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ABSTRACT

Two of the essential tasks in protein tertiary structure prediction are predicting

quality and selecting the best quality model from given model structures. Finding

solutions to these problems are fundamental to understanding the nature of pro-

teins and advancing in protein research area. In this thesis, we present efficient

algorithms that tackle both problems effectively. The algorithms are developed on

the well-known consensus-based idea that has been continuously succesful since

CASP6. For assessing the quality of structures, we develop several new methods

based on the idea of removing redundant structures and outliers. The algorithms

aims at finding suitable reference sets in computing the consensus-score in order

to improve the existing algorithms. The methods can use any suitable pair-wise

similarity measurement between a pair of models such as GDT-TS and Q score.

We also develop a very efficient method for computing Q score for large size prob-

lem. In our experimental results, the algorithms are applied to CASP8 dataset and

have achieved the superior performance over existing state-of-the-art methods in-

cluding the top1 method in the QA category of CASP8. For the selecting the

best model structure, our new methods are effective and perform better than other
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best-performing scoring functions by upto 7.6% based on the actual GDT-TS of

top1 selected model to the native structure. The selection result is obtained by

our method using Q score are slightly worse than those obtained using GDT-TS,

but using pair-wise Q score method is in general about 15 times faster than using

pair-wise GDT-TS method.
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Chapter 1

Introduction

Protein structure prediction can be considered as one of the most challenging goals

quested by bioinformaticians. Major advantage of understanding protein stucture

inevitably benefits the advance in field of medicine and biotechnology. With these

importances, the growth of protein structure database is skyrocketing. However,

only few of those protein structures have been solved experimentally due to the

difficulties of experimental approaches. These approaches, for instance X-ray

crystallography or NMR sprctroscopy, are very time-consuming and expensive to

accomplish. Fortuitously, computational methods for protein stucture prediction

have been raised to attention. They have become more and more predominant

and a main interest of many protein research groups around the world during

past recent years [1]. To help advance of computational methods, a bi-annual

community-wide experiment for protein structure prediction named CASP (Crit-

ical Assessment of Techniques for Protein Structure Prediction) started on 1994

1



has been held. CASP experiment is served as a place for many research groups to

apply their techniques to predict an amino acid sequences for which native struc-

ture is soon to be known [2].

Thus, ability to assess quality of protein structures that are predicted by com-

putational approaches is inevitably important. To bolster its importance, Qual-

ity Assessment category in CASP was officially created in year of 2006 during

CASP7.

Moreover, another important aspect in this area is protein structure selection

problem. Occasionally, protein structure prediction tools generate a large number

of structures with good candidates included but are inconsistent on selecting good

ones. As the result, finding reliable methods of choosing high quality protein

structure out of large number of quality protein structures is essential in protein

structure prediction.

In this thesis, we propose new algorithms, SigW algorithm, StepW algorithm

and RectW algorithm for protein structure quality assessment problem and protein

structure selection problem.

The new algorithms for quality assessment problem presented are based on the

consensus-based approaches which were proven their successes on recent CASP

datasets [3] and [4]. Our algorithms use the strength of consensus-based over an

“appropriate” reference set. RefSelect has shown that remove redundancy strategy

can produce satisfied results over the simple consensus-based algortihm, RefAll

[5]. Although ideas are similar, our implementations are different. Comparison

with the best performing algorithms on CASP datset evidence that our algorithms
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are consistently better than any other algorithms in terms of correlation results on

CASP8 dataset. Not only our new algorithms have superior performance in terms

of correlation results, but also they can select better protein structures on the same

dataset.

Furthermore, this study shows a series of algorithms, QRefAll algorithm,

AVGQRefAll algorithm and IRankQRefAll algorithm that base on consensus-

based approach, with different protein structure similarity score named Q score

[6]. With Q score consensus-based algorithm, we can choose a better protein

structure quality than any other state-of-the-art scoring functions can in terms of

true GDT-TS score of the top 1 ranked structure.

Organization of this thesis is structured as follows. In chapter 2, we define pro-

tein structure quality assessment problem and protein structure selection problem.

Also, we review previous works by others on the same area, picking the most well-

known and successful methods. In chapter 3, we extensively explain our proposed

algortihms for protein structure quality assessment problem and protein structure

selection problem. In chapter 4, we describe our plan of experiment, choice of

suitable parameters and results on CASP8 dataset. Lastly, conclusion and future

work are discussed in chapter 5.
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Chapter 2

Protein Structure Prediction Quality

Assessment and Selection Problem

Formulation and Existing

Algorithms

We define the protein structure prediction quality assessment (QA) problem in

this chapter. As we discussed in the earlier section, we seperate this section into

two different problems which are firstly, protein structure prediction QA problem

and secondly, protein structure selection problem. Therefore, in this chapter, we

define both problems mathematically.
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2.1 Problem Formulation

2.1.1 Protein Structure Prediction QA Problem

Let N be the native protein structure corresponding to a target. Let p be a number

of potential stuctures that were predicted by different prediction servers. Let S be

a set of such predicted structures for each target. Therefore, we have set S, where

S = {si, 1 ≤ i ≤ p}. Then, for each structure si ∈ S, we can use any algorithm to

predict a score X = {xi, 0 ≤ xi ≤ 1, 1 ≤ i ≤ p} by not applying any information

of N .

The true evaluation of each candidate to the native stucture is quantitatively

assessed by its GDT-TS (Global Distance Test Total Score) to the native structure

which is denoted by set Y = {yi, 1 ≤ i ≤ p}. GDT-TS metric will be explained

in detail in next chapter about protein structure similarity score. The reason why

we use GDT-TS as an evaluation measure because it has been using by CASP

evaluator as a judging criterion since CASP5 in 2002 [7].

To measure the performance of predicted score, we use a correlation coeffi-

cient ρ between X = {xi} and Y = {yi} :

ρ =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(2.1)

The perfect correlation is 1. Thus, predicted score X that perfectly correlate

with true GDT-TS to the native structure Y will give correlation score of ρ = 1.

Then, we can define X as the following:
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Definition 1 X is the predicted score for set S if :

argmax
x

ρ

Our objective is to generate predicted score X that is maximized the correla-

tion between a set of predicted quality score X and a set of true quality values

Y .

2.1.2 Protein Structure Selection Problem

We also use the same set of variables as we discussed in previous problem.

Definition 2 si is chosen as top selection protein structure ∈ S such that :

yi = max(Y )

Our goal is to pick si that is closest to the true top structure based on GDT-TS

score of such predicted structure which respect to the native structure.
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2.2 Existing Algorithms for Protein Structure Pre-

diction QA and Selection

2.2.1 Energy or Scoring Functions

A number of approaches are used for QA in protein structure prediction, but one

of the major idea is to utilize energy or scoring functions. These scoring func-

tions which can be categorized into two main groups are served as predictors of

the quality of given protein structures. The first category of scoring functions

is physics-based energy functions [8] [9] and the second category is knowledge-

based statistical scoring functions [10] [11].

Physics-based energy functions is constructed by applying experimental knowl-

edge which is backed up by physical properties in molecule level. Such knowledge

is called energy expression which is made up by components i.e. atomic repre-

sentation and functional forms. The advantage of physics-based energy functions

is that we can evaluate the actual energy based on internal coordination of amino

atoms in protein tertiary structure. However, some of drawbacks are first, the cal-

culation is very complicated to perform because many sources of information are

required for instance, atomic description of protein structure and solvent, second,

it is very computationally expensive and time-consuming for protein folding [12].

Knowledge-based energy statistical scoring functions is, on the other hand,

built by using statistical knowledge of experimentally known protein stuctures

which can discover misfolded proteins. Generally speaking, knowledge-based
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scoring functions are successful in identifying poor-quality protein structure [13].

Another reward of using knowledge-based scoring functions is that they are faster,

simpler and more accurate in term of performance than physics-based ones [14].

Nonetheless, knowledge-based scoring functions in some cases contain a lot of

noises because of their statistical properties. Thus, sometimes they fail to iden-

tify correctly-folded protein structures. Even though they are much simpler than

physics-based ones, they still have very complex structures and need many sources

of information involved in the calculation. Additionally, due to the fluctuation of

protein folding, protein quality prediction by using these scoring functions can be

unreliable. As the result of these limitations, we cannot solely depend on these

scoring functions.

Some of the most popular knowledge-based energy scoring functions are OPUS-

PSP [15], OPUS-Ca [16], DFIRE [17], RAPDF [18] which will be described more

in detail in our result section.

2.2.2 Machine Learning-based Algorithms

Next idea that is used to tackle protein quality assessment problem is machine

learning-based approach. Famous techniques that fall in this category are, for

example, support vector machine method and clustering-based method.

For support vector machine, it needs a learning process. In some cases, both

individual and consensus-based features are extracted from training set [19]. Also,

structural feature extracted from 3D coordinates of a model and 1D and 2D struc-

tural features predictors are included [20]. The goal of training process is to learn

8



a good function to correctly map input features to the true GDT-TS scores of given

models.

Clustering-based method is widely used in many applications in this research

area. The underlying hypothesis in here is that clustering concept can potentially

select the good quality protein structures. The idea behind method [21] is the

number of low-energy conformations nearby the correct folds is greater than the

incorrect ones. Hence, it searches for the largest cluster of structurally related

low-energy conformations rather than concentrating on the lowest energy con-

formation. The technique named SCAR [22] uses root-mean-square distance to

quatitatively assess between structures, then identify the similar structure groups

by applying k-means clustering algorithm and uses cluster centers as representa-

tive models. SPICKER [23] which can view as an improved SCAR and another

clustering-based approach [24] categorize pool of structures into many clusters by

using radius cuts which can be adjustable depending on the nature of the dataset.

Again, a cluster with the most number of neighbors is selected and cluster center

is constructed and used as a candidate of near-native conformations.

Nevertheless, these machine learning-based techniques are not flawless. The

success of these techniques supports by the fact that the models that is highly

similar to the others have better quality which is not necessarily true. An obvious

disadvantage of using machine learning-based methods is that groups of protein

structures are required. Then, they cannot evaluate protein structure individually

unlike in the case of scoring or energy functions.
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2.2.3 Consensus-based Algorithms

The third method is using consensus-based algorithm. Likewise, consensus-based

idea is similar to the clustering based method which use the underlying idea that

the structures similarly predicted to others tends to be more correct than dissimi-

larly predicted ones. However, consensus-based method does not use the “cluster

center” like it is usually built in clustering-based method. Instead, the pair-wise

similiarity score is computed between each and every pair of predicted structures.

Then, such scores are used as crucial information to predict the quality of struc-

tures [19]. For example, 3D-Jury system [25] compares all models with each other

and calculates similarity score for them. Then, the system neglects to consider

some models according to a predetermined cutoff value which follows the idea of

consensus-based algorithm. After that, final score is calculated by averaging the

similarity score for set of the considered models.

Consensus-based algorithms stand out from other algorithms, especially in re-

cent CASP competitions. Results by Model Quality Assessment Programs (MQAPs)

using similarity score with consensus-based method in CASP7 and CASP8 are

significantly better than any other methods as appeared in [3] and [4], respec-

tively.

However, none of algorithms is absolutely perfect and there is no exception

for consensus-based algorithm. The major disadvantage of it is the incapability

of evaluating each protein structure individually. In other words, consensus-based

algorithm needs multiple models in order to build a consensus-based score for

each structure. It hinders us from assessing each single protein structure one at
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a time. Another disadvantage is that if we have a pool that contains majority of

bad model structures. This negatively effects the overall result because that fact

that consensus-based algorithm assumes that majority of structures in the pool are

good. Therefore, it can give a very poor selection and quality assessment results

in those kind of cases.

2.2.4 Multi-approach Algorithms

Another successful approach that has been used among the top groups in model

quality assessment category in CASP8 is multi-approach algorithms. Multi-approach

idea combines two or more aforementioned algorithms in hoping that it could

combine good properties from different approaches together. One example in this

category is MULTICOM-CLUSTER server in CASP8 [26], it uses their scoring

functions to find the good reference set of models. After that, all models are

compared with reference set and global and local quality scores will be predicted.

Another example that is belong to this category is QMEANclust [27]. It uses

consensus-based information and their own in-house scoring function QMEAN.

QMEANclust use QMEAN scoring function to filter out some bad models from

consideration. Then, it uses consensus-based score on those filtered models as the

final prediction score. Last but not least, ModFOLDclust v2.0 [28] incorporates

both consensus-based score and artificial neural network-based score in compen-

sation for the weakness of applying each method independently.
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Chapter 3

New Consensus-based Algorithms

For Protein Structure QA and

Selection Problem

In this section, we propose new consensus-based algorithms for both protein struc-

ture prediction QA problem and protein structure selection problem. It has been

mentioned that consensus-based method have shown its success over QA cate-

gory on recent CASP competitions. Moreover, it can be very effective for protein

structure selection problem, as well. In structure prediction QA problem, our ob-

jective is to numerically assess protein structures as closest as possible to the true

GDT-TS to the native structure. Meanwhile, in structure selection problem, we

rather focus on how to be able to choose the best structure from the pool. These

two problems seem to be similar to each other in the sense that if we have a trusty
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solution for protein structure QA problem, selecting the best structure should be

not too hard to be achieved. So, in this study, we present critical methodology

behind our algorithms for both problems. First, we explain some useful protein

structure similarity measures. Then, we describe simple consensus-based method

as our fundamental idea. Then, later in this section, we will show that with some

tweaks on simple consensus-based method, we can achieve better results in both

problems.

3.1 Protein Struture Similarity Scores

Structural arrangement is one of the most challenging limitation found in compar-

ing protein structure measures. Even though, there are a lot of measures used to

evaluate protein structures similarity comparison(e.g. root mean square diviation

or RMSD), they periordically fails to give accurate results because the small per-

turbations between two protein structures can result in a high RMSD score [29].

This can lead to wrong assessment by suggesting that such two such structures are

very dissimilar overall.

In our study, similarity score plays an important role in our consensus-based

algorithm because the fact that we base on our primary strategy that we can de-

termine a quality of a structure by using consensus-based score of every other

structure. In here, consensus-based score will be computed from similarity score

between structures.
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3.1.1 GDT-TS

GDT-TS stands for Global Distance Test Total Score which measures global sim-

ilarity between two given protein structures. The more GDT-TS of the two struc-

tures is, the more similar both structures are.

GDT-TS is computed by the following formula:

GDT − TS(si, sj) = (P1 + P2 + P4 + P8)/4 (3.1)

where Pd is a percent of residues from si that can be superimposed with corre-

sponding residues from sj under selected distance cutoffs d, d ∈ {1, 2, 4, 8} [29].

Based on formula, the GDT-TS is in range of 0 to 1. For a very similar pair of

structures, GDT-TS is close to 1. While, for a very dissimilar pair of structures,

GDT-TS is close to 0. The calculation of GDT-TS in this study is computed by

using TM-score [30]. So, when we compare similarity value of one structure to

every other by using GDT-TS measure, resulting in a pair-wise GDT-TS similarity

matrix of every pair of structures in the group.

Definition 3 Let G be the pair-wise GDT-TS matrix. G = [gi,j]1≤i≤p,1≤j≤p

satisfies the following conditions:

gi,j ≥ 0 (1)

gi,j = gj,i (2)

gi,i = 1 (3)

Intuitively, the values on the diagonal of pair-wise similarity score matrix is
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equal to 1, because they measure the similarity between one structure to itself.

Also, the value of gi,j and gj,i must be the same due to the fact that similarity

between the same pair of structure must be equal and independent to the order of

input two structures.

3.1.2 Q Score

Though, GDT-TS is a very good indicator detecting how similar two structures

are, GDT-TS in some cases misses to locate good candidates [29]. Thus, Q score,

as opposed to GDT-TS, is another useful metric that aims to overcome this limita-

tion [6]. To calculate Q score, internal distance matrices of two protein structures

are extracted and used to indetify the similarity between such pair of structures.

Q Score Formulations

We use the Q score based on formulation presented in [6]. Let matrix R to be a

internal distance matrix. Let assume that both structures have the equal number

of cα atoms p. R = {rij, rii = 0, rij = rji} is computed independently for both

candidates by using coordinates of each Cα atom of residue i against other Cα

atom of all other p − 1 residues in a protein structure, resulting of p(p − 1)/2

non-zero items matrix.

Although other distance measures can be applied, we use Euclidean distance

for building inner matrix R in this study. Then, we set one matrix as a reference

matrix called R0 = [r0ij]p×p. For each pair of residues (i 6= j) in matrix Q is

computed by the following.
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Q score Square Error Formulation:

Qsq−e = [qij]p×p = exp[−|rij − r0ij|2]. (3.2)

Also, another variation of Q score formulation is called relative error Q-measure

[6] which replaces Equation 3.2 by the following formula.

Q score Relative Error Formulation:

q1 = exp[−|(rij − r0ij)/r0ij|].

q2 = exp[−|(rij − r0ij)/rij|].

Qrel−e = [qij]p×p =
(q1 + q2)

2
. (3.3)

Definition 4 Let Q be the Q score matrix. Q = [qi,j]1≤i≤p,1≤j≤p satisfies the

following conditions:

qi,j ≥ 0 (1)

qi,j = qj,i (2)

qi,i = 1 (3)

Notice that matrix Q has utterly same properties as matrix G presented in

GDT-TS similarity score. Only diffference is that matrix Q using Q score as pro-

tein structure similarity score, while matrix G using GDT-TS as protein structure

similarity score.

Overall similarity score between two structures can be computed by averaging

every element in Q = {qij} which is refered as Qtotal in this paper. For a perfectly
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matched pair of structures, |rij − r0ij| = 0 which yields qij = 1 and Qtotal = 1.

For a very different pair of structures, |rij − r0ij| >> 0 which yields qij ≈ 0 and

Qtotal ≈ 0 [6].

Furthermore, in order to get in-depth structural information, we also useQshort

and Qlong by computing only the qij that are in range of |i− j| ≤ 20 and |i− j| >

20, respectively. After that, we sort those pairs and average top 20, 40, 60, 80 and

100% of the best pairs that is in range of |i− j| ≤ 20 for Qshort calculation and is

in range of |i− j| > 20 for Qlong calculation [6].

3.1.3 A New Efficient Method for Computing Q score

According to our Q score formulations in last section, computing Q score for a

small size protein might be easy and straightforward, but computing for a large

size problem can be very time-consuming. Why? Let us think about process of Q

score, specifically. Total time complexity of computing Q score (Qtotal) is (time

of computing internal distance R) + (time of averaging every qij).

Assume that we are consider the same size of a pair of predicted protein struc-

tures. Let n be number of Cα atoms of each model. The time complexity of

computing internal distance matrix R is O(n2) since we calculate the pair-wise

distance between one Cα atom to another for all n atoms in each structure. The

time complexity of averaging is linear. Therefore, total time complexity is going

to be O(n2). As the result, if we have a large size problem, computing Q score

will be very computational expensive.

We well realize this problem, so we design an efficient way to calculate Q
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score. This method based on the well-known statistics approach called sampling.

Sampling is the statistical practice concerned with the selection of random subset

of individual observations within a population of individuals intended to yield

some useful knowledge about the population.

We slightly change our process of computing Q score by including sampling

step. Firstly, we randomly select m points of our sampling process and record in

any suitable data structure as it is called pool of sampling. Each point represents a

coordinate of element (i, j) on matrix R, for example point no.1 represents a co-

ordinate (2,4) and point no.2 represents a coordinate (3,20) on matrix R, etc until

we reach m points. However, our points are randomly picked with the exception

of the following criteria.

• i 6= j

This is to make sure that values of 0 do not dominate the pool of sampling in

later calculation because distance between any coordinate to itself is zero,

ri,j;i=j = 0.

• (i, j) or (j, i) must not be present in ealier picks

This is to make sure that the coordinates in our pool of sampling is not

redundant which coming from picking the same coordinate or swapped co-

ordinate because distance of two coordinates is independent to the order,

ri,j = rj,i.

• |i− j| < 20 or |i− j| > 20, for Qshort or Qlong only

In cases, we consider using Qshort or Qlong, this criterion must be met in
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order to follow the formulation. If Qtotal is opted to use, this structural

criterion is not necessary and omitted.

Secondly, we only compute the formula in Equation 3.2 or Equation 3.3 on

those points in sampling pool. Third, in this case, we have only i points of qi,j to

be considered. Finally, average all considered qi,j in the sampling pool and use

average value to be final Q score of a pair of structures.

Sampling points

The sucess of sampling process relies on the fact that the characteristic of sam-

pling points and the actual population. Therefore, we need to have significant

number of pointsmwhich is big enough to hold that property. However, if number

m is too large, advantage in term of time execution of applying sampling approach

will be reduced significantly. For instance, sampling process loses its advantage

if we opt to use m = 10000, but using m = 100 is too less and information of

using too less sampling points is not accurate to the actual population. Hence, we

conduct our experiment on CASP8 dataset to select appropriate m value.

In Figure 3.1, it shows the average percentage of error difference between

pair-wise Q score matrix of using sampling with different number of points and

using no sampling at all. Intuitively, we can see that percentage of error decrease

monotonically when applying more number of sampling points. At m = 2000,

average percentage of error is down to 2% comparing with no sampling process

used.

In Figure 3.2 and 3.3, it shows the time execution of algorithm using pair-wise
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Figure 3.1: Comparison of average % of error difference between pair-wise Q
score with different sampling points m (100, 200, 300, 500, 1000, and 2000
points, respectively) used and pair-wise Q score with no sampling points used
on 122 targets of CASP8 dataset

Q score sampling 2000 points is significantly faster than using pair-wise GDT-TS.

The targets are sorted in descending order by average length of cα atoms of pre-

dicted protein structure from participated servers in each target. Total time execu-

tion of pair-wise GDT-TS matrix on CASP8 datset is over 194 hours, meanwhile

pair-wise Q score with 2000-point sampling is only about 7 hours. On average,

pair-wise Q score sampling 2000 points is 20 times quicker than pair-wise GDT-

TS per target on CASP8 dataset.
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Figure 3.2: Comparison of log of time execution of computing pair-wise Q score
using sampling process at 2000 points, time execution of computing pair-wise
Q score using no sampling process and time execution of computing pair-wise
GDT-TS on the same dataset

Figure 3.3: Graph represents speed up ratio between using PW Q score 2000
points sampling over PW GDT-TS and PW Q score no sampling over PW GDT-
TS on the same dataset
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3.2 Simple Consensus-based Algorithms

After, we understand the importance of similarity score in consensus-based al-

gorithm, we like to describe more in detail about the algorithm. The underlying

concept of success of using consensus-based algorithm is the fact that the struc-

tures that are more similar to the other structures in the same group are more likely

to be better quality structures than the less similar ones [31] [19] [25] [5].

Firstly, we begin our discussion with a fairly basic consensus-based algorithm

called RefAll [5]. In RefAll, we calculate the quality of given structures by com-

puting any suitable similarity score between one structure and others as known

as pair-wise similarity score matrix in this study. Then, we use consensus-based

score from such matrix to evaluate each structure. RefAll computes similarity

scores between pairs of structures and also uses all the structure as the reference

set which is described in pseudo code in Algorithm 1.

Let matrixM be a pair-wise similarity score of set of p structures S = {si, 1 ≤

i ≤ p} in a target. Thus, as introduced ealier in in this section, mi,j is the value of

similarity score computed by either GDT-TS metric or Q score metric of structure

si and sj . The following is the basic properties of matrix M which is exactly the

same as matrix G or matrix Q.

We can easily see that in this study, we can alternate of our pair-wise similarity

matrix M = [mi,j]p×p between two choices of similarity scores which are GDT-

TS and Q Score as previously discussed (at (1) in Algorithm 1). From this point

onwards, we will call GRefAll for RefAll with GDT-TS as a similarity score and
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Figure 3.4: The calculation for GRefAll QA consensus-based score is shown. The
calculation starts with pairwise GDT-TS score of all protein structures available
(figure shows 7 structures for an illustrative example). Then, final QA score is
evaluated by averaging all GDT-TS values in each row as presented in Algorithm
1

Algorithm 1 RefAll(S)
Require: Set of protein structures S = {si, 1 ≤ i ≤ p}

for all si ∈ S do

xi =
1
|S|

S∑
sj

msi,sj (1)

end for
return Set of scores for each candidate, X = {xi, 1 ≤ i ≤ p}

QRefAll for RefAll with Q score as a similarity score.

Specifically, for QRefAll algorithm , the msi,sj in above algorithm is replaced

by qsi,sj which is item in ith row and jth column of Q matrix. Therefore, if we use

Q score at (1), it can be calculated as either Qsq−e by using Equation 3.2 or Qrel−e

by using Equation 3.3 and we learned from formulation section that choice of

using Q score can alternatively be Qtotal or Qshort or Qlong. In summary, QRefAll

includes six variations of Q score formulations such as Qsq−e
short , Qsq−e

long , Qsq−e
total
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, Qrel−e
short , Qrel−e

short and Qrel−e
short based on formulation used and whether structural

infomation is used or not.

On CASP8 dataset, GRefAll algorithm considerably outperforms any other

algorithms used in 122 targets of CASP8 dataset in QA category. Moreover, re-

sult of GRefAll is even slightly better than the top 5 teams that participating on

estimating global model quality assessment category in CASP8 by the pearson

correlation result ρ [4] [27]. Note that in the example shown above in Figure

3.4 predicted score X is used to correlate with actual GDT-TS between 7 protein

structures and the native structure set Y in order to get ρ.

Table 3.1: Comparison of the Top 5 servers participating in CASP8 competition
and simple consensus-based algorithms (RefAll)

Group Name Group ID NO. of targets Avg. result(Pearson corr.)
GRefAll∗ N/A 122 0.9290
Pcons Pcons [32] 239 122 0.9241
ModFOLDclust [28] 31 122 0.9233
SAM-T08-MQAC 56 121 0.9205
QMEANclust [27] 27 121 0.9085
MULTICOM [26] 453 121 0.9021
*GRefAll is the same algorithm as shown in [5]

We have seen that consensus-based algorithm is one of the best solution for

protein structure QA problem. It is a promising choice for selection of good pro-

tein structure, as well. This can be easily performed right after algorithms finished,

the best quality of structure is selected based on the highest value of xi ∈ X .

Since CASP6, the very first time consensus-based idea was introduced, it

shows that a good quality protein structure tends to be more similar to the other

predicted structure than a bad quality ones [31]. Also, it strenghtens by CASP7

24



Figure 3.5: Scatter plot between predicted scores by using average of all pair-wise
Qsq−e

total by QRefAll and GDT-TS score to the native structure of target T0497 on
CASP8 dataset

and CASP8 that consensus approach is a methodology used by the leading groups

in these competitions and is a suitable option for selecting good protein struc-

tures [3] [4]. It has presented in [5] that RefAll algorithm with GDT-TS score as

similarity metric clearly outperforms existing best-performing scoring functions,

so we will present that QRefAll have some potentials to do that as well.

To strengthen our claim on Q score, Figure 3.5 shows that the correlation

between predicted score by using QRefAll with Qsq−e
total formulation and GDT-TS

score with respect to the native structure. In this example, target T0497 in CASP8

dataset contains 304 candidates from 65 teams. Meanwhile, correlation between

predicted scores X by GRefAll algorithm and GDT-TS with respect to native

structure is 0.9928 comparing to 0.9635 of Q score on the same target. Despite
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Figure 3.6: Scatter plot between predicted scores by using average of all pair-wise
GDT-TS by GRefAll and GDT-TS score to the native structure of target T0497 on
CASP8 dataset

the fact that pair-wise GDT-TS has an advantage over pair-wise Q score in terms

of correlation result, the correlation of Q score is very high which clearly suggests

that Q score can also be a good alternative of ranking structures.
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3.3 Multiple Scores Consensus-based Algorithm

In order to take advantage of structural information, we also want to utilizeQshort,

Qlong and Qtotal as well. So, we propose AVGQRefAll and IRankQRefAll algo-

rithms for combining different Q score metrics together.

Algorithm 2 AVGQRefAll(S)
Require: Set of protein structures S = {si, 1 ≤ i ≤ p}

for all si ∈ S do

xti =
1
|S|

S∑
sj

qtotal of si,sj (1)

xsi =
1
|S|

S∑
sj

qshort of si,sj (2)

xli =
1
|S|

S∑
sj

qlong of si,sj (3)

xi =
(xti + xsi + xli)

3
end for
return Set of scores for each candidate, X = {xi, 1 ≤ i ≤ p}

Let RANK be a set of integer containing ranking of structures in the same

group. RANK can be computed by rank structure based on set of predicted

score X . In other words, if xi = max(X) such that RANKi = 1. IRankQRe-

fAll algorithm shown as Algorithm 3 is also based on the definition of R. Given

RANKshort, RANKlong and RANKtotal be predicted ranks by using predicted

score from pair-wise matrix Qshort, Qlong and Qtotal, respectively.
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Definition 5 Given j, k, p ∈ N1, j ≤ k and j, k ≤ p

RANK = {RANKi, 1 ≤ i ≤ p}

RANK(j : k) = {rj, ..., rk}

The main difference between AVGQRefAll and IRankQRefAll algorithms is

the idea of combining different Q scores together.

The idea of AVGQRefAll algorithm is fairly simple. We calculate predicted

scores for Qshort, Qlong and Qtotal which are referred as (1), (2) and (3), indi-

vidually. Then, we combine three scores together by averaging them for a final

predicted score xi.

On the other hand, IRankQRefAll algorithm uses intersection operator as method

to combine. It is a little more sophisticated than the previous algorithm but simple

still. We introduce a (:) symbol as defined in Definition 5 which basically take out

a subset of any set at two specified indexes referred as (4) in the IRankQRefAll

algorithm.

IRankQRefAll calculates predicted score for each Q score as the same way

as it does in AVGQRefAll algorithm. However, at the very last step, we take

intersection of multiple ranking sets. Different Q score formulations should give

distinct ranks of given structures. Even though it is possible that 2 or more Q score

types can give both exactly RANK in the same order, chance to occur is very

unlikely. Then, we take the first b ranked common index(es) from three ranking

systems as a result of set I . After algorithm finishes, best protein structures are

selected by based on intersection of rank of corresponding structure. Value b can

be an suitable integer regarding to how many top structure we would like to pick
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from pool.

Algorithm 3 IRankQRefAll(S)
Require: Set of protein structures S = {si, 1 ≤ i ≤ p} , No. of top structures b

for all si ∈ S do

xti =
1
|S|

S∑
sj

qtotal of si,sj (1)

xsi =
1
|S|

S∑
sj

qshort of si,sj (2)

xli =
1
|S|

S∑
sj

qlong of si,sj (3)

end for
RANKtotal = Rank(S,Xtotal) in descending order (4)
RANKshort = Rank(S,Xshort) in descending order (4)
RANKlong = Rank(S,Xlong) in descending order (4)

I = ∅, k = 1
while size(I) < b do
c = Intersection(RANKtotal(1 : k), RANKshort(1 : k), RANKlong(1 : k))
(4)
if c = ∅ then

//do nothing here
else
I ← c

end if
k ← k + 1

end while
return Intersection of Rank, I

Regardless, parameter learning process does not pertain to any of Q score-

related algorithms, since parameters in each Q score formulation are known and

fixed. So, in the result chapter, all Q score related algortihms have been applied

based on the formulations given in this chapter.
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3.4 Weighted Average Consensus-based Algorithm

As we have seen, simple consensus-based algorithm (RefAll), especially GRefAll,

is very successful method on recent CASP datasets. However, there is still room

to improve over the current algorithm. So, later in this chapter, we develop our

new algorithms based on the success of RefAll and try to add some ideas on top

of basic consensus-based RefAll in order to get the better results than using pure

RefAll algorithm.

The very first idea that can be adjusted based on RefAll algorithm is usage of

the reference set. In RefAll, we assume that all of the structures have the equal

contributions on the consensus-based score. Hence, the structure that has more

other similar structures will receive more contributions to the consensus-based

score than the structure that has less other similar structures. As the result of

that, structures that have more other similar structures will appear to have bigger

prediction scores, eventually.

With abovementioned concept, it would be a good idea to assign a non-equal

contribution based on the similarity score for each structure. It has become the

concept of the weighted average concencus-based score which is unlike the simple

average consensus-based score of RefAll algorithm.

3.4.1 How to assign weight?

Initially, the idea to assign weight starts from the remove redundancy idea of Ref-

Select algorithm in [5]. Even though underlying concept is somewhat similar, we
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deploy a different implementation in this study.

So, we need some weight calculation methods. The calculation of weight uses

consensus-based scores which can be obtained from pair-wise similarity score

matrix. It evaluates from first row of matrix which corresponds to each predicted

protein structure and so on. Thus, we develop a couple of varied weighted calcu-

lation functions based on our underlying assumptions.

3.4.2 Sigmoid Weighted Function : SigW Algorithm

In this section, we try to reduce the effect of the redundant structures and increase

the effect of the dissimilar structures. The definition of “similar” and “dissimilar”

here is based on the pair-wise similarity score in matrix M .

Sigmoid Weighted Function

Sig(x) =
1

1 + ec(x−0.5)
(3.4)

The input x in above equation is for items in pair-wise similarity score matrix

(GDT-TS or Q score) which is in range of interval of zero to one. Thus, in c = 10,

when we plug the biggest possible value of similarity score which is x = 1 into

equation resulting y ≈ 0. Likewise, when we plug the least possible value of

similarity score which is x = 0, it results y ≈ 1.

As the result of that, output value is transformed into a weight matrix which

meets our strategy of removing effect of redundant structures.

Thus, we propose a new algorithm called SigW algorithm to predict protein
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structure quality.

We introduce some more variables i.e. let W = {wi, 1 ≤ i ≤ p} be the weight

vector corresponding to p structures in a target, let T = [ti,j]1≤i≤p,1≤j≤p be the

weight matrix after applying Equation 3.4 to all elements of pair-wise similarity

score matrix (M = [mi,j]p×p). Also, keep in mind that index (i, j) of pair-wise

similarity score matrix M and weight matrix T always corresponds with same

pair of structure si and structure sj .

Algorithm 4 SigW(S)
Require: Set of protein structures S = {si, 1 ≤ i ≤ p}, Parameter c > 1

for all si ∈ S do
for all sj ∈ S do

ti,j =
1

1 + ec(msi,sj−0.5)
(1)

end for

wi =

S∑
si 6=sj

tsi,sj

|S| − 1
end for
for all si ∈ S do

xi =

s∑
sj ,si 6=sj

(wsi ·msi,sj)

S∑
sj

wsj

(2)

end for
return Set of scores for each candidate, X = {xi, 1 ≤ i ≤ p}

To elaborate, (1) in Algorithm 4 is the calculation of weight matrix T = [ti,j]

by applying Equation 3.4 to the pair-wise similarity score matrix M . Weighted

average process over weight vector W is executed by calculation in (2). To avoid
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confusion of using different similarity measures, SigW algorithm with GDT-TS

similarity measure and SigW algorithm with Q score similarity measure are called

GSigW and QSigW algorithms, respectively.

This brings us to another interesting question which is how to determine the

value of c in the equation. Which one is more suitable, big or small c? First of all,

let see the graph presented how change to the weight function of different values

of c make according to the Equation 3.4.

Figure 3.7: The effect of different parameter c to the Sigmoid Weighted Function
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According to the graph on Figure 3.7, we can see that the change of c results in

how steep the function is. Firstly, we want to cover most of y value in the interval

[0, 1], if x ∈ [0, 1] which is the range of possible similarity scores (maximum

= 1, minimum = 0). We decide not use c = 2 by the red line in Figure 3.7.

However, that doesn’t clearly tell us what what the value of c we should use.

So, the approach we could do to answer this question is to experiment on how

parameter different c values affect to actual correlation results.

Figure 3.8: Comparison of the variations of parameter c in Equation 3.4 and aver-
age of Pearson correlation to the native structures on randomly selected 23 targets
of CASP8

Corresponding to the graph on Figure 3.8, we can conclude that when we in-

crease c to the Equation 3.4, the correlation results monotonically increase, as

well. However, the curve seems to be stable with the c value reach at a cer-

tain point. This evidence leads us to the next discussion in weighted average

consensus-based algorithm.
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3.4.3 Step Weighted Function : StepW Algorithm

It has been shown that bigger c gave us the better result. When we examine

the graph in Figure 3.9, it shows that at c = 1000, the function seems to be a

step function with 0.5 as a indicator. This still maintains the fact that we want

to reduce effect of redundant structures in terms of similarity score to the final

consensus-based score. However, with the step function as a weighted function,

weight reduction seems to be crisper than the sigmoid one. So, we have more

options instead of using Sigmoid-curve as a weight function, we also could use a

step function as an alternative weight function.

Similar to previous definition, we need our step function to be a generic func-

tion. Therefore, step indicator should be adjustable as we use parameter c in

Equation 3.5.

Figure 3.9: The effect of different parameter c = 25, c = 100, c = 1000 to the
Sigmoid weighted function
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So, we mathematically define Step Weighted Function by using parameter c

as a cutoff value as the following;

Step Weighted Function

Step(x) =

 0 if x ≥ c;

1 if x < c.
(3.5)

Again, input x in above equation is similarity score like it appears in Equation

3.4. However, when we apply step weighted function, output value y has only

binary value (0 or 1) as opposed to Sigmoid weighted function which has possible

output values y spanning over most of the value in interval of [0,1] (in big c value,

such as c > 5). The meaning of c value in Step Weighted Function is that we want

to reduce the weight of any pair-wise item in pair-wise similarity matrix that has

value over or equal c by giving output value of 0 according to the equation.

Below is an illustrative example of how Step Weighted Function is used on

pair-wise GDT-TS score matrix.

Then, we put Step Weighted Function into action as shown in Algorithm 5.

StepW algorithm is basically constructed by applying the SigW algorithm (Al-

gorithm 4). The main difference is the approach to build weight matrix T by

using Step weighted function Equation 3.5 instead of using Sigmoid Weighted

Function. It means that weight vector W of both algorithms will be definitely dif-

ferent, while the rest of calculations are still unaltered by using consensus-based

pair-wise similarity score to execute weighted average part. Similarly, we name

GStepW and QStepW algorithm for different choices of similarity measures.
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Figure 3.10: Example of applying Step weighted function in Equation 3.5 to ma-
trix G

Algorithm 5 StepW(S)
Require: Set of protein structures S = {si, 1 ≤ i ≤ p}, Parameter c > 1

for all si ∈ S do
for all sj ∈ S do

ti,j =

{
0 if msi,sj ≥ c;
1 if msi,sj < c.

(1)

end for

wi =

S∑
si 6=sj

tsi,sj

|S| − 1
end for
for all si ∈ S do

xi =

s∑
sj ,si 6=sj

(wsi ·msi,sj)

S∑
sj

wsj

(2)

end for
return Set of scores for each candidate, X = {xi, 1 ≤ i ≤ p}

37



3.4.4 Rectangular Weighted Function : RectW Algorithm

As shown in the previous section, assigning different weights is our idea to im-

prove the result. Next, we extend our thoughts to that we not only bring down the

effect of similar structures, but we also reduce the effect of dissimilar structures.

Since, we know that dissimilar structures also can harm to the final correlation,

removing them can be a possible plan to meliorate the result even more. However,

building a function to achieve that is not trivial because choice of function can be

limitless. Thus, for the sake of simplicity, we make simple addition on the Step

Weighted Function into a Rectangular Weighted Function in order to satisfy our

ideas.

Hence, we can define Rentangular Weighted Function by the following;

Rectangular Weighted Function

Rect(x) =

 1 if a < x < b,where a 6= b and b > a;

0 otherwise.
(3.6)

38



Figure 3.11: Graph of Rectangular weighted function in Equation 3.6 with a =
0.1, b = 0.5

From the graph presented in Figure 3.11, it shows that Rectangular Weighted

Function will contribute weight to 1 only for similarity scores of every pair of

structures that is bigger than a (a = 0.1 in above example) and as well lower than

b (b = 0.5 in above example). Meanwhile, the rest of pairs that do not meet that

condition will be assigned weight to 0 as it is presented in Equation 3.6.
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Here is algorithm with using Rectangular Weight Function for weight calcu-

lation;

Algorithm 6 RectW(S)
Require: Set of protein structures S = {si, 1 ≤ i ≤ p}, Parameter a, b > 1 and
b > a
for all si ∈ S do

for all sj ∈ S do

ti,j =

{
1 if a < msi,sj < b;
0 otherwise. (1)

end for

wi =

S∑
si 6=sj

tsi,sj

|S| − 1
end for
for all si ∈ S do

xi =

s∑
sj ,si 6=sj

(wsi ·msi,sj)

S∑
sj

wsj

(2)

end for
return Set of scores for each candidate, X = {xi, 1 ≤ i ≤ p}

As we can see that, the only main difference between RectW and the rest of

algorithms presented in this study is weight matrix calculation T . RectW algo-

rithm use Rectangular Weight Function as weight calculation function. GRectW

algorithm and QRectW algorithm distinguish between the use of GDT-TS and Q

score as protein structure similarity measure in the similar fashion.
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Though, these algorithms could outperform the basic consensus-based algo-

rithm (RefAll), they are inevitably dependable on good parameters. So, how do

we decide on choices of paramters? In next section, we have built experimental

scheme to find suitable values for parameters such as c in SigW and StepW, also

a, b for RectW. It will be discussed in-depth on the approach on how we are able

to select appropriate values for those parameters.
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Chapter 4

Experimental Scheme and Results

4.1 Dataset and System Specification

We have tested our algorithms on CASP8 dataset. Originally, CASP8 dataset pro-

vides 128 targets which correspond to 128 different protein structures. Candidate

structures are submitted by different computer-based protein predictors. These

predictions are accessible by CASP8 official website [2]. After all of server pre-

dictions were submitted, quality assessment (QA) teams are requested to assess

quantitatively server predictions and submitted a QA result for predicted struc-

tures in each target.

Algorithms were run on Red Hat Enterprise Linux Server release 5.4 (Tikanga)

with 8 processors of Intel Xeon(R) CPU E5440 @ 2.83GHz and total memory of

16GB. Linux kernel is x86 64 which is 64-bit architecture. Programming lan-

gauges in this thesis are C++, Matlab and Ruby.
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In our experiments, we choose 122 targets from CASP8 dataset to evaluate our

methods and disregard the other six targets due to cancellation by assessors and/or

organizer. Each target’s difficulty alters in five categories based on prediction data.

These five categories are: the hardest - free modeling (FM), fold recognition (FR),

comparative modeling: hard (CM H), comparative modeling: medium (CM M)

and the easiest - comparative modeling: easy (CM E) [33] [34]. Also, we measure

performance of our methods base on these five categories.

According to our algorithms presented in this study, some of them are sensitive

to parameters. Before, we can actually test our algorithms to the dataset, we

need to design a training process for our algorithms to be able to learn proper

parameters. Thus, we divided 122 targets from CASP8 into two groups: one for

training and another for testing.

4.1.1 Target’s Difficulty

CASP8’s targets differ considerably in terms of prediction’s hardness, and partic-

ularly our algorithms might perform differently subject to targets’ difficulies. It

found that average of all items of pair-wise GDT-TS matrix varies on different

targets. Thus, we have decided to break 122 targets into 3 categories which are

Easy, Medium and Hard by such value.

First of all, we randomly break our targets into two sets as referred in Figure

4.1. Train dataset is composed of 40% out of total targets in CASP8 targets and

the rest of targets belong to test dataset. Then, we classify train dataset into 3

categories based on the hardness of targets which use criteria presented in Table

43



Table 4.1: Distribution of 122 CASP8 targets in each group based on our group
criteria

Group Name NO. of targets Range of AVG pair-wise GDT-TS score
Hard 30 (0, 0.3]
Medium 38 (0.3, 0.5]
Easy 54 (0.5, 1]

Figure 4.1: Diagram shows the experimental scheme in order to find a set of
proper parameters for the algorithms

4.1. After that, we run our algorithms on the train set in order to find set of

good parameters according correlation score to the known native structures. When
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we finish training process, we record proper parameters one per target’s hardness

group (one for Hard group, one for Medium group and one for Easy group). This

is based on our hypothesis that our algorithm might perform differently depending

on variations of target’s difficulty. Finally, we use those parameters for applying

on the test dataset and presenting the final results.

4.2 Learning Parameters of Algorithms

4.2.1 GSigW Algorithm

The following results were produced by running Algorithm 4 on train dataset. Our

training process is performed by running SigW algorithm on different c values in

range of c = [1, 2, 3, ..., 35] in Equation 3.4. In each round of one c value, we

compute a set of predicted scoreX . In order to compare performances on different

c values, we correlate between set of predicted score with actual GDT-TS score of

protein structures to native structure of each targetN . So, we use correlation value

y described in Equation 3.1 as a decisive value for selecting the best parameters.

Regarding to Graph 4.2 and Graph 4.3 of average of pearson correlation be-

tween predicted quality scores and true GDT-TS scores in Hard and Medium

group of train dataset, we can see that avearge correlation are monotonically in-

creasing with the bigger values of parameter c in Equation 3.4 in SigW algorithm.

This verify the fact that the more steep the sigmoid function is, the better average

of correlation score is, in the hard and medium groups.
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Figure 4.2: Comparison of the average of pearson correlations and values of pa-
rameter c on Hard targets (15 targets) in train dataset by SigW algorithm

Figure 4.3: Comparison of the average of pearson correlations and values of pa-
rameter c on Medium targets (19 targets) in train dataset by SigW algorithm

Graph 4.4 is different from others. We can see that the bigger values of pa-

rameter c help increase the average of correlation in range of c = [1, ..., 13], but
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Figure 4.4: Comparison of the average of pearson correlations and values of pa-
rameter c on Easy targets (16 targets) in train dataset by SigW algorithm

in range of c ≥ 13, average correlation of all easy targets group starts to decline

and seems to be stable around 0.9800 at c = 5 (not shown in the figure). It simply

describes that the very steep sigmoid function might not be a perfect choice for

dealing with easy group target.
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4.2.2 GStepW Algorithm

The following results were produced by running Algorithm 5 on train dataset. The

steps of training algorithm are similar as it has been performed in SigW algorithm.

In StepW algorithm, meaning of parameter is different than what we use in SigW

algorithm. Possible choices of parameter c will be a GDT-TS score value which

start from [0.1, 0.2, ... 1] which determine any point of GDT-TS value that we

want to reduce the effect of the final weight. Obviously, we excluded c = 0 out of

our consideration otherwise it would set all of the stuctures’ weight to zero (every

gij of matrix G is greater or equal 0.).

Figure 4.5: Comparison of the average of pearson correlations and values of pa-
rameter c on Hard targets (15 targets) in train dataset by StepW algorithm
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Figure 4.6: Comparison of the average of pearson correlations and values of pa-
rameter c on Medium targets (19 targets) in train dataset by StepW algorithm

Figure 4.7: Comparison of the average of pearson correlations and values of pa-
rameter c on Easy targets (16 targets) in train dataset by StepW algorithm

We can see that each of target group has different optimal parameter values.

For hard group, optimal value of c is at 0.4 GDT-TS value based on average of
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pearson correlation to the actual GDT-TS score. For medium group, optimal value

of c is at 0.5 GDT-TS value. Lastly, for easy group, best value of c is at 0.7 GDT-

TS value.

4.2.3 GRectW Algorithm

The following results were produced by executing Algorithm 6 on train dataset.

Based on this algorithm, we need two parameters a, b to define how big our rect-

angular shape is (like shown in Figure 3.11). Originally, our idea started by using

all possible combinations a, b = [0.1, 0.2, 0.3, ..., 1] which could be computation-

ally expensive. Thus, we take advantage of learned optimal values from StepW

algorithm as one fixed parameter for RectW algorithm. Then, another parameter

will be experimented intensively in the same approach as it has been in StepW

algorithm by spanning over [0.1, 0.2, 0.3, ..., 1]. In this case, we can reduce the

computation cost by 10 times lesser than the initial idea.
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Figure 4.8: Comparison of the average of pearson correlations and values of pa-
rameter on Hard targets (15 targets) in train dataset by RectW algorithm

Figure 4.9: Comparison of the average of pearson correlations and values of pa-
rameter on Medium targets (19 targets) in train dataset by RectW algorithm

From those graphes, they present the fact that optimal a, b values in Hard group

are a = 0.2, b = 0.4 as in Figure 4.8, for Medium group, they are a = 0.2, b =
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Figure 4.10: Comparison of the average of pearson correlations and values of
parameter on Easy targets (16 targets) in train dataset by RectW algorithm

0.5 as in Figure 4.9 and best values are a = 0, b = 0.7 for Easy group as in Figure

4.10. We can see that smaller band of Rectangular Weighted Function works in

the harder cases (0.2− 0.4 and 0.2− 0.5), but for easier case, larger band should

be used (0− 0.7).
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4.3 Experimental Results

As we discussed in problem formulation section, once again we split results into

two parts which are QA results and selection results. Be noted that all parame-

ters used in this section has been collected from train dataset as presented in last

section.

4.3.1 Protein Structure Prediction QA Results

After, involved algorithms were learned with training process in previous section,

results of paremeter are the following;

Table 4.2: Optimal parameters after training in each group based on our group
criteria

Group Name Range GSigW Alg.(c) GStepW Alg.(c) GRectW Alg.(a, b)
Hard (0, 0.3] 35 0.4 0.2, 0.4
Medium (0.3, 0.5] 35 0.5 0.2, 0.5
Easy (0.5, 1] 13 0.7 0, 0.7

Note that, RefAll uses all pair-wise GDT-TS score and all structures as refer-

ence or called GRefAll in study. RefSelect algorithm is presented in [5] and all of

the results of RefSelect is provided by the author of that paper.

The results were performed on test dataset (60% of 122 targets) by using pa-

rameters with our group criteria in Table 4.2. Then, results are graphically com-

pared by categorizing test datset into 5 categories which are free modeling (FM),

fold recognition (FR), comparative modeling: hard (CM H), comparative model-

ing: medium (CM M) and comparative modeling: easy (CM E) [33] [34].
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Figure 4.11: Comparison of the average of pearson correlations and algorithms
on FM category of train datset

Based on Figure 4.11, we can see that our RectW algorithm with GDT-TS

or GRectW algorithm indeed performs better than GRefAll algorithm by about

2.45% on test dataset of FM category. Also, GRectW algorithm outperform

other proposed algorithms such as GStepW and GSigW algorithms. GStepW and

GSigW are very close in performance in this category, though GStepW is slightly

better due to the reason that GStepW is a strongly steep version of GSigW. How-

ever, RefSelect is the best performing algorithm in this category. It is better than

GRectW algorithm by about 1.64%. The main objective of designing RefSelect

algorithm is to focus an improvement on the harder targets which make it very

successful on FM category.
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Figure 4.12: Comparison of the average of pearson correlations and algorithms
on FR category of train datset

According to Figure 4.12, it shows performances of algorithms where GRectW

algorithm begins to shine. In FR category, it shows the largest gap of performace

between GRectW and GRefAll which is about 4.39% on test dataset of FR cat-

egory. RefSelect’s performance is better than any other algorithms but GRectW

algorithm.
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Figure 4.13: Comparison of the average of pearson correlations and algorithms
on CM H category of train datset

As it is shown in Figure 4.13, it is quite clear that GRectW algorithm also

outperforms any other algorithms in this category. Especially, GRectW algorithm

perform better than GRefAll by 2.36%. GStepW and GSigW algorithms are very

close in performance of CM H category. Even thought RefSelect’s performance

drop slightly in CM H group, it is still better than using GRefAll algorithm.
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Figure 4.14: Comparison of the average of pearson correlations and algorithms
on CM M category of train datset

Based on Figure 4.14 shows performances in CM M category. In this cate-

gory, GStepW algorithm is clearly the best out of tested algorithms. However, the

differences between algorithms are very small about 0.2% in performance.
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Figure 4.15: Comparison of the average of pearson correlations and algorithms
on CM E category of train datset

In the last category of our experiment presented in Figure 4.15, GRefAll and

RefSelect algorithms are on the top. They both show their strengths in the easiest

group. RefSelect handles the easiest target group in the similar fashion as GRe-

fAll does. So, it is not very surprising they have relatively similar results in this

category. The rest of algorithms are not as good as the top two algorithms.
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Figure 4.16: Comparison of the average of pearson correlations and algorithms
on overall targets of train datset

In overall in Figure 4.16, GRectW algorithm is the best performing algorithm

over this datset in 72 targets of CASP8 dataset as known as test dataset. The

improvement over GRefAll algorithm slightly dwindles down due to the fact that

GRefAll algorithm outperform GRectW algorithm is the easiest group of CM E

category which is the biggest number of targets in CASP8 dataset and our train

dataset. Nonetheless, GRectW algorithm is still successful algorithm and clearly

outperforms other algorithms because the improvements in other harder groups

(FR, FM, CM H and CM M category) are big enough.
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Table 4.3: Comparison of the Top 5 servers participating in CASP8 competition,
RefAll algorithm and RectW algorithm

Group Name NO. of targets Avg. result(Pearson corr.)
GRectW 122 0.9370
RefSelect [5] 122 0.9335
GRefAll [5] 122 0.9290
Pcons Pcons [32] 122 0.9241
ModFOLDclust [28] 122 0.9233
SAM-T08-MQAC 121 0.9205
QMEANclust [27] 121 0.9010
MULTICOM [26] 121 0.9021
AVGQRefAll 122 0.8786

Finally, we can draw the conclusions from our experiment that in the harder

groups of targets, strategy of removing redundant structures together with remov-

ing outliers based on GDT-TS as similarity score is performing relatively well

on improving quality of predicted score over GRefAll algorithm. It is shown by

graph in Figure 4.11, 4.12 and 4.13 as in FM, FR and CM H category, respec-

tively. On the other hand, the improvement of GRectW algorithm over GRefAll

algorithm starts to be minimal in CM M category as in Figure 4.14. In the eaisest

targets (CM E) as in Figure 4.15, GRectW algorithm has no more edge. GRefAll

is basically the best performing algorithm which emphasizes that using all strcu-

ture as reference is more appropriate strategy for dealing with easier targets than

harder ones.

Last but not least, we compare correlation result of GRectW algorithm with

the proper setting of parameters and correlation result of other top teams in 122

targets of CASP8 competition. We can see that GRectW can beat other teams
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and be on the top with the optimal setting of parameters. Also, we compare the

result of using Q score as similarity measure as shown as AVGQRefAll which is

the best algorithm from our proposed Q score-based algorithms. It is clear to say

that Q score-based algorithms are bad for QA problem because result shows that

correlation of predicted scores from AVGQRefAll to the true GDT-TS to native

structures is the lowest of the pack of tested algorithms.
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4.3.2 Protein Structure Selection Results

Selection results were performed on all 122 targets CASP8 dataset. For those

parameter-dependent algorithms, we select optimal parameters based on previous

section. Methodology in here is very straightforward which is comparing perfor-

mances of our algorithms side-by-side with other methods by selecting the best

structure according to predicted quality scores on the same dataset.

In order to gauge how good our algorithms are, we also pick some best per-

forming scoring functions on the market to-date. This is to show how well widely-

known scoring functions are able to choose a top structure. These scoring func-

tions are, for instance, (1) OPUS-Ca is a knowledge-based potential function re-

quiring only Cα positions [16], (2) DOPE is an atomic distance-dependent sta-

tistical potential calculated from a sample of native protein structures [35], (3)

DFIRE is a statistical energy function based on the reference state of distance-

scaled, finite ideal gases [17], (4) RAPDF is a residue-specic all-atom probability

discriminatory function [18].

Table 4.4: The average GDT-TS scores of the top one structures selected by GRe-
fAll, RefSelect and widely-used scoring functions on 122 CASP8 targets

Scoring functions Algorithms [5]
Group True OPUS-Ca DOPE DFIRE RAPDF GRefAll RefSelect

FM 0.2830 0.1536 0.1841 0.1724 0.1996 0.1951 0.2147
FR 0.4329 0.2567 0.2912 0.3048 0.2988 0.3551 0.3696

CM H 0.6524 0.4713 0.4282 0.5423 0.5265 0.5711 0.5788
CM M 0.7502 0.5807 0.5477 0.6240 0.6649 0.7172 0.7171
CM E 0.8884 0.6748 0.8025 0.7846 0.8330 0.8558 0.8543

Overall 0.6799 0.4985 0.5196 0.5627 0.5856 0.6267 0.6315
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Table 4.5: The average GDT-TS scores of the top one structures selected by our
Q score-related algorithms with square-error formulation on 122 CASP8 targets

QRefAll Multiple Q score
Group True Qsq−e

short Qsq−e
long Qsq−e

total AVGQRefAll IRankQRefAll
FM 0.2830 0.1912 0.1864 0.1847 0.2234 0.2150
FR 0.4329 0.3387 0.3392 0.3395 0.3498 0.3561

CM H 0.6524 0.5633 0.5604 0.5375 0.5698 0.5689
CM M 0.7502 0.7143 0.7056 0.6924 0.7108 0.7107
CM E 0.8884 0.8591 0.8540 0.8399 0.8527 0.8516

Overall 0.6799 0.6219 0.6170 0.6051 0.6242 0.6245

As shown in Table 4.4 and 4.5, we compare our methods’ performances against

others. Firstly, the first data column of each table presents GDT-TS scores to the

native stuctures of the actual top1 structure which defined the boundary any of

tested algorithms and scoring functions could possibly achieve in this experiment.

Next 4 columns of Table 4.4 show the performance of how well widely-known

scoring functions are able to pick a top structure. Then, 3 columns next to the first

column of Table 4.5 show the performance of our algorithms on the same datset.

Columns with Qsq−e
short, Q

sq−e
long and Qsq−e

total labels denotes result from Algorithm 1

with Q score (QRefAll algorithm) by using Qsq−e
short, Q

sq−e
long and Qsq−e

total as a protein

structure similarity measures, respectively.

We can see that all Q score consensus-based algorithms can clearly choose

the better top 1 structure than the best performing scoring functions based on

GDT-TS to the respect native structure. The best performing scoring function

based on CASP8 dataset is RAPDF which has overall average GDT-TS of chosen

structure as 0.5856. Meanwhile, the IRankQRefAll’s performance is better than

RAPDF by 6% at 0.6245. However, RefSelect’s performance is the best out of
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Table 4.6: The average GDT-TS scores of the top one structures selected by our
weighted average algorithms on 122 CASP8 targets

Weighted AVG
Group True GSigW GStepW GRectW

FM 0.2830 0.1951 0.1951 0.2055
FR 0.4329 0.3566 0.3572 0.3593

CM H 0.6524 0.5748 0.5745 0.5747
CM M 0.7502 0.7202 0.7181 0.7281
CM E 0.8884 0.8575 0.8566 0.8577

Overall 0.6799 0.6291 0.6292 0.6304

tested algorithms in this paper. Even though, top1 structure selected by Q score

consensus-based algorithms is not as good as selected by RefSelect or GRefAll

algorithms, they have shown that they are good alternatives for solving protein

selection problem.

Figure 4.17: Comparison the average of GDT-TS score of chosen top1 structure
from all 122 targets of CASP8 dataset and different algorithms
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Futhermore, we also compare weighted average methods against other meth-

ods. Selection results on according to graph in Figure 4.17 show that using GSigW

and GStepW algorithms even more superior than using any of Q score-based al-

gorithms. Again, GRectW is the best among those weighted average algorithms.

Though, RefSelect is still the best performing algorithm based on tested algo-

rithms, it clearly shows that removing redundant structure and disimilar structure

of GRectW with proper parameter settings improves not only results on protein

structure QA problem, but also results on protein structure selection problem over

the simple consensus-based algorithm.
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Chapter 5

Conclusion

This paper has presented novel algorithms that are designed for QA in protein

structure prediction. Our idea is to remove redundant structures to get the bet-

ter reference set which can improve an overall result (for SigW and Step algo-

rithms) and is to not only romove redundant structures but also remove dissimilar

structures (for RectW algorithm). Our proposed algorithms have been thoroughly

compare with the best current methods on the bechmark datset suggesting that our

algorithm, GRectW, significantly perform better than simple consensus-based al-

gorithm, GRefAll. RectW has advantage over any other algorithms on the harder

cases of targets which has low predicted protein structure quality based on GDT-

TS score. This fact makes RectW standing out from the rest of algorithms.

Second, algorithms for selecting better protein structures have been proposed.

Technique is applying Q score measure as protein structure similarity score. Proven

by our experiments on 122 targets of CASP8 dataset, performance of our al-
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gorithm overcome the state-of-the-art scoring functions by at least 6.6% on an

overall score and at least 10% on hardest case (FM) of 122 targets of CASP8.

However, RefSelect algorithm is better in terms of the GDT-TS score of top1 on

overall performance. Q score consensus-based methods also show a potential to

be an effective way for selecting good stucture in hard targets. Also, GRectW

algorithm performs well in selection problem. Compared with top1 structure se-

lected by the best-performing scoring function RAPDF, top1 structure selected by

GRectW algorithm has better GDT-TS value by 7.6% on overall score of 122 tar-

gets in CASP8 and even better than any of Q score-based algorithm proposed in

this study.

In summary, contributions of this thesis are the following;

• An efficient method of computing Q Score

We use idea of random sampling in order to reduce calculation time. With

random sampling, we can achieve about 1 or 2 orders of magnitude faster

than normal time execution with only 2% loss. Results from experiment

shows that QRefAll is consistently better than any other well-known scoring

functions in the market to-date.

• New consensus-based methods for QA in protein structure prediction

We give different weights to different structures and compute weighted av-

erage as final predicted scores. Assignment of weights based on idea of

removing too similar structures, SigW algorithm and Step algorithm and re-

moving both too similar and too dissimilar structures, RectW algorithm. Re-
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sults from our best-performing methods are superior than any top teams in

CASP8 competition. Also, it has some improvement over basic consensus-

based algorithm. Finally, our server implemented by this method ranks in

top 3 based on preliminary evaluation of CASP9 competition in 2010 [36].

Future work is to improve the overall results to be more superior both correla-

tion result and selection result. It can be done by several ideas.

• Improving the accuracy of target hardness indicator

We could apply more sophisticated methods. Options can be well-known

approaches like Support Vector Machine (SVM), Neural Network (NN),

Genetic Algorithm (GA) etc. Since we know that our algorithms will per-

form differently based on hardness of targets, improving accuracy of target

difficulty indicator could make the result better.

• Finding good ways to combine existing scoring functions

Even though, existing scoring functions, like OPUS-Ca, Cheng, RAPDF,

DFIRE are not very accurate in terms of indetifying near-native structure,

they are moderately useful of differentiating very poor quality structures

out of the rest structures. We have tried to use this idea as a strategy of

throwing the poor ones and keeping the good ones. However, performance

of our implementation on this idea is not quite successful. Nonetheless, it is

not by any means to say that scoring functions are useless.

• Developing some other better protein structure similarity measures

Aside from GDT-TS score, Q score is the proven example of how other
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similarity measures can be successful in selecting good protein structure.

There is no prevent for any other good similarity measures to be successful

as well.

• Designing more reliable single-model assessment algorithm

It is due to the fact that the main weakness of consensus-based algorithm is

the need of multiple structures in calculation process. If we want to know

quality of one structrue at a time, consensus-based algorithm will be unable

to perform. Single model assessment algorithm will become very handy in

such situation. However, it can be very difficult to achieve because of the

complexity of the protein structure.
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