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EXTENSION OF WEAKLY AND STRONGLY

F -REGULAR RINGS BY FLAT MAPS

Ian M. Aberbach

§1. Introduction

Throughout this paper all rings will be Noetherian of positive characteristic p. Hence
tight closure theory [HH1–4] takes a prominent place (see §2 for tight closure definitions
and terminology). The purpose of this note is to help answer the following question: if
R is weakly (resp. strongly) F -regular and φ : R → S is a flat map then under what
conditions on the fibers is S weakly (resp. strongly) F -regular. This question (among
many others) is raised in [HH4] in section 7. It is shown there that if φ is a flat map
of local rings, S is excellent and the generic and closed fibers are regular then weak F -
regularity of R implies that of S (Theorem 7.24). One of our main results weakens the
hypotheses considerably.

Theorem 3.4. Let φ : (R,m) → (S,n) be a flat map. Assume that S/mS is Gorenstein
and R is weakly F -regular and Cohen-Macaulay. Suppose that either

(1) c ∈ R◦ is a common test element for R and S, and S/mS is F -injective, or
(2) c ∈ S − mS is a test element for S and S/mS is F -rational, or
(3) R is excellent and S/mS is F -rational.

Then S is weakly F -regular.

We note that the Gorenstein assumption on the fiber is essential, even if R is regular.
Even weakening the assumption on the fiber to Q-Gorenstein is not strong enough to
give a good theorem, as Singh [Si] gives an example of R → S flat, where R is a discrete
valuation domain, S/mS is Q-Gorenstein and strongly F -regular, yet S is not weakly
F -regular!

We also prove a corresponding result for strong F -regularity.

Theorem 3.6. Let (R,m, K) → (S,n, L) be a flat map of F -finite reduced rings with
Gorenstein closed fiber. Assume that R is strongly F -regular. If S/mS is F -rational then
S is strongly F -regular.

In order to prove the first of these theorems we investigate how flat maps φ : (R,m) →
(S,n) with Gorenstein closed fibers affect tight closure for I ⊆ R such that l(R/I) < ∞
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and I is irreducible in R. In general these results do not depend on the relationship of
R/m → S/n (e.g., separability or finiteness).

While not directly relevant to this paper, we note that other authors have recently
investigated tight closure properties under good flat maps. For instance Enescu [En] and
Hashimoto [Ha] have recently shown that for a flat map with F -rational base and F -
rational closed fiber, the target is F -rational (in the presence of a common test element).

§2. Background for tight closure

Let R be a Noetherian ring of characteristic p > 0. We use q = pe for a varying power
of p and for an ideal I ⊆ R we let I [q] = (iq : i ∈ I). Also let R◦ be the complement
in R of the union of the minimal primes of R. Then x is in the tight closure of I if and
only if there exists c ∈ R◦ such that cxq ∈ I [q] for all q � 0. If I∗ = I then I is said to
be tightly closed. We will say that I is Frobenius closed if xq ∈ I [q] for some q always
implies that x ∈ I.

There is a tight closure operation for a submodule N ⊆ M , but we will not discuss
this case in general. It is however useful to discuss tight closure in the case of a particular
type of direct limit. Suppose that M = lim−→t R/It for a sequence of ideals {It}. Let u ∈ M
be an element which is given by {ut} where in the direct limit system ut 7→ ut+1. We
will say that u ∈ 0∗M if there exists c ∈ R◦ and a sequence tq such that for all q � 0,

cuq
tq

∈ I
[q]
tq

. We will say that u is in the finitistic tight closure of 0 in M , 0∗fg
M , if there

exists c ∈ R◦ and t > 0 such that cuq
t ∈ I

[q]
t for all q. This definition of finitistic tight

closure agrees with that in [HH2] for this case. Clearly 0∗fg
M ⊆ 0∗M .

A ring R in which every ideal is tightly closed is called weakly F -regular. If every
localization of R is weakly F -regular then R is F -regular. When R is reduced then R1/p

denotes the ring of pth roots of elements of R. More generally, R1/q is the ring of qth
roots. Clearly R ⊆ R1/q. If R is F -finite and reduced (R1/p is a finite R-module) then
R is called strongly F -regular if for all c ∈ R◦, there exists a q such that the inclusion
Rc1/q ⊆ R1/q splits over R. If R is F -finite and Rc is strongly F -regular for some c ∈ R◦,
then R is strongly F -regular if and only if there exists q such that Rc1/q ⊆ R1/q splits
over R [HH1, Theorem 3.3]. Strongly F -regular rings are F -regular, and weakly F -regular
rings are normal and under mild conditions (e.g., excellent) are Cohen-Macaulay.

The equivalence of the three conditions is an important open question. Let (R,m)
be an excellent reduced local ring and let E be an injective hull of the residue field of
R. Then E can be written as a direct limit of the form above since R is approximately

Gorenstein. Weak F -regularity of R is equivalent to 0∗fg
E = 0 [HH2, Theorem 8.23], while

strong F -regularity is equivalent to (F -finiteness and) 0∗E = 0 [LS, Proposition 2.9].
By a parameter ideal in (R,m) we mean an ideal generated by part of a system of

parameters. We say that (R,m) is F -rational if every parameter ideal is tightly closed,
and F -injective if every parameter ideal is Frobenius closed (this is a slightly different
notion of F -injectivity from that in [FW], but is equivalent for CM rings). F -rational
rings are normal and under mild conditions are Cohen-Macaulay. In a Gorenstein ring,
F -rationality is equivalent to all forms of F -regularity.

A priori, the multiplier element c in the definition of tight closure depends on both I
and x. If c works for every tight closure test then we say that c is a test element for R.
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If c works for every tight closure test for every completion of every localization of R then
we say that c is a completely stable test element. It is shown in [HH4] that if (R,m) is
a reduced excellent domain, c ∈ R◦, and Rc is Gorenstein and weakly F -regular then c
has a power which is a completely stable test element for R.

In [HH2, HH3] it is shown that the multiplier c in the definition of tight closure need
not remain constant. Let R be a domain. One may have a sequence of elements cq

such that cqx
q ∈ I [q] where cq must have “small order.” We can obtain a notion of order,

denoted ord, by taking a Z-valued valuation on R which is non-negative on R and positive
on m. Let R+ be the integral closure of R in an algebraic closure of the fraction field of
R (R+ has many wonderful properties, such as being a big Cohen-Macaulay algebra for
R when R is excellent [HH5]). The valuation then extends to a function on R+ which
takes values in Q. In particular, ord(c1/q) = ord(c)/q. We will need to use the following
theorem [HH3, Theorem 3.1].

Theorem 2.1. Let (R,m) be a complete local domain of characteristic p, let x ∈ R and
let I ⊆ R. Then x ∈ I∗ if and only if there exists a sequence of elements εn ∈ (R+)◦ such
that ord(εn) → 0 as n → ∞ and εnx ∈ IR+.

In fact we would like to strengthen this theorem in order to apply it to tight closure
calculations for non finitely generated modules which are defined by a direct limit system
of ideals. The proof we give is just an altered version of the proof of Theorem 3.1 given
in [HH3]. The key component is [HH3, Theorem 3.3]:

Theorem 2.2. Let (R,m, k) be a complete local domain. Let ord be a Q-valued valuation
on R+ nonnegative on R (and hence on R+) and positive on m (and, hence, on m+).
Then there exists a fixed real number ν > 0 and a fixed positive integer r such that for
every element u of R+ of order < ν there is an R-linear map φ : R+ → R such that
φ(u) /∈ mr.

The generalization of Theorem 2.1 is given below.

Theorem 2.3. Let (R, m) be a complete local domain of characteristic p. Let M =
lim−→t R/It be an R-module and let x ∈ M . Suppose that x comes from the sequence
{xt} where xt 7→ xt+1. Then x ∈ 0∗M if and only if there exists a sequence of elements
εn ∈ (R+)0 such that ord(εn) → 0 as n → ∞ and for each n there exists t such that
εnxt ∈ ItR

+.

Proof. The “only if” part is trivial, as if cxq = 0 for all q � 0 then we can take εq = c1/q.
To see the “if” direction, choose ν > 0 and r as in Theorem 2.2. Fix q = pe > 0.

Choose n large enough that ord(εn) < ν/q. Let ε = εq
n. Then there exists t such that

εxq
t ∈ I

[q]
t R+ and ord(ε) < ν. Applying an R linear map φ as in Theorem 2.2 we find

that cqx
q
t ∈ I

[q]
t ⊆ (I

[q]
t )∗ with cq = φ(ε) ∈ R−mr. Thus, setting Jq = ∪t(I

[q]
t )∗ :R xq

t we
have cq ∈ Jq for all q.

The sequence Jq is nonincreasing. If for some t, yxpq
t ∈ (I

[pq]
t )∗ then c′(yxpq

t )q′

∈

(I
[pq]
t )[q

′] = (I
[pqq′]
t ) for all q′ � 0 where c′ 6= 0. But then c′(yxq

t )
pq′

∈ (I
[q]
t )[pq′] for all

q′ � 0 and hence yxq
t ∈ (I

[q]
t )∗, as required.
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Since the sequence {Jq}q is nonincreasing, it cannot have intersection 0, or Chevalley’s
theorem would give Jq ⊆ mr for q � 0. As cq ∈ Jq−mr for all q, we can choose a nonzero

element d ∈ ∩qJq . Then for each q there exists t such that dxq
t ∈ (I

[q]
t )∗. If c is a test

element for R then cdxq
t ∈ I

[q]
t . Thus x ∈ 0∗M . �

Proposition 2.4. Let (R,m) be an excellent local domain such that its completion is
a domain. Let M = lim−→t R/It be a direct limit system. Fix u /∈ 0∗M . Then there exists

q0 such that Jq = ∪q(I
[q]
t : uq

t ) ⊆ m[q/q0] for all q � 0 (where {ut} represents u ∈ M
and ut 7→ ut+1). In particular if I ⊆ R we may take M = R/I where the limit system
consists of equalities. Then u /∈ I∗ implies that (I [q] : uq) ⊆ m[q/q0].

Proof. Suppose that we can show that the proposition holds in R̂. Then (I
[q]
t :R uq

t ) ⊆

(I
[q]
t :R̂ uq

t ) ∩ R ⊆ m[q/q0]R̂ ∩ R ⊆ m[q/q0]R. Thus we may assume that R is complete.
For x ∈ R let f(x) be the largest power of m that x is in, and set f(x) = limn→∞ f(xn)/n.

By the valuation theorem [Re, Theorem 4.16], there exist a finite number of Z-valued
valuations v1, . . . , vk on R which are non-negative on R and positive on m and positive
rational numbers e1, . . . , ek such that f(x) = min{vi(x)/ei}. Furthermore, since R is an-
alytically unramified, there exists a constant L such that for all x ∈ R, f(x) ≤ bf(x)c ≤
f(x) + L ([Re, Theorem 5.32 and 4.16]).

Now, by Theorem 2.3, for each vi there exists a positive real number αi such that

if c ∈ (I
[q]
t : uq

t ) then vi(c) ≥ αiq. Combined with the valuation theorem we see that
f(c) ≥ min{qαi/ei}. Let α = min{αi/ei}. Then f(c) ≥ αq − L − 1. Let s = µ(m).
Choose q1 > 1/α, q2 ≥ L + 1, and q3 ≥ s (all powers of p). Set q0 = q1q2q3. Then
f(c) ≥ αq − (L+ 1) ≥ q/q1 − (L+ 1) ≥ q/q1q2 − 1 ≥ (q/q0)s− 1. A simple combinatorial
argument shows that m(q/q0)s−1 ∈ m[q/q0]. Hence c ∈ m[q/q0]. �

§3. Tight closure in flat extension maps

We show in this section that extending a weakly (respectively, strongly) F -regular ring
by a flat map with sufficiently nice Gorenstein closed fiber yields another weakly (resp.,
strongly) F -regular ring. These results are Theorems 3.4 and 3.6 (see also Corollary 3.5
for the F -regular case).

By saying that φ : (R,m) → (S,n) is flat we mean that φ is flat and that φ(m) ⊆ n.
Since the map is flat we then know that given ideals A, B ⊆ R we have AS :S BS =
(A :R B)S (B finitely generated). The next lemma merely asserts that modding out by
elements which are regular in the closed fiber preserves flatness.

Lemma 3.1. Let φ : (R,m) → (S,n) be a flat map. Let z1, . . . , zd ∈ S be elements whose
images in S/mS are a regular sequence. Then for any ideal I generated by monomials in
the z’s, the ring S/IS is flat over R.

Proof. See, for example [HH4, Theorem 7.10a,b]. �

The next proposition shows that tight closure behaves well for irreducible m-primary
ideals when extending to S. Given a sequence of elements z = z1, . . . , zd we will use z[t]

to denote zt
1, . . . , zt

d.
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Proposition 3.2. Let φ : (R,m, K) → (S,n, L) be a flat map with Gorenstein closed
fiber. Let z = z1, . . . , zd ∈ S be elements whose images form a s.o.p. in S/mS. Let
I ⊆ R be such that l(R/I) < ∞ and dimK(0 :R/I m) = 1. Suppose that either

(1) R and S have a common test element and S/mS is F -injective, or
(2) c ∈ S − mS is a test element for S, and S/mS is F -rational, or

(3) R is excellent, R̂ is a domain, and S/mS is F -rational.

Then I is tightly closed in R ⇐⇒ for all t > 0, IS + (z)[t]S is tightly closed in S ⇐⇒
there exists t > 0 such that IS + (z)[t]S is tightly closed in S.

Proof. Let b ∈ S have as its image the socle element in S/mS + (z)S. Let u ∈ R be
the socle element mod I. Then the socle element of S/(IS + (z)S) is ub since the map
R/I → R/I ⊗ S = S/IS is flat with Gorenstein fibers (there is only one fiber).

Suppose that I is tightly closed. There is no loss of generality in taking t = 1. If
IS + (z)S is not tightly closed in S then we have c(ub)q ∈ (I [q] + (z)[q])S for all q. In
case (1) we may take c ∈ R◦, so that

bq ∈ (I [q] + (z)[q])S :S cuq = (I [q] :R cuq)S + (z)[q]S ⊆ mS + (z)[q]S

for all q � 0. The first equality is a consequence of flatness, while the inclusion follows
since u /∈ I∗. By our assumption that S/mS is F -injective we reach the contradictory
conclusion that b ∈ ((z) + m)S. In case (2) we have

cbq ∈ (I [q] + (z)[q])S :S uq = (I [q] :R uq)S + (z)[q]S ⊆ mS + (z)[q]S

for all q � 0. As S/mS is F -rational, it is a domain, so c 6= 0 in S/mS. This contradicts
our hypothesis that S/mS is F -rational (in fact it is enough to assume that I is Frobenius
closed to reach this conclusion). In case (3) we can choose q0 as in Proposition 2.4, and
then

c(bq0)q/q0 ∈ (I [q] + (z)[q])S :S uq = (I [q] :R uq)S + (z)[q]S ⊆ m[q/q0]S + ((z)[q0])[q/q0]

for all q/q0. But then bq0 ∈ (mS + (z)[q0])∗. By persistence, the image of bq0 is in
((z)[q0]S/mS)∗, which contradicts the F -rationality of S/mS.

Suppose now that IS+(z)[t]S is tightly closed in S for all t, but I is not tightly closed in
R. Then u ∈ (IR)∗ ⊆ (I +(z)[t])∗ (since R◦ ⊆ S0). But then u ∈ ∩t(IS +(z)[t]S)∗∩R ⊆
∩t(IS + (z)[t]S) ∩ R ⊆ IS ∩ R = IR.

Finally, suppose that (IS + (z)[t0])S is tightly closed for some t0. Given any t, the
socle element of (IS + (z)[t])S is (z1 · · · zd)

t−1ub. If c((z1 · · · zd)
t−1ub)q ∈ (IS + (z)[t])[q]

then by flatness, c((z1 · · · zd)
t0−1ub)q ∈ (IS + (z)[t0])[q]. Therefore, one such ideal tightly

closed shows that all such ideals are tightly closed. �

To deal with strong F -regularity we need to give a similar proposition with R/I re-
placed by the injective hull ER(R/m). Suppose that we can write E = ER(R/m) =
lim−→t R/Jt, the set {ut} ⊆ R is a collection of elements such that ut 7→ ut+1 in the map
R/Jt → R/Jt+1 and the image of each ut in E is the socle element of E. It suffices that
R be approximately Gorenstein [Ho2] (e.g., excellent and normal, or even reduced) to
obtain E in this manner. In particular an F -finite ring is excellent [Ku], so a reduced
F -finite ring is approximately Gorenstein.
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Proposition 3.3. Let (R,m, K) → (S,n, L) be a flat map of F -finite reduced rings with
Gorenstein closed fiber.

(1) If Rc1/q ⊆ R1/q splits for some q (over R) and S/mS is F -injective then Sc1/q ⊆
S1/q splits for some q (over S).

(2) If 0 is Frobenius closed in ER(K), S/mS is F -rational and c ∈ S − mS then
there exists q such that Sc1/q ⊆ S1/q splits (over S).

Proof. Choose z = z1, . . . , zd ∈ S elements which generate a s.o.p. in S/mS. By [HH4,
Lemma 7.10] we have ES(L) = lim−→v S/(z[v]) ⊗R ER(K) = lim−→v,t S/(z[v]) ⊗R R/Jt =

lim−→t S/(z[t], Jt)S. If b ∈ S generates the socle element in S/(m+(z))S then the image of

(z1 · · · zd)
t−1but in S/((z[t]) + Jt)S maps to the socle element of ES (where ut is as given

above).
In case (1), if for all q the inclusion Sc1/q → S1/q fails to split, by [Ho1, Theorem 1

and Remark 2] for all q there exists tq such that

c(z1 · · · zd)
(tq−1)qbquq

tq
∈ ((z[tq]), Jtq

)[q]S.

Hence (z1 · · · zd)
(tq−1)qbq ∈ ((z), Jtq

)[q] :S cuq
tq

⊆ (J
[q]
tq

:R cuq
tq

)S + (z[tq])[q]S ⊆ mS +

(z[tq])[q]S for q � 0 (we are using here that if Rc1/q ⊆ R1/q splits for some q then

Rc1/q′

⊆ R1/q′

splits for all q′ ≥ q). Thus bq ∈ mS + (z)[q] since S/mS is CM. This
contradicts the F -injectivity of S/mS.

To see (2), if there is no splitting we obtain

c(z1 · · · zd)
(tq−1)qbq ∈ (z[tq], Jtq

)[q] :S uq
tq

⊆ (J
[q]
tq

:R uq
tq

)S + ((z[tq])[q]S ⊆ mS + ((z[tq])[q]S

and hence cbq ∈ mS + (z)[q]. This contradicts the F -rationality of S/mS. �

We can now give our main theorems on the extension of weakly and strongly F -regular
rings by flat maps with Gorenstein closed fiber.

Theorem 3.4. Let φ : (R,m) → (S,n) be a flat map. Assume that S/mS is Gorenstein
and R is weakly F -regular and CM. Suppose that either

(1) c ∈ R◦ is a common test element for R and S, and S/mS is F -injective, or
(2) c ∈ S − mS is a test element for S and S/mS is F -rational, or
(3) R is excellent and S/mS is F -rational.

Then S is weakly F -regular.

Proof. To see that S is weakly F -regular it suffices to show that there exists a sequence
of irreducible tightly closed ideals of S cofinite with the powers of n. As R is weakly F -
regular (so normal) and CM it is approximately Gorenstein. Say that {Jt} is a sequence
of irreducible ideals cofinite with the powers of m. Let z = z1, . . . , zd ∈ S be elements
which form a s.o.p. in S/mS. Then (Jt + z[t])S is a sequence of irreducible ideals in S
cofinal with the powers of n. By Proposition 3.2, in cases (1), (2), and (3), the ideals

(Jt+z[t])S are tightly closed in S (in case (3), R̂ is still weakly F -regular, so is a domain).
6



Therefore S is weakly F -regular. We note that in case (2) we may weaken the assumption
that R is weakly F -regular to the assumption that R is F -pure (see the comment in the
proof of Proposition 3.2, part (2)). �

The next corollary should be compared with [HH4, Theorem 7.25(c)].

Corollary 3.5. Let (R,m) → (S,n) be a flat map of excellent rings with Gorenstein
fibers. Suppose that the generic fiber is F -rational and all other fibers are F -injective. If
R is F -regular then S is F -regular.

Proof. By hypothesis the generic fiber is Gorenstein and F -rational, therefore there is
a c ∈ R◦ which is a common completely stable test element. F -regularity is local on
the prime ideals of S and the fiber of such a localization is the localization of a fiber,
hence Gorenstein and F -injective (the property of F -injectivity is easily seen to localize).
Therefore Theorem 3.4(1) always applies. �

Theorem 3.6. Let (R,m, K) → (S,n, L) be a flat map of F -finite reduced rings with
Gorenstein closed fiber. Assume that R is strongly F -regular. If S/mS is F -rational then
S is strongly F -regular.

Proof. We must show that there exists an element c ∈ S0 such that Sc is strongly F -
regular and Sc1/q ⊆ S1/q splits for some q.

If there exists c ∈ R◦ such that Sc is strongly F -regular (i.e., a power of c is a common
test element for R and S) then we are done by Proposition 3.3(1). Even if R and S have
no (apparent) common test element, however, we claim that there exists c ∈ S − mS
such that Sc is strongly F -regular. Once we have shown this, the theorem follows by
Proposition 3.3(2).

Since the non-strongly F -regular locus is closed [HH1, Theorem 3.3] it suffices to show
that SmS is strongly F -regular, for then there exists an element c ∈ S − mS such that
Sc is strongly F -regular. Let B = SmS . Then R → B is flat and the closed fiber is a
field. In particular EB(B/mB) = ER(K) ⊗R B. As R is strongly F -regular (so normal)
it is approximately Gorenstein. Say ER = lim−→t R/Jt with socle element mapped to by
ut (as before). Then ut ∈ B/JtB will still map to the socle element u in EB. Suppose
that u ∈ 0∗EB

. This means there exists b ∈ B0 such that for all q there exists tq such that

buq
tq

∈ J
[q]
tq

B. Hence b ∈ J
[q]
tq

:B uq
tq

= (J
[q]
tq

:R uq
tq

)B. Note that R is an excellent normal
domain, so its completion remains a domain. Thus by Proposition 2.4 we see that as

q → ∞, (J
[q]
tq

:R uq
tq

) gets into larger and larger powers of the maximal ideal, since 0 is

tightly closed in ER. Thus b ∈ ∩NmNB = 0, a contradiction. �
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