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ABSTRACT 

 Arynes and heteroarynes are very important and useful reactive intermediates with 

many applications in organic synthesis, including natural products total synthesis. Although 

benzyne, the parent and most famous aryne, has itself been known for over 50 years, arynes 

derived from the ubiquitous indole nucleus were virtually unknown before our work.  

 The absence of these heteroarynes from the literature was surprising, given the 

potential utility of these reactive intermediates for an attractive entry into the indole alkaloid 

class of important and architecturally complex natural products. Some deceptively simple 

and other more unambiguously complex targets include such members as the trikentrins, 

herbindoles, teleocidins, nodulisporic acids, and penitrems to name just a few representative 

examples.  

 We discovered the first indole arynes, namely the 5,6- and 6,7-indole arynes (aka 

indolynes), and provided a vastly superior preparation of the 4,5-indole aryne as well as the 
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others by devising a facile metal-halogen exchange and elimination protocol with 

o-dihaloindoles.  

 In addition to establishing the existence of these fascinating intermediates via 

trapping with their furan cycloadducts, we applied them to the successful total synthesis of 

several important, biologically active and challenging natural products including 

(±)-cis-trikentrin A, (±)-herbindole A, and (±)-herbindole B. These studies opened a 

successful strategy for the construction of natural products-inspired libraries based on this 

methodology.  

 We also conducted experimental and computational studies on the indole arynes that 

revealed, among other things, their unique properties and reaction profiles. The versatility of 

the 6,7-indole aryne in particular was evident in the many regioselective cycloadditions, 

ring-opening reactions, and rearrangements it exhibited. 
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CHAPTER 1. INTRODUCTION 

1.1 Benzynes: Preparation, Structure, and Reactivity  

Benzyne is a metastable aromatic species that is commonly represented by a 

didehydrobenzene structure that was first postulated as a reaction intermediate by Wittig in 

1942 (Scheme 1).
1
  

 

Scheme 1. Benzyne as a putative intermediate. 

However, Roberts is generally credited with the first successful preparation of benzyne 

itself and with the establishment of the “benzyne” (or more generally, aryne) mechanism by 

carbon isotopic labelling experiments in 1953 (Scheme 2).
2
  

 

Scheme 2. Roberts’ benzyne preparation and labelling experiment. 
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Following Roberts’ experiment, Wittig reported the first Diels-Alder reaction of benzyne 

with furan in 1955.
3
 This reaction became the most important reaction type not only in 

application to benzynes but also as a detector of benzyne intermediates.  

 

Scheme 3. Diels-Alder reaction of benzynes. 

Benzyne is usually represented by a benzene nucleus with a formal triple bond 1.3a, but 

the alternative depiction as a cyclic cumulene structure 1.3b is also widely used (Scheme 3). 

 

Scheme 4. Canonical representations of benzyne. 

Sometimes benzyne is drawn as a diradical canonical or resonance form 1.3e:  the pi bond is 

represented as having a single electron on each of two co-planar, adjacent orbitals. The most 

accurate electronic description (i.e., triple bond, cumulene, or diradical) is still the subject of 

contemporary investigations, and is influenced by specific electronic and substituent effects. 

The additional formal pi bond is localized and orthogonal to the other pi bonds that make up 

the aromatic ring. It is this additional strained formal pi bond that makes benzyne such as 

reactive intermediate. Unlike the ordinary pi bonds of acetylene in which the two sets of 

p-orbitals are parallel to each other and therefore maximize their overlap, the additional pi 

bond of benzyne has only partially overlapped sp
2
-like orbitals (e.g., see 1.3d, Scheme 4) that 
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is a necessary consequence of the benzene geometry. This partial overlap creates a very weak 

pi bond that renders benzynes extraordinarily unstable and highly reactive, even at low 

temperatures (e.g., -35 °C). 

The physical properties that support the structure of benzyne have been determined by 

numerous methods, including infrared
4-5

 and nuclear magnetic resonance spectroscopy.
6
  

For example Chapman reported the first IR spectrum of benzyne (generated via the 

photochemical decomposition of either phthaloyl peroxide or of benzocyclobutenedione) in 

an argon matrix at 8 K (Scheme 5).
4-5

  

 

Scheme 5. Chapman’s photochemical generation and trapping of benzyne in an argon matrix. 

The IR study revealed that benzyne exhibited key frequencies (e.g., 1627, 1607, and 

1451 cm
-1

) that were most consistent with a localized additional pi system which suggests 

that the triple bond canonical form is the best representation of the benzyne electronic 

structure. This assignment was supported by subsequent computational studies by Berry.
7
 

However, subsequent low temperature solution 
1
H and 

13
C NMR analyses by Cram and 

Warmuth of benzyne in a hemicarcerand (Scheme 6) concluded that the cumulene form was 

in fact the dominant mesomeric structure.
6
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Scheme 6. Photochemical generation and trapping of benzyne in a hemicarcerand. 

In addition to benzyne, or more formally ortho-benzyne (o-benzyne or 

1,2-didehydrobenzene), there are two additional types of benzynes that can be formally 

represented by diradicals, namely, meta-benzyne 7.1 (m-benzyne or 1,3-didehydrobenzene) 

and para-benzyne 7.2 (p-benzyne or 1,4-didehydrobenzene) (Scheme 7).  

 

Scheme 7. Ortho-, meta-, and para-benzyne. 

These other forms of benzyne have received comparatively little attention,
8
 and mainly 

from theoretical and spectroscopic studies.
9-23

 For example Jones has recently studied the 

interconversion of all three didehydrobenzenes (Scheme 8).
24-25

  

 

Scheme 8. Interconversion of the didehydrobenzenes. 
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The p-benzyne in particular is the putative intermediate in the Bergman cyclization of 

enediynes (Scheme 9).
26-27

   

 

Scheme 9. Bergman cyclization to 1,4-didehydrobenzene (p-benzyne). 

Ortho-benzynes, on the other hand, have been extensively studied, and have found many 

applications in organic synthesis since 1954.
2,28

  

 

Scheme 10. Reactions using benzyne as intermediate. 

For example, there are the Diels-Alder reactions with cyclic and acyclic dienes (10.1, 

10.2),
1
 [2+2] cycloadditions (10.3),

29-30
 1,3 and 1,4-dipolar cycoadditions (10.4, 10.5),

31-32
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ene-reaction (10.6),
33

 nucleophilic additions (10.7),
34

 Pd-catalyzed couplings (10.8)
35

 and 

[2+2+2] cycloadditions (10.9).
36

 The last two are three component addition reactions. The 

three component reactions have received more attention recently due to their high efficiency, 

and there are many variations of this type. 

There are many methods for the generation of benzynes reported in the literature 

(Scheme 11).  

 

Scheme 11. Common and useful methods for generating benzynes. 

The most synthetically useful methods are the dehydrohalogenation of halobenzenes 11.1
1,37

, 

metal-halogen exchange of o-dihalobenzene 11.2 and subsequent elimination,
38-40

 thermal 

elimination of o-diazonium carboxylates 11.3,
41

 lead tetraacetate oxidative  elimination of 

aminobenzotriazole 11.4,
42

 metal-halogen exchange and elimination of 

o-halophenylsulfoxide 11.5
43

 and o-halophenyl triflate 11.7,
44

 thermal decomposition of 

benzothiadiazole S,S-dioxide 11.6,
45

 and the fluoride induced decomposition of 
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o-trimethylsilylphenyl triflate 11.8.
46-47

 The last method, originally developed by Kobayashi, 

is the most common method for generating benzynes and other arynes under safe, mild, and 

economical conditions. 

There are few other arynes (excluding heteroarynes, vide infra) beyond benzyne itself 

and substituted benzynes. These include 1,2-didehydronaphthalene (1,2-naphthalyne) 12.1
48

 

and 2,3-didehydronaphthalene (2,3-naphthalyne) 12.2
49

 (Scheme 12) both of which were 

discovered and reported in 1958, and more recently, 4,5-tropyne 12.3,
50

 1,2-anthracyne 

12.4,
51-52

 1,2-phenanthryne 12.7,
36,51

 3,4-phenanthryne 12.8,
36

 9,10-phenanthryne 12.9,
36,51

 

2,3-didehydro-1,4-benzoquinone 12.5
53

 and 1,2-didehydrocorannulene 12.6.
54

 The literature 

reports involving the study of these systems are fairly scarce. They have not been exploited 

for natural products total synthesis. 

 

Scheme 12. Other common arynes. 
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 1.2 Heteroarynes 

Heteroarynes (also known as hetarynes) by contrast are defined as arynes with a 

heteroatom, usually nitrogen or oxygen, as part of the aromatic core. A few heteroarynes 

were known prior to this work. The oldest reference to a heteroaryne (although it was not 

characterized as such) was in 1902 by Stoermer and Kahlert who postulated a reactive 

intermediate with a formal triple bond within the furan moiety of benzofuran (13.1 Scheme 

13).
8
   

 

Scheme 13. Heteroarynes. 

Although the existence of this intermediate has never been established, other 

heteroarynes based on common heteroaromatic cores have been prepared. These include the 

pyridynes (2,3-didehydropyridine and 3,4-didehydropyridine),
55-56

 the quinolynes 

(2,3-didehydroquinoline and 3,4-didehydroquinoline),
57

 the thiophynes (2,3-thiophyne and 

3,4-thiophyne),
58-59

 1,2-didehydrothianaphthene
58

 and 1-Boc-3,4-pyryne.
60

 Of these classes 

of known heteroarynes, the pyridynes are by far more prevalent in the literature with about 
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200 references to date. Most of the citations involve theoretical and synthetic studies. As with 

the benzynes, recent experimental and theoretical studies concluded that the pyridynes also 

exhibit substantial triple bond and some diradical character.
61

 Both types of pyridynes have 

found applications in natural products total synthesis by way of their Diels-Alder reactions.
28

 

The 3,4-pyridyne has been generated via the fluoride-induced decomposition of the 

correspondoing o-silyl triflate.
62

 It has also been prepared by the lead tetraacetate oxidative 

elimination of 1-aminopyridinotriazole where it was used in a synthesis of isoindoles.
63

 An 

elegant and concise total synthesis of ellipticine by Castedo made use of a 2,3-pyridyne 

cycloadditon as the key step.
64

 Very recently Comins reported a five-step synthesis of the 

plant alkaloid macrostomine by a nicotine-derived 3,4-pyridyne.
65

 

Suprisingly, heteroarynes derived from the ubiquitous indole nucleus have received 

almost no attention (Scheme 14). 

 

Scheme 14. The tetrad of indole arynes (indolynes). 

Indoles are found in an enormous range of biologically active natural products and 

medicinally important agents. As such, this omission represents a major gap in the literature, 

and is therefore an important problem in organic chemistry. The first and only previous 

reports of an indole aryne (indolyne) were made by Igolen using a dehydrohalogenation 

method to generate presumably the 4,5 indole aryne followed by trapping with t-BuOH 
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(Scheme 15).
66

 However, no further investigations into these indole arynes were made until 

the Buszek laboratory published its seminal work beginning in 2007 (vide infra).
40,67-70

 

Interestingly, the elusive (and presumably far more strained) 2,3-indole aryne has the been 

the subject of intense studies by the Gribble laboratory for decades.
71-75

 

 

Scheme 15. Igolen’s synthesis preparation of a 4,5-indole aryne. 

Despite extensive work by that group, no conclusive evidence for the existence of this 

intermediate has been presented. 

The subject of the next and succeeding chapters of this dissertation will focus on the 

efforts to address this critical indole aryne chemistry problem. These efforts include the 

discovery of the heretofore unknown 5,6-, and 6,7-indole arynes, along with the development 

of general methods for the preparation of all of the benzenoid indole arynes (i.e., 4,5-, 5,6-, 

and 6,7-indolynes, but excluding the 2,3-indolyne of the pyrrole nucleus), their reactivity, 

theoretical and computational studies, applications for the total synthesis of complex natural 

products, and library development for the discovery of new bioactive compounds in 

medicinal chemistry.   
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Chapter 2. INDOLE ARYNES 

2.1 Preparation, Structure, and Reactivity 

Our interest in indole arynes initially grew out of a desire to use an aryne cycloaddition 

strategy as a means to gain rapid entry into the fascinating and important class of annulated 

indole alkaloid natural products such as the trikentrins, herbindoles, and teleocidins (Scheme 

16).  

 

Scheme 16. Annulated indole alkaloid natural products. 
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The trikentrins were isolated from the marine sponge Trikentrion flabelliforme in 1986 and 

showed antibacterial activity.
76

 Several years later, the structurally similar natural products, 

the herbindoles, were extracted from the Australian sponge Axinella sp., which possessed 

both cytotoxic and antifeedant properties.
77

 The teleocidins B families were first isolated 

from the Mycelia of Streptomyces mediocidicus by Takashima in 1962,
78-79

 and were found 

to be potent tumor promoters.
80-81

  

These deceptively simple compounds represent fantastic synthetic challenges, as 

evidenced by the large number of distinct approaches toward their total synthesis. We 

envisioned that a cycloaddition (e.g., Diels-Alder) strategy would offer the most direct 

method to install the annulated five- and six-membered aliphatic rings that comprise these 

architectures. Earlier strategies for the total synthesis of (±)-cis-trikentrin A relied on radical 

cyclization
82-84

 to form the indane skeleton followed by indole ring annulation. Subsequent 

total synthesis efforts for the trikentrins and herbindoles involved various diverse strategies 

which included intramolecular allene cycloaddition,
85

 heteroaromatic azadiene Diels-Alder 

reactions,
86

 intermolecular Heck coupling,
87

 intermolecular quinone monoimine Diels-Alder 

cyclization,
88-89

 electrocyclic divinylpyrroline ring closure,
90

 and ring contraction,
91

 whereas 

the enantioselective total synthesis of trikentrins and herbindole relied on pyrrole 

indolization
92-95

 or intramolecular allene cycloaddition strategies.
96

 The (±)-teleocidins B-3 

and B-4 have been synthesized by Nakatsuka in 1987
97

 and Okabe in 1991,
98

 via an 

acid-mediated Friedel–Crafts type of cyclization to form the quaternary center of the 

six-membered ring as the key step. However, all these approaches suffered from undesired 
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side reactions and low yields because of the strong acidic conditions. Very recently, Sames 

used Pd-catalyzed C-C bond coupling to access the stereogenic centers
99

 and Resnick used an 

intramolecular Heck reaction of a tetrasubstituted alkene to construct the teleocidins’ core.
100

 

However, neither of these two efforts resulted in a total synthesis of teleocidins B. 

We considered many methods for generating the indole aryne, including those discussed 

in Scheme 11. However, we elected the use the metal-halogen exchange/elimination aryne 

methodology
38-39

 for the indole systems because it was synthetically easier to access. The 

o-dihaloindole aryne precursors were readily prepared from commercially available 

o-dihaloanilines which would be used to synthesize the corresponding indole via the Fischer 

indole method (Scheme 17).   

 

Scheme 17. Retrosynthetic analysis of a Fischer route to the indolynes. 

 

 

2.2 Different ortho-Dihaloindoles and Their Reactions with Butyllithium 

The synthesis of indolyne precursors is described below. Commercially available 

3,4-dichloroaniline 18.1 was diazotized and reduced with stannous chloride in one pot to give 

the corresponding hydrazine in 77% yield.
101

 Condensation of 18.2 with phenylacetaldehyde 

under Fischer conditions with polyphosphoric acid afforded the expected 5,6-dichloroindole 

18.3 and 4,5-dichloroindole 18.4 as a 1:1 mixture with a total yield of 81%. After column 
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chromatography, methylation of the NH group gave the N-methyl indoles 18.5 and 18.6 in 

90% and 95% yield, respectively. With the desired aryne precursors in hand, many protocols 

for generating benzynes from ortho dihalo arenes were examined. 

 

Scheme 18. Fisher-indole synthesis. 

 All the attempted indole aryne generation reactions were run in diethyl ether solvent 

since some literature references
102-103

 suggested that there were dramatic solvent effects in 

polyhalobenzene metalation. Specifically, the diethyl ether solvent favored lithium-halogen 

exchange (at either halogen) while THF favored lithium-hydrogen exchange (i.e., 

deprotonation) adjacent to either halogen.  

The original intent was to generate the indole aryne in the presence of furan, which is 

considered the most efficient aryne trap known. In this manner, the existence of the indole 

arynes 19.1 or 19.3 would be inferred by the formation of the corresponding cycloadduct (see 

Scheme 21 later). 

Unfortunately, there was no apparent metal-halogen exchange between 18.5 and up to 

four equivalents of n-butyllithium, sec-butyllithium, or t-butyllithium even after several 

hours at room temperature. Surprisingly, only recovered starting materials were found in 
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each case. A similar observation was made with 18.6 in the case of the alkyllithiums n-BuLi 

and s-BuLi. However, the use of the stronger base t-butyllithium with 18.6 afforded a trace 

amount of a 1:1 mixture of the isomeric t-butylindoles 19.5 and 19.6 after one day, 

presumably via the 5,6-indole aryne. There is apparently no preference for nucleophilic 

attack at either position. It is still not clear whether the aryne formation was preceded by 

metal-halogen exchange at either C5 or C6. The same indolyne would be formed in either 

case.  

 

Scheme 19. First evidence for indolyne. 

A search of the literature revealed that there were only a few examples of 

o-dichlorobenzenes used as precursors to benzynes. Hales
104

 reported an interesting case in 

which hexachlorobenzene was used to generate, via metal-halogen exchange, the 

3,4,5,6-tetrachlorobenzyne which was in turn reacted with benzene itself to give 

tetrachlorobenzobarrelene. The general difficulty in obtaining indole arynes from their 
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o-dichloro precursors may be due to the low metal-halogen exchange rate which generally 

follows the order I > Br > H > Cl > F. 
103,105

 

Based on this trend, our next efforts at generating the required indole arynes involved the 

synthesis of other o-dihaloindole precursors such as those shown below via the same Fischer 

indole sequence shown earlier and using the commercially available o-dihalo anilines as 

starting material (Scheme 20).  

 

Scheme 20. Different o-dihaloindoles. 

Mixed o-dihalo arenes such as F and Br, or Cl and I are much more common aryne 

precursors.
39,103,106-107

 Similarly, dihalo arenes containing only fluorine or bromine are also 

found frequently in the literature.
39,105,107

  

With the desired compounds in hand, reaction of 20.1b under the previously described 

metal-halogen exchange conditions using t-BuLi in the presence of an excess of furan gave 

only the monofluoro indole 21.2 in 60% yield (Scheme 21).  An analogous result was 

obtained in 89% yield with compound 21.4. In both cases, lithium-bromine exchange 

apparently occurred preferentially, but was not followed by elimination to form the 
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corresponding indole aryne. The observation stands in contrast to what is known in simple 

benzene systems in which aryne formation occurs readily.
38,107

   

 

Scheme 21. Attempts at indolyne formation. 

While this outcome can be ascribed to the relatively poor leaving group ability of fluoride, 

the same trend was also seen with compound 20.3b. Although chloride was expected to be a 

better leaving group, only protonation of the lithio indole 21.5 was found in nearly 

quantitative yield. It is not possible to say with certaintly that this trend would stand with all 

possible o-FBr and o-ICl isomers since all of the needed o-dihalo aniline precursors were 

either not commercially available, or unknown in the literature. This remains an aspect of the 

indole aryne chemistry that requires further investigation. Even so, it is interesting to note 

that the trend of o-halolithium elimination (-LiX) in benzene is LiI < LiBr < LiCl < LiF.
108

 

However, a systematic study of the influence of other substituents in the benzene cases, has 

never been reported. It appears that the 4,5- and 5,6-dihaloindoles exhibit similar reactivity to 
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those of benzene. However, based on the data in hand, we decided to investigate the 

reactivity of o-dibromoindoles in all positions (the precursors for the o-diiodo cases are not 

known in the literature), and other readily available 6,7-dihaloindoles.  

Gratifyingly, evidence for the first successful indole aryne generation at the 6,7-position 

came from 6,7-dichloroindole 20.4b (Scheme 22). This compound was reacted with four 

equivalents of t-butyllithium to generate presumably the aryne 22.1, which underwent 

cycloaddition in the presence of an excess of furan to give the cycloadduct 22.2. However, 

this product was not stable to an excess of the alkyllithium reagent and experienced 

completely exo selective and regioselective SN2’ nucleophilic attack and ring opening to 

afford the observed product 22.3 as a single regioisomer in 78% yield. This process has 

ample precedent with many different nucleophiles, including hindered alkyllithiums.
109-110

 

The identity of compound 22.3 was confirmed unequivocally by 2D NMR analysis including 

COSY, NOESY, HMBC, and HSQC methods. Aromatization was induced by stirring in 

chloroform for several hours to give quantitatively the benzannulated derivative 22.4.  

 

Scheme 22. First successful generation of indolynes. 
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Repeating this sequence of reactions with only two equivalents of t-BuLi allowed for the 

isolation of the furan cycloadduct 22.2 in 31% yield (Scheme 23).  

 

Scheme 23. Isolation of 6,7-indole aryne cycloadduct with furan. 

Significantly, under these same conditions, a trace amount of the 6-chloroindole 21.6 was 

identified. Furthermore, no evidence for the formation of the 7-chloroindole was found. 

Together, these observations suggest that it is the 7-chloro position that undergoes 

completely selective lithium halogen exchange. Support for this claim is found in a recent 

literature case in which a pair of dibromoindoles, namely the 4,7- and 5,7-dibromoindoles, 

were found in each case to undergo lithium bromine exchange only at C7, followed by 

trapping with various electrophiles (Scheme 24).
111-112

 

 

Scheme 24. Selective lithium-bromine exchange. 
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Finally, the putative 6,7-indole aryne (6,7-indolyne) also reacted with 2,5-dimethylfuran 

to give the corresponding cycloadduct 25.1 (Scheme 25). 
111

   

 

Scheme 25. 6,7-Indole aryne reaction with 2,5-dimethylfuran and subsequent ring opening. 

This compound similarly reacted with an excess of t-BuLi, but now with an approximately 

equal mixture of regioisomers 25.2 and 25.3 being formed in a combined 84% yield. The 

difference in regiochemical outcome for these two reactions (e.g., Scheme 25) can perhaps be 

rationalized on the basis of ground-state destabilization. The opening of the furan 

cycloadduct 22.2 from the opposite side of the olefin would experience greater torsional 

strain thereby leading only to the observed product. This strain is significantly less 

pronounced from either direction with 25.1, owing to the presence of the larger methyl 

groups, and a statistical distribution of products is found instead. The issue of regiocontrol in 

these systems remains the subject of further investigation. 

 Although only the 6,7-indole aryne could be prepared within the o-dichloroindole series, 

we were gratified to discover that all three benzenoid indolynes could be generated easily and 

trapped as their Diels-Alder cycloadducts in good yields from the o-dibromoindole 

precursors. Our first attempt paralleled that of the 6,7-dichloroindole work (Scheme 26). 
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Scheme 26. General route to all three benzenoid indole arynes. 

Thus, the aryne precursor 20.7b was treated with four equivalents of t-BuLi in ether in 

the presence of an excess of furan to give a complex mixture of products 22.2 – 26.2. The 

cycloadduct 22.2 was a minor component of this mixture for reasons that are analogous to the 

6,7-dichloroindole case. The excess t-BuLi attacks the cycloadduct in the same exoselective 

and regioselective fashion to afford 22.3 as the major product. In addition, the t-butylated 

indole 26.1 likely arises from the regioselective nucleophilic attack at the 6-position on the 

6,7-indolyne. Finally, the trace amount of 26.2 can be rationalized by the sequential 

lithiation-protonation of the 6,7-dibromoindole. 

 The use of n-butyllithium in place of the more reactive and nucleophilic t-butyllithium 

reagent during the indole aryne generation step permitted the isolation of all the furan 

cycloadducts (Scheme 27). In fact, it was found that only a slight excess of n-BuLi in ether 

was necessary to effect these transformations. The process can be envisioned as follows. 

Selective lithium-bromine exchange of the 6,7-dibromoindole 20.7b gives the intermediate 

27.1 which upon warming undergoes elimination to generate the 6,7-indole aryne 22.1. 

Subsequent cycloaddition with furan readily affords the corresponding cycloadduct in good 

yield. Support for this view is provided by the minor amounts of compound 27.2 which 

clearly reveals an intial exchange at C7, and 27.3 which in turn suggests that the 6,7-indolyne 
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is a highly polarized aryne that directs nucleophiles such as n-BuLi to the more 

electropositive 6-position exclusively. 

 

Scheme 27. General method for generating 4,5-, 5,6-, and 6,7-indole arynes. 

In a similar manner, the 4,5- and 5,6-indole arynes were generated from their corresponding 

o-dibromo precursors and trapped with furan to afford the respective cycloadducts is 

excellent yield. With these latter two cases, no evidence of the n-butylated indoles was 

found.  

Reaction of the 4,5- and 5,6-indole arynes with 2,5-dimethylfuran gave excellent yields 

of the corresponding cycloadducts (Scheme 28). 

 

Scheme 28. Reaction of 4,5- and 5,6-indole arynes with 2,5-dimethyl furan. 
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Finally, it was found that reaction of the 4,5-indole aryne with cyclopentadiene also 

occurs readily to give the cycloadduct in very good yield (Scheme 29). 

 

Scheme 29. Reaction of a 4,5-indole aryne with cyclopentadiene. 

By contrast, the corresponding reaction with the 6,7-indole aryne produced very little of 

the desired cycloadduct (Scheme 30). Again, it is tempting to speculate that the proposed 

polarized structure of the 6,7-indolyne might cause deprotonation of cyclopentadiene by the 

C7 carbon of the aryne. The fact that this was not observed with the 4,5-indole aryne 

suggests that it behaves more like benzynes and that this reactive intermediate has in fact 

more triple bond or diradical character. However, changing the solvent from diethyl ether to 

toluene allowed the 6,7-indole aryne reaction with cyclopentadiene to proceed normally.  

 

Scheme 30. Reactions of indole arynes with cyclopentadiene. 
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Coe reports that the less polar hydrocarbon solvent promotes metal-halogen exchange and 

suppresses the undesired acid-base reaction. 
113

 

Finally, we observed that ortho difluoroindoles exhibit anomalous behavior upon 

treatment with t-butyllithiums (Scheme 31). It is known that the more electropositive 

halogens undergo the most rapid metal-halogen exchange, and this was indeed found to be 

the case with the bromo indole series. In the fluorine system, the isomeric 4,5- and 

6,7-difluoroindoles gave only recovered starting material under these same conditions. The 

reaction of 5,6-difluoroindole 20.9b with n-BuLi, however, gave exclusively the cycloadduct 

31.3 in 80% yield. 

 

Scheme 31. Indolyne generated from t-BuLi and difluoro-indole. 

Initial deprotonation of the thermodynamically more acidic C7 hydrogen as a result of the 

inductive electron withdrawing effect of the adjacent nitrogen as well as the electronegative 
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fluorine atoms leads to aryne formation. This assumption is also consistent with 

well-documented observation that the rate of transmetallation of fluorine is slow compared 

with deprotonation at the ortho position.
102-103,111,114-117

  Trapping and cycloaddition with 

furan thus gave the observed cycloaddduct, and 
19

F NMR revealed one remaining fluorine at 

the C5 position. 

In conclusion we have provided the first evidence for the existence of all three isomeric 

indole arynes in the benzenoid core using a practical and general method. The facile 

generation of aryne indoles from dibromoindoles in particular is noteworthy for its synthetic 

simplicity and good yields. This discovery adds indoles to the suite of aromatic systems from 

which arynes can be easily and readily generated.  

Bromine is a better exchanging and leaving group for indolyne, no matter where the 

position is. Chlorine and fluorine are usually not active enough to form indolyne, but may do 

the job with some particular positions. The 6,7- bond in the indole ring has a very unique 

property, which can assist in indolyne generation. t-butyllithium is a stronger base for our 

reaction, but n-butylithium gave us cleaner and more reproducible results. 
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CHAPTER 3. INDOLE ARYNE PROPERTIES AND REACTIONS 

3.1 Regioselective Diels-Alder Cycloaddition of Indolyne 

During the course of the indole aryne investigations, several interesting and surprising 

phenomena came to our attention. The first one involved an unexpected and highly 

regioselective Diels-Alder cycloaddition with the 6,7-indole arynes and 2-t-butylfurans 

(Scheme 32). 

 

Scheme 32. The 6,7-indole aryne regioselective cycloadditions. 

Thus, it was found that reaction of the 6,7-indole aryne derived from the dibromoindole 

20.7b with 2-t-butylfuran gave mainly a single regioisomer along with a minor product. 

NMR analysis of the separable mixture revealed a surprising outcome in which the more 

sterically crowded regioisomer, (i.e., the contrasteric product), 32.2a was identified as the 

major isomer.  This phenomenon was observed with other 2-substituted furans with 

somewhat diminishing levels of regiocontrol through the series i-propyl, ethyl, and methyl. 

This trend correlates regioselectivity with the degree of branching at the point of substitution 

(Table 1). 
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Table 1. Regioselective 6,7-indolyne cycloadditions with 2-substituted furans. 

 

entry R Yield (%) Ratio (a:b) 

1 Me 89 80:20 

2 Et 90 84:16 

3 i-Pr 88 94:6 

4 t-Bu 91 98:2 

5 Ph 92 >99:1 

6 SO2Ph 83 <1:99 

Additionally, there was virtually complete regiocontrol in the case of 2-phenylfuran. A 

simple first-order resonance structure analysis rationalizes this behavior in terms of a 

polarized 6,7-indole aryne combining with the furan in such a way that the more highly 

stabilized cation in 32.7 preferentially bonds to C7 (Scheme 32). The more highly branched 

substituent is more electron rich and therefore better able to stablize by induction an adjacent 

positive charge. The virtually complete regiocontrol with the 2-phenylfuran can clearly be 
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understood in these terms. This analysis predicts that electron withdrawing substituents at the 

2-position in the furan should give the opposite regiochemistry. Indeed, this was found to be 

the case (entry 6, Table 1). Thus, the 2-phenylsulfonylfuran gave a >99:1 ratio of isomers 

favoring the reverse regiochemistry. In earlier studies by other laboratories involving the 

reaction of monosubstituted 3-benzynes with 2-substituted furans (Me, Et, i-Pr, and 

t-Bu),
117-119

 regioselectivity correlated well with the strength of inductively 

electron-withdrawing groups such as F and OMe on the benzyne to favor the contrasteric 

products. It was reversed with inductively electron-donating groups such as Me (Scheme 33). 

 

Scheme 33. Polarization effects and regioselectivity. 

 This regiocontrol however was specific to the 6,7-indole arynes. The corresponding 4,5- 

and 5,6-indolynes showed no regioselectivity with 2-t-butylfuran, giving a 1:1 mixture in 

each case.  

 

Scheme 34. The 4,5 and 5,6-indole aryne cycloadditions with 2-t-butylfurans. 
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To characterize this phenomenon in additional detail, electronic structure calculations 

were undertaken in collaboration with Professor Christopher Cramer and his research group 

(Department of Chemistry and Supercomputing Institute, University of Minnesota) to predict 

the structures and reactivities of the N-methyl-4,5-, 5.6-, and 6,7-indolynes with furan and 

2-alkylfurans.
40

 With respect to the methodology, all of the structures were optimized using 

the M06-2X density functional
120

 and 6-311+G(2df,p) basis set
121

 as implemented in 

MN-GFM,
122

 a locally modified version of the Gaussian03 software package.
123

 Analytical 

frequency calculations were employed to characterize the nature of all gas-phase structures as 

minima or transition states. In select instances, the effects of diethyl ether solvation were 

taken into account using the SMD
124-125

 implicit solvation model. 

The calculations support the view that the 6,7-indolyne (but not the 4,5- and 

5,6-indolynes) is highly polarized in the manner previously shown (Scheme 27). The fact that 

the C6 position is substantially more electrophilic than the C7 position comes from 

inspection of atomic polar tensor partial charges and the molecular geometry. Thus, C6 is 

predicted to have a charge 0.26 au more positive than C7, and the C5-C6-C7 bond angle is 

predicted at the M06-2X level to be 135.3° while the C6-C7-C7a angle is predicted to be 

117.2°. The former value is more consistent with carbocationic character, while the latter is 

more consisten with carbanionic character. Thus, the C6-C7 bond is strongly polarized in the 

expected direction by the nearby C7a-N bond dipole. 

Table 2 lists the activation free energies computed for the reaction of the 

N-methylindolynes with the furans.  
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Table 2. ∆G
ǂ
 values in kcal/mol for the reaction of indolynes with substituted furans. 

 

entry aryne furan, R ∆G
ǂ
 (a) ∆G

ǂ
 (b) 

1 2-1 H 10.5  

2 2-2 H 10.0  

3 2-3 H 8.7 (8.4)
a 

 

4 2-1 t-Bu 6.3 7.3 

5 2-2 t-Bu 6.9 6.1 

6 2-3 t-Bu 7.0 (8.0) 
b 

7 2-3 Me 9.2 (9.4) 7.5 (7.8) 

8 2-3 Et 9.0 (9.4) 7.8 (8.2) 

9 2-3 i-Pr 9.7 (10.3) 7.6 (8.2) 

a
 Values in parentheses include continuum ethereal solvation effects. 

b
 No barrier to reaction is predicted in the gas phase or continuum solution. 

With unsubstituted furan, DG is similar for the 4,5- and 5,6-indolyne isomers, and slightly 

smaller for the 6,7-isomer. Considering 2-t-butylfuran, the predicted free energies of 
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activation are reduced by 3-4 kcal/mol compared to the reaction with furan itself in the 4,5- 

and 5,6-indolyne cases. Regioselection becomes possible upon 2-substitution of the furan, 

and the differential free energies of activation in these two instances are predicted to be 1 

kcal/mol or less. In the 6,7-indolyne case, by constrast, a free energy of activation similar to 

those for 4,5 and 5,6 is predicted for the formation of 2-6a, but no transition-state (TS) 

structure for the formation of 2-6b could be located. The approach of the furan to the 

indolyne led smoothly and without barrier to the final tertacyclic product every time. 

 Thus, the electron-poor indolyne attacks the 2-substituited furan to generate the more 

stable 2-alkyldihydrofurylcarbenium ion. As the 2-substituent is varied from Me to Et to i-Pr, 

the increased stabilization provided by the larger alkyl groups leads to increased 

regioselection and increased electrophilic substitution character so that bond formation 

becomes decreasingly synchronous. It appears in the case of R = t-Bu the combination of 

unavoidably increased sterics and enhanced carbenium ion stabilization switches the 

mechanisms for a highly asynchronous but still concerted cycloaddition (e.g., Diels-Alder) to 

a stepwise electrophilic substitution and subsequent ring closure. The term “stepwise” is used 

with a degree of caution in this context since no TS structures or intermediates were located 

in either the gas phase or ethereal continuum solution for this process. To the extent that the 

reaction has an actual free energy of activation, it is likely associated with the displacement 

of discrete solvent molecules between the indolyne and furan reaction partners that was not 

included in the computational models used for this analysis. 
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A very interesting observation was made when we examined the Diels-Alder reaction of 

the unprotected indolyne 35.1 and cyclopentadiene. We found in this case that the 

7-butylindole 35.3 was the major product (Scheme 35). 

 

Scheme 35. Different regioselective products. 

The same outcome was observed whether an excess amount of n-BuLi was used to 

deprotonate the indole N-H group, or whether the anion was preformed with NaH, followed 

by metal-halogen exchange. This results stands in contrast to the observation that 

6-butylindole 33.1 was usually the only byproduct when N-methylindole 34.6 was the 

substrate. This interesting observation suggested that the regioselective reaction of 

6,7-indolyne and nucleophilic compound could be reversed by the electronic properties of the 
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nitrogen atom in the indole aromatic ring system. A computational analysis of this 

phenomenon is underway. 

 

 

3.2 6,7-Indole Aryne Ene Reaction 

In connection with several other planned total synthesis objectives (e.g., teleocidins), we 

were interested in examining the behavior of 6,7-indole arynes with acyclic dienes. These 

cycloaddition partners are known to give different products with benzynes depending on a 

number of parameters,
33,126

 but their reaction with indolynes was clearly not investigated. 

When we examined the scope of the Diels-Alder reaction between various dienes such as 

isoprene, 2,3-dimethyl-1,3-butadiene, and -terpinene and the 6,7-indolyne, we also obtained 

unexpected results. While we were anticipating the formation of some [4+2] product, it 

turned out that dienes that possess allylic hydrogens gave only the corresponding ene 

products as the major component of the complex mixture (Scheme 36). Despite the generally 

good yields obtained in each case, no Diels-Alder products were identified in these examples. 

Interestingly we actually obtained about 30% of the Diels-Alder product when we used 

1,3-cyclohexadiene instead of α-terpinene.   
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Scheme 36. Ene reactions between dienes and indolynes. 

 The reaction between α-terpinene and 6,7-indolyne is especially noteworthy. Although 

the ene reaction was a fairly common by-product in many Diels-Alder reactions between 

dienes and benzyne, it always appeared as a minor product when the diene was cyclic.
33,126

 

Only when allylic olefins are used instead of dienes does the ene reaction with benzyne 

become a synthetically useful process. There is much literature to support the concerted 

mechanism for the benzyne ene reaction,
33,127

 but there is still no completely satisfactory 

explanation for the competition between the [4+2] and ene reaction.  
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 Crews reported the cycloaddition of benzyne with isoprene and 1,3-cyclohexadiene 

(Scheme 37). 
33,126

 

 

Scheme 37. Crews’ results. 

This method for benzyne generation required elevated temperatures to decompose the 

o-diazonium carboxylate, and in these cases there was a high percentage of [4+2] products 

found. Comparing these results to our work in which the indolyne was generated at low 

temperature (typically aryne formation occurs at approximately -35 °C), we believe that 

temperature played a important role in the competition between [4+2] and ene reaction. It is 

well known that the s-trans-butadiene is the much more stable of the two rotamers of 

1,3-butadiene, but s-cis butadiene is the one that participates in Diels-Alder reaction. At room 

temperature, these two isomers will interconvert very rapid, but at -78 ºC, the equilibrium 

clearly favors the s-trans population. For isoprene, the Crews experiment was conducted at 

50 ºC which would give more s-cis diene for Diels-Alder reaction, while our reaction was run 

at -78 ºC which would favor the ene reaction. For α-terpinene, the ene reaction would let the 
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diene approach to indolyne from a less stereo chemically hindered position, thus 

1,3-cyclohexadiene would favor the Diels-Alder reaction while α-terpinene would favor the 

ene reaction (Scheme 38). 

The regioselectivity in all of the 6,7-indole aryne ene reactions can be rationalized by 

polarization as shown in Scheme 36. 

 

Scheme 38. Proposed explanation for ene vs Diels-Alder. 

 

 

3.3 Selective Ring Opening Reaction 

During the research into the Diels-Alder reaction with indolynes, we also found several 

interesting and potentially useful ring opening and rearrangement reactions with the initial 

cycloadducts. These phenomena were observed mainly with the products obtained from the 

6,7-indole aryne cycloadditions. The first observation came from the 2-t-butylfuran 

cycloadduct 32.2a.  After purification via column chromatography and confirmation of its 
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identity by NMR, we noticed this compound began to rearrange slowly upon standing in 

CDCl3. After just ten minutes, a new component was present, which increased in proportion 

over time. After seven hours compound 32.2a disappeared and was replaced by a new single 

compound which was established unequivocally to be the ring opened annulated enone 39.1. 

 

Scheme 39 Ring opening reaction. 

The appearance of 39.1 was unexpected, since the literature regarding the acid catalyzed 

ring opening of furan Diels-Alder products shows that they normally result in benzannulation 

to afford naphthalenols 39.4.
118

 In an effort to better understand the mechanism of this 

process, compound 32.2a was reacted with various acids under different conditions. The 

results are summarized in Scheme 40.   
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Scheme 40. Different ring opening products from different acidic catalysts. 

With strong acids such as TsOH or 3M ethereal HCl to open the ring, the initial product 

was again 39.1 but it reacted further under these conditions and rearranged to the phenol 

product 40.2. Giles reported that naphthalenes containing isopropyl and t-butyl substituents 

in a peri relationship to another substituent are prone to undergo ready protodealkylation.
118

 

In our case, because of the steric hindrance between the t-butyl group and the N-methyl 

group, this protodealkylation became even more facile. The appearance of the 

naphthoquinone byproduct 40.1 was also unexpected, but it can also be explained in terms of 
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the release of strain with the N-methyl substituent caused by the t-butyl group. Compound 

40.1 was only found when the reaction was run in air, and was totally absent when the same 

experiment was conducted under an inert atmosphere such as nitrogen or argon. Moreover, 

40.1 was the only product when PPTS was used as the catalyst but it could not be generated 

from 39.1 by further acidic catalysis (Scheme 40). Together these data indicate that 

compounds 40.1 and 40.2 arise from different mechanisms from 32.2a, and that neither 

compound 39.1 or 40.2 is intermediate in the pathway that leads to the formation of the 

naphthquinone (Scheme 41). 

 

Scheme 41. Reaction direction between different products. 

Aluminum chloride was an effective catalyst for effecting the transformation of 32.2a to 

39.1 without further rearrangement. Although the reason for this is not fully understood at 

present, we believe that the coordination of the C=O group to the Lewis acid aluminum 

chloride somehow prevents further aromatization.  
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Scheme 42. Coordination between C=O and AlCl3. 
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CHAPTER 4. APPLICATIONS OF INDOLE ARYNES  

4.1 Retrosynthesis and Preliminary Experiments of (±)-cis-Trikentrin A and 

(±)-Herbindole A and B 

Since we discovered the new class of aryne derived from all three benzenoid positions of 

the indole nucleus and obtained their cycloadducts with furan successfully, we wanted to 

adapt this approach to the synthesis of complex natural products.  The annulated indole 

alkaloid natural products should be especially amenable to this strategy. An intermolecular 

indolyne cycloaddition approach should provide a rapid entry into annulated indole natural 

products including cis-trikentrin A, herbindole A and herbindole B. The retrosynthetic 

analyses of these three natural products are very straight forward (Scheme 43).  

  

Scheme 43. Retrosynthetic analysis of the (±)-cis-trikentrin A, (±)-herbindole A, and 

(±)-herbindole B. 
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The annulated cis-disubstituted cyclopentane would be installed via the Diels-Alder reaction 

of cyclopentadiene and 6,7-indole aryne. The aryne precursor, namely, 6,7-dibromoindole, 

was synthesized via the Bartoli reaction starting from the commercially available aniline. 

Before the total syntheses of these natural products were undertaken, a Diels-Alder 

reaction of the 6,7-indolyne and cyclopentadiene (Cp) was run to optimize this key step. In 

this preliminary experiment, 6,7-dibromo-1-methyl-3-phenyl-1H-indole 20.7b was chosen as 

the starting material, and the standard reaction conditions were adopted as before: Thus, the 

6,7-dibromoindole was dissolved in ether with 20 eq Cp, cooled to -78 ºC, then treated with 

1.1 eq n-BuLi, and the mixture raised to room temperature over 1 h. The first run gave a 

complex mixture, including 13% cycloadduct 30.1, 26% of the 6-bromoindole 27.2, and the 

remainder mostly starting material. 

This result could be rationalized by the competition from acid-base reaction of 

cyclopentadiene and n-BuLi as Coe found in trihalobenzenes.
113

 This acid-base reaction 

would deprotonate cyclopentadiene leading to the stable aromatic anion, thus suppressing its 

[4+2] cycloaddition with 6,7-indole arynes. Some improvement was obtained when the 

concentration of Cp was reduced to 2 eq in order to limit the otherwise favorable kinetics of 

the acid-base reaction (Table 3, entry 3). Interestingly, it was found that when n-BuLi was 

added first and allowed to mix with the dibromoindole for 10 minutes prior to Cp addition, 

almost no cycloadduct was detected, and much more 6-bromoindole was obtained (Table 3, 

entry 2).  
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Table 3. The yields of cyclopentadiene addition to 6,7-indole aryne under different 

conditions.
a 

 

Entry 

Cp 

(eq) 

n-BuLi 

(eq) 

Solvent T (ºC) 

Yield (%) Products distribution 

30.1 30.1 27.2 27.3 20.7b 

1 20 1.1 Et2O -78 to rt 13 13 26 0 61 

2 20 1.1 Et2O -78 to rt 0
 b
 0 34 0 52 

3 2 2 Et2O -78 to rt 19 23 49 0 28 

4 1.5 1.5 Et2O 0 to rt 20 12 6 6 48 

5 1 1 PhMe 0 to rt 20 46 0 13 41 

6 2 2 PhMe 0 to rt 70 70 5 25 0 

7 2 2 

Petroleum  

ether 

0 to rt 20 58 0 27 14 

8 2 2 PhMe -78 to rt 88 88 0 12 0 

a 
General procedure: The 6,7-dibromoindole and cyclopentadiene (Cp) were dissolved in the 

indicated solvent, and the temperature lowered to -78ºC in a cold bath (dry ice/acetone), then 

n-BuLi was added into the mixture and stirred for 30 minutes. The cold bath was removed 

and the reaction mixture raised to room temperature over 1 h, followed by a standard organic 

work up. 
b
n-BuLi was added at -78ºC, stirred for 10 min, then cyclopentadiene was 

introduced to the mixture and reacted as usual. 
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Decreasing the temperature at which the reaction was started reduced the byproduct 

6-butylindole 27.3 by generating indole arynes at a lower rate (Table 3, entry 6 and entry 8). 

The most important factor for this reaction was solvent. After we changed the solvent from 

diethyl ether to toluene, the yield of cycloadduct increased from 20% to 70% dramatically. 

Protonation was suppressed in toluene, and the result was a corresponding higher yield of the 

desired cycloadduct as reported by Coe with simple benzynes. The best yield (88% isolated 

yield) of 30.1 was obtained with 2 eq cyclopentadiene and 2 eq n-BuLi at -78ºC to rt with 

toluene as the solvent. 

 

4.2 Synthesis of (±)-cis-Trikentrin A 

With the key cycloaddition step optimized in a model system, we embarked on the 

synthesis of (±)-cis-trikentrin A. The first objective was the to make the 6,7-dibromoindole 

precursor. We originally prepared dihaloindoles from the o-dihalohydrazines via Fischer 

indole chemistry. However, repeated efforts to synthesize o-dihaloindoles unsubstituted at 

the 2- and 3-position via Fischer chemistry gave disappointing results. Our revised plan was 

influenced by Bartoli’s observation that such unsubstituted indoles can be obtained in good 

yields from the reaction of nitrobenzenes and vinyl Grignard reagents.
128-131

 The synthesis of 

trikentrin A thus began with commercially available 4-ethylaniline 43.2 (Scheme 45). 

Nitration was accomplished in 96% yield in one pot by a literature procedure.
132

 

Diazotization with t-BuONO followed by bromination catalyzed by CuBr2 was carried out in 
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82% yield to afford the o-dibromide 45.2.
133

 Application of the Bartoli indole synthesis 

(CH2CHMgBr, 3 equiv; THF, -40 °C) proceeded uneventfully and gave the desired indole 

35.1 in 52% yield.  

 

Scheme 44. cis-Trikentrin A: Bartoli indole synthesis. 

 In other cases reported by Bartoli, highly variable yields were found only with 

o-substituted nitrobenzenes. We were able to find only a few other examples of trisubstutited 

nitrobenzenes and no examples of 2,3-dihalo nitrobenzenes used in this procedure.
128

 By 

comparison, the best indole synthesis yield reported by Bartoli is 67% with 2-methyl 

nitrobenzene.
131

 The N-H group of the indole was then protected as its TBS group (KHMDS, 

TBSOTf, THF, -78°C) in 73% yield. Attempts to carry out the cycloaddition with the 

unprotected indole N-H or its anion with various simple counterions (Li
+
, Na

+
) met with 

failure. 

The Diels-Alder reaction between the N-protected indolyne precursor 45.3 with Cp under 

the optimized reaction conditions in toluene smoothly and cleanly gave the desired 

cycloadduct 46.1 in 77% isolated yield. Osmylation of 46.1 (cat. OsO4/NMO, THF/H2O, 9:1) 

followed by oxidative cleavage of the diol 46.2 (NaIO4, THF/H2O (3:1)) afforded the 



46 

dialdehyde 46.3 in 87% yield for the two steps. Several methods were attempted for 

converting the dialdehyde into the required cis dimethyl groups, including Wolff-Kishner 

reduction, without success. Finally, 46.3 was converted into its corresponding dithioacetal 

46.4 (excess EtSH, BF3·OEt2, -78 °C) with concomitant desilylation in 91% yield. Raney 

nickel reduction afforded in nine steps synthetic (±)-cis-trikentrin A, which was identical in 

all respects to the physical data reported for this racemic compound.
76

  

 

Scheme 45. cis-Trikentrin A: 6,7-indolyne tactic. 

  

 

4.3 Synthesis of (±)-Herbindole A 

Encouraged by the success with the trikentrin synthesis, we turned our attention to the 

total synthesis of the structurally related herbindole A (Scheme 46). The synthesis of 

herbindole A entirely parallels that of of cis-trikentrin A. The intriguing issue presented by 



47 

this synthesis was whether for electronic and steric reasons the required tetrasubstituted 

nitrobenzene would be viable as a substrate in the key Bartoli step.  

 

Scheme 46. Herbindole A: Bartoli indole synthesis. 

Starting this time with commercially available 3,4-dimethylaniline 43.5, a highly 

regioselective nitration procedure as described above gave the desired compound 46.1 in 

70% yield, with the remaining material consisting mainly of the other easily separated 

nitroaniline isomer. Diazotization and bromination as before gave the o-dibromide 46.2 in 

79% yield. Gratifyingly, the Bartoli protocol afforded the desired indole 43.4 albeit in a 

modest 36% yield. Although this example gave a lower yield than with trikentrin A (36% vs 

52%), we ascribe this observation to the greater substitution of the nitrobenzene. Although 

generalizations are not possible with the Bartoli chemistry it is known that this process is 

highly sensitive to substitution patterns and substituent effects. Accordingly, yields with 

various substitution patterns as reported by that investigator occur over a wide range, and in 

most cases are well below 40%. Electron donating groups (i.e., alkyl) appear to exacerbate 

this effect. The remaining steps have mostly comparable yields to the trikentrin A effort. 

 Although attempts to improve the yield by modifying the reaction conditions proved 
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ineffective, it is important to note that there is only one other report in the literature of 

polysubstituted nitrobenzenes participating in this reaction, with much lower yields.
87

 The 

presence of the bromine substitutents in our case appears to attenuate the apparently adverse 

electronic effects due to the remaining meta and para methyl substituents. N-silylation as 

shown above gave the desired TBS-protected 6,7-indolyne precursor 46.3 in 91% yield. 

With the desired aryne precursor in hand, generation of the 6,7-indolyne followed by the 

Diels-Alder reaction gave the cycloadduct 47.1 in an even higher 88% yield than observed 

with trikentrin (Scheme 47). Compound 47.1 was carried through to the target as described 

above. Thus oxidative cleavage (43%, two steps), thioacetalization (81%), and Raney nickel 

reduction (96%) afforded racemic herbindole A in nine steps from the aniline 43.5. 

Herbindole A also exhibited the same physical and spectroscopic data (except for optical 

rotation) as that reported for the authentic samples.  

 

Scheme 47. Herbindole A: 6,7-indolyne tactic. 
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4.4 Attempted Synthesis of (±)-Herbindole B 

Finally, we observed in the case of herbindole B that increasing the electron density of 

the aromatic ring still further results in an even lower yield of the Bartoli indole product 

(Scheme 48). 

 

Scheme 48. Attempt for herbindole B synthesis. 

As noted above multiple electron-donating groups appear to exacerbate this effect to an even 

greater extent. It has been observed by Blechert that the application of the Bartoli protocol to 

highly substituted alkyl nitrobenzenes gives very low yields of the desired indole system and 

thus appears to represent a limitation of the use of this methodology.
87

 However, by carrying 

48.4 through an alternate Fischer indole regime (Scheme 49), the overall yield of the desired 

indole 43.7 is improved to 60% for the four synthetic operations.  

 

Scheme 49. Fischer indole synthesis. 
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4.5 Second-Generation Synthesis of (±)-cis-Trikentrin A and Applications to Library 

Development 

During the course of our investigations toward the total synthesis of (±)-cis-trikentrin A, 

the 1,2,5-tribromo-3-nitrobenzene 50.2 was incidentally found in a one pot reaction with 

good yield (Scheme 50). It occurred to us that it might be possible in this system to generate 

selectively the 6,7-indole aryne via metal-halogen exchange while leaving the 4-bromo 

position intact. That position in turn could be used to effect a Negishi cross-coupling reaction 

to install the required ethyl group thereby providing an alternate and shorter route to the 

trikentrins. More generally, this approach could be used with other metal-catalyzed 

cross-coupling reactions (e.g., Suzuki-Miyaura and Buchwald-Hartwig) to create a library of 

trikentrin analogues that would be subjected to biological evaluation. 

 

Scheme 50. Tribromonitrobenzene formation. 

As a test of these strategies, the tribromonitrobenzene 50.2 was converted to the 

4,6,7-tribromoindole (Scheme 51). Thus, 50.2 was first reduced to the tribromonoaniline 51.1 

(EtOH, SnCl2 dihydrate, 5 eq, 70 °C, 82%) followed by conversion to the hydrazine 51.2 (10 

eq ethereal HCl; 1.1 eq NaNO2, 6 N HCl; SnCl2 dihydrate, 3 eq, conc. HCl, 0 °C; 73% for 

three steps). Application of the Fischer-indole synthesis to 51.2 (protonation with ethereal 
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HCl; PhCH2CHO, 2 eq, refluxing EtOH, 2 h) gave the desired indole, but in only 31% yield.  

Finally, the indole nitrogen was protected as its N-methyl group (86%).   

 

Scheme 51. Regioselective Li-Bromo exchange and indolyne formation. 

We were delighted to find that the 4,6,7-tribromo-1-methyl-3-phenyl-1H-indole 51.4 reacted 

with n-BuLi and furan to generate cycloadduct 51.5, and without any apparent evidence of 

metal-halogen exchange at C4. Compound 51.5 was not stable to the reaction conditions, and 

was readily attacked by excess n-BuLi, and after aromatization by the addition of a trace of 

acid, produced the ring opened products 51.6a and 51.6b in a 1:1 ratio in a combined 90% 

yield. From these data, we can see that the 6,7-indolyne can be generated exclusively with 

the 4-bromo position untouched. This is a previously unknown phenomenon in these systems. 

 A more gratifying result was observed when we subjected 51.7 to our indolyne-forming 
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conditions with only 1.1 eq n-BuLi. The corresponding cycloadduct 51.8 was cleanly formed 

and isolated in 89% yield, again with no evidence of additional metal–halogen exchange 

occurring at C-4. Indeed, efforts to force metal–halogen exchange at the 4-bromoindole 

position with an excess of t-BuLi gave only the ring-opened product 51.9 in excellent yield 

via regio and exoselective attack by the alkyllithium.  

Application of this chemistry led to a second-generation synthesis to trikentrin A, and 

offers a highly flexible approach to potential trikentrin libraries.
69

 Thus inexpensive 

o-nitroaniline 50.1 was brominated [Br2 (4 eq), CH2Cl2/MeOH (2:1), rt, 1 h] in nearly 

quantitative yield to give 4,6-dibromo-2-nitroaniline 52.1. Subsequent diazotization of this 

aniline with a stoichiometric amount of cupric bromide [CuBr2 (1.3 eq), t-BuONO (1.0 eq), 

MeCN, 60 ºC, 1 h] afforded the 2,3,5-tribromonitrobenzene 50.2 in 90% yield consistently 

on a multi-gram (5-10 g) scale. 

 

Scheme 52. Synthesis of the 4,6,7-tribromoindole scaffold. 

Application of the Bartoli indole synthesis to 50.2 (vinyl Grignard, 6 eq; THF, -40 ºC, 20 

min) on a 5-gram scale gave cleanly a very respectable 50% yield of the desired 
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4,6,7-tribromoindole 52.2. Finally, protection of the indole N–H group as its TBS ether 52.3 

was accomplished in 78% yield with NaH (4.0 eq), TBSOTf (2.0 eq), and Et3N (2.0 eq) in 

DMF at 0 ºC for 0.5 h. 

As noted earlier, reaction of 52.3 with n-BuLi in PhMe at -78 ºC presumably resulted in 

selective metal–halogen exchange at C-7 and elimination to give the 4-bromo-6,7-indolyne 

53.1, which was trapped with cyclopentadiene to afford the desired 4-bromoindole 53.2 in 

89% yield.  

 

Scheme 53. Tandem 6,7-indolyne cycloaddition/Negishi cross-coupling. 

Although the possibility of some metal–halogen exchange occurring at the 4-bromo position 

cannot be rigorously excluded at this time, it is important to note that no evidence for the 

formation of compound 53.3 has been found thus far. Application of the Negishi 

cross-coupling [Et2Zn, 2.2 eq; Pd2(dba)3 (4 mol %); P(t-Bu)3·HBF4 (16 mol %); THF, 60 ºC, 

1 h] afforded the desired product 46.1 in 70% yield. The use of the somewhat more exotic Fu 

catalyst/ligand combination
134-136

 was found to be the best conditions in this case to achieve 

the optimal yield of the 4-ethylindole. This intermediate is identical in all respects to that 
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synthesized by our first-generation method beginning with 4-ethylaniline, and thus 

constitutes a formal total synthesis of (±)-cis-trikentrin A, as well as the shortest route to this 

target reported to date. 

The ability to exploit this reaction orthogonality in the 4,6,7-tribromoindole system makes it 

a potentially valuable scaffold for the construction of trikentrin libraries using a general 

tandem 6,7-indolyne cycloaddition/cross-coupling strategy as depicted in Scheme 54. 

 

Scheme 54. Cross-coupling manifolds in the 4-bromoindole scaffold. 

Thus it should be possible to effect a tandem cycloaddition/cross-coupling sequence with 

a variety of dienes and electrophiles for the subsequent transition metal-catalyzed 

cross-coupling reactions.  The range of useful reactions include the Negishi as noted above, 

Suzuki-Miyaura (with boronic acids), Stille (vinyl tin), Heck (vinyl), Buchwald-Hartwig 

(amines), and Sonogashira (terminal alkynes). If either I or OTf is substituted for Br, then the 
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Nozaki-Hiyama-Kishi (NHK) reaction (aldehydes) becomes an additional possibility. We 

have already provided a proof-of-concept for two other manifolds in addition to the Negishi 

reaction. For example, coupling a boronic acid to 53.2 in the Suzuki–Miyaura reaction gave a 

good yield of the desired product 55.1 (Scheme 55), while the use of an aniline afforded the 

corresponding Buchwald–Hartwig coupled product 56.1, albeit in modest yield (Scheme 56). 

 

Scheme 55. Suzuki–Miyaura coupling with 4-bromoindoles. 

 

Scheme 56. Buchwald–Hartwig coupling of anilines with 4-bromoindoles. 

In both cases, the cross-coupling event proceeded with concomitant loss the N-silyl 

protecting group. This unexpected outcome is advantageous in that it saves a deprotection 

step, and allows for the subsequent introduction of further diversity elements, for example, 

by way of N-alkylation or N-acylation. The yields of each reaction deserve comment. While 

the yield of product for the Negishi reaction is certainly respectable, the first attempts at the 

Suzuki–Miyaura and Buchwald–Hartwig cases gave disappointing results. Both are much 
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lower than would be expected for simple cross-coupling reactions with an aryl bromide. This 

observation required us, after much experimentation, to finally adopt the less conventional 

catalyst and ligand combinations to achieve even the stated yields. Although cross-coupling 

reactions with haloindoles are certainly precedented,
137

 their yields, along with other 

heteroarenes, tend to be highly variable, and usually low.
138

 In our systems, annulation leads 

to a more electron-rich bromoarene, and this factor is also known to suppress yields in many 

cases. 

The reaction conditions for the Suzuki-Miyaura and Buchwald-Hartwig reactions have 

since been improved. The same catalyst is employed in each case, but the use of new ligand 

and base combinations gave superior yields in both cross-coupling manifolds.  This 

development recently led to the production of a 93-member annulated indole library based on 

this methodology.
139
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CHAPTER 5. CONCLUSIONS 

 In conclusion, we discovered a new class of aryne based on the ubiquitous indole 

nucleus. The unique properties and reaction profiles of the indole arynes (aka indolynes), and 

of the 6,7-indole aryne in particular, have been used to great advantage in both natural 

products total synthesis and natural products-inspired library development, among other 

things. This work has resulted in several important “firsts” for the field of organic chemistry. 

We provided the first evidence for the existence of all three isomeric indole arynes in the 

benzenoid core using a practical and general method for their synthesis via metal-halogen 

exchange with n-BuLi in the corresponding o-dibromides, followed by elimination. The 

facile generation of aryne indoles from o-dibromoindoles is noteworthy for its synthetic 

simplicity and high yields. We found that the 5,6- and 6,7-indole arynes can also be easily 

and selectively generated from the same 5,6-difluoroindole depending on the solvent and 

choice of base. These discoveries alone suggest that indoles can now be considered important 

and versatile members of the suite of aromatic systems from which arynes can be easily 

generated.  

 We provided the first examples of the completely regio- and exoselective ring 

opening of the furan cycloadducts from 6,7-indolynes with alkyllithium reagents. We also 

provided the first experimental evidence that the 6,7-indole aryne, but not the 4,5- and 

5,6-indolynes, undergoes highly regioselective, contrasteric Diels-Alder cycloaddition 

reactions with 2-substituted furans. We found that the 6,7-indolyne/furan cycloadducts can 
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be induced to undergo various rearrangement reactions to afford several additionally useful 

compounds such as annulated enones, indolobenzoquinones, and benzannulated phenols. We 

also demonstrated that 6,7-indole arynes react with allylic acyclic dienes to give predictably 

either predominantly ene products, or regioselective contrasteric  Diels-Alder products, 

depending on the position of the allylic substituent.    

 We conducted in collaboration with the University of Minnesota the first theoretical 

and computational study of the indole arynes which revealed that the 6,7-indolyne in 

particular is a highly polarized system that reacts in a concerted manner but with 

substantially electrophilic substitution character.   

 We provided the first natural products total synthesis application of the indole arynes 

by completing concise total syntheses of the deceptively simple, biologically important 

indole alkaloids (±)-cis-trikentrin A, and (±)-herbindole A and B. This work demonstrated 

the power and synthetic utility of the indole aryne cyloaddition reaction to readily access 

annulated indole natural products. This approach combined with the Bartoli indole synthesis 

provides for an especially efficient synthesis of the trikentrins and herbindoles.  

 Finally, we were the first to demonstrate a useful and practical reaction orthogonality 

regime in arynes derived from tribromoindoles. In this manner we established that 6,7-indole 

arynes can be generated selectively from 4,6,7-tribromoindoles, followed by cycloaddition, 

leaving the unreacted 4-bromo position available for subsequent reactions such as 

cross-coupling. This work led to a shorter and more efficient second-generation synthesis of 

cis-trikentrin A. More significantly, it opened the door for the design and synthesis of natural 
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product-like libraries using this strategy. This heretofore unrecognized reaction orthogonality 

renders the 4,6,7-tribromoindole a versatile platform for the total synthesis of natural 

products, and holds enormous potential for the construction of diverse small-molecule 

libraries for use in drug discovery.  
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CHAPTER 6. EXPERIMENTAL SECTION 

6.1 General Details 

1
H NMR (400 MHz) and 

13
C NMR (100 MHz) spectra were recorded with a Varian 

Nova-400 spectrometer, with the samples in CDCl3 unless otherwise noted, with reference to 

residual solvent at  7.24 ppm and 77.0 ppm, respectively.  

Melting Points reported are uncorrected. 

Unless otherwise noted, all commercially obtained starting materials were used as 

received.  Dichloromethane and toluene were distilled from calcium hydride under nitrogen 

prior to use. THF and diethyl ether were distilled from sodium benzophenone ketyl under 

nitrogen prior to use.  
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6.2 Experiment Procedures 

 

(±)-cis-trikentrin A (16.1): In a 100 mL round-bottom flask was added a solution of 88 

mg (0.19 mmol) of (±)-6,8-bis(bis(ethylthio)methyl)-4-ethyl-1,6,7,8-tetrahydrocyclopenta- 

[g]indole 45.4 in 40 mL ethanol. To the stirring solution was added 2 g of Raney-Nickel 

(2800, Aldrich). The resulting suspension was heated to reflux and monitored by TLC. After 

20 min, TLC analysis showed complete conversion and the mixture was cooled to room 

temperature and filtered through a pad of celite. The residue was washed with methanol (3 x 

30 mL) and diethyl ether (1 x 50 mL). The combined filtrate was concentrated under reduced 

pressure, and the crude material was purified by passing through a plug of silica gel and 

eluting with 40% ethyl acetate in hexanes to give 35 mg (85%) of the title compound as a 

slowly darkening oil.  

1
H-NMR and 

13
C-NMR match those reported in the literature.  

HRMS (EI) m/e calcd for C15H19N 213.1519, found 213.1518. 
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(±)-Herbindole A (16.6): See (±)-cis-trikentrin A (16.1). 

1
H NMR (400 MHz, CDCl3) δ 7.91 (bs, 1H), 7.13-7.11 (m, 1H), 6.55-6.54 (m, 1H), 

3.48-3.38 (m, 2H), 2.73-2.62 (m, 2H), 2.46 (s, 3H), 2.32 (s, 3H), 1.44 (d, J= 7.2 Hz, 3H), 

1.34 (d, J = 7.2 Hz, 3H).  

13
C NMR (100 MHz, CDCl3) δ 142.0, 130.4, 127.7, 126.6, 126.4, 123.2, 122.8, 101.6, 

41.8, 39.1, 37.1, 23.8, 22.8, 15.5, 15.3.   

HRMS (EI) m/e calcd for C15H19N 213.1519, found 213.1519. 

Mp = 88-91 °C.  
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3,4-Dichlorophenylhydrazine (18.2): In a 50 mL round-bottom flask was added 1 g 

(6.16 mmol) of 3,4-dicholoroaniline. This was dissolved in 15 mL of methanol with stirring. 

To the stirring solution was carefully added 8 mL (12 N, 96 mmol) of concentrated 

hydrochloric acid. The solution was then evaporated under reduced pressure to give a white 

powder. To the white powder was added dropwise a solution of 460 mg (6.66 mmol, 1.1 eq) 

NaNO2 in 4 mL water at 0 
o
C. The solution was stirred for 20 min at this temperature, and 

then a solution of 4.3 g (19.02 mmol, 3 eq) stannous chloride dihydrate in 10 mL 

concentrated hydrochloric acid was added dropwise. The resulting mixture was left to stand 

in the refrigerator (ca. 4
 o

C) for 6 h, after which time the white precipitate was filtered and 

washed with three 50 mL portions of 20% ether in hexanes. The solid was added to 200 mL 

of 10% aqueous NaOH and 133 mL ether. The biphasic mixture was stirred for 1 h after 

which time the phases were separated and the aqueous layer washed with another two 50 mL 

portions of ether. The combined organic layers were dried over sodium sulfate, filtered and 

concentrated under reduced pressure to give 842 mg (77%) of the title compound as a yellow 

solid.  

1
H NMR (400 MHz, CDCl3) δ 7.36-7.11 (m, 1H), 6.93 (s, 1H), 6.61 (d, J = 7.2 Hz, 1H), 

5.21(bs, 1H), 3.55 (bs, 2H). 
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4,5-Dichloro-3-phenyl-1H-indole (18.3): In a 50 mL round-bottom flask under nitrogen 

was added 50 mg (0.28 mmol) of 3,4-dichlorophenylhydrazine. This was dissolved in 5 mL 

dry THF. To the stirring solution was added 31 μL (0.28 mmol, 1 eq) of phenylacetaldehyde 

and 1 g polyphosphoric acid. The mixture was heated to reflux under nitrogen atmosphere for 

2 h, then concentrated under reduced pressure and immediately separated via column 

chromatography on silica gel using 15% ethyl acetate/hexanes as the eluent to give 30.1 mg 

(40%) of the title compound as a yellow solid and 30.1 mg (40%) of 

5,6-dichloro-3-phenyl-1H-indole as well. 

1
H NMR (400 MHz, CDCl3) δ 8.32 (bs, 1H), 7.50-7.43 (m, 2H), 7.41-7.31 (m, 3H), 

7.30-7.25 (m, 2H), 7.18 (d, J = 2.5 Hz, 1H). 

 5,6-Dichloro-3-phenyl-1H-indole (18.4):  

1
H NMR (400 MHz, CDCl3) δ 8.10 (bs, 1H), 7.84 (s, 1H), 7.45 (apparent d, J = 7.2 Hz, 

2H), 7.39 (s, 1H), 7.32 (apparent t, J = 7.7 Hz, 2H), 7.21-7.15 (m, 1H), 7.12 (s, 1H). 
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4,5-Dichloro-1-methyl-3-phenyl-1H-indole (18.5): In a 25 mL flame-dried 

round-bottom flask under nitrogen was added 135 mg (0.51 mmol) of 

4,5-dichloro-3-phenyl-1H-indole. This was dissolved in 2 mL dry THF and to the solution 

was added 14.7 mg (0.61 mmol, 1.2 eq) of dry sodium hydride. The solution was stirred at 

room temperature for 30 min, and then 63 μL (1.02 mmol, 2.0 eq) of iodomethane was added 

via syringe. The resulting solution was stirred for 2 h and refluxed for another 30 min, and 

then quenched by dropwise addition of 10 mL water. The aqueous mixture was extracted 

with three portions of 25 mL diethyl ether. The combined organic layers were washed with 

brine (10 mL), dried over magnesium sulfate, filtered and concentrated under reduced 

pressure. The residue was then purified via column chromatography on silica gel using 20% 

ethyl acetate/hexanes as eluent to give 126 mg (90%) of the title compound as a yellow oil. 

1
H NMR (400 MHz, CDCl3) δ 7.48-7.42 (m, 2H), 7.40-7.28 (m, 4H), 7.18 (d, J = 8.7 Hz, 

1H), 7.04 (s, 1H), 3.80 (s, 3H). 
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5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6): In a 25 mL flame-dried 

round-bottom flask under nitrogen was added 65.2 mg (0.25 mmol) of 

5,6-dichloro-3-phenyl-1H-indole. This was dissolved in 2 mL dry THF and to the solution 

was added 7.2 mg (0.3 mmol, 1.2 eq) of dry sodium hydride. The solution was stirred at 

room temperature for 30 min, then 31 μL (0.5 mmol, 2.0 eq) of iodomethane was added via 

syringe. The resulting solution was stirred for 2 h, and then quenched by dropwise addition 

of 10 mL water. The aqueous mixture was extracted with three portions of 25 mL diethyl 

ether. The combined organic layers were washed with brine (10 mL), dried over magnesium 

sulfate, filtered and concentrated under reduced pressure. The residue was then purified via 

column chromatography on silica gel using 20% ethyl acetate/hexanes as eluent to give 65.8 

mg (95%) of the title compound as a yellow solid. 

1
H NMR (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.58-7.52 (m, 2H), 7.45-7.40 (m, 3H), 7.32 

-7.25 (m, 1H), 7.21 (s, 1H), 3.78 (s, 3H). 

 
13

C NMR (100 MHz, CDCl3) δ 136.40, 134.56, 129.09, 128.32, 127.33, 126.43, 125.88, 

125.86, 124.10, 121.01, 116.62, 111.20, 33.24. 
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 3-methyl-1-phenyl-6,9-dihydro-3H-6,9-epoxybenzo[e]indole (19.2):  

See 1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (22.2) 

 
1
H NMR (400 MHz, CD3CN) δ 7.46-7.51 (m, 4 H), 7.24-7.34 (m, 4 H), 7.18 (dd, J = 1.6 

Hz and 5.6 Hz, 1 H), 7.00 (d, J =8.0 Hz, 1 H), 5.87 (bs, 1 H), 5.76 (s, 1 H), 3.77 (s, 3 H) 

HRMS (EI) m/e calcd for C19H15NO 273.1154, found 273.1159. 
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 1-methyl-3-phenyl-5,8-dihydro-1H-5,8-epoxybenzo[f]indole (19.4):  

See 1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (22.2). 

 
1
H NMR (400 MHz, CD3CN) δ 7.72(s, 1H), 7.61 (d, J = 7.6 Hz, 2 H), 7.42 (t, J = 8.0 Hz, 

2 H), 7.34 (m, 2 H), 7.24 (apparent t, J = 7.6 Hz, 1 H), 7.01 (s, 2 H), 5.73 (s, 1 H), 5.70 (s, 1 

H), 3.78 (s, 3 H) 

HRMS (EI) m/e calcd for C19H15NO 273.1154, found 273.1157. 
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5-bromo-4-fluoro-3-phenyl-1H-indole (20.1a):  

See 5,6-Dichloro-3-phenyl-1H-indole (18.4). 

1
H NMR (400 MHz, CDCl3) δ 8.42 (bs, 1H), 7.62-7.56 (m, 2H), 7.47-7.21 (m, 5H), 7.10 

(dd, J = 8.6, 3.4 Hz, 1H). 

5-bromo-6-fluoro-3-phenyl-1H-indole (20.2a):  

1
H NMR (400 MHz, CDCl3) δ 8.26 (bs, 1H), 8.03 (d, J = 6.7 Hz, 1H), 7.62-7.54 (m, 

2H), 7.49-7.40 (m, 2H), 7.37-7.27 (m, 2H), 7.19 (dd, J = 8.9, 0.8 Hz, 1H). 
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6-chloro-5-iodo-3-phenyl-1H-indole (20.3a): See 5,6-Dichloro-3-phenyl-1H-indole 

(18.4). 

1
H NMR (400 MHz, CDCl3) δ 8.36 (bs, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.48-7.41 (m, 

2H), 7.40-7.32 (m, 3H), 7.14 (s, 1H), 7.09 (d, J = 8.6 Hz, 1H). 
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6,7-dichloro-3-phenyl-1H-indole (20.4a): See 5,6-Dichloro-3-phenyl-1H-indole (18.4). 

 
1
H NMR (400 MHz, CDCl3) δ 8.48 (bs, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.62-7.57 (m, 

2H), 7.48-7.42 (m, 2H), 7.38 (s, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 8.6 Hz, 1H) 
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4,5-dibromo-3-phenyl-1H-indole (20.5a): See 5,6-Dichloro-3-phenyl-1H-indole (18.4). 

The starting material (3,4-dibromophenyl)hydrazine was made from 3,4-dibromoaniline
140

 as 

the same procedure as 3,4-Dichlorophenylhydrazine (18.2). 

1
H NMR (400 MHz, CDCl3) δ 8.46 (bs, 1H), 7.34-7.30 (m, 3H), 7.26-7.22 (m, 3H), 7.08 

(d, J = 8.6 Hz, 1H), 7.01 (d, J = 2.5 Hz, 1H). 

5,6-dibromo-3-phenyl-1H-indole (20.6a):  

 
1
H NMR (400 MHz, CDCl3) δ 8.25 (bs, 1H), 8.07 (s, 1H), 7.60 (s, 1H), 7.53-7.47 (m, 

2H), 7.42-7.35 (m, 2H), 7.28-7.21 (m, 2H).  
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6,7-dibromo-3-phenyl-1H-indole (20.7a):  

The starting material 1,2-dibromophenylhydrazine was made from 1,2-dibromoaniline
140

 

using the same procedure as 3,4-Dichlorophenylhydrazine (18.2).  

Dissolved 1.09 g (4.10 mmol) 1,2-dibromophenylhydrazin in a small amount of Et2O, 

then added 2.05 mL 2 M HCl (1 eq) into the solution dropwise. Filtered the mixture and got 

white salts, washed the salts with Et2O thoroughly, then dried it under vacuum. Then in a 100 

mL round-bottom flask was added the dried salts, 478 µL phenylacetaldehyde (1 eq ), and 30 

mL EtOH, this was refluxed under N2 atmosphere for 3 hours, then quenched with NaHCO3 

saturated solution and extracted with Et2O. The organic layer was dried over magnesium 

sulfate, filtered and concentrated under reduced pressure. The residue was then purified via 

column chromatography on silica gel using 20% ethyl acetate/hexanes as eluent to give 963.3 

mg (67%) of the title compound. 

1
H NMR (400 MHz, CDCl3) δ 8.45 (bs, 1H), 7.70 (dd, J = 8.5, 0.7 Hz, 1H), 7.61-7.56 

(m, 2H), 7.47-7.41 (m, 2H), 7.38 (dd, J = 5.5, 3.0 Hz, 2H), 7.34-7.28 (m, 1H).  
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4,5-difluoro-3-phenyl-1H-indole (20.8a): See 5,6-Dichloro-3-phenyl-1H-indole (18.4). 

1
H NMR (400 MHz, CDCl3) δ 8.35 (bs, 1H), 7.62-7.57 (m, 2H), 7.44-7.38 (m, 2H), 7.33 

-7.28 (m, 1H), 7.25 (d, J = 2.5 Hz, 1H), 7.07-7.04 (m, 2H). 

5,6-difluoro-3-phenyl-1H-indole (20.9a):  

1
H NMR (400 MHz, CDCl3) δ 8.27 (bs, 1H), 7.63 (dd, J = 11.1, 7.8 Hz, 1H), 7.60-7.55 

(m, 2H), 7.47-7.42 (m, 2H), 7.35 (d, J = 2.5 Hz, 1H), 7.33-7.27 (m, 1H), 7.18 (dd, J = 10.4, 

6.7 Hz, 1H).  
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6,7-difluoro-3-phenyl-1H-indole (20.10a): See 5,6-Dichloro-3-phenyl-1H-indole 

(18.4). 

1
H NMR (400 MHz, CDCl3) δ 8.55 (s, 1H), 7.61-7.05 (m, 8H).  
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5-bromo-4-fluoro-1-methyl-3-phenyl-1H-indole (20.1b): See 4,5-Dichloro-1-methyl- 

3-phenyl-1H-indole (18.5). 

1
H NMR (400 MHz, CDCl3) δ 7.58-7.53 (m, 2H), 7.38 (t, J = 7.8 Hz, 2H), 7.32 (dd, J = 

8.7, 6.2 Hz, 1H), 7.30-7.25 (m, 1H), 7.08 (s, 1H), 7.00 (d, J = 8.7 Hz, 1H), 3.80 (s, 3H).  
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5-bromo-6-fluoro-1-methyl-3-phenyl-1H-indole (20.2b):   

See 4,5-Dichloro-1-methyl-3-phenyl-1H-indole (18.5). 

1
H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 6.7 Hz, 1H), 7.58-7.53 (m, 2H), 7.46-7.40 (m, 

2H), 7.32-7.25 (m, 1H), 7.18 (s, 1H), 7.09 (d, J = 9.2 Hz, 1H), 3.76 (s, 3H). 
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6-chloro-5-iodo-1-methyl-3-phenyl-1H-indole (20.3b):  

See 4,5-Dichloro-1-methyl-3-phenyl-1H-indole (18.5). 

1
H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 7.57-7.52 (m, 2H), 7.48 (s, 1H), 7.46-7.40 

(m, 2H), 7.31-7.26 (m, 1H), 7.17 (s, 1H), 3.77 (s, 3H). 
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6,7-dichloro-1-methyl-3-phenyl-1H-indole (20.4b):  

See 5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6). 

1
H NMR (400 MHz, CDCl3) δ 7.66 (dd, J = 8.6, 0.6 Hz, 1H), 7.56-7.51 (m, 2H), 7.46- 

7.39 (m, 2H), 7.32-7.26 (m, 1H), 7.19 (dd, J = 8.6, 0.6 Hz, 1H), 7.11 (s, 1H), 4.18 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ 134.42, 129.96, 128.95, 128.71, 128.57, 127.63, 127.03, 

126.42, 121.98, 118.88, 116.91, 115.74, 37.28.  

 HRMS (EI) m/e calcd for C15H11Cl2N 275.0270, found 275.0271.  

Mp = 104-105 °C. 
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4,5-dibromo-1-methyl-3-phenyl-1H-indole (20.5b):  

See 5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6). 

1
H NMR (400 MHz, CDCl3) δ 7.41-7.47 (m, 3 H), 7.34-7.36 (m, 3 H), 7.18 (d, J = 8.8 

Hz, 1 H), 7.03 (s, 1 H), 3.79 (s, 3 H). 

HRMS (EI) m/e calcd for C15H11Br2N 362.9258, found 362.9260. 
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5,6-dibromo-1-methyl-3-phenyl-1H-indole (20.6b):  

See 5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6). 

1
H NMR (400 MHz, CDCl3) δ 8.12 (s, 1 H), 7.60 (s, 1 H), 7.53 (d, J = 7.6 Hz, 2 H), 7.28 

(apparent t, J = 7.6 Hz, 1 H), 7.24 (apparent t, J = 7.6 Hz, 2 H), 3.75 (s, 3 H), 7.16 (s, 1 H).  

HRMS (EI) m/e calcd for C15H11Br2N 362.9258, found 362.9261.  

Mp = 112-113 °C. 
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6,7-dibromo-1-methyl-3-phenyl-1H-indole (20.7b):  

See 5, 6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6). 

1
H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.5 Hz, 1H), 7.55-7.50 (m, 2H), 7.46-7.40 (m, 

2H), 7.36 (d, J = 8.5 Hz, 1H), 7.33-7.27 (m, 1H), 7.10 (s, 1H), 4.18 (s, 3H).  

HRMS (EI) m/e calcd for C15H11Br2N 362.9258, found 362.9259.  

Mp = 101-102 °C. 
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4,5-difluoro-1-methyl-3-phenyl-1H-indole (20.8b):  

See 5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6) 

1
H NMR (400 MHz, CDCl3) δ 7.62-7.55 (m, 2H), 7.43-7.37 (m, 2H), 7.31-7.25 (m, 1H), 

7.12 (s, 1H), 7.07 (ddd, J = 10.5, 8.9, 7.1 Hz, 1H), 6.99 (ddd, J = 8.9, 3.5, 1.0 Hz, 1H), 3.79 

(s, 3H). 
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5,6-difluoro-1-methyl-3-phenyl-1H-indole (20.9b):  

See 5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6). 

1
H NMR (400 MHz, CDCl3) δ 7.67 (dd, J = 11.2, 7.8 Hz, 1H), 7.62-7.55 (m, 2H), 7.53- 

7.42 (m, 2H), 7.36-7.29 (m, 1H), 7.21 (s, 1H), 7.10 (dd, J = 10.6, 6.7 Hz, 1H), 3.74 (s, 3H).  

13
C NMR (100 MHz, CDCl3) δ 149.36, 149.20, 148.16, 148.01, 146.96, 146.80, 145.80, 

145.65, 134.96, 132.91, 132.81, 129.07, 127.76, 127.72, 127.19, 126.27, 121.41, 121.33, 

117.00, 116.95, 106.77, 106.58, 97.75, 97.53, 33.29.  

19
F NMR (376 MHz, CDCl3) δ -143.43--143.82 (m, 1F), -147.69--148.10 (m, 1F). 

 HRMS (EI) m/e calcd for C15H11F2N 243.0860, found 243.0861.  

Mp = 111-112 °C. 
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6,7-difluoro-1-methyl-3-phenyl-1H-indole (20.10b):  

See 5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6). 

1
H NMR (400 MHz, CDCl3) δ 7.58-7.54 (m, 2H), 7.50 (ddd, J = 8.8, 4.3, 1.2 Hz, 1H), 

7.45-7.39 (m, 2H), 7.32-7.25 (m, 1H), 7.11 (s, 1H), 7.00-6.90 (m, 1H), 4.01 (d, J = 1.8 Hz, 

3H). 
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4-fluoro-1-methyl-3-phenyl-1H-indole (21.2):  

See 6-fluoro-1-methyl-3-phenyl-1H-indole (21.4). 

1
H NMR (400 MHz, CDCl3) δ 7.63-7.56 (m, 2H), 7.43-7.35 (m, 2H), 7.29-7.24 (m, 1H), 

7.16 (dd, J = 7.5, 4.7 Hz, 1H), 7.13-7.09 (m, 2H), 6.82 (ddd, J = 11.6, 7.5, 1.1 Hz, 1H), 3.82 

(s, 3H). 

 



87 

 

6-fluoro-1-methyl-3-phenyl-1H-indole (21.4):  

In a flame-dried 5 mL round-bottom flask under nitrogen was added 14 mg (0.046 

mmol) of 5-bromo-6-fluoro-1-methyl-3-phenyl-1H-indole (20.2b) and 47 μL (0.46 mmol, 10 

eq) of furan; these were then dissolved in 2 mL dry diethyl ether and cooled to -78 °C. To the 

cold solution was added dropwise 105 μL (0.15 mmol, 3.3 eq) of a 1.45 M t-butyllithium in 

hexanes solution. The solution was stirred at -78 °C for 30 min. The cold bath was then 

removed and the solution was allowed to slowly warm to room temperature with stirring. 

After 1 h, the reaction was quenched by addition of 5 mL water. The product was extracted 

with 3 x 5 mL diethyl ether, and the combined organic layers were then dried over 

magnesium sulfate, filtered and concentrated under reduced pressure. The residue was 

purified via column chromatography on silica gel using 30% ethyl acetate/hexanes as the 

eluent to give 9.2 mg (89%) of the title compound as a white solid.  

1
H NMR (400 MHz, CDCl3) δ 7.82 (dd, J = 8.7, 5.3 Hz, 1H), 7.64-7.56 (m, 2H), 7.47- 

7.38 (m, 2H), 7.31-7.24 (m, 1H), 7.19 (s, 1H), 7.01 (dd, J = 9.7, 2.2 Hz, 1H), 6.93 (ddd, J = 

9.5, 8.8, 2.3 Hz, 1H), 3.77 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ 161.36, 158.99, 137.81, 137.69, 135.41, 129.01, 127.49, 

126.91, 126.87, 126.16, 122.92, 121.06, 120.96, 117.20, 108.86, 108.62, 96.21, 95.95, 33.21. 
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6-chloro-1-methyl-3-phenyl-1H-indole (21.6):  

See 6-fluoro-1-methyl-3-phenyl-1H-indole (21.4).  

Starting material 6-chloro-5-iodo-1-methyl-3-phenyl-1H-indole was made from 

3-chloro-4-iodophenylhydrazine (35) as before. 

 
1
H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 8.5 Hz, 1H), 7.62-7.56 (m, 2H), 7.42 

(apparent t, J = 7.8 Hz, 3H), 7.34 (d, J = 1.4 Hz, 1H), 7.30-7.25 (m, 1H), 7.20 (s, 1H), 7.12 

(dd, J = 8.5, 1.8 Hz, 1H), 3.80 (s, 3H). 
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1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (22.2): In a flame-dried 

5 mL round-bottom flask under nitrogen was added 21 mg (0.059 mmol) of 

6,7-dibromo-1-methyl-3-phenyl-1H-indole and 86 μL (1.2 mmol, 20 eq) of furan; these were 

then dissolved in 2 mL dry diethyl ether and cooled to -78 °C. To the cold solution was 

added dropwise 65 μL (0.065 mmol, 1.1 eq) of a 1.0 M n-butyllithium in hexanes solution. 

The solution was stirred at -78 °C for 30 min. The cold bath was then removed and the 

solution was allowed to slowly warm to room temperature with stirring. After 1 h, the 

reaction was quenched by addition of 5.2 mL water. The product was extracted with 3 x 5 

mL diethyl ether, and the combined organic layers were then dried over magnesium sulfate, 

filtered and concentrated under reduced pressure. The residue was purified via column 

chromatography on silica gel using 20% ethyl acetate/hexanes as the eluent to give 13 mg 

(79%) of the title compound as a white solid.  

1
H NMR (400 MHz, CD3CN) δ 7.63 (d, J = 6.4 Hz, 2 H), 7.51 (d, J = 8.0 Hz, 1 H), 7.42 

(apparent t, J = 7.8 Hz, 2 H), 7.34 (s, 1 H), 7.25 (apparent t, J = 7.6 Hz, 1 H), 7.14-7.21 (m, 3 

H), 6.33 (s, 1 H), 5.82 (s, 1 H), 3.95 (s, 3 H).  

HRMS (EI) m/e calcd for C19H15NO 273.1154, found 273.1155.  

Mp= 158-159 °C. 
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 (±)-8-(tert-butyl)-1-methyl-3-phenyl-8,9-dihydro-1H-benzo[g]indol-9-ol (22.3): See 

5-fluoro-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (31.3). 

1
H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.0 Hz, 1 H), 7.60 (d, J =7.2 Hz, 2 H), 7.43 

(apparent t, J = 8.0 Hz, 2 H), 7.26 (apparent t, J = 7.2 Hz, 1H), 7.15 (s, 1 H), 6.98 (d, J = 8.0 

Hz, 1 H), 6.76 (dd, J = 3.2 Hz and 10 Hz, 1 H), 6.00 (d, J = 10 Hz, 1 H), 5.59 (d, J = 5.2 Hz, 

1 H), 4.17 (s, 3 H), 2.29 (q, J = 3.2 Hz, 1 H), 1.23 (s, 9 H).  

HRMS (EI) m/e calcd for C19H25NO 283.1937, found 283.1939. 
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 8-(tert-butyl)-1-methyl-3-phenyl-1H-benzo[g]indole (22.4):  

Dissolved 22.3 in chloroform-D, and sat at room temperature for 7 hours. All starting 

material 22.3 was aromatized to product 22.4. 

1
H NMR (400 MHz, CDCl3) δ 8.48 (d, J = 2 Hz, 1 H), 7.90 (apparent t, J = 8.4 Hz, 2 H), 

7.65-7.67 (m, 2 H), 7.50-7.54 (m, 2 H), 7.45 (apparent t, J = 5.2 Hz, 2 H), 7.28 (apparent t, J 

= 7.2 Hz, 1 H), 7.19 (s, 1 H), 4.36 (s, 3 H), 1.46 (s, 9 H).  

13
C NMR (100 MHz, CDCl3) δ 148.1, 135.8, 131.2, 129.6, 129.0, 128.9, 128.1, 127.1, 

126.1, 123.6, 123.5, 122.3, 121.1, 119.2, 118.0, 116.3, 39.0, 35.3, 31.7.  

HRMS (EI) m/e calcd for C19H23N 265.1831, found 265.1832. 
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 (±)-8-(tert-butyl)-1,6,9-trimethyl-3-phenyl-8,9-dihydro-1H-benzo[g]indol-9-ol (25.2): 

See 5-fluoro-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (31.3). 

 
1
H NMR (400 MHz, CD3CN) δ 7.70 (d, J = 8.4 Hz, 1 H), 7.65 (d, J = 8.4 Hz, 2 H), 7.44 

(apparent t, J = 7.4 Hz, 2 H), 7.35 (d, J = 8.4 Hz, 1 H), 7.30 (s, 1 H) , 7.28 (t, J = 7.6 Hz, 1H), 

6.03 (dd, J = 1.6 and 8.0 Hz, 1 H), 3.79 (s, 3 H), 2.96 (s, 1 H), 2.20 (s, 3 H), 1.49 (s, 3 H), 

0.86 (s, 9 H) 

HRMS (EI) m/e calcd for C25H29NO 359.2250, found 359.2252. 

(±)-7-(tert-butyl)-1,6,9-trimethyl-3-phenyl-6,7-dihydro-1H-benzo[g]indol-6-ol (25.3):  

1
H NMR (400 MHz, CD3CN) δ 7.72 (d, J = 8.4 Hz, 1 H), 7.62 (d, J = 5.2 Hz, 2 H), 7.44 

(apparent t, J = 8.0 Hz, 2 H), 7.34 (s, 1 H), 7.27 (apparent t, J = 7.6 Hz, 1H), 7.09 (d, J = 8.4 

Hz, 1 H), 2.95 (s, 1 H), 5.84 (dd, J = 1.2 and 6.8 Hz, 1 H), 4.13 (s, 3 H), 2.11 (s, 3 H), 1.75 

(s, 3 H), 0.81 (s, 9 H)  

HRMS (EI) m/e calcd for C25H29NO 359.2250, found 359.2250. 
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 3,6,9-trimethyl-1-phenyl-6,9-dihydro-3H-6,9-epoxybenzo[e]indole (28.1):  

See 1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (22.2) 

 
1
H NMR (400 MHz, CDCl3) δ 7.44-7.31 (m, 5H), 7.15 (d, J = 8.0 Hz, 1H), 6.98 (d, J = 

3.6 Hz, 1H), 6.94 (dt, J = 9.6, 5.6 Hz, 3H), 3.75 (s, 3H), 1.95 (s, 3H), 1.21 (s, 3H). 
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 1,5,8-trimethyl-3-phenyl-5,8-dihydro-1H-5,8-epoxybenzo[f]indole (28.2):  

See 1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (22.2), except for 

using 2,5-dimethylfuran instead of furan. 

 
1
H NMR (400 MHz, CD3CN) δ 7.62 (d, J = 8.0 Hz, 2H), 7.57 (s, 1 H), 7.42 (apparent t, J 

= 8.0 Hz, 2 H), 7.33 (s, 1 H), 7.23-7.26 (m, 2 H), 6.78 (s, 2 H), 3.79 (s, 3 H), 1.87 (s, 3 H), 

1.85 (s, 3 H).  

HRMS (EI) m/e calcd for C21H19NO 301.1467, found 301.1462. 
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 3-methyl-1-phenyl-6,9-dihydro-3H-6,9-methanobenzo[e]indole (29.1):  

See 1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (22.2), except for 

using cyclopentadiene instead of furan. 

 
1
H NMR (400 MHz, CD3CN) δ 7.58-7.50 (m, 2H), 7.50-7.40 (m, 2H), 7.35-7.26 (m, 

1H), 7.24-7.17 (m, 2H), 6.94 (d, J = 7.1 Hz, 3H), 4.17 (s, 1H), 3.96 (s, 1H), 3.74 (s, 3H), 2.24 

(d, J = 6.5 Hz, 1H), 2.13 (d, J = 6.5 Hz, 1H). 
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 1-methyl-3-phenyl-6,9-dihydro-1H-6,9-methanobenzo[g]indole (30.1):  

In a flame-dried 25 mL round-bottom flask was added a solution of 20 mg (0.055 mmol) 

6,7-dibromo-1-methyl-3-phenyl-1H-indole 20.7b in 2 mL dry toluene. To this was added 7.4 

mg (0.11 mmol) of freshly cracked cyclopentadiene. The resulting solution was cooled to 

-78 °C, then 93 µL (0.11 mmol) of a 1.2 M solution of n-butyllithium in hexanes was added 

dropwise via syring over 15 min. The solution was stirred at -78 °C for 30 min then allowed 

to slowly warm to room temperature. The reaction was then quenched by addition of 10 mL 

saturated ammonium chloride. After stirring for 5 min, the mixture was diluted with 10 mL 

water and extracted with 3 x 10 mL dichloromethane. The combined organic phase was dried 

over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The 

crude material was then purified via column chromatography on silica gel using 5% 

dichloromethane in hexanes as eluent to give 13.1 mg (88%) of the title compound as a white 

solid. 

 
1
H NMR (400 MHz, CDCl3) δ 7.61-7.57 (m, 2H), 7.50 (d, J = 7.8 Hz, 1H), 7.42-7.36 (m, 

2H), 7.25-7.20 (m, 1H), 7.17 (d, J = 7.8 Hz, 1H), 7.05 (s, 1H), 6.92 (dd, J = 5.3, 3.0 Hz, 1H), 

6.86 (dd, J = 5.2, 3.0 Hz, 1H), 4.54 (s, 1H), 4.03 (s, 1H), 3.99 (s, 3H), 2.46-2.34 (m, 2H). 
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5-fluoro-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (31.3): In a 

flame-dried 5 mL round-bottom flask under nitrogen was added 20 mg (0.08 mmol) of 

5,6-difluoro-1-methyl-3-phenyl-1H-indole (20.9b) and 116 μL (1.6 mmol, 20 eq) of furan; 

these were then dissolved in 2 mL dry diethyl ether and cooled to -78 °C. To the cold 

solution was added dropwise 108 μL (0.35 mmol, 4.4 eq) of a 1.7 M t-butyllithium in 

hexanes solution. The solution was stirred at -78 °C for 30 min. The cold bath was then 

removed and the solution was allowed to slowly warm to room temperature with stirring. 

After 1 h, the reaction was quenched by addition of 5 mL water. The product was extracted 

with 3 x 5 mL diethyl ether, and the combined organic layers were then dried over 

magnesium sulfate, filtered and concentrated under reduced pressure. The residue was 

purified via column chromatography on silica gel using 20% ethyl acetate/hexanes as the 

eluent to give 18.6 mg (80%) of the title compound as a white solid.  

1
H NMR (400 MHz, CDCl3) δ 7.53 (d, J= 8.0 Hz, 2 H), 7.40 (apparent t, J = 7.6 Hz, 2 

H), 7.25 (apparent t, J = 7.0 Hz, 1 H), 7.18-7.20 (m, 2 H), 7.11-7.14 (m, 2 H), 6.28 (s, 1 H), 

6.10 (s, 1 H), 3.93 (s, 3 H).  

13
C NMR (100 MHz, CDCl3) δ 154.1, 151.7, 144.5, 143.4, 135.2, 130.8, 130.5, 129.7, 

129.1, 128.1, 127.4, 126.3, 117.3, 102.8, 102.6, 81.7, 80.3, 35.3.  

HRMS (EI) m/e calcd for C19H14FNO 291.1060, found 291.1058. 



98 

 

9-(tert-butyl)-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (32.2a): 

See 1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a). 

1
H NMR (400 MHz, CDCl3) δ 7.56-7.51 (m, 3H), 7.43-7.38 (m, 2H), 7.29-7.24 (m, 1H), 

7.16-7.12 (m, 2H), 7.03 (d, J = 5.5 Hz, 1H), 7.01(s, 1H), 5.17 (d, J = 1.8 Hz, 1H), 3.99 (s, 

3H), 1.45 (s, 9H). 

13
C NMR (100 MHz, C6D6) δ 29.6, 33.7, 39.1, 82.2, 104.6, 114.1, 116.9, 118.5, 126.4, 

128.4, 129.0, 129.7, 131.0, 135.2, 135.6, 136.0, 142.6, 146.4, 149.3.  

HRMS (EI) m/e calcd for C23H23NO 329.1781, found 329.1779. 

6-(tert-butyl)-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (32.2b): 

1
H NMR (400 MHz, CDCl3) δ 7.61-7.57 (m, 2H), 7.52 (d, J = 8.1 Hz, 1H), 7.43-7.38 (m, 

2H), 7.36 (d, J = 8.1 Hz, 1H), 7.28-7.23 (m, 1H), 7.12-7.07 (m, 3H), 6.24 (d, J = 1.5 Hz, 1H), 

3.93 (s, 3H), 1.35 (s, 9H).  

13
C NMR (100 MHz, THF-d8) δ 27.13, 30.63, 34.91, 80.79, 100.45, 115.47, 115.52, 

117.32, 126.05, 127.75, 129.15, 129.01, 129.27, 133.61, 136.57, 137.02, 144.72, 145.55, 

145.68.  

HRMS (EI) m/e calcd for C23H23NO 329.1781, found 329.1782. 
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1,9-dimethyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-1a): See 

1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a). 

 
1
H NMR (400 MHz, CD3CN) δ 7.62-7.58 (m, 2H), 7.49 (d, J = 7.8 Hz, 1H), 7.44-7.39 

(m, 2H), 7.27 (s, 1H), 7.27-7.22 (m, 1H), 7.15-7.11 (m, 2H), 6.94 (d, J = 5.4 Hz, 1H), 5.68 (d, 

J = 1.9 Hz, 1H), 3.96 (s, 3H), 2.14 (s, 3H).   

13
C NMR (100 MHz, CD3CN) δ 20.76, 38.16, 82.97, 91.72, 113.93, 116.32, 116.73, 

126.59, 128.10, 128.23, 129.59, 130.67, 133.81, 135.59, 136.31, 146.74, 147.21, 148.82.  

HRMS (EI) m/e calcd for C20H17NO 287.1311, found 287.1313. 

1,6-dimethyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-1b): 

1
H NMR (400 MHz, CDCl3) δ 7.61-7.54 (m, 3H), 7.43-7.37 (m, 2H), 7.27-7.22 (m, 1H), 

7.13-7.08 (m, 3 H), 6.90 (d, J = 5.5 Hz, 1H), 6.20 (d, J = 1.8 Hz, 1H), 3.93 (s, 3H), 2.01 (s, 

3H).   

13
C NMR (100 MHz, CD3CN) δ 15.62, 35.15, 81.20, 90.38, 112.93, 116.06, 116.70, 

126.47, 126.61, 127.78, 129.61, 129.80, 133.36, 134.74, 136.49, 145.70, 147.76, 148.01. 

HRMS (EI) m/e calcd for C20H17NO 287.1311, found 287.1312. 
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 9-ethyl-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-2a): See 

1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a). 

 
1
H NMR (400 MHz, C6D6) δ 7.69-7.64 (m, 3H), 7.37-7.31 (m, 2H), 7.21-7.16 (m, 1H), 

7.04 (d, J = 7.9 Hz, 1H), 6.83 (dd, J = 5.5, 1.9 Hz, 1H), 6.55 (s, 1H), 6.52 (d, J = 5.4 Hz, 1H), 

5.56 (d, J = 1.8 Hz, 1H), 3.07 (s, 3H), 2.39-2.32 (m, 2H), 1.20 (t, J = 7.4 Hz, 3H).  

13
C NMR (100 MHz, CD3CN) δ 10.19, 26.60, 37.85, 82.87, 96.40, 114.15, 116.46, 

116.99, 126.74, 128.27, 128.38, 129.72, 131.03, 134.29, 134.71, 136.42, 146.35, 146.96, 

149.30.  

HRMS (EI) m/e calcd for C21H19NO 301.1468, found 301.1467. 

 6-ethyl-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-2b): 

 
1
H NMR (400 MHz, C6D6) δ 7.73-7.69 (m, 3H), 7.38-7.32 (m, 2H), 7.21-7.16 (m, 1H), 

7.08 (d, J = 7.9 Hz, 1H), 6.77 (dd, J = 5.4 Hz, 1.8 Hz, 1H), 6.69 (d, J = 5.4 Hz 1H), 6.54 (s, 

1H), 5.92 (d, J = 1.8 Hz, 1H), 2.84 (s, 3H), 2.35 (q, J = 7.5 Hz, 2H), 1.28 (t, J = 7.5 Hz, 3H). 

13
C NMR (100 MHz, THF-d8) δ 8.68, 22.40, 34.03, 80.43, 93.53, 109.99, 112.26, 115.20, 

125.30, 126.27, 127.05, 128.21, 128.50, 134.61, 136.28, 136.29, 145.05, 145.83, 146.22. 

HRMS (EI) m/e calcd for C21H19NO 301.1468, found 301.1469. 
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9-isopropyl-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-3a): See 

1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a). 

1
H NMR (400 MHz, CD3CN) δ 7.62-7.58 (m, 2H), 7.48 (d, J = 7.8 Hz, 1H), 7.44-7.39 

(m, 2H), 7.28-7.23 (m, 2H), 7.13 (d, J = 7.8 Hz, 1H), 7.09 (dd, J = 5.5, 1.8 Hz, 1H), 6.98 (d, 

J = 5.5 Hz, 1H), 5.72 (d, J = 1.8 Hz, 1H), 3.93 (s, 3H), 3.27 (septet, J = 6.8 Hz, 1H), 1.14 

(dd, J = 1.8, 6.8 Hz, 6H).   

13
C NMR (100 MHz, CD3CN) δ 18.93, 19.06, 30.06, 37.76, 82.64, 100.26, 114.15, 

116.44, 117.15, 126.77, 128.29, 128.39, 129.72, 131.29, 134.48, 134.90, 136.39, 146.12, 

146.47, 149.32.  

HRMS (EI) m/e calcd for C22H21NO 315.1624, found 315.1624. 

6-isopropyl-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-3b): 

1
H NMR (400 MHz, C6D6) δ 7.73-7.68 (m, 3H), 7.38-7.32 (m, 2H), 7.21-7.17 (m, 1H), 

7.12 (d, J = 0.5 Hz, 1H), 6.76-6.75 (m, 2H), 6.53 (s, 1H), 5.92 (s, 1H), 2.82 (s, 3H), 2.67 

(septet, J = 6.8 Hz, 1H), 1.36 (dd, J = 8.7, 6.8 Hz, 6H).  

13
C NMR (100 MHz, THF-d8) δ 18.61, 18.76, 28.32, 35.32, 80.99, 97.93, 114.38, 

116.04, 116.92, 126.58, 127.89, 129.74, 129.89, 130.07, 133.42, 135.95, 136.65, 145.72, 

146.29, 146.51.  

HRMS (EI) m/e calcd for C22H21NO 315.1624, found 315.1622. 
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 1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a): Use the 

standard procedure as 1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (22.2), 

except for using PhMe as the solvent instead of Et2O. 

1
H NMR (400 MHz, C6D6) δ 8.03 (d, J = 7.9 Hz, 1H), 7.70-7.65 (m, 2H), 7.37-7.31 (m, 

4H), 7.21-7.17 (m, 1H), 7.07-6.97 (br, 4H), 6.50 (s, 1H), 5.99 (dd, J = 3.6, 1.3 Hz, 1H), 

4.57(d, J = 3.7 Hz, 1H), 2.60-2.53 (m, 1H), 2.52 (s, 3H).   

13
C NMR (100 MHz, C6D6) δ 30.24, 83.10, 107.37, 114.23, 116.92, 117.87, 126.11, 

129.32, 129.38, 129.66, 130.13, 130.45, 131.38, 131.57, 132.18, 135.61, 135.24, 135.89, 

142.31, 146.20, 146.92.  

HRMS (EI) m/e calcd for C25H19NO 349.1468, found 349.1470. 
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9-(tert-butyl)-3-methyl-1-phenyl-6,9-dihydro-3H-6,9-epoxybenzo[e]indole (33.1a): 

See 1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a).  

1
H NMR (400 MHz, CD3CN) δ 7.50 (d, J = 7.2 Hz, 1H), 7.40 (s, 1H), 7.35-7.25 (m, 2H), 

7.21 (d, J = 7.9 Hz, 1H), 7.10 (dd, J = 5.5, 1.7 Hz, 1H), 7.06-7.01 (m, 3H), 6.96 (d, J = 5.5 

Hz, 1H), 5.61 (d, J = 1.7 Hz, 1H), 3.73 (s, 3H), 0.73 (s, 9H). 

13
C NMR (100 MHz, C6D6) δ 27.78, 33.16, 33.49, 81.82, 104.92, 106.02, 114.97, 

116.32, 124.21, 127.71, 128.50, 128.81, 133.19, 138.31, 139.34, 142.68, 145.32, 145.76, 

147.19.  

HRMS (EI) m/e calcd for C23H23NO 329.1781, found 329.1780.  

6-(tert-butyl)-3-methyl-1-phenyl-6,9-dihydro-3H-6,9-epoxybenzo[e]indole (33.1b): 

1
H NMR (400 MHz, CD3CN) δ 7.50-7.45 (m, 4H), 7.44 (d, J = 8.2 Hz, 1H), 7.34-7.29 

(m, 1H), 7.26 (s, 1H), 7.22 (dd, J = 5.5, 1.8 Hz, 1H), 7.18 (d, J = 5.5 Hz, 1H), 6.96 (d, J = 8.2 

Hz, 1H), 5.79 (d, J = 1.7 Hz, 1H), 3.76 (s, 3H), 1.27 (s, 9H). 

13
C NMR (100 MHz, C6D6) δ 27.91, 33.30, 33.66, 81.75, 104.11, 108.48, 115.00, 

116.78, 123.54, 127.60, 128.13, 128.81, 132.65, 133.48, 137.01, 139.6, 141.25, 145.82, 

148.19.  

HRMS (EI) m/e calcd for C23H23NO 329.1781, found 329.1781.  
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5-(tert-butyl)-1-methyl-3-phenyl-5,8-dihydro-1H-5,8-epoxybenzo[f]indole (33.2a): 

See 1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a). 

1
H NMR (400 MHz, C6D6) δ 7.69 (d, J = 12.8 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.31 (t, 

J = 7.7 Hz, 2H), 7.15 (m, 3H), 6.57 (s, 1H), 6.12 (m, 1H), 5.16 (m, 1H), 3.46 (s, 3H), 1.48 (s, 

9H).   

13
C NMR (100 MHz, C6D6) δ 27.01, 31.96, 33.11, 81.86, 99.34, 104.74, 110.12, 111.77, 

117.67, 122.93, 125.84, 125.93, 129.06, 134.93, 136.59, 142.03, 143.80, 144.21, 144.97. 

HRMS (EI) m/e calcd for C23H23NO 329.1781, found 329.1782. 

8-(tert-butyl)-1-methyl-3-phenyl-5,8-dihydro-1H-5,8-epoxybenzo[f]indole (33.2b):  

1
H NMR (400 MHz, C6D6) δ 7.68 (d, J = 9.3 Hz, 1H), 7.60 (d, J = 7.1 Hz, 2H), 7.30 (t, J 

= 7.5 Hz, 2H), 7.15 (m, 3H), 6.62 (s, 1H), 6.27 (d, J = 3.7 Hz, 1H), 5.29 (m, 1H), 3.06 (s, 3 

H), 1.17 (s, 9H).   

13
C NMR (100 MHz, C6D6) δ 26.99, 32.08, 33.06, 81.72, 99.50, 102.78, 113.58, 118.22, 

123.15, 125.69, 126.02, 128.65, 129.16, 134.68, 136.64, 141.06, 143.13, 143.83, 146.96.   

HRMS (EI) m/e calcd for C23H23NO 329.1781, found 329.1781. 
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 6,7-dibromo-4-ethyl-1H-indole (35.1): In a 1.0 L round-bottom flask was dissolved 

9.77 g (31.6 mmol) 1,2-dibromo-5-ethyl-3-nitrobenzene (44.2) in 235 mL dry THF. The 

solution was cooled to -40 °C (dry ice/chlorobenzene) with stirring under nitrogen. To the 

cold solution was added 95 mL (95 mmol) of a 1.0 M solution of vinylmagnesium bromide 

in THF rapidly and in one portion. The mixture was stirred at -40 °C for 30 min, then 100 

mL saturated ammonium chloride was added and the mixture subsequently was allowed to 

warm to room temperature. The mixture was then extracted with diethyl ether (3 x 100 mL), 

the combined organic phase was then washed with water (100 mL) and brine (50 mL), dried 

over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The 

crude material was purified via column chromatography on silica gel using 15% ethyl acetate 

in hexanes as eluent to give 4.98 g (52%) of the title compound as an orange oil.  

1
H NMR (400 MHz, CDCl3) δ 8.35 (bs, 1H, NH), 7.21 (dd, J = 3.1, 0.8 Hz, 1H), 7.19 (s, 

1H), 6.64 (dd, J = 2.1, 1.1 Hz, 1H), 2.87 (q, J = 7.6 Hz, 2H), 1.34 (t, J = 7.5 Hz, 3H).  

13
C NMR (100 MHz, CDCl3) δ 137.1, 135.3, 126.7, 124.6, 123.1, 117.3, 104.2, 102.5, 

25.8, 14.5. 

HRMS (EI) m/e calcd for C10H9Br2N 300.9102, found 300.9099. 
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6,7-dibromo-4-ethyl-1-methyl-1H-indole (35.9):  

See 5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6). 

 
1
H NMR (400 MHz, CDCl3) δ 7.15 (s, 1H), 6.95 (d, J = 3.2 Hz, 1H), 6.43 (d, J = 3.2 Hz, 

1H), 4.13 (s, 3H), 2.80 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). 
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4-ethyl-1-methyl-6,9-dihydro-1H-6,9-methanobenzo[g]indole (35.11): 

See (±)-1-(tert-butyldimethylsilyl)-4-ethyl-6,9-dihydro-1H-6,9-methanobenzo[g]indole 

(45.1). 

1
H NMR (400 MHz, CDCl3) δ 6.98 (s, 1H), 6.91-6.87 (m, 2H), 6.86-6.82 (m, 1H), 6.41 

(d, J = 3.2 Hz, 1H), 4.49 (d, J = 2.3 Hz, 1H), 3.98 (s, 1H), 3.93 (s, 3H), 2.90-2.82 (m, 2H), 

2.42-2.33 (m, 2H), 1.31 (t, J = 7.6 Hz, 3H). 
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1-methyl-6-(2-methylenebut-3-en-1-yl)-3-phenyl-1H-indole (36.1):   

See 1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a).  

1
H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.2 Hz, 1H), 7.66-7.60 (m, 2H), 7.44-7.37 (m, 

2H), 7.26-7.20 (m, 1H), 7.18-7.15 (m, 2H), 7.04 (dd, J = 8.2, 1.5 Hz, 1H), 6.46 (dd, J = 17.5, 

11.2 Hz, 1H), 5.31 (d, J = 17.6 Hz, 1H), 5.18 (s, 1H), 5.06 (d, J = 10.8 Hz, 1H), 4.95 (s, 1H), 

3.79 (s, 3H), 3.71 (s, 2H). 

13
C NMR (100 MHz, CDCl3) δ 146.12, 138.85, 138.09, 135.98, 133.71, 128.91, 128.87, 

127.43, 126.43, 125.81, 121.73, 119.88, 118.25, 114.49, 110.02, 109.69, 38.69, 33.05. 
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1-methyl-6-(3-methyl-2-methylenebut-3-en-1-yl)-3-phenyl-1H-indole (36.2):  

See 1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a).  

1
H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.2 Hz, 1H), 7.67-7.60 (m, 2H), 7.44-7.37 (m, 

2H), 7.28-7.20 (m, 1H), 7.19-7.14 (m, 2H), 7.04 (dd, J = 8.2, 1.4 Hz, 1H), 5.29 (s, 1H), 5.19 

(s, 1H), 4.98 (s, 1H), 4.94 (s, 1H), 3.79 (s, 3H), 3.78 (s, 2H), 1.95 (s, 3H). 
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6-(5-isopropyl-2-methylcyclohexa-2,5-dien-1-yl)-1-methyl-3-phenyl-1H-indole 

(36.3a) and  

6-(2-isopropyl-5-methylcyclohexa-2,5-dien-1-yl)-1-methyl-3-phenyl-1H-indole 

(36.3b): 

See 1-methyl-3,9-diphenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (1-4a). These two 

isomers couldn’t be separated and the ratio was based on NMR analysis.  

1
H NMR (400 MHz, CDCl3) δ 8.04-7.86 (m, 1H), 7.79-7.65 (m, J = 1.3 Hz, 2H), 7.56- 

7.42 (m, 2H), 7.38-7.26 (m, 1H), 7.21 (s, 2H), 7.16-7.04 (m, 1H), 5.86-5.52 (m, 2H), 4.36- 

3.89 (m, 1H), 3.82 (s, 3H), 3.07-2.00 (m, 2H), 1.87-1.59 (m, 3H), 1.59-1.26 (m, 1H), 1.25- 

0.88 (m, 6H). 
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9-(tert-butyl)-1-methyl-3-phenyl-1H-benzo[g]indol-6(9H)-one (39.1): In a 50 mL 

round-bottom flask was added a solution of 10 mg (0.030 mmol) 

9-(tert-butyl)-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole 32.2a in 22 mL 

CH2Cl2/MeOH (10:1). The solution was bubbled with N2 for 30 min then lifted the needle 

right above the liquid surface. To the stirred solution was added one crystal of AlCl3 (cat.) 

and kept stirring for another 3 hours. Then to the mixture was added 20 mL NaOH solution 

(0.5 N) and stirred for 10 min, followed by extraction with Et2O. The organic phases were 

separated and washed with brine and dried over anhydrous magnesium sulfate, filtered and 

concentrated under reduced pressure. The crude material was purified by silica gel column, 

eluting with toluene to give 9.2 mg (92%) of the title compound as a yellow oil.  

1
H NMR (400 MHz, C6D6) δ 8.57 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.62- 

7.54 (m, 2H), 7.36-7.27 (m, 2H), 7.23-7.13 (m, 1H), 6.73-6.64 (m, 2H), 6.62 (s, 1H), 3.77 (d, 

J = 5.2 Hz, 1H), 3.02 (s, 3H), 0.60 (s, 9H). 
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1-methyl-3-phenyl-1H-benzo[g]indole-6,9-dione (40.1): In a 50 mL round-bottom 

flask was added a solution of 10 mg (0.030 mmol) 

9-(tert-butyl)-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole 32.2a in 22 mL 

CH2Cl2/MeOH (10:1). To the stirred solution was added one crystal of PPTS (cat.) and kept 

stirring for another 3 hours. Then to the mixture was added 20 mL NaOH solution (0.5 N) 

and stirred for 10 min, followed by extraction with Et2O. The organic phases were separated 

and washed with brine and dried over anhydrous magnesium sulfate, filtered and 

concentrated under reduced pressure. The crude material was purified by silica gel column, 

eluting with toluene to give 3.2 mg (38%) of the title compound as a yellow oil.  

1
H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.58- 

7.52 (m, 2H), 7.49-7.42 (m, 2H), 7.38 (s, 1H), 7.36-7.30 (m, 1H), 6.89 (d, J = 0.8 Hz, 2H), 

4.06 (s, 3H). 

13
C NMR (100 MHz, CDCl3) δ 186.35, 185.86, 139.72, 137.30, 135.43, 134.37, 134.27, 

133.75, 129.18, 128.91, 128.22, 127.03, 125.64, 119.89, 118.89, 118.53, 40.02. 
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1-methyl-3-phenyl-1H-benzo[g]indol-6-ol (40.2):  

In a 50 mL round-bottom flask was added a solution of 10 mg (0.030 mmol) 

9-(tert-butyl)-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole 32.2a in 22 mL 

CH2Cl2/MeOH (10:1). To the stirred solution was added one crystal of TsOH (cat.) and kept 

stirring for another 3 hours. Then to the mixture was added 20 mL NaOH solution (0.5 N) 

and stirred for 10 min, followed by extraction with Et2O. The organic phases were separated 

and washed with brine and dried over anhydrous magnesium sulfate, filtered and 

concentrated under reduced pressure. The crude material was purified by silica gel column, 

eluting with toluene to give 7.9 mg (97%) of the title compound as a yellow oil.  

1
H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 9.0 Hz, 1H), 7.91 (d, 

J = 9.0 Hz, 1H), 7.70-7.62 (m, 2H), 7.50-7.42 (m, 2H), 7.37 (dd, J = 8.5, 7.6 Hz, 1H), 7.32- 

7.26 (m, 1H), 7.20 (s, 1H), 6.84 (dd, J = 7.6, 0.8 Hz, 1H), 5.42 (s, 1H), 4.31 (s, 3H). 
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6,7-dibromo-4,5-dimethyl-1H-indole (43.4): See 6,7-dibromo-4-ethyl-1H-indole 

(35.1). 

1
H NMR (400 MHz, CDCl3) δ 8.22 (s, 1H), 7.19 (dd, J = 2.4, 3.2 Hz, 1H), 6.57 (dd, J = 

2.0, 3.2 Hz, 1H), 2.53 (s, 3H), 2.49 (s, 3H).  

13
C NMR (100 MHz, CDCl3) δ 133.5, 128.1, 128.0, 127.9, 124.4, 121.0, 104.8, 102.4, 

20.8, 17.0.  

HRMS (EI) m/e calcd for C10H9Br2N 300.9102, found 300.9100. 

Mp = 125-127 °C. 
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6,7-dibromo-4-ethyl-5-methyl-1H-indole (43.7): See 6,7-dibromo-4-ethyl-1H-indole 

(35.1). 

1
H NMR (400 MHz, CDCl3) δ 8.24 (s, 1H), 7.19 (dd, J = 3.2, 2.4 Hz, 1H), 6.58 (dd, J = 

3.2, 2.2 Hz, 1H), 2.94 (q, J = 7.6 Hz, 2H), 2.54 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ 134.73, 134.09, 127.52, 127.43, 124.73, 121.72, 105.36, 

102.49, 24.75, 20.51, 14.56. 
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 4-ethyl-2-nitroaniline (44.1): In a 250 mL round-bottom flask was added 11.73 g (115 

mmol) acetic anhydride and 105 mL 1,2-dichloroethane. To this was added 12.1 g (100 

mmol) 4-ethylaniline (43.2) and the solution was heated to 80 °C for 1 h. The solution was 

then cooled to 50 °C and 10.1 mL (240 mmol) of fuming nitric acid was added dropwise over 

45 min. The solution was then stirred at 45-50 °C for 1 h. To the solution was then added 13 

g (325 mmol) of sodium hydroxide dissolved in a minimum volume of water over a 10 min 

period. The temperature was raised to above 80 °C and the 1,2-dichloroethanewas distilled 

out of the reaction mixture, after which point the temperature was raised to between 95 and 

97 °C and the reaction was monitored by TLC. After 5 h, TLC analysis showed complete 

hydrolysis of the intermediate amide and the mixture was cooled to room temperature. The 

crude reaction mixture was extracted with ethyl acetate (3 x 100 mL), the organic layer was 

then washed with brine (1 x 50 mL), dried over anhydrous sodium sulfate, filtered and 

concentrated under reduced pressure to give 15.85 g (96%) of the title compound as an 

orange crystalline solid.  

1
H NMR (400 MHz, CDCl3) δ 7.88 (s, H), 7.18 (dd, J = 6.4, 2.1 Hz, 1H), 6.72 (d, J = 8.4 

Hz, 1H), 5.96 (bs, 2H, NH2), 2.52 (q, J = 7.6 Hz, 2H), 1.17 (t, J = 7.6 Hz, 3H).  

13
C NMR (100 MHz, CDCl3) δ 142.9, 136.1, 133.0, 131.9, 124.0, 118.8, 27.4, 15.2.  
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HRMS (EI) m/e calcd for C8H10N2O2 166.0742, found 166.0744. 

Mp = 34-36 °C. 
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 1,2-dibromo-5-ethyl-3-nitrobenzene (44.2): In a 500 mL three-necked round-bottom 

flask was added 1.881 g (8.42 mmol) CuBr2. This was dissolved in 170 mL acetonitrile and 

the solution was heated to 50 °C. After 5 min, 18.17 g (113.7 mmol) of bromine dissolved in 

42 mL acetonitrile was added to the warm solution, followed by a solution of 7.0 g (42.12 

mmol) 4-ethyl-2-nitroaniline (44.1) in a minimum volume of acetonitrile. The mixture was 

stirred at 50 °C for 40 min, and then a solution of 5.21 g (50.5mmol) tert-butyl nitrite in 85 

mL acetonitrile was added to the reaction mixture dropwise over a period of 1 h. The mixture 

was then stirred at 50 °C for 30 min, and then cooled to room temperature. The reaction 

mixture was then quenched with 150 mL saturated sodium sulfite and subsequently poured 

into 800 mL 3 N HCl. The aqueous mixture was extracted with 800 mL diethyl ether once 

and 400 mL diethyl ether once. The combined organic layer was washed with 400 mL 3 N 

HCl, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced 

pressure. The crude product was then passed through a plug of silica gel, eluting with 1:1 

hexane:ether to give 10.7 g (82%) of the title compound as a yellow oil which solidifies 

under 0 °C.  

1
H NMR (400 MHz, CDCl3) δ 7.67 (m, 1H), 7.45 (m, 1H), 2.66 (q, J = 7.6 Hz, 2H), 1.26 

(t, J = 7.6 Hz, 3H).  



119 

13
C NMR (100 MHz, CDCl3) δ 146.1, 136.0, 127.5, 123.0, 113.8, 27.9, 14.7.  

HRMS (EI) m/e calcd for C8H7Br2NO2 306.8844, found 306.8844. 
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 6,7-dibromo-1-(tert-butyldimethylsilyl)-4-ethyl-1H-indole (44.3): In a 500 mL 

three-necked round-bottom flask was dissolved 1.10 g (3.64 mmol) 

6,7-dibromo-4-ethyl-1H-indole (35.1) in 100 mL dry THF under nitrogen. The solution was 

cooled to -78 °C and to the flask was added 1.45 g (7.28 mmol) KHMDS. The resulting dark 

brown solution was stirred for 5 min, then 3.2 mL (14.56 mmol) of tert-butyldimethylsilyl- 

trifluoromethanesulfonate was added dropwise over 5 min via syringe. The resulting yellow 

solution was stirred at -78 °C for 30 min, after which time TLC analysis showed the reaction 

to be complete. A solution of 10 mL triethylamine in 200 mL ether was then added and the 

reaction mixture was allowed to warm to room temperature. The mixture was then poured 

into 200 mL ether and washed with 150 mL 0.5 N HCl, 150 mL water and 100 mL brine. The 

ether layer was then dried over anhydrous magnesium sulfate, filtered and concentrated 

under reduced pressure. The crude material was then purified via column chromatography on 

silica gel using hexanes as eluent to give 1.1 g (73%) of the title compound as a colorless oil. 

 
1
H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 3.5 Hz, 1H), 7.27 (s, 1H), 6.66 (d, J =3.4 Hz, 

1H), 2.84 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H), 1.00 (s, 9H), 0.72 (s, 6H).  

13
C NMR (100 MHz, CDCl3) δ 140.7, 136.3, 134.2, 132.1, 124.1, 119.8, 105.7, 103.6, 

27.5, 25.8, 19.9, 14.4, 2.2.  

HRMS (EI) m/e calcd for C16H23Br2NSi 414.9967, found 414.9966. 
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(±)-1-(tert-butyldimethylsilyl)-4-ethyl-6,9-dihydro-1H-6,9-methanobenzo[g]indole 

(45.1): In a flame-dried 500 mL three-necked round-bottom flask was added a solution of 

1.84 g (4.41 mmol) 6,7-dibromo-1-(tert-butyldimethylsilyl)-4-ethyl-1H-indole 44.3 in 180 

mL dry toluene. To this was added 5.83 g (88.2 mmol) of freshly cracked cyclopentadiene. 

The resulting solution was cooled to -78 °C, then 3.53 mL (8.82 mmol) of a 2.5 M solution of 

n-butyllithium in hexanes was added dropwise via syringe over 15 min. The solution was 

stirred at -78 °C for 30 min then was allowed to slowly warm to room temperature. The 

reaction was then quenched by addition of 100 mL saturated ammonium chloride. After 

stirring for 5 min, the mixture was diluted with 200 mL water and extracted with 3 x 150 mL 

dichloromethane. The combined organic phase was dried over anhydrous magnesium sulfate, 

filtered and concentrated under reduced pressure. The crude material was then purified via 

column chromatography on silica gel using 5% dichloromethane in hexanes as eluent to give 

1.1 g (77%) of the title compound as a white solid. 

 
1
H NMR (400 MHz, CDCl3) δ 7.19 (d, J = 3.4 Hz, 1H), 7.06 (s, 1H), 6.95 (dd, J = 5.2, 

3.1 Hz, 1H), 6.86 (dd, J = 5.3, 2.7 Hz, 1H), 6.63 (d, J = 3.4 Hz, 1H), 4.51 (bs, 1H), 4.01 (bs, 

1H), 2.90 (q, J = 7.6 Hz, 2H), 2.35 (m, 2H), 1.36 (t, J = 7.6 Hz, 3H), 1.08 (s, 9H), 0.70 (s, 

3H), 0.61 (s, 3H).  
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13
C NMR (100 MHz, CDCl3) δ 147.3, 145.1, 142.3, 136.6, 131.9, 131.7, 131.2, 129.4, 

114.3, 103.2, 70.4, 51.2, 50.7, 26.7, 26.2, 19.4, 14.7, -1.5, -1.9.  

HRMS (EI) m/e calcd for C21H29NSi 323.2071, found 323.2069. 

Mp= 71-73 °C.  
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 (±)-1-(tert-butyldimethylsilyl)-4-ethyl-6,7,8,9-tetrahydro-1H-6,9-methanobenzo[g]in

dole-7,8-diol (45.2): In a 20 mL vial was added 10 mg (0.031 mmol) 

(±)-1-(tert-butyldimethylsilyl)-6,9-dihydro-5-ethyl-6,9-methano-1H-benz[g]indole 45.1 and 

this was dissolved in 2.5 mL THF/water (1.5:1). To the solution was added 21 mg (0.155 

mmol) NMO hydrate. The mixture was stirred at room temperature, and 1 drop osmium 

tetroxide solution (4% in water) was added and the reaction was followed by TLC. After 

intervals of 1 h, another 2 drops osmium tetroxide solution was added and stirring continued 

until 6 h, at which time TLC showed complete reaction. The reaction mixture was quenched 

by addition of 2 mL saturated sodium bisulfite, and the subsequent mixture was stirred 

rapidly for 30 min. The mixture was then extracted with ethyl acetate (3 x 15 mL), and the 

combined organic phase was dried over anhydrous magnesium sulfate, filtered and 

concentrated under reduced pressure. The crude material was purified via column 

chromatography on silica gel using 30% ethyl acetate in hexanes as eluent to give 10 mg 

(88%) of the title compound as a white solid.  

1
H NMR (400 MHz, CDCl3) δ 7.22 (d, J = 3.5 Hz, 1H), 6.92 (s, 1H), 6.65 (d, J = 3.5 Hz, 

1H), 3.82 (m, 2H), 3.72 (bs, 1H), 3.27 (bs, 1H), 3.07 (bs, 1H, OH), 2.90 (q, J = 7.6 Hz, 2H), 

2.81 (bs, 1H, OH), 2.23 (m, 1H), 1.93 (m, 1H), 1.33 (t, J = 7.6 Hz, 3H), 1.02 (s, 9H), 0.71 (s, 

3H), 0.60 (s, 3H).  
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13
C NMR (100 MHz, CDCl3) δ 140.0, 135.8, 134.6, 131.4, 130.7, 125.5, 113.8, 103.3, 

71.7, 71.6, 50.8, 50.4, 42.4, 26.7, 26.3, 19.5, 14.6, -1.5, -1.9.  

HRMS (EI) m/e calcd for C21H31NO2Si 357.2125, found 357.2124. 

Mp = 165-166 °C. 
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 (±)-1-(tert-butyldimethylsilyl)-4-ethyl-1,6,7,8-tetrahydrocyclopenta[g]indole-6,8-dic

arbaldehyde (45.3): In a 250 mL round-bottom flask was added a solution of 120 mg (0.336 

mmol) (±)-1-(tertbutyldimethylsilyl)-6,7,8,9-tetrahydro-5-ethyl-7,8-dihydroxy-6,9-methano- 

1H-benz[g]indole 45.2 in 24 mL THF. To the stirred solution was added 7 mL water 

followed by 1.078 g (5.04 mmol) sodium periodate. The mixture was stirred at room 

temperature until TLC analysis indicated complete reaction, about 1 h. The mixture was 

diluted with 150 mL ethyl acetate and 150 mL water. The phases were separated and the 

organic layer was washed with brine (25 mL) and dried over anhydrous magnesium sulfate, 

filtered and concentrated under reduced pressure. The crude material was passed through a 

plug of silica gel, eluting with 40% ethyl acetate in hexanes to give 119 mg (100%) of the 

title compound as a brown solid.  

1
H NMR (400 MHz, CDCl3) δ 9.64 (s, 1H), 9.63 (s, 1H), 7.30 (d, J = 3.4 Hz, 1H), 7.04 

(s, 1H), 6.73 (d, J = 3.5 Hz, 1H), 4.52 (d, J = 9.3 Hz, 1H), 3.97 (d, J = 8.9 Hz, 1H), 3.00 (m, 

1H), 2.94 (q, J =7.6 Hz, 2H), 2.58 (dt, J = 9.3, 13.6 Hz, 1H), 1.35 (t, J = 7.6 Hz, 3H), 0.77 (s, 

9H), 0.63 (s, 3H), 0.62 (s, 3H).  
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13
C NMR (100 MHz, CDCl3) δ 201.1, 200.2, 138.8, 137.5, 134.0, 133.0, 132.9, 121.0, 

116.5, 104.2, 56.9, 56.8, 29.7, 27.6, 26.3, 20.2, 14.4, -1.3, -1.4.  

HRMS (EI) m/e calcd for C21H29NO2Si 355.1968, found 355.1966. 

Mp = 136-138 °C. 
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(±)-6,8-bis(bis(ethylthio)methyl)-4-ethyl-1,6,7,8-tetrahydrocyclopenta[g]indole (45.4):  

In a 50 mL flame-dried round-bottom flask under nitrogen was added a solution of 108 mg 

(0.304 mmol) (±)-1-(tert-butyldimethylsilyl)-4-ethyl-1,6,7,8-tetrahydrocyclopenta[g]indole- 

6,8-dicarbaldehyde 45.3 in 10 mL ethanethiol. This solution was cooled to -78 °C, then 4 

drops of BF3⋅OEt2 was added and the mixture was stirred at -78 °C for 15 min. The solution 

was then warmed to room temperature and followed by TLC. After a further 45 min, 

saturated sodium bicarbonate (20 mL) was added, and the mixture was extracted with 

dichloromethane (3 x 50 mL). The combined organic layer was dried over anhydrous sodium 

sulfate, filtered and concentrated under reduced pressure. The crude material was purified via 

column chromatography on silica gel using 5% ethyl acetate in hexanes as eluent to give 98 

mg (71%) of the title compound as a pale purple oil.  

1
H NMR (400 MHz, CDCl3) δ 10.14 (bs, 1H, NH), 7.22 (dd, J = 3.0, 2.6 Hz, 1H), 7.03 (s, 

1H), 6.57 (dd, J = 3.2, 2.1 Hz, 1H), 4.53 (d, J = 4.7 Hz, 1H), 4.25 (d, J = 3.8 Hz, 1H), 3.88 

(m, 1H), 3.75 (m, 1H), 2.99-2.47 (m, 12H), 1.41-1.32 (m, 9H), 1.27-1.21 (m, 6H).  

13
C NMR (100 MHz, CDCl3) δ 139.0 135.6, 132.5, 126.8, 123.0, 122.8, 114.6, 100.7, 

55.1, 54.8, 49.2, 48.3, 35.7, 27.0, 26.4, 26.3, 26.12, 26.09, 14.8, 14.6, 14.52, 14.50, 14.4.  

HRMS (EI) m/e calcd for C23H35NS4 453.1656, found 453.1655. 
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4,5-dimethyl-2-nitroaniline (46.1): See 4-ethyl-2-nitroaniline (44.1). The crude 

material was purified via column chromatography on silica gel using 10% EA in hexanes as 

eluent to remove the minor isomer 3,4-dimethyl-2-nitroaniline. 

1
H NMR (400 MHz, CDCl3) δ 7.84 (s, 1H), 6.57 (s, 1H), 5.89 (s, 2H), 2.20 (s, 3H), 2.15 

(s, 3H).  

13
C NMR (100 MHz, CDCl3) δ 146.6, 143.1, 130.1, 126.0, 125.5, 119.0, 20.0, 18.5. 

HRMS (EI) m/e calcd for C8H10N2O2 166.0742, found 166.0743. 

Mp = 135-137 °C.  
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 2,3-dibromo-4,5-dimethyl-1-nitrobenzene (46.2):  

See 1,2-dibromo-5-ethyl-3-nitrobenzene (44.2). 

1
H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 2.51 (s, 3H), 2.36 (s, 3H).  

13
C NMR (100 MHz, CDCl3) δ 149.3, 143.3, 138.0, 130.2, 124.4, 114.7, 22.1, 21.2. 

HRMS (EI) m/e calcd for C8H7Br2NO2 306.8844, found 306.8847. 

Mp = 82-84 °C. 
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 6,7-dibromo-1-(tert-butyldimethylsilyl)-4,5-dimethyl-1H-indole (46.3):  

See 6,7-dibromo-1-(tert-butyldimethylsilyl)-4-ethyl-1H-indole (44.3). 

1
H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 3.6 Hz, 1H), 6.61 (d, J = 3.6 Hz, 1H), 2.53 (s, 

3H), 2.47 (s, 3H), 0.96 (s, 9H), 0.69 (s, 6H).  

13
C NMR (100 MHz, CDCl3) δ 139.0, 134.1, 133.1, 129.1, 127.5, 123.5, 106.5, 104.0, 

27.5, 21.5, 19.9, 17.1, 2.1.  

HRMS (EI) m/e calcd for C16H23Br2NSi 414.9967, found 414.9965. 

Mp = 112-114 °C. 
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(±)-1-(tert-butyldimethylsilyl)-4,5-dimethyl-6,9-dihydro-1H-6,9-methanobenzo[g]in

dole (47.1):  

See (±)-1-(tert-butyldimethylsilyl)-4-ethyl-6,9-dihydro-1H-6,9-methanobenzo[g]indole 

(45.1). 

1
H NMR (400 MHz, CDCl3) δ 7.13 (d, J = 4.8 Hz, 1H), 6.92-6.91 (m, 1H), 6.85-6.84 (m, 

1H), 6.55 (d, J = 4.4 Hz, 1H), 4.49 (s, 1H), 4.17 (s, 1H), 2.42 (s, 3H), 2.38 (s, 3H), 2.31 (d, J 

= 8 Hz, 1H), 2.22 (d, J = 8 Hz, 1H), 1.03 (s, 9H), 0.66 (s, 3H), 0.58 (s, 3H).  

13
C NMR (100 MHz, CDCl3) δ 146.2, 144.7, 142.7, 134.9, 131.5, 131.3, 130.5, 123.3, 

122.4, 103.6, 69.6, 51.0, 49.2, 26.7, 19.5, 15.6, 15.3, -1.5, -1.8.  

HRMS (EI) m/e calcd for C21H29NSi 323.2071, found 323.2070. 



132 

 

(±)-1-(tert-butyldimethylsilyl)-4,5-dimethyl-6,7,8,9-tetrahydro-1H-6,9-methanobenz

o[g]indole-7,8-diol (47.2): See (±)-1-(tert-butyldimethylsilyl)-4-ethyl-6,7,8,9-tetrahydro-1H- 

6,9-methanobenzo[g]indole-7,8-diol (45.2). 

1
H NMR (400 MHz, CDCl3) δ 7.17 (d, J = 3.6 Hz, 1H), 6.58 (d, J = 3.6 Hz, 1H), 3.77 (s, 

2H), 3.72 (d, J = 1.6 Hz, 1H), 3.43 (d, J = 1.6 Hz, 1H), 3.20 (bs, 1H), 3.09 (bs, 1H), 2.42 (s, 

3H), 2.33 (s, 3H), 2.21 (dt, J = 9.6, 1.2 Hz, 1H), 1.88 (dt, J = 9.2, 1.6 Hz, 1H), 0.99 (s, 9H), 

0.69 (s, 3H), 0.58 (s, 3H).  

13
C NMR (100 MHz, CDCl3) δ 139.0, 133.9, 131.8, 131.4, 125.8, 125.1, 122.1, 103.6, 

71.6, 70.9, 50.7, 48.9, 41.9, 26.7, 19.5, 15.7, 15.2, -1.5, -1.9.   

HRMS (EI) m/e calcd for C21H31NO2Si 357.2125, found 357.2128. 

 

 



133 

 

(±)-1-(tert-butyldimethylsilyl)-4,5-dimethyl-1,6,7,8-tetrahydrocyclopenta[g]indole-6,

8-dicarbaldehyde (47.3): 

See (±)-1-(tert-butyldimethylsilyl)-4-ethyl-1,6,7,8-tetrahydrocyclopenta[g]indole-6,8- 

dicarbaldehyde (45.3). 

1
H NMR (400 MHz, CDCl3) δ 9.65 (s, 1H), 9.53 (d, J = 2.4 Hz, 1H), 7.26 (d, J = 3.6 Hz, 

1H), 6.67 (d, J = 3.6 Hz, 1H), 4.51 (d, J = 8.8 Hz, 1H), 4.04 (dd, J = 2.4, 8.8 Hz, 1H), 2.90 (d, 

J = 13.6 Hz, 1H), 2.60-2.53 (m, 1H), 2.47 (s, 3H), 2.29 (s, 3H), 0.75 (s, 9H), 0.61 (s, 3H), 

0.60 (s, 3H).  

13
C NMR (100 MHz, CDCl3) δ 201.1, 200.2, 137.0, 134.4, 133.7, 133.1, 128.9, 125.3, 

121.0, 104.5, 57.0, 56.3, 29.7, 28.5, 26.3, 20.3, 16.0, 15.9, 1.0, -1.2, -1.5. 

HRMS (EI) m/e calcd for C21H29NO2Si 355.1968, found 355.1968.    
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 6,8-bis(bis(ethylthio)methyl)-4,5-dimethyl-1,6,7,8-tetrahydrocyclopenta[g]indole 

(47.4): See (±)-6,8-bis(bis(ethylthio)methyl)-4-ethyl-1,6,7,8-tetrahydrocyclopenta[g]indole 

(45.4). 

1
H NMR (400 MHz, CDCl3) δ 10.02 (s, 1H), 7.16 (dd, J = 2.4, 3.2 Hz, 1H), 6.49 (dd, J = 

2.0, 2.8 Hz, 1H), 4.63-4.60 (m, 2H), 3.96-3.92 (m, 1H), 3.68-3.65 (m, 1H), 2.93-2.84 (m, 

1H), 2.80-2.70 (m, 3H), 2.67-2.57 (m, 2H), 2.45 (s, 3H), 2.40-2.36 (m, 1H), 2.34 (s, 3H), 

2.30-2.20 (m, 3H), 1.38-1.31 (m, 6H), 1.07 (t, J = 7.6 Hz, 6H).  

13
C NMR (100 MHz, CDCl3) δ 138.3, 131.7, 128.6, 127.6, 124.2, 123.2, 123.0, 100.9, 

56.3, 54.7, 50.3, 35.1, 31.6, 27.3, 26.6, 26.2, 25.5, 22.6, 16.2, 15.8, 14.8, 14.7, 14.5.  

HRMS (EI) m/e calcd for C23H35NS4 453.1656, found 453.1654.  
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N-(4-ethyl-3-methylphenyl)acetamide (48.2):
141

 4.50 g 48.1 was dissolved in 18.8 mL 

trifluoroacetic acid and then triethylsilane was added into the solution. The mixture was 

refluxed for 5 hours. Then the solution was cooled down to room temperature, followed by 

very slow addition of NaHCO3 saturation until evolution of gas had ceased and the solution 

remained alkaline. The mixture was then extracted with Et2O and the combined organic 

phase was dried over anhydrous magnesium sulfate, filtered and concentrated under reduced 

pressure, which gave the crude product containing lots of triethylsilane. The crude material 

was then washed and filtered with hexane several times to give 4.04 g (90%) of the title 

compound as a white solid. 

 
1
H NMR (400 MHz, CDCl3) δ 7.99 (s, 1H), 7.29-7.20 (m, 2H), 7.02 (d, J = 8.0 Hz, 1H), 

2.53 (q, J = 7.5 Hz, 2H), 2.20 (s, 3H), 2.10 (s, 3H), 1.13 (t, J = 7.5 Hz, 3H). 

 
13

C NMR (100 MHz, CDCl3) δ 169.59, 138.12, 135.87, 135.70, 127.86, 122.11, 118.24, 

25.45, 23.74, 18.91, 14.23. 

 



136 

  

4-ethyl-5-methyl-2-nitroaniline (48.3): In a 100 mL round-bottom flask was added 

23.4 mL 1,2-dichloroethane. To this was added 3.94 g (22.3 mmol) 

N-(4-ethyl-3-methylphenyl)acetamide (48.2)  and the solution was heated to 50 °C and 2.2 

mL (53.5 mmol) of fuming nitric acid was added dropwise over 1 hour. The solution was 

then stirred at 45-50 °C for 1 h. To the solution was then added 3.2 g (80 mmol) of sodium 

hydroxide dissolved in a minimum volume of water over a 10 min period. The temperature 

was raised to above 80 °C and the 1,2-dichloroethane was distilled out of the reaction 

mixture, after which point the temperature was raised to between 95 and 97 °C and the 

reaction was monitored by TLC. After TLC analysis showed complete hydrolysis of the 

intermediate amide, the mixture was cooled to room temperature. The crude reaction mixture 

was extracted with ethyl acetate (3 x 100 mL), the organic layer was then washed with brine 

(1 x 50 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced 

pressure. The crude material was purified via column chromatography on silica gel using 

10% EA in hexanes as eluent to give 2.8 g (71%) of the title compound.  

1
H NMR (400 MHz, CDCl3) δ 7.85 (s, 1H), 6.57 (s, 1H), 5.90 (s, 2H), 2.50 (q, J = 7.5 

Hz, 2H), 2.23 (s, 3H), 1.18 (t, J = 7.5 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ 146.28, 143.09, 132.24, 130.71, 124.25, 119.54, 25.13, 

19.74, 14.27. 
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2,3-dibromo-5-ethyl-4-methyl-1-nitrobenzene (48.4):   

See 1,2-dibromo-5-ethyl-3-nitrobenzene (44.2).  

1
H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 2.71 (q, J = 7.5 Hz, 2H), 2.53 (s, 3H), 1.22 

(t, J = 7.5 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ 144.00, 142.89, 130.91, 123.18, 114.99, 110.00, 27.82, 

21.77, 14.18. 
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 1,2,5-tribromo-3-nitrobenzene (50.2): In a 500 mL three-necked round-bottom flask 

was added 446 mg (2 mmol) CuBr2. This was dissolved in 40 mL acetonitrile and the 

solution was heated to 50 °C. After 5 min, 2.11 mL (41 mmol) of bromine dissolved in 10 

mL acetonitrile was added to the warm solution, followed by a solution of 1.38 g (10 mmol) 

2-nitroaniline (50.1) in a minimum volume of acetonitrile. The mixture was stirred at 50 °C 

for 2 hours; then a solution of 1.44 mL (12 mmol) t-butyl nitrite in 60 mL acetonitrile was 

added to the reaction mixture dropwise over a period of 1 h. The mixture was then stirred at 

50 °C for 1 hour; then cooled to room temperature. The reaction mixture was then quenched 

with 50 mL saturated sodium sulfite and subsequently poured into 300 mL 3 N HCl. The 

aqueous mixture was extracted with 300 mL diethyl ether once and 100 mL diethyl ether 

once. The combined organic layer was washed with 100 mL 3 N HCl, dried over anhydrous 

magnesium sulfate, filtered and concentrated under reduced pressure. The crude product was 

then passed through a plug of silica gel, eluting with 1:1 hexane/ether to give 2.08 g (58%) of 

the title compound as a brown solid.  

 
1
H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 2.2 Hz, 1H), 7.75 (d, J = 2.2 Hz, 1H). 
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2,3,5-tribromoaniline (51.1): In a 50 mL round-bottom flask was added 

1,2,5-tribromo-3-nitrobenzene (1 g, 2.78 mmol) in 17 mL absolute ethanol. To this solution 

3.14 g SnCl2·2H2O (13.9 mmol, 5 eq) was added; then, the mixture was heated to 70 ºC and 

stirred for 1 hour at this temperature. After that, the solution was poured directly onto 111 g 

of ice. The aqueous phase was adjusted to pH 9 with 2 N NaOH and extracted with ether. 

The organic phase was dried over anhydrous magnesium sulfate, filtered and concentrated 

under reduced pressure to give 753 mg (82%) of the title compound as a yellow solid. 

1
H NMR (400 MHz, CDCl3) δ 7.13 (d, J = 2.1 Hz, 1H), 6.81 (d, J = 2.1 Hz, 1H). 
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 (2,3,5-tribromophenyl)hydrazine (51.2): In a 50 mL round-bottom flask was added 

2,3,5-tribromoaniline (1 g, 3.03 mmol) in small amount ether. To this solution 15 mL 

HCl/Et2O (2 M, 30 mmol, 10 eq) was added and the mixture was stirred for 1 hour. Then the 

white salts were filtered and washed with Et2O and dried by vacuum. Dissolved the dried 

white salts in 50 mL HCl (6 N) and kept it at 0
 
ºC. To this solution added 230 mg NaNO2 

(3.33 mmol, 1.1 eq) in minimum water dropwise. Kept stirring at 0
 
ºC for 30 min, then added 

2.05 g SnCl2·2H2O (9.09 mmol, 3 eq) (dissolved in 12 N HCl) dropwise into the solution and 

kept stirring at 0
 
ºC for 1 hour. After that, filtered the solution and got white solid. Kept 

stirring the white solid with a mix solvent of 2 N NaOH solution and TBME for 30 min; then 

separated the organic phase and dried over anhydrous magnesium sulfate, filtered and 

concentrated under reduced pressure to give 762 mg (73%) of the title compound as a yellow 

solid. 

1
H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 2.2 Hz, 1H), 7.17 (d, J = 2.2 Hz, 1H), 5.93 (s, 

1H), 3.85 (s, 2H). 
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 4,6,7-tribromo-3-phenyl-1H-indole (51.3): See 6,7-dibromo-3-phenyl-1H-indole 

(20.7a). 

 
1
H NMR (400 MHz, CDCl3) δ 8.49 (s, 1H), 7.56 (s, 1H), 7.48-7.43 (m, 2H), 7.42-7.37 

(m, 3H), 7.20 (d, J = 2.5 Hz, 1H). 
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4,6,7-tribromo-1-methyl-3-phenyl-1H-indole (51.4):  

See 5,6-Dichloro-1-methyl-3-phenyl-1H-indole (18.6) 

1
H NMR (400 MHz, CDCl3) δ 7.55 (s, 1H), 7.43-7.34 (m, 5H), 6.99 (s, 1H), 4.19 (s, 

3H). 

13
C NMR (100 MHz, CDCl3) δ 134.99, 133.92, 133.27, 131.67, 128.64, 127.43, 127.18, 

126.60, 119.69, 118.37, 114.24, 106.47, 38.41. 
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 4-bromo-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (51.5): In a 

flame-dried 25 mL round-bottom flask was added a solution of 44 mg (0.099 mmol) 

4,6,7-tribromo-1-methyl-3-phenyl-1H-indole (51.4) in 2 mL dry toluene. To this was added 

144 µL (1.98 mmol, 20 eq) of furan. The resulting solution was cooled to -78 °C, then 40 µL 

(0.099 mmol 1 eq) of a 2.5 M solution of n-butyllithium in hexanes was added dropwise via 

syringe over 15 min. The solution was stirred at -78 °C for 30 min then was allowed to 

slowly warm to room temperature. The reaction was then quenched by addition of 10 mL 

saturated ammonium chloride. After stirring for 5 min, the mixture was diluted with 10 mL 

water and extracted with 3 x 10 mL dichloromethane. The combined organic phase was dried 

over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The 

crude material was then purified via column chromatography on silica gel using 15% EA in 

hexanes as eluent to give 31 mg (90%) of the title compound. 

 
1
H NMR (400 MHz, CDCl3) δ 7.43-7.39 (m, 2H), 7.36-7.31 (m, 4H), 7.12 (ddd, J = 

11.9, 5.5, 1.7 Hz, 2H), 6.93 (s, 1H), 6.28 (s, 1H), 5.82 (s, 1H), 3.91 (s, 3H). 
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4-bromo-8-butyl-1-methyl-3-phenyl-1H-benzo[g]indole (51.6a):  

See 4-bromo-1-methyl-3-phenyl-6,9-dihydro-1H-6,9-epoxybenzo[g]indole (51.5), except 

for using 2 eq n-BuLi instead of 1 eq n-BuLi. 

1
H NMR (400 MHz, CDCl3) δ 8.38 (d, J = 8.7 Hz, 1H), 7.66 (s, 1H), 7.60 (s, 1H), 7.51- 

7.45 (m, 2H), 7.40-7.32 (m, 4H), 7.00 (s, 1H), 4.30 (s, 3H), 2.81-2.74 (m, 2H), 1.73-1.62 (m, 

2H), 1.44-1.30 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). 

4-bromo-7-butyl-1-methyl-3-phenyl-1H-benzo[g]indole (51.6b):  

1
H NMR (400 MHz, CDCl3) δ 8.23 (s, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.67 (s, 1H), 7.48 

(dd, J = 7.8, 1.7 Hz, 2H), 7.40-7.32 (m, 3H), 7.29 (d, J = 8.3 Hz, 1H), 7.01 (s, 1H), 4.32 (s, 

3H), 2.86-2.77 (m, 2H), 1.76-1.65 (m, 2H), 1.40 (dd, J = 14.9, 7.4 Hz, 2H), 0.95 (t, J = 7.4 

Hz, 3H). 
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2,4-dibromo-6-nitroaniline (52.1) 

In a 1.0 L round-bottom flask 50.1 (13.8 g, 100 mmol) was dissolved in 200 mL 

CH2Cl2/MeOH (2:1). To this mixture was added a solution of Br2 (63.9 g, 4 eq) in 100 mL 

CH2Cl2 dropwise and stirred at rt for 1h. The reaction mixture was then quenched with 

saturated NaHCO3 and Na2S2O3. The aqueous mixture was extracted with ethyl acetate, dried 

over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure to give 

29.59 g of the title compound 4,6-dibromo-2-nitroaniline 52.1. 

1
H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 6.2 Hz, 1H), 7.80 (d, J = 6.4 Hz, 1H), 6.60 

(bs s, 2H, NH2).  

13
C NMR (100 MHz, CDCl3) δ 141.2, 140.8, 128.2 (2C), 112.7, 106.8.  

Mp = 127.8-129.3 ºC. 
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4,6,7-tribromo-1H-indole (52.2): See 6,7-dibromo-4-ethyl-1H-indole (35.1). 

1
H NMR (400 MHz, CDCl3) δ 8.46 (bs s, 1H, NH), 7.53 (s, 1H), 7.28 (m, 1H), 6.65 (m, 

1H).  

13
C NMR (100 MHz, CDCl3) δ 153.3, 128.2, 126.7, 125.7, 117.2, 114.1, 106.5, 104.7.  

Mp = 97.0-99.0 ºC.  
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4,6,7-tribromo-1-(tert-butyldimethylsilyl)-1H-indole (52.3): 

In a 100 mL three-necked round-bottom flask was added 10 mL DMF. To this was 

added 57.3 mg Et3N (0.57 mmol, 2 eq) and the mixture was cooled to 0 ºC. Then 27.2 mg 

sodium hydride (1.13 mmol, 4 eq) was added, followed by 100 mg 52.2 (0.28 mmol). The 

mixture was stirred at 0 ºC for 30 min, after that, a solution of 139.4 mg TBSOTf (0.57 

mmol, 2 eq) was added dropwise. The solution was strirred at 0 ºC for another 30 min. After 

quenched with water, the aqueous mixture was extracted with ethyl acetate, dried over 

anhydrous magnesium sulfate, filtered and concentrated under reduced pressure. The crude 

products were purified via column chromatography on silica gel to give 103.7 mg title 

compound. 

1
H NMR (400 MHz, CDCl3) δ 7.62 (s, 1H), 7.43 (d, J = 3.6 Hz, 1H), 6.71 (d, J = 3.3 Hz, 

1H), 0.99 (s, 9H), 0.73 (s, 6H).  

13
C NMR (100 MHz, CDCl3) δ 140.7, 135.4, 133.4, 127.6, 119.4, 113.7, 108.0, 106.2, 

27.4, 19.9, 2.2.  

Mp = 90.5-91.6 ºC. 
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 4-bromo-1-(tert-butyldimethylsilyl)-6,9-dihydro-1H-6,9-methanobenzo[g]indole 

(53.2): See 

(±)-1-(tert-butyldimethylsilyl)-4-ethyl-6,9-dihydro-1H-6,9-methanobenzo[g]indole (45.1) 

1
H NMR (400 MHz, CDCl3) δ 7.34 (s, 1H), 7.22 (d, J = 3.3 Hz, 1H), 6.92 (m, 1H), 6.84 

(m, 1H), 6.64 (d, J = 3.5 Hz, 1H), 4.48 (s, 1H), 3.98 (s, 1H), 2.36-2.26 (m, 2H), 1.04 (s, 9H), 

0.69 (s, 3H), 0.61 (s, 3H).  

13
C NMR (100 MHz, CDCl3) δ 148.6, 145.0, 142.0, 136.9, 134.2, 132.4, 130.8, 118.6, 

109.2, 105.4, 70.4, 51.0, 50.6, 26.6, 19.4, -1.5, -1.8.  

Mp = 114.1-115.2 ºC.  
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4-(4-methoxyphenyl)-6,9-dihydro-1H-6,9-methanobenzo[g]indole (55.1): A 5 mL 

vial was flame-dried, flowed with argon. To the vial was added Pd2(dba)3 (4.6 mg, 0.0044 

mmol, 4 mol%), t-Bu3P•HBF4 (5.1 mg, 0.018 mmol, 16 mol%) and p-MeOPhB(OH)2 (33.7 

mg, 0.22 mmol, 2.2 eq). Placed the vial under vacuum and flowed with argon. To the vial 

was added a solution of 41.6 mg 53.2 (0.11 mmol) and DIEA (0.24 mmol, 2.2 eq) in THF. 

Heated the solution to 60-70 ºC and stirred for 3 h. Then cooled it to room temperature and 

worked up as usual. A flash column chromatography purification gave 18.2 mg (57%) title 

compound. 

1
H NMR (400 MHz, CDCl3) δ 8.03 (bs, 1H), 7.30 (s, 1H), 7.20-7.14 (m, 1H), 6.91-6.72 

(m, 4H), 6.56-6.50 (m, 1H), 4.13 (s, 1H), 4.00 (s, 1H), 3.75 (s, 3H), 2.42-2.36 (m, 2H), 

2.35-2.30 (m, 2H). 
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N-(3,4-dimethylphenyl)-6,9-dihydro-1H-6,9-methanobenzo[g]indol-4-amine (56.1): 

In a 5 mL vial was added Pd2(dba)3 (4.3 mg, 0.0042 mmol, 4 mol%), t-Bu3P•HBF4 (4.9 

mg, 0.017 mmol, 16 mol%), Cs2CO3 (51.3 mg, 0.16 mmol, 1.5 eq) and 3,4-dimethylaniline 

(16 mg, 0.13 mmol, 1.2 eq). This vial was sealed and placed under vacuum, then flowed with 

argon. To the vial was added a solution of 39.4 mg 53.2 (0.11 mmol) in glyme, and then it 

was heated to 80-85 ºC for 24 h. The reaction was quenched with water and extracted with 

t-BuOMe. Organic layer was separated and dried over MgSO4, filtered, concentrated under 

vacuum. The crude material was then purified via column chromatography on silica gel using 

15% EA in hexanes as eluent to give 8.5 mg (27%) of the title compound. 

1
H NMR (400 MHz, CDCl3) δ 8.03 (bs, 1H), 7.30 (s, 1H), 7.19-7.14 (m, 1H), 7.08-6.79 

(m, 6H), 6.57-6.50 (m, 1H), 4.13 (s, 1H), 3.99 (s, 1H), 2.42-2.29 (m, 2H), 2.20 (s, 6H). 



151 

REFERENCES 

(1)  Wittig, G. Naturwissenschaften 1942, 30, 696. 

(2)  Roberts, J. D.; Simmons, H. E., Jr.; Carlsmith, L. A.; Vaughan Wheaton, C. J. Am. 

Chem. Soc. 1953, 75, 3290. 

(3)  Wittig, D. G.; Pohmer, D.-C. L. Angew. Chem. 1955, 67, 348. 

(4)  Chapman, L.; Mattes, K.; McIntosh, C. L.; Pacansky, J. J. Am. Chem. Soc. 1973, 95, 

6134. 

(5)  Chapman, L.; Chang, C.-C.; Kolc, J.; Rosenquist, N. R.; Tomioka, H. J. Am. Chem. 

Soc. 1975, 97, 6586. 

(6)  Warmuth, R. Angew. Chem. Int. Ed. EngI. 1997, 36, 1347. 

(7)  Laing, J. W.; Berry, R. S. J. Am. Chem. Soc. 1976, 98, 660. 

(8)  Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem. Int. Ed. EngI. 2003, 42, 502. 

(9)  Bucher, G.; Sander, W.; Kraka, E.; Cremer, D. Angew. Chem. Int. Ed. EngI. 1992, 

31, 1230. 

(10)  Simic-Milosevic, V.; Bocquet, M.-L.; Morgenstern, K. Surf. Sci. 2009, 603, 2479. 

(11)  Wei, H.; Hrovat, D. A.; Mo, Y.; Hoffmann, R.; Borden, W. T. J. Phys. Chem. A 

2009, 113, 10351. 

(12)  Al-Saidia, W. A.; Umrigar, C. J. The Journal of Chemical Physics 2008, 128, 

154324. 

(13)  Price, J. M.; Kentta1maa, H. I. J. Phys. Chem. 2003, 107, 8985. 

(14)  Sander, W.; Exner, M. J. Chem. Soc., Perkin Trans. 2 1999, 2285. 

(15)  Wenk, H. H.; Sander, W. Chem. Eur. J. 2001, 7, 1837. 

(16)  Kraka, E.; Cremer, D. Chem. Phys. Lett. 1993, 216, 333. 

(17)  Wenthold, P. G.; Squires, R. R. J. Am. Chem. Soc. 1994, 116, 6401. 

(18)  Marquardt, R.; Sander, W.; Kraka, E. Angew. Chem. Int. Ed. EngI. 1996, 35, 746. 

(19)  Thoen, K. K.; Kenttamaa, H. I. J. Am. Chem. Soc. 1997, 119, 3832. 

(20)  Visser, S. P. d.; Filatov, M.; Shaik, S. Phys. Chem. Chem. Phys. 2000, 2, 5046. 

(21)  Clark, A. E.; Davidson, E. R. J. Am. Chem. Soc. 2001, 123, 10691. 

(22)  Vanovschi, V.; Krylov, A. I.; Wenthold, P. G. Theor Chem Account 2008, 120, 45. 

(23)  Wang, E. B.; Parish, C. A.; Lischka, H. The Journal of Chemical Physics 2008, 129, 

044306. 

(24)  Blake, M. E.; Bartlett, K. L.; Maitland Jones, J. J. Am. Chem. Soc. 2003, 125, 6485. 

(25)  Polishchuk, A. L.; Bartlett, K. L.; Friedman, L. A.; Maitland Jones, J. J. Phys. Org. 

Chem. 2004, 17, 798. 

(26)  Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660. 

(27)  Basak, A.; Mandal, S.; Bag, S. S. Chem. Rev. 2003, 103, 4077. 

(28)  Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701. 

(29)  Hamura, T.; Arisawa, T.; Matsumoto, T.; Suzuki, K. Angew. Chem. Int. Ed. 2006, 

45, 6842. 



152 

(30)  Jose Barluenga; Jonas Calleja; Marıa J. Anton; Lucıa A lvarez-Rodrigo; Felix 

Rodrıguez; Fannas, F. J. Org. Lett. 2008, 10, 4469. 

(31)  Khanapure, S. P.; Reddy, R. T.; Biehl, E. R. J. Org. Chem. 1987, 52, 5685. 

(32)  Igeta, H.; Arai, H.; Hasegawa, H.; Tsuchiya, T. Chemical & Pharmaceutical 

Bulletin 1975, 23, 2791. 

(33)  Crews, P.; Beard, J. J. Org. Chem. 1973, 38, 522. 

(34)  Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340. 

(35)  Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. Tetrahedron Lett. 2000, 41, 

729. 

(36)  Pena, D.; Perez, D.; Guitian, E.; Castedo, L. J. Org. Chem. 2000, 65, 6944. 

(37)  Okano, K.; Fujiwara, H.; Noji, T.; Fukuyama, T.; Tokuyama, H. Angew. Chem. Int. 

Ed. EngI. 2010, 49, 5925. 

(38)  Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc. 1956, 78, 2217. 

(39)  Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc. 1957, 79, 2625. 

(40)  Garr, A. N.; Luo, D.; Brown, N.; Cramer, C.; Buszek, K. R.; velde, D. V. Org. Lett. 

2010, 12, 96. 

(41)  Shou, W.-G.; Yang, Y.-Y.; Wang, Y.-G. J. Org. Chem. 2006, 71, 9241. 

(42)  Birkett, M. A.; Knight, D. W.; Little, P. B.; Mitchell, M. B. Tetrahedron 2000, 56, 

1013. 

(43)  Furukawa, N.; Shibutani, T.; Fujihara, H. Tetrahedron Lett. 1987, 28, 2727. 

(44)  Ganta, A.; Snowden, T. S. Org. Lett. 2008, 10, 5103. 

(45)  Mazza, D. D.; Reinecke, M. G. J. Org. Chem. 1988, 53, 5799. 

(46)  Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211. 

(47)  Hong, D.; Chen, Z.; Lin, X.; Wang, Y. Org. Lett. 2010, 12, 4608. 

(48)  Bunnett, J. F.; Brotherton, T. K. J. Org. Chem. 1958, 23, 904. 

(49)  Huisgen, R.; Zirngibl, L. Chem. Ber. 1958, 91, 1438. 

(50)  Nakazawa, T.; Abe, N.; Kubo, K.; Murata, I. Tetrahedron Lett. 1979, 52, 4995. 

(51)  Kauffmann, T.; Fischer, H.; Nuernberg, R.; Vestweber, M.; Wirthwein, R. 

Tetrahedron Lett. 1967, 30, 2911. 

(52)  Camenzind, R.; Rickborn, B. J. Org. Chem. 1986, 51, 1914. 

(53)  Davico, G. E.; Schwartz, R. L.; Ramond, T. M.; Lineberger, W. C. J. Am. Chem. 

Soc. 1999, 121, 6047. 

(54)  Sygula, A.; Sygula, R.; Rabideau, P. W. Org. Lett. 2005, 7, 4999. 

(55)  Kauffmann, T.; Boettcher, F. P. Angew. Chem. 1961, 73. 

(56)  Martens, R. J.; den Hertog, H. J. Tetrahedron Lett. 1962, 643. 

(57)  Kurita, J.; Aruga, T.; Tsuchiya, T. Heterocycles 1990, 31, 1769. 

(58)  Reinecke, M. G.; Newsom, J. G.; Chen, L.-J. J. Am. Chem. Soc. 1981, 103, 2760. 

(59)  Ye, X.-S.; Li, W.-K.; Wong, H. N. C. J. Am. Chem. Soc. 1996, 118, 2511. 

(60)  Liu, J.-H.; Chan, H.-W.; Xue, F.; Wang, Q.-G.; Mak, T. C. W.; Wong, H. N. C. J. 

Org. Chem. 1999, 64, 1630. 



153 

(61)  Mariet, N.; Ibrahim-Ouali, M.; Parrain, J.-L.; Santelli, M. J. Mol. Struct. 2004, 679, 

53. 

(62)  Tsukazaki, M.; Snieckus, V. Heterocycles 1992, 33, 533. 

(63)  Sha, C.-K.; Yang, J.-F. Tetrahedron 1992, 48, 10645. 

(64)  Díaz, M.; Cobas, A.; Guitián, E.; Castedo, L. Eur. J. Org. Chem. 2001, 4543. 

(65)  Enamorado, M. F.; Ondachi, P. W.; Comins, D. L. Org. Lett. 2010, 12, 4513. 

(66)  Igolen, J.; Kolb, A. C. R. Acad. Sci., Ser. C 1969, 269, 54. 

(67)  Buszek, K. R.; Luo, D.; Kondrashov, M.; Brown, N.; Velde, D. V. Org. Lett. 2007, 

9, 4135. 

(68)  Buszek, K. R.; Brown, N.; Luo, D. Org. Lett. 2009, 11, 201. 

(69)  Brown, N.; Luo, D.; Decapo, J. A.; Buszek, K. R. Tetrahedron Lett. 2009, 50, 7113. 

(70)  Brown, N.; Luo, D.; Velde, D. V.; Yang, S.; Brassfield, A.; Buszek, K. R. 

Tetrahedron Lett. 2009, 50, 63. 

(71)  Conway, S. C.; Gribble, G. W. Heterocycles 1992, 34, 2095. 

(72)  Gribble, G. W.; Conway, S. C. Synth. Commun. 1992, 22, 2129. 

(73)  Liu, Y.; Gribble, G. W. Tetrahedron Lett. 2000, 41, 8717. 

(74)  Liu, Y.; Gribble, G. W. Tetrahedron Lett. 2002, 43, 7135. 

(75)  Gribble, G. W.; Saulnier, M. G.; Pelkey, E. T.; Kishbaugh, T. L. S.; Liu, Y.; Jiang, 

J.; Trujillo, H. A.; Keavy, D. J.; Davis, D. A.; Conway, S. C.; Switzer, F. L.; Roy, S.; Silva, 

R. A.; Obaza-Nutaitis, J. A.; Sibi, M. P.; Moskalev, N. V.; Barden, T. C.; Chang, L.; 

Habeski, W. M.; Pelcman, B.; Sponholtz, W. R.; Chau, R. W.; Allison, B. D.; Garaas, S. D.; 

Sinha, M. S.; McGowan, M. A.; Reese, M. R.; Harpp, K. S. Curr. Org. Chem. 2005, 9, 1493. 

(76)  Capon, R. J.; Macleod, J. K.; Scammells, P. J. Tetrahedron 1986, 42, 6545. 

(77)  Herb, R.; Carroll, A. R.; Yoshida, W. Y.; Scheuer, P. J.; Paul, V. J. Tetrahedron 

1990, 46, 3089. 

(78)  Takashima, M.; Sakai, H.; Arima, K. Agric. Biol. Chem. 1962, 26, 669. 

(79)  Takashima, M.; Sakai, H.; Arima, K. Agric. Biol. Chem. 1962, 26, 660. 

(80)  Fujiki, H. M., M.; Nakayaeu, M.; Terada, M.; Sugimure, T. Biochem. Biophys. Res. 

Commun. 1979, 90, 976. 

(81)  Fujiki, H.; Sugimura, T. Adv. Cancer Res. 1987, 49, 223. 

(82)  MacLeod, J. K.; Monahan, L. C. Tetrahedron Lett. 1988, 29, 391. 

(83)  MacLeod, J. K.; Monahan, L. C. Aust. J. Chem. 1990, 43, 329. 

(84)  MacLeod, J. K.; Ward, A.; Willis, A. C. Aust. J. Chem. 1998, 51, 177. 

(85)  Yasukouchi, T.; Kanematsu, K. Tetrahedron Lett. 1989, 30, 6559. 

(86)  Boger, D. L.; Zhang, M. J. Am. Chem. Soc. 1991, 113, 4230. 

(87)  Widenau, P.; Monse, B.; Blechert, S. Tetrahedron 1995, 51, 1167. 

(88)  Jackson, S. K.; Banfield, S. C.; Kerr, M. A. Org. Lett. 2005, 7, 1215. 

(89)  Jackson, S. K.; Kerr, M. A. J. Org. Chem. 2007, 72, 1405. 

(90)  Huntley, R. J.; Funk, R. L. Org. Lett. 2006, 8, 3403. 

(91)  Silva, L. F.; Jr.; Craveiro, M. V. Org. Lett. 2008, 10, 5417. 

(92)  Muratake, H.; Natsume, M. Tetrahedron Lett. 1989, 30, 5771. 



154 

(93)  Muratake, H.; Watanabe, M.; Goto, K.; Natsume, M. Tetrahedron 1990, 46, 4179. 

(94)  Muratake, H.; Seino, T.; Natsume, M. Tetrahedron Lett. 1993, 34, 4815. 

(95)  Muratake, H.; Mikawa, A.; Seino, T.; Natsume, M. Chem. Pharm. Bull. 1994, 42, 

854. 

(96)  Lee, M.; Ikeda, I.; Kawabe, T.; Mori, S.; Kanematsu, K. J. Org. Chem. 1996, 61, 

3406. 

(97)  Nakatsuka, S.; Masuda, T.; Goto, T. Tetrahedron Lett. 1987, 28, 3671. 

(98)  Okabe, K.; Muratake, H.; Natsume, M. Tetrahedron 1991, 47, 8559. 

(99)  Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 

2002, 124, 11856. 

(100) Pu, J.; Deng, K.; Butera, J.; Chlenov, M.; Gilbert, A.; Kagan, M.; Mattes, J.; 

Resnick, L. Tetrahedron 2010, 66, 1963. 

(101) Blair, J. B.; Kurrasch-Orbaugh, D.; Marona-Lewicka, D.; Cumbay, M. G.; Watts, V. 

J.; Barker, E. L.; Nichols, D. E. J. Med. Chem. 2000, 43, 4701. 

(102) Bridges, A. J.; Patt, W. C.; Stickney, T. M. J. Org. Chem. 1990, 55, 773. 

(103) Coe, P.; Waring, A. J.; Yarwood, T. D. J. Chem. Soc. Perkin Trans. 1 1995, 2729  

(104) Hales, N. J.; Heaney, H.; Hollinshead, J. H.; Singh, P. Organic Syntheses 1979, 59, 

71. 

(105) Raymo, F.; Kohnke, F. H.; Cardullo, F.; Girreser, U.; Stoddart, J. F. Tetrahedron 

1992, 48, 6827. 

(106) Harrison, R.; Heaney, H.; Lees, P. Tetrahedron 1968, 24, 4589. 

(107) Gilman, H.; Gorsich, R. D. J. Am. Chem. Soc. 1955, 78, 2217. 

(108) Caster, K. C.; Keck, C. G.; Walls, R. D. J. Org. Chem. 2001, 66, 2932. 

(109) Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48. 

(110) Chen, C.; Martin, S. F. J. Org. Chem. 2006, 71, 4810. 

(111) Li, L.; Martins, A. Tetrahedron Lett. 2003, 44, 5987. 

(112) Li, L.; Martins, A. Tetrahedron Lett. 2003, 44, 689. 

(113) Coe, J. W.; Wirtz, M. C.; Bashore, C. G.; Candler, J. Org. Lett. 2004, 6, 1589. 

(114) Bridges, A. J.; Lee, A.; Maduakor, E. C.; Schwartz, C. E. Tetrahedron 1992, 33, 

7495. 

(115) Masson, E.; Schlosser, M. Eur. J. Org. Chem. 2005, 4401. 

(116) Rao, U. N.; Maguire, J.; Biehl, E. Arkivoc 2004, 88. 

(117) Gribble, G. W.; Keavvy, D. J.; Branz, S. E.; Kelly, W. J.; Pals, M. A. Tetrahedron 

Lett. 1988, 29, 6227. 

(118) Giles, R. G. F.; Sargent, M. V.; Sianipar, H. J. Chem. Soc. Perkin Trans. 1 1991, 

1571. 

(119) Newman, M. S.; Kannan, R. J. Org. Chem. 1976, 41, 3356. 

(120) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. 

(121) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital 

Theory; Wiley: New York, 1986. 



155 

(122) Zhao, Y.; Truhlar, D. G. MN-GFM Version 4.1; University of Minnesota: 

Minneapolis, 2008. 

(123) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; 

Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. 

M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; 

Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; 

Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; 

Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; 

Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, 

P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; 

Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; 

Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; 

Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. 

L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; 

Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 

03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004. 

(124) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. 

(125) Marenich, A. V.; Hawkins, G. D.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. 

GESOL-version 2008; University of Minnesota: Minneapolis, 2008. 

(126) Crews, P.; Beard, J. J. Org. Chem. 1973, 38, 529. 

(127) Kato, M.; Okamoto, Y.; Chikamoto, T.; Miwa, T. Bull. Chem. Soc. Jpn. 1978, 51, 

1163. 

(128) Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron Lett. 1989, 30, 2129. 

(129) Bartoli, G.; Bosco, M.; Dalpozzo, R.; Palmieri, G.; Marcantoni, E. J. Chem. Soc. 

Perkin Trans. 1 1991, 2757. 

(130) Bosco, M.; Dalpozzo, R.; Bartoli, G.; Palmieri, G.; Petrini, M. J. Chme. Soc. Perkin 

Trans. 2 1991, 657. 

(131) Dalpozzo, R.; Bartoli, G. Curr. Org. Chem. 2005, 9, 163. 

(132) O'Neill, B. M.; Ratto, J. E.; Good, K. L.; Tahmassebi, D. C.; Helquist, S. A.; 

Morales, J. C.; Kool, E. T. J. Org. Chem. 2002, 67, 5869. 

(133) Doyle, M. P.; Lente, M. A. V.; Mowat, R.; Fobare, W. F. J. Org. Chem. 1980, 45, 

2570. 

(134) González-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360. 

(135) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340. 

(136) Netherton, M. R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 3910. 

(137) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358. 

(138) Tyrell, E.; Brookes, P. Synthesis 2004, 4, 469. 

(139) Thornton, P. D.; Brown, N. H., D.; Neuenswander, B.; Lushington, G. H.; Santini, 

C.; Buszek, K. R. manuscript submitted. 

(140) Hanzlik, R. P.; Weller, P. E.; Desai, J.; Zheng, J.; Hall, L. R.; Slaughter, D. E. J. 

Org. Chem. 1990, 55, 2736. 



156 

(141) Chambers, J. J.; Kurrasch-Orbaugh, D. M.; Parker, M. A.; Nichols, D. E. J. Med. 

Chem. 2001, 44, 1003. 

 

 



157 

VITA 

Diheng Luo was born on June 27, 1976 in Hengshan, Hunan, China. He obtained his 

bachelor’s and master’s degree in Bio-pharmaceutics and Biotechnology from South China 

University of Technology, in 1999 and 2003, respectively. After two years serving at Guang 

Dong Institute of Education as a lecturer, he began to pursue his Ph.D degree in Organic 

Chemsitry at the University of Missouri-Kansas City (UMKC) in 2005, with a co-discipline 

of Pharmaceutical Sciences. Ever since he arrived at UMKC, he was supported as a graduate 

research assistant in Dr. Buszek’s group, and worked under his direction for five years. 

During his work at UMKC, Diheng Luo completed a discovery of new arynes and a total 

synthesis of three natural products, and more than five papers have been published. Diheng 

also served as a president of the UMKC Chinese Student and Scholar Association from 2007 

to 2008. 

 

Selected Peer-reviewed Publications: 

1. Lou, W.; Zong, M.; Li, N.; Luo, D.; Liu, S. “The development of the study of NHase”, J. 

Mol. Catal. (China) 2001, 15, 394 

2. Luo, D.; Zong, M.; Xu, J. “Biocatalytic synthesis of (-)-1-trimethylsilylethanol by 

asymmetric reduction of acetyltrimethylsilane with a new isolate Rhodotorula sp. 

AS2.2241”, J. Mol. Catal. B Enzym. 2003, 24-25, 83-88. 

3. Wu, H.; Zong, M.; Wang, J.; Luo, D.; Lou, W. “Lipase-catalyzed kinetic resolution of 

racemic 1-trimethylsilylethanol in organic solvent”, Chin. J. Chem. Eng. 2004, 12, 421-424. 

4. Luo, D.; Zong, M.; Chen, X.; Yuan, Y.; Xu, J. “Effect of carbon source on asymmetric 

reduction of acetyltrimethylsilane catalyzed by immobilized cells”, Cuihua Xuebao 2004, 25, 

219-222. 



158 

5. Buszek, K. R.; Luo, D.; Kondrashov, M.; Brown, N.; VanderVelde, D. “Indole-Derived 

Arynes and Their Diels-Alder Reactivity with Furans”, Org. Lett. 2007, 9, 4135-4137. 

PMID: 17880092 

6. Perchellet Jean-Pierre, H.; Perchellet Elisabeth, M.; Crow Kyle, R.; Buszek Keith, R.; 

Brown, N.; Ellappan, S.; Gao, G.; Luo, D.; Minatoya, M.; Lushington Gerald, H. “Novel 

synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase 

activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins.”, 

Int. J. Mol. Med 2009, 24, 633-43. PMID: 19787197 (Cover Article) 

7. Brown, N.; Luo, D.; Vander Velde, D.; Yang, S.; Brassfield, A.; Buszek, K. R. 

“Regioselective Diels-Alder cycloadditions and other reactions of 4,5-, 5,6-, and 6,7-indole 

arynes”, Tetrahedron Lett. 2009, 50, 63-65. (Cover Article – 50
th

 Anniversary Issue of 

Tetrahedron Letters) 

8. Buszek, K. R.; Brown, N.; Luo, D. “Concise Total Synthesis of (±)-Cis-Trikentrin A and 

(±)-Herbindole A via Intermolecular Indole Aryne Cycloaddition”, Org. Lett. 2009, 11, 

201-204. PMID: 19055375 

9. Brown, N.; Luo, D.; Decapo, J.; Buszek, K. R. “New synthesis of (±)-Cis-Trikentrin A vi 

tandem indole aryne cycloaddition/Negishi reaction. Applications to library development”, 

Tetrahedron Lett. 2009, 50, 7113-7115.  

10. Garr Ashley, N.; Luo, D.; Brown, N.; Cramer Christopher, J.; Buszek Keith, R.; 

VanderVelde, D. “Experimental and theoretical investigations into the unusual 

regioselectivity of 4,5-, 5,6-, and 6,7-indole aryne cycloadditions”, Org. Lett. 2010, 12, 96-9. 

PMID: 19961152 (Featured in an article by P. Broadwith of the Royal Society of Chemistry 

in Chemistry World, 2010, 7 (January 18, 2010).  

Link: http://www. rsc.org/chemistryworld/News/2010/January/18011001.asp) 

 


