When does the F-signature exist?*

Ian M. Aberbach† Florian Enescu‡

Abstract. We show that the F-signature of an F-finite local ring R of characteristic $p > 0$ exists when R is either the localization of an N-graded ring at its irrelevant ideal or Q-Gorenstein on its punctured spectrum. This extends results by Huneke, Leuschke, Yao and Singh and proves the existence of the F-signature in the cases where weak F-regularity is known to be equivalent to strong F-regularity.

Résumé. Nous prouvons dans cet article l’existence de la F-signature d’un anneau local F-fini R, de caractéristique positive p, quand R est la localisation à l’unique idéal homogène maximal d’un anneau N-gradué ou quand R est Q-Gorenstein sur son spectre épointé. Ceci généralise les résultats de Huneke, Leuschke, Yao et Singh et prouve l’existence de la F-signature dans les cas où faible et forte F-régularité sont équivalentes.

1 A sufficient condition for the existence of the F-signature

Let (R, m, k) be a reduced, local F-finite ring of positive characteristic $p > 0$ and Krull dimension d. Let

$$R^{1/q} = R^{a_q} \oplus M_q$$

be a direct sum decomposition of $R^{1/q}$ such that M_q has no free direct summands. If R is complete, such a decomposition is unique up to isomorphism. Recent research has focused on the asymptotic growth rate of the numbers a_q as $q \to \infty$. In particular, the F-signature (defined below) is studied in [7] and [3], and more generally the Frobenius splitting ratio is studied in [2].

For a local ring (R, m, k), we set $α(R) = \log_p [k_R : k_R^p]$. It is easy to see that, for an m-primary ideal I of R, $λ(R^{1/q}/IR^{1/q}) = λ(R/I[q]) / q^{α(R)}$, where $λ(−)$ represents the length function over R.

We would like to first define the notion of F-signature as it appears in [3] and [7].

Definition 1.1. The F-signature of R is $s(R) = \lim_{q \to \infty} \frac{a_q}{q^{d+α(R)}}$, if it exists.

*2000 Mathematics Subject Classification: 13A35. The first author was partially supported by a grant from the NSA.

†Department of Mathematics, University of Missouri, Columbia, MO 65211; aberbach@math.missouri.edu

‡Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303 and The Institute of Mathematics of the Romanian Academy, Romania; fenescu@mathstat.gsu.edu
Theorem 1.2. Let \((R, m, k)\) be a reduced Noetherian ring of positive characteristic \(p\). Then
\[
\liminf_{q \to \infty} a_q / q^{d+\alpha(R)} > 0 \text{ if and only if } \limsup_{q \to \infty} a_q / q^{d+\alpha(R)} > 0 \text{ if and only if } \text{R is strongly } F\text{-regular.}
\]

The question of whether or not, in a strongly \(F\)-regular ring, \(s(R)\) exists, is open. We show in this paper that its existence is closely connected to the question of whether or not weak and strong \(F\)-regularity are equivalent.

Smith and Van den Bergh ([10]) have shown that the \(F\)-signature of \(R\) exists when \(R\) has finite Frobenius representation type (FFRT) type, that is, if only finitely many isomorphism classes of indecomposable maximal Cohen-Macaulay modules occur as direct summands of \(R^1/q\) for any \(q = p^e\). Yao has proven that, under mild conditions, tight closure commutes with localization in a ring of FFRT type, [11]. Moreover, Huneke and Leuschke proved that if \(R\) is also Gorenstein, then the \(F\)-signature exists, [7]. Yao has recently extended this result to rings that are Gorenstein on their punctured spectrum, [12]. Singh has also shown that the \(F\)-signature exists for monomial rings, [9].

Let \((R, m)\) be an approximately Gorenstein ring. This means that \(R\) has a sequence of \(m\)-primary irreducible ideals \(\{I_t\}\) cofinal with the powers of \(m\). By taking a subsequence, we may assume that \(I_t \supset I_{t+1}\). For each \(t\), let \(u_t\) be an element of \(R\) which represents a socle element modulo \(I_t\). Then there is, for each \(t\), a homomorphism \(R/I_t \to R/I_{t+1}\) such that \(u_t + I_t \mapsto u_{t+1} + I_{t+1}\). The direct limit of the system will be the injective hull \(E = E_R(R/m)\) and each \(u_t\) will map to the socle element of \(E\), which we will denote by \(u\). Hochster has shown that every excellent, reduced local ring is approximately Gorenstein ([5]).

Aberbach and Leuschke have shown that, for every \(q\), there exists \(t_0(q)\), such that
\[
a_q/(q^{d+\alpha(R)}) = \lambda(R/(I_t^{[q]} : u_t^q))/q^d,
\]
for all \(t \geq t_0(q)\) (see [3], p. 55).

The situation when \(t_0(q)\) can be chosen independently of \(q\) is of special interest.

Definition 1.3. We say that \(R\) satisfies Condition (A), if there exist a sequence of irreducible \(m\)-primary ideals \(\{I_t\}\) and a \(t_0\) such that, for all \(t \geq t_0\) and all \(q\)
\[
(I_t^{[q]} : u_t^q) = (I_{t_0}^{[q]} : u_{t_0}^q).
\]

Proposition 1.4. Let \((R, m, k)\) be a local reduced \(F\)-finite ring. If \(R\) satisfies Condition A, then the \(F\)-signature exists.

Proof. We know that \(R\) is approximately Gorenstein and hence we will use the notation fixed in the paragraph above.

As explained above, Condition A implies that there exists \(t_0\), independent of \(q\), such that
\[
a_q/(q^{d+\alpha(R)}) = \lambda(R/(I_{t_0}^{[q]} : u_{t_0}^q))/q^d,
\]
for all \(q\).

But \(\lambda(R/(I_{t_0}^{[q]} : u_{t_0}^q)) = \lambda(R/I_{t_0}^{[q]}) - \lambda(R/(I_{t_0} + u_{t_0}R)^{[q]})\). Dividing by \(q^d\) and taking the limit as \(q \to \infty\) yields \(s(R) = e_{HK}(I_{t_0}, R) - e_{HK}(I_{t_0} + u_{t_0}R, R)\).
Now we would like to concentrate on another condition, Condition (B), that appeared first in the work of Yao. First we need to introduce some notation.

Assume that E is the injective hull of the residue field k. By $R^{(e)}$ we denote the R-bialgebra whose underlying abelian group equals R and the left and right R-multiplication is given by $a \cdot r \ast b = arb^e$, for $a, b \in R, r \in R^{(e)}$.

Let $k = Ru \rightarrow E$ be the natural inclusion and consider the natural induced map $\phi_e : R^{(e)} \otimes_R E \rightarrow R^{(e)} \otimes_R (E/k)$. Then $a_q/q^{a(R)} = \lambda(\ker(\phi_e))$ (by Aberbach-Enescu, Corollary 2.8 in [2], see also Yao’s work [12]).

One can in fact see that

$$
\lambda(\ker(\phi_e)) = \lambda(R/(c \in R: c \otimes u = 0 \in R^{(e)} \otimes_R E)) = \lambda(R/ \cup_t (I_t^{[q]} : u_t^q)).
$$

Definition 1.5. We say that R satisfies Condition (B) if there exists a finite length submodule $E' \subset E$ such that, if $\psi_e : R^{(e)} \otimes_R E' \rightarrow R^{(e)} \otimes_R E'/k$, then $\lambda(\ker(\psi_e)) = \lambda(\ker(\phi_e))$, for all e.

Yao [12] has shown that Condition (B) implies that the F-signature of R exists.

Proposition 1.6. Let (R, m, k) be a local reduced F-finite ring. Then Conditions (A) and (B) are equivalent.

Proof. Assume that Condition (A) holds. Then one can take $E' = R/I_{t_0}$ and then Condition (B) follows.

If Condition (B) holds, then take t_0 large enough such that $E' \subset \text{Im}(R/I_{t_0} \rightarrow E)$.

As noted above, one can compute the length of the kernel of ψ_e as the colength of $\{c \in R : c \otimes u = 0 \in R^{(e)} \otimes_R E'\}$. Since R/I_{t_0} injects into E we see that $\{c \in R : c \otimes u = 0 \in R^{(e)} \otimes_R E'\}$ is a subset of $\{c \in R : c \otimes u = 0 \in R^{(e)} \otimes_R R/I_{t_0}\} = (I_{t_0}^{[q]} : u_{t_0}^q)$.

Since $(I_{t_0}^{[q]} : u_{t_0}^q) \subset (I_t^{[q]} : u_t^q)$ for all $t \geq t_0$, we see that Condition (B) implies that $(I_t^{[q]} : u_t^q) = (I_{t_0}^{[q]} : u_{t_0}^q)$ for all $t \geq t_0$, which is Condition (A).

\[\square\]

2 N-Graded Rings

Let (R, m) be a Noetherian \mathbb{N}-graded ring $R = \bigoplus_{n \geq 0} R_n$, where $R_0 = k$ is an F-finite field of characteristic $p > 0$.

For any graded R-module M one can define a natural grading on $R^{(e)} \otimes M$: the degree of any tensor monomial $r \otimes m$ equals $\deg(r) + q \deg(m)$.

In what follows we will need the following important Lemma by Lyubeznik and Smith ([8], Theorem 3.2):

Lemma 2.1. Let R be an \mathbb{N}-graded ring and M, N two graded R-modules. Then there exists an integer t depending only on R such that whenever

$$
M \rightarrow N
$$
is a degree preserving map which is bijective in degrees greater than \(s \), then the induced map

\[
R^{(e)} \otimes M \to R^{(e)} \otimes N
\]

is bijective in degrees greater than \(p^e(s + t) \).

Let \(E \) be the injective hull of \(R_m \). In fact, \(E \) is also the injective hull of \(R/\mathfrak{m} \) over \(R \) and as a result is naturally graded with socle in degree 0. We can write \(E = \bigoplus_{n \leq 0} E_n \).

Let \(t \) be as in the Lemma 2.1, and let \(s \leq -t - 1 \). Obviously the map \(E' = \bigoplus_{s \leq n \leq 0} E_n \to E = \bigoplus_{n \leq 0} E_n \) is bijective in degrees greater than \(s \). So by Lemma 2.1, the map \(R^{(e)} \otimes E' \to R^{(e)} \otimes E \) is bijective in degrees greater than \(p^e(s + t) \).

Theorem 2.2. Let \(R \) be an \(\mathbb{N} \)-graded reduced ring over an \(F \)-finite field \(k \) of positive characteristic. Then Condition (B) is satisfied by \(R \) and hence the \(F \)-signature of \(R \) exists.

Proof. Let \(E \) be the injective hull of \(k = R/\mathfrak{m} \) over \(R_m \). As above, \(E = \bigoplus_{n \leq 0} E_n \), where 0 is the degree of the socle generator \(u \) of \(E \).

Using the notation introduced above, we will let \(s = -t - 1 \) and \(E' = \bigoplus_{s \leq n \leq n_0} E_n \to E \). So, \(R^{(e)} \otimes E' \to R^{(e)} \otimes E \) is bijective in degrees greater than \(-p^e \). In particular it is bijective in degrees greater or equal to 0.

We have the following exact sequences:

\[
0 \to k = Ru \to E \to E/k \to 0
\]

and

\[
0 \to k = Ru \to E' \to E'/k \to 0.
\]

After tensoring with \(R^{(e)} \), we get the exact sequences

\[
R^{(e)} \otimes k = R^{(e)} \otimes Ru \to R^{(e)} \otimes E \xrightarrow{\phi_e} R^{(e)} \otimes E/k \to 0
\]

and

\[
R^{(e)} \otimes k = R^{(e)} \otimes Ru \to R^{(e)} \otimes E' \xrightarrow{\psi_e} R^{(e)} \otimes E'/k \to 0.
\]

One can easily see that \(\ker(\phi_e) \) and \(\ker(\psi_e) \) are the submodules generated by \(1 \otimes u \) in \(R^{(e)} \otimes E \) and \(R^{(e)} \otimes E' \), respectively.

The degree of \(1 \otimes u \) is \(q \cdot 0 = 0 \) and we have noted that the natural map \(R^{(e)} \otimes E' \to R^{(e)} \otimes E \) is bijective in degrees greater than \(-p^e \). This shows that \(\ker(\phi_e) \simeq \ker(\psi_e) \) and hence Condition (B) is satisfied.

3 \(\mathbb{Q} \)-Gorenstein Rings

We turn now to showing that Condition (A) holds in strongly \(F \)-regular local rings which are \(\mathbb{Q} \)-Gorenstein on the punctured spectrum. Let \((R, \mathfrak{m}, k)\) be such a ring of dimension
on the punctured spectrum implies that there is an integer d a s.o.p. on Theorem 3.1.

Let d, and assume that R has a canonical module (e.g. R is complete). In this case R has an unmixed ideal of height 1, say $J \subseteq R$, which is a canonical ideal. We may pick an element $a \in J$ which generates J at all minimal primes of J, and then an element $x_2 \in \mathfrak{m}$ which is a parameter on R/J such that $x_2J \subseteq \alpha R$. It is easy to see that then $x^n J(n) \subseteq \alpha^n R$ for all $n \geq 1$ (where $J(n)$ is the height one component of J^n). The condition that R is \mathbb{Q}-Gorenstein on the punctured spectrum implies that there is an integer h and two sequences of elements $x_3, \ldots, x_d \in \mathfrak{m}$ and $a_3, \ldots, a_d \in J(h)$ such that $x_iJ(h) \subseteq a_i R$ for $3 \leq i \leq d$, and x_2, \ldots, x_d is a s.o.p. on R/J. We may then pick $x_i \in J$ such that x_1, \ldots, x_d is an s.o.p. for R. See [1], section 2.2 for more detail. Then by [1], Lemma 2.2.3 we have that for any $a \in \mathfrak{m}$ and $q \in J$ such that x_1, \ldots, x_d is a s.o.p. for R. See \mathbb{Q}-Gorenstein on the punctured spectrum. Then \mathbb{Q}-Gorenstein on the punctured spectrum.

Theorem 3.1. Let (R, \mathfrak{m}, k) be an F-finite strongly F-regular ring which is \mathbb{Q}-Gorenstein on the punctured spectrum. Then R satisfies Condition (A). In particular the F-signature of R exists.

Proof. If R is not complete, we observe that, since R is excellent, \widehat{R} is strongly F-regular and \mathbb{Q}-Gorenstein on the punctured spectrum. If $\{I_t\}$ is a sequence of ideal in \widehat{R} showing condition (A) in \widehat{R}, then $\{I_t \cap R\}$ does so for R. Thus we will assume that R is complete.

Let J, h, and x_1, \ldots, x_d be as discussed above. Let $I_t = (x_1^{-1}J, x_2, \ldots, x_d)$. Since $x_1^nJ \cong J$ as R-modules, the quotient R/x_1^nJ is Gorenstein. The hypothesis that x_2, \ldots, x_d are parameters on R/J and $R/x_1 R$ (hence on R/x_1^nJ) then shows that I_t is irreducible (see [4], Proposition 3.3.18). The sequence $\{I_t\}$ is then a sequence of \mathfrak{m}-primary irreducible ideals cofinal with the powers of \mathfrak{m}. If u_1 represents the socle element of I_1, then we may take $u_t = (x_1 \cdots x_d)^{-1}u_1$ to represent the socle element of I_t. We will show that t_0 may be taken to be 3.

Suppose that $c \in I_t^{[q]} : u_t^q$ for some q. We will show that $c \in I_t^{[q]} : u_3^q$. Raising to the q'th power we have $c^\prime u_3^q = c^\prime ((x_1 \cdots x_d)^{-1}u_1)^{q\prime} \in I_t^{[q\prime]} = (x_1^{-1}J, x_2^\prime, \ldots, x_d^\prime)^{[q\prime]}$. Hence $c^\prime ((x_2 \cdots x_d)^{-1}u_1)^{q\prime} \in (x_2^\prime, \ldots, x_d^\prime)^{[q\prime]} : x_1^{(t-1)q\prime} + (J, x_2^\prime, \ldots, x_d^\prime)^{[q\prime]} = (J, x_2^\prime, \ldots, x_d^\prime)^{[q\prime]}$.

Write $qq' = n_q h + r_q$, with $0 \leq r_q < h$. Repeated application of equation 3.1 (using 1 rather than h for x_2) gives

$$c^\prime ((x_2 \cdots x_d)u_1)^{q\prime} \in (J^{(n_q h)}, x_2^{2qq'}, \ldots, x_d^{2qq'}).$$

Let $d \in J^{(h)} \subseteq J^{(r_q)}$. Multiplying by $x_2^{2qq'}$ and using that $x_2^{2qq'} J^{(qq')} \subseteq \alpha^{qq'} R \subseteq J^{(qq')}$. We have $dc^\prime ((x_2 \cdots x_d)^{2}u_1)^{qq'} \in (J, x_2^{q_2}, \ldots, x_d^{q_2})^{[qq']}$. Multiplying by x_1^{2qq} shows that $dc^\prime u_3^{qq'} = d(cu_3^\prime)^{qq'} \in (I_3^{[q]\prime})^{[q\prime]}$. Thus $cu_3^\prime \in (I_3^{[q]}), I_3^{[q]} = I_3^{[q]}$, as desired.

References

