1. Introduction

The history of the Briançon-Skoda theorem and its ensuing avatars in commutative algebra has been well-documented in many papers. For example see [LS, AH1]. We will therefore only briefly review the relevant concepts and theorems. First recall the definitions of the integral closure of an ideal.

Definition 1.1. Let R be a ring and let I be an ideal of R. An element $x \in R$ is integral over I if x satisfies an equation of the form $x^n + a_1x^{n-1} + \cdots + a_n = 0$, where $a_j \in I^j$ for $1 \leq j \leq n$. The integral closure of I, denoted by \overline{I}, is the set of all elements integral over I. This set is an ideal.

Let R^o be the set of all elements of R not in a minimal prime. An equivalent though less standard (but for our purposes a more useful) definition of integral closure is:

Equivalent Definition 1.1. Let R be a Noetherian ring and let I be an ideal of R. An element $x \in R$ is integral over I if there exists an element $c \in R^o$ such that $cx^n \in I^n$ for all $n >> 0$.

A theorem proved by Briançon and Skoda [BS] for convergent power series over the complex numbers and generalized to arbitrary regular local rings by Lipman and Sathaye states:

Theorem 1.2 [BS,LS]. Let R be a regular local ring and let I be an ideal generated by ℓ elements. Then for all $n \geq \ell$,

$$\overline{I^n} \subseteq I^{n-\ell+1}.$$
Theorem 1.3 ([LT, (2.2)]). Let R be a Noetherian local ring and assume that the localization R_P is pseudo-rational for every prime ideal P in R. Suppose that I has a reduction J such that $\dim R_P \leq \delta$ for every associated prime P of J^n. Then

$$I^{n+\delta-1} \subseteq J^n.$$

In particular, if J can be generated by a regular sequence of length δ, then the above containment holds for all $n \geq 1$.

The present two authors, as well as Lipman, have pushed the original theorem further by introducing ‘coefficients’. See [AH1,2, AHT, L1]. The methods used by the present authors have relied on the theory of tight closure. These improvements, however, have been valid only in regular rings, and the question of whether the statement of Theorem 1.2 remains valid in arbitrary pseudo-rational rings has remained open since 1981. Recent progress was made by Hyry and Villamayor [HV], who proved (among other things) that if R is local Gorenstein and essentially of finite type over a field of characteristic 0, then $I^{n+\ell-1} \subseteq I^n$ for an arbitrary ideal I with ℓ generators. In this paper we will use tight closure methods to prove (1.2) is valid for F-rational rings (the definition is below). In characteristic p, K. Smith [Sm] proved that F-rational implies pseudo-rational, but it can be stronger in general. However for affine algebras in equicharacteristic 0, the concepts of rational singularity, pseudo-rational singularity and F-rational type all agree, due to work of Lipman and Teissier [LT] for the equivalence of rational singularity and pseudo-rational singularity, and of Smith [Sm] and N. Hara [Ha] and independently V. Mehta and V. Srinivas [MS] for the equivalence of rational singularity and F-rational type (Smith proved that rational implies F-rational type and the other authors have just recently proved the converse). It follows from these equivalences that in equicharacteristic 0 we are able to prove (1.2) for rational singularities.

The basic idea of this paper is inspired by the proof of a cancellation theorem [Hu]. The key idea is to relate an arbitrary ideal I to a system of parameters in a manner which closely approximates the structure of the powers of I. We do this via a basic construction, and then a theorem which relates the integral closure of powers of I with the tight closure of the system of parameters. In the next section we briefly discuss tight closure, and refer to [HH1, Hu2] for more references and information.

2. Tight Closure

Definition 2.1. Let R be a Noetherian ring of characteristic $p > 0$. Let I be an ideal of R. An element $x \in R$ is said to be in the tight closure of I if there exists an element $c \in R^\alpha$ such that for all large $q = p^e$, $cx^q \in I^{[q]}$, where $I^{[q]}$ is the ideal generated by the qth powers of all elements of I.

Every ideal in a regular ring is tightly closed. We say elements x_1, \ldots, x_n in R are parameters if the height of the ideal generated by them is at least n (we allow them to be the whole ring, in which case the height is said to be ∞). If the ideal they generate is proper, then the Krull height theorem says that the height is exactly n.
Definition 2.2. A Noetherian ring R of characteristic $p > 0$ is said to be F-rational if the ideals generated by parameters are tightly closed.

This definition arose from the work of Fedder and Watanabe [FW] because of the apparent connection to the concept of rational singularities. The concept of pseudo-rationality was introduced in [LT], partly as a substitute for the notion of rational singularities in positive and mixed characteristic, where desingularizations are not known to exist in general.

Their definition is [LT, Section 2]:

Definition 2.3. Let (R, \mathfrak{m}) be a d-dimensional local Noetherian ring. R is said to be pseudo-rational if it is normal, Cohen-Macaulay, analytically unramified, and if for every proper birational map $\pi : W \to X = \text{Spec}(R)$ with W normal and closed fiber $E = \pi^{-1}(\mathfrak{m})$, the canonical map

$$H^d_{\mathfrak{m}}(\pi_*\mathcal{O}_W) = H^d_{\mathfrak{m}}(R) \to H^d_E(\mathcal{O}_W)$$

is injective.

In [LT], it is proved that for a local ring essentially of finite type over a field of characteristic 0, the notions of pseudo-rational and rational singularity agree. In [Sm], it is shown that in positive characteristic, F-rational implies pseudo-rational. Smith uses this to prove that rings of finite type over a field of characteristic 0 which are F-rational type have rational singularities. ‘F-rational type’ essentially means that characteristic p models of the variety are F-rational. Precisely, we need to introduce the idea of a model:

If R is a ring which is finitely generated over a field of characteristic 0, say $R = k[X_1, ..., X_n]/I$, then we can choose generators for the ideal I and by collecting coefficients of those generators find a finitely generated \mathbb{Z}-algebra $A \subseteq k$ such that if we define $R_A = A[X_1, ..., X_n]/(I \cap A[X_1, ..., X_n])$, then $R = k \otimes_A R_A$. We call the map $A \to R_A$ a family of models of R. We sometimes insist that the map $A \to R_A$ be flat, which one can always obtain by expanding A by localizing at a single element. A typical closed fiber of R_A over A is a characteristic p model of R.

Definition 2.5. Let R be a finitely generated algebra over a field of characteristic 0. R is said to have F-rational type if R admits a family of models $A \to R_A$ in which a Zariski dense set of closed fibers are F-rational. (This does not depend on the choice of models.)

The theorem in [Sm] says that if X is a scheme of finite type over a field of characteristic 0, then if X has F-rational type it has only rational singularities. Recently, the converse has been proved by N. Hara [Ha], and independently by Mehta and Srinivas [MS].

3. F-RATIONAL RINGS AND TIGHT CLOSURE

In this section we first discuss a basic construction which will play a crucial role in the paper. Given an ideal I in a Noetherian local ring (R, \mathfrak{m}), a minimal reduction J of I, say $J = (a_1, ..., a_\ell)$, and an integer N, we wish to construct an ideal \mathfrak{a}, generated by
parameters such that $J \equiv \mathfrak{A}$ modulo m^N, and such that \mathfrak{A} is closely related to I and its powers. For example, one would like $I \subseteq \mathfrak{A}$, but this is in general not possible since I may not be contained in any ideal generated by parameters. We record what we need in Proposition 3.2. We need the following lemma from [AHT, (7.2)].

Lemma 3.1. Let (R, m) be a local ring with infinite residue field and let $I \subseteq R$ be an ideal of analytic spread ℓ. Let $J \subseteq I$ be a minimal reduction of I. Then there exists a “basic” generating set a_1, \ldots, a_ℓ for J such that

1. If P is a prime ideal containing I and $\text{ht } P = i \leq \ell$ then $(a_1, \ldots, a_i)_P$ is a reduction of P.
2. $\text{ht}((a_1, \ldots, a_i)I^n : I^{n+1} + I) \geq i + 1$ for all $n \gg 0$.
3. If $c_i \equiv a_i$ modulo I^2, then (1) and (2) hold with c_i replacing a_i.

Proof. The first two statements are found in [AHT, Lemma 7.2]. The last statement follows from the proof of Lemma 7.2 in [AHT]. The choice of a basic generating set only depends on the images of the a_i in the associated graded ring $G = R/I \oplus I/I^2 \oplus \ldots$. In particular since c_i and a_i have the same leading forms in G, (3) follows. □

Proposition 3.2. Let (R, m) be an equidimensional and catenary local ring with infinite residue field and let $I \subseteq R$ be an ideal of analytic spread ℓ. Let $J \subseteq I$ be a minimal reduction of I. We assume that $\text{ht } I = g$, and $J = (a_1', \ldots, a_\ell')$, a basic generating set for J as in Lemma 1.1. Let N and n be fixed integers, and suppose that for $g + 1 \leq i \leq \ell$ we are given finite sets of primes $\Lambda_i = \{Q_{ji}\}$ all containing I and of height i. Then there exist elements a_1, \ldots, a_ℓ and t_{g+1}, \ldots, t_ℓ such that the following hold. (We set $t_i = 0$ for $i \leq g$ for convenience).

1. $a_i \equiv a_i'$ modulo I^2.
2. For $g + 1 \leq i \leq \ell$, $t_i \in m^N$.
3. $b_1, \ldots, b_g, b_{g+1}, \ldots, b_\ell$ are parameters, where $b_i = a_i + t_i$.
4. If R/I is equidimensional, the images of t_{g+1}, \ldots, t_ℓ in R/I are parameters.
5. There is an integer M such that $t_i+1 \in (J_i I^M : I^{M+1})$ for all $0 \leq t \leq w + \ell$ where $J_i = (a_1, \ldots, a_i)$.
6. $t_{i+1} \notin \cup JQ_{ji}$, the union being over the primes in Λ_i.

Proof. We choose the a_i and t_i inductively. We first modify a_1', \ldots, a_g' to a_1, \ldots, a_g in such a way that these elements form parameters. We can do this with $a_i \equiv a_i'$ modulo I^2 for $1 \leq i \leq g$. Suppose we have chosen a_1, \ldots, a_i and t_1, \ldots, t_i so that all of the above statements are true for these elements. Fix the minimal primes P_1, \ldots, P_k (all necessarily of height i) above $B_i = (b_1, \ldots, b_i)$. Divide them into two sets. Let P_1, \ldots, P_n be the ones which contain I, and P_{n+1}, \ldots, P_k those which don’t contain I. We first change a_{i+1}' to an element $a_{i+1} \equiv a_{i+1}'$ modulo I^2 such that $a_{i+1} \not\in \cup_{j=n+1}^k P_j$. This choice is possible as the nilradical of J is the same as the nilradical of I. Next choose M_i such that the height of $I + (J_i I^M : I^{M+1})$ is least $i + 1$, and choose M to be the maximum of the M_i. (This is possible by Lemma 3.1.) This choice forces all $(J_i I^M : I^{M+1}) + I$ to be height at least $i + 1$ for all $t \geq 0$. For suppose that $(J_i I^M : I^{M+t}) + I \subseteq Q$, where Q is a prime of height at most i. Since $I \subseteq Q$, this forces $(J_i I^M : I^{M+1}) \not\subseteq Q$, and after localization
at $Q (I^{M+1})_Q = (J_i I^M)_Q$. But this forces $(I^{M+t})_Q = (J_i^t I^M)_Q$ for all integers t, and so $(J_i^t I^M : I^{M+t}) \not\subseteq Q$, a contradiction. Using prime avoidance, choose

$$t_{i+1} \in \cap_{t=0}^{w+t} (J_i^t I^M : I^{M+t}) \cap \mathfrak{m}^N \cap (\bigcap_{j=n+1}^k P_j)$$

and

$$t_{i+1} \notin (\bigcup_{j=1}^n P_j) \cup (\bigcup_i Q_{ji}).$$

This is possible since I is contained in each of the primes in the second line, but all these primes have height i, while the height of $I + (J_i I^M : I^{M+t})$ is at least $i + 1$. We set $b_{i+1} = a_{i+1} + t_{i+1}$. We claim this choice proves (1)-(6) for these new elements. Our choice of a_{i+1} and t_{i+1} make statements (1), (2), (5) and (6) trivial. To prove (3) we need only to prove that $b_{i+1} \notin \bigcup_{j=1}^k P_j$. If $j \leq n$, then $a_{i+1} \in I \subseteq P_j$ while $t_{i+1} \notin P_j$. Hence $b_{i+1} \notin P_j$. If $j \geq n+1$, then $a_{i+1} \notin P_j$ while $t_{i+1} \in P_j$. Again $b_{i+1} \notin P_j$, proving (3). Statement (4) follows from (3). Clearly the height of $(I, b_{g+1}, \ldots, b_{i+1})$ is at least that of b_1, \ldots, b_{i+1}, hence at least $i + 1$. But $(I, b_{g+1}, \ldots, b_{i+1}) = (I, t_{g+1}, \ldots, t_{i+1})$. As R is equidimensional and catenary, it follows that the images of the t_j in R/I form parameters. \qed

Theorem 3.3. Let (R, \mathfrak{m}) be an equidimensional and catenary local ring of characteristic p having infinite residue field. Let I be an ideal of analytic spread ℓ and positive height g. Let J be a minimal reduction of I. Fix $w, N \geq 0$. Choose a_i and t_i as in Proposition 3.2. Set $A = B_\ell = (b_1, \ldots, b_g, \ldots, b_\ell)$. Then

$$I^{\ell+w} \subseteq (A^{w+1})^*.$$

Proof. Our choice of elements says that $a_1, \ldots, a_g, a_{g+1} + t_{g+1}, \ldots, a_{i+1} + t_{i+1}$ is a part of a system of parameters. Fix the notation as in Proposition 3.2. By our choice of the t_j we have that for all $1 \leq k \leq w + \ell$, $t_j I^{M+k} \subseteq J_{j-1}^k I^M$. We first claim that this implies

$$t_j^n I^{M+nk} \subseteq J_{j-1}^{nk} I^M$$

for all $n \geq 1$. Assume this is true for a fixed n, and multiply by $t_j I^k$. We obtain that $(t_j I^k) (t_j^n I^{M+nk}) \subseteq (t_j I^k) J_{j-1}^{nk} I^M$. Since $t_j I^{M+k} \subseteq J_{j-1}^k I^M$, we obtain that

$$t_j^{n+1} I^{M+(n+1)k} \subseteq J_{j-1}^{nk} J_{j-1}^{k} I^M$$

as required. Fix $c \in I^M \cap R^0$. Note that the above containment shows that for all $n \geq 1$

$$(3.4) \quad c t_j^{n+1} I^{(n+1)k} \subseteq J_{j-1}^{(n+1)k}.$$

Set $B_i = (b_1, \ldots, b_i)$. Let $g \leq i \leq \ell$ and $w \geq r \geq 0$. We show by induction that $c^{i-g} J_i^{(i+r)q} \subseteq (B_{g+r}^{w+1})^q$. The base case is when $i = g$ and $r \leq w$ is arbitrary. In this case $J_g^{(g+r)q} \subseteq (J_g^{r+1})^q = (B_{g+1}^w)^q$. The first equality in the above line follows at once from \cite[HH1, proof of (5.4)].
Assume now that we are given r and $i > g$, and the claim is true for $i' < i$ (with $r' \leq w$ arbitrary) or $i' = i$ and $r' < r \leq w$. By our choice of c and of the t_j,
\[
c^{i-g}J_i^{(i+r)q} \subseteq c^{i-g}J_i^{|J_i^1|}J_i^{(i+r-1)q} \subseteq c^{i-g}[J_i^qJ_i+1]^{(i+r-1)q} + a_{g+1}qJ_i^{(i+r-1)q} + \cdots + a_iqJ_i^{(i+r-1)q}]
\]
\[
= c^{i-g-1}[cJ_i^qJ_i + ca_gqJ_i + \cdots + ca_iqJ_i].
\]
Consider a typical term in this sum, $ca_j^qJ_i^{(i+r-1)q}$, where $g+1 \leq j \leq i$. As $b_j = a_j + t_j$, we can write this term
\[
ca_j^qJ_i^{(i+r-1)q} = cb_j^qJ_i^{(i+r-1)q} - ct_j^qJ_i^{(i+r-1)q}.
\]
Using (3.4) (note $i + r - 1 \leq w + \ell$), we obtain
\[
ca_j^qJ_i^{(i+r-1)q} \subseteq cb_j^qJ_i^{(i+r-1)q} + J_i^{(i+r-1)q}
\]
and so
\[
c^{i-g}J_i^{(i+r)q} \subseteq c^{i-g-1}[cJ_i^qJ_i + (cb_gqJ_i + J_i) + \cdots + (cb_iqJ_i + J_i)],
\]
which by the induction hypothesis is contained in
\[
J_i^q(B_i^r)^q + J_i^{(i+r-1)q} \subseteq (B_i^{r+1})^q.
\]
In particular, note that
\[
(3.5)
\]
\[
c^{\ell-g}J_{\ell}^{(\ell+r)q} \subseteq (B_{\ell}^{r+1})^q
\]
for all $r \leq w$.

We now prove that $\overline{I^{\ell+w}} \subseteq (\mathbb{A}^{w+1})^\ast$. Let $u \in \overline{I^{\ell+w}}$. Choose an element $d \in R^0$ such that $du^q \subseteq J^{(\ell+w)q}$. Then $c^{\ell-g}du^q \subseteq c^{\ell-g}J^{(\ell+w)q} \subseteq (B_{\ell}^{w+1})^q$ by (3.5). It follows that $u \in (B_{\ell}^{w+1})^\ast = (\mathbb{A}^{w+1})^\ast$. □

Remark. Theorem 3.3 is still valid even if $ht(I) = 0$. In this case choose $c_1 \in I^M$ and c_2 in the intersection of the minimal primes of 0 which do not contain I and avoiding those that contain I. Thus $c_2I^N = 0$ for $N \gg 0$ and $c = c_1 + c_2 \in R^0$ satisfies equation (3.4).

An almost immediate consequence is one of our main theorems:

Theorem 3.6. Let (R, \mathfrak{m}) be an F-rational local ring of positive characteristic p, and let $I \subset R$ be an ideal generated by ℓ elements. Then $\overline{I^{\ell+w}} \subseteq I^{w+1}$ for all $w \geq 0$.

Proof. There is no loss of generality in assuming that R has an infinite residue field. We can replace I by a minimal reduction of itself; suppose that J is that minimal reduction. The number of generators of J is at most ℓ, so without loss of generality we may assume ℓ is the number of generators of J. Fix an integer N. We think of w as fixed, and choose t_g+1, \ldots, t_ℓ and a_1, \ldots, a_ℓ as in Proposition 3.2. In particular, $t_i \in \mathfrak{m}^N$ for all i. By (3.3), $\overline{I^{\ell+w}} \subseteq (\mathbb{A}^{w+1})^\ast = \mathbb{A}^{w+1} \subseteq J^{w+1} + (t_{h+1}, \ldots, t_\ell) \subseteq J^{w+1} + \mathfrak{m}^N$. The equality $(\mathbb{A}^{w+1})^\ast = \mathbb{A}^{w+1}$ above follows from [A, Thm. 1.1]. By the Krull intersection theorem we obtain that $\overline{I^{\ell+w}} \subseteq (J^{w+1} + \mathfrak{m}^N) = J^{w+1}$. □

This characteristic p theorem allows us to prove the same result in equi- characteristic 0:
Theorem 3.7. Let R be an algebra of finite type over a field of characteristic 0 and having only rational singularities. Let $I \subseteq R$ be an ideal generated by ℓ elements. Then $I^{\ell+w} \subseteq I^{w+1}$ for all $w \geq 0$.

Proof. By the work of Hara [Ha] and independently Mehta and Srinivas [MS], R is of F-rational type. It is straightforward to prove in this case that if the conclusion holds in a dense open set of fibers in some family of models $A \to R$ of R, it also holds in R. Hence we may pass to positive characteristic and assume that R is finitely generated over a field of characteristic $p > 0$ such that R_P is F-rational for all primes P. The conclusion will follow if we prove it locally as the number of generators can only drop after localization. It follows that we can reduce to the local F-rational case, and apply Theorem 3.6 to finish the proof. □

4. F-Rational Gorenstein Rings

Our next theorem is new, even in the case R is regular, as far as we know. The proof is based on a careful analysis of the proof of Theorem 3.5, and the ideas behind the cancellation theorem of [Hu]. See also [CP] for further cancellation results. Our main theorem applies to rings which are F-rational and Gorenstein. It is known [HH3, (3.4), (4.7)] that F-rational and F-regular are the same when the base ring is Gorenstein. A ring R is F-regular if every ideal is tightly closed in every localization of R. Of course, all regular rings are F-regular, but the class of F-regular rings is considerably broader than that of regular rings.

Theorem 4.1. Let (R, \mathfrak{m}) be an F-rational Gorenstein local ring of dimension d and having positive characteristic. Suppose that I is an ideal of height g, analytic spread $\ell > g$ with R/I CM. For any reduction J of I, $\overline{I^{\ell-1}} \subseteq J$.

Proof. There is no loss of generality in assuming that R has an infinite residue field and that J is a minimal reduction. Fix an integer N and set $w = 0$ in the notation of Proposition 3.2 and Theorem 3.3. We will prove that $\overline{I^{\ell-1}} \subseteq J + \mathfrak{m}^N$. An application of the Krull intersection theorem then finishes the proof.

We choose t_{g+1}, \ldots, t_ℓ and a_1, \ldots, a_ℓ as in Proposition 3.2, with N fixed as above. Let $b_i = a_i + t_i$ for $1 \leq i \leq \ell$. Choose $x = x_{\ell+1}, \ldots, x_d$ so that $b_{g+1}, \ldots, b_\ell, x$ is a regular sequence on R/I and set $\mathfrak{A} = (b_1, \ldots, b_\ell, x)$. We set $D = J_g : t_{g+1}$ and $K = (J_g, b_{g+2}, \ldots, b_\ell, x)$.

Let $Q = (I, b_{g+2}, \ldots, b_\ell, x) + K : D$. We claim that $\mathfrak{A} : t_{g+1} \subseteq Q$. Suppose that

$$t_{g+1}u = w + vb_{g+1} \tag{4.2}$$

where $w \in K$. Then $t_{g+1}(u - v) \in (J_{g+1}, b_{g+2}, \ldots, b_\ell, x)$ and hence

$$u - v \in (J_{g+1}, b_{g+2}, \ldots, b_\ell, x) : b_{g+1} \subseteq (I, b_{g+2}, \ldots, b_\ell, x) : b_{g+1} \subseteq (I, b_{g+2}, \ldots, b_\ell, x)$$
since R/I is Cohen-Macaulay. Hence $u - v \in Q$ and to prove $u \in Q$ it suffices to prove that $v \in K : D$. Let $d \in D$ and consider dv. Using (4.2) we obtain that $t_{g+1}du = dw + dv b_{g+1}$, and hence $dv b_{g+1} \in (J_g, b_{g+2}, \ldots, b_{\ell}, x)$. Thus

$$D_v \subseteq (J_g, b_{g+2}, \ldots, b_{\ell}, x) : b_{g+1} = (J_g, b_{g+2}, \ldots, b_{\ell}, x) = K.$$

This proves our claim, and in particular proves that $\mathfrak{A} : Q \subseteq \mathfrak{A} : (\mathfrak{A} : t_{g+1})$.

We next claim that $\overline{I^{\ell-1}} \subseteq \mathfrak{A} : Q$. First observe that $(I, b_{g+2}, \ldots, b_{\ell}, x) \cdot \overline{I^{\ell-1}} \subseteq I \cdot \overline{I^{\ell-1}} + \mathfrak{A}$, and by Theorem 2.6, $I \cdot \overline{I^{\ell-1}} \subseteq \mathfrak{A}$ (using that R is F-rational). Hence it remains to prove that $\overline{I^{\ell-1}} \cdot (K : D) \subseteq \mathfrak{A}$. We use a lemma.

Lemma 4.3. With the notation as above,

$$t_{g+1} \cdot \overline{I^{\ell-1}} \subseteq J_g.$$

Proof of Lemma 4.3. Let $z \in \overline{I^{\ell-1}}$ and choose an element $d \in R^o$ so that $dz^n \in I^{n(\ell-1)}$ for all n. Choose $c \in I^M$ nonzero as in (3.4). Using (3.4) we then obtain that

$$dc t_{g+1}^q z^q \in ct_{g+1}^q I^{q(\ell-1)} \subseteq t_{g+1}^q I^{q(\ell-1) + M} \subseteq J_{g+1}^{q(\ell-1) + M} \subseteq \overline{J_g^n}$$

the last containment following as $\ell - 1 \geq g$ and J_g has g generators. Hence $t_{g+1}z \in (J_g)^*$. As R is F-rational $t_{g+1}z \in J_g$, proving the lemma. \(\square\)

The Lemma proves that $\overline{I^{\ell-1}} \subseteq D$. Hence $\overline{I^{\ell-1}}((J_g, b_{g+2}, \ldots, b_{\ell}, x) : D) \subseteq \mathfrak{A}$. We have proved that $\overline{I^{\ell-1}} \subseteq \mathfrak{A} : Q$.

By local duality, we have $\overline{I^{\ell-1}} \subseteq \mathfrak{A} : Q \subseteq \mathfrak{A} : (\mathfrak{A} : t_{g+1}) \subseteq (J_{g+1}, t_{g+1}, b_{g+2}, \ldots, b_{\ell}, x) \subseteq (J, t_{g+1}, \ldots, t_{\ell}, x) \subseteq J + m^N$. \(\square\)

Acknowledgement. The authors thank Reinhold Hübl for valuable corrections in our original preprint.

Bibliography

F-RATIONAL RINGS

Department of Mathematics, University of Missouri, Columbia, MO 65211
E-mail address: aberbach@math.missouri.edu

Department of Mathematics, University of Kansas, Lawrence, KS 66045
E-mail address: huneke@math.ukans.edu