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1 Introduction

Fix once and for all an integer g ≥ 2, and consider the base g representation
of an arbitrary natural number n ∈ N:

n =

L−1
∑

k=0

ak(n)gk.

Here ak(n) ∈ {0, 1, . . . , g−1} for each k = 0, 1, . . . , L−1, and we assume that
the leading digit aL−1(n) is nonzero. The integer n is said to be a palindrome
if its digits satisfy the symmetry condition:

ak(n) = aL−1−k(n), k = 0, 1, . . . , L − 1.

Let P ⊂ N denote the set of palindromes (in base g), and for every positive
real number x, let

P(x) = {n ≤ x |n ∈ P}.

In this paper, we study the distribution of palindromes in congruence classes.
Using the Weil bound for mixed Kloosterman sums, we bound exponential
sums over the set PL of palindromes with precisely L digits and use this
result to show that the set P(x) becomes uniformly distributed (as x → ∞)
over the congruence classes modulo p, where p > g is any prime number for
which the multiplicative order ordp(g) of g in the group (Z/pZ)× is at least
3p1/2; see Corollary 4.4 for a precise statement. We remark that, thanks to
the work of Pappalardi [4], almost all primes p satisfy the stronger condition
ordp(g) ≥ p1/2 exp((log p)c) where c is any constant less than (1 − log 2)/2;
see also [2, 3].

Using a variation of these techniques, we also show that the set P(x) becomes
uniformly distributed (as x → ∞) over the congruence classes modulo q,
where q ≥ 2 is any integer coprime to g(g2 − 1); see Corollary 4.5. This
latter result, though weaker than that obtained for primes p satisfying the
condition ordp(g) ≥ 3p1/2, allows us to deduce the main result of this paper:
almost all palindromes in a given base are composite. More precisely, in
Theorem 5.1, we show that

#
{

n ∈ P(x) |n is prime
}

= O

(

#P(x)
log log log x

log log x

)

, x → ∞,

2



where the implied constant depends only on the base g. This result appears
to be the first of its kind in the literature.

Acknowledgments. The authors would like to thank Florian Luca and
Igor Shparlinski, whose valuable observations on the original manuscript led
to significant improvements in our estimates. During the preparation of this
paper, W. B. was supported in part by NSF grant DMS-0070628.

2 Preliminary Estimates

For any integer q ≥ 2, let eq(x) denote the exponential function exp(2πix/q),
which is defined for all x ∈ R. For any integer c that is relatively prime to
q, let c denote an arbitrary multiplicative inverse for c modulo q; that is,
c c ≡ 1 (mod q). Finally, let d(q) be the number of positive integral divisors
of q, and let ordq(g) be the smallest integer t ≥ 1 such that gt ≡ 1 (mod q).

Lemma 2.1. For any prime p with gcd(p, g) = 1 and all a, b ∈ Z, we have
∣

∣

∣

∣

∣

∣

ordp(g)
∑

k=1

ep(agk + bg k)

∣

∣

∣

∣

∣

∣

≤ 2p1/2 gcd(a, b, p)1/2.

Proof. Consider the mixed Kloosterman sum

Kχ(a, b; p) =

p−1
∑

c=1

χ(c) ep(ac + bc),

where χ is a Dirichlet character modulo p. From the work of Weil [6], it
follows that the bound

∣

∣Kχ(a, b; p)
∣

∣ ≤ 2p1/2 gcd(a, b, p)1/2

holds for all such sums. Averaging over all Dirichlet characters χ modulo p
for which χ(g) = 1, it follows that

ordp(g)

ϕ(p)

∑

χ

Kχ(a, b; p) =
∑

1≤c≤p−1
c≡gk (mod p), ∃k

ep(ac + bc) =

ordp(g)
∑

k=1

ep(agk + bg k).

The result follows.
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Lemma 2.2. The following bound holds for all q ≥ 2, k ≥ 2 and h ∈ Z

provided that q 6 | h:
∣

∣

∣

∣

∣

k−1
∑

a=0

eq(ha)

∣

∣

∣

∣

∣

≤ k exp

(

−
4 gcd(h, q)2

q2

)

.

Proof. Let us write

s(q, k, h) =

∣

∣

∣

∣

∣

k−1
∑

a=0

eq(ha)

∣

∣

∣

∣

∣

.

If d = gcd(h, q), then s(q, k, h) = s(q/d, k, h/d), hence it suffices to prove the
assertion for the special case where gcd(h, q) = 1, which we now assume.

Without loss of generality, we may also suppose that k ≤ q. Indeed, if
k ≥ q + 1, then we can express k = mq + r with 0 ≤ r ≤ q − 1 and simply
observe that

s(q, k, h) = s(q, r, h) ≤ r ≤ q − 1 ≤ (q + 1) exp(−4/q2) ≤ k exp(−4/q2).

If gcd(h, q) = 1 and 2 ≤ k ≤ q, we have

s(q, k, h)2 =

k−1
∑

a,b=0

eq (h(a − b)) = k +

k−1
∑

a,b=0
a6=b

cos

(

2πh(a − b)

q

)

≤ k + k(k − 1) cos(2π/q);

therefore,

s(q, k, h)2

k2
≤

1

k
+

(

1 −
1

k

)

cos(2π/q) ≤
1

2
(1 + cos(2π/q)) .

Using the fact that 1 + cosx ≤ 2 exp(−x2/4) for 0 ≤ x ≤ π, we obtain the
desired result.

3 Exponential Sums over Palindromes

For every L ≥ 1, let PL denote the set of palindromes (in base g) with
precisely L digits; that is,

PL = {n ∈ P | gL−1 ≤ n < gL}.
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Lemma 3.1. Let p > g be a prime number such that ordp(g) > 2p1/2. Then
for every c ∈ Z with gcd(c, p) = 1, the exponential sum

SL(c) =
∑

n∈PL

ep(cn)

satisfies the bound

∣

∣SL(c)
∣

∣ ≤ #PL · Θ(L−2ordp(g)−1)/4,

where

Θ =
1

g
+

2(g − 1)p1/2

g ordp(g)
< 1.

Proof. Since

S2L(c) =

g−1
∑

a0=1

g−1
∑

a1=0

. . .

g−1
∑

aL−1=0

ep

(

L−1
∑

k=0

cak

(

gk + g2L−1−k
)

)

=

g−1
∑

a0=1

ep

(

ca0

(

1 + g2L−1
))

L−1
∏

k=1

g−1
∑

ak=0

ep

(

cak

(

gk + g2L−1−k
))

and

S2L+1(c) =

g−1
∑

a0=1

g−1
∑

a1=0

. . .

g−1
∑

aL=0

ep

(

caLgL +
L−1
∑

k=0

cak

(

gk + g2L−k
)

)

=

g−1
∑

a0=1

ep

(

ca0(1 + g2L)
)

g−1
∑

aL=0

ep(caLgL)

L−1
∏

k=1

g−1
∑

ak=0

ep

(

cak

(

gk + g2L−k
))

,

it follows that

∣

∣S2L+δ(c)
∣

∣ ≤ (g − 1)gδ

L−1
∏

k=1

∣

∣

∣

∣

∣

g−1
∑

a=0

ep

(

ca
(

gk + g2L+δ−1−k
))

∣

∣

∣

∣

∣

for all L ≥ 1 and δ = 0 or 1.

Put N = ordp(g), and write L − 1 = Nm + `, where m = b(L − 1)/Nc and
0 ≤ ` < N . Then, using the arithmetic-geometric mean inequality, we derive
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that

∣

∣S2L+δ(c)
∣

∣

2
≤ (g − 1)2g2`+2δ

Nm
∏

k=1

∣

∣

∣

∣

∣

g−1
∑

a=0

ep

(

ca
(

gk + g2L+δ−1−k
))

∣

∣

∣

∣

∣

2

≤ (g − 1)2g2`+2δ





1

Nm

Nm
∑

k=1

∣

∣

∣

∣

∣

g−1
∑

a=0

ep

(

ca
(

gk + g2L+δ−1−k
))

∣

∣

∣

∣

∣

2




Nm

= (g − 1)2g2`+2δ

(

T

Nm

)Nm

,

where

T =

Nm
∑

k=1

g−1
∑

a,b=0

ep

(

c(a − b)
(

gk + g2L+δ−1−k
))

= gNm + m

g−1
∑

a,b=0
a6=b

N
∑

k=1

ep

(

c(a − b)
(

gk + g2L+δ−1−k
))

.

Since p > g, it follows that gcd(a − b, p) = 1 whenever a 6= b. Using
Lemma 2.1, we therefore obtain that

∣

∣T
∣

∣ ≤ gNm + (g − 1)gm · 2p1/2.

Consequently,

∣

∣S2L+δ(c)
∣

∣

2
≤ (g − 1)2g2`+2δ

(

gNm + 2(g − 1)gmp1/2

Nm

)Nm

= (g − 1)2g2Nm+2`+2δ

(

N + 2(g − 1)p1/2

gN

)Nm

= (g − 1)2g2L+2δ−2ΘL−`−1.

Since #P2L+δ = (g − 1)gL+δ−1, the result follows.
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Lemma 3.2. Let q ≥ 2 be an integer such that gcd
(

q, g(g2 − 1)
)

= 1. Then
for every c ∈ Z such that q 6 | c, the exponential sum

SL(c) =
∑

n∈PL

eq(cn)

satisfies the bound

∣

∣SL(c)
∣

∣ ≤ #PL · exp

(

−
(L − 5) gcd(c, q)2

q2

)

.

Proof. As in the proof of Lemma 3.1, we have

∣

∣S2L+δ(c)
∣

∣ ≤ (g − 1)gδ

L−1
∏

k=1

∣

∣

∣

∣

∣

g−1
∑

a=0

eq

(

ca
(

gk + g2L+δ−1−k
))

∣

∣

∣

∣

∣

for all L ≥ 1 and δ = 0 or 1. Let

B = {1 ≤ k ≤ L − 1 | q divides c(gk + g2L+δ−1−k)},

G = {1 ≤ k ≤ L − 1 | q does not divide c(gk + g2L+δ−1−k)}.

Using Lemma 2.2 to estimate individual terms in the preceding product when
k ∈ G, and using the trivial estimate when k ∈ B, we obtain that

∣

∣S2L+δ(c)
∣

∣ ≤ (g − 1)g(δ+#G+#B) exp

(

−
4 gcd(c, q)2 #G

q2

)

= #P2L+δ · exp

(

−
4 gcd(c, q)2 #G

q2

)

.

Now let f = q/ gcd(c, q). Since q does not divide c, we have f ≥ 2, and the
stated condition on q implies that ordf (g

2) ≥ 2. Thus, if k and ` both lie in
B, then

(g2)k ≡ −g2L+δ−1 ≡ (g2)` (mod f), k ≡ ` (mod ordf(g
2)).

We therefore see that

#B ≤ 1 + b(L − 2)/2c = bL/2c ,
#G ≥ L − 1 − bL/2c ≥ L/2 − 1 ≥ (2L + δ − 5)/4,

and the result follows.
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4 Distribution of Palindromes

Proposition 4.1. Let p > g be a prime number such that ordp(g) ≥ 3p1/2.
Then for every L ≥ 10p − 5, the following estimate holds for all a ∈ Z:

∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod p)
}

−
#PL

p

∣

∣

∣

∣

<
#PL

p
(0.99)L.

Proof. Using the relation

1

p

p−1
∑

c=0

ep(cm) =

{

1 if m ≡ 0 (mod p),
0 otherwise,

it follows that

#
{

n ∈ PL |n ≡ a (mod p)
}

=
∑

n∈PL

1

p

p−1
∑

c=0

ep (c(n − a))

=
1

p

p−1
∑

c=0

ep(−ca)
∑

n∈PL

ep(cn)

=
#PL

p
+

1

p

p−1
∑

c=1

ep(−ca)SL(c),

where SL(c) is the exponential sum considered in Lemma 3.1. Therefore

∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod p)
}

−
#PL

p

∣

∣

∣

∣

≤
1

p

p−1
∑

c=1

∣

∣SL(c)
∣

∣

≤
#PL

p

p−1
∑

c=1

Θ(L−2 ordp(g)−1)/4,

where

Θ =
1

g
+

2(g − 1)p1/2

g ordp(g)
≤

1

g
+

2(g − 1)

3g
=

2g + 1

3g
≤

5

6
,

since g ≥ 2. Also,

(L − 2 ordp(g) − 1)/4 ≥ (L − 2p + 1)/4 ≥ L/5, L ≥ 10p − 5.

8



Consequently,

∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod p)
}

−
#PL

p

∣

∣

∣

∣

≤
#PL

p
(p − 1)

(

5

6

)L/5

.

Finally, remarking that the condition ordp(g) ≥ 3p1/2 implies that p ≥ 11,
we have

(p − 1)

(

5

6

)L/5

< (0.99)L, L ≥ 10p − 5.

This completes the proof.

Proposition 4.2. Let q ≥ 2 be an integer such that gcd
(

q, g(g2 − 1)
)

= 1.
Then for every L ≥ 10 + 2q2 log q, the following estimate holds for all a ∈ Z:

∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod q)
}

−
#PL

q

∣

∣

∣

∣

<
#PL

q
exp

(

−
L

2q2

)

.

Proof. Using the relation

1

q

q−1
∑

c=0

eq(cm) =

{

1 if m ≡ 0 (mod q),
0 otherwise,

it follows that

#
{

n ∈ PL |n ≡ a (mod q)
}

=
∑

n∈PL

1

q

q−1
∑

c=0

eq (c(n − a))

=
1

q

q−1
∑

c=0

eq(−ca)
∑

n∈PL

eq(cn)

=
#PL

q
+

1

q

q−1
∑

c=1

eq(−ca)SL(c),

where SL(c) is the exponential sum considered in Lemma 3.2. If 1 ≤ c ≤ q−1,
then q 6 | c, hence by Lemma 3.2 we derive the estimate:

∣

∣SL(c)
∣

∣ ≤
#PL

q
exp

(

log q −
(L − 5) gcd(c, q)2

q2

)

≤
#PL

q
exp

(

log q −
L − 5

q2

)

≤
#PL

q
exp

(

−
L

2q2

)

,
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the last inequality following from the stated condition on L. The result
follows immediately.

Theorem 4.3. Let q ≥ 2 be a fixed integer, and suppose that there exist
constants A ≥ 1 and

√

2/3 ≤ ξ < 1, depending only on q, such that

∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod q)
}

−
#PL

q

∣

∣

∣

∣

≤ #PL · A ξL

for all L ≥ 1 and a ∈ Z. Then for some constant B ≥ 1 that depends only
on g, the following estimate holds for all x ≥ 1 and a ∈ Z:

∣

∣

∣

∣

#
{

n ∈ P(x) |n ≡ a (mod q)
}

−
#P(x)

q

∣

∣

∣

∣

≤ #P(x) · AB ξ(log x)/(2 log g).

Proof. We remark that the condition ξ ≥
√

2/3 guarantees that gξ2 is
bounded below by an absolute constant greater than 1; since g ≥ 2, we
have

g − 1

gξ2 − 1
≤

g − 1
2
3
g − 1

≤ 3.

For all L ≥ 1, x ≥ y > 0, and a ∈ Z, let us denote

Pa = {n ∈ P |n ≡ a (mod q)},

Pa,L = {n ∈ Pa | g
L−1 ≤ n < gL},

Pa(x) = {n ∈ Pa |n ≤ x},

Pa(y; x) = {n ∈ Pa | y < n ≤ x}.

We also denote
P(y; x) = {n ∈ P | y < n ≤ x}.

In what follows, the implied constants in the symbol “O” may depend on
g but are absolute otherwise. We recall that the notation U = O(V ) for
positive functions U and V is equivalent to U ≤ cV for some constant c.

Let a ∈ Z be fixed in what follows, and suppose that g2M+δ−1 ≤ x < g2M+δ,
where M is an integer and δ = 0 or 1. We observe that

#P(x) = #P(g2M+δ−1) + #P(g2M+δ−1; x), (1)
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and that
#Pa(x) = #Pa(g

2M+δ−1) + #Pa(g
2M+δ−1; x).

Our goal is to estimate
∣

∣

∣

∣

#Pa(x) −
#P(x)

q

∣

∣

∣

∣

(2)

≤

∣

∣

∣

∣

#Pa(g
2M+δ−1) −

#P(g2M+δ−1)

q

∣

∣

∣

∣

+

∣

∣

∣

∣

#Pa(g
2M+δ−1; x) −

#P(g2M+δ−1; x)

q

∣

∣

∣

∣

.

Since the integer g2M+δ−1 is not a palindrome (a fact that is only used to
simplify our notation), we have by a straightforward calculation:

#P(g2M+δ−1) = gM + gM+δ−1 − 2. (3)

On the other hand,

#Pa(g
2M+δ−1) =

2M+δ−1
∑

L=1

#Pa,L =

M−1
∑

`=0

#Pa,2`+1 +

M+δ−1
∑

`=1

#Pa,2`

=
M−1
∑

`=0

(

#Pa,2`+1 −
#P2`+1

q
+

#P2`+1

q

)

+
M+δ−1
∑

`=1

(

#Pa,2` −
#P2`

q
+

#P2`

q

)

=
#P(g2M+δ−1)

q
+

M−1
∑

`=0

(

#Pa,2`+1 −
#P2`+1

q

)

+

M+δ−1
∑

`=1

(

#Pa,2` −
#P2`

q

)

.

Using the hypothesis of the theorem, it therefore follows that

∣

∣

∣

∣

#Pa(g
2M+δ−1) −

#P(g2M+δ−1)

q

∣

∣

∣

∣

≤

M−1
∑

`=0

#P2`+1 · A ξ2`+1 +

M+δ−1
∑

`=1

#P2` · A ξ2`.

Since

M−1
∑

`=0

#P2`+1 ξ2`+1 +

M+δ−1
∑

`=1

#P2` ξ2`

=

M−1
∑

`=0

(g − 1)g`ξ2`+1 +

M+δ−1
∑

`=1

(g − 1)g`−1ξ2`

<
g − 1

gξ2 − 1

(

gMξ2M+1 + gM+δ−1ξ2M+2δ
)

= O
(

gMξ2M
)

,
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we see that
∣

∣

∣

∣

#Pa(g
2M+δ−1) −

#P(g2M+δ−1)

q

∣

∣

∣

∣

= O
(

AgMξ2M
)

. (4)

We now turn to the more delicate estimation of #Pa(g
2M+δ−1; x). To this

end, put M = K + L, where K and L are positive integers to be selected
later. Examining the base g representation of an arbitrary palindrome n in
P2M+δ, we see that n may be expressed either in the form

n = n1 + gK+µn2 + gK+2L+δn3,

or the form
n = n1 + gK+2L+δn3,

where

1 ≤ n1 < gK , gK−1 ≤ n3 < gK , n1 + gKn3 ∈ P2K , (5)

and, in the former case, n2 ∈ P2L+δ−2µ for some 0 ≤ µ ≤ L + δ − 1. The in-
tegers n1, n2, n3, µ are uniquely determined by n. We call n3 the K-signature
of n and write sK(n) = n3. The integer n1 is uniquely determined by n3 to-
gether with the first and third conditions of (5); we call n1 the K-complement
of n3 and write cK(n3) = n1.

Note that the number of palindromes n ∈ P2M+δ with a fixed K-signature
sK(n) = n3 is precisely

1 +
L+δ−1
∑

µ=0

#P2L+δ−2µ = 1 +
L+δ−1
∑

µ=0

(g − 1)gL+δ−µ−1 = gL+δ. (6)

Now, given x in the range g2M+δ−1 ≤ x < g2M+δ, let y be the palindrome in
P2M+δ defined by

y = y1 + gK(g2L+δ − 1) + gK+2L+δy3,

where

y3 =







⌊

x/gK+2L+δ
⌋

+ 1 if g2M+δ−1 ≤ x < g2M+δ−1/2,

⌊

x/gK+2L+δ
⌋

− 1 if g2M+δ−1/2 ≤ x < g2M+δ,

12



and y1 = cK(y3). If x lies in the smaller range, then x < y, while y < x if x
lies in the larger range. In either case, we have

∣

∣

#P(g2M+δ−1; x) − #P(g2M+δ−1; y)
∣

∣ = O(gL) (7)

and
∣

∣

#Pa(g
2M+δ−1; x) − #Pa(g

2M+δ−1; y)
∣

∣ = O(gL),

since there are at most O(1) distinct K-signatures for palindromes between
x and y. Consequently,

∣

∣

∣

∣

#Pa(g
2M+δ−1; x) −

#P(g2M+δ−1; x)

q

∣

∣

∣

∣

(8)

=

∣

∣

∣

∣

#Pa(g
2M+δ−1; y) −

#P(g2M+δ−1; y)

q

∣

∣

∣

∣

+ O(gL).

Now, if n ∈ P(g2M+δ−1; y), then its K-signature lies in the range

gK−1 ≤ sK(n) ≤ y3.

Thus,
#P(g2M+δ−1; y) = (y3 − gK−1 + 1)gL+δ. (9)

On the other hand, if n ∈ Pa(g
2M+δ−1; y) with sK(n) = n3, then either

n = n1 + gK+µn2 + gK+2L+δn3 ≡ a (mod q)

or
n = n1 + gK+2L+δn3 ≡ a (mod q),

depending on the form of n. In the latter case, there is at most one such
palindrome n (for each fixed K-signature n3), while in the former case, since

n2 ≡ g−K−µ
(

a − cK(n3) − gK+2L+δn3

)

(mod q),

the number of such palindromes n is #Pb,2L+δ−2µ for each 0 ≤ µ ≤ L + δ − 1,
where

b = b(n3, µ) = g−K−µ(a − cK(n3) − gK+2L+δn3).

13



Hence, using (6), we derive that

#Pa(g
2M+δ−1; y) =

y3
∑

n3=gK−1

L+δ−1
∑

µ=0

#Pb,2L+δ−2µ + O(gK)

=

y3
∑

n3=gK−1

(

1

q
+

L+δ−1
∑

µ=0

#P2L+δ−2µ

q

)

+

y3
∑

n3=gK−1

L+δ−1
∑

µ=0

(

#Pb,2L+δ−2µ −
#P2L+δ−2µ

q

)

+ O(gK)

=
#P(g2M+δ−1; y)

q
+

y3
∑

n3=gK−1

L+δ−1
∑

µ=0

(

#Pb,2L+δ−2µ −
#P2L+δ−2µ

q

)

+ O(gK).

Using the hypothesis of the theorem, it therefore follows that
∣

∣

∣

∣

#Pa(g
2M+δ−1; y) −

#P(g2M+δ−1; y)

q

∣

∣

∣

∣

≤

y3
∑

n3=gK−1

L+δ−1
∑

µ=0

#P2L+δ−2µ · A ξ2L+δ−2µ + O(gK)

=

y3
∑

n3=gK−1

L+δ−1
∑

µ=0

(g − 1)gL+δ−µ−1 · A ξ2L+δ−2µ + O(gK)

< A(y3 − gK−1 + 1)

(

g − 1

gξ2 − 1
gL+δξ2L+δ+2

)

+ O(gK),

and consequently,
∣

∣

∣

∣

#Pa(g
2M+δ−1; y) −

#P(g2M+δ−1; y)

q

∣

∣

∣

∣

= O
(

AgMξ2L
)

+ O(gK).

Using this estimate together with (2), (4) and (8), it follows that
∣

∣

∣

∣

#Pa(x) −
#P(x)

q

∣

∣

∣

∣

= O
(

AgMξ2L + gL + gK
)

.

We now choose integers K = M/2 + O(1) and L = M/2 + O(1) such that
K + L = M . Since gξ2 > 1 and A ≥ 1, we have

max{gK, gL} = O(gM/2) = O
(

AgM/2(gξ2)M/2
)

= O
(

AgMξM
)

,
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therefore
∣

∣

∣

∣

#Pa(x) −
#P(x)

q

∣

∣

∣

∣

= O
(

AgMξM
)

.

To complete the proof, we need only observe that

ξM = O
(

ξ(log x)/(2 log g)
)

for x in the range g2M+δ−1 ≤ x < g2M+δ, and using (1), (3), (7) and (9)
together with our choice of y3, it follows that

#P(x) = gM +
x

gM
+ O(gM/2);

thus gM = O
(

#P(x)
)

.

Using Theorem 4.3, we can now derive two immediate corollaries.

Corollary 4.4. Let p > g be a prime number such that ordp(g) ≥ 3p1/2.
Then for some constant C > 0, depending only on g, the following estimate
holds for all x ≥ 1 and a ∈ Z:
∣

∣

∣

∣

#
{

n ∈ P(x) |n ≡ a (mod p)
}

−
#P(x)

p

∣

∣

∣

∣

≤ #P(x) · C (0.99)
log x

2 log g
−10p.

Proof. Using the trivial estimate
∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod p)
}

−
#PL

p

∣

∣

∣

∣

≤ #PL

for 1 ≤ L ≤ 10p − 6, it follows from Proposition 4.1 that the estimate
∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod p)
}

−
#PL

p

∣

∣

∣

∣

≤ #PL · (0.99)L−10p+6

holds for all L ≥ 1 and a ∈ Z. The result now follows immediately from
Theorem 4.3.

Corollary 4.5. Let q ≥ 2 be an integer such that gcd
(

q, g(g2 − 1)
)

= 1.
Then for some constant C > 0, depending only on g, the following estimate
holds for all x ≥ 1 and a ∈ Z:
∣

∣

∣

∣

#
{

n ∈ P(x) |n ≡ a (mod q)
}

−
#P(x)

q

∣

∣

∣

∣

≤ #P(x) · C q exp

(

−
log x

4q2 log g

)

.
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Proof. Using the trivial estimate
∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod q)
}

−
#PL

q

∣

∣

∣

∣

≤ #PL

for 1 ≤ L < 10 + 2q2 log q, it follows from Proposition 4.2 that the estimate
∣

∣

∣

∣

#
{

n ∈ PL |n ≡ a (mod q)
}

−
#PL

q

∣

∣

∣

∣

≤ #PL exp

(

−
(L − 10 − 2q2 log q)

2q2

)

holds for all L ≥ 1 and a ∈ Z. The result now follows immediately from
Theorem 4.3.

5 Prime Palindromes

We now come to the main result of this paper.

Theorem 5.1. As x → ∞, we have

#
{

n ∈ P(x) |n is prime
}

= O

(

#P(x)
log log log x

log log x

)

,

where the implied constant depends only on g.

Proof. As in the proof of Theorem 4.3, all implied constants in the symbol
“O” may depend on g but are absolute otherwise.

Assuming that x is sufficiently large, let

h = be log log log xc , y = e−1(log x)1/4h = exp

(

log log x

4e log log log x

)1+o(1)

.

Let
Q = Q(y) =

∏

g3<p≤y

p,

where the product runs over prime numbers. Note that gcd
(

Q, g(g2−1)
)

= 1.
By Mertens’ formula (see Theorem 11 in §I.1.6 of [5]), we have the estimate

ϕ(Q)

Q
=

∏

g3<p≤y

(

1 −
1

p

)

= O
(

(log y)−1
)

= O

(

log log log x

log log x

)

, (10)
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where ϕ(n) is the Euler function.

Now, if n ∈ P(x) is prime, either gcd(n, Q) = 1 or n is a prime divisor of
Q. We apply Brun’s combinatorial sieve in the form given by Corollary 1.1
in §I.4.2 of [5]:

#
{

n ∈ P(x) |n is prime
}

≤ y +
∑

q |Q
ω(q)≤2h

µ(q)Aq,

where µ(q) is the Möbius function, ω(q) is the number of distinct prime
divisors of q, and

Aq = #{n ∈ P(x) |n ≡ 0 (mod q)}.

By Corollary 4.5, we see that

Aq =
#P(x)

q
+ O

(

#P(x) q exp

(

−
log x

4q2 log g

))

.

If q |Q and ω(q) ≤ 2h, then

q ≤ y2h =
(log x)1/2

e2h
,

and since the number of such divisors q is bounded by y2h, we have

∑

q |Q
ω(q)≤2h

q exp

(

−
log x

4q2 log g

)

≤
log x

e4h
exp

(

−
e4h

4 log g

)

= exp

(

log log x − 4h −
e4h

4 log g

)

= O

(

1

log x

)

,

since h = be log log log xc. Therefore,

#
{

n ∈ P(x) |n is prime
}

≤ y + #P(x)
∑

q |Q

µ(q)

q
+ O









#P(x)
∑

q |Q
ω(q)>2h

1

q
+ O

(

#P(x)

log x

)









.

17



Since y = xo(1) and x1/2 = O
(

#P(x)
)

, the first term in this estimate is
negligible. Also, using (10), we have

#P(x)
∑

q |Q

µ(q)

q
= #P(x)

∏

g3<p≤y

(

1 −
1

p

)

= O

(

#P(x)
log log log x

log log x

)

.

Finally, we have

∑

q |Q
ω(q)>2h

1

q
≤

∑

q |Q
ω(q)>2h

eω(q)−2h

q
≤ e−2h

∏

p≤y

(1 + e/p) ≤ exp

(

−2h + e
∑

p≤y

1/p

)

.

Observing that

∑

p≤y

1

p
= (log log y)(1 + o(1)) = (log log logx)(1 + o(1)),

by our choice of h it follows that

#P(x)
∑

q |Q
ω(q)>2h

1

q
≤ #P(x) exp ((log log log x)(−e + o(1))) = O

(

#P(x)

(log log x)2

)

.

This completes the proof.

6 Remarks and Open Problems

Using estimates from [1], it is possible to establish a version of Lemma 3.1
under the weaker assumption that ordp(g) � log p; this yields analogues of
Proposition 4.1 and Corollary 4.4, however the uniform constant 0.99 in those
results must be replaced by a term like exp(−(log log p)−c) for some constant
c > 0.

It seems natural to conjecture that the set of palindromes should behave as
“random” integers, thus one might expect that the asymptotic relation

#
{

n ∈ P(x) |n is prime
}

∼ C
#P(x)

log x

18



holds for some constant C > 0. While this question seems out of reach at
the moment, it should be feasible to derive the upper bound

#
{

n ∈ P(x) |n is prime
}

= O

(

#P(x)

log x

)

using more sophisticated sieving techniques coupled with better estimates
for the distribution of palindromes in congruence classes. It is still an open
problem to show the existence of infinitely many prime palindromes for any
fixed base g ≥ 2.
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