' F_i F_i' T)^{-1} T' F_i F_i' y, \delta_0 (T' F_i F_i' T)^{-1} \right), \quad (3.25)
\]

\[
v_k \mid v_{-k}, \lambda_k, \delta_0 \sim N \left((I_{r_k} + \lambda_k D_k^{-1})^{-1} Q_k' \left(F_2' y - \sum_{i=1, i \neq k}^{p} Q_i v_i \right), \quad \delta_0 (I_{r_k} + \lambda_k D_k^{-1}) \right), \quad k = 1, \ldots, p, \quad (3.26)
\]

\[
\lambda_k \mid v_k, \delta_0, \phi_k \sim \text{Gamma} \left(\frac{\nu_k}{2} + 1, \frac{2\delta_0}{\nu_k D_k^{-1} v_k + 2\delta_0 \phi_k} \right), \quad k = 1, \ldots, p, \quad (3.27)
\]
\[\phi_k \mid \lambda_k, a_k \sim \text{Gamma} \left(2, \frac{1}{\lambda_k + a_k} \right), \quad k = 1, \ldots, p, \quad (3.28) \]

\[\delta_0 \mid \lambda_1, \ldots, \lambda_p, v_1, \ldots, v_p \sim \text{Inverse Gamma} \left(\frac{n + \sum_{k=1}^{p} r_k}{2} \right), \quad (3.29) \]

where \(r_1, \ldots, r_p \) are the ranks of the nonzero eigenvalue matrices \(D_1, \ldots, D_p \), \(a_1, \ldots, a_p \) are the parameters for the prior distributions of \(\lambda_1, \ldots, \lambda_p \), and \(v_{-k} = \{ v_j, j \neq k \} \), the collection of all \(v_j \) for \(j \neq k \).

The posterior distributions for each of the parameters can be simulated based on the full conditionals. Since the decomposition of the reproducing kernel Hilbert space provides orthogonal subspaces that span main effects and interaction effects, we will test the components under each subspace for different effects. The model selection criteria for hypothesis testing is based on Bayes factors.

3.2.2 Priors for one-way ANOVA compared to smoothing spline ANOVA

Consider \(X = \{1, \ldots, K\} \) corresponding to a one-way ANOVA model. The balanced one-way ANOVA hierarchical model is

\[y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad i = 1, \ldots, K, \quad j = 1, \ldots, r, \quad (3.30) \]

\[\varepsilon_{ij} \overset{iid}{\sim} N(0, \sigma^2), \quad (3.31) \]

where \(r \) is the number of replicates. The customary prior on \(\alpha_i \) is

\[\alpha_i \overset{iid}{\sim} N(0, \sigma^2_\alpha), \quad i = 1, \ldots, K. \quad (3.32) \]
In smoothing spline ANOVA for the identifiability of \(\alpha = (\alpha_1, \ldots, \alpha_K)' \), the prior for \(\alpha \) is restricted to the complement of the null space. The null space is

\[
\mathcal{H}_0 = \{ \alpha = c(1, \ldots, 1)', -\infty < c < \infty \}, \tag{3.33}
\]

with the projection matrix

\[
P_0 = 1(1')^{-1}1' = \frac{1}{K}11'. \tag{3.34}
\]

Let \(\mathcal{H}_1 \) be the complement of the null space with projection matrix

\[
P_1 = I - \frac{1}{K}11'. \tag{3.35}
\]

If we take the projection of \(\alpha \) onto \(\mathcal{H}_1 \), the resulting prior is

\[
P_1\alpha \sim N(0, P_1\sigma_a^2 IP_1') = N(0, \sigma_a^2 P_1). \tag{3.36}
\]

Now represent the balanced one-way ANOVA hierarchical model (3.30) in matrices,

\[
y = 1\mu + X\alpha + \epsilon, \tag{3.37}
\]

where \(y \) is the \(n \times 1 \) vector of observed responses, \(\mu \) is the overall mean, \(X = I_k \otimes 1_r \) is an \(n \times K \) design matrix, \(\alpha \) is a \(K \times 1 \) vector for factor level effects and \(\epsilon \) is an \(n \times 1 \) vector for random errors. Since the prior for \(\alpha \) is
restricted to the complement of null space, the prior is

\[\alpha \sim N \left(0, \sigma^2_0 \left(I - \frac{1}{K} 11' \right) \right) = N(0, \sigma^2_0 P_1). \tag{3.38} \]

In keeping with the SSANOVA development, we replace \(\sigma^2_0 \) by \(\delta_0/\lambda \). Then the prior on \(X\alpha \) is

\[X\alpha \sim N \left(0, \frac{\delta_0}{\lambda} X \left(I - \frac{1}{K} 11' \right) X' \right) = N \left(0, \frac{\delta_0}{\lambda} r \Sigma \right), \tag{3.39} \]

is the same as the prior distribution for \(\eta \) in equation (3.18) with covariance matrix \(r \Sigma \) for the discrete variable in SSANOVA.

Take \(\tilde{P} \) to be a \(K \times (K - 1) \) matrix whose columns are orthonormal and \(\tilde{P} \perp 1_K \). Then \(P_1 = \tilde{P} \tilde{P}' \), \(\tilde{P}' \tilde{P} = I_{(k-1)} \), and \(\alpha \sim N \left(0, \frac{\delta_0}{\lambda} \tilde{P} \tilde{P}' \right) \).

Let \(\beta = \tilde{P}' \alpha \), so

\[\beta = \tilde{P}' \alpha \sim N \left(0, \frac{\delta_0}{\lambda} \tilde{P}' \tilde{P} \tilde{P}' \tilde{P} \right) \sim N \left(0, \frac{\delta_0}{\lambda} I_{(K-1)} \right), \]

where \(\beta \) is a \((K - 1) \times 1 \) vector. Then \(\beta \) has a proper normal distribution with a non-singular covariance matrix. Thus we can write

\[y = 1 \mu + \tilde{X} \beta + \epsilon, \tag{3.40} \]

where \(\tilde{X} = X \tilde{P} \). With this transformation between \(\alpha \) and \(\beta \), the priors for both \(\alpha \) and \(\beta \) are equivalent but in different dimensions. This is the customary prior for the coefficients in a full rank linear model.
Since \tilde{X} has full rank, consider the Zellner’s g-prior (Zellner, 1986) for β:

$$\beta \sim N(0, g\delta_0(\tilde{X}'\tilde{X})^{-1})$$

$$\sim N(0, g\delta_0(\tilde{P}'\tilde{X}'\tilde{X}\tilde{P})^{-1})$$

$$\sim N\left(0, \frac{g\delta_0}{r} I_{(K-1)}\right).$$

Without loss of generality, assume that $X = I_K \otimes 1_r$ so $X'X = rI_K$.

The Zellner-Siow prior (Zellner and Siow, 1980) on β is (3.41) with $g \sim \text{Inverse Gamma} \left(\frac{1}{2}, \frac{n}{2}\right).$ \hspace{1cm} (3.42)

When the prior on smoothing parameter λ is

$$\lambda \sim \text{Gamma} \left(\frac{1}{2}, \frac{K}{2}\right),$$

i.e.,

$$K\lambda \sim \text{Gamma} \left(\frac{1}{2}, \frac{1}{2}\right),$$

$$\sim \chi^2_1,$$

then the prior on the discrete term η in the SSANOVA is exactly the Zellner-Siow prior. In a balanced design, the Zellner’s g-prior is depends on the number of factor levels K.

We take a variant prior with $K = 1$ for λ so

$$\lambda \sim \text{Gamma} \left(\frac{1}{2}, \frac{1}{2}\right)$$

(3.45)
for level effects in a discrete variable in SSANOVA. For smooth effect in a continuous variable, the prior for λ is

$$
\lambda \sim \text{Gamma} \left(\frac{1}{2}, \frac{b}{2} \right), \quad (3.46)
$$

where the scale parameter b is determined by the effective degrees of freedom.

3.2.3 Prediction at new points

The posterior means \bar{d} and \bar{v}_k are computed as the mean of the MCMC samples from equation (3.25) and (3.26) separately.

The estimate at the observed points is

$$
\hat{y} = F \bar{u} = FF'\bar{v} = FF' \left(T \bar{d} + \sum_{k=1}^{p} \eta_k \right),
$$

where $\bar{u} = (\bar{u}_1', \bar{u}_2')'$,

$$
\bar{u}_1' = F' T \bar{d},
\bar{u}_2' = \sum_{k=1}^{p} \bar{w}_k = \sum_{k=1}^{p} Q_k \bar{v}_k.
$$

Consider predicting at new points s_1, \ldots, s_t. The conditional mean for \tilde{y} at the new points is

$$
\tilde{y} = \tilde{T} \bar{d} + \sum_{k=1}^{p} \tilde{\eta}_k, \quad (3.47)
$$

where \tilde{T} spans the null space for the new points and $\tilde{\eta}_k = (\tilde{\eta}_k(s_1), \ldots, \tilde{\eta}_k(s_t))'$ is the conditional mean of η_k given the data at the new points. The covariance
matrix between the observed and new points under each reproducing kernel Hilbert space \mathcal{H}_k is

$$
C_k = \text{Cov}(\tilde{\eta}_k, \eta_k) = [R_k(s_i, x_j)]_{1 \times n}.
$$

(3.48)

Define the reproducing kernel for the new points as

$$
\tilde{\Sigma}_k = [R_k(s_i, s_j)]_{t \times t}.
$$

(3.49)

Then the prior distribution for $\tilde{\eta}_k$ is

$$
\tilde{\eta}_k | \delta_0, \lambda \sim N \left(0, \frac{\delta_0}{\lambda} \tilde{\Sigma}_k \right).
$$

(3.50)

The joint distribution of $\tilde{\eta}_k$ and w_k is

$$
\begin{pmatrix}
\tilde{\eta}_k \\
w_k
\end{pmatrix}
\sim
N
\begin{pmatrix}
0 \\
0
\end{pmatrix}
,
\begin{pmatrix}
\frac{\delta_0}{\lambda} \tilde{\Sigma}_k & \frac{\delta_0}{\lambda} C_k F_2 \\
\frac{\delta_0}{\lambda} F_2^t C_k' & \frac{\delta_0}{\lambda} F_2^t \Sigma_k F_2
\end{pmatrix}
\end{pmatrix}
$$

Using a standard result on multivariate normal distributions, the conditional distribution of $\tilde{\eta}_k | w_k$ is

$$
\tilde{\eta}_k | w_k, \delta_0, \lambda \sim N(C_k F_2 (F_2^t \Sigma_k F_2)^{-1} Q_k v_k,

\frac{\delta_0}{\lambda} (\tilde{\Sigma}_k - C_k F_2 (F_2^t \Sigma_k F_2)^{-1} F_2^t C_k')).
$$

(3.51)

To predict at the new points, samples from the conditional distribution $\tilde{\eta}_k | w_k, \delta_0, \lambda$ must be projected onto the complement of the null space for the new points.
The projection matrix in the null space for the new points is

\[P_{N0} = \tilde{T}(\tilde{T}'\tilde{T})^{-1}\tilde{T}' . \] (3.52)

Then the projection matrix onto the complement of null space is

\[P_{N1} = I_t - \tilde{T}(\tilde{T}'\tilde{T})^{-1}\tilde{T}' . \] (3.53)

Finally, the estimate of the new points is

\[P_{N1}\tilde{\eta}_k | w_k \sim N(\frac{p_{N1}}{\delta_0}C_kF_2(F_2'\Sigma_kF_2)^{-1}Q_kv_k, \frac{p_{N1}}{\lambda}\lambda_k^{-1}(\tilde{\Sigma}_k - C_kF_2(F_2'\Sigma_kF_2)^{-1}F_2'C_k)P_{N1}P_{N1}') . \] (3.54)

3.2.4 Bayes Factor in Bayesian approach

A well-known and widely adopted model selection criteria in Bayesian approach is the Bayes factor. Kass and Raftery (1995), Albert and Chib (1997) and Bayarri and Garcia-Donato (2007) have discussed the definition, computation issues and the choice of priors for Bayes factors. The Bayes factor is the ratio between the posterior odds and prior odds of two models. Let \(p_k \) denote the prior distribution for model \(k \), where \(k = 1, 2, p_k \geq 0, \) and \(p_1 + p_2 = 1 \). For the two competing models, suppose model 2 has parameters \(\omega_{M2} \) and model 1 nested within model 2 has parameters \(\omega_{M1} \). Suppose the prior distribution for model 1 is \(p_1(\omega_{M1}) \) and that for model 2 is \(p_2(\omega_{M2}) = p_1(\omega_{M1})p_a(\gamma) \), where \(\gamma \) contains the parameters in model 2 but not in model 1. Note that the parameters that appear in both model 2 and model 1 have the same prior distribution.
under both models. Also, $p_a(\gamma)$ must be a proper prior to have a well-defined Bayes factor. The marginal likelihood function of y under model M_k is

$$p(y \mid M_k) = \int_{\omega_{M_k}} f_k(y \mid \omega_{M_k}) p_k(\omega_{M_k}) d\omega_{M_k}, \quad k = 1, 2,$$

and the posterior probability of $M_k \mid y$ is

$$p(M_k \mid y) = \frac{p(y \mid M_k)p_k}{\sum_{k=1}^2 p(y \mid M_k)p_k}.$$

The Bayes factor for comparing model 2 with model 1 is defined to be

$$BF_{21} = \frac{p(M_2 \mid y)/p(M_1 \mid y)}{p_1/p_2} = \frac{p(y \mid M_2)}{p(y \mid M_1)}.$$

Since sometimes it is impossible to integrate out all the parameters, we use bridge sampling (Meng and Wong, 1996) to estimate the Bayes factor if we can integrate out γ. Assume we have output from MCMC simulations under both models. Let ω_{M_k} be the sequence of common parameters generated under model k, $k = 1, 2$, and let $l_{1i} = \frac{q_1(\omega_{M1})}{q_1(\omega_{M1})}$, $l_{2i} = \frac{q_1(\omega_{M2})}{q_1(\omega_{M2})}$, where q_k is the product of the likelihood and the marginal prior density of ω_{Mk} under model k. The Meng and Wong (1996) algorithm is iterative. At the $(j + 1)$th iteration, compute

$$BF_{21}^{j+1} = \frac{1}{n_1} \sum_{i=1}^{n_1} \frac{l_{1i}}{d_1l_{1i} + d_2BF_{21}^j},$$

where $d_1 = 1 - d_2 = \frac{n_k}{n_1 + n_2}$, and n_k is the number of random samples generated from the full conditionals through Gibbs sampling after a suitable burn-in.
period for model k, $k = 1, 2$. Convergence of \overline{BF}_{21}^j is generally rapid. Larger values of BF_{21} provide increasing evidence to support model 2 and smaller values of BF_{21} support model 1.

Kass and Raftery (1995) provided an interpretation of BF_{21}. They suggest that when $1 < BF_{21} < 3.2$, the evidence against model 1 is negligible. When $3.2 < BF_{21} < 10$, the evidence against model 1 is substantial. When $10 < BF_{21} < 100$, the evidence against model 1 is strong. When $BF_{21} > 100$, the evidence against model 1 is decisive.

Example 3.1

Consider two variables, $x_1 \in X_1 = \{1, \ldots, K_1\}$ and $x_2 \in X_2 = [0, 1]$. Suppose we want to model the x_1 effect using an one-way ANOVA effects model and the x_2 effect using a cubic spline. The tensor product decomposition for the Hilbert space \mathcal{H} is listed in equation (2.58) and the reproducing kernel under each subspace is in equation (2.57). Recall that $\mathcal{H}_{0(x_1)} \otimes \mathcal{H}_{00(x_2)}$ is the space of constants with reproducing kernels $R_{0(x_1)} R_{00(x_2)}$; $\mathcal{H}_{0(x_1)} \otimes \mathcal{H}_{01(x_2)}$ is the one dimensional space of a linear effect in x_2 with reproducing kernel $R_{0(x_1)} R_{01(x_2)}$; $\mathcal{H}_{0(x_1)} \otimes \mathcal{H}_{11(x_2)}$ is the space of smooth effect in x_2 with reproducing kernel $R_{0(x_1)} R_{11(x_2)}$; $\mathcal{H}_{1(x_1)} \otimes \mathcal{H}_{00(x_2)}$ is the space of level effects in x_1 with reproducing kernel $R_{1(x_1)} R_{00(x_2)}$. $\mathcal{H}_{1(x_1)} \otimes \mathcal{H}_{01(x_2)}$ is the space of interaction effects between level effects in x_1 and linear effect in x_2 with reproducing kernel $R_{1(x_1)} R_{01(x_2)}$.

Finally, $\mathcal{H}_{1(x_1)} \otimes \mathcal{H}_{11(x_2)}$ is the space of interaction effects between level effects in x_1 and smooth effect in x_2 with reproducing kernel $R_{1(x_1)} R_{11(x_2)}$. Refer to Equations (2.59), (2.60), (2.61), (2.62), (2.63) and (2.64) for the corresponding reproducing kernel under each subspace.

A fully Bayesian approach was implemented with the prior distribution
assigned for δ_0 and $\lambda_1, \ldots, \lambda_4$ from equations (3.20) and (3.21). The prior
distribution on each term corresponding to the penalty on its subspace is given
by equation (3.23) with $k = 1, 2, 3, 4$. The corresponding full conditionals for $v_1, \ldots, v_4, \lambda_1, \ldots, \lambda_4, \phi_1, \ldots, \phi_4$ and δ_0 are from equations (3.26), (3.27), (3.28) and (3.29).

The tensor product decomposition decomposes the Hilbert space \mathcal{H} into six
subspaces as discussed in the beginning of this example. The spaces $\mathcal{H}_{0(x_1)} \otimes
\mathcal{H}_{0(x_2)}$ and $\mathcal{H}_{0(x_1)} \otimes \mathcal{H}_{01(x_2)}$ are finite dimensional spaces containing functions
that are not going to be penalized. We will only smooth the functions from
the other four subspaces.

In this model, we are interested in testing the effects of the estimated
functions from each subspace. We set up a series of partially nested models of
interest and use the Bayes factor as the model selection criteria to test for the
effects. The partially nested models are:

Model 0 : $f(x_1, x_2) = \mu + \beta x_2 + s_1(x_1) + s_2(x_2)$

$$+ l_{12}(x_1, x_2) + s_{22}(x_1, x_2), \quad (3.56)$$

Model 1 : $f(x_1, x_2) = \mu + \beta x_2 + s_1(x_1) + s_2(x_2) + l_{12}(x_1, x_2), \quad (3.57)$

Model 2 : $f(x_1, x_2) = \mu + \beta x_2 + s_1(x_1) + s_2(x_2)$, \quad (3.58)

Model 3 : $f(x_1, x_2) = \mu + \beta x_2 + s_1(x_1)$, \quad (3.59)

Model 4 : $f(x_1, x_2) = \mu + \beta x_2 + s_2(x_2)$, \quad (3.60)

where μ is the constant term, β is the coefficient for the linear effect in x_2,
s_1 represents the level effects in x_1, s_2 represents the smooth effect in x_2,
l_{12} represents the interaction effects between the level effects in x_1 and linear
effects in \(x_2 \), and \(s_{22} \) represents the interaction effects between the level effects in \(x_1 \) and the smooth effect in \(x_2 \).

To test if there is evidence to conclude the level effects from \(x_1 \) interact with the smooth effect from \(x_2 \), we will have model 0 compete with model 1. The parameters for model 0 are \(\omega_{M0} = \{v_1, \ldots, v_4, \lambda_1, \ldots, \lambda_4, \delta_0\} \) and for model 1 are \(\omega_{M1} = \{v_1, v_2, v_3, \lambda_1, \lambda_2, \lambda_3, \delta_0\} \). Since it is intractable to compute the marginal distribution of \(y \) for both model 0 and model 1, we will use bridge sampling to compute the Bayes factor after integrating out the parameters \(v_4 \) and \(\lambda_4 \).

The product of likelihood and priors under model 0 is

\[
lp(M_0) = (2\pi \delta_0)^{-\frac{(n-2)}{2}} e^{-\frac{1}{2\pi \delta_0} \| F_2 y - \sum_{i=1}^4 Q_i v_i \|^2} \times \frac{1}{\delta_0} \times \\
\prod_{i=1}^4 \left((2\pi)^{-\frac{1}{2}} \left| \frac{\delta_0}{\lambda_i} D_i \right|^{-\frac{1}{2}} e^{-\frac{\lambda_i}{2\pi \delta_0} v_i' D_i^{-1} v_i} \right) \times \prod_{i=1}^4 \left(\frac{a_i}{(a_i + \lambda_i)^2} \right) \tag{3.61}
\]

The product of likelihood and priors under model 1 is

\[
lp(M_1) = (2\pi \delta_0)^{-\frac{(n-2)}{2}} e^{-\frac{1}{2\pi \delta_0} \| F_2 y - \sum_{i=1}^3 Q_i v_i \|^2} \times \frac{1}{\delta_0} \times \\
\prod_{i=1}^3 \left((2\pi)^{-\frac{1}{2}} \left| \frac{\delta_0}{\lambda_i} D_i \right|^{-\frac{1}{2}} e^{-\frac{\lambda_i}{2\pi \delta_0} v_i' D_i^{-1} v_i} \right) \times \prod_{i=1}^3 \left(\frac{a_i}{(a_i + \lambda_i)^2} \right) \tag{3.62}
\]

After integrating out \(v_4 \) analytically, the term \(\lambda_4 \) will be integrated out numerically under model 0. Then

\[
q_0 = \int_{\mathbb{R}} \int_{\mathbb{R}} lp(M_0) \, dv_4 d\lambda_4 \\
= \int_{\mathbb{R}} \int_{\mathbb{R}} (2\pi \delta_0)^{-\frac{(n-2)}{2}} |2\pi A^{-1} \delta_0|^{\frac{1}{2}} e^{-\frac{1}{2\pi \delta_0} \| F_2 y - \sum_{i=1}^4 Q_i v_i \|^2} \times \\
e^{\frac{1}{2\pi \delta_0} \| F_2 y - \sum_{i=1}^4 Q_i v_i \|^2} Q_i A^{-1} Q_i' (F_2 y - \sum_{i=1}^4 Q_i v_i) \times \\
\]

52
\[
\prod_{i=1}^{3} \left((2\pi)^{-\frac{1}{2}} \left| \frac{\delta_0}{\lambda_i} D_i \right|^{-\frac{1}{2}} e^{\frac{\lambda_i v_i'}{D_i}} \right) \times \prod_{i=1}^{3} \left(\frac{a_i}{(a_i + \lambda_i)^2} \right) \times \frac{1}{\delta_0} \left| \frac{\delta_0}{\lambda_4} D_4 \right|^{-\frac{1}{2}} d\lambda_4,
\]

(3.63)

where \(A = I_{r_4} + \lambda_4 D_4^{-1} \). Finally,

\[
\frac{q_0}{q_1} = \int_{\mathbb{R}} \left| 2\pi A^{-1} \delta_0 \right|^{\frac{1}{2}} e^{\frac{1}{2}\delta_0(F'y - \sum_{i=1}^{3} Q_i v_i)'Q_A A^{-1} Q_4(F'y - \sum_{i=1}^{3} Q_i v_i)} \times \frac{a_4}{(a_4 + \lambda_4)^2} \left| \frac{\delta_0}{\lambda_4} D_4 \right|^{-\frac{1}{2}} (2\pi)^{-\frac{r_4}{2}} d\lambda_4
\]

(3.64)

We use the random samples generated from the full conditionals and apply equation (3.55) to compute the Bayes factor \(BF_{01} \) and test the significance of \(v_4 \), the interaction effect between the level effects in \(x_1 \) and the smooth effect in \(x_2 \). A similar approach can be done to calculate \(BF_{12} \) to test the interaction effect between the level effects in \(x_1 \) and the linear effect in \(x_2 \), \(BF_{23} \) to test the smooth effect in \(x_2 \), and \(BF_{24} \) to test the level effects in \(x_1 \). By definition, \(BF_{02} = BF_{01} \times BF_{12} \) provided the statistic to test for interaction effects. To illustrate the application of this model selection method, the simulated and manufacturing examples in Sections 3.1.3 and 3.1.4 will be revisited and the results will be compared.

3.2.5 Simulated Example in Bayesian SSANOVA

Consider again the example in Section 3.1.3. Instead of fitting the data with a smoothing spline, we will fit the data with the five models (3.56), (3.57), (3.58), (3.59) and (3.60) proposed in Example 3.1.

The effect of each component is tested by model selection. The Bayes
factors for each pair of models is listed in Table 3.1. The hyper-parameters a_1, a_2, a_3 and a_4 for the Pareto priors on λ was set to be $a_1 = a_2 = a_3 = a_4 = 0.01$, which corresponding to effective degrees of freedom 1, 1, 1 and 2 for each term in model (3.56). The results showed $BF_{01} = 0.438$ for testing the effect of s_{12} was inconclusive, $BF_{12} = 0.192$ favored model 2 and concluded l_{12} is insignificant, $BF_{23} = 883$ strongly favored model 2 and concluded s_2 is significant and $BF_{24} = 75.7$ favored model 2 and concluded s_1 is significant. As shown in Figure 3.5, model 0, model 1 and model 2 provided almost the same fit as confirmed in the model selection, while model 2 is the most parsimonious model.

Table 3.1: Bayes factors in simulated example

<table>
<thead>
<tr>
<th>BF_{01}</th>
<th>BF_{12}</th>
<th>BF_{23}</th>
<th>BF_{24}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.438</td>
<td>0.192</td>
<td>883</td>
<td>75.7</td>
</tr>
</tbody>
</table>

3.2.6 Manufacturing Example in Bayesian SSANOVA

Now we revisit the manufacturing example in Section 3.1.4. Since there were 18 operators, we do not consider the interaction effects between x_1 and x_2. We fit the data with three partially nested models so we can inspect the linear and smooth effects individually.

Model 2 : $f(x_1, x_2) = \mu + \beta x_2 + s_1(x_1) + s_2(x_2)$,

Model 3 : $f(x_1, x_2) = \mu + \beta x_2 + s_1(x_1)$,

Model 4 : $f(x_1, x_2) = \mu + \beta x_2 + s_2(x_2)$,
where \(\mu \) is the constant term, \(\beta \) is the coefficient for the linear effect in \(x_2 \), \(s_1 \) represents the level effects in \(x_1 \), and \(s_2 \) represents the smooth effect in \(x_2 \).

The effect of each component is tested by model selection. The Bayes factors for each pair of models is listed in Table 3.2. The hyper-parameters \(a_1 \) and \(a_2 \) for the Pareto priors of the \(\lambda \) are \(a_1 = a_2 = 0.01 \), which corresponding to effective degrees of freedom 16.9 and 0.9. Note that \(BF_{23} = 4.04 \) favored model 2 and \(BF_{24} = 4.38 \times 10^{-3} \) strongly favored model 4. We conclude that the level effects in \(x_1 \) are insignificant since we favored model 4 over 2. The smooth effect in \(x_2 \) is significant since we favored model 2 over model 3. As shown in Figure 3.6, model 2 and model 4 provide almost the same fit as confirmed in the model selection, while model 4 is the most parsimonious model.

<table>
<thead>
<tr>
<th></th>
<th>(BF_{23})</th>
<th>(BF_{24})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.04</td>
<td>(4.38 \times 10^{-3})</td>
</tr>
</tbody>
</table>

Table 3.2: Bayes factors in manufacturing example

3.2.7 Alternative Bayes Factor Computation

As discussed in Section 3.2.4, bridge sampling provides one way to compute Bayes factors for fully Bayesian smoothing spline ANOVA models. So far, bridge sampling has been used to test the smooth effect, the level effects and the interaction effects among independent variables. In addition to testing for these effects, it is sometimes interesting to test for variables in the null space. In particular, when testing for the effect of a continuous variable, one wants to simultaneously test for the linear and smooth effects.

Consider \(p \) independent discrete variables \(x_1, \ldots, x_p \), \(q \) independent contin-
uous variables x_{p+1}, \ldots, x_{p+q} and the response variable y. The model proposed to fit the data is a smoothing spline function

$$\text{Model 2: } f(x_1, \ldots, x_{p+q}) = \mu + \sum_{i=p+1}^{p+q} \beta_i x_i + \sum_{i=1}^{p} l_i(x_i) + \sum_{i=p+1}^{p+q} s_i(x_i) + \sum_{j>i} f_{ij}(x_i, x_j),$$

where μ is the constant term, $\beta_{p+1}, \ldots, \beta_{p+q}$ are the coefficients for the linear effects in x_{p+1}, \ldots, x_{p+q}, l_1, \ldots, l_p represent the level effects for discrete variables x_1, \ldots, x_p, s_{p+1}, \ldots, s_{p+q} represent the smooth effects for continuous variables x_{p+1}, \ldots, x_{p+q} and f_{ij} represent the interaction effects between x_i and x_j for both linear and nonlinear effects.

Suppose we are interested in testing the significance of some independent variables, smooth effects or interaction effects such as $\{l_{s_1}, \ldots, l_{p_1}, \beta_{t_1}, \ldots, \beta_{q_1}, s_{t_1}, \ldots, s_{q_1}, f_{s_1,t_1}, \ldots, f_{p_1,q_1}\}$, where $1 \leq s_1, p_1 \leq p, p + 1 \leq t_1$ and $q_1 \leq p + q$.

The corresponding reduced model for testing is

$$\text{Model 1: } f(x_1, \ldots, x_{p+q}) = \mu + \sum_{i=p+1, i \neq (t_1, \ldots, q_1)}^{p+q} \beta_i x_i + \sum_{i=1, i \neq (s_1, \ldots, p_1)}^{p} l_i(x_i) + \sum_{i=p+1, i \neq (t_1, \ldots, q_1)}^{p+q} s_i(x_i) + \sum_{j>i, i \neq (s_1, \ldots, p_1), j \neq (t_1, \ldots, q_1)} f_{ij}(x_i, x_j).$$

With Zellner-Siow priors assigned for $(\beta_{t_1}, \ldots, \beta_{q_1})$, $(l_{s_1}, \ldots, l_{p_1})$ and the interaction effects between level effects as discussed in Section 3.2.2 and the scaled χ^2_1 priors assigned for $(s_{t_1}, \ldots, s_{q_1})$ and the interaction effects between the linear effects and nonlinear effects, we can consolidate the terms receiving
the same type of priors. Let \(p_2 \) represent the number of terms receiving Zellner-Siow priors and \(q_2 \) represent the number of terms receiving scaled \(\chi^2 \) priors in model 2, and let \(p_3 \) represent the number of terms receiving Zellner-Siow priors and \(q_3 \) represent the number of terms receiving scaled \(\chi^2 \) priors in model 1. Both model 2 and model 1 can be rewritten as

Model 2: \(f(x_1, \ldots, x_{p+q}) = \mu + \sum_{i=p+1}^{p+q} \beta_i x_i + \sum_{i=1}^{p_2} l_i(x_i) + \sum_{i=1}^{q_2} s_i(x_i) \)

Model 1: \(f(x_1, \ldots, x_{p+q}) = \mu + \sum_{i=p+1, i \neq (l_1, \ldots, q_1)}^{p+q} \beta_i x_i + \sum_{i=1}^{p_3} l_i(x_i) + \sum_{i=1}^{q_3} s_i(x_i) \)

where \(l_i \) represents the terms received Zellner-Siow priors, \(s_i \) represents the terms received scaled \(\chi^2 \) priors, \(p_2 \geq p_3 \) and \(q_2 \geq q_3 \).

The parameters in model 2 are \(\omega_{M2} = \{\beta_{p+1}, \ldots, \beta_{p+q}, v_1, \ldots, v_{p_2+q_2}, \lambda_1, \ldots, \lambda_{p_2+q_2}, g, \delta_0\} \). The parameters in model 1 are \(\omega_{M1} = \{\beta_{p+1}, \ldots, \beta_{l_1}, \beta_{q_1}, \ldots, \beta_{p+q}, v_1, \ldots, v_{p_3+q_3}, \lambda_1, \ldots, \lambda_{p_3+q_3}, \delta_0\} \). One way to implement bridge sampling for computing the Bayes factor \(BF_{21} \) is to integrate out those parameters that are in model 2 but not in model 1 from the product of likelihood and priors under model 2. This is intractable.

An alternative has been proposed to accommodate the computation of Bayes factor \(BF_{21} \). Instead of integrating out those parameters that are in model 2 but not in model 1 to match the parameter spaces for both model 2 and model 1, those parameters will be included in the MCMC steps under model 1 by sampling from the full conditionals derived from the priors those parameters received under model 2. The product of likelihood and priors under
model 2 is

\[
lp(M_2) = (2\pi \delta_0)^{-n/2} e^{-\frac{1}{2\delta_0} \|F_y^t - F_T d\|^2} e^{-\frac{1}{2\delta_0} \|F_T y - \sum_{i=1}^{p_2+q_2} Q_i v_i\|^2} \\
\times \prod_{i=1}^{q_2} (2\pi)^{-\frac{1}{2}} \delta_0^{-\frac{1}{2}} \lambda_i^{-1/2} e^{-\frac{1}{2\delta_0} v_i^T D_i^{-1} v_i} \prod_{i=1}^{q_2} \frac{1}{\Gamma(1/2)} \lambda_i^{-1/2} e^{-\lambda_i b_i} \\
\times \prod_{i=1}^{p_2} (2\pi)^{-\frac{1}{2}} \delta_0^{-\frac{1}{2}} \lambda_i^{-1/2} (\frac{n}{k_i})^{1/2} e^{-\frac{1}{2\delta_0} v_i^T D_i^{-1} v_i} \prod_{i=1}^{p_2} \frac{1}{\Gamma(1/2)} \lambda_i^{-1/2} e^{-\lambda_i b_i} \\
\times (2\pi g \delta_0 (T_2' T_2)^{-1})^{-1/2} e^{-\frac{1}{2\delta_0} (y - g T_2)^T (y - g T_2)} \\
\times \frac{(n/2)^{1/2}}{\Gamma(1/2)} g^{-3/2} e^{-\frac{1}{2\delta_0} g} \times \frac{1}{\delta_0},
\]
(3.65)

where \(T = [x_{p+1}, \ldots, x_{p+q}], \ T_1 = [x_{p+1}, \ldots, x_{q_1}+1, \ldots, x_{p+q}], \ T_2 = [x_{q_1+1}, \ldots, x_{q_1}], \ \beta = (\beta_{t_1}, \ldots, \beta_{q_1})', \ b_i \) is the scale parameter for \(\lambda_i^2 \) and \(g \) is the hyperparameter for the Zellner-Siow prior. The full conditionals for \(d_i = (\beta_{p+1}, \ldots, \beta_{t_1-1}, \beta_{q_1+1}, \ldots, \beta_{p+q})', v_i, \lambda_i \) and \(\delta_0 \) refer to equations (3.25), (3.26), (3.27) and (3.29) in Section 3.2.1.

The full conditionals for \(\beta \) and \(g \) are

\[
\beta \mid \delta_0, g \sim N((T_2' F_{1b} F_{1b}' T_2 + (g T_2' T_2)^{-1})^{-1} (T_2' F_{1b} F_{1b}' y), \\
\delta_0(T_2' F_{1b} F_{1b}' T_2 + (g T_2' T_2)^{-1})^{-1},
\]
(3.66)

\[
g \mid \beta, \delta_0 \sim \text{Inverse Gamma} \left(1, \frac{T_2' T_2 \beta^2}{2\delta_0} + \frac{n}{2} \right),
\]
(3.67)

where \(F_1 = [F_{1a}, F_{1b}] \), \(F_1 \) is the \(n \times q \) matrix of vectors spanning the column space of \(T \) and \(F_{1b} \) has dimension \(n \times (q_1 - t_1) \).

The product of likelihood and priors under model 1 is

\[
lp(M_1) = (2\pi \delta_0)^{-n/2} e^{-\frac{1}{2\delta_0} \|F_y^t - F_T d_i\|^2} e^{-\frac{1}{2\delta_0} \|F_T y - \sum_{i=1}^{p_1+q_1} Q_i v_i\|^2}
\]

58
\[
\times \prod_{i=1}^{q_3} \left(2\pi\right)^{r_i/2} \delta_0^{-r_i/2} \lambda_i^{r_i/2} \left|D_i\right|^{-1/2} e^{-\frac{\lambda_i}{2\delta_0} v'_i D_i^{-1} v_i} \prod_{i=1}^{p_3} \left(\frac{b_i^{1/2}}{\Gamma(1/2)}\right) \lambda_i^{-1/2} e^{-\lambda_i b_i} \\
\times \prod_{i=1}^{p_1} \left(2\pi\right)^{r_i/2} \delta_0^{-r_i/2} \lambda_i^{r_i/2} \left(n \frac{k_i}{k_i}\right)^{r_i/2} e^{-\frac{\lambda_i}{2\delta_0} v'_i v_i} \prod_{i=1}^{p_3} \left(\frac{1}{2}\right)^{1/2} \lambda_i^{-1/2} e^{-\lambda_i / 2} \\
\times \left(2\pi g \delta_0 (T'_2 T_2)^{-1}\right)^{-1/2} e^{-\frac{1}{2\delta_0} (T'_2 T_2)^{-1} g^2} \times \\
\frac{(n/2)^{1/2}}{\Gamma(1/2)} g^{-3/2} e^{-\frac{n}{2\delta_0}} \times \frac{1}{\delta_0},
\]

(3.68)

where \(\bar{F} = [\bar{F}_1, \bar{F}_2]\), \(\bar{F}_1\) is the \(n \times (q - q_1 + t_1)\) matrix of vectors spanning the column space of \(T_1\).

Take the ratio of \(lp(M_2)\) to \(lp(M_1)\),

\[
\frac{q_0}{q_1} = \frac{e^{-\frac{1}{2\delta_0} \|F'_1 y - F'_1 T d\|^2} e^{-\frac{1}{2\delta_0} \|F'_2 y - \sum_{i=1}^{p_2+q_2} Q_i v_i\|^2}}{e^{-\frac{1}{2\delta_0} \|F'_1 y - F'_1 T_1 d_1\|^2} e^{-\frac{1}{2\delta_0} \|F'_2 y - \sum_{i=1}^{p_2+q_2} Q_i v_i\|^2}}.
\]

(3.69)

Utilize the random samples generated from the full conditionals under both model 2 and model 1, then apply equation (3.55) to compute the Bayes factor \(BF_{21}\) to test the significance of \(\{l_{s_1}, \ldots, l_{p_1}, \beta_{t_1}, \ldots, \beta_{q_1}, s_{t_1}, \ldots, s_{q_1}, f_{s_{t_1}q_1}, \ldots, f_{p_1q_1}\}\).

In order to adapt the Bayes factor for testing the linear effects in continuous variables, the linear terms must have informative priors such as Zellner-Siow priors, which is different from the estimation and prediction situation where a flat prior in the null spaces constructed by the linear effects of continuous variables is favored. So if the goal of the study is parameter estimation or prediction, then the flat prior in the null space is chosen. However, if the goal is testing the linear effects in continuous variables, then the informative priors are needed.

Two simulated examples demonstrate this alternative approach in comput-
Example 3.2

Consider simulated data from a balanced design with two independent continuous variables x_1 and x_2 and one response variable y. Take $x_{1i} = (i - 1)/(m - 1)$, $x_{2j} = (j - 1)/(m - 1)$ and $y_{ij} = 1 + 3\sin(2\pi x_{1i} - \pi) + \varepsilon_{ij}$ with $\delta_0 = 1$, where $i = 1, \ldots, m$, $j = 1, \ldots, m$. We vectorized this model as follows. Let $e = (0, \ldots, (m - 1))'/(m - 1)$ and $1 = (1, \ldots, 1)'_{m \times 1}$ with $m = 30$. Then let $x_1 = e \otimes 1$ and $x_2 = 1 \otimes e$, where \otimes is the Kronecker product. Let $y_i = (y_{i1}, \ldots, y_{im})'$ and $y = (y_1', \ldots, y_m')'$. The sample size is $n = 900$.

Suppose one wants to test if x_2 is a significant variable to predict y. The models proposed for testing are

\begin{align*}
\text{Model 2: } f(x_1, x_2) &= \mu + \beta_1 x_1 + \beta_2 x_2 + s_1(x_1) + s_2(x_2), \quad (3.70) \\
\text{Model 1: } f(x_1, x_2) &= \mu + \beta_1 x_1 + s_1(x_1),
\end{align*}

where μ is the constant term, β_1 is the coefficient for the linear effect in x_1, β_2 is the coefficient for the linear effect in x_2, s_1 represents the smooth effect in x_1 and s_2 represents the smooth effect in x_2.

To test for the effect of x_2, it is required to test $f(x_2) = \beta_2 x_2 + s_2(x_2)$. The Zellner-Siow prior was used for β_2, the coefficient for the linear effect in x_2. The scaled χ_1^2 priors were applied to test smooth effects, both s_1 and s_2. The scale parameters in χ_1^2 priors were selected to be 0.01 for both s_1 and s_2, which provided 5.25 effective degrees of freedom for each of the smooth effects, s_1 and s_2. Figure 3.7 shows the MCMC trace plots for parameters u_{10}, λ_1, λ_2 and δ_0 under model 2. Convergence is rapid in all cases.
Followed the procedure of the alternative approach for computing the Bayes factor, $BF_{21} = 8.24 \times 10^{-88}$, providing conclusive evidence that x_2 contributes no information in predicting y. This conclusion agrees with the true model.

The second simulated dataset is also a balanced design with two independent variables, one discrete (x_1) and one continuous (x_2), and response variable y. Take $x_{1i} = i$, $x_{2j} = (j - 1)/(m - 1)$ and $y_{ij} = 1 + 2I_{(x_{1i}-1)} + 3 \sin(2\pi x_{2j} - \pi) + \varepsilon_{ij}$ with $\delta_0 = 4$, where $i = 1, 2, 3, 4$, $j = 1, \ldots, m$. We vectorized this model as follows. Let $e = (0, \ldots, (m - 1))/(m - 1)$, $1_1 = (1, \ldots, 1)'_{4 \times 1}$ and $1_2 = (1, \ldots, 1)'_{100 \times 1}$, with $m = 100$, and let $x_1 = (1, 2, 3, 4)' \otimes 1_2$ and $x_2 = 1_1 \otimes e$. Finally, let $y_i = (y_{i1}, \ldots, y_{im})'$ and $y = (y_1', \ldots, y_4')'$. The sample size is $n = 400$.

Again the goal is to identify if x_2 is a significant variable to predict y, and the models proposed for testing are

Model 2 : $f(x_1, x_2) = \mu + \beta_2 x_2 + l_1(x_1) + s_2(x_2)$, \hspace{1cm} (3.71)

Model 1 : $f(x_1, x_2) = \mu + l_1(x_1)$, \hspace{1cm} (3.72)

where μ is the constant term, β_2 is the coefficient for the linear effect in x_2, l_1 represents the level effects in x_1 and s_2 represents the smooth effect in x_2.

To test for the effect of x_2, it is required to test $f(x_2) = \beta_2 x_2 + s_2(x_2)$. The Zellner-Siow priors were used for β_2 and the level effects in x_1. The scaled χ^2_1 prior was applied to test the smooth effects in x_2. The scale parameter in χ^2_1 prior was selected to be 0.001, which provided 5.33 effective degrees of freedom for the smooth effect, s_2. Figure 3.8 shows the MCMC trace plots for parameters u_{10}, λ_1, λ_2 and δ_0 under model 2. Convergence is rapid in all
The result for testing \(f(x_2) = \beta_2 x_2 + s_2(x_2) \) is \(BF_{21} = 1.70 \times 10^{130} \), providing conclusive evidence that \(x_2 \) contributes information in predicting \(y \). This again agrees with the true model.

Example 3.3

We revisit the manufacturing dataset in Section 3.2.6 using the alternative Bayes factor to test the effect of *time*. The models proposed for testing are equations (3.71) and (3.72), where \(x_1 \) represents the variable *operator* and \(x_2 \) represents the variable *time*.

To test for the effect of *time*, it is required to test \(f(\text{time}) = \beta_2 \text{time} + s_2(\text{time}) \). The same set of priors for model 2 in equation (3.71) were used. The scale parameter in the \(\chi^2 \) prior was selected to be 0.0001, which provided 5.01 effective degrees of freedom for the smooth effect, \(s_2 \). Figure 3.9 shows the MCMC trace plots for parameters \(u_{10}, \lambda_1, \lambda_2 \) and \(\delta_0 \) under model 2. Convergence is rapid in all cases.

The corresponding \(BF_{21} = 3.44 \times 10^{14} \) provides conclusive evidence that *time* contributes information in predicting \(y \).

3.2.8 Simulated Example 1

Consider a simulated dataset with three independent variables, a discrete variable \((x_1)\) with four levels, a second discrete variable \((x_2)\) with twenty levels and one continuous variable \((x_3)\), along with response variable \(y \). Take \((x_{11}, x_{12}, x_{13}, x_{14})' = (a, b, c, d), x_{2j} = j, x_{3k} = (k - 1)/(m - 1) \) and \(y_{ijk} = 1 + 2I_{(x_{11}=a)} + 3 \sin(2\pi x_{3k} - \pi) + \epsilon_{ijk} \) with \(\delta_0 = 1 \), where \(i = 1, 2, 3, 4, j = 1, \ldots, 20, k = 1, \ldots, m \). We vectorized this model as follows. Let \(e = \)
(0, \ldots, (m - 1)')/(m - 1), \mathbf{1}_1 = (1, \ldots, 1)_{100\times1} and \mathbf{1}_2 = (1, \ldots, 1)_{20\times1}, \text{ where } m = 20 \text{ then } \mathbf{x}_1 = (a, b, c, d)' \otimes \mathbf{1}_1, \mathbf{x}_2 = (1, \ldots, 20)' \otimes \mathbf{1}_2 \text{ and } \mathbf{x}_3 = e \otimes \mathbf{1}_2.

Let \(y_{ij} = (y_{ij1}, \ldots, y_{ijm})' \), and \(\mathbf{y}_i = (y_{i1}', \ldots, y_{i20}')' \) and \(\mathbf{y} = (y_1', \ldots, y_4')' \). The sample size is \(n = 400 \).

The model proposed to analyze the effect of each covariate is a smoothing spline function

\[
\text{Model 7 : } f(x_1, x_2, x_3) = \mu + \beta_3 x_3 + s_3(x_3) + l_1(x_1) + l_2(x_2) + l_{13}(x_1, x_3) + ls_{13}(x_1, x_3) + l_{23}(x_2, x_3) + ls_{23}(x_2, x_3), \quad (3.73)
\]

where \(\mu \) is the constant term, \(\beta_3 \) is the coefficient for the linear effect in \(x_3 \), \(s_3 \) represents the smooth effect in \(x_3 \), \(l_1 \) represents the level effects in \(x_1 \), \(l_2 \) represents the level effects in \(x_2 \), \(l_{13} \) represents the interaction effects between the level effects in \(x_1 \) and linear effects in \(x_3 \), \(ls_{13} \) represents the interaction effects between the level effects in \(x_1 \) and smooth effect in \(x_3 \), \(l_{23} \) represents the interaction effects between the level effects in \(x_2 \) and linear effects in \(x_3 \) and \(ls_{23} \) represents the interaction effects between the level effects in \(x_2 \) and smooth effect in \(x_3 \).

To test for the significance of each term in the model 7, a series of partially nested models of interest is proposed:

\[
\text{Model 6 : } f(x_1, x_2, x_3) = \mu + \beta_3 x_3 + s_3(x_3) + l_1(x_1) + l_2(x_2) + l_{13}(x_1, x_3) + ls_{13}(x_1, x_3) + l_{23}(x_2, x_3), \quad (3.74)
\]

\[
\text{Model 5 : } f(x_1, x_2, x_3) = \mu + \beta_3 x_3 + s_3(x_3) + l_1(x_1) + l_2(x_2) + l_{13}(x_1, x_3)
\]

63
Model 4: \[f(x_1, x_2, x_3) = \mu + \beta_3 x_3 + s_3(x_3) + l_1(x_1) + l_2(x_2) + l_{13}(x_1, x_3), \] (3.75)

Model 3: \[f(x_1, x_2, x_3) = \mu + \beta_3 x_3 + s_3(x_3) + l_1(x_1) + l_2(x_2), \] (3.76)

Model 2: \[f(x_1, x_3) = \mu + \beta_3 x_3 + s_3(x_3) + l_1(x_1), \] (3.77)

Model 1: \[f(x_3) = \mu + \beta_3 x_3 + l_1(x_1). \] (3.78)

Model 0: \[f(x_1, x_3) = \mu + \beta_3 x_3 + l_1(x_1). \] (3.79)

The Zellner-Siow prior was used for \(\beta_3 \), the coefficient for the linear effect in \(x_3 \). Two different types of priors, Pareto and scaled \(\chi^2_1 \), were applied to test the smooth effects. The scale parameters in the Pareto priors or those for the \(\chi^2_1 \) priors were selected by the effective degrees of freedom method as discussed in Section 3.1.2. The values of \(\lambda \) corresponding to reasonable prior effective degrees of freedom for each term in model 7 are listed in Table 3.3. Figure 3.10 shows the MCMC trace plots for parameters \(u_{10}, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7 \) and \(\delta_0 \) under model 7 with scaled \(\chi^2_1 \) priors. Convergence is rapid in all cases. These were used in the computation of the Bayes factors. The Bayes factors under both the Pareto and scaled \(\chi^2_1 \) priors for model comparison and the specific terms to be tested are listed in Table 3.4.

Based on Table 3.4, both the Pareto and scaled \(\chi^2_1 \) priors have come up with the same conclusion that there is insufficient evidence to conclude that \(l_{s23}(x_2, x_3), l_{23}(x_2, x_3), l_{s13}(x_1, x_3) \) and \(l_{13}(x_1, x_3) \) are significant and sufficient evidence to conclude that \(l_2(x_2), l_1(x_1) \) and \(s_3(x_3) \) are significant in predicting \(y \). The most parsimonious model to predict \(y \) is model 3. Figure 3.11 shows
the model 7 and model 3 provided almost the same fit and is a more suitable fit than those in model 1 and model 0 as confirmed in the model selection. When constructing the response variable y, the x_2 is not involved. But the hypothesis testing concluded that $l_2(x_2)$ is significant. This is caused by the confounding effect between x_1 and x_2. There are 5 levels of x_2 for each level of x_1 in this data. Since the x_1 is significant, so is x_2.

Table 3.3: The λs for each term in Model 7 giving the desirable effective degrees of freedom.

<table>
<thead>
<tr>
<th>λ</th>
<th>s_3</th>
<th>l_{13}</th>
<th>$l_{s_{13}}$</th>
<th>l_{23}</th>
<th>$l_{s_{23}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective df</td>
<td>4.44</td>
<td>2.83</td>
<td>2.781</td>
<td>2.775</td>
<td>5.92</td>
</tr>
</tbody>
</table>

Table 3.4: The Bayes factors for testing each term in model 7 adapted both the scaled χ^2_1 and the Pareto priors in all the terms except $l_2(x_2)$ and $l_1(x_1)$, which received Zellner-Siow priors.

<table>
<thead>
<tr>
<th>Terms</th>
<th>BF_{76}</th>
<th>BF_{65}</th>
<th>BF_{54}</th>
<th>BF_{43}</th>
</tr>
</thead>
<tbody>
<tr>
<td>scaled χ^2_1</td>
<td>0.202</td>
<td>0.371</td>
<td>0.357</td>
<td>0.121</td>
</tr>
<tr>
<td>Pareto</td>
<td>0.351</td>
<td>0.539</td>
<td>0.479</td>
<td>0.244</td>
</tr>
<tr>
<td>$l_{s_{23}}(x_2, x_3)$</td>
<td>$l_{23}(x_2, x_3)$</td>
<td>$l_{s_{13}}(x_1, x_3)$</td>
<td>$l_{13}(x_1, x_3)$</td>
<td></td>
</tr>
<tr>
<td>BF$_{32}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scaled χ^2_1</td>
<td>1.0×10^{10}</td>
<td>1.4×10^{104}</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>Pareto</td>
<td>1.0×10^{10}</td>
<td>2.5×10^{104}</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>Terms</td>
<td>$l_2(x_2)^*$</td>
<td>$l_1(x_1)^*$</td>
<td>$s_3(x_3)$</td>
<td></td>
</tr>
</tbody>
</table>

3.2.9 Potassium Measurement on Dogs

In this section, a dataset from Wang and Ke (2004) is revisited using fully Bayesian SSANOVA models. Thirty-six dogs were assigned to four groups: control, extrinsic cardiac denervation three weeks prior to coronary occlusion, extrinsic cardiac denervation immediately prior to coronary occlusion, and bilateral thoracic sympathectomy and stellectomy three weeks prior to coronary occlusion.
occlusion. Coronary sinus potassium concentrations were measured on each
dog every two minutes from 1 to 13 minutes after occlusion. The goal is to
identify if the variables group, dog and time are useful to predict the potassium
concentrations.

In order to adapt the model setting in Section 3.2.8, x_1 represents the
variable group, x_2 represents the variable dog, x_3 represents the variable time
and y represents the response variable potassium. The model proposed to fit
the data is model 7 in equation (3.73). To test the significance of each term,
a series of models in equations (3.74), (3.75), (3.76), (3.77), (3.78), (3.79) and
(3.80) are proposed with the same priors, linear/level effects with Zellner-Siow
priors and smooth effects with Pareto or scaled χ^2_1 priors, chosen in the Section
3.2.8. The scale parameter in the Pareto prior or that for the scaled χ^2_1 prior
were selected by effective degrees of freedom. The values of λ corresponding
to desirable effective degrees of freedom for each term in model 7 are listed
in Table 3.5. Figure 3.12 shows the MCMC trace plots for parameters u_{10},
λ_1, λ_2, λ_3, λ_4, $log(\lambda_5)$, $log(\lambda_6)$, $log(\lambda_7)$ and δ_0 under model 7 with scaled χ^2_1
priors. Convergence is rapid in all cases. The Bayes factors under both Pareto
and scaled χ^2_1 priors for model comparison and the specific terms to be tested
are listed in Table 3.6.

Based on Table 3.6, under either the Pareto or the scaled χ^2_1 priors, we
conclude that there is sufficient evidence that $ls_{23}(dog, time)$, $l_{23}(dog, time)$,
$l_{13}(dog, time)$, $l_2(dog)$, $l_1(group)$ and $s_3(time)$ are significant in predicting
potassium. However BF_{54} didn’t provide sufficient evidence to conclude if
$ls_{13}(group, time)$ is significant or not. Figure 3.13 shows the fits from model
7, model 3, model 1 and model 0, while the most suitable fit to the dataset is
model 7 as confirmed in the model selection.

In the study conducted by Wang and Ke (2004), model 7, model 6 and model 5 in equations (3.73), (3.74) and (3.75) were fit to the data. Through the AIC criteria, model 7 was judged best. The Bayes factor analysis suggests that the \(ls_{13}(group, time)\) term could be omitted. The focus of their study is more in model fitting and parameter estimation rather than hypothesis testing. The flexibility of hypothesis testing is the advantage of this fully Bayesian SSANOVA approach.

Table 3.5: The \(\lambda_s\) for each term in Model 7 giving the desirable effective degrees of freedom.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(s_3(time))</th>
<th>(l_{13}(group, time))</th>
<th>(ls_{13}(group, time))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective df</td>
<td>0.0001</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(l_{23}(dog, time))</th>
<th>(ls_{23}(dog, time))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>10</td>
</tr>
<tr>
<td>Effective df</td>
<td>2.08</td>
</tr>
</tbody>
</table>

Table 3.6: The Bayes factors for testing each term in model 7 adapted both scaled \(\chi^2\) and Pareto priors in all the terms except \(l_2(dog)\) and \(l_1(group)\), which received Zellner-Siow priors.

<table>
<thead>
<tr>
<th>Terms</th>
<th>(BF_{76})</th>
<th>(BF_{65})</th>
<th>(BF_{54})</th>
<th>(BF_{43})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ls_{23}(dog, time))</td>
<td>954</td>
<td>1.58 \times 10^4</td>
<td>1.23</td>
<td>4.56 \times 10^5</td>
</tr>
<tr>
<td>(l_{23}(dog, time))</td>
<td>116</td>
<td>3.85 \times 10^3</td>
<td>1.27</td>
<td>3.86 \times 10^5</td>
</tr>
<tr>
<td>(ls_{13}(group, time))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l_{13}(group, time))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(BF_{32})</td>
<td>(BF_{21})</td>
<td>(BF_{20})</td>
<td>(BF_{10})</td>
<td></td>
</tr>
<tr>
<td>(scaled \chi^2_{l})</td>
<td>9 \times 10^{63}</td>
<td>4.3 \times 10^{31}</td>
<td>8.08 \times 10^{63}</td>
<td></td>
</tr>
<tr>
<td>(Pareto)</td>
<td>6 \times 10^{62}</td>
<td>3.8 \times 10^{31}</td>
<td>8.07 \times 10^{63}</td>
<td></td>
</tr>
<tr>
<td>(Terms)</td>
<td>(l_2(dog)^*)</td>
<td>(l_1(group)^*)</td>
<td>(s_3(time)^*)</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4

Fully Bayesian SSANOVA for Binary response variables

In Chapter 3, the fully Bayesian SSANOVA model is for Gaussian response variables. In this chapter it will be extended to binary response variables.

4.1 Binary response variable

Let \(y \) denotes the vector with components \(y_i, \ i = 1, 2, \ldots, n \), where \(y_i \) is the observed response with only two possible outcomes. Take \(y_i \) to be independent Bernoulli random variables with probability \(p_i = p(y_i = 1) = H(x'_i \beta) \), where \(x'_i = (x_{i1}, \ldots, x_{ip}) \), the data vector for the \(i \)th case, \(\beta = (\beta_1, \ldots, \beta_p)' \) are the parameters to be estimated and \(H \) is a cumulative distribution function for a continuous random variable. The inverse, \(H^{-1} \), is also known as the link function. There are many choices for link function. One popular choice is \(H = \Phi \), the cumulative distribution function of a standard normal distribution, leading to the probit model. Thus the probability function of \(y \) is

\[
p(y \mid \beta) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{(1-y_i)}
\]
As in Hastie and Tibshirani (1999), Gu (2002) and Wang and Ke (2004), this generalized linear model setup can be extended to a generalized additive model with the probability

\[p_i = p(y_i = 1) = H \left(\mu + \sum_{j=1}^{k} f_j(x_{ij}) \right), \]

(4.1)

where \(\mu \) is the constant term and the \(f_j \) represent linear effects, smooth effects or interaction effects.

The SSANOVA approach has been applied to generalized linear models by Gu (2002). In this section, we extend the fully Bayesian SSANOVA models of Section 3.2.1 to the case of probit regression. The solution for fully Bayesian SSANOVA model discussed in Section 3.2.1 was for a Gaussian response variable. To extend the work for binary response variables, one solution is through data augmentation. Followed Albert and Chib (1993), introduce \(n \) independent latent variables \(z = (z_1, \ldots, z_n) \), where the \(z_i \) are independent \(N((Td + (\sum_{k=1}^{p} \Sigma_k) c)_i, 1) \), and \(y_i = 1 \) if \(z_i > 0 \) and \(y_j = 0 \) if \(z_j < 0 \). With the solution for the fully Bayesian SSANOVA model discussed in Section 3.2.1, the distribution of the latent variables \(z \) is

\[
\begin{pmatrix}
F'_1 z \\
F'_2 z
\end{pmatrix} \mid d, u_2, \lambda \sim N\left(\begin{pmatrix}
F'_1 Td \\
u_2
\end{pmatrix}, I_n \right), \\
z \mid d, u_2, \lambda \sim N(Td + F_2 u_2, I_n),
\]

(4.2)

where the variance is set to be 1 for identifiability.
The prior for d is assigned to be flat. The prior distribution for u_2 is suggested as equations (3.23) and (3.24). As discussed by Sun et al. (2001), the posterior distribution for z is proper. For the linear effects, Zellner-Siow priors in equation (3.44) are suggested as discussed in Section 3.2.2. For smooth effects, the scaled χ^2_1 priors are suggested as discussed in Section 3.2.2. The scale for the scaled χ^2_1 is selected by the effective degrees of freedom discussed in Section 3.1.2.

Given the data y_i, the full conditional truncated normal distribution for the latent variables z given y satisfies

$$p(z \mid y, d, u_2, \lambda) \propto \prod_{i=1}^{n} \{1_{(z_i>0)}1_{(y_i=1)} + 1_{(z_i<0)}1_{(y_i=0)}\} \times (2\pi)^{-n/2}e^{-\frac{1}{2}(z-Td-F_2u_2)^2},$$

where $1_{(x \in A)}$ is the indicator function, $1_{(x \in A)} = 1$ if $x \in A$ and 0 otherwise.

This can be simplified as

$$y_i = 1, \quad z_i \mid d, u_2, \lambda \sim N_+((Td + F_2u_2)_i, 1), \quad (4.3)$$

$$y_i = 0, \quad z_i \mid d, u_2, \lambda \sim N_-((Td + F_2u_2)_i, 1), \quad (4.4)$$

where N_+ is the positive normal distribution restricted to $(0, \infty)$ and N_- is the negative normal distribution restricted to $(-\infty, 0)$.

Followed the algorithm in Devroye (1986), sampling from the full conditionals in equations (4.3) and (4.4) can be accomplished as follows:

$$y_i = 1, \quad z_i > 0: \quad z_i = (Td + F_2u_2)_i + \Phi^{-1}(1 - u\Phi((Td + F_2u_2)_i)), $$

70
\[y_i = 0, \ z_i < 0 : \quad z_i = (Td + F_2u_2)_i + \Phi^{-1}(u\Phi(-(Td + F_2u_2)_i)), \]

where \(u \) is a random draw from the uniform distribution on \([0, 1]\).

The full conditionals for each of the parameters are similar to equations (3.25), (3.26), (3.27) except that \(z \) is involved, scaled \(\chi^2 \) priors have been assigned for smooth effects, and \(\delta_0 = 1 \):

\[
d \mid v_k \sim N\left((T'T)^{-1}T'\left(z - F_2\sum_{i=1}^{p} Q_i v_i\right), (T'T)^{-1}\right),
\]

\[
v_k \mid v_{-k}, \lambda_k \sim N\left((I_{r_k} + \lambda_k D_k^{-1})^{-1}Q'\tilde{F}^2\left(z - Td - F_2\sum_{i=1, i \neq k}^{p} Q_i v_i\right), (I_{r_k} + \lambda_k D_k^{-1})^{-1}\right), \quad k = 1, \ldots, p,
\]

\[
\lambda_k \mid v_k \sim \text{Gamma}\left(\frac{r_k + 1}{2}, \frac{2}{v'_k D_k^{-1}v_k + 2\beta_k}\right), \quad k = 1, \ldots, p,
\]

where \(r_1, \ldots, r_p \) are the ranks of the nonzero eigenvalue matrices \(D_1, \ldots, D_p \), \(\beta_1, \ldots, \beta_p \) are the scale parameters in the prior distribution for each smoothing parameter \(\lambda_1, \ldots, \lambda_p \), and \(v_{-k} \) denotes the set of vectors \(\{v_j, j \neq k\} \). When the covariates are discrete, the full conditionals for each of the parameters stay the same except in equation (4.6), where the diagonal elements in \(D_k^{-1} \) are replaced by \(n/K \) and in equation (4.7), where \(\beta_k \) is replaced by \(1/2 \).

The posterior distributions for each of the parameters can be simulated based on the full conditionals.
4.1.1 Simulated Example 2

Consider a simulated dataset with two continuous independent variables. The sample size is $n = 500$, and x_{1i} and x_{2i} are independent samples from the uniform distribution on [0, 1]. The binary response variable y_i is 0 if $0.25x_{1i} + 1.5 \sin(2\pi x_{2i} - \pi) + \varepsilon_i$ is negative and y_i is 1 if $0.25x_{1i} + 1.5 \sin(2\pi x_{2i} - \pi) + \varepsilon_i$ is positive. The variance $\delta_0 = 1$. The model proposed for this study is a smoothing spline function

Model 6 : $f(x_1, x_2) = \mu + \beta_1 x_1 + \beta_2 x_2 + s_1(x_1) + s_2(x_2) + ls_{12}(x_1, x_2) + sl_{12}(x_1, x_2) + s_{12}(x_1, x_2), \quad (4.8)$

where μ is the constant term, β_1 is the coefficient for the linear effect in x_1, β_2 is the coefficient for the linear effect in x_2, s_1 represents the smooth effect in x_1, s_2 represents the smooth effect in x_2, ls_{12} represents the interaction effects between the level effects in x_1 and smooth effect in x_2, sl_{12} represents the interaction effects between the smooth effect in x_1 and level effects in x_2 and s_{12} represents the interaction effects between the smooth effect in x_1 and smooth effect in x_2. To test for the significance of each term in model 6, a series of partially nested models of interest is proposed:

Model 5 : $f(x_1, x_2) = \mu + \beta_1 x_1 + \beta_2 x_2 + s_1(x_1) + s_2(x_2) + ls_{12}(x_1, x_2) + sl_{12}(x_1, x_2), \quad (4.9)$

Model 4 : $f(x_1, x_2) = \mu + \beta_1 x_1 + \beta_2 x_2 + s_1(x_1) + s_2(x_2) + ls_{12}(x_1, x_2), \quad (4.10)$

Model 3 : $f(x_1, x_2) = \mu + \beta_1 x_1 + \beta_2 x_2 + s_1(x_1) + s_2(x_2), \quad (4.11)$
Model 2: \[f(x_1, x_2) = \mu + \beta_1 x_1 + \beta_2 x_2 + s_1(x_1), \]
(4.12)

Model 1: \[f(x_1, x_2) = \mu + \beta_1 x_1 + \beta_2 x_2 + s_2(x_2). \]
(4.13)

Two different types of priors, Pareto and scaled \(\chi^2_1 \), were applied to test the smooth effects. The scale parameters in the Pareto priors or those for the \(\chi^2_1 \) priors were selected by effective degrees of freedom. The values of \(\lambda \) corresponding to desirable effective degrees of freedom for each term in model 6 are listed in Table 4.1. Figure 4.1 shows the MCMC trace plots for parameters \(u_{10}, \log(\lambda_1), \log(\lambda_2), \log(\lambda_3), \log(\lambda_4) \) and \(\log(\lambda_5) \) under model 6 with scaled \(\chi^2_1 \) priors, which have converged in all cases. These were used in the computation of Bayes factors. The Bayes factors under both the Pareto and scaled \(\chi^2_1 \) priors for model comparison and the specific term to be tested are listed in Table 4.2.

Based on Table 4.2, under either the Pareto or the scaled \(\chi^2_1 \) priors, we conclude that there is insufficient evidence that \(s_{12}(x_1, x_2), sl_{12}(x_1, x_2), ls_{12}(x_1, x_2) \) and \(s_1(x_1) \) are significant and sufficient evidence that \(s_2(x_2) \) is significant in predicting \(y \). The most parsimonious model to predict \(y \) is model 1, which agrees with the true model. Figure 4.3 shows the fits of components in model 6 with 95% credible sets, and Figure 4.2 shows the fits of each component in model 6 and prediction by model 6, which help us to visualize the effects.

Table 4.1: The \(\lambda \)s for each term in Model 6 giving the desirable effective degrees of freedom.

<table>
<thead>
<tr>
<th></th>
<th>(s_1(x_1))</th>
<th>(s_2(x_2))</th>
<th>(ls_{12}(x_1, x_2))</th>
<th>(sl_{12}(x_1, x_2))</th>
<th>(s_{12}(x_1, x_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Effective df</td>
<td>5.27</td>
<td>5.25</td>
<td>4.57</td>
<td>4.43</td>
<td>5.57</td>
</tr>
</tbody>
</table>

73
Table 4.2: The Bayes factors for testing each term in model 6 adapted both scaled χ^2_1 and Pareto priors.

<table>
<thead>
<tr>
<th>Terms</th>
<th>BF_{65}</th>
<th>BF_{54}</th>
<th>BF_{43}</th>
<th>BF_{32}</th>
<th>BF_{31}</th>
</tr>
</thead>
<tbody>
<tr>
<td>scaled χ^2_1</td>
<td>0.471</td>
<td>0.345</td>
<td>0.125</td>
<td>3.02×10^7</td>
<td>0.232</td>
</tr>
<tr>
<td>Pareto</td>
<td>0.347</td>
<td>0.272</td>
<td>0.156</td>
<td>2.15×10^7</td>
<td>0.260</td>
</tr>
<tr>
<td>Terms</td>
<td>$s_{12}(x_1, x_2)$</td>
<td>$sl_{12}(x_1, x_2)$</td>
<td>$ls_{12}(x_1, x_2)$</td>
<td>$s_{2}(x_2)$</td>
<td>$s_{1}(x_1)$</td>
</tr>
</tbody>
</table>

4.1.2 Wisconsin Epidemiological Study of Diabetic Retinopathy

A dataset from Wahba et al. (1995) is revisited using a fully Bayesian binary response SSANOVA model. The Wisconsin Epidemiological Study of Diabetic Retinopathy (WESDR) is an epidemiological study of a cohort of diabetic patients receiving their medical care in an 11-county area in Southern Wisconsin. Detailed descriptions of the data can be found in Klein and DeMets (1988). A number of medical and demographical variables were collected for this study. We analyze the subgroup of the younger onset population, consisting of 669 subjects with no or non-proliferative retinopathy at the start, and no missing data from the variables we studied. The goal of this study was to examine how the progression of diabetic retinopathy at the first follow-up depends on the following continuous covariates: dur (duration of diabetes at baseline), gly (glycosylated hemoglobin, a measure of hyperglycemia), and bmi (body mass index = weight in kg/(height in m)2).

A smoothing spline function is proposed to study the effect of each covariate.

Model 13: $f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_1(gly)$

$+ s_2(dur) + s_3(bmi) + sl_{12}(gly, dur)$

$+ ls_{12}(gly, dur) + s_{12}(gly, dur)$, \hspace{1cm} (4.14)
where μ is the constant term, β_1 is the coefficient for the linear effect in gly, β_2 is the coefficient for the linear effect in dur, β_3 is the coefficient for the linear effect in bmi, s_1 represents the smooth effect in gly, s_2 represents the smooth effect in dur, s_3 represents the smooth effect in bmi, sl_{12} represents the interaction effects between the smooth effect in gly and linear effects in dur, ls_{12} represents the interaction effects between the linear effects in gly and dur, s_{12} represents the interaction effects between the smooth effect in gly and smooth effect in dur.

To test for the significance of each term in model 13, a series of partially nested models of interest is proposed. The partially nested models are:

Model 12 :
$$f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_1(gly) + s_2(dur) + s_3(bmi) + sl_{12}(gly, dur) + ls_{12}(gly, dur), \quad (4.15)$$

Model 11 :
$$f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_1(gly) + s_2(dur) + s_3(bmi) + sl_{12}(gly, dur), \quad (4.16)$$

Model 10 :
$$f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_1(gly) + s_2(dur) + s_3(bmi), \quad (4.17)$$

Model 9 :
$$f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_1(gly) + s_2(dur), \quad (4.18)$$

Model 8 :
$$f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_1(gly), \quad (4.19)$$

Model 7 :
$$f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi$$
The scaled χ_1^2 priors have been applied to test the smooth effects. The scale parameters for the χ_1^2 priors were selected by effective degrees of freedom. The values of λ corresponding to desirable effective degrees of freedom for each term in model 13 are listed in Table 4.3. Figure 4.4 shows the MCMC trace plots for parameters $log(\lambda_1)$, $log(\lambda_2)$, $log(\lambda_3)$, $log(\lambda_4)$, $log(\lambda_5)$ and $log(\lambda_6)$ under model 13, which have converged in all cases. These were used in the computation of Bayes factors. The Bayes factors with scaled χ_1^2 priors for model comparison and the specific term to be tested are listed in Table 4.4.

Based on Table 4.4, there is insufficient evidence to conclude that $s_{12}(gly, dur)$, $ls_{12}(gly, dur)$, $sl_{12}(gly, dur)$ and $s_1(gly)$ are significant and sufficient evidence to conclude that $s_3(bmi)$ and $s_2(dur)$ are significant in predicting progression of diabetic retinopathy. The most parsimonious model to predict y is

\begin{equation}
 f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_2(dur) + s_3(bmi). \tag{4.21}
\end{equation}

Wahba et al. (1995) analyzed this dataset and concluded the model to be

Model 6: $f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_2(dur)$

\begin{equation}
 + s_3(bmi) + sl_{32}(bmi, dur) + ls_{32}(bmi, dur) + s_{32}(bmi, dur). \tag{4.22}
\end{equation}
Table 4.3: The λs for each term in Model 13 giving the desirable effective degrees of freedom.

<table>
<thead>
<tr>
<th></th>
<th>$s_1(gly)$</th>
<th>$s_3(bmi)$</th>
<th>$s_2(dur)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Effective df</td>
<td>3.88</td>
<td>3.66</td>
<td>3.37</td>
</tr>
</tbody>
</table>

Table 4.4: The Bayes factors for testing each term in model 13 with scaled χ^2 priors.

<table>
<thead>
<tr>
<th>Terms</th>
<th>$BF_{13,12}$</th>
<th>$BF_{12,11}$</th>
<th>$BF_{11,10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_{12}(gly, dur)$</td>
<td>0.450</td>
<td>0.349</td>
<td>0.068</td>
</tr>
<tr>
<td>$ls_{12}(gly, dur)$</td>
<td>$sl_{12}(gly, dur)$</td>
<td>$s_{12}(gly, dur)$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terms</th>
<th>$BF_{10,9}$</th>
<th>BF_{98}</th>
<th>BF_{97}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_2(dur)$</td>
<td>10.3</td>
<td>525</td>
<td>0.145</td>
</tr>
<tr>
<td>$s_3(bmi)$</td>
<td>$s_1(gly)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wahba et al. (1995) excluded $s_1(gly)$ from the model, agreeing with our conclusion based on BF_{97}. However, they claimed that the interaction effects between bmi and dur, $f(bmi, dur) = sl_{32}(bmi, dur) + ls_{32}(bmi, dur) + s_{32}(bmi, dur)$, were not negligible by the evidence of examining the size of the fitted $f(bmi, dur)$ term, along with cross sections of its confidence intervals, suggesting that the components were not negligible in a practical sense.

To verify the significance of $f(bmi, dur)$, another set of partially nested models of interest was proposed based on model 6 in equation (4.22) to test the interaction effects between “dur” and “bmi”:

Model 5: $f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_2(dur)$

$$+ s_3(bmi) + sl_{32}(bmi, dur) + ls_{32}(bmi, dur), \quad (4.23)$$
Model 4: \[f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_2(dur) \]

\[+ s_3(bmi) + sl_{32}(bmi, dur), \quad (4.24) \]

Model 3: \[f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi + s_2(dur) \]

\[+ s_3(bmi), \quad (4.25) \]

Model 2: \[f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi \]

\[+ s_2(dur), \quad (4.26) \]

Model 1: \[f(gly, dur, bmi) = \mu + \beta_1 gly + \beta_2 dur + \beta_3 bmi \]

\[+ s_3(bmi). \quad (4.27) \]

Scaled χ^2_1 priors were applied to test each smooth effect. The scale parameters for the χ^2_1 priors were selected by effective degrees of freedom. The values of λ corresponding to desirable effective degrees of freedom for each term in model 6 are listed in Table 4.5. Figure 4.5 shows the MCMC trace plots for parameters U_{10}, $log(\lambda_1)$, $log(\lambda_2)$, $log(\lambda_3)$, $log(\lambda_4)$ and $log(\lambda_5)$ under model 6, which have converged in all cases. These were used in the computation of the Bayes factors. The Bayes factors with scaled χ^2_1 priors for model comparison and the specific terms to be tested are listed in Table 4.6.

Based on Table 4.6, there is insufficient evidence to conclude that

$s_{32}(bmi, dur)$, $ls_{32}(bmi, dur)$ and $s_{32}(bmi, dur)$ are significant and sufficient evidence to conclude that $s_3(bmi)$ and $s_2(dur)$ are significant in predicting progression of diabetic retinopathy. Figure 4.6 shows the fits of $s_3(bmi)$ and $s_2(dur)$ with 95% credible sets in Model 3 and the fit by model 3, which helps us to visualize the effects. Based on the definition of Bayes factor, the statistic to test $f(bmi, dur)$ is $BF_{63} = BF_{65} \times BF_{54} \times BF_{43} = 0.011$. This
is fairly strong evidence that the effect of $f(bmi, dur)$ is insignificant, which disagrees with the conclusion by Wahba et al. (1995). Thus we conclude the most parsimonious model is model 3. This fully Baysesian SSANOVA method has provided a more powerful tool for hypothesis testing in the interaction effects than the frequentist approach.

Table 4.5: The λs for each term in Model 6 giving the desirable effective degrees of freedom.

<table>
<thead>
<tr>
<th></th>
<th>$s_2(dur)$</th>
<th>$s_3(bmi)$</th>
<th>$sl_{32}(bmi, dur)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.01</td>
<td>0.01</td>
<td>0.001</td>
</tr>
<tr>
<td>Effective df</td>
<td>3.66</td>
<td>3.37</td>
<td>3.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$ls_{32}(bmi, dur)$</th>
<th>$s_{32}(bmi, dur)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>0.001</td>
<td>0.0005</td>
</tr>
<tr>
<td>Effective df</td>
<td>4.07</td>
<td>3.87</td>
</tr>
</tbody>
</table>

Table 4.6: The Bayes factors for testing each term in model 6 with scaled χ^2_1 priors.

<table>
<thead>
<tr>
<th></th>
<th>BF_{65}</th>
<th>BF_{54}</th>
<th>BF_{43}</th>
</tr>
</thead>
<tbody>
<tr>
<td>scaled χ^2_1</td>
<td>0.609</td>
<td>0.703</td>
<td>0.340</td>
</tr>
<tr>
<td>Terms</td>
<td>$s_{32}(bmi, dur)$</td>
<td>$ls_{32}(bmi, dur)$</td>
<td>$sl_{33}(bmi, dur)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BF_{32}</th>
<th>BF_{31}</th>
</tr>
</thead>
<tbody>
<tr>
<td>scaled χ^2_1</td>
<td>10.1</td>
<td>48.9</td>
</tr>
<tr>
<td>Terms</td>
<td>$s_3(bmi)$</td>
<td>$s_2(dur)$</td>
</tr>
</tbody>
</table>
Chapter 5

Comments and Future Work

Previous research in smoothing spline ANOVA models has focused on statistical inference in estimation and prediction while the needs of hypothesis testing for model selection have emerged. This study adapts a Bayesian approach to smoothing spline ANOVA models. These fully Bayesian smoothing spline ANOVA models provide flexibility for hypothesis testing and better statistical inference on parameters of interest since the posterior distribution for those parameters are available.

Smoothing spline ANOVA models have a tensor sum decomposition of inner product spaces to ensure that the estimated functions are from the orthogonal subspaces. This nice property facilitates Bayesian computation with better mixing in the MCMC steps, which provided more efficient estimation. However, computation in fully Bayesian smoothing spline ANOVA models is still intensive. To promote fully Bayesian SSANOVA models, we would like to improve the computation performance. Nychka (2000) suggests selecting a subset of the full bases derived from locations that are widely separated, which will give a good approximation to the full expansion. This is an opportunity for us to cut down the computation but still obtain a good approximation.
An alternative to model selection in some contexts is Bayesian model averaging (see, e.g. Clyde (1999)). One advantage is that Bayesian model averaging can be applied with improper priors, so it’s not necessary to use different priors for testing and estimation. We plan to explore model averaging methods in Bayesian SSANOVA models.
Figure 3.1: MCMC trace plots for samples of the log(\(\lambda\)) from the models with \(a_0=0.001\), \(a_0=0.0001\), \(a_0=0.00001\) and \(a_0=0.000001\) for the simulated example in Section 3.1.3. This is based on 50,000 iterations with 5,000 iterations for burnin.
Figure 3.2: The estimated $f(x_2)$ of the models with $a_0=0.001$ (dashed line), $a_0=0.0001$ (dotted line), $a_0=0.00001$ (dotdash line) and $a_0=0.000001$ (longdash line). The fits for $a_0=0.00001$ and $a_0=0.000001$ are overlapped. The solid line represents the true function. This is for the simulated example in Section 3.1.3 and based on 50,000 iterations with 5,000 iterations for burnin.
Figure 3.3: MCMC trace plots for samples of the log(\(\lambda\)) from the models with \(a_0 = 1 \times 10^{-5}\), \(a_0 = 1 \times 10^{-6}\), \(a_0 = 1 \times 10^{-7}\) and \(a_0 = 1 \times 10^{-8}\) for the manufacturing example in Section 3.1.4. This is based on 50,000 iterations with 5,000 iterations for burnin.
Figure 3.4: The estimated \(f(x_2) \) of the models with \(a_0 = 1 \times 10^{-5} \) (dotted line), \(a_0 = 1 \times 10^{-6} \) (dashed line), \(a_0 = 1 \times 10^{-7} \) (dotdash line) and \(a_0 = 1 \times 10^{-8} \) (longdash line). The fits for \(a_0 = 1 \times 10^{-6} \), \(a_0 = 1 \times 10^{-7} \) and \(a_0 = 1 \times 10^{-8} \) are almost overlapped. This is for the manufacturing example in Section 3.1.4 and based on 50,000 iterations with 5,000 iterations for burnin.
Figure 3.5: The estimated f of the model 0, model 1, model 2, model 3 and model 4 (corresponds to panels a, b, c, d and e) for the simulated example in Section 3.2.5 when $a_0=0.001$. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 3.6: The estimated f of the model 2, model 3 and model 4 (corresponds to panels a, b and c) for the manufacturing example in Section 3.2.6 when $a_0=0.001$. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 3.7: MCMC trace plots for samples of the u_{10}, the 10th component of \mathbf{u}, λ_1, λ_2 and δ_0 (corresponds to panels a, b, c and d) under model 2 in equation (3.70) for the Example 3.2 in Section 3.2.7. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 3.8: MCMC trace plots for samples of the u_{10}, the 10th component of \mathbf{u}, λ_1, λ_2 and δ_0 (corresponds to panels a, b, c and d) under model 2 in equation (3.71) for the Example 3.2 in Section 3.2.7. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 3.9: MCMC trace plots for samples of the u_{10}, the 10th component of u, λ_1, λ_2 and δ_0 (corresponds to panels a, b, c and d) under model 2 for manufacturing example in Section 3.2.7. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 3.10: MCMC trace plots for samples of the u_{10}, the 10th component of u, λ_1, λ_2, λ_3, λ_4, λ_5, λ_6, λ_7 and δ_0 (corresponds to panels a, b, c, d, e, f, g, h and i) under model 7 in equation (3.73) with scaled χ^2 priors for the Simulated Example 1 in Section 3.2.8. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 3.11: The estimated f of the model 7, model 3, model 1 and model 0 for the Simulated Example 1 in Section 3.2.8. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 3.12: MCMC trace plots for samples of the u_{10}, the 10th component of \bm{u}, λ_1, λ_2, λ_3, λ_4, $\log(\lambda_5)$, $\log(\lambda_6)$, $\log(\lambda_7)$ and δ_0 (corresponds to panels a, b, c, d, e, f, g, h and i) under model 7 with scaled χ^2 priors for the Dogs Example in Section 3.2.9. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 3.13: The estimated f of the model 7, model 3, model 1 and model 0 for the Dogs Example in Section 3.2.9. This is based on 30,000 iterations with 5,000 iterations for burnin.
Figure 4.1: MCMC trace plots for samples of the u_{10}, the 10th component of \mathbf{u}, $\log(\lambda_1)$, $\log(\lambda_2)$, $\log(\lambda_3)$, $\log(\lambda_4)$ and $\log(\lambda_5)$ (corresponds to panels a, b, c, d, e and f) under model 6 in equation (4.8) with scaled χ^2 priors for the Simulated Example 2 in Section 4.1.1. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
Figure 4.2: The estimate of each component in Model 6, $s_1(x_1)$, $s_2(x_2)$, $ls_{12}(x_1, x_2)$, $sl_{12}(x_1, x_2)$, $s_{12}(x_1, x_2)$ and the fit by model 6 in equation (4.8) with scaled χ^2_1 priors for the Simulated Example 2 in Section 4.1.1. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
Figure 4.3: The estimates of $s_{12}(0.5, x_2)$, $ls_{12}(0.5, x_2)$, $s_2(x_2)$, $s_{12}(x_1, 0.5)$, $sl_{12}(x_1, 0.5)$ and $s_1(x_1)$ with 95% credible sets in Model 6 with scaled χ^2 priors for the Simulated Example 2 in Section 4.1.1 (corresponds to panels a, b, c, d, e and f). Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
Figure 4.4: MCMC trace plots for samples of the $\log(\lambda_1)$, $\log(\lambda_2)$, $\log(\lambda_3)$, $\log(\lambda_4)$, $\log(\lambda_5)$ and $\log(\lambda_6)$ (corresponds to panels a, b, c, d, e and f) under model 13 in equation (4.14) with scaled χ^2_1 priors for the Diabetic Retinopathy Example in Section 4.1.2. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
Figure 4.5: MCMC trace plots for samples of the \(u_{10} \), the 10th component of \(\mathbf{u} \), \(\log(\lambda_1) \), \(\log(\lambda_2) \), \(\log(\lambda_3) \), \(\log(\lambda_4) \), and \(\log(\lambda_5) \) (corresponds to panels a, b, c, d, e and f) under model 6 in equation (4.22) with scaled \(\chi^2_1 \) priors for the Diabetic Retinopathy Example in Section 4.1.2. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
Figure 4.6: The estimates of $s_3(bmi)$ and $s_2(dur)$ with 95% credible sets in Model 3 and the fit by model 3 in equation (4.25) (corresponds to panels a, b and c) with scaled χ^2 priors for the Diabetic Retinopathy Example in Section 4.1.2. Those samples are the every 10th of the MCMC samples from the 30,000 iterations after 10,000 iterations for burnin.
Bibliography

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P. K. Goel and A. Zellner (Eds.), *Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de

VITA

Chin-I Cheng was born in Taoyuan, Taiwan R.O.C. She received her Bachelor degree of Science in Applied Mathematics from the Chung Yuan Christian University, Taiwan R.O.C. in 1994. In 1997 she earned her Master degree of Science in Statistics from the University of Arkansas in Fayetteville, AR. After gaining few years' work experience, she came to the United States again in 2004 for pursuing her doctoral degree. She is expecting to receive her Doctoral degree of Philosophy in Statistics from the University of Missouri-Columbia, Columbia, MO in July 2009. She will join the Department of Mathematics at Central Michigan University, Mt. Pleasant, MI as an assistant professor in August 2009. Her research interests are in the area of Bayesian statistics, nonparametric and semiparametric models, Bayesian smoothing spline ANOVA. (Last updated: July 2009).