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ABSTRACT. We show that if the norm of an idempotent Schur multiplier on
the Schatten class SP lies sufficiently close to 1, then it is necessarily equal to 1.
We also give a simple characterization of those idempotent Schur multipliers
on SP whose norm is 1.

1. INTRODUCTION

We study norms of idempotent Schur multipliers defined on the Schatten p-class
with 1 < p < oo, p # 2. For any idempotent Schur multiplier ¢, we show that if the
norm of ¢ lies sufficiently close to 1, then it is necessarily equal to 1. More precisely,
if ¢ is an idempotent Schur multiplier on the Schatten p-class, then ¢ = 0, ||¢|| = 1,
or ||¢|| > 1+, where 1, is a positive constant that depends only on p. We also
obtain a simple characterization of those idempotent Schur multipliers whose norm
is equal to 1. When p = 1 or oo, these results have been obtained by Livshits [2],
while for p = 2, every nonzero idempotent Schur multiplier has norm 1.

To state our results more explicitly, we need to fix some standard terminology.
For every real number p in the range 1 < p < oo, denote by SP the Schatten p-class
over the Hilbert space ¢5; it is the Banach space of all compact operators x : fo — {5
with finite norm

1/p
lalls = (T @ ay/2) ",
where Tr( - ) denotes the usual trace. For p = oo, the space S is the Banach space
of all compact operators x : £5 — f5, equipped with the usual operator norm. The
spaces SP, 1 < p < oo, were considered in [4] as noncommutative analogues for the
spaces £,, 1 < p < oo (for a more modern reference, see [3] for example).

For 1 < p < oo and a positive integer n, let SE denote the Schatten p-class over
the Hilbert space £5 of dimension n.

In what follows, we make no distinction between an operator x on f5 and the
corresponding matrix (z;;); jen relative to the canonical basis {e;;}; jen of SP.

A set-theoretic map ¢ : N x N — C is said to be a Schur multiplier on SP if the
associated operator Ty : SP? — SP, defined by

Ty(x) = (dij Tij)i,jen, Vi = (24)ijen € SP,
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is well defined and bounded on SP. In particular, this implies that ¢ itself is a
bounded map. Let M(SP) denote the space of all Schur multipliers on SP. Then
M(SP) is a Banach algebra when it is equipped with the pointwise product and
the norm
10llamesey = 1T = SP = SPIl, Vb e M(SP).

It is well known that for pairs 1 < p, ¢ < oo with p~t+¢~1 = 1, the algebras M (S?)
and M(S7) can be identified isometrically. These identifications can be done via
the identity map by defining the duality between S? and S? with (z,y) = Tr(*zy)
for all x € SP and y € S9.

In addition, the space M(S?) can be identified isometrically with the Hilbert
space £2(N x N). Consequently, when studying M (SP) it suffices to reduce to the
case where 2 < p < oc.

Finally, a Schur multiplier ¢ € M(SP) is said to be idempotent provided that
Ty o Ty = Ty; clearly, this is equivalent to the condition that ¢ maps N x N into
the set {0,1}. For such multipliers, one has

18l aacsry = 10~ llaacse) < I1l3usr)-
Hence, ||¢||am(sy > 1 whenever ¢ # 0. Our main result is the following:

Theorem 1. For every real number p with 1 < p < oo and p # 2, there exists
a constant n, > 0 (depending only on p) such that for every nonzero idempotent
Schur multiplier ¢ € M(SP) with ||¢[|pm(sr) # 1, the following inequality holds:

Al atcsey > 14 np.

By the remarks above, it suffices to consider the case where 2 < p < oo, which
we assume throughout the sequel.

2. PROOF OF THE MAIN RESULT
The proof of Theorem [[lcan be split into three pieces, as follows.
Lemma 1. Let A = (Aj)1<ij<2 with A1 = A1 = Ago =1 and Ag; = 0. Then
A wgeszry > 1Al mesyy > 1 for 2 <p <p" < oo

Proof. For every c € C, let z(¢) = (%g;))lgidgg, where 29 = 2{9 = 2{J = 1 and

xécl) = c. One has

1/p 1/p
sy = (T (29°29)"2 ) = (W2 +X22)

where

1
Moo= (34 lef & /5 + 8R() + 20l + [l
In particular, if we choose ¢ = (2 — p)/2, then

TN 1Ay 1=l )
py = = = p 5
M5 = @G, 2,

where f(p) is the function
2°(3+VB)P/2+ (3 - V5)P/?)
(02— 4p+ 16+ (p— 4)V/pP2 +16)"* + (p> —dp+ 16 — (p— 4)/p? + 16)"°
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Since f(2) =1, f'(2) =0, and

7 _ 10g(3 + \/5) 1Og(3 — \/5) 1
f (2) - 3\/5 - 3\/5 - 6 > 07

the Taylor expansion for f(p) near p = 2 shows that f(p) > 1if2<p < 2+e¢, for
some € > 0. Thus,

Now let p’ > p > 2 be arbitrary real numbers and let 0 < # < 1 be chosen so
that 1/p = (1 —0)/2 + 6/p’. By the classical results of complex interpolation, we
have S5 = (53, Sgl)g isometrically (for the definition and fundamental results on
complex interpolation, the reader is referred to [1]); hence it follows that

1 lLaacsgy < 1A 1A o,
Taking 2 < p < 2 + ¢ with ¢ sufficiently small, and using the obvious fact that

[|All pmsz) = 1, the preceding relation and our results above imply that HA”M(ST’/) >
2

1 for all 2 < p’ < co. Since 0 < 0 < 1, the above relation further implies that
||A||M(S§/) > ||Allaqszy for 2 < p < p’ < oo. This completes the proof. O

It has been shown in [2] that [|A|| y(sge) = 2/+/3, which provides an upper bound
for | Al p(szy for any p > 2. On the other hand, in the notation of Lemma [T and
taking ¢ = —1, we have for p > 2,

2 @lsp <(3+\/5)p/2+(3—\/5)p/2>1/p> 3+\/5.

12 nsg) = [#CD[gr op+1 21+1/p
2

It remains an interesting question to determine the precise value of ||A|| vq(sz) for
any p in the range 2 < p < oo; this will not be needed, however, in what follows.
We now define, for each p in the range 2 < p < oo,

Mp = =1+ [[Allpsz)-

In view of Lemma[Il 7, is strictly positive.

Definition. A map ¢ defined on Nx N (or any of its subsets) is said to be triangle-
free if there are no integers i, j, k, [ such that ¢;; = ¢ = ¢r; = 1 and ¢y = 0.

The following lemma is an easy consequence of Lemma [T} the proof is omitted.
Lemma 2. Fiz p > 2, and suppose that ¢ € M(SP) is idempotent. If
Pl amsry <1+ np,

then ¢ is triangle-free.
Finally, we have

Lemma 3. If a map ¢ : N x N — {0,1} is nonzero and triangle-free, then
¢l a(spy = 1 for every real number p > 2.

Proof. For any positive integer n, denote by ¢(™ the restriction of ¢ to the subset
{1,2,...,n} x{1,2,...,n} of N x N. Recalling the well-known fact

Al amsey = sup 6] p(sz)

we see that it suffices to show that ||¢(”)|\M(S'5) = 1 whenever ¢(™ # 0.
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To this end, let n > 1 be fixed with ¢(") # 0. For every integer 1 < i < n, define
the row sum

c=#{1<j<n|gl) =1}
To show [[¢™]| vq(sz) = 1, we may freely permute the rows and/or the columns
of ™ in any way that we want; in particular, without loss of generality, we may
assume that
€1 2 C22C32...2 Cp,
and that

R

Since ¢ is triangle-free, for every 1 < i < n there are only two possibilities:

() ¢i; =1foralll <j<e, and ¢35 =0 for all j > ¢y
(B) ¢y =0forall1<j<c.

After permuting the rows if necessary, we may assume that («) occurs for 1 < i < ry,
and that (8) occurs for ¢ > 1. Then

o™ = 61 @ ¢,

where ¢; is an 71 X ¢ rectangular matrix with every entry equal to 1, and ¢} is an
(n—r1) x (n — ¢1) rectangular matrix whose entries are equal to 0 or 1 and which
is triangle-free. If ¢} = 0, we stop; otherwise, we repeat the same argument with
#»™ replaced by ¢}, obtaining

o™ = ¢ © d2 B P

We continue in this way until the process stops, at which point we have

P = D P ® ... D s,

where every ¢, 1 < k < s, is an r; X ¢ rectangular matrix, all of the entries of
d1,...,¢s_1 are equal to 1, and the entries of ¢4 are all equal to 1 or all equal to
0. By adding some additional zero rows and/or zero columns to &™) if necessary,
we may also assume that ry = ¢ for 1 < k < s. Then

(n) ry = SUu Py = 1,
16" Ml Asy Sup [kl sz, )
and the result follows. O

Theorem[Ilis an immediate consequence of Lemmas [, as the reader can easily
verify.

Examining the proof of Theorem [I], we see that for a nonzero idempotent Schur
multiplier ¢, the following assertions are equivalent:

(a) for some p > 2, ¢ : SP — SP has norm 1;

(b) ¢ is triangle-free;

(c) ¢ is equivalent to a multiplier of the form ¢; @ ¢2 ® ¢3 @ ..., where each
¢; has all of its entries equal to 1 or all of its entries equal to 0;

(d) ¢:85° — S has norm 1;

(e) for every p, ¢ : SP — SP has norm 1.
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