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The occurrence of quadratic L-functions in the Fourier coefficients of Eisen-

stein series of half-integral weight was first discovered in 1937 by Maass [M]. His

result is an analog for Eisenstein series of a phenomenon later discovered by Wald-

spurger [Wa], who showed that the Fourier coefficients of holomorphic cusp forms of

half-integral weight are (essentially) square roots of quadratic twists of L-functions

attached to cusp forms on GL(2). The Maass phenomenon was further investi-

gated by Siegel [S], by Goldfeld and Hoffstein [GH], and by Goldfeld, Hoffstein,

and Patterson [GHP].

In particular, the paper of Siegel foreshadowed more recent work that studies

(double) Dirichlet series formed with the quadratic twists of certain L-functions

(cf. the survey article of Bump, Friedberg and Hoffstein [BFH]). From this point of

view, the paper of Goldfeld and Hoffstein gave applications of the Maass phenom-

enon to analytic number theory by providing new estimates for the mean values of
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Dirichlet L-functions summed over quadratic twists. Specifically, they estimated

∑

|n|<x
n squarefree

L(s, χn), Re(s) ≥ 1/2,

and obtained results including:

∑

|n|<x
n squarefree

L(1, χn) = c1x+O(x
1
2+ε),

∑

|n|<x
n squarefree

L(1/2, χn) = c2x log x+ c3x+O(x
19
32+ε),

where c1, c2 and c3 are certain (computable) constants.

The possibility of a generalization to higher order twists was demonstrated by

Bump and Hoffstein [BH1], who (following the related work of Proskurin [P]) es-

tablished that on the 3-fold metaplectic cover of GL(3), the Whittaker-Fourier

coefficients of a certain Eisenstein series contain cubic L-functions. The Eisenstein

series they considered are those induced from the generalized theta series on the

3-fold cover of GL(2). Lieman [L], and also Farmer, Hoffstein, and Lieman [FHL],

have given applications of this phenomenon to analytic number theory similar to

those obtained in the quadratic setting.

Once this result for the cubic case is known, it becomes natural to conjecture

that a similar phenomenon occurs for every n ≥ 2. That is, one expects that n-th

order Hecke L-functions will be contained in the Whittaker-Fourier coefficients of

an Eisenstein series on the n-fold cover of GL(n) induced from the generalized

theta series on the n-fold cover of GL(n−1). We will refer to this as the L-function

conjecture. This conjecture will undoubtedly have many applications in analytic

number theory and is the subject of our paper.

Kazhdan and Patterson [KP] showed that the “exceptional” representations cor-

responding to the generalized theta series on the n-fold metaplectic covers of GL(n)
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and of GL(n− 1) (taking c = −1 in their notation in the latter case) are special in

that they have unique Whittaker models. This remarkable fact helps explain why

we consider Eisenstein series on the n-fold cover of GL(n) constructed with the

theta function on the n-fold cover of GL(n − 1). There seems to exist a peculiar

“resonance” between the rank of the group and the degree of its cover.

One aspect of this resonance is the uniqueness of Whittaker models for the

induced representations corresponding to these Eisenstein series. These are not

exactly Whittaker models in the usual sense but are models for the subgroup ob-

tained by extending the maximal unipotent in the n-fold cover of GL(n) by the

full preimage in the metaplectic group of the center of GL(n), which is abelian but

not central. The uniqueness of these models was proved by Gelbart, Howe and

Piatetski-Shapiro [GHP-S] when n = 2 and by Bump and Lieman [BL] in general.

See also Theorem 3.1 below.

This uniqueness, which is a purely local result, underlies the L-function conjec-

ture, for it implies that the Whittaker integrals of the Eisenstein series are Euler

products, just as the uniqueness of Whittaker models for (nonmetaplectic) GL(n)

implies that the global Whittaker model is Eulerian. See Proposition 9.2 of Jacquet

and Langlands [JL] or Theorem 3.5.4 of Bump [B] for this standard argument.

Evaluation of these Euler products is therefore an essentially local matter. Re-

sults of Kazhdan and Patterson reduce the proof of the L-function conjecture to a

combinatorial problem involving identities among n-th order Gauss sums. Never-

theless, the combinatorial difficulties involved are quite substantial.

In this paper, we prove local results leading to a proof of the L-function conjecture

over any global field that contains the n-th roots of unity. We also prove in this

paper a generalization of the L-function conjecture that includes twists of these

L-series by arbitrary Hecke characters.

Another proof of the L-function conjecture can also be found in the important
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and difficult paper of T. Suzuki [Su], whose work we now discuss.

Bump and Hoffstein [BH2] also made a more general conjecture concerning

Fourier coefficients of Eisenstein series on the metaplectic group. If f is an au-

tomorphic form on the n-fold cover of GL(r), and if k < n, then GL(n+ r− k) has

a parabolic subgroup whose Levi factor is GL(r) ×GL(n− k), and one may form

an Eisenstein series induced from f and the theta function on the n-fold cover of

GL(n−k). Bump and Hoffstein conjectured that a Whittaker-Fourier coefficient of

this Eisenstein series is equal to a Rankin-Selberg integral involving f and a theta

function on the n-fold cover of GL(k). In the special case where r = k = 1, the

corresponding L-function is simply an n-th order Hecke L-function; the L-function

conjecture described above is therefore a special case of the general conjectures of

Bump and Hoffstein.

The difficulty in establishing the Bump-Hoffstein conjectures in full generality is

more than combinatorial, since the methods of Kazhdan and Patterson [KP] yield

only partial information about the Whittaker-Fourier coefficients on the n-fold cover

of GL(k) if k 6= n, n− 1. The most that can be said is that the information one is

able to obtain is compatible with the conjectures.

Suzuki [Su] managed to overcome these obstacles and prove the general conjec-

tures of Bump and Hoffstein over a function field in which −1 is an n-th power.

To do this, he had the insight to use the Rankin-Selberg method in a novel way in

order to overcome the apparent incompleteness of the information available on the

Whittaker models. For technical reasons, most of his results are stated only in the

function field case. An exception, which he states in the case of an arbitrary global

field, is his result of Section 7.5 (not in Section 6.4 as stated in his introduction)

which is essentially the L-function conjecture.

Because Suzuki relies on the Kazhdan-Patterson cocycle, which is incorrect if −1

is not an n-th power (see [BLS]), the reader approaching his paper should assume
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that the ground field contains the 2n-th roots of unity.

In view of the importance of the conjecture, we feel that an independent treat-

ment of the theorem is not superfluous. Our proof relies on a correct cocycle and we

do not need to assume that −1 is an n-th power. Interestingly, in the case where −1

is not an n-th power in the underlying field, we observe a surprising dichotomy: the

L-functions that arise in the Whittaker-Fourier coefficients of the Eisenstein series

are either twisted by a certain quadratic Hecke character or they are untwisted,

depending only on the residue class of n mod 8. This result is new.

We now turn to a more precise description of our results. Fix once and for

all an integer n ≥ 2, and let k be a global field in which the group µn of n-th

roots of unity in k× has cardinality n. Let A be the ring of adeles of k. For

every r ≥ 1 and c ∈ Z/nZ, the n-fold c-twisted metaplectic group G̃L
(c)
r (A) is a

nontrivial central extension of GLr(A) by µn that is constructed by means of the

n-th order (global) Hilbert symbol (·, ·)A : A× × A× → µn (cf. [We2]). For any

Hecke character χ : A×/k× → C×, one constructs a theta representation θχ of the

group G̃′(A) := G̃L
(−1)
n−1 (A) as in [KP]. Let P be the standard (maximal) parabolic

subgroup in GLn of type (n − 1, 1), and let P̃ (A) be the preimage of P (A) in

G̃(A) := G̃L
(0)
n (A). By means of the embedding:

ι : G̃′(A) ↪→ G̃(A), (g, ξ) 7→
((

g
det g−1

)
, ξ

)
,

the representation θχ can be extended to a representation of P̃n(A), the metaplectic

preimage of the subgroup Pn(A) consisting of elements of P (A) whose determinants

are n-th powers in A×. Since θχ is automorphic, there exists a nonzero G(k)-

invariant linear functional Λ on the space of θχ. Taking fs to lie in the induced

series Ind
G̃(A)

P̃n(A)
(θχ⊗ δsP ), where δP : P̃ (A) → C× is the modular character of P (A),
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we form the metaplectic Eisenstein series:

E(g, fs) :=
∑

γ∈Pn(k)\G(k)

Λfs(γg), for all g ∈ G̃(A).

Here G(k) := GLn(k) is embedded in G̃(A) under the canonical splitting [KP]. Let

ψ : A/k → C× be a fixed nontrivial additive character. For any a ∈ k×, the “a-th

Whittaker-Fourier coefficient” Ws,a(g) of E(fs, g) is defined by:

Ws,a(g) :=

∫

N(k)\N(A)

E(fs, ng)ψa(n) dn

Here N is the standard unipotent subgroup of GLn, and ψa : N(A)/N(k) → C× is

the character given by:

ψa(n) = ψ(an1,2)ψ(n2,3) . . . ψ(nn−2,n−1), for all n ∈ N(A).

Theorem. If n is odd, or n ≡ 2 or 4 (mod 8), then the a-th Whittaker-Fourier

coefficient of the metaplectic Eisenstein series E(fs, g) can be expressed as an Euler

product:

Ws,a(g) =
∏

v∈S

W v
s,a(gv) ·

∏

v 6∈S

Lv
(
ns, χv ( · , a)v

)

Lv(n2s, χnv )
.

If n ≡ 0 or 6 (mod 8), then:

Ws,a(g) =
∏

v∈S

W v
s,a(gv) ·

∏

v 6∈S

Lv
(
ns, χv ( · ,−a)v

)

Lv(n2s, χnv )
.

The notation may be explained as follows. The set S is any finite collection of

places of the global field k that contains every archimedean place and all nonar-

chimedean places v for which v(2n) 6= 0. If v 6∈ S, the local n-th order Hilbert

symbol (·, ·)v : k×v × k×v → µn is unramified, as is the quadratic Hilbert symbol
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(·, ·)2,v : k×v × k×v → {±1}. If g = (gv), we also include in S those places such that

the local component gv does not lie in the canonical lift K∗
v of the standard maxi-

mal compact subgroup Kv of GLn(kv). We may assume that fs has the form of a

metaplectic tensor product ⊗̃fs,v, where each fs,v lies in a local induced represen-

tation Ind
G̃(kv)

P̃n(kv)
(θχ,v ⊗ δsP,v), and we include in S those places for which fs,v is not

the normalized K∗
v -fixed vector φs,v (cf. §3). For each place v ∈ S, W v

s,a is a Whit-

taker function for the local induced representation. Finally, the local L-functions

occurring in the product over v 6∈ S are defined in the usual way (cf. Theorem 3.2

for a precise definition).

To prove this theorem, one unfolds the integral to write Ws,a(g) as

∑

γ∈P (k)\G(k)/N(k)

∫

Nγ(k)\N(A)

Λfs(γng)ψa(n) dn,

where Nγ = N ∩γ−1Pγ. There are n double cosets in P\G/N with representatives

γ =

(
In−r

Ir

)
.

Only r = 1 contributes since otherwise γ conjugates a simple root into the unipotent

radical of P and the term vanishes. When r = 1 the resulting global integral

factorizes into local integrals (3.1) computed in Theorem 3.2. More precisely one

splits the integration into
∫
Nγ(k)\Nγ(A)

and
∫
Nγ(A)\N(A)

. The first integral produces

the Whittaker functional on the theta representation of G̃L(n− 1), and the second

gives the integral (3.1) at every place.

Our theorem asserts that the Whittaker-Fourier coefficients of metaplectic Eisen-

stein series are essentially quotients of standard (completed) Hecke L-functions:

L
(
ns, χ (·,±a)A

)

L(n2s, χn)
=

∏

v

Lv
(
ns, χv ( · ,±a)v

)

Lv(n2s, χnv )
.

Though we have not attempted to do so here, a more thorough analysis would

entail a proof of the nonvanishing of the local Whittaker functions W v
s,a for an
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appropriately chosen fs = ⊗̃fs,v. When n ≥ 3, this can certainly be accomplished

using standard techniques, since the n-fold metaplectic cover splits over GLn(C) in

this case. For nonarchimedean v, the nonvanishing of W v
s,a can certainly be shown

if fs,v has sufficiently small support.

As alluded to earlier, the proof of our theorem rests primarily on the calcula-

tion of local Euler factors for the metaplectic Eisenstein series at “good” places;

the bulk of our work is devoted to this calculation. The paper is organized as

follows. In §1, we recall the construction of local metaplectic groups and describe

the metaplectic cocycles from [BLS] in a form suitable for calculations. In §2, we

review the construction of the (local) exceptional representations on the n-fold −1-

twisted cover of GL(n− 1); these were first considered in [KP]. The main result in

this section (Theorem 2.1) gives an explicit evaluation of the normalized Whittaker

function Wθ on certain diagonal elements s($f(k)

) in the local metaplectic group.

We remark that these are essentially the only elements for which Wθ can be easily

evaluated, and it is a fortunate circumstance that we do not need to know the other

values of Wθ. In §3, we review the construction of the induced series corresponding

to θ, which live on the n-fold 0-twisted cover of GL(n); these are the local repre-

sentations corresponding to our metaplectic Eisenstein series. The main result in

this section (Theorem 3.2) gives an explicit evaluation of the normalized Whittaker

function Ws,a at the identity; the theorem stated above follows from this result in

the manner previously described.
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§1. Preliminary notation

Let n be a fixed positive integer, and let F be a nonarchimedean local field such

that the group µn of n-th roots of unity in F× has cardinality n. Once and for all,

we will fix an embedding µn ↪→ C
× and identify µn with the group of n-th roots of

unity in C×.

Let O denote the ring of integers in F, ℘ the unique maximal ideal in O, and q

the cardinality of the residue field O/℘. Let | · |F denote the absolute value symbol

on F, and let v : F → Z∪ {∞} be the corresponding normalized discrete valuation.

Then |x|F = q−v(x) for all x ∈ F. We fix a prime element $ ∈ F with v($) = 1.

Let (·, ·)F : F× × F× → µn be the n-th order Hilbert symbol on F (cf. [We2]

XIII-5); it is a map that satisfies:

(xx′, y)F = (x, y)F (x′, y)F,

(x, yy′)F = (x, y)F (x, y′)F,

(x, y)−1
F

= (y, x)F,

(x,−x)F = 1,

for all x, x′, y, y′ ∈ F×. Also:

{
x ∈ F

×
∣∣ (x, y)F = 1 for all y ∈ F

×
}

= F
×n,

where:

F
×n :=

{
x ∈ F

×
∣∣x = yn for some y ∈ F

×
}
.

In the sequel, we will often assume that the Hilbert symbol is unramified, i.e., that

(x, y)F = 1 for all x, y ∈ O×. This is equivalent to the condition that |n|F = 1.

For every positive integer r and every c ∈ Z/nZ, let G̃L
(c)
r (F) denote the n-fold

c-twisted metaplectic cover of GLr(F); it is a central extension of GLr(F) by µn:

1 → µn → G̃L(c)
r (F)

p−→GLr(F) → 1.
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With r and c fixed for the moment, put G := GLr(F), and G̃ := G̃L
(c)
r (F). Then

we may regard G̃ as the set G× µn equipped with a multiplication law given by:

(g, ξ)(g′, ξ′) =
(
gg′, ξξ′σ(g, g′)

)
, for all g, g′ ∈ G, ξ, ξ′ ∈ µn.

Here σ : G × G → µn is a certain 2-cocycle in Z2(G;µn) whose properties are

described below. The natural projection p : G̃ → G is defined by (g, ξ) 7→ g, and

we identify µn with the subgroup ker(p) of G̃ via the map ξ 7→ (I, ξ), where I

denotes the identity matrix in G. Since σ(g, I) = σ(I, g) = 1 for all g ∈ G (see

below), it follows that µn is contained in the center of G̃. Let s : G → G̃ be the

p-section given by g 7→ (g, 1). Then:

s(g)s(g′) = s(gg′)σ(g, g′),

s(g)ξ = ξs(g),

for all g, g′ ∈ G, ξ ∈ µn.

We will now summarize the properties of σ = σ
(c)
r that are needed for our

calculations. First of all, the c-twisted cocycle σ
(c)
r is obtained from the untwisted

(i.e., 0-twisted) cocycle σr := σ
(0)
r by the relation:

(1.1) σ(c)
r (g, g′) = σr(g, g

′)(det g, det g′)c
F
, for all g, g′ ∈ G.

The particular cocycle σr ∈ Z2(G;µn) that is used in this paper was constructed in

[BLS] from the (bilinear) Steinberg symbol (·, ·)−1
F

; for proofs of the basic properties

of σr, we refer the reader to [BLS].

If r = 1, then G = GL1(F) = F
×, and σ1 is trivial, i.e., σ1(g, g

′) = 1 for all

g, g′ ∈ G (cf. [BLS] §3 Corollary 8). Note that σ
(c)
1 = (·, ·)c

F
for all c ∈ Z/nZ.

If r = 2, then G = GL2(F), and σ2 is the Kubota cocycle in Z2(G;µn) that is

defined by:

σ2(g, g
′) :=

(
x(gg′)

x(g)
,

x(gg′)

x(g′) det g

)

F

, for all g, g′ ∈ G,
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where for every g =

(
a b
c d

)
∈ G:

x(g) :=

{
c if c 6= 0,

d if c = 0.

Almost all of the cocycle calculations of this paper can be performed using only

the properties of σ1 and σ2 stated above, together with the fact that the system of

cocycles
{
σr

∣∣ r ≥ 1
}

is block-compatible in the following sense.

Theorem 1.1 For every standard Levi subgroup of GLr(F), the following block

formula holds:

σr






g1

. . .

gk


 ,



g′1

. . .

g′k





 =

k∏
i=1

σri
(gi, g

′
i)

∏
1≤i<j≤k

(det gi, det g′j)F,

where r = r1 + . . .+ rk with every ri ≥ 1, and gi, g
′
i ∈ GLri

(F) for 1 ≤ i ≤ k. ut

This is [BLS] §3 Theorem 11. In particular, if T is the subgroup of diagonal

matrices in G := GLr(F), then the restriction of σr to T × T is given by:

(1.2) σr(t, t
′) =

∏
1≤i<j≤r

(ti, t
′
j)F, for all t = diag(ti), t

′ = diag(t′i) ∈ T.

For the remainder of this section, we will assume that r ≥ 2. We now introduce

some notation to be used throughout the sequel. Consider the (r − 1) embeddings
{
ιi

∣∣ 1 ≤ i ≤ r − 1
}

of GL2(F) along the diagonal in G:

ιi : GL2(F) ↪→ G, g 7→



Ii−1

g
Ir−1−i


 , for all g ∈ GL2(F),

where Ik denotes the (k×k) identity matrix. For each i, let Gi denote the image of

ιi, and observe that the subgroups
{
Gi

∣∣ 1 ≤ i ≤ r − 1
}

generate the group G. As
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generators for the subgroup ιi
(
SL2(F)

)
of Gi, we take:

hi(x) := ιi

(
x

x−1

)
, for all x ∈ F×,

ni(x) := ιi

(
1 x

1

)
, for all x ∈ F,

wi := ιi

(
−1

1

)
.

These elements, together with:

ti(x, y) := ιi

(
x

y

)
, for all x, y ∈ F×,

si := ιi

(
1

1

)
,

clearly generate the group Gi. By Theorem 1.1 above, it follows that there are

(r − 1) canonical embeddings
{
ι̃i

∣∣ 1 ≤ i ≤ r − 1
}

of G̃L
(0)
2 (F) into G̃ := G̃L

(0)
r (F)

given by:

ι̃i : G̃L
(0)
2 (F) ↪→ G̃, (g, ξ) 7→

(
ιi(g), ξ

)
, for all g ∈ GL2(F), ξ ∈ µn.

Let G̃i denote the image of ι̃i, and note that G̃i is generated by µn together with

the elements:
h̃i(x) := s

(
hi(x)

)
, for all x ∈ F×,

ñi(x) := s
(
ni(x)

)
, for all x ∈ F,

w̃i := s(wi),

t̃i(x, y) := s
(
ti(x, y)

)
, for all x, y ∈ F

×,

s̃i := s(si).

In order to describe the cocycle σr in a form suitable for calculations, we next

recall the characterization of σr given in [BLS].

Let N be the standard maximal unipotent subgroup of G, i.e., the set of all

upper triangular matrices with 1’s along the diagonal. The group N is generated
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by the collection
{
ni(x)

∣∣x ∈ F, 1 ≤ i ≤ r − 1
}
. The metaplectic group G̃ splits

canonically over N via the section s, hence N∗ := s(N) is isomorphic to N . This

follows immediately from the fact that σr is trivial on N ×N . Moreover:

(1.3)

σr(g, n) = σr(n, g) = 1,

σr(ng, g
′n′) = σr(g, g

′),

σr(gn, g
′) = σr(g, ng

′),

for all n, n′ ∈ N , g, g′ ∈ G.

Next, let W be the Weyl group of permutation matrices in G, i.e., the collection

of matrices with a single 1 in every row and column, and 0’s elsewhere. The group

W is generated by the simple reflections
{
si

∣∣ 1 ≤ i ≤ r − 1
}
. For any w ∈ W , the

length of w is the smallest integer ` = `(w) such that w can be expressed as a

product of ` simple reflections: w = si1 . . . si` . For any such reduced expression,

we form the element η(w) := wi1 . . . wi` (by [Ma] Lemme 6.2, the map w 7→ η(w)

is well-defined). Then our cocycle σr satisfies:

(1.4)
σr

(
t, η(w)

)
= 1, for all t ∈ T, w ∈W,

σr
(
η(w), η(w′)

)
= 1, for all w,w′ ∈W with `(ww′) = `(w) + `(w′).

Now let Φ be the set of roots of G relative to T , which can be identified with

the collection of ordered pairs
{
(i, j)

∣∣1 ≤ i, j ≤ r, i 6= j
}
:

tα := ti/tj , for all t = diag(ti) ∈ T, α = (i, j) ∈ Φ.

A root α = (i, j) is positive [resp. negative] if i < j [resp. i > j]. The group W acts

on T by conjugation:

tw := w−1tw, for all t ∈ T, w ∈W,

hence W also acts on Φ:

t(wα) := (tw)α, for all t ∈ T, w ∈W, α ∈ Φ.
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The cocycle σr satisfies:

(1.5) σr
(
η(w), t

)
=

∏
α=(i,j)>0
wα<0

(−tj , ti)F, for all w ∈W, t = diag(ti) ∈ T.

Finally, for all x ∈ F and 1 ≤ i ≤ r − 1, we have that:

(1.6) σr
(
wi, ni(x)wi

)
=

{
(x, x)F if x 6= 0,

(−1,−1)F if x = 0,

as is easily verified using Theorem 1.1 and the definition of the Kubota cocycle.

The following characterization of σr is proved in [BLS] §3 Theorem 7.

Theorem 1.2 The cocycle σr is the unique element of Z2(G;µn) that satisfies all

of the properties in (1.2) through (1.6) above. ut

For the remainder of this section, we assume that (·, ·)F is unramified. In this

situation, the metaplectic group G̃ splits canonically over the maximal compact

subgroup K := GLr(O) of G (cf. [KP] Proposition 0.1.2). Let k : K → G̃ denote

the splitting. By [KP] Proposition 0.1.3, the map k satisfies:

k
∣∣
T∩K

= s
∣∣
T∩K

,

k
∣∣
W

= s
∣∣
W
,

k
∣∣
N∩K

= s
∣∣
N∩K

,

and these relations determine k uniquely. Let K∗ := k(K), and for every m ≥ 0,

let K∗
m := k(Km), where Km :=

{
k ∈ K

∣∣ k ≡ I (mod ℘m)
}
. Then the collection

{
K∗
m

∣∣m ≥ 0
}

is a basis of open compact neighborhoods of the identity element

Ĩ := s(I) of G̃.

This completes our review of the metaplectic groups
{
G̃L

(c)
r (F)

}
and their asso-

ciated cocycles {σ(c)
r }.
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To conclude this section, we recall the definition and some elementary properties

of Gauss sums. Let (·, ·)2,F : F× × F× → {±1} be the quadratic Hilbert symbol

on F. We will assume that (·, ·)2,F is also unramified, i.e., that (x, y)2,F = 1 for all

x, y ∈ O×. This is equivalent to the assertion that q is odd. Let ψ : F → C× be

a nontrivial additive character whose conductor is O, and for every i ∈ Z/nZ, let

g
(i)
ψ denote the unnormalized n-th order Gauss sum:

(1.7) g
(i)
ψ := q

∫

x∈O×

($, x)i
F
ψ(x/$) dx.

Here dx is the unique additive Haar measure on F such that Vol(O; dx) = 1. It is

well-known that g
(i)
ψ g

(−i)
ψ = q ($,$)i

F
and

∣∣g(i)
ψ

∣∣ =
√
q if i 6≡ 0 (mod n). Now let ĝψ

denote the normalized quadratic Gauss sum:

(1.8) ĝψ :=
√
q

∫

x∈O×

($, x)2,Fψ(x/$) dx.

Then
∣∣ĝψ

∣∣ = 1. Since g
(n/2)
ψ = q1/2 ĝψ if n is even, and ($,$)F = 1 if n is odd, it

follows that:

(1.9)
n−1∏
i=1

g
(i)
ψ =

{
q(n−1)/2($,$)

n(n−2)/8
F

ĝψ if n is even,

q(n−1)/2 if n is odd.

This relation will be used in §2.
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§2. The Whittaker function for the theta representation

We continue to use the notation of §1. Throughout this section, we will assume

that n ≥ 2, |n|F = 1, and q is odd. Let:

F∗ :=
{
x ∈ F

×
∣∣ v(x) ≡ 0 (mod n)

}
= $nZO×.

Since |n|F = 1, (·, ·)F is unramified, and it follows that:

(2.1)
{
x ∈ F

×
∣∣ (x, y)F = 1 for all y ∈ F∗

}
= F∗.

In other words, F∗ is maximal isotropic with respect to pairing determined by the

Hilbert symbol.

Now let G := GLn−1(F), let G̃ := G̃L
(−1)
n−1 (F), and let σ := σ

(−1)
n−1 (cf. §1). Let T

be the subgroup of diagonal matrices in G. For any t ∈ T and 1 ≤ i ≤ n − 1, we

denote by ti the i-th entry of t along the diagonal. Then by (1.1) and (1.2):

(2.2) s(t) s(t′) = s(t t′) ·
∏
i<j

(ti, t
′
j)F · (det t, det t′)−1

F
, for all t, t′ ∈ T.

Consequently:

(2.3) s(t) s(t′) s(t)−1s(t′)−1 =
∏
i
(ti, t

′
i)

−1
F

· (det t, det t′)−1
F
.

We define:
Tn :=

{
t ∈ T

∣∣ ti/tj ∈ F
×n for all i, j

}
,

T∗ :=
{
t ∈ T

∣∣ ti/tj ∈ F∗ for all i, j
}
.

By (2.3), it follows that T̃n := p−1(Tn) is the center of T̃ , and T̃∗ := p−1(T∗) is a

maximal abelian subgroup of T̃ . Note that if Z is the center of G (i.e., the scalar

matrices), then Z̃ := p−1(Z) is the center of G̃.

Recall that if H ⊂ G, H̃ := p−1(H), and X is any set on which µn acts, then a

function f : H̃ → X is said to be genuine if f(ξh) = ξf(h) for all ξ ∈ µn, h ∈ H̃.
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For the remainder of this section, let ψ : F → C× be a fixed nontrivial additive

character whose conductor is O, and let χ : F× → C× be an unramified quasichar-

acter. Using ψ and χ, we will next construct a certain exceptional representation

of the metaplectic group G̃ (cf. [KP] §I.2). To do this, we first define a genuine

quasicharacter ωθ : T̃∗ → C× as follows. Let:

T ′
∗ :=

{
t ∈ T

∣∣ ti ∈ F∗ for all i, and tn−1 = 1
}
.

By (2.1) and (2.2), it follows that σ is trivial on T ′
∗ × T ′

∗, hence s(T ′
∗)

∼= T ′
∗. Since

T̃∗ = Z̃ · s(T ′
∗) with Z̃ ∩ s(T ′

∗) = {Ĩ }, the group T̃∗ is the direct product of Z̃ and

s(T ′
∗). On s(T ′

∗), we define ωθ by:

(2.4) ωθ
(
s(t)

)
:= χ(det t) δB(t)1/2n, for all t ∈ T ′

∗.

Here δB denotes the modular character of the Borel subgroup B := TN in G. To

define ωθ on Z̃, we first observe that by (2.2):

s(x·I) s(y·I) = s(x y·I)(x, y)n(n−3)/2
F

, for all x, y ∈ F
×.

As in §1, let (·, ·)2,F : F× × F× → {±1} denote the quadratic Hilbert symbol on F.

Note that (·, ·)2,F is unramified since q is odd. Let:

ε2 :=

{
1 if n is even,

0 if n is odd.

Then:

(2.5) s(x·I)s(y·I) = s(xy·I)(x, y)ε22,F, for all x, y ∈ F
×.

Following the ideas of Weil (cf. [We1]), we define γψ : F× → {±1,±i} to be the

map given by:

(2.6) γψ($kx) := ($, x)k2,F($,$)
k(k−1)/2
2,F ĝ kψ , for all k ∈ Z, x ∈ O×,
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Then it is easily verified that:

(2.7) γψ(x)γψ(y) = γψ(xy) (x, y)2,F, for all x, y ∈ F
×.

Now let:

(2.8) ωθ
(
ξ s(x·I)

)
:= ξ χ(x)n−1γψ(x)ε2 , for all ξ ∈ µn, x ∈ F

×.

By (2.5) and (2.7), it follows that ωθ : Z̃ → C
× is a genuine quasicharacter. Clearly,

there exists a unique genuine quasicharacter ωθ : T̃∗ → C× that satisfies both (2.4)

and (2.8), and after a brief calculation, we obtain the explicit formula:

(2.9) ωθ
(
ξ s(t)

)
= ξ χ(det t) δB(t)1/2nγψ(tn−1)

ε2(tn−1, tn−1)
ε4
F

n−2∏
i=1

(ti, tn−1)
i
F
,

which is valid for all ξ ∈ µn, t ∈ T∗. Here:

ε4 :=

{
1 if 4

∣∣n,
0 otherwise.

To establish (2.9), we have used the fact that if n is odd, (x, x)F = 1 for all x ∈ F
×.

Note that ωθ is unramified, i.e., ωθ is trivial on s(T∩K). Moreover, ωθ is exceptional

in the sense of [KP] §I.2:

ωθ
(
h̃i(x

n)
)

= |x|F, for all x ∈ F
×, 1 ≤ i ≤ n− 2.

Now for any genuine quasicharacter ω : T̃∗ → C
×, we extend ω to a quasichar-

acter of B̃∗ := T̃∗N
∗ that is trivial on N∗, and let V (ω) denote the space of the

(normalized) induced representation IndG̃
B̃∗

(ω) (cf. [KP] §I.2):

V (ω) :=
{
f ∈ C∞(G̃)

∣∣ f(bg) = (δ
1/2
B ω)(b)f(g) for all b ∈ B̃∗, g ∈ G̃

}
.

Here δB is regarded as a quasicharacter of B̃ := T̃N∗ that is trivial on µn, and

(δ
1/2
B ω)(b) := δB(b)1/2ω(b) for all b ∈ B̃∗. The group G̃ acts on V (ω) by right

translation.
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Let (θ, Vθ) be the exceptional representation defined as follows. Let w0 denote

the long element of the Weyl group W , let w̃0 := s(w0), and let ω′
θ : T̃∗ → C× be

the genuine quasicharacter given by:

ω′
θ(t) := ωθ(w̃

−1
0 tw̃0), for all t ∈ T̃∗.

Since ωθ is dominant (cf. [KP] §I.1), we can define the standard intertwining oper-

ator Iw0
: V (ωθ) → V (ω′

θ) by the absolutely convergent integrals:

Iw0
f(g) :=

∫

n∈N∗

f(w̃−1
0 ng) dn, for all f ∈ V (ωθ), g ∈ G̃.

Here dn is the unique Haar measure for N∗ such that Vol(N∗ ∩K∗; dn) = 1. By

[KP] Theorem I.2.9, the image Vθ of Iw0
is the unique irreducible subrepresentation

of V (ω′
θ), and Vθ is isomorphic to the unique irreducible subquotient of V (ωθ). Let

θ denote the action of G̃ on Vθ by right translation: θ(g)f(g′) := f(g′g) for all

g, g′ ∈ G̃, f ∈ Vθ.

The main goal of this section is to calculate special values of the normalized

Whittaker function Wθ for use in §3. To define Wθ, first observe that since ωθ is

unramified, Vθ contains a unique normalized K∗-fixed vector. That is, there exists

a unique vector φθ ∈ Vθ such that θ(k)φθ = φθ for all k ∈ K∗, and φθ(Ĩ ) = 1

(cf. [KP] Lemma I.1.3). Next, given the character ψ on F, let ψ also denote the

unique character on N∗ that satisfies:

ψ
(
ñi(x)

)
:= ψ(x), for all x ∈ F, 1 ≤ i ≤ n− 2.

A ψ-Whittaker functional for θ is a linear functional λ : Vθ → C such that

λ
(
θ(n)f

)
= ψ(n)λ(f) for all n ∈ N∗, f ∈ Vθ. By [KP] Corollary I.3.6, the space

of such functionals is one-dimensional, hence there exists a unique ψ-Whittaker
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functional λθ such that λθ(φθ) = 1. The normalized Whittaker function is then

defined by:

Wθ(g) := λθ
(
θ(g)φθ

)
, for all g ∈ G̃.

Note that Wθ(Ĩ ) = 1, and for all ξ ∈ µn, z ∈ Z̃, n ∈ N∗, g ∈ G̃, k ∈ K∗:

Wθ(ξzngk) = ξωθ(z)ψ(n)Wθ(g).

Consequently, Wθ is determined by its values on elements of the form s($f), where:

$f := diag($fi), for all f = (f1, . . . , fn−1) ∈ Z
n−1.

The main result of this section is the following theorem.

Theorem 2.1 For all 0 ≤ k ≤ n− 1, let f(k) =
(
f
(k)
1 , . . . , f

(k)
n−1

)
∈ Zn−1, where:

f
(k)
i :=

{
1 if i ≤ k,

0 if i > k.

Then Wθ

(
s($f(k)

)
)

is equal to:

χ($)kq−k(n−k−2)/2($,$)
k(k+1)/2
F

($,$)
ε2kn(n−2)/8
F

($,$)ε2k2,F

k∏
i=1

(
g
(−i)

ψ

)−1
,

where g
(−i)

ψ
is the complex conjugate of the Gauss sum g

(i)
ψ defined by (1.7).

Proof: Let Wh
(
V (ωθ)

)
denote the space of ψ-Whittaker functionals for V (ωθ).

For every t ∈ T̃ , let λt ∈ Wh
(
V (ωθ)

)
be defined by the absolutely convergent

integrals:

λt(f) :=

∫

N∗

f(tw̃0n)ψ(n) dn, for all f ∈ V (ωθ).

Note that:

λt′t(f) = (δ
1/2
B ωθ)(t

′)λt, for all t′ ∈ T̃∗, t ∈ T̃ .
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Since
{
λt

∣∣ t ∈ T̃∗\T̃
}

is a basis for Wh
(
V (ωθ)

)
(cf. [KP] Lemma I.3.2), and the

composition λθ Iw0
lies in Wh

(
V (ωθ)

)
, we have:

λθ Iw0
=

∑

t∈T̃∗\T̃

c(t)λt,

where c : T̃ → C is a uniquely determined function that satisfies:

(2.10) c(t′t) = (δ
1/2
B ωθ)(t

′)−1c(t), for all t′ ∈ T̃∗, t ∈ T̃ .

According to [KP] Theorem I.4.2:

(2.11) Wθ

(
s($f(k)

)
)

= δB($f(k)

)c
(
w̃−1

0 s($f(k)

)−1w̃0

)
.

By a straightforward (though tedious) calculation, we have that:

(2.12) w̃−1
0 s($f(k)

)−1w̃0 = s($−1·I )s($f(n−k−1)

)($,$)
(n−k)(k+1)/2
F

.

Using (2.6), (2.8), (2.10), (2.11) and (2.12), we obtain the following relation:

(2.13)

Wθ

(
s($f(k)

)
)

= χ($)n−1q−k(n−k−1)($,$)
k(k+1)/2
F

($,$)ε2k2,F ĝ ε2ψ c
(
s($f(n−k−1)

)
)
.

Thus, to prove the theorem, it will suffice to compute c
(
s($f(n−k−1)

)
)
.

For the moment, we will turn to the study of c
(
s($f)

)
for arbitrary f ∈ Zn−1.

Lemma 2.2 For all f ∈ Zn−1 such that fi ≡ fj (mod n) for all i, j:

c
(
s($f)

)
= (δ

1/2
B ωθ)

(
s($f)

)−1
.

Proof: By the relation (2.10):

c
(
s($f)

)
= (δ

1/2
B ωθ)

(
s($f)

)−1
c(Ĩ ).
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On the other hand, if we take k = 0 in (2.13), then:

1 = Wθ(Ĩ ) = χ($)n−1 ĝ ε2ψ c
(
s($·I)

)
= c(Ĩ ).

These statements imply the lemma. ut

To describe the next result, we study the local coefficients
{
τw(ω, f, f′)

}
that are

defined as follows. For any genuine unramified quasicharacter ω : T̃∗ → C×, let

V (ω) be the induced representation constructed earlier, and let Wh
(
V (ω)

)
be the

space of ψ-Whittaker functionals for V (ω). As before, we can define λt ∈ Wh
(
V (ω)

)

by:

λt(f) :=

∫

N∗

f(tw̃0n)ψ(n) dn, for all t ∈ T̃ , f ∈ V (ω).

Here the integrals are understood to be “regularized” if ω is not dominant in the

sense of [KP] §I.1. For any w ∈ W , let wω : T̃∗ → C
× be the genuine unramified

quasicharacter given by:

wω(t) := ω(w̃−1tw̃), for all t ∈ T̃∗,

where w̃ := s(w). If Iw : V (ω) → V (wω) is the standard (regularized) intertwining

operator, then the local coefficients are defined by the relation:

λs($f)Iw =
∑

f′∈(Z/nZ)n−1

τw(ω, f, f′)λ
s($f′ ).

Note that for all w1, w2 ∈ W such that `(w1w2) = `(w1) + `(w2):

τw1w2
(ω, f, f′) =

∑

f′′∈(Z/nZ)n−1

τw1
(w2ω, f, f′′)τw2

(ω, f′′, f′).

Hence, in studying the local coefficients, we can reduce to the case where w is a

simple reflection si with 1 ≤ i ≤ n− 2.
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Now consider the action of W on Zn−1 that is defined as follows. Let fδ denote

the special element (0, 1, 2, . . . , n−2) in Zn−1. For any w ∈W , f ∈ Zn−1, we define

w[f] to be the unique element of Z
n−1 such that $w[f] = w$f−fδ

w−1$fδ

.

Proposition 2.3 Let ω : T̃∗ → C× be a genuine unramified quasicharacter. Then

for all f ∈ Zn−1 and every simple reflection si:

τsi
(ω, f, f) =

(
1 − ω

(
h̃i($

n)
))−1

(1 − q−1)ω
(
h̃i

(
$−n[(fi−fi+1)/n]

))
,

τsi

(
ω, f, si[f]

)
= qfi+1−fi−2g

(fi−fi+1+1)

ψ
($,$)

fifi+1

F
.

Moreover, τsi
(ω, f, f′) = 0 if f′ 6≡ f or si[f] in (Z/nZ)n−1.

Proof: This is essentially the content of [KP] Lemma I.3.3. To verify this result,

we have corrected some minor typographical errors that occurred in the original

proof (cf. [KP] pp. 80–85). Moreover, our calculations were performed using the

cocycle σ := σ
(−1)
n−1 described in §1, which differs slightly from the cocycle used by

Kazhdan and Patterson. We omit the details of the calculation. ut

Corollary 2.4 For all f ∈ Zn−1 and every simple reflection si, we have:

c
(
s($f)

)
= qfi−fi+1+1+[(fi−fi+1)/n]g

(fi+1−fi−1)

ψ
($,$)

(fi+1)(fi+1−1)
F

c
(
s($si[f])

)
.

Proof: Applying Proposition 2.3 to the exceptional quasicharacter ωθ, we obtain:

(2.14)
τsi

(siωθ, f, f) = −q−1−[(fi−fi+1)/n],

τsi

(
siωθ, si[f], f

)
= qfi−fi+1g

(fi+1−fi−1)

ψ
($,$)

(fi+1)(fi+1−1)
F

,

since siωθ
(
h̃i(x

n)
)

= |x|−1
F

for all x ∈ F×,
(
si[f]

)
i
= fi+1 −1, and

(
si[f]

)
i+1

= fi+1.

Again, since ωθ is exceptional, we have for every f′ ∈ Zn−1 (cf. [KP] §I.3):

∑

f∈(Z/nZ)n−1

c
(
s($f)

)
τsi

(siωθ, f, f
′) = 0.
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If we set f′ := f, then by (2.14) and the last statement of Proposition 2.3:

qfi−fi+1g
(fi+1−fi−1)

ψ
($,$)

(fi+1)(fi+1−1)
F

c
(
s($si[f])

)
− q−1−[(fi−fi+1)/n]c

(
s($f)

)
=0.

The corollary follows immediately. ut

We are now in a position to complete the proof of Theorem 2.1. The cases k = 0

and k = n− 1 are easy since s
(
$f(n−k−1)) ∈ Z̃, hence we may assume that n ≥ 3,

and 1 ≤ k ≤ n− 2. To simplify the notation, let c(f) := c
(
s($f)

)
for all f ∈ Zn−1.

Our goal is to compute c(f(n−k−1)).

For every m ∈ Z and every non-negative integer i, let (m)i denote a string of i

copies of m, and consider the set of elements in Zn−1 defined by:

f(i, j) :=
(
(1)n−k−i−2, (−i− 1)j, j + 1, (−i)k−j , (k + 1)i

)
,

for all 0 ≤ i ≤ n− k − 2, 0 ≤ j ≤ k. Observe that:

f(0, 0) =
(
(1)n−k−1, (0)k

)
= f(n−k−1).

Also, the f(i, j)’s are related by the action of simple reflections:

sn−k−i+j−1

[
f(i, j)

]
= f(i, j + 1), for all 0 ≤ i ≤ n− k − 2, 0 ≤ j ≤ k − 1.

Applying Corollary 2.4 to this identity, it follows that:

c
(
f(i, j)

)
= qi+j+2g

(−i−j−2)

ψ
($,$)

j(i+1)
F

c
(
f(i, j + 1)

)
,

Consequently:

c
(
f(i, 0)

)
=
k−1∏
j=0

qi+j+2g
(−i−j−2)

ψ
($,$)

j(i+1)
F

· c
(
f(i, k)

)
.
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Now if 0 ≤ i ≤ n− k − 3, we have:

f(i, k) :=
(
(1)n−k−i−2, (−i− 1)k, (k + 1)i+1

)
= f(i+ 1, 0),

thus we obtain:

(2.15) c
(
f(n−k−1)

)
=
n−k−2∏
i=0

k−1∏
j=0

qi+j+2g
(−i−j−2)

ψ
($,$)

j(i+1)
F

· c
(
f(n− k − 2, k)

)
.

To evaluate the right side of equation (2.15), we first observe that:

f(n− k − 2, k) =
(
(−n+ k + 1)k, (k + 1)n−k−1

)
,

so we can apply Lemma 2.2. We find that:

(2.16) c
(
f(n−k−2, k)

)
= χ($)k−n+1q−k(n−k−1)(n+1)/2($,$)

ε2k(k+1)/2
2,F ĝ

−ε2(k+1)
ψ .

Also:

(2.17)
n−k−2∏
i=0

k−1∏
j=0

qi+j+2 = qk(n−k−1)(n+1)/2.

Hence, it remains only to evaluate:

(2.18) F (k) :=
n−k−2∏
i=0

k−1∏
j=0

g
(−i−j−2)

ψ
($,$)

j(i+1)
F

=
n−k−1∏
i=1

k∏
j=1

g
(−i−j)

ψ
($,$)

i(j+1)
F

.

For k = 1, we have:

F (1) =
(
g
(−1)

ψ

)−1 ·
n−1∏
i=1

g
(i)

ψ
= q(n−1)/2($,$)

ε2n(n−2)/8
F

ĝ
ε2
ψ

(
g
(−1)

ψ

)−1
,

the second equality following from (1.9). Now for all 1 ≤ k ≤ n− 3, the relation:

F (k + 1)/F (k) =
n−k−2∏
i=1

g
(−i−k−1)

ψ
($,$)ik

F

k∏
j=1

(
g
(−j+k+1)

ψ

)−1
($,$)

(j+1)(k+1)
F
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follows easily from (2.18). Applying (2.8) and (2.9) again, this equation can be

simplified to:

F (k + 1)/F (k) = q−k+(n−1)/2($,$)
ε2n(n−2)/8
F

($,$)ε2k2,F ĝ ε2
ψ

(
g
(−k−1)

ψ

)−1

By induction, it follows that:

(2.19) F (k) = qk(n−k)/2($,$)
ε2kn(n−2)/8
F

($,$)
ε2k(k−1)/2
2,F ĝ ε2k

ψ

k∏
i=1

(
g
(−i)

ψ

)−1
.

Substituting (2.16), (2.17) and (2.19) into equation (2.15), we find that c
(
f(n−k−1)

)

equals:

χ($)k−n+1qk(n−k)/2($,$)
ε2kn(n−2)/8
F

ĝ−ε2
ψ

k∏
i=1

(
g
(−i)

ψ

)−1
.

Here we have used the fact that ĝψ · ĝψ = 1, thus ĝ−1
ψ · ĝψ = ĝ 2

ψ
= ($,$)2,F.

Theorem 2.1 follows at once by substituting this expression into (2.13). ut
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§3. The Whittaker function for the induced series

In this section, we will slightly modify the notation of §2 by appending the

superscript prime (′) to the various symbols introduced there. Thus, we now write

G′ := GLn−1(F), G̃′ := G̃L
(−1)
n−1 (F), σ′ := σ

(−1)
n−1 , s′ : G′ → G̃′, ψ′ : N ′∗ → C×, and

so on. We continue to assume that n ≥ 2, |n|F = 1, and q is odd.

Now let G := GLn(F), let G̃ := G̃L
(0)
n (F), and let σ := σn (cf. §1). Let T be the

subgroup of diagonal matrices in G. Then by (1.2):

s(t) s(t′) = s(tt′) ·
∏
i<j

(ti, t
′
j)F, for all t, t′ ∈ T,

and therefore:

s(t) s(t′) s(t)−1s(t′)−1 =
∏
i
(ti, t

′
i)

−1
F

· (det t, det t′)F.

Let Z be the center of G, and Z̃ := p−1(Z). Although Z̃ is not the center of G̃,

this relation implies that Z̃ is abelian.

Using the representation (θ, Vθ) introduced in §2, we will next construct a cer-

tain series of induced representations of the metaplectic group G̃. Consider the

embedding of G′ into G given by:

ι : G′ ↪→ G, g 7→
(
g

det g−1

)
, for all g ∈ G′.

By Theorem 1.1, it follows that the map ι gives rise to an embedding of G̃′ into G̃:

ι̃ : G̃′ ↪→ G̃, (g, ξ) 7→
(
ι(g), ξ

)
, for all g ∈ G′, ξ ∈ µn.

In other words:

ι̃
(
s′(g)ξ

)
= s

(
ι(g)

)
ξ, for all g ∈ G′, ξ ∈ µn.
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Now let P be the standard parabolic subgroup of type (n− 1, 1) in G, M its Levi

component, and U its unipotent radical. Then M ∼= G′ × F×, and U is isomorphic

to (n − 1) copies of the additive group F. Let P̃ := p−1(P ), M̃ := p−1(M), and

U∗ := s(U). We define:

Pn :=
{
p ∈ P

∣∣ det p ∈ F
×n

}
, P̃n := p−1(Pn).

Observe that P̃n is the semidirect product of the groups ι̃(G̃′), ̃(F×n), and U∗,

where:

̃ : F
× → G̃, x 7→ s

(
I ′

x

)
, for all x ∈ F

×.

Here I ′ denotes the identity matrix in G′. Since the groups ι̃(G̃′) and ̃(F×n)

commute, it follows that the representation (θ, Vθ) can be extended to a genuine

representation θP : P̃n → Aut(Vθ) by the formula:

θP
(
ι̃(g)̃(x)u

)
f := θ(g)f, for all g ∈ G′, x ∈ F

×n, u ∈ U∗, f ∈ Vθ.

Now let δP be the modular character of P . We will regard δP as a character of P̃

that is trivial on µn. For every s ∈ C, let (πs, Vs) denote the (normalized) induced

representation IndG̃
P̃n

(δ
s− 1

2n

P θP ). Here:

Vs :=
{
f ∈ C∞(G̃;Vθ)

∣∣ f(pg) = δP (p)s+
n−1
2n θP (p)f(g) for all p ∈ P̃n, g ∈ G̃

}
,

where C∞(G̃;Vθ) is the space of locally-constant functions f : G̃→ Vθ. The group

G̃ acts on Vs by right translation: πs(g)f(g′) := f(g′g) for all g, g′ ∈ G̃, f ∈ Vs.

For the remainder of this section, we fix an element a ∈ O×. We will next con-

struct a certain Whittaker function Ws,a : G̃→ C associated to the representation

πs, and the goal of this section is to calculate the special value Ws,a(Ĩ ). To define

Ws,a, we first observe that the space Vs contains a unique normalized K∗-fixed

vector. That is, there exists a unique vector φs ∈ Vs such that πs(k)φs = φs for all
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k ∈ K∗, and φs(Ĩ ) = φθ, where φθ is the normalized K ′∗-fixed vector in the space

of θ (cf. §2). More precisely:

φs(g) =

{
δP (p)s+

n−1
2n θP (p)φθ if g = pk for some p ∈ P̃n, k ∈ K∗,

0 otherwise,

for all g ∈ G̃. Next, let ψ : F → C× be the nontrivial additive character chosen

in §2, and let ψ′ be the corresponding character of N ′∗. Let ψa be the unique

character of N∗ that satisfies for all x ∈ F:

ψa
(
ñi(x)

)
=

{
ψ(ax) if i = 1,

ψ(x) if 2 ≤ i ≤ n− 1.

Finally, let λs,a : Vs → C be the linear functional defined by:

(3.1) λs,a(f) :=

∫

Fn−1

λθf

(
s

(
I ′

1 x1 . . . xn−1

))
ψ(ax1) dx, for all f ∈ Vs.

Here dx := dx1 . . . dxn−1, where each dxi is the unique Haar measure for F such

that Vol(O; dxi) = 1. Note that if Re(s) is sufficiently large, the integrals defining

λs,a converge absolutely; otherwise, the integrals are understood to represent their

regularized values. The functional λs,a is clearly a ψa-Whittaker functional for πs.

Although the space of all such functionals has dimension n2, the following theorem

uniquely characterizes λs,a.

Theorem 3.1 Up to multiplication by a scalar, λs,a is the only linear functional

λ : Vs → C that satisfies the properties:

(3.2) λ
(
πs(n)f

)
= ψa(n)λ(f), for all n ∈ N∗, f ∈ Vs,

and:

(3.3) λ
(
πs

(
s(x·I)

)
f
)

= χ(x)n−1γψ(x)ε2λ(f), for all x ∈ F
×, f ∈ Vs.
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Proof: The uniqueness assertion was proved by Bump and Lieman [BL]. The fact

that λs,a satisfies (3.2) and (3.3) is an immediate consequence of definition (3.1).

To see that λs,a 6= 0, let w :=

(
I ′

1

)
, and let w̃ := s(w). Choosing m � 0, let

φ′s be the element of Vs defined by:

φ′s(g) =

{
δP (p)s+

n−1
2n θP (p)φθ if g = pw̃k for some p ∈ P̃n, k ∈ K∗

m,

0 otherwise,

for all g ∈ G̃. Then it is easily seen that λs,a(φ
′
s) = q−m(n−1) 6= 0. ut

The Whittaker function Ws,a : G̃→ C can now be defined as follows:

Ws,a(g) := λs,a
(
πs(g)φs

)
, for all g ∈ G̃.

Note that for all ξ ∈ µn, x ∈ F×, n ∈ N∗, g ∈ G̃, k ∈ K∗:

Ws,a

(
ξs(x·I)ngk

)
= ξχ(x)n−1γψ(x)ε2ψa(n)Ws,a(g).

The main result of this section is the following theorem.

Theorem 3.2 Let Ws,a be the Whittaker function defined above. If n is odd, or

n ≡ 2 or 4 (mod 8), then:

Ws,a(Ĩ ) =
L

(
ns, χ ( · , a)F

)

L(n2s, χn)
.

If n is odd, or n ≡ 0 or 6 (mod 8), then:

Ws,a(Ĩ ) =
L

(
ns, χ ( · ,−a)F

)

L(n2s, χn)
.

Here ( · ,±a)F denotes the (unramified ) quasicharacter given by x 7→ (x,±a)F for

all x ∈ F×, and for any unramified quasicharacter χ◦ : F× → C×, L(s, χ◦) is the

standard local L-function given by L(s, χ◦) :=
(
1 − χ◦($)q−s

)−1
.
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Proof: By definition:

Ws,a(Ĩ ) = λs,a(φs) =

∫

Fn−1

λθφs

(
s

(
I ′

1 x1 . . . xn−1

))
ψ(ax1) dx.

Since:

s

(
I ′

1 x1 . . . xn−1

)
= s̃n−1ñn−1(xn−1) . . . s̃1ñ1(x1) =

1∏
i=n−1

s̃iñi(xi),

we have that:

(3.4) Ws,a(Ĩ ) =

∫

Fn−1

λθφs

(
2∏

i=n−1

s̃iñi(xi) · s̃1ñ1(x1)

)
ψ(ax1) dx.

Now for all x ∈ F, we introduce the notation:

ẋ =

{
1 if x ∈ O,
x if x 6∈ O,

and:

ẍ =

{
0 if x ∈ O,
x−1 if x 6∈ O.

Then it is easily shown that:

(3.5) s̃iñi(x) = ñi(ẍ)h̃i(ẋ
−1)k̃i(x), for all x ∈ F, 1 ≤ i ≤ n− 1,

where k̃i(x) is an element of K∗. Applying this relation with i = 1, and using the

fact that φs is K∗-fixed, the integral in (3.4) becomes:

(3.6)

∫

Fn−1

λθφs

(
2∏

i=n−1

s̃iñi(xi) · ñ1(ẍ1)h̃1(ẋ
−1
1 )

)
ψ(ax1) dx.

Next, we observe that:

2∏
i=n−1

s̃iñi(xi) · ñ1(ẍ1) = s

(
1 −ẍ1x2 . . .− ẍ1xn−1 ẍ1

I ′

)
·

2∏
i=n−1

s̃iñi(xi),
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and:

2∏
i=n−1

s̃iñi(xi) · h̃1(ẋ
−1
1 ) = h̃1,n(ẋ

−1
1 )(ẋ1, ẋ1)

n−2
F

·
2∏

i=n−1

s̃iñi(xi/ẋ1).

Here we use the notation h̃i,j(x) := s
(
hi,j(x)

)
, where hi,j(x) is the diagonal matrix

with x in the i-th position, x−1 in the j-th position, and 1’s elsewhere along the

diagonal. After substituting the preceding identities into (3.6), we obtain:
∫

Fn−1

λθφs

(
s

(
1 −ẍ1x2 . . .− ẍ1xn−1 ẍ1

I ′

)
h̃1,n(ẋ

−1
1 ) ·

2∏
i=n−1

s̃iñi(xi/ẋ1)

)

× (ẋ1, ẋ1)
n−2
F

ψ(ax1) dx

=

∫

Fn−1

λθφs

(
h̃1,n(ẋ

−1
1 )

2∏
i=n−1

s̃iñi(xi/ẋ1)

)
(ẋ1, ẋ1)

n−2
F

ψ(ax1)ψ(ẍ1x2) dx

=

∫

Fn−1

λθφs

(
h̃1,n(ẋ

−1
1 )

2∏
i=n−1

s̃iñi(xi)

)
|ẋ1|n−2

F
(ẋ1, ẋ1)

n−2
F

ψ(ax1)ψ(ẋ1ẍ1x2) dx.

Here we have made the change of variables
{
xi 7→ ẋ1xi

∣∣ 2 ≤ i ≤ n− 1
}
. Similarly,

using relation (3.5) with i = 2, it follows that Ws,a(Ĩ ) equals:

∫

Fn−1

λθφs

(
h̃1,n(ẋ

−1
1 )h̃2,n(ẋ

−1
2 ) ·

3∏
i=n−1

s̃iñi(xi)

)

× |ẋ1|n−2
F

|ẋ2|n−3
F

(ẋ1, ẋ1)
n−2
F

(ẋ2, ẋ2)
n−3
F

ψ(ax1)ψ(ẋ1ẍ1x2)ψ(ẋ2ẍ2x3) dx.

Continuing inductively in this manner, we find that Ws,a(Ĩ ) is equal to:

(3.7)∫

Fn−1

λθφs

(
n−1∏
i=1

h̃i,n(ẋ
−1
i )

)
n−1∏
i=1

|ẋi|n−i−1
F

(ẋi, ẋi)
n−i−1
F

·ψ(ax1)
n−1∏
j=2

ψ(ẋj−1ẍj−1xj) dx.

To evaluate the integral (3.7), note that we can restrict the domain of integration

to (F−{0})n−1 without affecting the result. We regard this new domain as a disjoint

union:

(F − {0})n−1 =
⋃

f∈Zn−1

R(f),
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where for all f = (f1, . . . , fn−1) ∈ Zn−1:

R(f) :=
{
(x1, . . . , xn−1) ∈ F

n−1
∣∣ v(xi) = fi for all i

}
.

For fixed f ∈ Z
n−1, the contribution of region R(f) to the integral (3.7) can be

evaluated as follows. For 1 ≤ i ≤ n− 1, let:

δi :=

{
0 if fi ≥ 0,

1 if fi < 0.

Then for all (x1, . . . , xn−1) ∈ R(f), we have ẋi = xδi

i , ẍi = δix
−1
i , and ẋiẍi = δi,

and our goal is therefore to compute:

(3.8)∫

R(f)

λθφs

(
n−1∏
i=1

h̃i,n(x
−δi

i )

)
n−1∏
i=1

|xi|δi(n−i−1)
F

(xi, xi)
δi(n−i−1)
F

·ψ(ax1)
n−1∏
j=2

ψ(δj−1xj) dx.

After the change of variables
{
xi 7→ $fixi

∣∣ 1 ≤ i ≤ n− 1
}
, we obtain:

n−1∏
i=1

q−δifi(n−i−1)−fi($,$)
δifi(n−i−1)
F

×
∫

x1,... ,xn−1∈O×

λθφs

(
n−1∏
i=1

h̃i,n($−δifix−δi

i )

)
ψ(a$f1x1)

n−1∏
j=2

ψ($δj−1fjxj) dx.

By a straightforward cocycle calculation:

n−1∏
i=1

h̃i,n($
−δifix−δi

i ) = ι̃
(
s′($−δf)

) n−1∏
i=1

h̃i,n(x
−δi

i ) ·
n−1∏
j=1

n−1∏
i=j

($δifi , x
δj

j )F,

where δf ∈ Zn−1 is defined by (δf)i := δifi = min(fi, 0) for all i. Since h̃i,n(x
−δi

i )

lies in K∗ for all xi ∈ O×, it follows from the definition of φs that (3.8) is equal to:

(3.9)

Wθ

(
s′($−δf)

) n−1∏
i=1

q−δifi(−ns+
n−1

2 −i)−fi($,$)
δifi(n−i−1)
F

×
∫

x1,... ,xn−1∈O×

n−1∏
j=1

n−1∏
i=j

($δifi , x
δj

j )F · ψ(a$f1x1)
n−1∏
j=2

ψ($δj−1fjxj) dx.
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Now we define:

G(i ; j) :=

∫

x∈O×

($, x)i
F
ψ($jx) dx, for all i, j ∈ Z.

It is easy to verify that:

(3.10) G(i ; j) =





1 − q−1 if i ≡ 0 (mod n) and j ≥ 0,

q−1g
(i)

ψ
if j = −1,

0 otherwise.

By Fubini’s theorem, the integral in (3.9) is the product of:

(3.11)∫

x1∈O×

n−1∏
i=1

($δifi , xδ11 )F ψ(a$f1x1) dx1 =
n−1∏
i=1

($δifi , a−δ1)F ·G
(
δ1

n−1∑
i=1

δifi ; f1
)
,

and:

(3.12)

∫

xj∈O×

n−1∏
i=j

($δifi , x
δj

j )F ψ($δj−1fixj) dxj = G
(
δj
n−1∑
i=j

δifi ; δj−1fj
)

for all 2 ≤ j ≤ n− 1.

Now according to [KP] Theorem I.4.2, Wθ

(
s′($−δf)

)
= 0 unless:

δ1f1 ≤ δ2f2 ≤ . . . ≤ δn−1fn−1.

This implies that (3.9) vanishes unless f1 ≤ . . . ≤ fk < 0 and fk+1, . . . , fn−1 ≥ 0 for

some k with 0 ≤ k ≤ n − 1. On the other hand, it follows from (3.10) that right

side of (3.11) vanishes unless f1 ≥ −1. Hence, we may assume that f has the form
(
(−1)k, fk+1, . . . , fn−1

)
with fk+1, . . . , fn−1 ≥ 0. In this case, δi = 1 if 1 ≤ i ≤ k,

and δi = 0 otherwise. Consequently:

Wθ

(
s′($−δf)

)
= Wθ

(
s′($f(k)

)
)
,
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where f(k) is the special element
(
(1)k, (0)n−k−1

)
∈ Zn−1 considered in §2. When f

has the special form above, the first product in (3.9) simplifies to:

q−k(2ns−n+k)/2($,$)
k(k−1)/2
F

n−1∏
i=k+1

q−fi .

Using (3.10), we also find that (3.11) equals:

n−1∏
i=1

($δifi , a−δ1)F ·G
(
δ1
n−1∑
i=1

δifi ; f1
)

=

{
1 − q−1 if k = 0,

q−1($, a)k
F

g
(−k)

ψ
if k ≥ 1,

and for all 2 ≤ j ≤ n− 1, (3.12) is equal to:

G
(
δj
n−1∑
i=j

δifi ; δj−1fj
)

=

{
q−1g

(j−k−1)

ψ
if 2 ≤ j ≤ k,

1 − q−1 if k + 1 ≤ j ≤ n− 1.

Combining all of these results, it follows that (3.9) is equal to:

Wθ

(
s′($f(k)

)
)
q−k(2ns−n+k+2)/2($, a)k

F
($,$)

k(k−1)/2
F

k∏
i=1

g
(−i)

ψ

n−1∏
i=k+1

q−fi(1 − q−1)

Now to compute the integral (3.7), we apply the preceding result, summing the

contributions from all regions R(f) such that f has the form
(
(−1)k, fk+1, . . . , fn−1

)
,

fk+1, . . . , fn−1 ≥ 0, with 0 ≤ k ≤ n− 1. If we collect together the contributions for

each fixed value of k and use the fact that:

∑

fk+1,... ,fn−1≥0

n−1∏
i=k+1

q−fi(1 − q−1) = 1,

it follows that:

Ws,a(Ĩ ) =
n−1∑
k=0

Wθ

(
s′($f(k)

)
)
q−k(2ns−n+k+2)/2($, a)k

F
($,$)

k(k−1)/2
F

k∏
i=1

g
(−i)

ψ
.

Finally, we substitute the explicit value of Wθ

(
s′($f(k)

)
)

given by Theorem 2.1, and

we obtain:

Ws,a(Ĩ ) =
n−1∑
k=0

χ($)k($, a)k
F
($,$)

e2k(n
2+2n+8)/8

F
q−kns

=
1 − χ($)nq−n

2s

1 − χ($)($, a)F($,−1)
e2(n2+2n+8)/8
F

q−ns

=
L

(
ns, χ ( · , a)F ( · ,−1)

e2(n
2+2n+8)/8

F

)

L(n2s, χn)
.



36 WILLIAM BANKS, DANIEL BUMP, AND DANIEL LIEMAN

This completes the proof. ut
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