

Mizzou Engineering University of Missouri Engineering.Missouri.edu

Challenges and Achievements: Food Sensors

Sheila Grant, PhD

Dept of Biological Engineering

Contamination - Radiation

- Radiation
 - Radioactive particles (iodine 131 and cesium 137)

Contamination – Foodborne Pathogens

Each year in the US, 76 million people suffer foodborne illnesses with over 5000 deaths; Yearly costs are estimated to be 5 to 6 billion dollars

Challenges – Tracking the Source

Raw food – contaminated during slaughter, growing, harvest Processing; Transportation; Storage; Final Preparation

Ideal Sensor for Food Pathogen Detection

- Fast response
- Accurate identification of toxin
- Low limit of detection
- No false negatives/false positives
- Inexpensive
- Easy to use
- Multi-Analyte
- Disposal/reusable

Sensor/Detectors

 A device that converts signals of one type of quantity into an equivalent signal of another type of quantity.

Biosensor

Utilizes a biological agent as the sensor

Electrochemical - potentiometric, voltammetric (amperometric) conductometric, FET-based

Piezo-electric

Optical – fluorescence, reflectance, absorption SPR, etc.

Mizzou Engineering | Engineering.Missouri.edu

Technology Strength: Nanotechnology

- Sensing Mechanism
 - Nanomaterials
 - Metallic nanoparticles (Au, Ag)
 - Metallic nanorods
 - Carbon nanotubes
 - Quantum dots
- Sensing Platforms
 - Nanofibers
 - Nanoporous substrates
 - Nano-cantilevers
 - Cell-based sensors
- Sensor Packaging
 - microfluidics

Nanowire Sensor Substrates

<u>Advantages</u>

- High surface to volume ratios
- Enhanced sensitivity
- Rapid detection
- Low power demands
- Miniaturization of sensor systems

Summary of Nanobiosensor Techniques

Sensing Technique	Analyte Type	Limit of Detection	Reference
QD/Nanoparticles	Oligonucleotides	~2 zM	Yeh et al. (2006a)
LSPR	Tau protein in CSF	10 pg/ml	Vestergaard et al. (2008)
Nanowire	Streptavidin	~70 aM	Stern et al. (2007a)
Cantilever	1,1-difluoroethane gas	< 1 attogram	Li et al. (2007)
Nanopore Cell-based	ssDNA Variety of toxins, pathogens	DNA sequences	

Questions?

Mizzou Engineering
University of Missouri
Engineering.Missouri.edu