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ABSTRACT 

 In this thesis, we calculate transport properties of amorphous materials in one, 

two, and three dimensions.  We take into account site disorder, manifest as a random 

variation of the locations of atomic species.  We employ a resistor network model as a 

theoretical framework for calculating transport characteristics. 

 The numerical calculations we employ are based on an iterative algorithm used as 

an improvement over the direct solution of the relevant linear systems.  The Monte Carlo 

calculations are used to validate analytical perturbative treatment valid in the bulk limit. 

 In approaching random resistor networks, we discuss and apply a paradigm based 

on the connectivity of nodes instead of mesh currents where the applicability is limited to 

a specific set of geometries.  We argue that this perspective is very useful in strongly 

disordered systems, especially for three-dimensional cases. 
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CHAPTER 1 

INTRODUCTION 

 “…Into a thousand parts divide one man and make imaginary puissance; Think 

when we talk of horses, that you see them printing their proud hoofs I’ the receiving 

earth; For ‘tis your thoughts that now must deck our kings, carry them here and there; 

jumping o’er times, turning the accomplishments of many years into an hour glass…” 

-William Shakespeare, King Henry V 

1.1: Preliminary Remarks 

 The great bard of England has suggested that the use of a compact cast of actors 

on a narrow stage faces a daunting task if the canvas is as broad as the epic conflict 

between two nations.  Similarly, theoretical physics finds no mean challenge in giving a 

cogent description of systems as intricate and diverse as the materials one examines in 

condensed matter physics.  Single atoms are finite, and have energy levels and other 

physical characteristics that emerge, with some assistance from modern computational 

devices from a solution of the Schrödinger equation. 

 Nevertheless, when a hoste of more than a few hundred atoms are joined together, 

nontrivial properties may emerge which are not seen in the individual atomic 

components.  As an example, carbon is a relatively simple atom, and the six electrons 

determine its chemical characteristics that each single carbon atom possesses.  Moreover, 

among the six electrons which are bound to each carbon species, two are even more 

tightly bound, and the 1s core electrons are involved to only a limited extend in chemical 

processes. 
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 Hence, one might say that to a great extent the chemistry of carbon is determined 

by but four electrons.  Certainly, one is aware that the properties of carbon-based 

compounds are as complex as they are diverse.  Even elemental carbon exists in 

allotropic forms with characteristics so distinct from one another as to seem to be 

different materials altogether.  Diamond and graphite are two salient examples, and even 

at a superifical level significant contrasts are evident.   

Diamond is among the hardest materials known, due in large measure to the fact 

that a single crystal, easily visible to the human eye, may be viewed as a giant 

macroscopic carbon molecule held tightly together by covalent bonds among the atomic 

species.  Diamond, though resplendently transparent to radiation in the optical range, 

does not permit an electrical current to flow in the absence of dopants due to a large band 

gap. 

On the other hand, graphite is a very soft material, quite opaque in the bulk, and 

may be regarded as made up of individual monolayers loosely held together by Van der 

Waals interactions, and in the modern laboratory easily dislodged.  The individual layers, 

made up of carbon atoms arranged in a two-dimensional honeycomb lattice, are as 

mechanically robust as bulk graphite is soft, and are under consideration for use as 

semiconductor substrates that ultimately may supplant silicon.  Just as individually 

simple species such as carbon may join together and exhibit much richer behavior, 

theoretical constructs also may have simple characteristics when broken down to 

individual components while more complicated characteristics emerge on a larger scale. 

Resistor networks are such an example.  Simple networks consisting of a handful 

of resistive elements are often relegated to their native habitat, the second semeseter of a 
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first year college physics course.  The arrangements most often considered in the 

undergraduate classroom are resistor networks assembled in two-dimensional geometries.  

Often, such configurations are comprised of one or more square loops, where the resistors 

double as line segments defining the square networks.  However, in more complicated 

situations such as those that we examine, nontrivial characteristics emerge not seen in 

simple networks on a small scale.  For very large random resistor networks where there 

us a broad stochastic variation in the resistive elements comprising the network, the 

transport characteristics may be governed by the traits of a phase transition known as a 

percolation transition.  In such strongly disorderd systems, the current follows an 

irregular and convoluted path, much as a bolt of lightning picks a haphazardly jagged 

course across the sky. 

1.1.1: the Use of Mesh Currents in the Simple Case 

In simple two-dimensional geometries, the resistor networks may be presented in 

conjunction with two rules.  The first, which we’ll revisit in multiple ways and from 

multiple perspectives in this dissertation, is an expression of local charge conservation 

often called Kirchhoff’s First Rule in the contrext of electrical circuit problems.  

Conceptually, the charge conservation constraint, expressed at a node on junction in a 

circuit, is easy to grasp intuitively.  If at any point, there is a current imbalance, charge 

will accumulate and ultimately will counteract the imbalance.  This characteristic is a 

direct consequence of local charge conservation.   

Hence, at steady state, there are two conditions that cannot under any 

circumstances hold.  First, there may not be an indefinite influx of current into a node in a 

circuit.  Second, it is not possible to have a net flow of current out of an individual site.  
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Instead, the total of the currents entering and departing must be zero, so that a steady state 

accumulation on depletion of charge does not occur.  This precept is also known as 

Kirchhoff’s First Rule in discussions of circuit analysis [1].  The very name “circuits” 

suggests the form of Kirchhoff’s Second Rule, which sometimes is also called the “Loop 

Rule” [1]. 

The loop rule, as the name implies, is most readily brought to bear in situations 

for which the network geometry is easily decomposed into discrete loops.  The loop rule 

exploits the fact that an electrostatic potential is a conservative field, so the net changes in 

the potential as one moves about the loop (except in the case that a voltage source such as 

a battery is incorporated in the loop) will vanish.  A mesh current formalism is 

compatible with the loop rule, and the analysis of a circuit in terms of mesh currents 

affords an elegant and efficient solution in cases where the lattice is conveniently 

decomposed into individual loops.  The square lattice with connections only among 

nearest neighbors is a canonical example of a situation where one profits by operating in 

terms of mesh currents. 

1.1.2: Situations that are not Amenable to Mesh Current Analysys 

Although the decomposition of currents in a network into circulating loops of 

current provides a succinct solution when mesh current analysis is a viable technique, 

there are many situations in which the network isnot readily broken apart into discrete 

loops.  In such a circumstance, the mesh current paradigm would be difficult to bring to 

bear. 

One situation that certainly may frustrate the decomposition into loops would be 

the case, even in two dimensions, where nodes in a resistor network are connected to 
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many other sites with conductive links.  An extreme case would be a scenario where in a 

large square lattice, each site is joined to every other site with a resistor spanning the 

distance between sites.  Certainly, there would in such a situation be a maddening array 

of wire radiating in countless directions, and the prospect of analyzing the circuit 

characteristics in terms of individual loops would be a daunting one indeed. 

Nevertheless, even a much simpler connectivity scheme where sites in a square 

lattice are connected to the four nearest neighbors as well as the four next-nearest 

neighbors would frustrate an analysis in terms of mesh currents.  A fundamental 

difficulty associated with analysis involving loops is the fact that loops are nonlocal, and 

are difficult to describe in a compact way in a general lattice geometry. 

1.1.3: The Node Connectivity Paradigm 

Whereas there are many situations in which visualizing a lattice in terms of 

constituent loops is a difficult task, the node-connectivity scheme is easy to implement, 

because one need only understand the local characteristics of a node.  By “local 

characteristics”, we mean the list of all neighbors a site is linked to as well as the 

resistances of the wires that join the site under consideration to the neighboring nodes.  If 

the local structure of each site is recorded in this fashion, all of the transport 

characteristics may be described in terms of this connectivity pattern.  This holds true 

whether sites are connected only to nearest neighbors, or in an extended scheme in which 

a node in the resistor network is connected to many other nodes much farther away than 

the small cluster of nearest neighbors. 

As we consider in this dissertation, the node-connectivity picture may be used in a 

variety of ways to calculate all observables of interest for a specific resistor network, 
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regardless of its intricacy.  As we will see, there are three fundamental ingredients needed 

to approach an arbitrary network and understand its charateristics with regard to charge 

transport. 

I. The node connectivity scheme is specified for each site in the lattice 

II. Ohm’s Law is utilized.  Consider two nodes  and  where the site potentials are, 

respectively,  and .  If the resistor connecting  and  has a value , 

then the current which is set up between the two sites is given by 

 

III. The centerpiece of the node-connectivity perspective, and what transforms it into 

a technique for quantitative calculations is the local charge conservation 

constraint, where we insist for a given site that no net current either depart 

from or enter the node under consideration. 

Amorphous materials present many interesting challenges in materials science.  

To model how charge propagates through an amorphous material, it’s advantageous to 

use a network of randomly-placed resistors.  For the 2D case, calculating the amount of 

current flowing through each resistor can be done numerically using linear solvers.  

However, the 3D case is far less trivial.  Specifically, an iterative solution can be 

achieved by the temporary violation and ultimate restoration of Kirchoff’s Laws of 

current conservation.  This process is an algorithm that leads to a successively improved 

result for the node potential.  The refinement is achieved in a steady fashion, as each site 

is visited in succession to cancel currents departing from or entering the node.  

Proceeding in this fashion is analogous to attempting to remove a ripple in a carpet by 

stepping on it.  However, in our case, the process is sound because the “ripple” 
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systematically becomes smaller, diminishing exponentially with the nuymber of 

“stomps”.  It is also possible to construct a system of sparse linear equations that can be 

solved efficiently using what’s called the conjugate-gradient algorithm. 

1.1 The Node-Conductivity Method 

 A simple manifestation of the Node-Conductivity Picture is the Wheatstone 

bridge.  The following configuration of resistors is taken into consideration: 

 

 

 

The voltage across nodes I and II is unknown.  The first step in the procedure is to 

calculate the currents that locally satisfy Ohm’s Law, with the initial condition 

 

The system will have the following configuration: 

 

V 0 

r1 

r2 

r3 

r4 

r5 1 2 

I 

II 
Figure 1: Wheatstone Bridge Configuration 
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Initially, nonzero currents are only present on the links between nodes 1 and I and 1 and 

II.  Ohm’s Law is used to determine these currents. 

 

 Current conservation must be enforced.  To achieve this, voltage shifts at nodes I 

and II will be introduced.  These voltages are  and .  Of course, current in the 

first node must be conserved.  Consequently, the charge flux into the first node is 

 

and the flux out of I is initially zero.  However, this local charge non-conservation may 

be remedied by activating  in this context.  Therefore, the charge flux out will be of 

the form 

 

. 

Equating the two equations, we find 

 

 Similarly, we examine the second node, node II.   

 

Activating  leads to an expression of the form 
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, 

thereby giving us a system of equations to be solved for  and .  Though tedious, 

this system will solve them in full generality without a great deal of effort.  Furthermore, 

one finds the following: 

. 

 Having each resistor be identical forms the simple case.  This leads to the 

following: 

. 

Similarly, 

 

This symmetry is significant. 

This encapsulates the analytical scheme that yields the set of linear equations, 

which in turn determine the value of the voltage shifts.  From this, the overall 

conductance and resistance of the system can be calculated.  However, it becomes quite 

inconvenient to solve large sets of linear equations; it’s computationally expensive.  It 

becomes imperative to develop an iterative technique.  In this case, only the lattice 

connectivity need be known.   
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In this dissertation we will use iterative algorithms in conjunction with the current 

conservation condition.  On the one hand, we will use computer simulations to calculate 

the currents and node voltages in large-scale random resistor networks.  On the other 

hand, we also will use the same fundamental ideas to carry out analytical calculations in 

closed form, which we validate with the numerical simulations. 

1.2: Comments as to Structuring of the Thesis 

In this dissertation, we consider a sequence of topics designed to successively 

improve our understanding of resistor networks and the condensed matter systems they 

are at times used to represent.  We will see that the charge conservation condition is not 

merely a physical constraint, but a point of departure for a variety of methods for 

obtaining physical observables in a quantitative fashion. 

In Chapter 2, we develop the node-connectivity perspective by examining finite 

sized simple examples.  In the course of our study of a few small resistor networks, the 

technique for relating the potential at a given node to those of the neighboring nodes is 

refined, polished, and articulated in a concise and succinct manner, leading to a compact 

expression based on charge conservation and the node connectivity point of view. 

In Chapter 3, we introduce the Fourier variables that are imployed elsewhere in 

the dissertation to useful effect to obtain closed form expressions for transport 

characteristics of random resistor networks.  Our principal aim for Chapter 3, however, is 

to consider current injection scenarios and to show that there are theoretical intricacies of 

the current injection scenario that limit its utility as an analytical technique. 

In Chapter 4, we describe and apply an iterative numerical technique for 

calculating transport characteristics.  The charge conservation condition and the node-
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connectivity point of view are at the heart of the iterative scenario.  We consider an 

instance of bond disorder, finding the bulk conductivity to be robust with respect to the 

introduction of mild, and even moderate, disorder. 

In Chapter 5, we examine lattices with a variety of geometries and hopping 

schemes in the variable range hopping picture.  Although the calculations make no 

attempt to take into account disordering influences, we later see through explicit 

calculation that many systems are robust with respect to mild disorder. 

In Chapter 6, we use a one-dimensional system with nearest neighbor connectivity 

as a prototype for the development of an analytical technique for calculating the bulk 

conductivity that we subsequently apply to systems in two and three dimensions.  We 

validate the method in the one-dimensional case where simply summing resistances 

provides an independent way to check the extent to which the iterative technique is 

yielding the correct results order by order in the perturbing influence.  We also review the 

machinery used to construct Padé approximants.  The latter are used in this thesis to 

extend the validity of a perturbative series beyond the regime where it normally would be 

applicable. 

In Chapter 6, we use in a broad sense the analytical formalism validated in the 

one-dimensional case, but we consider bond disordered two-dimensional systems.  We 

pursue the calculation of the perturbative series to third order, and we evaluate the results 

by comparison with conductivity data gleaned from direct numerical simulation.  Also in 

the context of the numerical calculations, we examine the extent to which strong disorder 

may mimic the characteristics of critical behavior in the vicinity of a percolation 

transition.  In particular, we consider the degree to which the computational cost of the 
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calculation may be used as a gauge of the closeness of a resistor network to critical 

behavior at the percolation phase transition. 

In Chapter 8, we extend the analytical perturbative treatment to three-dimensional 

bond disordered systems.  As square symmetry proves useful in the theoretical 

calculations in the two-dimensional context, we find that cubic symmetry may be 

systematically exploited for the calculation in three dimensions to obtain the conductance 

to third order in the perturbing influence responsible for random disorder. 

Additionally, the calculations in Chapter 8 are extended to a three-dimensional 

case representing variable range hopping in the absence of chemical disorder, but with 

positional disorder taken into account. 
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CHAPTER 2 

AN APPLICATION OF CHARGE CONSERVATION AND NODE CONNECTIVITY 

2.1: Preliminary Comments Regarding Conservation Rules 

 We’ll now consider more complicated resistor networks and we will give 

attention to specific examples. 

 

 
 
 
Here, it’s advantageous to work in terms of the connectivity scheme, rather than dealing 

with mesh currents.  This logic will carry through to the three dimensional case, where 

application of the mesh current method is difficult or impossible. 

Figure 2 shows 7 nodes that are connected to each other.  A voltage V is applied 

at node 1; let the voltage at node 7 be zero .  The potential at the remaining five 

nodes  is unknown, but can be determined using the iterative scheme. 

The connectivity of each node in the lattice must be taken into consideration, as 

current flow greatly depends on this as current flows through the system.  Node 1 is 

V1 1 

2 

3 

4 

5 

6 

7 V7 

r12 

r13 

r14 

r34 

r24 

r35 

r26 

r56 

r47 

r57 

r67 

Figure 2: A random network of resistances with an irregular connectivity pattern for 
the nodes 
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connected by resistors  to nodes 2, 3, and 4.  We first set the potential at the 

undetermined nodes (2 through 6) to zero.  The currents are simply determined by Ohm’s 

Law, but current conservation is not yet satisfied.  This requires the voltage at each 

undetermined node be adjusted until local charge conservation isn’t violated.  Each time 

the nodes are visited, the required voltage change decreases, hence the iterative nature of 

this approach.  Each sweep through the lattice repairs errors from the previous iteration, 

but will introduce inaccuracies as well. 

2.2: Concrete Examples of Simple Resistor Networks 

Let’s first consider a simple square lattice as shown below: 

 

 

Initially, a voltage V is activated at node 3, while the voltages at nodes 1, 2, and 4 are 

zero.  Although zero initially, the voltages at nodes 1, 2, and 4 will shift later.   

 Now the iterations will be performed.  We see that current will accumulate at 

node 2; this current flows from node 3, and has a value of .  On the other 

hand, , and there is no current flowing from node 2, which violates current 

0 

V r 

1 

2 3 

4 

r r 

r 

Figure 3: A simple square resistor array 
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conservation.  The potential at node 2 needs to be adjusted to compensate for this.  This 

results in the activation of a voltage .   

 The current flowing into node 2 will be , and the current flowing out to nodes 2 

and 3 will be .  For node 2, this will partially cancel the current entering from node 

3.  The charge flux is equalized by choosing  such that 

 

where  is the flux entering and  is the flux departing.  Similarly, we’ll 

consider node 4.   

If a voltage  is activated, the charge flux imbalance will be corrected.  In 

this unique example, the first sweep solved the problem, so additional iterations aren’t 

needed.   

 

 

0 

V r 

1 

2 3 

4 

r r 

r V/2 

V/2 

Figure 4: a four-node square resistor array with 
a potential difference imposed across the 
diagonal 



 
 

16 

The current flowing from node 3 to nodes 4 and 2 is , therefore the resistance of a 

square with voltages applied to diagonally opposite node is simply , which follows from 

Ohm’s Law ( ). 

 We’ll now consider a more streamlined approach: operating in terms of imposed 

voltages.  This will lead us to the conclusion that we’ve been dealing with discretized 

versions of Laplace’s Equation.  Previously, the calculations had been done in terms of 

currents; we can now dispense with the intermediate calculation of currents that are set up 

by boundary voltage.  We may use the iterative technique developed previously, or we 

may set up a set of linear equations that can be solved using Gaussian elimination, as well 

as with a method known as the conjugate gradient algorithm for sparse systems.  First, 

we’ll develop the formal equations and find the solution for a few special cases.  Next, 

the iterative technique will be examined. 

 As always, charge conservation must be satisfied.  We’ll consider a set of nodes  

where the total number of nodes is equal to .  The following are examples: 

 

 

1 

3 2 

4 

Figure 5: A simple resistor network 
with four nodes and four links 
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1 

Figure 6: A 3x3 square network with nearest neighbor 
connections only 

Figure 7: A 3x3 square network with connections 
extended to next-nearest neighbors 
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The number of nodes is the same in the last two figures ( ), but the connectivity 

schemes of the two figures are quite different. 

2.3: The Charge Conservation Condition in the General Case 

 Some nodes ( ) have present potentials that cannot be changed, but we 

are able to change the potentials on the remaining nodes.  This is done in such a way so 

as to enforce current conservation at each node.  Once again, we must insist on the 

condition .  Each of these are calculated in terms of the voltages of node  and 

the surrounding nodes  to which it is connected.  Displayed in Figure 8 are six such 

nodes. 

 

 

 

Now we’ll determine the relationship between  and .   

 The net current will therefore be 

. 

rik1 

k2 

k3 

k4 

k5 

k1 

k6 

rik2 

rik3 

rik6 
rik5 

rik4 

Figure 8: A single node with an intricate connectivity pattern 
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This quantity must vanish, such that 

 

, 

which yields 

. 

The system of equations for the voltages at the nodes is constructed in this way.  This is a 

more streamlined approach because the intermediate current calculation can be avoided. 

2.4: Concrete Examples Examined in Terms of the Streamlined Formalism 

2.4.1: Two Simple Cases 

 Now let us solve the equations for two special cases.   
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r 

V0/2 

V0/2 

Figure 9: A 2x2 network biased along the 
digaonal 
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We’ll consider the square arrangement in Figure 9 with a voltage  applied to node 3, 

and a voltage  applied to node 2.  At node 4 the current is 

 

so that .  Similarly,  

 

so that . 

 A similar approach can be used for a more complicated situation.   

 

 

A voltage  is applied across the entire grid.  To emphasize symmetry, we choose  

and  at the contacts since the voltage is known up to a constant.  Now set up the 

potentials for the remaining nodes.  At node 2, we see that 
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Figure 10: A diagonally biased 3x3 resistor network 
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For node 3, we find that 

 

For node 4, the corresponding expression is the following: 

 

For node 5, the expression is the following: 

 

For node 6, the expression is the following: 

 

Likewise, for nodes 7 and 8 we have the following expressions: 

 

 Using symmetry, we can make simplifications.  We know that , , 

and .  This leads to the following substitutions: 
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We now have four equations and four unknowns, as opposed to the previous situation in 

which we had seven equations and seven unknowns.  Furthermore, we know that the 

diagonal spanning nodes 1 and 9 is a nodal line.  This means that .  

Therefore, we know that 

 

Now all the potential values are known.  The figure is therefore redrawn with the voltages 

indicated in the appropriate locations. 

 

 

2 

9 

3 

4 
5 

6 

7 8 

1 

V0/2 
r r 

r r 

r r 

r 

r r r 

r r 

-V0/2 

-V0/6 V0/6 

V0/6 

-V0/6 

V=0 

V=0 

V=0 

Figure 11: A diagonally biased 3x3 resistor network with node voltages 
indicated 
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 The equivalent resistance needs to be determined.  We begin to do this by 

calculating the current flowing into node 1 and emerging from node 9.  The current 

flowing from node 1 to node 2 is .  Similarly, the current that flows 

from node 1 to node 4 is .  The total current is , so the equivalent resistance 

is 

 

2.4.2: A Sixteen Node Lattice with a Diagonal Potential Bias 

 To conclude to two-dimensional case we can examine an even larger mesh, where 

Kirchoff’s law and symmetry arguments can once again be employed to calculate 

voltages at each node. 
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There are sixteen nodes in this mesh, but symmetry properties can greatly simplify the 

calculation.  Firstly, we can see that .  From symmetry, we also know that 

, , , , and .  Just as in the previous example, a 

diagonal nodal line spans nodes 4, 7, 10, and 13.  This means that .  

The modified figure is shown below: 
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Figure 12: A 4x4 resistor network 
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Across the nodal line we know that , , , , and 

.  This leaves , , and  to calculate using symmetry properties. 

 

Via substitution, we see that  
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V2 V3 
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V2 
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Figure 13: A 4x4 resistor network with diagonal antisymmetry and bilateral symmetry 
constraints implemented 
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Therefore we can find the three voltages: 

 

The mesh then takes the following form: 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

The total current is .  The equivalent 

resistance is therefore: 
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-3V0/13 -V0/13 

Figure 14: A 4x4 resistor network with node voltage indicated 
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2.5: Summary and Comments on Results 

 In this Chapter, we have labored to develop a more concise formulation of the 

charge conservation rule in order to express it cleanly and crisply as a relationship among 

neighboring potentials.  We have seen by explicit consideration of several concrete 

examples that all pertinent information that may be determined from a resistor network is 

governed and determined by the voltages at the lattice nodes.   

 We have also seen that symmetry principles (e.g. bilateral symmetry and 

antisymmetry across a diagonal) may work to our advantage and facilitate the calculation.  

We ultimately will apply symmetry principles in a grander way to fashion an analytical 

technique. 
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CHAPTER 3 

PERIODIC RESISTOR NETWORKS WITH CURRENT INJECTED AT SPECIFIC 

NODES 

3.1: General Comments About Current Injection Scenarios  

 Now the case of infinite lattices will be examined.  The equivalent resistance of 

such infinite systems will be calculated using translational invariance.  Fourier variables 

will be used to perform this calculation on periodic square and cubic lattices.  Although 

we examine the current injection scenario, we do so for the sake of providing a 

comprehensive treatment of phenomena in resistor networks.  In fact, we ultimately will 

settle on a method which does not involve the manipulation of voltages at specific sites in 

the lattice, since doing so introduces significant theoretical intricacies and thereby 

frustrates obtaining close form results.  Nevertheless, in Chapter 3 the reader is afforded a 

glimpse of the Fourier variables and the orthogonality principle that facilitates Fourier 

analysis and respresents the essence of its utility.  We also see in action the use of square 

symmetry, which we use again in similar ways later in this dissertation. 

3.2: One-Dimensional Geometries 

3.2.1: The Periodic Boundary Conditions 

 It’s important to find the conditions for potentials for a large periodic lattice.  

Excluding nodes in which the potential is imposed, the charge conservation rule can be 

applied-that the charge flux entering a node is equal to the charge flux departing from the 

node.  To begin, a periodic linear array will be examined: 

 
0 0 3 1 2 3 2 1 

Figure 15: A periodic one-dimensional resistor array 
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Figure 15 shows the labeling scheme employed.  Four distinct nodes are displayed, 0 

through 3, with the pattern repeating.  More generally, for  nodes, the labeling would 

begin at 0 and end at .   

3.2.2: Application of the Charge Conservation Condition 

 In some parts of the circuit the node voltages will not be specified in advance.  

The conditions on these node voltages are such that local charge conservation must hold. 

 

 

 

In Figure 16, the focus is on the node labeled “j”.  Since charge flux must balance, we 

know that 

. 

If the currents to the left and right are both zero, we know that 

. 

This is the one-dimensional discrete version of the Laplacian Equation .   

3.2.3: Introducing the Fourier Variables 

 Fourier variables will be used here to facilitate the calculation.  Periodicity and 

translational invariance conditions suggest that the following relation should be 

employed: 

j j-1 j+1 

Figure 16: Illustration of the connectivity scheme 
for the one-dimensional system 



 
 

30 

. 

The Fourier components respect the periodicity of the system. 

 Now the current conservation formalism will be implemented in a way that makes 

contact with the current sources.  This will be done using the Kronecker Delta notation 

such that we specify the injected current at various points.  This current is given by 

 

In terms of Fourier variables,  

 

Furthermore: 

 

3.2.4: The Orthogonality Condition for the Fourier Variables 

Next, the idea is to multiply both sides of this expression by  and sum over 

all values of the position index variable .  Only certain values of  will yield a nonzero 

result, so this will be used to uniquely calculate the Fourier coefficients .  The result 

can be exploited for the partial summation of geometric series, which holds that 

, so 
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 Let’s consider the summation 

 

The denominator vanishes in all cases, but the result is undefined when the denominator 

vanishes.  This case needs to be examined closely, where .  From Euler’s 

Formula, this would mean that  where  is an integer.  The simplest choice is 

to let  so that .  The same would be true if , and only this case is 

compatible with the summation over .  Then we find that 

 

The expression for the Fourier coefficient is then 

 

where the appropriate trigonometric identities have been used. 
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3.2.5: The Current Injection Condition 

 Now a case will be examined where a current  is injected at the point  and 

withdrawn at the point .  We obtain 

 

where we have used the face that . 

 Now, the case where  will be considered.  As previously, the Fourier 

coefficients will be calculated. 

 

Noting that , it simplifies to the following expression: 

. 

Now the voltages can be calculated.  Summing the Fourier components and letting 

, one finds that . 

 

 

 is calculated in a similar way. 
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 Now the current fluxes will be calculated.  For point 0, .  For 

point 1 the flux vanishes.  For point 3, .  Therefore, everything is 

developing as predicted.   

 

3.3: Two-Dimensional Geometries 

 Here the two dimensional prototype will be examined.  This result will be 

pertinent to more complicated lattice structures of higher dimensionalities.  The treatment 

here will bear similarities to the approach for the one-dimensional system.  As 

previously, we will operate in terms of Fourier coefficients. 

3.3.1: The Charge Conservation Condition for the Square Lattice 

 In the two-dimensional system, Kirchoff’s Law forbids the accumulation of 

charge.  Again, this current conservation condition serves as a foundation for our 

calculation. 

I0r/3 I0r/3 -I0r/3 

r r r r r 

0 0 

0 1 3 2 

-I0r/3 

Figure 17: A periodic one-dimensional resistor array with a three-node 
supercell 
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Using Figure 18 as an example, we know from Kirchoff’s Law that  

 

. 

This is the discrete form of the Laplacian Equation in two dimensions. 

 In some cases, current will be injected into a node; this is signified with the 

Kronecker Delta symbol.  Then, we operate in terms of the Fourier components 

appropriate for two-dimensional systems.  We find that 

 

 

where  is the current flow from a particular node, and eventually the Kronecker 

Delta formalism will be applied when the number of sites of nonzero flux is reduced by 

two.   

r r 

r 

r 

(j1+1)j2 (j1-1)j2 

j1(j2-1) 

j1j2 

Figure 18: The nearst neighbor connectivity scheme illustrated for the 
two-dimensional resistor network 
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3.2.2: Introducing the Fourier Variables in Two Dimensions 

In terms of Fourier components, we have , where the indices 

 and  are integer values. 

Now, this relation is inserted into the Helmholtz Equation.  The Helmholtz 

Equation is the version of Laplace’s Equation generalized to allow for nonzero fluxes 

into and out of nodes.  Once again, orthogonality of the Fourier elements will be used to 

calculate the Fourier coefficients.  We start with 

. 

 

 

 

Multiplying both sides by the Fourier element  will reveal the orthogonality 

condition.  The factor  is the discrete version of the 

Laplacian operator in Fourier space.  This term is “local”, meaning that in Fourier space 

there is no connection among the coefficients corresponding to distinct wave numbers.  In 

analogy with the one-dimensional case, we find 
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3.3.3: Current Injection in the Case of the Square Lattice 

Now an example will be examined.  A large lattice with a current source and sink 

at adjacent nodes is shown in Figure 19: 

 

 

 

From this, we see that 

€ 

I j1 j2 = I0 δ j1 j1 '
δ j2 j2 '

−δ j1 j1 '+1[ ]δ j2 j2 '( ). 
 

+I0 -I0 

(j1’+1, j2’) (j1’, j2’) 

Figure 19: The current injection scenario with source and drain 
separated by a single resistance link 
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From this source and sink configuration, we find that 

 

                                       

This provides the means to calculate the voltages on nodes  and , 

which in turn will allow for the calculation of the potential difference and equivalent 

resistance with the help of the following expression: 

 

Again, we note that . 

-I0 +I0 

(j1’, j2’) (j1’+1, j2’) 

r r r r 

r r r 

r r r 

r r r r 

r r r 

Figure 20: Illustration of the current source and current sink 
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 The voltage at  is given by .  This sum may be 

rewritten in order to simplify its evaluation.  Particularly, the indices can be relabeled 

such that  

 and  

Then  and . 

Hence, 

 

                                               

This will be used to calculate the potential at  and .  Noting that in 

general , we see that 

 

and 
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where cancellation in the exponent has been performed.  So the potential difference has 

the form 

 

This is leading up to the exact calculation of the resistance. 

3.3.4: Applying Square Symmetry 

 The dummy indices for the  expression may be exchanged to write 

 

Combining the two  expressions ultimately yields 

 

As  the expression yields .  So .  Applying 

similar logic yields that in three dimensions, .  So in general, one finds (e.g. for a 

hypercubic lattice) that . 

3.3.5: The Continuum Limit and Lattice Green’s Function 

 Now a very large lattice will be examined by making n very large.   
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Let us define  and .  One then finds that 

 

 Shifts in the  and  indices will become smaller and smaller where  

and  are the separations between adjacent  and  numbers.  Ultimately, the 

expression becomes an integral, so we find that 

 

. 

Notably the result doesn’t depend on the size of the lattice.   
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Without altering the result, the region of integration may be shifted to better 

exploit symmetries of the integrand.  So .  

Since , we know from symmetry arguments that the imaginary 

term vanishes upon integration.  Thus 

 

Discretion must be exercised when evaluating this integral.  Using contour integration 

techniques, at least one of the integrals may be evaluated, but ultimately the calculation is 

nontrivial.  This expression is an example of a lattice Green’s function.  Lattice Green’s 

functions are interesting in their own right, and have been the object of theoretical study 

[2].  

 There are significant analytical difficulties in calculating currents and potentials in 

the presence of localized current sources.  For this reason, in subsequent discussion we 

Figure 21: Illustration of the recentering of the domain of integration 
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dispense with currents injected or withdrawn at specific sites.  In the manner, we will be 

able to consider the case of interest, a bulk system subject to a global potential difference.  

We have discussed the case where the current sources are separated only by a single 

resistor link.  However, the calculation is more intricate.  An elegant and quite readable 

discussion of this more general situation may be found in the relatively recent literature 

[3]. 
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CHAPTER 4 

ITERATIVE ALGORITHM FOR THE NUMERICAL CALCULATIONS OF 

TRANSPORT CHARACTERISTICS 

4.1: The Advantage of Periodic Boundary Conditions 

 We found in the previous chapter that the consideration of specific current 

cources is not without significant challenges in the theoretical analysis.  Additionally, the 

use of individual locations where current is injected is an artifice not generally 

appropriate to the bulk system where it is difficult to access specific lattice sites.  

Consequently, we seek a different approach and we use periodic boundary conditions for 

the potentials of the lattice nodes. 

 The use of periodic boundary conditions is a departure from the methods most 

often described in the literature where, e.g., a certain percentage of the nodes in proximity 

ot the anode and cathode plates are used as current injection sites, as illustrated below. 

 

 

 

 

Imposed Voltage 
Figure 22: General scheme for a three-
dimensional geometry which encorporates 
electrode zones, to the left and right of the central 
portion marked with dashed lines 
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In some cases, the “electrode region” may correspond to 5% of the nodes closest to the 

anode plate as well as 5% of the nodes closest to the cathode plate.  However, in this 

manner we again have an artificial situation where specific voltages are applied to 

individual sites.  Moreover, there are subtleties to work out such as what portion of the 

sites in the lattice is given over to be a part of the electrodes.  These concerns are peculiar 

to the specific experimental arrangement and geometry, and they do not correspond to 

bulk material characteristics. 

 Our program, however, is to work out the bulk characteristics to the extent 

possible without committing ourselves to a particular setup.  We hope to operate in the 

context of the thermodynamic limit, which is another label ascribed to the condition of 

having the system size so large that, practically speaking, the system is infinite in size.  

What this means is that any transport characteristic we wish to computeis not influenced 

to a significant degree by the size of the system. 

 An appropriate question to ask is how relevant is the thermodynamic limit for 

samples which may be prepared for analysis in experiment?  Consider a very small 

sample a single micron (one thousandth of a millimeter) on a side.  Such an object will be 

so small that a billion cubic micrometer samples would fit in a volume the size of a sugar 

cube.  Nevertheless, for the purpose of calculating a variety of physical quantities, the 

cubic micrometer sample may be considered to be a “bulk” system, as we shall consider. 

 For many purposes, a measure of the extent to which the bulk limit has been 

reached is the total number of particles contained in the system.  Let us suppose that each 

atom occupies a cubic region three Angstroms or 0.3 nanometers on a side.  Then to find 
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the number of particles contained in the sample under consideration, we must divide its 

volume by the volume of the 27 cubic Angstrom cell.  One finds in this specific instance 

that the total number of atoms is given by 

 

So despite the small physical size of the sample, there are more than one hundred 

billion atoms contained in its volume.  This is more than the number of neurons contained 

in a human brain, and certainly exceeds what may feasibly be examined in a contempory 

computer similation.  Thus, we see that for many scenarios, the thermodynamic limit is 

an appropriate assumption. 

4.2: The Periodic Boundary Conditions 

For the boundary conditions, we must proceed carefully to impose periodicity for 

the physical observables while also maintaining a potential difference  maintained 

along one of the Cartesian axes.  In this hypothesis, we will invariably impose the 

potential bias in the x-direction, for the purpose of the numerical calculations. 

To set up the periodic boundary conditions, we ascribe to each node in the lattice 

a potential value .  Suppose that the geometry is cubic and each of the entries , , 

and  run from zero to .  We have standard periodicity in the  and  indices since 

no potential is imposed in either the y or z-directions.  Thus, in the computer calculations 

we will need to insist that 

 

as well as 
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In the  indices, we have a periodicity condition that is modified by the presence 

of a potential gradient in the direction of the x-axis.  To set up a “down-hill” potential to 

push carriers in the x-direction, we use the condition 

 

These periodic boundary conditions implemented in the manner described here are not 

generally used in the literature.  Nonetheless, we argue that the use of periodicity is 

prudent for a variety of reasons. 

4.3: Implementing the Numerical Calculations 

4.3.1: The Essential Features of an Iterative Algorithm 

 Our numerical approach is fundamentally an iterative paradigm.  What this means 

is we begin with an initial guess for the solution for the potential, and by a sequence of 

successive refinements we approach the correct solution.  Thus, as the figure indicates, an 

iterative process has a cyclical character where the iterative refinement process is 

repeated many times. 

 An important part of the iterative process is a gauge to indicate if a suitable level 

of convergence has been accomplished in the calculations.  In this vein, we will calculate 

a residual quantity to evaluate the degree to which a solution has been refined, and to halt 

the iterative sequence when the desired threshold has been reached. 
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4.3.2: The Charge Conservation Constraint as a Computational Tool 

 The charge conservation condition, also known as Kirchhoff’s first rule, stipulates 

that the currents that enter a node must be equal to those receding outward from the node.  

The point is to avoid a current imbalance, which would lead to an accumulation of 

charge.  However, the principle that forbids the pile-up of charge carriers also has a much 

more profound purpose, in that it provides a quantitative tool which may be 

systematically applied to calculate the node voltages, which govern every characteristic 

of the system which we may wish to interrogate. 

 Let us now formally express the iterative scheme in terms of matrix algebra.  

Although our notation makes no reference to any specific geometry, it nevertheless is 

general and may readily be specialized to any dimensionality of scheme for the 

connectivity of the nodes.  We consider a case in which there are  nodes indexed by the 

Initial 
Solution 

Refined 
Solution 

Iterative 
Cycle 

Refined Solution is used 
as “Initial guess” for the 
next cycle 

Figure 23: A schematic rendtion of the iterative calculations 
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label .  In principal each node contained in the system may be connected to every other 

node in the system, though in practice schemes such as the Variable Range Hopping 

(VRH) picture will confine the conductive links to a small number of neighboring nodes 

close to the node  under consideration. 

 Now, let us restate the current conservation condition for the node .  One has 

 

where Ohm’s Law has been used to calculate the current in links connecting the node  

with the node .  Now, having expressed the current conservation condition, we have all 

that is required to explicitly describe the iterative machinery to be used in the numerical 

calculations. 

Let us first solve for the voltage  in terms of the potentials  at the neighboring nodes.  

One finds that 

 

Now, in an iterative calculation our aim is to express the new potential values in terms of 

an older set of values.  Then, our expression becomes 

 

 The general strategy, then, is to express the new revised potentials in terms of a 

previous set of nodal voltages.  As we continue with the iterative refinements, potential is 

redistributed about the lattice in such a way as to ultimately satisfy charge conservation at 
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each node in the lattice under consideration.  The principal merit of this method is its ease 

of implementation.  We are achieving the solution of a linear system of equations without 

formally invoking a matrix, which has its own advantages in situations where memory is 

a scarce commodity.   

This method also encapsulates a vital piece of intuition, the connectivity of the 

lattice.  One need only care about the scheme of connecting each node to its neighbors in 

order to solve the problem.  Thus, in situations where the use of mesh currents is 

hampered by irregular or intricate lattice geometries, a technique which focus on 

individual nodes and the ways in which they are connected to their neighbors encounters 

relatively little difficulty. 

4.3.3: Comments on Alternative Iterative Methods 

Finally, we mention that there are techniques of solution that proceed more 

rapidly than the method that we have described.  However, for reasons that we now 

summarize, the alternative approaches are more of a technical challenge to implement.  

Moreover, the method that we have described yields convergent results reasonably 

rapidly for systems typically of interest on modern computational platforms.  In 

particular, we find we are able to examine sufficiently large systems that finite size 

effects do not play a significant role in our numerical Monte Carlo calculations. 

With regard to the alternative methods of solution, in the case of large lattices 

where nodes are linked only to close neighbors, the task of calculating the resistances at 

the nodes is mathematically the same as solving a linear system of the form  

where  represents the voltages at the nodes,  is a constant vector, and the matrix  is 

specified by the connectivity scheme particular to the lattice under consideration.  In 
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regular lattices, or any system where the bond resistances are identical, the conjugate 

gradient algorithm provides a robust way to hasten the rate of convergence.  However, in 

situations of interest to us, it is most often the case that the relevant matrix is not 

symmetric, and the conjugate gradient method is not directly applicable.   

In lieu of the ocnjugate gradient technique, one would instead use the Biconjugate 

Gradient method [4]. The biconjugate gradient technique is fashioned expressly to 

address cases in which the matrix for the linear system is not symmetric.  However, the 

technical intricacies associated with the boconjugate gradient method are more 

formidable than those of its simpler counterpart.  In addition, the stability of the 

biconjugate gradient approach is in general more difficult to guarantee than the conjugate 

gradient technique, where a robust convergence is assured in most reasonable situations. 

4.3.4: Assessing the Convergence of the Iterative Calculations 

 An important consideration in executing the iterative cycles we have described to 

determine voltages at the lattice nodes is the appropriate criterion to use to halt the 

calculations and emerge with a set of node voltages which is accurate to within the 

bounds of a per-determined tolerance.  One possible candidate to use as a gauge of the 

progress of the convergence of the calculation would be to use the magnitude of 

successive changes in the node potentials, and to cease the sequence of iterations if the 

shifts decrease below a certain threshold.   

However, the method of monitoring changes in the potentials  between cycles is 

not objective in a physical sense, and is instead subject to dynamics of the calculation 

which may be unrelated to the actual degree wo which the solution has been refined.  An 

example which we treat later in this thesis is the case of critical slowing down which may 
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occur in the civinity of a percolation transition, a type of phase transition observed in 

random resistor networks under certain conditions. 

4.3.4.1: Defining the Residual Quantity 

 We sish to objectively specify the extent of convergence, and we do so with a 

physically significant residual quantity.  A requirement that we have frequent occasion to 

visit is the condition that currents at the nodes should be balanced to prevent an 

accumulation of charge at the junction.  As a consequence, the extent to which current is 

not balanced may be utilized as a quantitative measure of the degree to which there 

remain inaccuracies in the  values produced by the iterative cycles.  To this end, we 

define 

 

where we are calculating the average of the absolute magnitude of the total current either 

flowing into or departing from the node labeled .   

 It is wise to calculate absolute values in order to avoid obtaining a spuriously low 

value due to cancellations among terms in the sum.  In terms of expressions we have 

discussed previously, the residual quantity has the form 

 

In the numerical calculations which we report on, we insist that the mean residual index 

 converge to within one part in  before halting the iterative cycles. 

4.3.4.2: Implementing Random Disorder 

 To examine how  converges, we consider a square lattice where each node is 

connected by resistive links to four nearest neighbors.  However, while the lattice 
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geometry is regular, we introduce an element of disorder by perturbing the resistances of 

the links from their native values, taken initially to be identical.  In particular, a resistance 

with the random perturbation incorporated appears as 

 

where  is a number somewhat less than 1, and  is a random number selsected with 

uniform probability between the bounds 1- and +1.  The statement that one must be 

“objective” in choosing a random number may seem self-contradicting, but it nonetheless 

is a valid notion in the snese that we would prefer a stochastic influence not to be 

“biased” in any external manner. 

 An excellent random number generator, which we have made use of for the 

purpose of the numerical calculations described in this thesis, is the Mersenne Twister 

algorithm.  A principal advantage of the Twister is a very long period of erpetition, so 

that for practical purposes the sequence of random numbers does not repeat itself and 

introduce spurious effects.  In addition, the Mersenne Twister has passed vigorous 

statistical tests that check for correlations among successively generated random 

numbers. 

4.3.4.3: Computational Cost and System Size 

 First, it is instructive to examine the computational cost (in terms of the total 

number of iterations needed to achieve a convergence threshold) with respect to the size 

of the system, and the graph shown below displays results for the two-dimensional 

alttices under consideration. 
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Graph 1: Raw computational cost graphed with respect to system size for a two-dimensional bond 
disordered case; the computational cost is specified as the number of iterations needed for convergence 
 

The results shown in the preceding graph are drawn directly from numerical calculations 

that we have performed for specific systems and configurations of disorder.  To highlight 

salient trends, it is often worthwhile to plot logarithms on one or more axes.  If a power 

law scaling is anticipated, logarithms on both axes will yield an asymptotically linear 

graph, precisely the behavior which we see in the graph below where the horizontal axis 

is the base ten of the size of the system while the vertical axis indicates the base ten 

logarithm of the number of iterations needed to achieve convergence.   
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Graph 2: A base ten log-log graph of computational cost with respect to system size for a bond disordered 
two-dimensional system, where computational cost is the number of iterations needed for convergence 

 

We discern from the results that the computational cost increases as a power law in the 

size of the square lattice, and fortunately does not rise more dramatically (e.g. at a 

exponential rate in the system size).   

4.3.4.4: The Variation of the Residual Quantity with the Number of Iterations 

 It is also useful to examine how the convergence, as quantified by the residual 

number, progresses with the number of iterations for a system of a specific size.  In the 

graph shown below, traces are shown for several system sizes.  The residual quantity, 

rendered as the mean of the absolute magnitude of the current entering or departing from 

the nodes, decreases rapidly with the number of iterative cycles and hence it is 

appropriate to use the base ten logarithm for the vertical axis. 
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 Several features are immediately evident.  First, the traces have a primarily linear 

profile.  The graph is semi-logarithmic, and in such a situation a linearly decreasing in a 

quantity is a hallmark of an exponentially rapid decrease along the abscissa, which in the 

present is the number of iterations.  Another salient characteristic is the difference of the 

slopes of the three traces corresponding to the three distinct system sizes under 

consideration.  The monotonic decrease in the slope is a direct consequence of the fact 

that the computational burden increases with increasing system size. 

 Finally an additional feature of note is the fact that for each of the linear curves, 

the downward trajectory is ultimately interrupted by the arrival at a base line (in the 

vicinity of ) beyond which no further decrease of the residual parameter  is 

witnessed.  The barrier is a consequence of the finite level of occuracy of even the double 

precision afforded by FORTRAN acting in conjunction with rounding errors that finally 

hinder further convergence.  What, nevertheless, is encouraging is the fact that for a 

diverse set of systems, the greatest extent of convergence possible is quite similar and 

considerably exceeds the  standard which we adopt in this work. 
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Graph 3: Semi-logarithmic graph of the residual nodal current flux with respect to the number of iterations 
for several system sizes 

 

 

4.3.4.5: Results of the Calculations and Robustness with respect to Disorder 

Having examined the convergence characteristics, it is also appropriate that we 

examine someof the physics contained in the disordered model.  Accordingly, we 

calculate and display the forward currents as a function of the parameter  controlling the 

strength of the perturbation.  The values of  which we examine range from 0.0 to 2.0, 

and the system is a square lattice containing 10,000 individual nodes in a 100x100 

geometry. 

 Two features of the first graph are immediately evident.  First, even for values of 

 on the order of unity, the conductance changes very little, and certainly there is no 
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evident first order contribution.  Another important characteristic is the smoothness of the 

curve.  Although each point corresponds to a distinct realization of disorder, the points 

nevertheless lie on a smooth line and thereby reveal a global trend which transcends 

individual configurations of disorder, and which corresponds to a bulk characteristic. 

 

Graph 4: Mean forward current plotted with respect to the resistor range for a two-dimensional bond 
disordered network 

 

 The divergence of the trace in the graph is a consequence of the fact that we are 

degrading resistances as often as we are augmenting the values of the link resistances.  

Initially, the net effect is quite subtle because the effects of increased and decreased 

resistances oppose each other.  Eventually, however, the resistive links with significantly 

diminished resistance prevail and to some degree short the system out, leading to the 

divergence in the current. 
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 Another way to probe the effect of disorder is to calculate the standar deviation of 

the current to gain an idea of the extent to which the current fluctuates about a mean 

value.  The results may be seen in the graph below, and one again sees a very slow rise in 

the fluctuations about the mean.  Although we are calculating a quantity that owes itself 

entirely to the disordering influence (i.e. the standard deviation would vanish in the 

absence of a random perturbation), the smoothness of the curve again speaks to the fact 

that the bulk limit has been achieved to a suitable extent. 

 

Graph 5: Standard deviation of forward current plotted with respect to resistor range for a 100x100 two-
dimensional disordered system 

 

In summary, one sees that the current values remain essentially uniform, even amid 

considerable disorder.
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CHAPTER 5 

A RESISTOR NETWORK MODEL FOR TRANSPORT CHARACTERISTICS IN 

REGULAR LATTICES 

5.1: The Variable Range Hopping Picture 

 Resistor networks have been reviewed and studied theoretically as entities of 

interest in their own right.  Here we will use our experience with resistor networks to 

calculate the transport properties of amorphous materials.  We make use of the resistor 

network model used as a theoretical treatment for charge transport in systems with a 

significant component of disorder.  In the analysis we employ a result treats the 

connections between active sites as resistor links [5].  The result is developed from a 

theoretical analysis from Miller and Abrahams [6].   

 Consider a set of sites  and  in a disordered lattice.  The conductance is given 

by 

. 

To determine the resistance, one takes the reciprocal and finds that 

, 

since .   

 This expression has two important features.  First, there is the dependence on the 

physical separation between sites that asymptotically decays exponentially in the 

separation between the sites in the case of the conductance.  This exponential decay is a 

result of the nature of the overlap among wave functions, which we take to be 
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exponentially decaying.  For a characteristic length scale, one uses “ ”, which is related 

to the Bohr radius of hydrogenic atoms, where one also has an exponential fall-off.   

The second important consideration is “chemical disorder”, manifest as variations 

in the local site energy (  and  for the sites “ ” and “ ” in the present context) which 

often have a random component in amorphous materials.  In addition to chemical 

disorder, we will also examine the effects of site disorder which is a consequence of 

random displacements in the positions of the atoms comprising the amorphous material. 

 In this chapter, we will first examine and perform calculations for the iso-

energetic case for which chemical disorder is absent.  In this manner, we will discern the 

effect of deviations in the atomic positions from locations in a perfect crystal lattice.  

“Iso-energetic” pertains to the case in which each of the site energies are the same. 

5.2: Specializing to the Iso-energetic Regime 

 In the iso-energetic regime, we will be able to consider the effect of positional 

disorder on transport characteristics.  The procedure will involve steadily increasing the 

magnitude of deviations from the crystal coordinates of a pristine atomic lattice.  The 

shifts  will be introduced at random for each  atom.  The task will involve the 

minimization of finite size effects to the extent possible, so we sill consider as large 

systems as may be achieved.   

We will operate in two and three dimensions, and in both cases we will apply 

different potentials to opposite faces of the system.  The situation for the two dimensional 

case is illustrated in Figure 24, where the pristine and disordered cases are depicted in 

juxtaposition.   
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Although there are deviations from the square lattice positions in the case on the right, the 

potential difference is held constant by fixing the potentials of the points on the left to “0” 

Volts and the points on the right to “V” volts.  In what follows, we will consider the 

special case of regular crystal lattices in one, two, and three dimensions.  The results of 

the calculations in this context will be relevant for lattices other than the pristine case 

since, as we have seen, transport characteristics may be robust with respect to the 

introduction of moderate levels of disorder. 

5.3: Calculating the Conductance of Resistor Networks in One-dimensional 

Geometries 

 Let us now examine a periodic system and impose a potential difference across 

the lattice.  The one-dimensional system will be considered first.  This calculation is 

simplified by the absence of current sources, which required considerable mathematical 

formulation. 
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Figure 24: Illustration of how a regular unperturbed lattice is affected by the presence of positional disorder 
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 In this one-dimensional case, we’ll examine a set of nodes connected only to 

nearest neighbors, as shown in Figure 25: 

 

 

 

 

Though all physical observables will be identical at every point on the lattice, the 

potential will vary linearly with the lattice coordinate .  Hence , where  

is the imposed potential difference.  We will see that the correct form to employ for the 

potential is .  As we’ll see, the actual resistance depends on the connectivity of 

the nodes. 

5.3.1: The Circumstance of Connections among Nearest Neighbors 

 We’ll examine the case in which the lattice nodes are bound only to the nearest 

neighbors. Again, we utilize the form  for the potential at any given location in 

the lattice.  Again, the one-dimensional case is considered here.  The current which exists 

at node  in the positive direction will be , so the resistance is 

.    This result isn’t surprising, however the simplicity of the 

calculation is an important issue in this context. 

  

r r r r 

1 2 3 4 0 n 

Figure 25: Illustration of one-dimensional regular lattice 
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5.3.2: An Extended Connectivity Scheme and an Exact Result 

Now, we’ll examine the case in which the nearest neighbor connectivity is 

relaxed.  We first examine a general scheme where the (monotonically decreasing) 

resistances are indexed as .  In Figure 26,  represents the resistance between adjacent 

nodes and  represents the resistance between non-adjacent nodes. 

 

 

 

 

Again, we’ll calculate the current which flows in the forward direction. 

 

 

 

The current flowing from  to  will be .  Noting that , we 

see that the current flowing forward will be .   

I2 
I1 

i i+1 i+2 

r2 

i i-2 i-1 i+1 i+2 i+3 r1 r1 r1 r1 r1 

r2 r2 r2 

Figure 26: One-dimensional resistor network with connectivity extended beyond nearest 
neighbors 

Figure 27: Illustration of contributions to the 
forward current in an extended scheme 
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 We proceed in a similar way to calculate additional currents, finding that in 

general .  So the total current moving forward is given by 

.   

We then see that , and we find that .  So the total resistance is given 

by 

 

So the total resistance still scales as , but with a pre-factor .   

 Now a situation will be considered in which the resistance scales exponentially 

with the physical separation between nodes  and  such that  

. 

The reciprocal of the factor  is 

 

             

This sum may be calculated with the aid of 

 

We also know from the geometric series 
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, 

that we can evaluate the sum.  The result is 

 

              

Differentiating this gives 

 

                                         . 

Therefore the resistance of the system taken as a whole is .  If 

we suppose that  so that we my use  and  to obtain 

 

to first order in the decay constant .  Thus, a less stringent exponential cutoff 

encourages transmission of current and lowers the resistance. 

5.4: Calculating the Conductance of Two-Dimensional Networks 

 Now we’ll consider square resistance arrays and endeavor to evaluate the 

resistance.  We’ll examine the nearest neighbor case first. 
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Figure 28 shows the labeling scheme.  We’ll impose the potential from left to right.  

Therefore, we set .  On the right side, we set 

.  This condition is successfully implemented in the 

context of a periodic system by using  so that the condition arises where one has 

a steadily increasing potential in the “x” direction. 

5.4.1: The Current in the Nearest Neighbor Case 

 Now we endeavor to calculate the conductance (reciprocal of the resistance) of 

the system.  As previously, this is achieved by calculating the total current that flows 

through the system.   

0 0 
0 0 

0 0 0 0 1 0 

1 0 

2 0 

2 0 

0 2 0 2 

0 1 0 1 

1 2 2 2 

2 1 1 1 

Figure 28: Two-dimensional resistor network with periodic 
boundary conditions and node labeling scheme 
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The current may be calculated by determining the charge flux through the dashed line in 

Figure 29.  This current is the sum of the individual currents, which, for the nearest 

neighbor system, are .  The total resistance is .  The conductance is 

the reciprocal .   

5.4.2: The Extended Scheme in the Two-Dimensional Case 

 As done previously, we will examine an extended scheme for the one-dimensional 

case.  Again, we consider an exponentially decaying coupling. 
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Figure 29: Cross-section of a two-
dimensional network.  The dashed line is 
used as a reference point in the 
calculation of the total current 
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Figure 30 shows and example of nearest and next nearest neighbors.  The interaction is 

, where  is the spacing between points in the two dimensional lattice.  The same 

relation as before holds for the resistance between two points on the lattice.   

 

 

 

(i+1)j 
i j 

i(j+1) (i+1)(j+1) (i-1)(j+1) 

i(j-1) 

(i-1)(j-1) (i+1)(j-1) 

(i-1)j 

Figure 30: Connectivity pattern of a single node in a two-dimensional lattice with 
connections to next-nearest neighbors 

Figure 31: Illustration of charge 
fluxes from a single node with 
connections extended to many 
neighbors 
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The summation takes the form  where  is the current that flows forward to 

the point indexed as “ ”.  Our task will be to calculate the  values within our 

framework. 

5.4.2.1: Calculating Current in a Two Dimensional Regular Lattice with Extended 

Connectivity 

 Here we continue our examination of current in a two dimensional regular lattice 

in the iso-energetic case.  We’d determined that the total current would be 

 from a single point where the individual component currents may be 

calculated by appealing to the Cartesian formula for distances in two dimensions.   

 

 

 

 

In Figure 32, the distance to the point  is given by the Cartesian relation 

 in the units under consideration. 

 However, it would be prudent to operate in terms of the lattice constant .  In 

terms of the lattice constant, the length  is instead given by 

.  The potential difference over the length  is given by 

j=1 

j=2 
Figure 32: A link spanning non-nearest 
neighbor nodes in the two-dimensional 
pattern 
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.  The resistance in the conducting element to the point  is  

where we have used the localization length  in lieu of the constant .   

 Assembling the aforementioned relations in terms of the lattice parameters, we 

solve for the individual currents : 

 

as one finds from Ohm’s Law.  Hence, .  Then the total 

current moving forward from a particular point is given by .  

Then for the entire system, we have to take into consideration that each slice will cut 

across  sites in the  system we now examine.  Hence, we see that the total current 

in the square system is given by  

 (i). 

It is crucial for us to have , so the system length at width  should considerably 

exceed the length .  We always assume that we are operating in this limit. 

5.4.2.2: The Limit of Strong Localization 

 In what follows, we examine the limiting cases.  First we consider the 

circumstance in which the localization length  is considerably smaller than the lattice 

constant  so that .  In such a situation, the exponential scaling of the formula for 

the inter-site resistances  will suppress all but the contributions that involve nearest 

neighbors. 
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 For the considered square lattice, the absolute nearest neighbor is the site directly 

in front of the lattice site under consideration.  This condition is shown in Figure 33. 

 

 

 

 

 

The square point is the nearest neighbor, and it corresponds to the coordinate 

.  The points marked by open circles are situated either immediately above or 

below the primary site for which the forward charge flux is calculated.  Since the 

potential difference vanishes for all sites where , there isn’t a nonzero current going 

to the lattice nodes immediately above or below, or indeed in the same column as the 

primary lattice point.  Thus, returning to the exact formula  we 

see that we have the nearest neighbor case .  The exponential variation of 

the current is now readily apparent. 

Figure 33: Scheme used in calculating 
the forward-directed current with 
connectivity extended to next-nearest 
neighbors in two dimensions 
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 In some situations, such as when anisotropy is considered, it will be useful to 

include next-nearest neighbors as well.  The next-nearest neighbors correspond to the 

coordinates  and , and are illustrated as closed circles in Figure 

35.  Hence, with next-nearest neighbors incorporated, the forward current takes the form 

 

              

which will yield a more refined result that will be of relevance when we investigate 

anisotropic characteristics of various lattice geometries. 

5.4.2.3: The Case of a Large Localization Length  

 Here we examine the case of a very large localization length, such that  and 

the granularity of the lattice will be much less readily evident.  Calculating  with the 

aid of the general summation formula would be extremely difficult.  As a general 

practice, incorporating neighbors typically involves including lattice sites where the 

length  satisfies .  This truncation of the sum will yield an accurate result. 

 In this way we consider the exponential decay of the conductances  in the 

distance  to be an inherently finite ranged charge transport linkage.  But in the case of 

, the sum goes over to an integral in a manner that we now directly examine.  As 

stated earlier, an exact expression for the forward current flow in the square sample has 

the form .  This summation may be represented as a Reimann 

sum in the limit that .  In this way we find that the current is given by 



 
 

73 

 

               

Conversion of the summation to a continuum integral is accomplished by expressing the 

indices “ ” and “ ” in terms of the appropriate “ ” and “ ” coordinates.  Since  

and , we find that the integral expression is 

 

Noting that in polar coordinates  and  we will switch to the polar 

system to facilitate evaluation of the integral. 

 

 

 

 

 

φ 
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y 
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Figure 34: Illustration of the Polar Coordinate System 
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Fortunately the two integrations decouple, allowing for easy evaluation of the angular 

and radial integrals.  So we find that 

 

For the angular integral, we have 

 

We must calculate  for the radial integral.  To accomplish this, we’ll consider 

the case .  Given this result, we’ll differentiate both sides with 

respect to .  One finds 

 

After a second differentiation, we obtain a result of interest: 

 

With this, the double integral can now be evaluated, yielding .  We have 

 

 

So the result for the forward current will be confined between two analytical results.  For 

,  and for , . 
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5.4.3: Exploring the Implications of Anisotropy in a 2D Resistor Network 

Thus far, we have examined cases in which the potential is not applied along the 

axis of symmetry.  In generalizing the case in which the potential is applied along the  

axis, we obtain a potential that changes linearly along both the  and  axes.  A potential 

that possesses this form is .  Figure 35 illustrates this geometry. 

 

 

 

 

The objective now is to calculate the current set up in this configuration.  An important 

question we will attempt to answer is whether the current set up will flow in the same 

direction as the applied voltage.  Although one could readily calculate the currents 

flowing in the links, the question we set out to answer here exists at a broader scale. 

V0y 

V0x 

Figure 35: Illustration of the x and y components of the imposed potential 
bias 
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 We need to calculate the total current flowing in order to determine the 

conductance (or resistance) of the entire system.  Insights gained during this process will 

be pertinent when considering the amorphous case where random displacements are 

introduced in the site positions.  To evaluate the current, we must calculate and sum the 

charge flux through each point in the lattice.  Therefore, we will return to the square 

lattice and calculate the current flowing through the system. 

 For now, we will focus on the average charge flux per node.  We now examine 

the square lattice in which the applied voltage is not along the axis of symmetry. 

 

 

                                            Figure 36: Illustration of a voltage bias not imposed by a 
    symmetric axis 

 

 

Figure 36 shows such a situation.  The angle of the applied voltage my be readily 

calculated using the following relation: 
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. 

A pertinent problem to solve is how to calculate the voltages given a particular angle .  

Given the overall applied voltage magnitude, the result will be  and 

.   

5.4.3.1: The Isotropy Issue in the Nearest Neighbor Case 

 Now we’ll calculate the flux from a node along with the degree of anisotropy for 

a particular localization length .  Ohm’s law and the voltage formula  

will suffice.  An important question is what the current in the  and  directions will be.  

The goal now is to calculate the current component-wise, which must be done carefully. 

 For both the  and  components, we must sum over all the surrounding 

neighbors, though when the localization length  is small we merely need to include the 

four nearest neighbors.  Firstly, we’ll consider an example in order to highlight a salient 

conceptual issue.  When calculating the pieces of current, we must take into account the 

direction in which the current flows.  For example, consider a potential with only an  

component with no voltage gradient imposed in the  direction.  Due to the symmetry of 

the square lattice, we could easily choose the point  as the site under consideration, 

as shown in Figure 37. 
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Since the potential is imposed in the  direction, the current will flow to 

neighbors in the way depicted in Figure 37.  In the  direction one sees a steady 

movement with charge born systematically to the right.  In the  direction the currents 

sum to zero, and there is no movement of charge upward or downward.  To take this into 

account, we must carefully consider the direction of the current for each link between 

nodes. 

 For the nearest neighbor case we’ll calculate the current flux for the site indexed 

as .  We consider the most general case where there is both a  and  in the 

system.  For the  direction one has 

 

[-1, 1] [1, 1] 

[-1, 0] 

[1, -1] 
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V0

x 

Figure 37: Illustration of current flows set up by a bias in the x-direction 
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where the first term comes from the link connecting  to , and the second term 

comes from the link connecting  to . 

 Now we examine the nearest neighbor situation now with a voltage directed in an 

arbitrary direction.  First we calculate the current flowing in the  direction, then we 

consider the  direction.  As stated earlier, the direction of the current must be 

considered carefully.  Starting with examining site , from symmetry we see that the 

current flow magnitude and direction from each site in the lattice will be identical since 

there is no preferred site in the square lattice. 

 The goal is to find the current flow from  to .  This is the following: 

 

The current  will have the same magnitude but opposite sign: 

 

Thus, the total current in the  direction is 

 

                             

where the “ ” subscript means “nearest neighbor”.  Current for the  direction is 

handled in a similar fashion. 

 

So the total flux in the  direction is given by 
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in the context of the nearest neighbor treatment.  Employing polar coordinates, we see 

that 

 

and the nearest neighbor case is seen to be isotropic if one calculates the magnitude of the 

current as a function of the polar angle.  This yields the following result: 

 

Obviously, there is no variation with respect to , so the current magnitude does not 

depend on the direction of the imposed voltage. 

5.4.3.2: Investigating Isotropy in the Next-Nearest Neighbor Case 

 Now we will examine the next-nearest neighbors case and check to see of 

isotropy remains intact.  Just as there were four nearest neighbors, there are four next-

nearest neighbors.  While the distance to the nearest neighbors was , the distance to the 

next-nearest neighbors is .  For the  direction, the current set up by  is given by 

 

as shown previously.  Now onto consider the next-nearest neighbors.  To the point  

the current in the  direction is .  To the point  the current 

in the  direction is . 
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 The current also flows to the points  and .  For  the current 

flowing from the point  is given by 

 

To calculate the total current flowing to the next-nearest neighbors set up in the  

direction, we use the following: 

€ 

Innn
x = I 1,1[ ]

x + I 1,−1[ ]
x − I −1,1[ ]

x − I −1,−1[ ]
x[ ] 

                                                  

So we have a cancellation of the currents set up by the  component  of the applied 

potential.  By symmetry, we know that the current  is given by 

 

Here we have exploited the geometric symmetry of the square lattice with respect to 

rotations by .  The total current in the  direction is given by 

 

                 

Similarly, for the  direction we know that  
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This shows that the current is indeed isotropic if contributions up to and including the 

current flows to next-nearest neighbors are taken into consideration.  An angular variant 

of the current is given by 

 

5.4.3.3: The Isotropy Calculation for a Coupling Scheme which Encompasses all 

Neighbors 

 Now, a more general case in the context of the square lattice will be examined.  

We’ll take all sets of neighbors into consideration, so we will construct a general sum 

which we will not truncate for the moment.  To set up this sum, we proceed carefully and 

first examine current fluxes only in sites contained within the first Cartesian quadrant, as 

seen in Figure 38.   

 

 

 

 

y 

x 

II 

III IV 

I 

Figure 38: Convention for dividing the two-
dimensional Cartesian system into quadrants 
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This means that the ordered pairs  will be positive.  First, the flow set up in the  

direction needs to be determined.  The contribution from  is given by , 

where the point  is excluded from the sum.   is the resistance of the “wire” 

extending to the point  and is given by  where .  So now we 

have  

 

 Similarly the contribution due to the potential in the  direction will be 

 

We will show that only the contribution due to  will survive when we take the 

presence of other quadrants of the lattice into consideration. 

Quadrant I: 

 

Quadrant II: 

 

Quadrant III: 

 

Quadrant IV: 
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It’s clear that the sum will cancel contributions from  and will be strictly proportional 

to .  We then have 

 

            

We should also take into account contributions from the  axis.  The result is 

 

Ultimately we see that 

 

                                           

                                           

Similarly, direct calculation or symmetry arguments will show that 

 

so that  and  both contain a prefactor multiplied by the appropriate component of 

the applied potential.  Relabeling the dummy indices, it can be shown that the prefactors 

are the same for the  and  components of the current.  Thus, the total current 
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magnitude is not dependent upon the angle of the applied voltage, so the current flow in 

the system is indeed isotropic in the general case.  The current magnitude will be 

 

5.5: The Three Dimensional Regular Cubic Lattice 

 To complete our discussion of regular lattices, we consider the case of the three-

dimensional lattice, as shown in Figure 39.   

 

 

 

The potential  is applied along the  axis of the cubic system such that .  

Now we consider a single point in the lattice, for example a location .  A pertinent 

question to answer is what the current flowing forward from such a location is.   

5.5.1: The Next-Nearest Neighbor Case in the Cubic Lattice 

 First, we consider a very small localization scale  such that one only need take 

into consideration the nearest neighbors.  We find that for  the relevant neighbors are 

y 

x 

z 

Figure 39: Illustration of a portion of a three-
dimensional cubic lattice with Cartesian axes depicted 
for reference 
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 so that only one among the six neighbors in the cubic lattice is forward facing.  

The current flowing in the link is .  In one single face, the total forward current is 

 

Figure 40 shows the geometry of such a situation. 

 

 

 

In the three-dimensional system the current will grow linearly in the size of the system as  

 

The total effective resistance proceeds from Ohm’s Law, and has the form 

 

 

i, j, k-1 

i, j, k 

i, j-1, k 

i-1, j, k 

i, j+1, k 

i, j, k+1 

i+1, j, k 

Figure 40: Perspective illustration of the nearest neighbor connection scheme in 
the three-dimensional cubic lattice 
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5.5.2: The Extended Coupling Scheme for the Cubic Geometry 

Beyond the nearest neighbors, the resistance will still decrease with the size of the 

system.  However, the prefactor will be altered.  We will now calculate this prefactor.  

The total current that flows in the forward direction will now have the form 

 

for a single point .  Using the symmetry of the cubic lattice we know that we 

should obtain the same result at each site in the cubic lattice for the forward flowing 

current.  One finds 

 

                     

since in the three dimensional Cartesian system on has  for the 

distance between two points. 

 This formula is correct in all regimes for the localization parameter , but it is 

particularly useful in the intermediate regime where .  We obtained a simple result 

when .  We also obtain a compact result when , and again the summation 

goes over to a Riemann sum and a volume integral.  So we obtain: 
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Switching to spherical coordinates will aid in the evaluation of this integral, as illustrated 

in Figure 41. 

 

 

 

 

 

          

x 

z 

y 

0 

Figure 41: Spherical polar system 
superimposed on three-dimensional Cartesian 
axes 
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This decoupling of the integrals allows for their easy evaluation individually.  We find 

that for the angular integrals  while .  To evaluate the site 

current we evaluate the radial integral using the following property: 

 

                           

Hence, we see that the integral .  So we see that 

 

                                           

So the total current flowing is given by the expression 

 

Therefore the total equivalent resistance is given by the expression 
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CHAPTER 6 

INTRODUCTION OF DISORDER: AN ANALYTICAL PERTURBATIVE 

CALCULATION IN ONE DIMENSION 

 In this treatment we hold the site energies constant and implement site disorder by 

introducing perturbations in the site positions.  The computations will be amenable to 

numerical calculations.  The goal is to study the effect of positional disorder on transport 

characteristics.  Additionally, following the formalism of Pike and Seager and Miller and 

Abrahams, our model is mapped onto the task of calculating the transport characteristics 

of a random resistor network with an extended scheme. 

Our goal is to introduce site disorder, but to exert control over the average 

magnitude of the positional perturbations.  In this way, we will govern the strength of the 

perturbations and systematically study the effect of various disorder strengths on the 

sample conductivity. 

 We will eventually consider systems in two and three dimensions, though for now 

our focus is the one-dimensional case.  Preliminarily, we expect that three-dimensional 

systems will be more robust with respect to disorder than the characteristics of two-

dimensional geometries where disorder fluctuations have a more significant impact.  

When disorder, especially strong disorder are examined, calculations will always depend 

on the specific characteristics of the configuration of disorder for the individual system. 

 It is our program to make statements about the bulk limit where the system is so 

large that the individual disorder details average out, and the thermodynamic limit is 

obtained.  One way to achieve the approximate bulk limit would be to perform disorder 

averaging by calculating conductances for a large number of systems, then averaging the 
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results.  However, if one is able to study a large enough system, there will be little 

variation in the characteristics with respect to charge transport from one realization of 

disorder to another.  This phenomenon is known as self-averaging, and this will be 

exploited in the numerical calculations we describe in this Master’s Dissertation. 

6.1: The One-Dimensional Case: A variable Range Hopping Picture 

 Another salient advantage of the one-dimensional case is the prospect of making 

analytical statements.  Particularly simple is the case in which couplings are limited to 

nearest neighbors.  A salient point is the characteristic of local charge conservation that 

prevents the accumulation of carriers at a lattice node.  In fact, in terms of a specific 

system configuration with site positions subject to random perturbations in position, we 

may immediately record a valid expression for the total resistance and thus the current 

that flows through the entire system. 

6.1.1: The Regular Unperturbed One-Dimensional Lattice 

 Let us consider a specific case to see how the transport characteristics are 

influenced with the introduction of site disorder.  First, we’ll examine a regular system 

where the nodes are equidistantly separated by a distance , as shown in Figure 42.   

 

 

 

 

Figure 42 shows a system containing four site members and a finite example of the 

pristine case with no disorder incorporated.  For the regularly spaced system, we may 

2 1 0 3 

a a a 

Figure 42: Unperturbed one-dimensional resistor network 
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graph the potential, which varies linearly since drops across the resistors are identical, as 

shown in Figure 43. 

 

 

Since each gap is the same, they are equal to .  Since each resistance is , the 

current flowing through the links is 

 

                                            (for the general case) 

So we see that even for the regular case, the current flowing is inversely proportional to 

the size of the system.  Equivalently, the equivalent resistance grows linearly in the 

system size .  Our central task for the one-dimensional system is to learn if an average 

 scales linearly or if it grows more rapidly.  We will ask this question for a variety of 

coupling schemes, including the exponential dependence suggested by Pike and Seager.   

 

 

V0 

x 
0 1 2 3 4 

Figure 43: Graph of the node voltages for the unperturbed one-dimensional system 
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6.1.2: Introducing Perturbations in the One-Dimensional Geometry 

 Now we consider a perturbed version of the preceding system where no disorder 

was present.  Consider a system as shown in Figure 44 where positional disorder has 

been introduced. 

 

 

 

 

From this graph it’s obvious that introducing positional disorder disrupts the linearity of 

the voltage trace.  The points are uniformly dispersed and hence not rendered to scale in a 

spatial sense.  The more abrupt drops occur where intermodal gaps are especially large 

and, hence, where the corresponding resistances and the associated voltage drops are 

particularly large. 

 For the two-dimensional situation we may record a formula for the potential drop 

in terms of the flowing current.  In this manner, we may glean the current itself in terms 

of the applied potential .  Therefore we have 

0 1 2 3 4 

0 1 2 3 4 

V0 

Figure 44: Above: Illustration of a one-dimensional resistor array 
with positional disorder.  Below: graph of the voltages of the 
perturbed one-dimensional system; the horizontal axis is the node 
index number 
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So  for the flowing current. 

 It is then our goal to gain an understanding of the characteristics of the equivalent 

resistance, which is simply the sum of the resistances in the system supercell. 

 

6.1.2.1: Introducing the Iso-Energetic Variable Range Hopping Picture 

Consider the particle locations .  In the absence of a perturbation, the coordinates are 

 for a particular node.  However, if we introduce the shifts in a random fashion, 

the new altered node locations are given by  

 

So if the resistance varies exponentially in the separation as  

 

           

This formula reduces to the pristine formula  if no perturbations are introduced. 

 A Taylor series expansion will permit us to determine the effect of the 

perturbations to various orders in the perturbation strength.  For example, we specify that 

 where  is a random variable with a value uniformly chosen between  and 

.  In terms of these variables, the resistance is given by 
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We have introduced a perturbative parameter  which may be manipulated in a 

systematic way to calculate a perturbative series for the shifts in the equivalent resistance. 

 Our goal is to identify specific trends in the system size .  First, we note that 

 via the Taylor Series expansion.  It is worth noting 

that we want to calculate the mean total resistance, .  This will be done by averaging 

individually over each of the  random variables . 

 

       

6.1.2.2: Evaluating the First Order Contribution 

To start with, we expand to first order in .  The result is 

 

                        

Now to consider a concrete example in which only four nodes are present with .  

We also assume periodic boundary conditions such that .  To a first order 

approximation in  we have 
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Since , all contributions to a first order term mutually cancel.  Therefore, there are 

no first order contributions so we see that  to first order.  Being that first order 

contributions are absent, we consider that the one-dimensional systems are robust with 

respect to random shifts in position.  This tolerance of random shifts in the nodal 

positions is due to the fact that moving one node causes one resistance link to become 

longer, while another becomes shorter.  Hence, the changes tend to cancel with no 

contribution to the total resistance at the first order level.   

6.1.2.3: Including Second Order Contributions 

 Next we consider the case of second and higher order contributions.  To second 

order in , on has 

                    

 

Then one finds  
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Before calculating the average over all possible disorder configurations, a couple things 

bear mentioning.  First, we notice from the periodicity condition that .  So 

up to second order in  on has for a particular realization of disorder that 

 

        

Linearity of the averaging allows for separation of the terms in angle brackets so they can 

be considered individually.  One has 

 

Furthermore, we know from the linearity of the mean that .  The task is 

now reduced to calculating an average of the form .  This average has the form 

€ 

y j
2 =

y j[ ]
2
dy j−1

+1
∫

dy j−1

+1
∫

 

           

€ 

=
1
2

y j[ ]
2
dy j−1

+1
∫  
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Hence, we see that .  Now we’ll consider the second of the sums 

.  We now need to calculate an average of the form .  The 

result is 

 

The integrations decouple in the following way: 

€ 

y j y j+1 =
y jdy j−1

+1
∫( ) y j+1dy j+1−1

+1
∫( )

dy j−1

+1
∫( ) dy j+1−1

+1
∫( )

 

The integrands are both zero, so the average vanishes, yielding 

 

 The equivalent resistance may be calculated to second order in the perturbing 

influence  as 

 

So the contributions so far will scale as .  Hence, the increase in resistance does not 

appear to be hastened in the expansion of the sample size . 

6.1.2.4: Incorporating Third and Higher Order Effects 

 Now we will calculate the third order terms.  One finds that the third order piece 

in  has the form 
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€ 

=
r0e
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l
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⎠ 
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3

yi+1
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2 − yi+1

2yi( )[ ]
i=0

n−1

∑  

In the sum, both cubic terms vanish outright with no averaging needed.  The third order 

piece then takes the form .  The ensemble averaged 

contribution will take the form 

 

The task now is to calculate each of these expectation values. 

 

Once again, the integrals decouple, yielding 

 

The first integral in the numerator vanishes, so one has  and .  

Similarly, one also finds that .  Therefore, we conclude that the third 

order contribution vanishes. 

 Now we will calculate the fourth order contribution.  The term will be of the form 
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When we calculate the ensemble average, we will need to evaluate five terms.  However, 

we’ve established that the second and fourth terms vanish due to the presence of odd 

powers which will ultimately contribute to a zero average.  Furthermore, by virtue of 

periodicity, we know that .  Thus, the quantity now becomes 

 

The first term gives 

 

Next we calculate .  The result is 

 

                     

€ 

=
y j

2dy j−1

+1
∫[ ] y j+1

2dy j+1−1

+1
∫[ ]

dy j dy j+1−1

+1
∫

−1

+1
∫[ ]

 

As shown in the above step, the integrals decouple.  Noting that , we see 

that  

 

Thus the fourth order term becomes  
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Up to fourth order, we have .  Now it 

becomes advantageous to calculate higher order terms.  We will use Padé analysis to 

extend the scope of applicability of the perturbative series and efficiently obtain accurate 

results.  One finds that 

 

 

Since all terms involve a single displacement raised to an odd power, they will be as 

often positive as negative under the configuration average, and there is no net 

contribution. 

 Thus, we will focus on the sixth order term for the next non-zero contribution.  

One finds that for the sixth order case 

 

Noting that terms with odd displacement powers will vanish after averaging over disorder 

leads to 

 

After exploiting the periodicity condition and combining terms, one now has 
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Now to evaluate the terms contained in the summation. 

 

 Furthermore, we find that 

 

                          

 

Using the same reasoning we find that .  We can now evaluate the sixth 

order term, which will be 

 

So to the sixth order, the perturbative series has the form 

 

It is still beneficial to calculate additional higher order terms.  In calculating these 

higher order terms, we take note of the fact that  to facilitate 

the calculations.  So the eighth order term is given by 
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After eliminating the odd powers of  we find 
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where the right side of the equation exploits the periodicity characteristic.  Thus we have 

for the eighth order term 

 

It becomes clear that the higher order terms rapidly diminish.  Hence, the equivalent 

resistance is of the form 

 

The total current is calculated by dividing the total potential difference  by the total 

resistance .  This yields 

 

where the coefficients are , , , and .  This series may 

be inverted with the aid of formalism given elsewhere [arxiv:0902.4675(math-ph)].  We 

may conveniently calculate the reciprocal of the series.  One will find 
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where the derivatives are , , , and .   

 

The individual coefficients are given by 

 

 

 

 

6.1.2.5: Padé Analysis of the Perturbative Series 

 Padé analysis provides a way to account accurately and compactly for the 

characteristics of the function represented by the series.  The Padé approximant has the 

form  which will be used to represent a series of the form 

.  To obtain a unique set of coefficients for the 

approximant, we impose the condition that the number of “ ” and “ ” coefficients be 

the same as the total number of “ ” coefficients.  The advantage to using the Padé 

approximant is its ability to take into account singular behavior by virtue of zeros in the 

denominator of the approximant. 
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 To calculate the currents, we will construct  and  where  is 

used for the parameter of the perturbation.  First we will construct the general case, then 

we will specialize to the case of interest, the one-dimensional perturbed chain.  The goal 

is to compare the Padé approximant by comparing the values of  and  as  

ranges  from  to .  This range encompasses the full range from an ordered crystalline 

system to an amorphous medium where the sites are randomly distributed. 

Calculation of  

 One starts with .  There are three unknown coefficients, so we 

use the condition 

 

Which leads to 

€ 

α0 +α1x = 1+ β1x( ) c0 + c1x + c2x
2( ) 

Order by order in , we equate coefficients on both sides of the equation.  One finds 

 

So  and .  So it becomes clear that 
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Calculation of  

 Here we calculate  in the general case.  One has 

 

                             

Using the same logic as in calculating  gives 

€ 

α0 +α1x +α2x
2 = 1+ β1x + β2x

2( ) c0 + c1x + c2x
2 + c3x

3 + c4x
4( ) 

Again, we equate the coefficients of  order by order.  The result is 

€ 

α0 = c0
α1 = c0β1 + c1( )
α2 = c0β2 + c1β1 + c2( )
0 = c1β2 + c2β1 + c3( )
0 = c2β2 + c3β1 + c4( )

 

To calculate the “ ” coefficients the lower two equations will be used.  Kramer’s rule 

permits one to write 

€ 

β1 =

−c3 c1
−c4 c2
c2 c1
c3 c2

=
c4c1 − c3c2( )
c2
2 − c1c3( )

 

 is calculated the same way 
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c2 c1
c3 c2
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c3
2 − c2c4

−c1c3 + c2
2( )
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 and  are obtained via back substitution. 

 

                                      

€ 

=
c0 c4c1 − c3c2( ) + c1c2

2 − c1
2c3

c2
2 − c1c3

 

€ 

α2 =
c0 c3

2 − c2c4( ) + c4c1
2 − c1c2c3( ) + c2

3 − c1c2c3( )
c2
2 − c1c3

 

Despite the difficulty in calculating the “ ” and “ ” coefficients for , we may still 

obtain specific formulas for the current for the perturbed one-dimensional system. 

 We first calculate  

 

for the primary series 

 

The merit of considering  lies mainly in the fact that we need only examine 

contributions up to fourth order in the parameter  specifying the strength of the 

perturbation.  Specifically, we have 
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It can be shown via direct calculation that this approximant yields the correct series 

expansion up to fourth order in .   

 Now we need to calculate .  We find that 

     

so that  which we have directly verified as 

providing the correct series up to eighth order in . 

 We now examine the relative performance of the approximants by preparing 

graphs where  ranges from  to  for various values of the localization scale .  These 

are shown in Graphs 6 and 7 for the cases , , and .  The dashed line 

indicates the  curve while the solid line corresponds to . 
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Graph 6: Graph of Padé Approximants with respect to the perturbing influence .  The currents 
correspond to various values of the localization length l expressed in units of lattice constants.  The dashed 
lines are for simpler approximants calculated from the fourth order series, and the solid lines are for 
approximants calculated for the eighth order series. 
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Graph 7: Base ten logarithmic graph showing the relative discrepancy among the approximants calculated 
for the fourth and eighth order series.  The traces are for various localization lengths, expressed in units of 
lattice constants. 
 
 
 
 From the figures it’s clear that the approximants provide very similar results and 

overlap quite strongly.  Specifically, the difference in the traces for  is only a few 

parts in  even for  as high as .  Furthermore, we see that even in the case 

of the shortest decoy length  (where  may attain the value of ), the 

difference is at most a few tenths of a percent.  This serves as strong justification for 
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using the approximant , which is based on a series calculated up to fourth order 

in . 

 In this vein, it will be our aim in future considerations to take into account 

contributions up to fourth order with no need to examine the sixth and eighth order terms.  

Our early success is a primary motivation for following this course.  So we will obtain 

the perturbative series to fourth order in the perturbing parameter  and then compute 

. 

6.2: A Generalized Recursive Perturbative Calculation of Transport Characteristics 

 Now our goal is to return to the same systems, and again craft a perturbative 

analysis, but do so in a way more easily generalized to two and three-dimensional 

systems. 

 

 

 

Again, we start with current conservation.  Between nodes  and , the current is given 

by 

 

j j+1 j-1 

a a 

Figure 45: The lattice structure near node j 
for the one-dimensional system 
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where  is the resistance between the nodes  and .  The principle fo charge 

conservation requires that we posit 

 

6.2.1: Introducing Potential and Resistance Shifts 

Normally, in the pristine system with no perturbations imposed, we would find 

 

However, the link resistances will be altered when we introduce shifts in position .  

This means that for example, 

 

 So in terms of the shifts we calculate that 

 

Equating these two equations and eliminating common factors gives 

 

Subsequent calculations will be facilitated if we use 
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So the perturbations are 
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€ 

λ j =
1
l
x j − x j+1( ) +

1
2l2

x j − x j+1( )
2

+ ... 

and thus we see that  is on the order of 

€ 

1
l
x j − x j+1( ) and is “small” in the same sense. 

 In the more advanced stages of perturbative analysis, we will replace  with the 

expression particular to the perturbation we have in mind.  In the present example, we 

will ultimately expand  and then average over the  variables.  As before, 

we use  where  is a random variable which ranges between  and  while 

 is a quantity to parameterize the strength of the perturbation.  We assume that  is 

“small” and in a typical case one could assume that .  Nevertheless, Padé analysis 

will aid in extending the calculation to cases in which  may approach unity, 

corresponding generally to a strongly disordered lattice. 

6.2.2: Applying Fourier Analysis 

 We begin the perturbative analysis by introducing Fourier variables.  We use the 

results from Chapter 2, where Fourier analysis was used to consider the effect of 

localized current sources.  The expression enforcing charge conservation is 

 

                                            

€ 

= v0 + ΔV j − ΔV j+1[ ] 1+ λ j( )
= v0 + ΔV j − ΔV j−1[ ] 1+ λ j−1( )

 

where we have used the label .  After simplification and some erarrangement, we 

have 
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€ 

2ΔV j − ΔV j+1 − ΔV j−1 = v0 λ j−1 − λ j( ) + ΔV j−1λ j−1 + ΔV j+1λ j − ΔV jλ j−1 − ΔV jλ j  

On the left side of this equation is a discretized Laplacian, while the right side has a term 

on the order of .  The latter may be seen to be on the order of , and it will 

support an iterative procedure to set up a perturbative series in terms of the Fourier 

variables. 

 We begin with 

 

We now have  

 

 

Combining sums in the last term on the right leads to a more compact result, and we find 
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Now we proceed by selecting out an individual Fourier component.  This is accomplished 

by multiplying  and summing on both sides over the position index .  The 

result will be 

 

The Kronecker Delta symbol  allows us to collapse one of the sums.  With 

, one finds that 

 

To solve for  one would need to divide by the factor , feasible only 

for the finite wave number case in which .  However, we may avert this difficulty if 

we remember that one may set  since only differences in the potential shifts have 

a physical effect. 

6.2.3: The Bare Propagator and a Recursive Iterative Procedure 

 We define an expression , which is similar to the formalism used in 

many-body treatments.  In terms of , 
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We also use the following expression: 

 

                    

The expression for the potential shifts becomes 

 

When , we may solve for  with . 

 It is important to note that the summations in Fourier space do not include a zero 

wave number term, since we have determined that .  For the sake of future 

convenience, we relabel the dummy indices.  The result is 

 

6.2.3.1: Obtaining and Expressing the General Perturbative Series 

Now we recursively substitute the formula for  into the second term in the 

curved braces.  One finds 

 

After algebraic manipulation, the expression becomes 

 

With subsequent iterations implemented in a similar recursive way, one finds 
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and a pattern emerges where subsequent terms are readily obtained. 

6.2.4: Calculating the Current 

 The current between the links is an important physical quantity, and it is most 

convenient for us to calculate the mean current.  The current between the nodes  and 

 was previously determined to be 
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I j; j+1 =
1
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v0 + ΔV j − ΔV j+1( )e−
a
l e
1
l
x j −x j+1[ ]

 

      

€ 

=
1
R0

v0 + ΔV j − ΔV j+1( )e−
a
l 1+ λ j( ) 

Now we sum over each of the sites in the one-dimensional lattice and divide by the total 

number .  The result is 
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∑  
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NR0
λ j

j=0
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∑ ΔV j − ΔV j+1( )  

where we have exploited the periodicity condition to eliminate terms and produce a more 

compact result. 

6.2.4.1: Calculating the First Order Contribution to the Current 

 The task now is to evaluate the last term on the right side that involves  terms.  

Since the latter have been calculated in Fourier space, we will need to exercise caution.  

First, we need to convert the expression  from a sum in real space to a sum in reciprocal 
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space.  To accomplish this we use the “Fourier trick” which was applied in the case of 

Chapter 2.  One has, for example 

 

Multiplying by  and summing over the position index  gives  

 

The right side of the equation has a sum that will collapse since the sum over  vanishes 

unless , enabling us utilize the Kronecker Delta .  One has 

 

So that .  In s similar fashion .  It will be 

advantageous to be able to make the transition from  to  and vice versa.   

6.2.4.2: Calculating Second and Higher Order Contributions to the Current 

 We now give close consideration to the term 
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e
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a
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∑ .  One finds 

that 
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The sum over  will lead to a Kronecker Delta symbol.  By setting , we collapse 

the sum over  and we obtain 

 

                                         

where the sum over Fourier indices begins with “ ” since .  Changing the dummy 

indices and using the previously obtained formula for  gives 
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where we have used the fact that .   

 With the aid of  we will be able to operate in terms of the  

quantities for which the characteristics are understood.  One then sees that 
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6.2.4.3: Exploiting Orthogonality by Adding and Subtracting the Zero Wave 

Number Term 

In order to utilize the orthogonality of the Fourier states and collapse the sums over the 

Fourier indices, the sums need to be modified such that the index runs from  to  

instead of  to .  This is achieved by adding and then subtracting the zero wave 
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vector component.  To understand this process, we examine the first several terms in turn.  

First, we examine the term 

 

We permute the sums to obtain 

 

After adding and subtracting the zero wave vector component, this becomes an 

expression which one may evaluate: 
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So we see that  

 

   

where the symbol “ ” denotes a system average for a static configuration of disorder.  

The angle brackets lacking an “ ” indicate an average over disorders, in the manner 

described prior to the introduction of Padé approximants.   

 In a similar manner, we examine the term 
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Again, it is advantageous to permute the sums over position and Fourier indices, and the 

result is: 

 

The Fourier index sums may each be executed independently.  The result is 

 

where the symbol  is an abbreviated representation of the triple sum notation 

.  Bearing in mind that the “ ” indices run from  to , we write 
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Now the expression can be evaluated directly.  We will then consider an alternative 

technique which leads more succinctly to the same result.  We have: 
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6.2.4.4: A Diagramatic Method to Facilitate the Evaluation of Perturbative 

Expansion Terms 

 Although the direct calculation technique has been successfully implemented for 

the cubic term in , it rapidly becomes cumbersome as higher order terms are 

considered.  To organize this process and eliminate mathematically intricate intermediate 

steps, we introduce a diagrammatic formalism that we now illustrate for the case of the 

cubic term . 

 Since the term is cubic, there are three nodes as shown below where they are 

depicted, evenly spaced, in a row:  

 

Without Kronecker Delta symbols, there are no contractions among the indices, and the 

sums over the positional “ ” indices are independent.  For each absent Kronecker Delta 

symbol, we introduce a factor of .  Thus, the term represented by the diagram  

 

may be expressed as 

 

Let’s suppose that we perform only a single index contraction, which collapses only one 

of the sums over positional indices.  Remembering that the Kronecker Delta symbols may 

only link adjacent nodes, we see that there are the following possibilities: 

1 3 2 
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and  

 

 

We note that a third “wrap-around” diagram connection the first and third indices is 

forbidden by the mathematical rules used to craft the perturbative series.  Furthermore, 

we also bear in mind that the terms corresponding to the diagrams will receive a single 

factor of  since we are excluding only one of the Kronecker Delta symbols. 

 We then find that the 

 

diagram yields 

€ 

1
N

λ j
2

j =0

N −1

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ λ ʹ′ j 

ʹ′ j =0

N −1

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −1( ) = − λ j

2

s
λ j s( )  

The second diagram yields 
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λ j
2

s( ).  So for a single 

contraction permitted, we find  and both diagrams yield the same 

contribution. 

 Now we examine the case in which two Kronecker Delta functions are selected.  

There is only a single diagram to describe this situation, with each of the nodes linked 

together: 

1 3 2 

1 3 2 

1 3 2 
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No Kronecker Delta symbols are omitted, so the negative factor  is not introduced.  

The sole contribution, and the evaluation of the diagram shown above is 

 

Adding the contributions from each diagram considered for the third order case gives 

 

 We now proceed in a similar fashion for the contribution at the fourth order level.  

For the purpose of brevity, we rely exclusively now on the diagrammatic analysis, and we 

do not invoke the formal mechanisms.  The term we wish to study is 

 

First, we examine the case in which there are no Kronecker Delta symbols.  The sole 

relevant diagram has no contractions: 

 

Including the three corrections, three factors of  appear.  The evaluation of the 

diagram is 
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 Next we examine the situation in which a single connection is made, and there is 

one Kronecker Delta symbol that appears.  The three possible diagrams are: 

1 3 2 

1 3 2 4 



 
 

125 

 

 

 

As shown above, the diagrams yield identical contributions.  Since two site connections 

are avoided, there are two negative factors.  The result is 

 

If two connections are made, not every diagram yields the same result.  The possibilities 

are: 

 

 

 

The first two diagrams contain contiguous sets of connected nodes with a single isolated 

vertex.  The last diagram contains two pairs of nodes that are isolated from each other.  

The total contribution for the case in which there are two contractions is 

1 3 2 4 

1 3 2 4 

1 3 2 4 

1 3 2 4 

1 3 2 4 

1 3 2 4 
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If we form connections among each of the nodes, we have the following diagram: 

 

So, the result for the total fourth order contribution is 

 

There are several ways to check the validity of one’s results.  Firstly, the total numerical 

value of the coefficients should sum to zero.  Of considerable utility and importance is 

the fact that the total number of diagrams for a specific order in  and number of 

contractions is actually a binomial coefficient that is given by the formula 

€ 

NC
M =

M −1( )!
C!( ) M −C −1( )!

 

For example, in the  fourth order case with  connections we find 

€ 

N2
4 =

3!
2!( ) 1!( )

= 3 as we discovered. 

 We now examine the fifth order case, again using the diagrammatic approach.  

For the case in which no connections are made, the diagram and its contribution are 

€ 

→ −1( )4 λ j s

5
= λ j s

5
 

Performing a single contraction, we expect to find four contributions.  We have the 

following: 

1 3 2 4 

1 3 2 4 5 
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For the case in which two connections are made, the number of expected diagrams is: 

 

 

 

 

Furthermore, 

 

 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 
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Now, for the fourth order case with two contractions we obtain 

 

Next, we examine the situation in which there are a total of three connections.  

We will be seeking four diagrams, which are: 

 

 

 

 

The total contribution in the case of three connections is  

€ 

−2 λ j
4 λ j + λ j

3 λ j
2[ ]  

Four connections will link all of the nodes and the contribution is 

 

Combining the results yields 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 

1 3 2 4 5 
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 The sixth order case is handled in the same manner as the previous five cases.  If 

all five contractions are avoided, the contribution is 

 

After examining single and multiple contiguous and noncontiguous contractions as done 

previously, we find that in total, we have 

 

Hence, up to sixth order in the perturbation we have: 

 

6.3: Validating the Analytical Techniqueby Direct Comparison 

In the one-dimensional case where nearest neighbor couplings are considered, an 

alternative approach is possible which is complementary to and distinct from the method 

of expansion facilitated by diagrammatic analysis.  This simpler technique, which 

1 3 2 4 5 6 
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involves summing up resistances to calculate an equivalent resistance, can’t be 

implemented if one generalizes to connections beyond next-nearest neighbors, or if 

geometries in two or three dimensions are considered, even in the case of conductive 

links among nearest neighbors.  However, for the one-dimensional case it is 

advantageous to perform the calculation using the simpler approach to check the validity 

of the more general technique. 

 As noted earlier, the total resistance is 
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s
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3

s
+ ...[ ] 

Although the equivalent resistance has a relatively simple formula, we need to form the 

reciprocal in order to calculate the total current flowing in the system.  This total current 

should be the same as the quantity  calculated using the diagrammatic expansion. 

 Particularly, we know from Ohm’s law that 
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Upon further calculation, we find for the current 
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After full evaluation of the fifth and sixth order terms, we find 

 

which is an exact reproduction of what we obtained in the diagrammatic analysis. 

 In the one-dimensional case, the current  is calculated by forming the reciprocal 

of the system averaged equivalent resistance .  Therefore, it’s clear that the 
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diagrammatic approach is of little computational merit in the context of the one-

dimensional case in which nearest neighbors are joined by resistance links.  However, the 

diagrammatic method is much more useful in two and three dimensions where an 

expression for  is not as straightforward to calculate. 
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CHAPTER 7 

RANDOM RESISTOR NETWORKS IN TWO DIMENSIONS: ANALYTICAL AND 

NUMERICAL RESULTS 

 We shall find that we may make progress in both two and three dimensions by 

using a method substantially similar to the reciprocal space perturbative expansion 

derived for the one-dimensional counterpart.  Figure 46 shows a typical two-dimensional 

situation: 

 

 

 

 

 

 

 

 

Rx
jx-1,jy Rx

jx,jy 

Ry
jx,jy-1 

Ry
jx,jy 

jx,jy 

jx,jy-1 

jx+1,jy jx-1,jy 

jx,jy+1 

Figure 46: Illustration of the labeling scheme for the nodes and link 
resistances in the two-dimensional square lattice; connections are 
confined to nearest neighbors 
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7.1: Introducing the Conductance of Links 

Before we examine the local charge conservation condition, let’s revisit Ohm’s 

Law that states that .  We will gain a measure of convenience by redefining this 

relation as 

 

where  is the conductance.  Having assigned a resistance  to the horizontal links 

and  to their vertical couterparts, we may do the same for conductances:  and 

.  In terms of the conductances, the current that flows from the node  to the 

adjacent node  to the right is  
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This expression becomes tidier and in some ways more transparent when we use the 

Fourier variables. 

7.1.1: Defining the Conductance and the Potential Shifts 

 It is our goal now to operate in terms of the Fourier variables and obtain a 

perturbative series in the quantity parameterizing the shifts in conductance values.  When 

introducing the shifts, we use  and  so the variations 
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are encoded in  and  for  and  respectively.  There will be 

commensurate changes in the potential values at nodes. 

 We use .  The current constraint assumes 

the form 
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After algebraic manipulation, we find 
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7.1.2: Fourier Analysis of the Charge Conservation Constraint 

Once again, we introduce the Fourier variables with .  

Next, we insert the Fourier expansions for , , and  into the charge conservation 

condition and select an individual Fourier component by exploiting the orthogonality of 

the Fourier states.  The result is 
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This relation may be expressed more succinctly if we use  as well 

as .  In terms of bare propagators  and  we thus have 
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Noting that the expression  is proportional to the Laplacian in Fourier 

space, we use 
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€ 

ΔV  K .  Noting that , we observe that we must avoid dividing 

by  because doing so would be equivalent to dividing by zero.  Then we have 

  

€ 

ˆ Δ  K =
−v0

σ0

λ  K 
x g−kx

0

ˆ Δ  K 

+
1

σ0
ˆ Δ  K 

ΔV  
ʹ′ K 

 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 
K ,
 
ʹ′ K  

ʹ′ K ≠0

∑  

7.2: Devleoping the Perturbative Series in Fourier Space 

 Just as we did previously in the one-dimensional case, we use an iterative process 

to develop a perturbative expansion for   

€ 

ˆ Δ  K .  This leads to 

  

€ 

ΔV  K =
−v0λ  K 

x g−kx

0

σ 0
ˆ Δ  K 

+
1
ˆ Δ  K 

−v0

σ 0

λ  
ʹ′ K 

x g
−kx ʹ′

0

ˆ Δ  
ʹ′ K 

+
1

σ 0
ˆ Δ  

ʹ′ K 

ΔV  
ʹ′ ʹ′ K 

 
λ  

ʹ′ K −
 
ʹ′ ʹ′ K ⋅
 
Λ 

−
 
ʹ′ K ,
 
ʹ′ ʹ′ K  

ʹ′ ʹ′ K ≠0

∑
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 

K ,
 
ʹ′ K ( )

 
K ≠0

∑  



 
 

137 

  

€ 

=
−v0

σ0

λ  K 
x g−kx

0

ˆ Δ  K 

−
v0

σ0
2

λ  
ʹ′ K 

x g
−kx ʹ′

0

ˆ Δ  K 
ˆ Δ  

ʹ′ K 

 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 
K ,
 
ʹ′ K ( ) +

1
σ0

2
1

ˆ Δ  K 
ˆ Δ  

ʹ′ K 

ΔV  
ʹ′ ʹ′ K 

 
λ  

ʹ′ K −
 
ʹ′ ʹ′ K ⋅
 
Λ 

−
 
ʹ′ K ,
 
ʹ′ ʹ′ K ( )
 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 
K ,
 
ʹ′ K ( )

 
ʹ′ ʹ′ K ≠0

∑
 
ʹ′ K ≠0

∑
 
ʹ′ K ≠0

∑

=
−v0
ˆ Δ  K 

λ  K 
x g−kx

0

σ0
+

1
σ0

2

λ  
ʹ′ K 

x g
−kx ʹ′

0

ˆ Δ  
ʹ′ K 

 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 
K ,
 
ʹ′ K ( ) +

1
σ0

3

λ  
ʹ′ ʹ′ K 

x g
−kx ʹ′ʹ′

0

ˆ Δ  
ʹ′ K 
ˆ Δ  

ʹ′ ʹ′ K 

 
λ  

ʹ′ K −
 
ʹ′ ʹ′ K ⋅
 
Λ 

−
 
ʹ′ K ,
 
ʹ′ ʹ′ K ( )
 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 
K ,
 
ʹ′ K ( )

 
ʹ′ ʹ′ K ≠0

∑
 
ʹ′ K ≠0

∑
 
ʹ′ K ≠0

∑

+
1
σ0

4

λ  
ʹ′ ʹ′ ʹ′ K 

x g
−kx ʹ′ʹ′ʹ′

0

ˆ Δ  
ʹ′ K 
ˆ Δ  

ʹ′ ʹ′ K 
ˆ Δ  

ʹ′ ʹ′ ʹ′ K 

 
λ  

ʹ′ ʹ′ K −
 
ʹ′ ʹ′ ʹ′ K 

 
Λ 

−
 
ʹ′ ʹ′ K ,
 
ʹ′ ʹ′ ʹ′ K ( )
 
λ  

ʹ′ K −
 
ʹ′ ʹ′ K ⋅
 
Λ 

−
 
ʹ′ K ,
 
ʹ′ ʹ′ K ( )
 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 
K ,
 
ʹ′ K ( )

 
ʹ′ ʹ′ ʹ′ K ≠0

∑ + ...
 
ʹ′ ʹ′ K ≠0

∑
 
ʹ′ K ≠0

∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

This expression is valid in broader generality, and will be applied in the three-

dimensional case as well. 

7.2.1: Calculating the Current in Fourier Space 

 Next we will calculate the mean current  moving from the nodes in the  

direction.  We will evaluate the contributions order by order in the perturbations .  We 

will calculate  first, and then perform the average over disorder.  For  we have 

€ 

I = 1
N 2 σ jx , jy

x V jx , jy
−V jx +1, jy( )

jy =0

N −1

∑
jx =0

N −1

∑  

€ 

=
1
N 2 σ0 − λ jx , jy

x( ) V0N + ΔV jx , jy
− ΔV jx +1, jy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

jy =0

N −1

∑
jx =0

N −1

∑

=
1
N 2 N 2 V0σ0

N
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +σ0 ΔV jx , jy

− ΔV jx +1, jy( ) − V0N λ jx , jy
x + λ jx , jy

x ΔV jx +1, jy
− ΔV jx , jy( )

jy =0

N −1

∑
jx =0

N −1

∑
jy =0

N −1

∑
jx =0

N −1

∑
jy =0

N −1

∑
jx =0

N −1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= v0σ0 + 0 − v0
N 2 λ jx , jy

x +
1
N 2

jy =0

N −1

∑
jx =0

N −1

∑ λ jx , jy
x

jy =0

N −1

∑
jx =0

N −1

∑ ΔV jx +1, jy
− ΔV jx , jy( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

where the second term vanishes due to the periodicity condition.   

7.3: Averaging over Disorder 

Now, we make the assumption that none of the conductance fluctuations  

and  are correlated, and are sampled independently from the same statistical 
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distribution.  Operating in this context, we may average over disorder and thereby obtain 

specific expressions for the zeroth order and first order terms in .  Particularly, one 

finds that 

€ 

I = v0σ0 − v0 λ +
1

N 2 λ jx , jy

x ΔV jx +1, jy
− ΔV jx , jy( )

jy =0

N −1

∑
jx =0

N −1

∑  

The second and higher order terms emerge on the last term in the right side of the 

expression.  Noting that if the conductance shifts  are as often positive as negative, it’s 

clear that one will have  so the corrections to the current will be second and higher 

order in .  However, a non-vanishing  will lead to contributions linear in the 

perturbation which survive the configurational average. 

7.3.1: Developing the Perturbative Series for the Current 

 Now we’ll examine and evaluate the term 

€ 

1
N 2 λ jx , jy

x ΔV jx +1, jy
− ΔV jx , jy( ) ≡ I2

jy =0

N −1

∑
jx =0

N −1

∑  

Reverting to Fourier components gives  

  

€ 

I2 =
1

N 2 λ  K 
x ei

 
K ⋅ x 

 
K 

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ΔV  

ʹ′ K  
ʹ′ K 

∑ g
kx ʹ′

0 ei
 
ʹ′ K ⋅ x 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 x 
∑  

The sum over the positions must vanish unless   

€ 

 
K = −

 
ʹ′ K .  Hence, a Kronecker Delta 

symbol  arises, and one finds that 

  

€ 

I2 =
1

N 2 N 2 δ  K −
 
K λ  K 

x g
kx ʹ′

0 ei
 
K +
 
ʹ′ K [ ] ⋅ x 
ΔV  

ʹ′ K  
K 

∑
 
K 

∑  

       
  

€ 

= λ  K 
x g−kx

0 ΔV
−
 

K  
K 

∑  

       
  

€ 

= λ
−
 
K 

x gkx

0 ΔV  K  
K ≠0

∑  
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In the last step we’ve relabeled the dummy indices for the sake of future convenience. 

 Now we examine the term  and evaluate it order by order in .  Particularly, we 

find that 

  

€ 

I2 ≡ λ
−
 
K 

x ΔV  K gkx

0

 
K ≠0

∑  

   

  

€ 

=
−v0

σ0

λ  K 
x λ

−
 

K 
x

ˆ Δ  K 

gkx

0 g−kx

0 +
1
σ0

λ  
ʹ′ K 

x λ
−
 

K 
x
 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 

K ,
 
ʹ′ K ( )gkx

0 g
−kx ʹ′

0

ˆ Δ  K 
ˆ Δ  

ʹ′ K 
 
ʹ′ K ≠0

∑
 

K ≠0

∑
 

K ≠0

∑

+
1
σ0

3

λ  
ʹ′ ʹ′ K 

x λ
−
 

K 
x g

−kx ʹ′ʹ′

0 gkx

0

ˆ Δ  K 
ˆ Δ  

ʹ′ K 
ˆ Δ  

ʹ′ ʹ′ K 

 
λ  

ʹ′ K −
 
ʹ′ ʹ′ K ⋅
 
Λ 

−
 
ʹ′ K ,
 
ʹ′ ʹ′ K ( )
 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 
K ,
 
ʹ′ K ( ) + O λ5( )

 
ʹ′ ʹ′ K ≠0

∑
 
ʹ′ K ≠0

∑
 
K ≠0

∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 

If we evaluate the first three terms shown above, we will have evaluated  up to fourth 

order in the perturbing influence .   

7.3.2: Calculating the Second Order Contribution 

We will examine each of the terms in succession, beginning with the second order 

piece.  So we consider the term 

  

€ 

λ  K 
x λ

−
 

K 
x

ˆ Δ  K 

gkx

0 g−kx

0

 
K ≠0

∑  

which contributes to quadratic order in the perturbing influence. 

 To calculate the configurational average, one must re-express   

€ 

λ  K 
x  and   

€ 

λ
−
 
K 

x  in 

terms of their counterparts in real space.  This is done via 

  

€ 

λ  K 
x =

1
N 2 e− i

 
K ⋅ x 

 x 
∑ λ x 

x  

So the term of interest now appears as 
  

€ 

N −4
e−i

 
K ⋅ x λ x 

x( ) e−i
 
K ⋅ ʹ′ x λ ʹ′ x 

x( )gkx

0 g−kx

0

ˆ Δ  K 
 
ʹ′ x 
∑

 x 
∑

 
K ≠0

∑ .   
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7.3.2.1: The Disorder Average in Real Space 

Now we are required to average properly over disorder, a step that requires 

careful consideration.  We find 

  

€ 

N −4 ei
 

K ⋅  ʹ′ x −  x [ ]λ x 
x λ ʹ′ x 

x

ˆ Δ  K 

gkx

0 g−kx

0

 x , ʹ′ x 
∑

 
K ≠0

∑ = N −4 ei
 
K ⋅  ʹ′ x −  x [ ]

ˆ Δ  K 
 x , ʹ′ x 
∑

 
K ≠0

∑ gkx

0 g−kx

0 λ x 
x λ ʹ′ x 

x  

At present, it’s not possible to perform any of the indicated sums.  However, 

when we average over disorder it will be possible to evaluate the sums.  We will 

therefore carefully examine the term   

€ 

λ x 
x λ ʹ′ x 

x .  The situation is simplified if   

€ 

 x  and   

€ 

 
ʹ′ x  

represent distinct positions.  Discretion is advised for situations in which  and  are 

identical.  If   

€ 

 x =  ʹ′ x , the averages decouple since   

€ 

λ x  and   

€ 

λ ʹ′ x  are assumed to fluctuate 

independently.  Then we find that   

€ 

λ x 
x λ ʹ′ x 

x = λ x 
x λ ʹ′ x 

x = λ 2 for   

€ 

 x ≠  ʹ′ x .  On the other 

hand, in the circumstance that   

€ 

 x =  ʹ′ x , instead we have 
  

€ 

λ x 
x λ ʹ′ x 

x = λ x 
x 2 = λ2  for   

€ 

 x =  ʹ′ x .   

This condition may be expressed in explicit mathematical terms with the aid of 

the Kronecker Delta symbol   

€ 

δ  x  ʹ′ x .  Specifically, we may write 

  

€ 

λ x 
x λ ʹ′ x 

x = λ 2
+δ  x  ʹ′ x λ2 − λ 2( )[ ]  

We now have the means to calculate the second order contribution to the 

configurationally averaged current.  One now has 

  

€ 

N −4 ei
 

K ⋅  ʹ′ x −  x [ ]

ˆ Δ  K 

gkx

0 g−kx

0

 x , ʹ′ x 
∑

 
K ≠0

∑ λ x 
x λ ʹ′ x 

x = N −4 ei
 

K ⋅  ʹ′ x −  x [ ]

ˆ Δ  K 

gkx

0 g−kx

0

 x , ʹ′ x 
∑

 
K ≠0

∑ λ 2
+δ  x  ʹ′ x λ2 − λ 2( )[ ] 

7.3.2.2: Exploiting the Square Symmetry 

 It is advantageous to exploit the square symmetry of the lattice under 

consideration.  Suppose we impose a potential  across the system in the  direction 
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instead of the horizontal direction.  We would obtain the same configurationally averaged 

current as in the case in which the potential difference is set up in the  direction.  

Hence, we see that 

  

€ 

N −4 ei
 
K ⋅  ʹ′ x −  x [ ]

ˆ Δ  K 

gkx

0 g−kx

0

 x , ʹ′ x 
∑

 
K ≠0

∑ λ x 
x λ ʹ′ x 

x =
1
2

N −4 ei
 
K ⋅  ʹ′ x −  x [ ]

ˆ Δ  K 

gkx

0 g−kx

0

 x , ʹ′ x 
∑

 
K ≠0

∑ λ 2
+δ  x  ʹ′ x λ2 − λ 2( )[ ] 

It’s important to note that   

€ 

ˆ Δ  K = gkx

0 g−kx

0 + gky

0 g−ky

0 .  Our task now entails calculating 

  

€ 

1
2

N −4 ei
 
K ⋅  ʹ′ x −  x [ ]gkx

0 g−kx

0

 x , ʹ′ x 
∑

 
K ≠0

∑ λ 2
+δ  x  ʹ′ x λ2 − λ 2( )[ ] =

1
2

N −4 λ 2 e− i
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 x 
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ei

 
K ⋅ ʹ′ x 

 
ʹ′ x 
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 
K ≠0

∑ +
1
2

N −2 λ2 − λ 2( )
 
K ≠0

∑
 

         

€ 

= 0 +
1
2
1− N −2( ) λ2 − λ 2( ) 

The last step simplifies considerably because of the fact that the independent factors 

  

€ 

e− i
 

K ⋅ x 

 x 
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  and 

  

€ 

e− i
 
K ⋅ ʹ′ x 

 
ʹ′ x 
∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  in the first term vanish for   

€ 

 
K ≠ 0 .  On the other hand, omitting 

the   

€ 

 
K = 0 term in the second term yields the  factor. 

 Then we have for the second order piece the expression 

€ 

1
2
1− N −2( ) λ2 − λ 2( ) 

So the second order piece is proportional to the standard deviation of the perturbation .  

So up to second order in the perturbing influence, we have 

€ 

I = v0 σ0 − λ −
1
2
1− N −2( ) λ2 − λ 2( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

7.3.2.3: Specializing to the Bulk Limit 

In the bulk limit, one finds that  will tend to zero, and the configurationally 

averaged current is 
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€ 

I = v0σ0 1−
1
σ0

λ −
1
2σ0

2 λ2 − λ 2( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

7.3.3: Calculating the Third Order Contribution 

Now we examine the third order piece.  To do this, we must evaluate the system 

average 

  

€ 

λ  
ʹ′ K 

x λ
−
 
K 

x  
λ 
−
 

K ,
 

K ⋅
 
Λ 

−
 

K ,
 
ʹ′ K ( ) gkx

0 g
−kx ʹ′

0

ˆ Δ  K 
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ʹ′ K 
 
ʹ′ K ≠0

∑
 

K ≠0

∑  

Using the fact that 
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λ 
−
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Λ 

−
 
K ,
 
ʹ′ K ( ) = λ  K −

 
ʹ′ K 

x g−kx

0 g
kx ʹ′

0 + λ  K −
 
ʹ′ K 

y g−ky

0 g
ky ʹ′

0⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 we must consider 

  

€ 

λ  
ʹ′ K 

x λ
−
 

K 
x λ  K −

 
ʹ′ K 

x gkx

0 g−kx

0 g
kx ʹ′

0 g
−kx ʹ′

0 + λ  
ʹ′ K 

x λ
−
 
K 

x λ  K −
 
ʹ′ K 

y gkx

0 g−kx

0 g
−ky ʹ′

0 g
ky ʹ′

0

ˆ Δ  K 
ˆ Δ  

ʹ′ K 

⎡ 

⎣ 

⎢ 
⎢ 
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⎦ 

⎥ 
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ʹ′ K ≠0

∑
 

K ≠0

∑  

7.3.3.1: Calculating Triple Product Averages 

Now we evaluate the configurational averages.  First we examine 

  

€ 

λ  
ʹ′ K 

x λ
−
 

K 
x λ  K −

 
ʹ′ K 

x = N −6 e−i
 
ʹ′ K ⋅ x ei

 
K ⋅ ʹ′ x e− i

 
K −
 
ʹ′ K [ ] ⋅ ʹ′ ʹ′ x 

 x , ʹ′ x , ʹ′ ʹ′ x 
∑ λ x 

x λ ʹ′ x 
x λ ʹ′ ʹ′ x 

x  

So we need to calculate terms such as   

€ 

λ x 
x λ ʹ′ x 

x λ ʹ′ ʹ′ x 
x .  As done previously, our consideration 

must be nuanced.  The simplest case occurs when   

€ 

 x ≠  ʹ′ x ≠  ʹ′ ʹ′ x , and one has 

  

€ 

λ x 
x λ ʹ′ x 

x λ ʹ′ ʹ′ x 
x = λ x 

x λ ʹ′ x 
x λ ʹ′ ʹ′ x 

x  x ≠  ʹ′ x ≠  ʹ′ ʹ′ x ( )  

The other extreme situation is the case in which   

€ 

 x =  ʹ′ x =
 
ʹ′ ʹ′ x ( ) for which 

  

€ 

λ x 
x λ ʹ′ x 

x λ ʹ′ ʹ′ x 
x = λ x 

3 .  There could also be intermediate situations in which two of the 

coordinates are the same (e.g.   

€ 

 x  and   

€ 

 
ʹ′ x ), and the third coordinate (  

€ 

 
ʹ′ ʹ′ x ) is different. 

 To accommodate all possible cases, we must introduce the Kronecker Delta 

functions.  For example, let   

€ 

 x =  ʹ′ x  and   

€ 

 
ʹ′ x ≠  ʹ′ ʹ′ x .  Then we introduce a term of the form 
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€ 

δ  x  ʹ′ x λ2 λ − λ 3[ ] .  However, this term must itself be corrected to account for the 

circumstance in which each of the coordinates are identical.  In this case, we introduce 

the triple Kronecker Delta symbol   

€ 

δ  x  ʹ′ x  ʹ′ ʹ′ x  with the characteristic that   

€ 

δ  x  ʹ′ x  ʹ′ ʹ′ x =1 for 

  

€ 

 x =  ʹ′ x =
 
ʹ′ ʹ′ x  and zero otherwise.  Thus we have 

  

€ 

δ  x  ʹ′ x λ2 λ − λ 3[ ] 1−δ  x  ʹ′ x  ʹ′ ʹ′ x ( )  

where the factor   

€ 

1−δ  ʹ′ x  ʹ′ ʹ′ x  ʹ′ ʹ′ ʹ′ x ( )  will eliminate cases where   

€ 

 x =  ʹ′ x =
 
ʹ′ ʹ′ x  and confine the 

contribution to the circumstance in which only   

€ 

 x  and   

€ 

 
ʹ′ x  are the same.  If   

€ 

 x =  ʹ′ ʹ′ x , then 

there is a similar factor 
  

€ 

δ  ʹ′ x  ʹ′ ʹ′ x λ2 λ − λ 3[ ] 1−δ  x  ʹ′ x  ʹ′ ʹ′ x ( ) .  If   

€ 

 x =  ʹ′ ʹ′ x , we have the factor 

  

€ 

δ  x  ʹ′ ʹ′ x λ2 λ − λ 3[ ] 1−δ  x  ʹ′ x  ʹ′ ʹ′ x ( ) . 

 The last case under consideration is the situation in which each of the three 

coordinates are the same:   

€ 

 x =  ʹ′ x =
 
ʹ′ ʹ′ x .  The appropriate term to add in this case is 

  

€ 

δ  ʹ′ x  ʹ′ ʹ′ x  ʹ′ ʹ′ ʹ′ x λ3 − λ 3[ ]  

Incorporating the aforementioned corrections, we find that the average over disorder will 

yield 

  

€ 

λ x λ ʹ′ x λ ʹ′ ʹ′ x = λ 3
+ δ  x  ʹ′ x +δ  ʹ′ x  ʹ′ ʹ′ x +δ  ʹ′ ʹ′ x  x [ ] 1−δ  x  ʹ′ x  ʹ′ ʹ′ x ( ) λ 2 λ − λ 3( ) +δ  x  ʹ′ x  ʹ′ ʹ′ x λ3 − λ 3( )  

  

€ 

= λ 3
+ δ  x  ʹ′ x +δ  ʹ′ x  ʹ′ ʹ′ x +δ  ʹ′ ʹ′ x  x [ ] λ 2 λ − λ 3( ) − 3δ  x  ʹ′ x  ʹ′ ʹ′ x λ 2 λ − λ 3( ) +δ  x  ʹ′ x  ʹ′ ʹ′ x λ3 − λ 3( )  

The result was simplified by using the property   

€ 

δ  x  ʹ′ x δ  x  ʹ′ x  ʹ′ ʹ′ x = δ  x  ʹ′ x  ʹ′ ʹ′ x .  Using a table will help 

verify that we have obtained the correct result.  For the third order case, it is sufficient to 

operate with the aid of inspection.  The possibilities are enumerated in the following 

table: 
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Table 1:  Special cases and corresponding  
Expectation values for the products 
 
Case   

€ 

λ x λ ʹ′ x λ ʹ′ ʹ′ x  

  

€ 

 x =  ʹ′ x   

  

€ 

 
ʹ′ x =
 
ʹ′ ʹ′ x   

  

€ 

 
ʹ′ ʹ′ x =
 x   

  

€ 

 x =  ʹ′ x =
 
ʹ′ ʹ′ x   

  

€ 

 x ≠  ʹ′ x ≠  ʹ′ ʹ′ x   

 
  

7.3.3.2: Applying the Triple Average Result 

Next, this result will used to evaluate the term   

€ 

λ  
ʹ′ K 

x λ
−
 
K 

x λ  K −
 
ʹ′ K 

x  as far as possible.  

Collapsing the Kronecker Delta symbols where they appear will facilitate this.  We see 

that 
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In a similar way we examine the term 
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So we may combine the results and for the third order term we have 
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 This expression can be split into two terms, one of which is proportional to , 

and one of which is not.  We first examine the term containing the Kronecker Delta 

function, and we have 
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7.3.3.3: Taking Advantage of Square Symmetry 

Fortunately, we have the opportunity to exploit square symmetry.  With no axis 

preferred in the system, one may map  to  and vice versa.  With this in mind, we re-

express  as a symmetric combination of two terms via 
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Since the numerator and denominator are identical for all values of   
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K , they cancel.  We 

thus have 
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   We now consider the term  where we will see that the use of square symmetry 

will again prove useful.  We now consider 
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Note that the two wave vector sums enclosed in parentheses are independent, a fact that 

we will use to our advantage.  Before proceeding, we note that 
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We prove the preceding identity by expanding the   
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ʹ′ K  terms appearing in the 

numerator.  One has 
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So we see that 
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third order contribution has the form 
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To summarize, we have found up to third order contributions that the configurational 

averaged current is of the form 
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 We comment that perturbative treatments have been brought to bear on resistor 

networks in the past [7,8,9].  However, in earlier treatments, the emphasis has been on 
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perturbing around around the insulating regime by building up isolated clusters of 

conducting links.  Our approach is in this regard quite distinct.  We perturb about the 

pristine regular network.  A salient feature of our approach is that our results will be 

particularly relevant to a variety of systems which are very tolerant of mild to moderate 

positional disorder. 

7.4: Numerical Monte Carlo Simulations in the Two-Dimensional Case 

 With the aid of a series of Monte Carlo calculations, we examine our analytical 

series expansion.  Juxtaposition with numerical data is one way to validate the series, by 

directly checking its accuracy.  In the numerical calculation, we operate within the 

previously discussed iterative scheme.  We consider a large resistor network, a square 

grid containing 10,000 nodes and spanning 100 lattice constants on a side. 

7.4.1: A Bond disordered System 

 We implement bond disorder, and a simple approach is to decrement the 

conductance by an amount , where  is the unperturbed bond conductance.  Hence, 

if we set  to , then we shall have removed half of the conductance.  Equivalently, we 

will have doubled the resistance.  A more drastic step would entail setting  to , such 

that the entire conductance in a bond is completely eroded away.  Then with bond 

conductances reduced to zero, the link resistance becomes infinite.   

The two distinct scenarios, merely attenuated links, and a case in which links are 

utterly severed, are illustrated in Figure 47. 
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In this figure, the defects are introduced at the level of 50%.  As we approach the 

situation in which the links are deleted (i.e. where ), the analysis of the transport 

characteristics will encounter a stark difficulty: as the concentration of deleted links is 

increased, a threshold is eventually attained where current may no longer follow a 

continuous path through the system.  This condition is known as the percolation 

threshold.  In the case of a square lattice with randomly deleted bonds, the percolation 

threshold is known to occur when precisely 50% of the bonds have been removed, or 

when .  Thus, while we expect the numerical Monte Carlo simulations to proceed 

smoothly, we anticipate that our analytical result will break down near the percolation 

transition where  and the prevalence of random disorder approaches 50%. 

 In computer simulations, we do not perform configurational averages.  Instead, 

we find it expedient to use only a single disorder realization.  However, the use of a very 

large system (i.e. the 100 x 100 square grids we consider in the work reported here) 

Sample square 
system with 
attenuated links 

Sample Square 
system with 
truncated links 

Figure 47: Illustration of system with attenuated links (left) and a case where the conductive bonds are 
completely sheared away (right) 
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ensures that enough self-averaging occurs to significantly mitigate random statistical 

fluctuations.  Our criterion for convergence of the calculations also is an important 

feature.  We insist that the iterations continue until the residual component has 

diminished below one part in  before the iterative sequence is permitted to terminate. 

7.4.2: Obtaining the Specific Form of the Perturbative Series 

 As we specialize to the bond attenuation case examined in the Monte Carlo 

calculation, we also must calculate the specific form of the perturbative series that we 

will use to compare with the results of the numerical simulations.  To proceed, we must 

evaluate the first three mements (i.e. , , and ) of the perturbation .  Noting 

that with probability  the bond conductance is decreased by  and with probability 

 no alteration is made to the bond, we may continue. 

 For the first moment, we have .  In a similar manner,  

while .  Then, to cubic order, the perturbative series has the form 
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We will be interested in the conductance of the disordered system relative to that of the 

pristine case, where none of the bonds are attenuated.  Hence, the series we with to 

consider is 

 

which is parameterized by the bond attenuation probability  and the attenuation 

magnitude . 
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 With the series rendered to cubic order in the perturbation , we may also 

construct an approximant, 

€ 

P1
2 ε( ), to assist in extrapolating the series to larger values of .  

The Padé approximant has the specific form 

€ 

P1
2 ε( ) =

1+α1ε +α2ε
2

1+ β1ε
 

where , , and .  It is our aim to see how the series 

expansions to first, second, and third order perform relative to results from Monte Carlo 

simulations.  Moreover, we also examine the Padé approximant for its performance 

relative to the simulations and series expansions that have not been subject to Padé 

analysis.  

7.4.3: Presentation and Discussion of the Monte Carlo Results 

 Results may be seen in the graphs shown below.  Obvious parameters to tune are 

the strength  of the perturbation as well as the probability  of perturbing a bond 

conductance.  One might expect the series approximants to the relative conductance to 

fare best when both  and  are small, while relatively poor performance is anticipated 

as  approaches unity, a circumstance tantamount to setting bond resistances to infinity, 

or deleting the bonds altogether.  In large measure, preliminary ideas as to the results are 

born out.  In exploring the available parameter space, we have produced results by 

holding  fixed and permitting  to vary. 

 The Monte Carlo data shows a relative conductivity that decreases monotonically 

in .  A characteristic that increases with prominence as  is made larger is the 

concavity of the curves.  The curvature introduces deviations from linearity which are 

strongest in the vicinity of the bond percolation threshold where .  As 
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anticipated, we find better agreement for the perturbative series and the Padé 

approximant to the cube order series when .  As  approaches unity, discrepancies 

are more pronounced, and can be discerned most readily for the final graph in the series 

where we have set . 

 A consistent feature of the curves is a progressive improvement in the degree of 

agreement with the Monte Carlo calculations.  There is discernable improvement with 

each successive order, and ultimately the Padé approximant curves (shown in black) 

provide the best description of the Monte Carlo simulation results; the extent to which the 

Padé curves serve as the best approximation is most readily seen in the graphs prepared 

for the larger  values where, e.g.,  and  of the last two of the five plots 

given below. 

 In developing the perturbation series for the bond-disordered system, we have 

used an analytical technique to genuinely reach the thermodynamic limit.  In previous 

work, a static configuration of a regular lattice with a single perturbed resistor has been 

considered [10]. 

 In our calculation, there are numerous conductance links that have been 

perturbed.  However, there is a trade-off: in order to examine a large system with so 

many individual perturbations, we have found it necessary to calculate an ensemble 

average over all possible configurations of disorder. 

 Thus, we lose details of the local lattice structure.  Even so, given that we are in 

pursuit of bulk characteristics anyway, there is no adverse effect in the loss of specific 

system details. 
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Graph 8: Graph of relative conductivity with respect to the bond attenuation probability for a mild 
attenuation factor .  The filled symbols represent Monte Carlo numerical results, while solid lines 
are analytical approximants. 
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Graph 9: Graph of relative conductivity versus bond attenuation probability for a mild attenuation factor 
.  Filled symbols are numerial Monte Carlo results, and solid curves are analytical approximants. 
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Graph 10: Graph of relative conductivity versus bond attenuation probability for a moderate level of 
attenuation, .  Filled symbols are numerical Monte Carlo results, and solid curves are analytical 
approximants. 
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Graph 11: Graph of relative conductivity versus bond attenuation probability for a strong attenuation level, 
.  Filled symbols are numerical Monte Carlo results, and solid curves are analytical 

approximants. 
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Graph 12: Graph of relative conductivity versus bond attenuation probability for a very strong attenuation 
factor, .  Filled symbols are numerical Monte Carlo results, and solid curves are analytical 
approximations 
 
 

7.5: Logarithmic Bond Disorder for the Two-Dimensional System 

 We now examine a type of disorder that may be tuned from quite weak to 

extremely strong.  Moreover, the type of disorder we now examine will serve as a closer 

rendition of the type of disorder that exists in certain types of amorphous conductors.  

The type of disorder we examine now is spread over a uniform logarithmic range, where 

for the sake of convenience we operate in terms of base ten logarithms.  Bond 

conductances  are chosen in such a way that 

€ 

log10 σ[ ] is chosen at random from the 

interval  where the right-most value corresponds to the largest conductance values 

on the order of unity, since .  The smallest values of the conductance are of the 

magnitude .  Hence, if  is relatively large, (e.g. on the order of 5 or so), there will 



 
 

158 

be an enormously wide range in the variation of bond conductances.  In such a regime of 

strong disorder, the condutances of neighboring bonds may differ by several orders of 

magnitude.   

 On the other hand, one may also be in a perturbative regime where  and the 

series expansion we have calculated would be expected to fare best.  Nevertheless, in a 

sense the physics of greatest interest will arise for cases where the lower bound  of the 

conductance logarithms is relatively large.  In such cases, our situation becomes very 

amenable to description in terms of critical percolation phenomena. 

7.5.1: Aspects of Percolation Phase Transitions 

 In quantitative terms, percolation is simply an objective assessment if a lattice 

network may be navigated by motion confined strictly to intact lattice conduits [11]. In 

the illustration below, examples are given of representative cases where percolation does 

not occur (left), and a lattice exhibiting percolation (right). 

 

 

 

  

Non-Percolating Percolating 
Figure 48: Illustration of percolation behavior (left) and non-percolating behavior (right) in two 
dimensions 
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One sees for the lattice on the left that it is not possible, by travelling along intact 

bonds, to find a way to navigate entirely from left to right or top to bottom.  On the other 

hand, for the case shown on the right, there is a way to move across the system in both 

the horizontal and vertical directions.  In view of these characteristics, we say that there is 

no percolation in the former case whereas the latter contains a cluster of connected bonds 

which spans the entire system and therefore exhibits percolation.  In practice, as the 

system size becomes very large, the onset of percolation with increasing lattice 

connectivity becomes very abrupt.  As noted earlier, in the two-dimensional lattice 

percolation among bonds occurs when the bond occupancy approaches 50%.  In terms of 

our previous model, this situation corresponds to setting  to  and  to . 

 In the bulk limit, a remarkable thing happens.  For an infinite sized system 

(typical laboraty samples may be considered to lie in this regime due to the enormously 

large number of atoms contained in a macroscopic sample).  The probability of 

percolation has the form of a step function, being zero below the percolation threshold 

and exactly 100% immediately above it.  Hence, the critical region where percolation just 

barely occurs is of very small measure in the parameter space.   

7.5.2: The Relation of Percolation Transitions to Amorphous Conductors 

One might therefore ask what the relevane of the percolation transition may be for 

practical systems.  In fact, as we now discuss, the characteristics of percolation transitions 

are of broad relevance for amorphous conductions where there is a strong element of 

disorder.  In particular, in our model where the conductances of links are logarithmically 

dispersed, critical percolation phenomena are of relevance for .  To argue for the 

importance of percolation transition physics for systems in which no bonds are actually 
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truncated, we reiterate the principle substance of an argument given in a classic work 

[12].  

 Consider a system with a wide variation of conductance in the linkds between 

sites.  Now, we assume that such a system has a global potential difference  placed 

across it.  We wish to determine which of the links are absolutely vital for the transport 

characteristics.  To achieve this, we begin by pruning away the weakest links.  We 

continue this process until current no longer flows due to the absence of a connected path 

which passes through the system. 

 In this fashion, we arrive at a critical cluster that supports the bulk of the transport 

of the system.  Strong links become isolated by the pruning process, and hence do not 

make a significant contribution to the conductance of the system.  An important question 

to ask is whether the theoretical Gedanken experiment of pruning away the weakest links 

is quantitatively valid, though it may seem to be a sound heuristic procedure.  Although 

quantitative tests are most easily performed in the context of numerical Monte Carlo 

simulations, one may certainly assume that the critical percolation paradigm is more 

likely to be a reasonable description in a case where the variation of bond conductances is 

widest.  Typically, one envisions cases in which the individual links have conductances 

that may differ by several orders of magnitude. 

7.5.3: The Logarithmic Dispersion Model 

 Such considerable disorder may nonetheless be envisaged for cases in which there 

is a significant element of disorder, and where the variable range hopping picture applies.  

The exponential variation of conductances set up by varying degrees of localized wave 

function overlap may yield a situation in which the wide variation of conductances 
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essentially mimics the logarithmically dispersed random resistor network which we now 

examine.  Again, we in previous cases, we seek to evaluate moments of perturbations  

in the bond conductances.  The conductance of a specific link will have the form 

 

where  is a random number chosen uniformly between  and .  It is convenient to 

operate in terms of natural numbers, and one has 

 

where “ ” denotes the natural logarithm. 

 To get a Taylor series in the random numbers , we use the Taylor series 

  

€ 

ey =1+ y +
1
2
y 2 +

1
6
y 3 +….  In this fashion, we find  

 

where , 

€ 

τ2 =
1
2
ln 10( )[ ]2, and 

€ 

τ3 =
1
6
ln 10( )[ ]3.  Subsuming the terms in the 

global perturbation  gives 

 

7.5.3.1: Calculating Moments of the Perturbation 

It then becomes our task to calculate the first three moments of .  For the first 

moment , we have 

 

It is useful to obtain a formula for a general moment of the random variable .  Hence, 

 

Thus, we have for the first moment 
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 In a similar way we calculate the higher moments.  The second moment may be 

written as 

 

    

Finally, the third moment is 

 

If we assemble the results obtained thus far, the series has the form 

€ 

σ =σ0 1− λ −
1
2

λ2 − λ 2( ) − 14 λ3 − λ2 λ( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

     

€ 

=σ0 1−
1
2
ln 10( )η+

1
8
ln 10( )[ ]2η2 − 1

48
ln 10( )[ ]3η3

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

up to terms cubic in the perturbing influence . 

7.5.3.2: Comparison with Numerical Calculations and Discussion of Results 

 As before, we also construct the Padé approximant  

appropriate to the third order series expression for the relative conductance.  Results 

appear in Graph 13 below. 
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Graph 13: Relative conductance graphed with respect to the logarithmic range of bond conductances for a 
100x100 two-dimensional system.  Filled symbols are numerical Monte Carlo results, and solid curves are 
analytical approximations. 
 

Unsurprisingly, the agreement is best for smaller values of  where the variation of 

conductance values is not as wide ranging.  On the other hand, as the parameter  is 

increased to one, there is a much wider range of conductance values with the possibility 

for adjacent values to differ by a factor on the order of 10. 

 The performance of the Padé approximant is significantly better than the simple 

series approximants.  Some of which actually become negative as  approaches unity.  

Eventually, however, even the Padé curve begins to diverge as  exceeds two or three, 

and the potential exists for link conductances to vary by several orders of magnitude.  

Such a regime is better understood in terms of critical percolation phenomena, and the 
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case in which  is well approximated as a situation in which the bulk of the transport 

characteristics are determined by a critical percolating cluster. 

7.5.3.3: Use of Computational Effort as a Gauge of Criticality 

 A complementary way to consider the extent to which the critical regime is 

relevant is to examine the critical slowing down phenomenon and to use it as a gauge of 

criticality.  To this end, we graph the base ten logarithm of the iteration number with 

respect to the dispersal in the logarithm of the conductance.  The graph is given in the 

figure below.  In the plot, there is a monotonic increase in the number of required 

iterations with respect to the logarithmic dispersal.  For small values of the parameter , 

the increase is tentative.  On the other hand, as  is made larger, in the vicinity of 

, the curve begins to rise more rapidly, assuming a slope that appears to be 

asymptotically linear. 

 A linear slope in 

€ 

log10 NI[ ]  where  is the number of iterations needed to 

achieve the desired level of convergence is indicative of an exponential rise of the 

computational demand with the magnitude of the dispersal parameter .  We interpret 

this asymptotically exponential rise in  as a manifestation of the onset of criticality.  In 

the graph, the dark circles are the actual  results while the red line passes through the 

circles, and is intended as a guide to the eye. 
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Graph 14: Base ten logarithm of computational cost plotted with respect to the logarithmic range of the 
conductance for a 100x100 two-dimensional system.  Filled symbols are drawn from the simulation and the 
solid curve is a guide to the eye 
 
 

7.6: Locating Percolation Transitions 

Now, we return to the case of the square lattice where the conductances are 

degraded by the relative amount , with a probability .  We wish to examine the critical 

regime by using  as a meter to detect the critical behavior.  What has in some 

cases been a computational inconvenience will now function to our advantage.  In fact, 

our objective is nothing less than to gain an accurate record for the percolation threshold. 

7.6.1: Phenomenonology of Percolation 

 There are three distinct regimes which one may encounter depending on the value 

of the probability .  For small values of , the degradation in the lattice is very mild, 
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and there are many viable conducting pathways.  In such a situation, it becomes very easy 

for the code to redistribute values of the local potential .  As a consequence, 

convergence is very rapid and only a small number of iterations are needed. 

 On the other hand, suppose that  is quite large, and indeed in the vicinity of 1.  

In such a situation, there will only exist small isolated networks of conducting links.  It 

will then be easy to move the potential about, and convergence will also be swift.  Where 

 will tend to be quite large is near the percolation transition where quite often there is 

but one viable path through the system, and as a consequence, the redistribution of node 

potentials to accommodate the complexity of the critical cluster of connected bonds will 

require a much larger number of iterations than situations where  is either quite small or 

very near unity, and the calculation is more readily completed. 

7.6.2: Using Computational Effort to Locate the Percolation Transition 

 To determine the maximum number of iterations and hence the location of the 

percolation transition, we calculate  as a function of the bond deletion 

probability.  In the graph shown below, the red curve corresponds to , the green 

curve is plotted for , or systems twice as large.  The blue and black traces 

correspond, respectively, to the system sizes  and .  The purpose for the 

examination of a variety of system sizes is to determine the extent to which finite size 

effects influence the determination of the percolation transition threshold.  Finite size 

effects are a consequence of the fact that the percolation transition is a characteristic of 

the bulk system.   

The extrapolation to the infinite size system is known as finite size scaling, and 

may be a subtle task.  In this respect, the percolation transition is a prototypical phas 
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transition.  As the most basic of phase transitions, it nevertheless shares much in common 

with other types of second order phase transitions such as ferromagnetic phase transitions 

in which thermal fluctuations disrupt the alignment of the magnetic moments of the 

atomic species, leading to a disorganized paramagnetic state where the microscopic 

magnetic moments are oriented in random directions. 

7.6.2.1: Percolation Transition in the Nearest Neighbor Square Lattice 

We have prepared two graphs.  In the first case, the probabilities graphed range 

from 0.0 to 1.0.  However, the second graph displays a tighter range of bond deletion 

probabilities to make the location of the critical transition easy to discern. 

 

Graph 15: Bas ten logarithm of computational cost plotted versus bond attenuation probability for two-
dimensional systems with nearest neighbor connectivity.  Results are shown for various system sizes.  The 
bond attenuation factor  is set to 1.0, so bond attenuation amounts to bond removal. 
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Graph 16: Base ten logarithm of computational cost plotted for a tighter range of bond attenuation 
probabilities for two-dimensional systems with nearest neighbor connectivity.  Results are shown for 
various system sizes.  Since , bond attenuation amounts to bond removal. 
 
 
The two-dimensional square lattice with nearest neighbor connectivity is a useful test 

case since the percolation threshold is known from analytical arguments to be located at 

precisely  where exactly half of the bonds are removed. 

 Hence, we now use the nearest neighbor case to validate another technique.  The 

current approach, in which the number of iterations is used as a gauge of criticality, 

provides a reliable index of the transition.  However, the strength of the method also is its 

weakness, since the computational overhead will be greater the closer on is to the critical 

transition, and the larger the system size that is under consideration. 
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7.6.2.2: Calculating the Percolation Transition with an Extended Coupling Scheme 

 Regular lattices with nearest neighbor coupling have been examined in both 

analytical and numerical calculations, but more complicated situations in which, e.g., the 

connections are made to neighbors more distant than the nearst neighbors have not 

received as much attention.  The methods that we have described in this section 

nonetheless provide a computationally viable way to determine the percolation threshold. 

 Accordingly, we examine a more complicated connectivity scheme.  In particular, 

we examine the square lattice geometry with the “union jack” configuration where nodes 

are connected to nearest neighbors as well as to next-nearest neighbors.  The situation is 

illustrated in the figure below. 

 

 

 

 

ij 

(i-1)(j-1) 

i,j+1 (i+1)(j+1) (i-1)(j+1) 

i-1,j i+1,j 

i,j-1 (i+1)(j-1) 
Figure 49: Connectivity pattern for “Union Jack” lattice with 
bonds to nearest neighbors as well as next-nearest neighbors 
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For convenience, all bonds are taken to have the same conductance value.  In addition, 

the probability  of bond deletion is the same for horizontal, vertical, and diagonal 

bonds. 

 As before, we calculate for a range of probability values  the base ten logarithm 

of the number of iterations required to reach a tolerance of .  The results are shown in 

the graph below.  As in the case of nearest neighbor connectivity, the computational 

demand rises significantly in the vicinity of the percolation transition.  As a consequence, 

we consider the alternative, which is not overly encumbered by computational effort. 

 

 

Graph 17: Base ten logarithm of computational cost plotted versus bond attenuation probability for the 
Union Jack lattice.  Results are shown for various system sizes.  Since , bond attenuation amounts 
to bond removal. 

 

Now we turn our attention to the three-dimensional case, and we also calculate the  



 
 

171 

disorder averaged current to cubic order.  In many respects, the discussion is parallel to 

that of the two-dimensional case, and to a great extent we will draw on previous results to 

facilitate the analysis. 
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CHAPTER 8 

THREE-DIMENSIONAL GEOMETRIES: ANALYTICAL PERTURBATIVE 

CALCULATIONS AND NUMERICAL RESULTS 

 We now examine three-dimensional geometries, specifically the case of cubic 

systems.  Ultimately we will increase the disorder strength to the extent that the native 

geometry will be obscured and specializing to the cubic case will not impact the results in 

the regime of strong disorder.  For the cubic lattice there are three indices 

€ 

jx, jy, jz{ }  that 

specify location.  By insisting local charge conservation, we will are again in possession 

of a means to explicitly calculate the potential shifts at noes in the lattice, and hence any 

system quantity of interest. 

8.1: Nearest Neighbor Geometry and Charge Conservation 

 Again, we impose a potential difference  across the entire system, and the 

potential in the unperturbed case has the form 

€ 

V jx , jy , jz
=
−V0
n

jx ≡ −v0 jx  so there is only 

dependence on the index specifying the location in the “ ” direction.  Figure 50 

illustrates the geometry for a node in the lattice. 
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Insisting on local charge conservation, we find 

€ 

0 =
V jx , jy , jz

−V jx +1, jy , jz( )σ jx , jy , jz
x + V jx , jy , jz

−V jx −1, jy , jz( )σ jx −1, jy , jz
x + V jx , jy , jz

−V jx , jy +1, jz( )σ jx , jy , jz
y

+ V jx , jy , jz
−V jx , jy −1, jz( )σ jx , jy −1, jz

y + V jx , jy , jz
−V jx , jy , jz +1( )σ jx , jy , jz +1

z + V jx , jy , jz
−V jx , jy , jz −1( )σ jx , jy , jz −1

z

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 The resistance values 

€ 

σ jx , jy , jz
x ,σ jx , jy , jz

y ,σ jx , jy , jz
z{ } occupy the corresponding links.  

We consider initial values  that we take to be the same for each of the links.  

Nevertheless, we also introduce perturbations  so that 

 

σz
jx,jy,jz 

σz
jx,jy,jz-1 

σy
jx,jy,jz 

σy
jx,jy-1,jz 

σx
jx-1,jy,jz 

σx
jx,jy,jz 

jx-1,jy,jz 

jx,jy+1,jz 
jx,jy,jz+1 

jx+1,jy,jz 

jx,jy,jz-1 
jx,jy-1,jz 

Figure 50: Perspective illustration of the nearest neighbor connectivity scheme and conductance link 
labeling convention for three-dimensional cubic resistor networks 
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The next step is to introduce these expressions into the charge conservation condition for 

the nodes.  Fourier analysis will be used here, as in the one-dimensional case.  One finds 

with the aforementioned substitution and algebraic manipulation that 

€ 

σ 6ΔV jx , jy , jz
− ΔV jx +1, jy , jz

− ΔV jx −1, jy , jz
− ΔV jx , jy +1, jz

− ΔV jx , jy −1, jz
− ΔV jx , jy , jz +1 − ΔV jx , jy , jz −1( )

+v0 λ jx −1, jy , jz
x − λ jx , jy , jz

x( ) + λ jx , jy , jz
x ΔV jx +1, jy , jz

− ΔV jx , jy , jz( ) + λ jx −1, jy , jz
x ΔV jx −1, jy , jz

− ΔV jx , jy , jz( )
+λ jx , jy , jz

y ΔV jx , jy +1, jz
− ΔV jx , jy , jz( ) + λ jx , jy −1, jz

x ΔV jx , jy −1, jz
− ΔV jx , jy , jz( ) + λ jx , jy , jz

z ΔV jx , jy , jz +1 − ΔV jx , jy , jz( )
+λ jx , jy , jz −1

z ΔV jx , jy , jz −1
− ΔV jx , jy , jz( ) = 0

 

8.2: Fourier Analysis of the Charge Conservation Condition 

As in the one and two-dimensional cases, we introduce Fourier variables with 

 

After using orthogonality to select an individual Fourier component  for the 

potential shifts, we again find a more compact notation by using , 

, and .  In terms of these bare propagators we have 

€ 

0 =σ0 gkx
0 g−kx

0 + gky
0 g−ky

0 + gkz
0 g−kz

0[ ]ΔVkx ,ky ,kz
+ v0λkx ,ky ,kz

x g−kx
0 −

ΔV
kx ʹ′ ,ky ʹ′ ,kz ʹ′

λ
kx −kx ʹ′ ,ky −ky ʹ′ ,kz −kz ʹ′
x g−kx

0 g
kx ʹ′
0

+ΔV
kx ʹ′ ,ky ʹ′ ,kz ʹ′

λ
kx −kx ʹ′ ,ky −ky ʹ′ ,kz −kz ʹ′
y g−ky

0 g
ky ʹ′
0

+ΔV
kx ʹ′ ,ky ʹ′ ,kz ʹ′

λ
kx −kx ʹ′ ,ky −ky ʹ′ ,kz −kz ʹ′
z g−kz

0 g
kz ʹ′
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

kz ʹ′ =0

N −1

∑
ky ʹ′ =0

N −1

∑
kx ʹ′ =0

N −1

∑

 

Noting again that the expression 

€ 

gkx
0 g−kx

0 + gky
0 g−ky

0 + gkz
0 g−kz

0( ) is proportional to the 

Laplacian in Fourier space, we use 
  

€ 

ˆ Δ  K ≡ gkx

0 g−kx

0 + gky

0 g−ky

0 + gkz

0 g−kz

0( )  where   

€ 

 
K  is 
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shorthand for the wave number ordered triple 

€ 

kx,ky,kz( ) .  Again, as a notational 

convenience, we define 
  

€ 

 
λ  K ≡ λkx ,ky ,kz

x ,λkx ,ky ,kz

y ,λkx ,ky ,kz

z[ ] .  We also use 

  

€ 

 
Λ  K 1 ,

 
K 2
≡ gkx

1
0 gkx

2
0 ,gky

1
0 gky

2
0 ,gkz

1
0 gkz

2
0⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ .  The expression may be shown more succinctly as 

  

€ 

0 =σ0
ˆ Δ  K ΔV  K + v0λ  K 

x g−kx

0 − ΔV  
ʹ′ K 

 
λ  K −

 
ʹ′ K ⋅
 
Λ 

−
 
K ,
 
ʹ′ K  

ʹ′ K 

∑  

which is a formula superficially identical to its counterpart for the two-dimensional 

system.  Again, we note that  so we are careful to avoid dividing by this 

vanishing quantity.   

8.3: Obtaining a Perturbative Series for Potentials and Currents 

As before, an iterated recursive procedure may be applied to develop a 

perturbative series for the shifts   

€ 

ΔV  K . 

As before, one finds 

  

€ 

ΔV  K =
−v0
ˆ Δ  K 

λ  K 
x g−kx

0

σ 0
+

1
σ 0

2

λ  
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ʹ′ K ⋅
 
Λ 

−
 

K ,
 
ʹ′ K ( )

⎡ 

⎣ 

⎢ 
⎢ 
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⎤ 
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⎥ 
⎥ 
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⎥ 
⎥ 

 

As done for the lower dimensional cases, we calculate the mean current  moving from 

the nodes in the  direction.  We will evaluate the contributions order by order (i.e. up to 

cubic order) in the perburbation . 

 We have 

€ 

I = 1
N 3 σ jx , jy , jz

x V jx , jy , jz
−V jx +1, jy , jz( )

jx =0

N −1

∑
jy =0

N −1

∑
jx =0

N −1

∑  
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€ 

=
1
N 3 σ0 − λ jx , jy , jz

x( ) V0N + ΔV jx , jy , jz
− ΔV jx +1, jy , jz

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

jx =0

N −1

∑
jy =0

N −1

∑
jx =0

N −1

∑  

After expanding the expression and exploiting periodicity, one finds 

€ 

I = v0σ0 −
v0
N 3 λ jx , jy , jz

x +
jz =0

N −1

∑
jy =0

N −1

∑
jx =0

N −1

∑ 1
N 3 λ jx , jy , jz

x ΔV jx +1, jy , jz
− ΔV jx , jy , jz( )

jz =0

N −1

∑
jy =0

N −1

∑
jx =0

N −1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
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8.4: Calculating a Perturbative Series for the Conductivity by Averaging over 

Disorder 

When we average over disorder, we assume that the perturbations  and 

, while sampled from the same distribution, are not correlated in a statistical 

sense.  Similar to the two-dimensional case, we find that  

€ 

I = v0 σ0 −
λ
σ0

+
1
N 3 λ jx , jy , jz

x ΔV jx +1, jy , jz
− ΔV jx , jy , jz( )
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N −1
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N −1

∑
jx =0

N −1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
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As before, the second and higher order terms emerge from the right-most term.  

Furthermore, if the shifts  are as negative as they are positive, then one will find 

 and contributions first order in the perturbing influence will not appear. 

8.4.1: Calculating the Second Order Contribution 

 Now we endeavor to calculate the term 

€ 

I2 =
1
N 3 λ jx , jy , jz

x ΔV jx +1, jy , jz
− ΔV jx , jy , jz( )

jz =0

N −1

∑
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N −1

∑
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N −1

∑  

Reverting to Fourier components gives 
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As before, orthogonality indicates that the sum will vanish unless   

€ 

 
K = −

 
ʹ′ K .  Ultimately, 

one has 

  

€ 

I2 = λ
−
 
K 

x gkx

0 ΔV  K  
K ≠0

∑  

As seen in the two-dimensional case, second order contributions will emerge from the 

term 

  

€ 

I22 ≡
λ  K 

x λ
−
 
K 

x

ˆ Δ  K 

gkx

0 g−kx

0

 
K ≠0

∑  

 To calculate the configurational average, the Fourier components must be 

expressed in terms of the real space counterparts.  For example, we use 
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λ  K 
x =

1
N 3 e− i

 
K ⋅ x λ  K 

x

 x 
∑ .  Then the term of interest becomes 
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∑
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Noting that 
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λ x 
x λ ʹ′ x 

x = λ 2
+δ  x  ʹ′ x λ2 − λ 2( )[ ] , we find that 
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It’s beneficial to note that .  So our task entails calculating 
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In the bulk limit where  we ultimately obtain 

 

Up to second order in the perturbation we have 
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€ 

I = v0σ0 1−
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2 λ2 − λ 2( )
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⎥  

8.4.2: Calculating the Third Order Contribution 

 Next, the goal is to calculate the third piece.  To do this, we must evaluate the 

term 
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So we need to consider the expression 
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ˆ Δ  K 

ˆ Δ  
ʹ′ K 

 

8.4.2.1: Adapting Triple Average Results from the Two-Dimensional Case 

There are three configurational averages to evaluate, but in doing so we will make 

extensive use of logic previously developed in the contextof two-dimensional systems.  

First we examine   

€ 

λ  
ʹ′ K 

x λ
−
 
K 

x λ  K −
 
ʹ′ K 

x .  We immediately appropriate the result gleaned for two-

dimensional systems, and hence we find that 

  

€ 

λ  
ʹ′ K 

x λ
−
 
K 

x λ  K −
 
ʹ′ K 

x = N −3δ  K 
 
ʹ′ K λ2 λ − λ 3( ) − 3N −6 λ2 λ − λ 3( ) + N −6 λ3 − λ 3( ) 

In the same way we discovered in the case of the square system, we also have 

  

€ 

λ  
ʹ′ K 

x λ
−
 
K 

x λ  K −
 
ʹ′ K 

y = N −3δ  K 
 
ʹ′ K λ2 λ − λ 3( )  

From symmetry principles, the argument can be made that 

  

€ 

λ  
ʹ′ K 

x λ
−
 
K 

x λ  K −
 
ʹ′ K 

z = N −3δ  K 
 
ʹ′ K λ2 λ − λ 3( )  

Combining the the results for the three averages, we find 
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€ 

I23 =
N −6

ˆ Δ  K 
ˆ Δ  

ʹ′ K 

gkx

0 g−kx

0 g
kx ʹ′

0 g
−kx ʹ′

0 λ3 + 2 λ 3 − 3 λ2 λ( )
+N 3 λ2 λ − λ 3( ) gkx

0 g−kx

0( ) g
kx ʹ′

0 g
−kx ʹ′

0 + g
ky ʹ′

0 g
−ky ʹ′

0 + g
kz ʹ′

0 g
−kz ʹ′

0⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 
ʹ′ K ≠0

∑
 
K ≠0

∑  

We split the calculation into two pieces  and a term  proportional to .  

Evaluating the  term gives 

  

€ 

N −6 N 3

ˆ Δ  K ( )
2 λ2 λ − λ 3( ) gkx

0 g−kx

0( )2
+ gkx

0 g−kx

0( ) gky

0 g−ky

0( ) + gkx

0 g−kx

0( ) gkz

0 g−kz

0( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

K ≠0

∑  

8.4.2.2: Exploiting Cubic Symmetry 

 The advantage gained using cubic geometry is similar to the advantage gained 

with square geometry used previously.  We note that  is invariant with respect to cyclic 

permutations of , , and  as depicted in Figure 51. 

 

 

  

 

 

Designating the wave number operator as , we see that 

kx 

ky kz 

Figure 51: Illustration 
of a cyclic permutation 
of wave numbers 
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€ 

s1 + ˆ Ω kx ,ky ,kz
S1 + ˆ Ω kx ,ky ,kz

ˆ Ω kx ,ky ,kz
S1[ ]( ) =

N −3

ˆ Δ  K ( )
2 λ2 λ − λ 3( )

 
K ≠0

∑

gkx

0 g−kx

0( )2
+ 2 gkx

0 g−kx

0( ) gky

0 g−ky

0( ) + gky

0 g−ky

0( )
2

+2 gky

0 g−ky

0( ) gkz

0 g−kz

0( ) + gkz

0 g−kz

0( )
2

+2 gkz

0 g−kz

0( ) gkx

0 g−kx

0( )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

Noting that the expression in the squre brackets is precisely the perfect square   

€ 

ˆ Δ  K ( )
2
, we 

see that 

€ 

3S1 = N −3 N 3 −1( ) λ2 λ − λ 3( )  

Therefore we see that 

€ 

S1 =
1
3

λ2 λ − λ 3( ) in the bulk limit.   

 Now we consider the  term where the cubic symmetry proves useful again.  

One needs to evaluate 

  

€ 

S2 ≡ N −6 λ3 + 2 λ 3
− 3 λ2 λ( ) gkx

0 g−kx

0

ˆ Δ  K 
 

K ≠0

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

g
kx ʹ′

0 g
−kx ʹ′

0

ˆ Δ  
ʹ′ K 

 
ʹ′ K ≠0

∑
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  

The wave vector sums are independent, and this will be advantageous.  We find that 

  

€ 

gkx

0 g−kx

0

ˆ Δ  K 
 

K ≠0

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

g
kx ʹ′

0 g
−kx ʹ′

0

ˆ Δ  
ʹ′ K 

 
ʹ′ K ≠0

∑
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ =

1
9

N 3 −1( )2
 

We see that in the bulk limit 

€ 

S2 =
1
9

λ3 + 2 λ 3
− 3 λ2 λ( ) .  Combining the two 

contributions gives 

€ 

S1 + S2 =
1
3

λ2 λ − λ 3( ) +
1
9

λ3 + 2 λ 3
− 3 λ2 λ( ) 

                                       

€ 

=
1
9

λ3 − λ 3( )
= I23
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The coefficient  is quite small, and significantly suppresses the cubic term.  Thus, to 

cubic order, one has 

€ 

I = v0σ0 1−
1
σ0

λ −
1
3σ0

2 λ2 − λ 2( ) − 1
9σ0

3 λ3 − λ 3( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

8.5: Numerical Calculations of Three-Dimensional Transport Characteristics 

 As in the case of the square lattice, we perform computer simulations for the 

three-dimensional case to validate the analytical results.  Instead of a 100x100 lattice, we 

consider a 30x30x30 lattice containing a total of 27,000 nodes.  Again, as in the two-

dimensional square geometry, our system will be large enough that statistical fluctuations 

are suppressed and self-averaging effects provide a suitable approximation to the bulk 

limit.  Again, we ensure suitable convergence of the iterative calculations by insistingthat 

the residual component decrease below on part in .   

8.5.1: Obtaining the Perturbative Series for the Bond Disordered Cubic Lattice 

 We now specialize to the bond attenuation scheme analogous to the model 

examined for the square system.  As before, the first, second, and third moments are of 

the form , , and .  Then, to cubic order the relative 

conductance has the form 

€ 

1−εp −ε 2 p
3

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 1− p( ) −ε 3 p

9
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 1− p2( ) 

where again  is the bond attenuation probability and  is the attenuation magnitude.  As 

before, we also construct a Padé approximant 

€ 

P1
2 ε( ) to assist with the extrapolation to 
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values of  in the vicinity of 1.  We have , and the coefficients are 

€ 

β1 = −
1
3
1+ p( ); 

€ 

α1 = −
1
3
1+ 4 p( ) ; 

€ 

α2 =
2p
9
1+ p( ) 1+ 2p( ) . 

8.5.2: Presentation and Discussion of the Three-Dimensional Numerical Results 

 As in the two-dimensional case, we show on the same graph the first, second, and 

third order series results as red, green, and blue curves respectively.  Also graphed are the 

Padé approximant results, plotted as black curves.  The Monte Carlo results are shown as 

dark filled circles.  As in the case of the square lattice, the Monte Carlo data shows a 

monotonically decreasing conductivity in the bond attenuation probability .  Again, the 

trend with increasing  is for concavity to develop in the Monte Carlo data.  Although 

the concave upward profile is mirrored in the series approximations, higher order series 

invariably provide better approximations, and the Padé approximant results are in closest 

agreement with the Monte Carlo data points. 
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Graph 18: Graph of relative conductivity with respect to the bond attenuation probability for a mild 
attenuation factor, .  Filled symbols represent Monte Carlo numerical results, while solid lines are 
analytical approximations; system is three-dimensional cubic with nearest neighbor connectivity. 
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Graph 19: Graph of relative conductivity with respect to the bond attenuation probability for a mild 
attenuation factor, .  Filled symbols represent Monte Carlo numerical results, while solid lines are 
analytical approximations; three-dimensional cubic geometry with nearest neighbor connectivity scheme 
applies. 
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Graph 20: Graph of relative conductivity with respect to the bond attenuation probability for a moderate 
attenuation factor, .  Filled symbols represent Monte Carlo numerical results, while solid lines are 
analytical approximations.  The system is in three dimensions with nearest neighbor connectivity. 
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Graph 21: Graph of relative conductivity with respect to the bond attenuation probability for a strong 
attenuation factor, .  Filled symbols represent Monte Carlo numerical results, while solid lines are 
analytical approximations.  The system is cubic with nodes connected to nearest neighbors. 
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Graph 22: Graph of relative conductivity with respect to the bond attenuation probability for a very strong 
attenuation factor, .  Filled symbols represent Monte Carlo numerical results, while solid lines are 
analytical approximations.  The system is three-dimensional cubic with connections between nearest 
neighbors. 
 
 

8.6: Logarithmic Bond Disorder for the Three-Dimensional System 

 As for the square geometry in two dimensions, we consider a type of disorder that 

may readily be tuned from mild to quite strong, a logarithmic distribution in the values of 

the conductances of the link between neighboring nodes in the cubic lattice.  Again, bond 

conductances  are chosen in such a way that 

€ 

log10 σ[ ] is selected randomly, and with 

uniform probability from the interval 

€ 

−η,0[ ]  where the magnitude of the perturbations in 

conductance values is set by the upper bound  of the logarithmic range. 
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 Again, if  there will be a considerable range in the variation of bond 

conductances.  In such a regime of strong disorder, the bond conductance will span a very 

broad range with the smallest values on the order of ; the opposite regime, with 

, corresponds to a case in which disorder is relatively weak and perturbative 

expansions are anticipated to fare well.  As in the two-dimensional system, there are 

similarities to a critical system at the brink of percolation, which became increasingly 

quantitatively correct as  is made larger, and one arrives at a regime in which nearby 

links may differ by several orders of magnitude in the values of their conductance. 

8.6.1: Calculating Moments of the Perturbation 

 It is our task now to calculate the appropriate series for the relative conductance in 

terms of the perturbing influence .  Again, we write 

€ 

σ =σ0e
−x ln 10( ) =σ0 1− λ[ ]  where 

€ 

λ ≡ 1− e−x ln 10( )[ ] .  The expectation values , , and  are precisely what we 

calculated for the two-dimensional case.  Hence, the relative conductance has the form 

€ 

1− λ −
1
3

λ2 − λ 2( ) − 19 λ3 − λ 3( ) 

Ultimately, after substituting the previously obtained results for the first three 

moments of , we have 

€ 

σ =1− 1
2
ln 10( )η+

5
36

ln 10( )[ ]2η2 − 1
36

ln 10( )[ ]3η3 

up to terms cubic in the perturbing parameter .  We again also obtain the companion 

Padé approximant  corresponding to the third order series for the 

relative conductance.   
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8.6.2: Presentation and Discussion of Results 

The analytical and Monte Carlo results may be seen in Graph 23.   

 

 

Graph 23: Relative conductance graphed versus logarithmic dispersal in the bond conductance for a cubic 
nearest neighbor geometry in three dimensions.  Filled symbols represent Monte Carlo data, and solid 
curves represent analytical results. 
 
 

While there is reasonably good agreement of the analytical results with the Monte Carlo 

data for smaller  values, deviations increase significantly as  approaches 1 and the 

range of random variation among the conductances becomes appreciable. 

8.6.3: Use of Computational Effort as a Gauge of Criticality 

 As we did in the two-dimensional case, we examine the critical slowing down 

effect more specifically by seeking its manifestations in the number of iterations needed 
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to achieve the required level of convergene as quantified by the residual number.  Hence, 

we again graph the base ten logarithm of the iteration number with respect to the 

dispersal  in the logarithm of the link conductances.  As seen for the case of the square 

lattice, there is a monotonic increase in the number of iterations required which initially 

rises slowly, but then increases in slope with respect to .  Ultimately, the slope becomes 

asymptotically linear, which we again interpret as an exponential rise in the number of 

iterations needed to achieve the desired level of convergence. 

 The linear profile for sufficiently large , as before, is a phenomenon that we 

regard as a sign that the critical regime has been reached.  In the graph below, the dark 

circles are the  results while the red line passes through the filled symbols, and is 

intended as a guide to the eye. 
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Graph 24: Base ten logarithm of the computational effort plotted versus the logarithmic dispersal of the 
bond conductances for a three-dimensional cubic system with nearest neighbor connectivities.  Filled 
symbols represent simulation data and the solid curve is a guide to the eye. 
 

8.7: Locating the Percolation Transition for the Bond Truncated Cubic Lattice 

 We return to the bond attenuated system where the removal of conductance links 

altogether is achieved by setting  to 1.  We intend, as we did for the square lattice 

geometry, to use the critical slowing down effect in the iterative numerical calculations as 

a tool to locate the percolation transition.  First, we vary the bond deletion probability 

over a broad range to locate the percolation transition in a general sense.  Results appear 

in the graph shown below, where again results are displayed for a range of system sizes.  

The red trace corresponds to the case , the green curve is plotted for , the blue 

curve corresponds to , and the black curve is graphed for . 
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Graph 25: Computational effort as a base ten logarithm plotted versus the bond attenuation probability for 
the simple cubic geometry in three dimensions with connections between nearest neighbors.  Curves for 
several system sizes are plotted, and the attenuation factor is set to 1.0, so bond attenuation amounts to 
bond removal. 
 

Now, our attention will be focused on physical systems of interest.  Initially, we operate 

in the iso-energetic regime. 

8.8: Calculating Transport Characteristics in the Iso-Energetic Regime 

 Consider two nodes  and  separated by a distance , as shown in Figure 52. 

 

 

 

i j 

dij 

Figure 52: Representation of bond 
between sits i and j with the length shown 
as dij 
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In the iso-energetic case, following Pike and Seager, the conductance of a link spanning 

nodes  and  is  where  is the suppression due to the wave function overlap.  

We again adopt the cubic system as the native unperturbed lattice geometry and introduce 

shifts in the locations of the lattice nodes. 

8.8.1: Specifying the Positional Perturbations 

 The position deviations will be random and chosen with uniform probability from 

the interval  where  parameterizes the perturbation and  is the lattice constant.  

Then a specific position would have the form 

€ 

x,y,z[ ] = jxa +δ jx , jy , jz
x , jya +δ jx , jy , jz

y , jza +δ jx , jy , jz
z[ ] 

where, e.g., .  The  variables are random and range between 

€ 

−1 and +1[ ] . 

 We now examine the implications of the local charge conservation condition.  It is 

useful to note that link conductances are of the general form .  The distance 

formula  is written as 

€ 

dij = xi − x j( )
2

+ yi − y j( )
2

+ zi − z j( )
2

, which is the standard 

Cartesian formula for distance. 

 In the cubic lattice, let us consider the distance between the points indexed by 

 and .  In the absence of the perturbing influence, the distance is .  

However, we now incorporate the random shifts and expand the radical with respect to 
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the perturbing influence .  We will label this distance 

€ 

d jx, jy, jz[ ]; jx +1, jy, jz[ ]( ).  In the 

radical, one has terms such as 

€ 

−x jx , jy , jz
+ x jx +1, jy , jz( )

2
= a + aε η jx +1, jy , jz

x −η jx , jy , jz
x[ ]( )

2

. 

8.8.2: Calculating Bond Conductances to Cubic Order in the Perturbation  

 When terms such as these are inserted into the radical and expanded to quadratic 

order in  the result is: 

€ 

d jx, jy, jz[ ]; jx +1, jy, jz[ ]( ) = a 1+ f1ε + f2ε  

The  and  coefficients are given by 

€ 

f1 = 2 η jx +1, jy , jz
x −η jx , jy , jz

x( ) + η jx +1, jy , jz
y −η jx , jy , jz

y( ) + η jx +1, jy , jz
z −η jx , jy , jz

z( )[ ]
f2 = η jx +1, jy , jz

x −η jx , jy , jz
x( )

2
+ η jx +1, jy , jz

y −η jx , jy , jz
y( )

2
+ η jx +1, jy , jz

z −η jx , jy , jz
z( )

2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

 

At present, we do not evaluate or analyze  and  further.  We will give a more 

detailed treatment of the coefficients as we calculate the configurational averages.  If we 

use the labels 

 

we find that 

€ 

f1 = 2 Δ xx + Δ yx + Δ zx[ ] and 

€ 

f2 = Δ xx
2 + Δ yx

2 + Δ zx
2( ); if one expands 

 up to terms cubic in the perturbation , we have 

€ 

σ jx , jy , jz
x =σ0e

−αa

1−ε αa Δ xx + Δ yx + Δ zx[ ]( ) +ε 2 αa αa
2

Δ xx + Δ yx + Δ zx( )
2

+ Δ xxΔ yx + Δ yxΔ zx + Δ zxΔ xx( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−
ε 3

6
αa Δ xx + Δ yx + Δ zx[ ] α 2a2 Δ xx + Δ yx + Δ zx[ ]

2
+ 6 1+αa[ ] Δ xxΔ yx + Δ yxΔ zx + Δ zxΔ xx[ ]⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
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Then we see that we may write the conductance as a nunperturbed term plus a shift 

caused by the presence of disorder in the system, so 

€ 

σ jx , jy , jz
x =σ0e

−αa 1− λ jx , jy , jz
x( )  

where  contains terms of disorder  and higher. 

8.8.3: Evaluating Moments of the Master Perturbation  

 To determine the effect of disorder on the conductivity in the bulk limit, we will 

need to calculate various moments of the perturbations  and the counterparts in 

the  and  directions.  From cubic symmetry we know that 

 

with similar relations holding for the higher moments. 

 The task now is to calculate the various moments of .  To facilitate this 

calculation, we introduce the identities  and 

.  In terms of these abbreviations, we find a more compact 

expression for , namely: 

€ 

λ jx , jy , jz
x = ε αaS3[ ] −ε 2 a2α 2

2
S3

2 +αaScyc
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

ε 3

6
α 3a3S3

3 + 6 αa +α 2a2( )S3Scyc[ ] 

This is our more compact rendition, which will facilitate the calculation of the moments 

, , and .  The aim ultimately is to calculate a perturbative series up to cubic 

order in . 

 First, we determine 

€ 

λ = λ jx , jy , jz
x = αaε S3 −ε 2

a2α 2

2
S3

2 +αa Scyc
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

ε 3

6
α 3a3 S3

3 + 6 αa +α 2a2( ) S3Scyc[ ]
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The first moment of  is .  Even without averaging 

disorder, the periodicity condition is enough to cause each term to vanish, and there is no 

contribution to linear order in . 

 Next we calculate 

 

where the cross terms factor into separate expectation values due to the fact that , , 

and  are not statistically correlated.  From previous logic, one then asserts that the 

cross terms will vanish.  Then we see that 

€ 

S3
2 = Δ xx

2 + Δ yy
2 + Δ zz

2

Δ xx
2 = η jx +1, jy , jz

x( )
2

+ η jx , jy , jz
x( )

2
− 2 η jx +1, jy , jz

x( )
2

η jx , jy , jz
x( )

2  

where in the cross term we have again used the fact that  and  are 

statistically uncorrelated to write 

 

Since  varies between  and  and is as often positive as negative, we see 

that first moments vanish.  Then the moment  becomes 

€ 

Δ xx
2 = 2 η jx , jy , jz

x( )
2

 where 

we have exploited periodicity to combine the two second moments. 

€ 

η jx , jy , jz
x 2( ) =

η2dη
−1

+1
∫

dη
−1

+1
∫

=
1
3

 

so that .  Similarly,  so .  Now we examine 

the first moment of the cyclic term: . 
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 Finally, in order to compute , we need to evaluate  as well as : 

€ 

S3 =
Δ xx
3 + Δ yx

3 + Δ zx
3 + 3 Δ xx

2 Δ yx + 3 Δ xx Δ yx
2 + 3 Δ yx

2 Δ zx + 3 Δ yx Δ zx
2 + 3 Δ zx

2 Δ xx

+3 Δ zx Δ xx
2 + 6 Δ xx Δ yx Δ zx

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

However, all terms involving linear moments vanish and one has 

 

 Let us examine the first term, the third moment of .   

€ 

Δ xx
3 = η jx +1, jy , jz

x −η jx , jy , jz
x( )

3
 

         

€ 

= η jx +1, jy , jz
x( )

3
+ η jx , jy , jz

x( )
3
− 3 η jx +1, jy , jz

x η jx , jy , jz
x( )

2
− 3 η jx +1, jy , jz

x( )
2
η jx , jy , jz
x  

Since all odd moments vanish, we see that .  Thus .  Finally we 

calculate  

€ 

S3Scyc = Δ xxΔ yx + Δ yxΔ zx + Δ zxΔ xx( ) Δ xx + Δ yx + Δ zx( )  

              

since each of the nine terms in the expansion of  involve vanishing first moments.  

Thus, in the average , only the quadratic term survives, and we find 

 

 Now our task is to calculate the second moment of .  To cubic order in , the 

square of  is 
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€ 

λ jx , jy , jz
x( )

2
= ε 2 α 2a2S3

2[ ] +ε 3 −a3α 3S3
3 − 2α 2a2S3Scyc[ ] +O ε 4( )  

With the results of earlier calculations, we may evaluate , and we find that 

€ 

λ2 = λ jx , jy , jz( )
2

 

                                                            

€ 

= ε 2α 2a2 S3
2 + −ε 3 a3α 3 S3

2 + 2α 2a2 S3Scyc[ ]
= ε 2 2α 2a2[ ] + 0

 

since .  Then 

€ 

λ2 = 2a2α 2( )ε 2 . 

 Finally, we evaluate , and we have 

€ 

λ3 = λ jx , jy , jz
x( )

3
= ε 3α 3a3 S3

3 = 0 .  So 

to cubic order in the perturbing influence , the third moment  vanishes.  Let us 

tabulate a summary of our findings: 

 

 

Table 2: Moments of the  
subsuming perturbation  
 
Term Result 

 

€ 

−a2α 2( )ε 2 

 

€ 

2α 2a2( )ε 2 

  

 
 

So up to cubic order in , the shifts are purely quadratic in the perturbation .  We will 

see that the conductivity is also only affected to second order in  with no linear shift. 
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8.8.4: Calculating Transport Characteristics for the Nearest Neighbor Three 

Dimensional Model 

8.8.4.1: Geometric Considerations 

 Now we will calculate up to cubic order in the perturbation  the current set up in 

large three-dimensional systems.  When the perturbations involve shifts in locations of 

the lattice nodes, one has an additional consequence not observed for lattices in which 

only the bond conductances were manipulated with the lattice geometry unchanged.  The 

new complication is illustrated in Figure 53 that contrasts a pristine case where the 

regular lattice geometry is retained, and a perturbed lattice with geometric disorder 

introduced.  The result of the lattice distortions will be currents set up beyond those 

between nodes and the forward nearest neighbors. 

 

 

  

 

Note that the main contrast among the regular and distorted lattices is current that 

appears in conductance links that formerly were oriented in directions perpendicular to 

the imposed potential difference.  Although in principle one would need to take into 

account the contributions from links that previously were perpendicular, a simple 

Pristine 
Case 

Disordered 
Case 

Figure 53: Illustration of a portion of the unperturbed lattice (left), 
and a case where positional disorder is present (right) 



 
 

200 

illustration, rendered in Figure 54, reveals that we need only concern ourselves with 

currents moving to the forward nodes. 

 

 

 

 

 

 

Note that the dashed lines only intersect the links that are forwardly directed.  As a result, 

we may use the formulas we have obtained for the three dimensional geometry to 

determine the conductivity. 

8.8.4.2: Collecting Results and Obtaining the Current 

 We found earlier that 

€ 

I = v0σ0 1−
1
σ0

λ −
1
3σ0

2 λ2 − λ 2( ) − 1
9σ0

3 λ3 − λ 3( ) + ...
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
Figure 54: Illustration of strongly 
disordered systems where the dashed 
lines are theoretical constructs used 
to intercept and calculate the total 
current 
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In the present context,  needs to be modified.  Moreover, in our calculation we had 

factored the expressin for  out of the  parameters, so what we must calculate is 

instead  

€ 

v0σ0 1− λ −
1
3

λ2 − λ 2( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
= I  

where we have taken note of the fact that 

€ 

λ3 − λ 3( ) vanishes to cubic order in the 

perturbing influence .  Inserting results for  and  gives 

€ 

I = v0σ0 1+ a2α 2( )ε 2 − 23 a2α 2( )ε 2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
e−αa  

So we actually see a slight enhancement in the current caused by the disorder.  This has 

been observed in numerical simulations by [ ], but here we have shown analytically to 

cubic order in  that 

€ 

I = v0σ0e
−αa 1+

1
3

a2α 2( )ε 2 + O ε 4( )
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

 In the two-dimensional case, there is a precise cancellation of the quadratic 

contribution, so  

€ 

I = v0σ0e
−αa 1+ quartic corrections in ε[ ]  

So in the two-dimensional case we anticipate finding a current robust (up to terms fourth 

order in the perturbing influence) with respect to disorder. 
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CHAPTER 9 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

9.1: Overview of Results and Primary Perpsectives 

 In our consideration of resistor networks, we have revived a notion that random 

resistor networks are best understood in terms of their scheme of connectivity to near 

neighbors.  The node connectivity perspective is a more general point of view than the 

mesh current analysis, which often is applied in the case of regular lattices.  While even 

regular lattices with conductance links extended to next-nearest neighbors may confound 

the mesh current techniques, arbitrary connectivity schemes (i.e. even such cases where 

each node is connected to every other site in the lattice) are readily managed in the node 

connectivity point of view we have adopted in this thesis. 

 At the heart of the node-connectivity picture is the current conservaton condition, 

also known as Kirchhoff’s First Rule.  We have seen that the charge conservation 

condition is not merely a physical constraint, but it also may be pressed into service as a 

tool for calculating any physical observable that one wishes to determine in relation to the 

transport characteristics of a random resistor network. 

 In the case of numerical calculations, the constraint that no current either depart 

from a node or enter it is part of an algorithm that may be used to calculate the node 

potentials, and thus any other germane transport characteristic.  We have seen, in this 

vein, that one may transform the charge conservation into an iterative scheme for 

successively improving an initial guess for the voltages at the lattice nodes. 

 Whereas the charge conservation condition is the core of a variety of numerical 

algorithms which circumvent a direct matrix solution, Kirchhoff’s First Rule also serves 
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as the basis for analytical calculations.  The latter have an iterative character not unlike 

the numerical counterparts.  Nonetheless, the analytical methods differ from the 

numerical Monte Carlo calculations in that an average over disorder is performed to strip 

away a specific configuration of disorder to yield a closed form expression for the 

conductance as a closed form perturbative series in the influence setting up the positional 

disorder and eliminating the possibility of a simple exploitation of discrete translational 

invariance. 

 As in the numerical calculations, the analytical results benefit from the use of 

special periodic boundary conditions where an infinite number of system replicas are 

fused together to allow for an uninterrupted increase of the potential in the direction of 

the imposed bias.  While the potential raises steadily, all physical observables, quantities 

that must each be constructed from potential differences, are strictly periodic.  In this 

manner, it never becomes necessary to set aside portions of the system to be given over 

as part of an electrode.  In addition, the bulk limit is more readily and more naturally 

addressed; we have argued that the bulk case is in most instances a desirable regime to 

seek to consider in theoretical calculations. 

 In any analytical calculation where the unperturbed system is a regular crystal 

lattice, the prospect of conveniently obtaining closed form results is greatly improved if 

one from the outset avoids the introduction of electrode plates, which would spoil the 

translational invariance of the unperturbed case. 

9.2: Summary of Regular Lattice Results 

 Although a large part of our program in this dissertation has been to take into 

consideration the effect of sidorder, we nonetheless have found utilityin the theoretical 
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study of regular lattices where no positional perturbations have been introduced.  For 

these types of pristine lattices, we have been able to work out closed form relations for 

the bulk conductivity in a variety of situations.  For the one-dimensional case, we found 

an exact relation for an extended scheme in the variable range hopping picture where the 

hopping frequency is taken to decrease exponentially in the distance separating lattice 

sites among which hopping occurs. 

 In the two and three-dimensional geometries where square and cubic geometries 

were examined, we gleaned conductance formulas expressed as infinite sums.  In 

addition, in both the two and three-dimensional systems we specialized to the limit where 

the length scale of the exponential decay of the hopping frequency is large in relation to 

the lattice constant; we found in such instances that the infinite sum for the conductivity 

goes over to an intergral readily evaluated for a simple closed form expression for the 

conductivity. 

 Finally, in the case of the square lattice, we posed the question as to what would 

happen with a potential bias not aligned with either principal Cartesian axis, but directed 

along a diagonal.  We proved, first in a scheme connecting nearest neighbors, and then in 

an extended scheme that the current set up in a bulk system does not depend on the 

orientation of the potential bias with respect to crystallographic axes, but is instead 

isotropic in the imposed potential.  We determined through rigorous argument that the 

isotropy characteristic holds when the hopping scheme is extended to an infinite range 

(i.e. in a situaion where in principal carriers may hop from a paticular site to any other 

location in the crystal lattice) provided that the hopping frequency is itself dependent 

only on the physical distance between two sites. 
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 We did not pursue similar logic for the case of the cubic lattice in three 

dimensions.  Even so, we anticipate that one may readily generalize our arguments and 

carry out the calculation appropriate to the cubic system.  We expect isotropy of the 

conductivity to hold in the three-dimensional case as well. 

 Finally, we offer one more observation that extends considerably the likely 

relevance of the calculations of transport characteristics for the regular lattice geometries.  

Our comment, articulated in this conducting segment, benefits from hindsight in an 

important sense.  We have found in the case of numerical and analytical calculations of 

transport characteristics that for some types of disorder, the conductivity is robust with 

respect to small, or even moderate, values of the perturbing parameter. 

 From the results of calculations reported on in this dissertation, we conclude that 

where disorder is most likely to be tolerated is in the case of positional disorder where 

there are fluctuations in the locations of atomic species that lead to perturbations that 

vanish to first order.  Hence, we anticipate that the regular lattice results will be relevant 

for many cases in which disorder levels are mild to moderate in extend. 

9.3: The Relevance of Percolation Phenomena 

 Elsewhere, as well as within this thesis, a variety of arguments (some heuristic 

and some based on calculations) have been used to argue for the relevance of physics 

near the percolation transition where a system with a large portion of truncated links is at 

the boundary separating systems which percolate, and those which have lost enough 

bridges among nodes that an uninterrupted path spanning the entire system does not exist. 

 One the other hand, a case in which many links have been sheared completely 

away may seem to be very distinct from a resistor network for which the conductance of 
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links has merely been degraded but not altogether removed.  Nevertheless, if the conduits 

joining the nodes are left intact, but are sufficiently diverse in their conductance values, 

then the transport of charge may occur mainly through a critical cluster formed by 

pruning away the weaker links until the system is at the verge of a percolation transition.  

Thus, critical behavior associated with percolation transitions may be of surprisingly 

broad relevance for strongly disordered amorphous materials. 

 A salient phenomenon associated with criticality is a marked deceleration of 

many algorithmsused to calculate transport characteristics.  By using the number of 

iterations required to achieve convergence as a gauge of critical behavior, we found that 

increasing the spread in the resistance of lattice bonds eventually leads to a regime in 

which the required computational effort rises exponentially with the logarithm of the 

dispersal of the conductance.  The transition to this asymptotic scaling of the number of 

iterations occurs when the variation of the conductances spans about an order of 

magnitude in both two and three-dimensional geometries, and we interpret the shift as the 

onset of the critical regime where characteristics of the percolation transition are an 

important determinant of the transport characteristics of the system.  As another test of 

the use of the computational effort as a meter to detect critical behavior, we considered 

simple scenarios where percolation characteristics were well understood and found peaks 

in the number of iterations for parameter settings where the percolation transition is 

known to occur. 
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9.4: Comments on the Analytical Calculations 

 In using analytical arguments to express the transport characteristics as a 

perturbative series in a parameter governing the strength of random perturbations, we 

have fashioned a technique distinct from previous methods in several respects. 

 First, by using periodic boundary conditions for the unperturbed system and 

avoiding cathode and anode geometry, we simplified the calculation and facilitated the 

calculation of system characteristics to third order in the perturbing influence.  Second, 

by subsuming the details of the perturbation parameter , we are able to treat a detailed 

perturbation in a simple and compact way, and the task is reduced to calculating moments 

of a more detailed perturbation which may then be inserted into the master series, which 

has the same form irrespective of the complexities of the specific perturbation. 

 Finally, our perspective is complementary to previous efforts in that the 

unperturbed state is a pristine system with no interruption to the global transport of 

charge.  In this sense, the starting point of our calculation differs from that of other efforts 

where finite clusters are built up in an insulating medium.  Hence, whereas we work from 

the conductive side, other efforts to build up a high order perturbative series begin in the 

opposite regime where the native system does not permit the flow of charge through the 

material.   

Analytical and numerical results suggest there are many types of systems that are 

robust with respect to the introduction of positional disorder.  Thus, we argue that 

treatments that begin with a regular crystal lattice may offer a more rapid convergence 

and a more realistic model for the transport characteristics of such systems. 
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9.5: Directions for Future Efforts 

For both the analytical and the numerical calculations, there are avenues for 

extending the research we have reported on in this dissertation.  For the numerical Monte 

Carlo calculations of the conductance, critical slowing down will plague the analysis of 

very strongly disordered systems modeled with random resistor networks where adjacent 

resistances may vary by several orders of magnitude.  By examing large systems 

containing at least on the order of  nodes, we have been able to reduce the importance 

of finite size effects and fluctuations due to random variations from specific disorder 

configurations which are muted byt not entirely suppressed by self-averaging. 

The examination of larger systems will require the availability of more efficient 

algorithms, and one possibility are iterative calculations based on the conjugate gradient 

technique often used to solve systems of sparse matrices.  In cases where critical slowing 

down due to percolation threshold effects is not a significant concern, the conjugate 

gradient calculations usually converge very rapidly, often in just a handful of iterations. 

The effort to repair iterative methods for calculating the conductance of critical 

networks is an old problem that is rooted in a fundamental incompatibility between 

simple iterative methods and the percolation transition.  Both the iterative scheme that we 

have used in the context of this thesis and more intricate methods have a common 

feature: these numerical approaches are local, in that each iteration only redistributes 

voltage values among nodes and nearest neighbors.  On the other hand, a percolation 

transition involves correlation effects that span the entire system. 
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Local moves are best at responding to disturbances on a small scale, but are much 

less effective in the analysis of cooperative phenomena where global effects are at work.  

Global moves such as the Swendsen-Wang algorithm are used in a different context, the 

study of ferromagnetic phase transitions where local Monte Carlo moves also break 

down.  The Swendsen-Wang technique is an excellent example of a global update 

technique that is efficiently implemented, and to a great extend resolves the problem of 

critical slowing down.  At the heart of the Swendsen-Wang technique is an algorithm 

called the Hoshen-Kopelman method that is used to identify clusters of sites connected 

by intact bonds.  The task, in the context of random resistor networks, then becomes a 

matter of finding a way to construct a counterpart to the Swendsen-Wang method that 

would be effective in mitigating critical slowing down in charge transport calculations. 

Finally, we comment on the analytical calculations and consider how improving 

the accuracy of the numerical calculations is a relevant consideration.  In fact, we 

envision that explicit numerical calculations and the theoretical analysis leading to a 

perturbative series will continue to operate in tandem.  The availability of more accurate 

numerical data will provide an independent means for validating the closed form 

analytical results.  In turn, a more powerful and higher order perturbative result will 

encourage the improvement of the numerical calculations. 

There are a number of challenges involved in extending the analysis to higher 

order contributions.  Salient among these, the number of terms to be considered will 

nominally grow expontially in the orderof the perturbation.  As an example, at tenth order 

the number of terms to separately consider and calculate is at least 256.  However, this 

number may overestimate the amount of effort that may be involved.   



 
 

210 

A judicious and prudent calculation would identify and combine together identical 

terms and thereby mitigate the effort involved at each order.  Ultimately, the strongest 

hope would be to arrive at an analytical technique which would not grow exponentially 

with the order as is true of many types of perturbative calculations, but would instead 

scale as some polynomial in the order of the term.  The latter prospect would allow a 

detailed interrogation of critical behavior on extremely high order series. 
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