When does the F-signature exist?*

Ian M. Aberbach ${ }^{\dagger} \quad$ Florian Enescu ${ }^{\ddagger}$

Abstract

We show that the F-signature of an F-finite local ring R of characteristic $p>0$ exists when R is either the localization of an \mathbf{N}-graded ring at its irrelevant ideal or Q-Gorenstein on its punctured spectrum. This extends results by Huneke, Leuschke, Yao and Singh and proves the existence of the F-signature in the cases where weak F-regularity is known to be equivalent to strong F-regularity.

Résumé. Nous prouvons dans cet article l'existence de la F-signature d'un anneau local F -fini R , de caractéristique positive p , quand R est la localisation à l'unique idéal homogène maximal d'un anneau \mathbf{N}-gradué ou quand R est \mathbf{Q}-Gorenstein sur son spectre épointé. Ceci généralise les résultats de Huneke, Leuschke, Yao et Singh et prouve l'existence de la Fsignature dans les cas où faible et forte F-régularité sont équivalentes.

1 A sufficient condition for the existence of the Fsignature

Let (R, \mathfrak{m}, k) be a reduced, local F-finite ring of positive characteristic $p>0$ and Krull dimension d. Let

$$
R^{1 / q}=R^{a_{q}} \oplus M_{q}
$$

be a direct sum decomposition of $R^{1 / q}$ such that M_{q} has no free direct summands. If R is complete, such a decomposition is unique up to isomorphism. Recent research has focused on the asymptotic growth rate of the numbers a_{q} as $q \rightarrow \infty$. In particular, the F-signature (defined below) is studied in [7] and [3], and more generally the Frobenius splitting ratio is studied in [2].

For a local ring (R, \mathfrak{m}, k), we set $\alpha(R)=\log _{p}\left[k_{R}: k_{R}^{p}\right]$. It is easy to see that, for an m-primary ideal I of $R, \lambda\left(R^{1 / q} / I R^{1 / q}\right)=\lambda\left(R / I^{[q]}\right) / q^{\alpha(R)}$, where $\lambda(-)$ represents the length function over R.

We would like to first define the notion of F-signature as it appears in [3] and [7].
Definition 1.1. The F-signature of R is $s(R)=\lim _{q \rightarrow \infty} \frac{a_{q}}{q^{d+\alpha(R)}}$, if it exists.

[^0]The following result, due to Aberbach and Leuschke [3], holds:
Theorem 1.2. Let (R, \mathfrak{m}, k) be a reduced Noetherian ring of positive characteristic p. Then $\liminf _{q \rightarrow \infty} a_{q} / q^{d+\alpha(R)}>0$ if and only if $\limsup _{q \rightarrow \infty} a_{q} / q^{d+\alpha(R)}>0$ if and only if R is strongly F-regular.

The question of whether or not, in a strongly F-regular ring, $s(R)$ exists, is open. We show in this paper that its existence is closely connected to the question of whether or not weak and strong F-regularity are equivalent.

Smith and Van den Bergh ([10]) have shown that the F-signature of R exists when R has finite Frobenius representation type (FFRT) type, that is, if only finitely many isomorphism classes of indecomposable maximal Cohen-Macaulay modules occur as direct summands of $R^{1 / q}$ for any $q=p^{e}$. Yao has proven that, under mild conditions, tight closure commutes with localization in a ring of FFRT type, [11]. Moreover, Huneke and Leuschke proved that if R is also Gorenstein, then the F-signature exists, [7]. Yao has recently extended this result to rings that are Gorenstein on their punctured spectrum, [12]. Singh has also shown that the F-signature exists for monomial rings, [9].

Let (R, \mathfrak{m}) be an approximately Gorenstein ring. This means that R has a sequence of \mathfrak{m}-primary irreducible ideals $\left\{I_{t}\right\}_{t}$ cofinal with the powers of \mathfrak{m}. By taking a subsequence, we may assume that $I_{t} \supset I_{t+1}$. For each t, let u_{t} be an element of R which represents a socle element modulo I_{t}. Then there is, for each t, a homomorphism $R / I_{t} \hookrightarrow R / I_{t+1}$ such that $u_{t}+I_{t} \mapsto u_{t+1}+I_{t+1}$. The direct limit of the system will be the injective hull $E=E_{R}(R / \mathfrak{m})$ and each u_{t} will map to the socle element of E, which we will denote by u. Hochster has shown that every excellent, reduced local ring is approximately Gorenstein ([5]).

Aberbach and Leuschke have shown that, for every q, there exists $t_{0}(q)$, such that

$$
a_{q} /\left(q^{d+\alpha(R)}\right)=\lambda\left(R /\left(I_{t}^{[q]}: u_{t}^{q}\right)\right) / q^{d},
$$

for all $t \geq t_{0}(q)$ (see [3], p. 55).
The situation when $t_{0}(q)$ can be chosen independently of q is of special interest.
Definition 1.3. We say that R satisfies Condition (A), if there exist a sequence of irreducible \mathfrak{m}-primary ideals $\left\{I_{t}\right\}$ and a t_{0} such that, for all $t \geq t_{0}$ and all q

$$
\left(I_{t}^{[q]}: u_{t}^{q}\right)=\left(I_{t_{0}}^{[q]}: u_{t_{0}}^{q}\right)
$$

Proposition 1.4. Let (R, \mathfrak{m}, k) be a local reduced F-finite ring. If R satisfies Condition A, then the F-signature exists.

Proof. We know that R is approximately Gorenstein and hence we will use the notation fixed in the paragraph above.

As explained above, Condition A implies that there exists t_{0}, independent of q, such that

$$
a_{q} /\left(q^{d+\alpha(R)}\right)=\lambda\left(R /\left(I_{t_{0}}^{[q]}: u_{t_{0}}^{q}\right)\right) / q^{d}
$$

for all q.
But $\lambda\left(R /\left(I_{t_{0}}^{[q]}: u_{t_{0}}^{q}\right)\right)=\lambda\left(R / I_{t_{0}}^{[q]}\right)-\lambda\left(R /\left(I_{t_{0}}+u_{t_{0}} R\right)^{[q]}\right)$. Dividing by q^{d} and taking the limit as $q \rightarrow \infty$ yields $s(R)=\mathrm{e}_{H K}\left(I_{t_{0}}, R\right)-\mathrm{e}_{H K}\left(I_{t_{0}}+u_{t_{0}} R, R\right)$.

Now we would like to concentrate on another condition, Condition (B), that appeared first in the work of Yao. First we need to introduce some notation.

Assume that E is the injective hull of the residue field k. By $R^{(e)}$ we denote the R bialgebra whose underlying abelian group equals R and the left and right R-multiplication is given by $a \cdot r * b=a r b^{q}$, for $a, b \in R, r \in R^{(e)}$.

Let $k=R u \rightarrow E$ be the natural inclusion and consider the natural induced map ϕ_{e} : $R^{(e)} \otimes_{R} E \rightarrow R^{(e)} \otimes_{R}(E / k)$. Then $a_{q} / q^{\alpha(R)}=\lambda\left(\operatorname{ker}\left(\phi_{e}\right)\right)$ (by Aberbach-Enescu, Corollary 2.8 in [2], see also Yao's work [12]).

One can in fact see that

$$
\lambda\left(\operatorname{ker}\left(\phi_{e}\right)\right)=\lambda\left(R /\left(c \in R: c \otimes u=0 \text { in } R^{(e)} \otimes_{R} E\right)\right)=\lambda\left(R / \cup_{t}\left(I_{t}^{[q]}: u_{t}^{q}\right)\right) .
$$

Definition 1.5. We say that R satisfies Condition (B) if there exists a finite length submodule $E^{\prime} \subset E$ such that, if $\psi_{e}: R^{(e)} \otimes_{R} E^{\prime} \rightarrow R^{(e)} \otimes_{R} E^{\prime} / k$, then $\lambda\left(\operatorname{ker}\left(\phi_{e}\right)\right)=\lambda\left(\operatorname{ker}\left(\psi_{e}\right)\right)$, for all e.

Yao [12] has shown that Condition (B) implies that the F-signature of R exists.
Proposition 1.6. Let (R, \mathfrak{m}, k) be a local reduced F-finite ring. Then Conditions (A) and (B) are equivalent.

Proof. Assume that Condition (A) holds. Then one can take $E^{\prime}=R / I_{t_{0}}$ and then Condition (B) follows.

If Condition (B) holds, then take t_{0} large enough such that $E^{\prime} \subset \operatorname{Im}\left(R / I_{t_{0}} \rightarrow E\right)$.
As noted above, one can compute the length of the kernel of ψ_{e} as the colength of $\left\{c \in R: c \otimes u=0\right.$ in $\left.R^{(e)} \otimes_{R} E^{\prime}\right\}$. Since $R / I_{t_{0}}$ injects into E we see that $\{c \in R: c \otimes u=$ 0 in $\left.R^{(e)} \otimes_{R} E^{\prime}\right\}$ is a subset of $\left\{c \in R: c \otimes u=0\right.$ in $\left.R^{(e)} \otimes_{R} R / I_{t_{0}}\right\}=\left(I_{t_{0}}^{[q]}: u_{t_{0}}^{q}\right)$.

Since $\left(I_{t_{0}}^{[q]}: u_{t_{0}}^{q}\right) \subset\left(I_{t}^{[q]}: u_{t}^{q}\right)$ for all $t \geq t_{0}$, we see that Condition (B) implies that $\left(I_{t_{0}}^{[q]}: u_{t_{0}}^{q}\right)=\left(I_{t}^{[q]}: u_{t}^{q}\right)$ for all $t \geq t_{0}$, which is Condition (A).

2 N-Graded Rings

Let (R, \mathfrak{m}) be a Noetherian \mathbf{N}-graded ring $R=\oplus_{n \geq 0} R_{n}$, where $R_{0}=k$ is an F-finite field of characteristic $p>0$.

For any graded R-module M one can define a natural grading on $R^{(e)} \otimes M$: the degree of any tensor monomial $r \otimes m$ equals $\operatorname{deg}(r)+q \operatorname{deg}(m)$.

In what follows we will need the following important Lemma by Lyubeznik and Smith ([8], Theorem 3.2):

Lemma 2.1. Let R be an \mathbf{N}-graded ring and M, N two graded R-modules. Then there exists an integer t depending only on R such that whenever

$$
M \rightarrow N
$$

is a degree preserving map which is bijective in degrees greater than s, then the induced map

$$
R^{(e)} \otimes M \rightarrow R^{(e)} \otimes N
$$

is bijective in degrees greater than $p^{e}(s+t)$.
Let E be the injective hull of $R_{\mathfrak{m}}$. In fact, E is also the injective hull of R / \mathfrak{m} over R and as a result is naturally graded with socle in degree 0 . We can write $E=\oplus_{n \leq 0} E_{n}$.

Let t be as in the Lemma 2.1, and let $s \leq-t-1$. Obviously the map $E^{\prime}=\oplus_{s \leq n \leq 0} E_{n} \rightarrow$ $E=\oplus_{n \leq 0} E_{n}$ is bijective in degrees greater than s. So by Lemma 2.1, the map $R^{(e)} \otimes E^{\prime} \rightarrow$ $R^{(e)} \otimes E$ is bijective in degrees greater than $p^{e}(s+t) \leq-p^{e}$.

Theorem 2.2. Let R be an \mathbf{N}-graded reduced ring over an F-finite field k of positive characteristic. Then Condition (B) is satisfied by R and hence the F-signature of R exists.

Proof. Let E be the injective hull of $k=R / \mathfrak{m}$ over $R_{\mathfrak{m}}$. As above, $E=\oplus_{n \leq 0} E_{n}$, where 0 is the degree of the socle generator u of E.

Using the notation introduced above, we will let $s=-t-1$ and $E^{\prime}=\oplus_{s \leq n \leq n_{0}} E_{n} \rightarrow E$. So, $R^{(e)} \otimes E^{\prime} \rightarrow R^{(e)} \otimes E$ is bijective in degrees greater than $-p^{e}$. In particular it is bijective in degrees greater or equal to 0 .

We have the following exact sequences:

$$
0 \rightarrow k=R u \rightarrow E \rightarrow E / k \rightarrow 0
$$

and

$$
0 \rightarrow k=R u \rightarrow E^{\prime} \rightarrow E^{\prime} / k \rightarrow 0
$$

After tensoring with $R^{(e)}$, we get the exact sequences

$$
R^{(e)} \otimes k=R^{(e)} \otimes R u \rightarrow R^{(e)} \otimes E \xrightarrow{\phi_{e}} R^{(e)} \otimes E / k \rightarrow 0
$$

and

$$
R^{(e)} \otimes k=R^{(e)} \otimes R u \rightarrow R^{(e)} \otimes E^{\prime} \xrightarrow{\psi_{e}} R^{(e)} \otimes E^{\prime} / k \rightarrow 0 .
$$

One can easily see that $\operatorname{ker}\left(\phi_{e}\right)$ and $\operatorname{ker}\left(\psi_{e}\right)$ are the submodules generated by $1 \otimes u$ in $R^{(e)} \otimes E$ and $R^{(e)} \otimes E^{\prime}$, respectively.

The degree of $1 \otimes u$ is $q \cdot 0=0$ and we have noted that the natural map $R^{(e)} \otimes E^{\prime} \rightarrow R^{(e)} \otimes E$ is bijective in degrees greater than $-p^{e}$. This shows that $\operatorname{ker}\left(\phi_{e}\right) \simeq \operatorname{ker}\left(\psi_{e}\right)$ and hence Condition (B) is satisfied.

$3 \mathbb{Q}$-Gorenstein Rings

We turn now to showing that Condition (A) holds in strongly F-regular local rings which are \mathbb{Q}-Gorenstein on the punctured spectrum. Let (R, \mathfrak{m}, k) be such a ring of dimension
d, and assume that R has a canonical module (e.g. R is complete). In this case R has an unmixed ideal of height 1 , say $J \subseteq R$, which is a canonical ideal. We may pick an element $a \in J$ which generates J at all minimal primes of J, and then an element $x_{2} \in \mathfrak{m}$ which is a parameter on R / J such that $x_{2} J \subseteq a R$. It is easy to see that then $x^{n} J^{(n)} \subseteq a^{n} R$ for all $n \geq 1$ (where $J^{(n)}$ is the height one component of J^{n}). The condition that R is \mathbb{Q}-Gorenstein on the punctured spectrum implies that there is an integer h and two sequences of elements $x_{3}, \ldots, x_{d} \in \mathfrak{m}$ and $a_{3}, \ldots, a_{d} \in J^{(h)}$ such that $x_{i} J^{(h)} \subseteq a_{i} R$ for $3 \leq i \leq d$, and x_{2}, \ldots, x_{d} is a s.o.p. on R / J. We may then pick $x_{1} \in J$ such that x_{1}, \ldots, x_{d} is an s.o.p. for R. See [1], section 2.2 for more detail. Then by [1], Lemma 2.2.3 we have that for any $N \geq 0$ and any $n \geq 0$,

$$
\begin{equation*}
\left(J^{(n h)}, x_{2}^{N}, \ldots, \widehat{x_{i}^{N}}, \ldots, x_{d}^{N}\right): x_{i}^{\infty}=\left(J^{(n h)}, x_{2}^{N}, \ldots, \widehat{x_{i}^{N}}, \ldots, x_{d}^{N}\right): x_{i}^{n} \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let (R, \mathfrak{m}, k) be an F-finite strongly F-regular ring which is \mathbb{Q}-Gorenstein on the punctured spectrum. Then R satisfies Condition (A). In particular the F-signature of R exists.

Proof. If R is not complete, we observe that, since R is excellent, \widehat{R} is strongly F-regular and \mathbb{Q}-Gorenstein on the punctured spectrum. If $\left\{I_{t}\right\}$ is a sequence of ideal in \widehat{R} showing condition (A) in \widehat{R}, then $\left\{I_{t} \cap R\right\}$ does so for R. Thus we will assume that R is complete.

Let J, h, and x_{1}, \ldots, x_{d} be as discussed above. Let $I_{t}=\left(x_{1}^{t-1} J, x_{2}^{t}, \ldots, x_{d}^{t}\right)$. Since $x_{1}^{n} J \cong J$ as R-modules, the quotient $R / x_{1}^{n} J$ is Gorenstein. The hypothesis that x_{2}, \ldots, x_{d} are parameters on R / J and $R / x_{1} R$ (hence on $R / x_{1}^{n} J$) then shows that I_{t} is irreducible (see [4], Proposition 3.3.18). The sequence $\left\{I_{t}\right\}$ is then a sequence of \mathfrak{m}-primary irreducible ideals cofinal with the powers of \mathfrak{m}. If u_{1} represents the socle element of I_{1}, then we may take $u_{t}=\left(x_{1} \cdots x_{d}\right)^{t-1} u_{1}$ to represent the socle element of I_{t}. We will show that t_{0} may be taken to be 3 .

Suppose that $c \in I_{t}^{[q]}: u_{t}^{q}$ for some q. We will show that $c \in I_{3}^{[q]}: u_{3}^{q}$. Raising to the q^{\prime} th power we have $c^{q^{\prime}} u_{t}^{q q^{\prime}}=c^{q^{\prime}}\left(\left(x_{1} \cdots x_{d}\right)^{t-1} u_{1}\right)^{q q^{\prime}} \in I_{t}^{\left[q q^{\prime}\right]}=\left(x_{1}^{t-1} J, x_{2}^{t}, \ldots, x_{d}^{t}\right)^{\left[q q^{\prime}\right]}$. Hence $c^{q^{\prime}}\left(\left(x_{2} \cdots x_{d}\right)^{t-1} u_{1}\right)^{q q^{\prime}} \in\left(x_{2}^{t}, \ldots, x_{d}^{t}\right)^{\left[q q^{\prime}\right]}: x_{1}^{(t-1) q q^{\prime}}+\left(J, x_{2}^{t}, \ldots, x_{d}^{t}\right)^{\left[q q^{\prime}\right]}=\left(J, x_{2}^{t}, \ldots, x_{d}^{t}\right)^{\left[q q^{\prime}\right]}$.

Write $q q^{\prime}=n_{q^{\prime}} h+r_{q^{\prime}}$ with $0 \leq r_{q^{\prime}}<h$. Repeated application of equation 3.1 (using 1 rather than h for x_{2}) gives

$$
\begin{equation*}
c^{q^{\prime}}\left(\left(x_{2} \cdots x_{d}\right) u_{1}\right)^{q q^{\prime}} \in\left(J^{\left(n_{q^{\prime}} h\right)}, x_{2}^{2 q q^{\prime}}, \ldots, x_{d}^{2 q q^{\prime}}\right) . \tag{3.2}
\end{equation*}
$$

Let $d \in J^{(h)} \subseteq J^{\left(r_{q^{\prime}}\right)}$. Multiplying by $x_{2}^{q q^{\prime}}$ and using that $x_{2}^{q q^{\prime}} J^{\left(q q^{\prime}\right)} \subseteq a^{q q^{\prime}} R \subseteq J^{\left[q q^{\prime}\right]}$ we have $d c^{q^{\prime}}\left(\left(x_{2} \cdots x_{d}\right)^{2} u_{1}\right)^{q q^{\prime}} \in\left(J, x_{2}^{3}, \ldots, x_{d}^{3}\right)^{\left[q q^{\prime}\right]}$. Multiplying by $x_{1}^{2 q q^{\prime}}$ shows that $d c^{q^{\prime}} u_{3}^{q q^{\prime}}=$ $d\left(c u_{3}^{q}\right)^{q^{\prime}} \in\left(I_{3}^{[q]}\right)^{\left[q^{\prime}\right]}$. Thus $c u_{3}^{q} \in\left(I_{3}^{[q]}\right)^{*}=I_{3}^{[q]}$, as desired.

References

[1] I. M. Aberbach Some conditions for the equivalence of weak and strong F-regularity, Comm. Alg. 30 (2002), 1635-1651.
[2] I. M. Aberbach, F. Enescu, The structure of F-pure rings, Math. Zeit., to appear.
[3] I. M. Aberbach, G. Leuschke, The F-signature and strong F-regularity, Math. Res. Lett. 10 (2003), 51-56.
[4] W. Bruns, J. Herzog Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
[5] M. Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), no. 2, 463-488.
[6] M. Hochster and C. Huneke, Tight closure and strong F-regularity, Meḿoire no. 38, Soc. Math. France, 1989, 119-133,
[7] C. Huneke, G. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), 391-404.
[8] G. Lyubeznik, K.E. Smith, Strong and weak F-regularity are equivalent for graded rings, Amer. J. Math. 121 (1999), 1279-1290.
[9] A. K. Singh, The F-signature of an affine semigroup ring, J. Pure Appl. Algebra, 196 (2005) 313-321.
[10] K. E. Smith, M. Van den Bergh, Simplicity of rings of differential operators in prime characteristic, Proc. London. Math. Soc. (3) 75, 1997, no. 1, 32-62.
[11] Y. Yao, Modules with finite F-representation type, preprint 2002.
[12] -, Observations on the F-signature of local rings of characteristic $p>0$, preprint 2003.

[^0]: *2000 Mathematics Subject Classification: 13A35. The first author was partially supported by a grant from the NSA.
 ${ }^{\dagger}$ Department of Mathematics, University of Missouri, Columbia, MO 65211; aberbach@math.missouri.edu
 \ddagger Department of Mathematics and Statistics, Georgia State University, Atlanta, 30303 and The Institute of Mathematics of the Romanian Academy, Romania; fenescu@mathstat.gsu.edu

