
A NEW CONSTRAINT-BASED ALGORITHM TO LEARN BAYESIAN NETWORK

STRUCTURE FROM DATA: CONTROL OF PAIR-WISE SPURIOUS INFORMATION

(CSPI)

A THESIS IN

Computer Science

Presented to the Faculty of the University

of Missouri-Kansas City in partial fulfillment of

the requirements for the degree

MASTERS OF SCIENCE

by

PABLO DE MORAIS ANDRADE

B. S., State University of Campinas, 2005

Kansas City, Missouri

2011

© 2011

PABLO DE MORAIS ANDRADE

ALL RIGHTS RESERVED

iii

A NEW CONTRAINT-BASED ALGORITHM TO LEARN BAYESIAN NETWORK

STRUCTURE FROM DATA: CONTROL OF PAIR-WISE SPURIOUS INFORMATION

Pablo de Morais Andrade, Candidate for the Master of Science Degree

University of Missouri-Kansas City, 2011

ABSTRACT

A Bayesian network is a directed acyclic graphical representation of a set of

variables. This representation occupies the middle ground between a causal network and a

simple list of pairwise correlations by including information about dependencies between

variables.

There are applications of Bayesian networks in many fields, such as financial risk

management, bioinformatics and audio-visual perception, to name just a few. However,

learning the network structure from data requires an exponential number of conditional

independence tests; several algorithms have been proposed in order to reduce the runtime of

this procedure.

We present a new constraint-based algorithm for learning Bayesian network structure

from data, based on Control of Spurious Pairwise Information (CSPI). We limit the

computational cost of learning by trading an increase in complexity of the initial steps for a

substantial reduction in the complexity of conditional pairwise independence testing. We

employ a logging and rollback strategy to reduce the number of missing edges.

iv

We show that the CSPI algorithm outperforms several other algorithms in complexity

and/or accuracy on benchmark datasets.

v

APPROVAL PAGE

The faculty listed below, appointed by the Dean of the School of Computing and

Engineering, have examined a thesis titled "A New Constraint-Based Algorithm to Learn

Bayesian Network Structure From Data: Control of Spurious Pairwise Information (CSPI)”,

presented by Pablo de Morais Andrade, candidate for the Masters of Science degree, and

certify that in their opinion it is worthy of acceptance.

Supervisory Committee

Deendayal Dinakarpandian, Ph.D, Committee Chair

Department of Computer Science Electrical Engineering

Praveen R. Rao, Ph.D

Department of Computer Science Electrical Engineering

Yugyung Lee, Ph.D

Department of Computer Science Electrical Engineering

vi

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF EQUATIONS ... viii

LIST OF ILLUSTRATIONS ... ix

LIST OF TABLES ... xi

INTRODUCTION .. 12

BACKGROUND .. 7

2.1 Bayesian Network.. 7

2.2 Benchmark Networks .. 10

2.3 Measure of Independence .. 13

2.4 Accuracy Measure ... 13

THE CSPI ALGORITHM .. 14

3.1 Definitions ... 14

3.2 Description... 15

3.3 Time complexity of algorithm ... 25

3.4 Proof of correctness ... 26

RESULTS AND DICUSSION ... 30

4.1 Results ... 30

vii

4.1.1 Alarm and Insurance Networks ... 30

4.1.2 Barley, Child and HailFinder .. 38

4.2 Discussion .. 44

CONCLUSION AND FUTURE WORK ... 46

REFERENCES ... 47

VITA ... 52

viii

LIST OF EQUATIONS

Equation Page

1. Probability of a Bayesian Network Structure ... 7

2. Conditioned on the set Sij, the variables Xi and Xj are independent 7

3. Mutual Information ... 8

4. Mutual Information rewritten ... 8

5. Entropy of variable Xi ... 8

6. Joint entropy of variables Xi and Xj ... 8

7. Normalized version of the measure mutual information .. 8

8. Conditional mutual information .. 9

9. Conditional mutual information rewritten .. 9

10. Normalized version of conditional mutual information .. 9

11. Structural Hamming distance .. 13

ix

LIST OF ILLUSTRATIONS

Figure Page

1. Bayesian Network ... 4

2. BN representing high but spurious mutual information ... 5

3. BN representing temporarily removed edges ... 5

4. Alarm Network ... 11

5. The Insurance Network ... 12

6. Network representing conditional independence between A and B 27

7. Edge representing spurious information A-B .. 27

8. Possible mistake of CSPI algorithm ... 28

9. How CSPI avoid possible mistake .. 29

10. SHD Results for CSPI Algorithm and Alarm Network .. 32

11. SHD Results for PC Algorithm and Alarm Network.. 33

12. SHD Results for TPDA Algorithm and Alarm Network .. 33

13. SHD Results for RAI Algorithm and Alarm Network.. 34

14. SHD Results for MMHC Algorithm and Alarm Network .. 34

15. SHD Results for CSPI Algorithm and Insurance Network ... 35

16. SHD Results for PC Algorithm and Insurance Network .. 35

17. SHD Results for TPDA Algorithm and Insurance Network ... 36

18. SHD Results for RAI Algorithm and Insurance Network .. 36

x

19. SHD Results for MMHC Algorithm and Insurance Network .. 37

20. SHD Results for CSPI Algorithm and Barley Network.. 38

21. SHD Results for RAI Algorithm and Barley Network ... 39

22. SHD Results for MMHC Algorithm and Barley Network ... 39

23. SHD Results for CSPI Algorithm and Child Network ... 40

24. SHD Results for RAI Algorithm and Child Network ... 40

25. SHD Results for MMHC Algorithm and Barley Network ... 41

26. SHD Results for CSPI Algorithm and Child Network ... 41

27. SHD Results for RAI Algorithm and Child Network ... 42

28. SHD Results for MMHC Algorithm and Barley Network ... 42

29. Comparison of structure correctness between CSPI and RAI .. 44

30. Comparison of number of CI tests performed between CSPI and MMHC 45

xi

LIST OF TABLES

Table Page

1. Unconditional probability table of variables Y and Z .. 4

2. Conditional probability table of variable X given variables Y and Z 4

3. Deletion log ... 6

4. Number of vertices and edges of Benchmark networks ... 10

5. Algorithm describes the main function ... 18

6. Algorithm describes function to remove the spurious mutual information 20

7. Algorithm describes function to reconsider all the false negative edges 21

8. Algorithm describes function to reconsider a false negative edge 21

9. Algorithm describes function to remove an edge using the set S 23

10. The deletion log represented in Figure 8 .. 28

11. Deletion log representing mistake .. 28

12. Network error (SHD) for 20 samples of 20,000 observations .. 37

13. Number of CI test – Alarm and Insurance .. 37

14. Network error (SHD) for 10 samples of 10,000 observations .. 43

15. Number of CI tests - Barley, Child and HailFinder .. 43

xii

CHAPTER 1

INTRODUCTION

 A Bayesian network (BN) is a graphical model that represents the set of conditional

probabilities associated with a group of variables (Cooper and Herskovits 1992; Heckerman

1995; Heckerman, Geiger and Chickering 1995). A BN is a Directed Acyclic Graph (DAG)

where the vertices represent variables and the edges are directed according to the conditional

probabilities associated with these variables as follows: if a vertex vX represents a variable X,

and the probabilities of the values assumed by the variable X are conditioned on the values

assumed by the variables Y and Z represented, respectively, by the vertices vY and vZ, there

should be edges directed from the vertices vY and vZ towards the vertex vX . A simple example

of unconditional and conditional probabilities with X, Y and Z binary variables is given in

Tables 1 and 2. The corresponding BN is shown in Figure 1.

 As a classifier, BN has a significant advantage over the naive Bayesian Classifier, since

the latter does not take into consideration variables that are dependent or conditionally

independent of each variable (Friedman, Geiger and Goldszmidt 1997). The task of learning

the conditional probability table is simple when the structure of the network is known. For

discrete variables, it is just a matter of calculating the frequency of each value assumed by a

variable given the values assumed by its adjacent ancestors in the graph (Grossman and

Domingos 2004; Needham, Bradford, Bulpitt and Westhead 2006). The problem of learning

2

the structure, though, is NP-complete (Chickering 1996; Chickering, Heckerman and Meek

2004).

 Several structure learning algorithms have been proposed. A tree based structure was

proposed in Chow and Liu (1968). Algorithms to recover a DAG can be divided into two

main approaches. In the first approach, known as Search and Score, the algorithm performs a

search (greedy search, mostly hill-climbing) for the network that best suits the data based on

a given score. Examples of scoring functions are: Minimum Description Length (Lam and

Bacchus 1994), Conditional Mutual Information (Friedman, Geiger and Goldszmidt 1997),

Bayesian Information Criterion (Elidan, Nachman and Friedman 2007) and BDe Metric

(Heckerman, Geiger and Chickering 1995). In the second approach, constraint-based (CB)

algorithms (Cheng et al. 2002; Yehezkel and Lerner 2009) use conditional independence

tests in order to reduce the number of edges in the graph, consequently reducing the

complexity of the problem, and orient the edges based on the results of the CI tests

performed (see The IC algorithm in Pearl 2000). A hybrid approach (use of scoring function

and CI tests) is found in Tsamardinos, Brown and Aliferis (2006). Bayesian Networks have

been applied in many domains: risk management (Cornalba and Giudici 2004), audio-visual

perception (Besson et al. 2010) and particularly Bioinformatics (Friedman, Linial, Nachman

and Peer 2000; Needham, Bradford and Bulpitt 2006). A variety of tools to build networks

are freely available (Scutari 2010; Wilczynski and Dojer 2009); Buntine (1996) offers a

guide to literature and software related to Bayesian Networks.

 The CSPI algorithm proposed in this thesis tries to overcome some of the problems

found in CB algorithms. CB algorithms usually start (assuming there is no previous expert

knowledge) with a complete or empty network. Consequently, CI tests usually have large

3

condition sets, which commonly give unreliable results (Cheng et al. 2002; Yehezkel and

Lerner 2009). Alternatively, CB algorithms start with the minimum spanning tree, which

reduces the initial size of condition sets, but relies on a fallacy for the removal of the edges:

the assumption that all edges representing stronger relations of dependences are true edges in

the network. Figure 2 shows a typical example when this assumption fails. The variables X

and W represented, respectively, by vertices vX and vY are conditionally independent but the

values assumed by both variables are dependent on the values assumed by variables Y and W

(represented by the vertices vY and vW). Although conditionally independent, in many cases,

the correlation or information (Shannon 1948) between the variables X and W is higher than

one or more of the ones found between X and Z, or Z and W. In order to overcome this

problem, the CSPI algorithm starts with a procedure costlier in n (number of vertices) than

the minimum spanning tree algorithm but makes use of a deletion log in order to facilitate the

rollback. This reduces the number of conditional independence (CI) tests necessary. Figure 3

shows the initial procedure of CSPI while Table 3 shows the corresponding deletion log.

Using this procedure, CSPI also starts with CI tests having small condition sets, as in the

minimum spanning tree, except that for each edge removed on account of being considered

spurious information, the vertices responsible for this removal are stored, allowing the

algorithm to limit the number of CI tests. The purpose of the CSPI algorithm is to reduce the

complexity with respect to the number of CI tests (and size of condition sets), which is the

major factor responsible for the increase in run-time in CB algorithms (Cheng et al. 2002;

Yehezkel and Lerner 2009), by trading an increase in the complexity with respect to the

number of edges during the initial step of the algorithm. Other steps of the algorithm include

corrections by shrinking the network and re-testing the edges removed from the network.

4

 The independence and conditional independence tests were performed using a

normalized version of the measures mutual information and conditional mutual information -

normalized with respect to the entropy of the variables being tested. In empirical tests using

benchmark datasets, these normalized versions had better results than the regular versions.

Many normalized conditional mutual information versions have been proposed (Oude and

Pavlin 2009; Strehl and Ghosh 2002; Richiardi 2007; Besson al. 2010), a list of the proposed

measures can be found in Yao (2003).

Table 1 - Unconditional probability table of variables Y and Z

Y p(Y) Z P(Z)

0 0.4 0 0.3

1 0.6 1 0.7

Table 2 - Conditional probability table of variable X given variables Y and Z

X p(X|Y=0,Z=0) p(X|Y=0,Z=1) p(X|Y=1,Z=0) p(X|Y=1,Z=1)

0 0.1 0.8 0.7 0.4

1 0.9 0.2 0.3 0.6

Figure 1 - Bayesian Network representing dependences between variables X, Y and Z

corresponding to the probabilities in Tables 1 and 2

5

Figure 2 - BN representing high but spurious mutual information: (a) True Network, (b) Edge

width representing measure of information (vX-vW higher than vZ-vX and vZ-vW)

Figure 3 - BN representing temporarily removed edges: (a) True Network, (b) Dotted edges

represent the temporarily removed edges, note that vZ-vW is removed by {vZ-vX; vX-vW}, but

vW-vX is also removed by {vW-vY; vY-vX}; and vX-vP is removed by {vX-vW;vW-vP} a and

{vX-vY;vY-vP}

6

Table 3 – Deletion log maintains a record of the sets of the vertices whose associated edges

were responsible for every edge deleted from a fully connected network. This facilitates

rollback from incorrect deletions (e.g., edge vZ-vW) in subsequent steps of the algorithm

 vY vZ vW vX vP

vY --- --- --- --- vW

vZ --- --- vX & vP --- ---

vW --- vX & vP --- vY ---

vX --- --- vY --- vY & vW & vZ

vP vW --- --- vY & vW & vZ ---

7

CHAPTER 2

BACKGROUND

2.1 Bayesian Network

 For a given set of discrete random variables X = {X1, ..., Xn}, a BN graphically

represents the conditional probabilities associated with these variables. The graph is a DAG

with parent variables pai of Xi, such that the variable Xi is independent of its non-descendants

given its parents (Friedman, Linial, Nachman and Peer 2000). Therefore, the probability of a

network structure is given by (Cooper and Herskovits 1992; Friedman, Geiger and

Goldszmidt 1997; Yehezkel and Lerner 2009; Heckerman 1995):

Equation 1 - Probability of a Bayesian Network Structure

 In order to find the set of parents of each variable Xi, we search for the set Sij for each

pair of variables Xi and Xj such that, conditioned on this set Sij, the variables Xi and Xj are

independent (Tsamardinos, Brown & Aliferis, 2006):

Equation 2 – Conditioned on the set Sij, the variables Xi and Xj are independent

We use as measures of independence a normalized version of the measure

unconditional mutual information, and a threshold εu to define independence (results lower

8

than this threshold εu are considered unconditional independence). Equation 3 shows the

measure of mutual information while Equation 7 shows the normalized version used.

Equation 3 – Mutual Information

Equation 3 can also be written as:

Equation 4 – Mutual Information rewritten

Where H(X) is the entropy of variable X and is defined as (Shannon, 1948):

Equation 5 – Entropy of variable Xi

Joint entropy is defined as:

Equation 6 – Joint entropy of variables Xi and Xj

We finally define normalized mutual information, based on the fact that the mutual

information between two variables is always lower than the minimum entropy of these two

variables (Yao 2003):

Equation 7 – Normalized version of the measure mutual information

9

For the conditional mutual information tests, we define a second threshold εc (CI tests

resulting below this threshold εc are considered to be indicative of conditional independence).

Conditional mutual information (Cheng et al. 2002) is given by:

Equation 8 – Conditional mutual information

The equation for conditional mutual information can be rewritten as:

Equation 9 – Conditional mutual information rewritten

A normalized version:

Equation 10 – Normalized version of conditional mutual information

Empirical tests using benchmark datasets showed that the normalized version of

mutual information Equation 7 had less false negatives (I(Xi,Xj) ≤ εu) when Xi and Xj are

actually dependent) and false positives (I(Xi,Xj) > εu, when Xi and Xj are actually

independent) than the regular version of mutual information in Equation 4. The results can be

explained based on the fact that variables with low entropy will automatically have lower

values of mutual information; setting a constant threshold εu, is necessary to correct the

significance of the results. The same applies to conditional mutual information in Equation 9.

The significance of the results will be influenced by the entropy of variables Xi, Xj, Zk,

particularly when the number of variables in the set Z becomes too large. We consider the

10

normalization step necessary especially when using a greedy search for the set Z. Without

normalization, the addition of several variables to the condition set might yield low scores for

the CI tests that are suggestive of independence (lower than a threshold εc), even when that is

not true.

2.2 Benchmark Networks

 We compared the CSPI algorithm with the recently proposed algorithms Max-Min Hill-

Climbing (MMHC), Recursive Autonomy Identification (RAI) and Three-Phase Dependence

Analysis (TPDA) using the benchmark networks: Alarm, Insurance, Barley, Child and

HailFinder.

 A summary of these variables (number of nodes and number of edges) is given in Table

4. Figure 4 shows the Alarm Network and Figure 5, the Insurance Network. The task given is

to recover these networks from a dataset.

Table 4 - Number of vertices and edges of Benchmark networks

Network Number of Vertices Number of Edges

Alarm 37 46

Insurance 27 52

Barley 48 84

Child 20 25

HailFinder 56 66

11

Figure 4 - Alarm Network

12

Figure 5 - The Insurance Network

13

2.3 Measure of Independence

 As a measure of independence, we have used a normalized version of the measure

Mutual Information and as measure of conditional independence a normalized version of

Conditional Mutual Information, given respectively in Equations 3 and 10.

 As we address in the section Future Work, we expect to explore other measures of

independence and conditional independence, but for the first version of the software

available, only the measures cited above are available.

2.4 Accuracy Measure

 For a measure of accuracy, we have used structural Hamming distance, which is the sum

of the following structural errors:

- Missing edge (ME)

- Edge missing direction (MD)

- Inverted edge (IE)

- Extra edge (EE)

Therefore, the structural Hamming distance is given by:

Equation 11 – Structural Hamming distance

14

CHAPTER 3

THE CSPI ALGORITHM

3.1 Definitions

Mutual information matrix: n-by-n matrix with values of pairwise unconditional mutual

information (n number of variables).

Clean mutual information matrix: n-by-n matrix with values of pairwise unconditional

mutual information with the edges considered spurious set to 0.

Undefined edge: All the edges in the network are initially marked as undefined. An edge that

is temporarily removed is also considered undefined (but it is assigned a value of 0 in the

clean mutual information matrix).

Undirected edge: An undefined edge that cannot be removed will become an undirected

edge.

True Negative (TN) and False Negative (FN): Edges considered spurious are temporarily

removed from the graph. After a series of conditional independence tests, those not

permanently removed will be considered False Negatives (not spurious edges). The edges

permanently removed will be considered True Negatives (spurious edges).

15

Deletion log: Edges temporarily removed for appearing redundant are stored together with a

list of vertices that are responsible for the deletion (i.e., vertex opposite the deleted edge

when comparing each group of three edges).

setS: For each edge, there is a set of vertices S such that, when conditioned on this set, the

vertices connected by the edge have the minimum value computed by the CI test. If the

vertices are conditionally independent, the CI test value for these vertices conditioned on the

set S should have a value lower than the threshold εc. Each vertex is classified as one of the

following: included in this setS (value 1), not included (value 0) or considered a potential

addition to the set (value 2, or ToBeAdded).

edgesetS: A bit map where a bit is set to one if an edge has a set S assigned to it (the matrix

is initialized with zeros).

3.2 Description

 The algorithm starts by calculating values for pairwise unconditional mutual

information, with the result stored in a matrix called the mutual information matrix

(mutualinfo in Algorithm 1). For each pair of vertices with result greater than a threshold εu,

an undefined edge is assigned connecting the pair.

 The function RemoveSpuriousMI (Algorithm 2) is called next. It checks each triple of

vertices, marks the edge with the lowest value of mutual information for removal, storing the

vertices opposite this edge in a deletion log. The edges removed have their records in the

matrix mutualInfoClean set to zero (Algorithm 2 line 9). The network itself, though, is not

updated since this is not a permanent removal – the edge is still considered undefined.

16

 After removing what is considered spurious mutual information, the vertices are sorted

according to the number of undefined edges connected to them and the function

PermanentlyRemoveSpurInfo is called. This function performs CI tests for each vertex, trying

to remove all the edges connected to this vertex that are considered spurious information, by

using as condition set the remaining vertices connected to this vertex (its neighbors). The

edges not permanently removed are considered false negatives and added back to the

network one at a time while the edges permanently removed (true negatives) are no longer

undefined but will have their records in the network matrix set to NOEDGE. For each vertex,

the number of false negatives are calculated and stored in an array called edges2add (see

Algorithm 1, line 15).

 The function ReconsiderFalseNegatives (Algorithm 3) is then called and follows the

order given by the sorted array of the number of edges to be added (array edges2add). This

function checks which edges were considered spurious information, but not permanently

removed (edge is still undefined and mutualinfoClean matrix is 0), and calls the function

ReconsiderEdgesFN for each of these edges.

 ReconsiderEdgesFN starts with a loop searching for the vertices responsible for the

removal of the edge considered false negative (stored in the deletion log). For each of these

vertices, it checks if any of the edges previously compared to this edge (in Algorithm 2) was

also temporarily removed, in which case there is a recursive call for this edge (lines 6 and 11

of Algorithm 3). The algorithm then tries to remove these two other edges, first checking if

there exists a set S already assigned to these edges, in which case the function

RemoveEdgeUsingSetS is called (Algorithm 5). If there is no set S assigned to this edge, a

similar function is called (RemoveEdgeUsingNeigh), which uses the neighbors of both

17

vertices as condition set in a heuristic hill-climbing search (adding the neighbors one at a

time, followed by a removal of the neighbors again, one at a time, searching for the lowest of

value of CI test). At last, still within this function, the algorithm tries to remove the edge

itself, considered false negative. If this edge cannot be removed, it is added back to the

network and each of the two vertices connected by this edge is considered for addition to

every set S of the edge’s neighbors (see lines 30-41 of Algorithm 3).

 The function RemoveEdgeUsingSetS (Algorithm 5) tries to remove a given edge using

as condition set the set S assigned to this edge (the condition set that has the lowest result for

a CI test so far) and a set of vertices that are considered as potential additions to this set. The

algorithm then follows a hill-climbing search for the set S such that, conditioned on this set,

the vertices connected by the edge being removed have the minimum value for a CI test.

 The variable currentCMI keeps the value of the current conditional mutual information

while lowestCMI is the value of the lowest one found so far. The composition of the set S is

progressively updated by addition and removal of vertices, always searching for the lowest

value of conditional mutual information. Finally, if the lowest value found is zero (when the

result is lower than a threshold εC, i.e., the function CITest returns zero), the edge should be

removed, and the algorithm removes the vertices connected by this edge from any set S

where these vertices could have been added by mistake. This procedure is important when all

the edges permanently removed are re-tested given their set S (Algorithm 1, line 26).

 After the return of the function ReconsiderFalseNegatives, all the undefined edges are

set to undirected and the functions DirectVStructures and DirectRemainingEdges are called,

following The IC Algorithm given in Pearl (2000). The assignment of edge direction can fail

when the network has an extra edge (edge that should have been removed), or missing edges

18

are wrongly removed – not uncommon when given a large condition set as set S. Therefore

the algorithm first deletes ”fake” parents by calling the function ShrinkNetwork, then re-tests

all the edges removed given its set S by calling the function RetestRemovedEdges.

 In ShrinkNetwork, the algorithm removes redundant edges. It performs a CI test between

every vertex and each of its parents given the remaining parents. If the result is zero, the edge

is removed, and its corresponding set S updated accordantly.

 In RetestRemovedEdges, a CI test is performed between the vertices connected by each

edge removed (network matrix has a value of NOEDGE), given the current set S assigned to

this edge. If the CI test does not result in zero, the edge is added to the network as undirected.

 The algorithm ends then with the calls to the functions DirectVStructures and

DirectRemainingEdges in order to direct any undirected edge.

Table 5 - Algorithm describes the main function

Algorithm 1 Main Function

1: procedure CSPIBNLEARN(dataset, nvariables)

2: mutualInfo «- {0.0}

3: network «- {0}

4: nundefedges «- {0}

5: [mutualInfo; network] «- FindUnconditionalMI(dataset)

6: [mutualInfoClean; removedby] «- RemoveSpuriousMI(mutualInfo)

7: sortednundefedges «- Sort(nundefedges)

8: [network] «- PermanentlyRemoveSpurInfo(network, mutualInfo, mutualInfoClean)

9: edge2add «- {0}

10: for v «- 1, nvariables do

11: edges2add[v] «- 0

12: for i «- v+1; nvariables do

13: if network[v][i] == undefined then

14: if mutualInfoClean[v][i] == 0 then // edge is a false negative

19

Table 5 (continued)

15: edges2add[v]++

16: end if

17: end if

18: end for

19: end for

20: edges2add «- Sort(edges2add)

21: setS «-{0}

22: [network; setS] «- ReconsiderFalseNegatives(network, removedby, mutualInfoClean)

23: for v1 «- 1, nvariables do

24: for v2 «- v+1, nvariables do

25: if network[v1][v2] == undefined then

26: network[v1][v2] undirected

27: end if

28: end for

29: end for

30: [network] «- DirectVStructures(network, setS)

31: [network] «- DirectRemainingEdges(network, setS)

32: [network] «- ShrinkNetwork(network)

33: [network] «- RetestRemovedEdges(network, setS)

34: [network] «- DirectVStructures(network, setS)

35: [network] «- DirectRemainingEdges(network, setS)

36: end procedure

20

Table 6 - Algorithm describes function to remove the spurious mutual information

Algorithm 2 Remove Spurious Mutual Information

1: procedure REMOVESPURIOUSMI(mutualInfo)

2: markforremoval «- {0}

3: mutualInfoClean «- mutualInfo

4: for v1 «- 1,nvariables do

5: for v2 «- v1+1,nvariables do

6: for v3 «- 1,nvariables do

7: [vx,vy] «- min{mutualinfo[v1][v2], mutualinfo[v1][v3], mutualinfo[v2][v3]}

8: markforremoval[vx][vy] «- 1

9: mutualInfoClean[vx][vy] «- 0

10: vz «- {v1,v2,v3} – {vx, vy}

11: removedby[vx][vy][vz] «- 1

12: end for

13: end for

14: end for

15: return [mutualinfoClean, removedby]

16: end procedure

21

Table 7- Algorithm describes function to reconsider all the false negative edges

Algorithm 3 Reconsider False Negatives

1: procedure RECONSIDERFALSENEGATIVES(network, removedby, mutualInfoClean)

2: for v1 «- 1,nvariables do

3: for v2 «- v1+1, nvariables do

4: if mutualInfoClean[v1][v2] == 0 then

5: if network[v1][v2] == undefined then

6: ReconsiderEdgeFN(network, removedby, mutualInfoClean, v1, v2)

7: end if

8: end if

9: end for

10: end for

11: return [mutualinfoClean, removedby]

12: end procedure

Table 8 - Algorithm describes function to reconsider a false negative edge

Algorithm 4 Reconsider Edge False Negative

1: procedure RECONSIDEREDGEFN(network; removedby;mutualIn f oClean;v1;v2)

2: for v 1,nvariables do

3: if removedby[v1][v2][v] then // vertex v is responsible for removal of v1-v2

4: if mutualInfoClean[v1][v] == 0 then

5: if network[v1][v] == undefined then // edge v1-v is also a FN

6: ReconsiderEdgeFN(network; removedby;mutualInfoClean,v1,v)

7: end if

8: end if

9: if mutualInfoClean[v][v2] == 0 then

10: if network[v][v2] == undefined then // edge v-v2 is also a FN

11: ReconsiderEdgeFN(network, removedby, mutualInfoClean, v, v2)

12: end if

22

Table 8 (continued)

13: end if

14: if edgesetS[v1][v] then // There’s a set S assigned to edge v1-v

15: setS[v1][v] «- setS[v1][v]+v2 // Add v2 to the set S of v1-v

16: remv1v «- RemoveEdgeUsingSetS(network, removedby, mutualInfoClean,v1,v, setS)

17: else

18: remv1v «- RemoveEdgeUsingNeigh(network; removedby,mutualInfoClean,v1,v)

19: edgesetS[v1][v] «- 1 // A set S is assigned to edge v1-v

20: end if

21: if edgesetS[v][v2] then // There’s a set S assigned to edge v-v2

22: setS[v][v2] «- setS[v][v2]+v1 // Add v1 to the set S of v-v2

23: remvv2 «- RemoveEdgeUsingSetS(network; removedby;mutualInfoClean,v,v2, setS)

24: else

25: remvv2 «- RemoveEdgeUsingNeigh(network; removedby;mutualInfoClean;v;v2)

26: edgesetS[v][v2] «- 1 // A set S is assigned to edge v-v2

27: end if

28: remv1v2 «- RemoveEdgeUsingNeigh(network; removedby;mutualInfoClean;v1;v2)

29: end if

30: if !remv1v2 then // If edge v1-v2 cannot be removed, ...

31: for i «- 1,nvariables do

32: if network[v1][i]! = NOEDGE && edgeset[v1][i] then

33: / / ... and one of v1’s neighbours has a set S assigned to it ...

34: setS[v1][i][v2] = TOADD // ... v2 should be considered to be added to this set.

35: end if

36: if network[v2][i]! = NOEDGE && edgeset[v2][i] then

37: //. .. and one of v2’s neighbours has a set S assigned to it ...

38: setS[v2][i][v1] = TOADD // .. v1 should be considered to be added to this set

39: end if

40: end for

41: end if

42: end for

23

Table 9 - Algorithm describes function to remove an edge using the set S

Algorithm 5 Remove edge using set S

1: procedure REMOVEEDGEUSINGSETS(network, removedby, mutualInfoClean, v1, v2,

setS)

2: v1v2setS «- {0}

3: v1v2addTosetS «- {0}

4: for v «- 1,nvariables do

5: if setS[v1][v2][v] == 1 then

6: v1v2setS «- 1

7: else if setS[v1][v2][v]==TOADD then

8: v1v2addTosetS «- 1

9: end if

10: end for

11: currentCMI «- 0

12: setSchanged «- 0

13: lowestCMI «- CITest(v1,v2,v1v2setS)

14: for all v in v1v2addToset do

15: Add v to v1v2setS

16: currentCMI «- CITest(v1;v2;v1v2setS)

17: if currentCMI > lowestCMI then

18: Remove v from v1v2setS

19: else

20: lowestCMI «- currentCMI

21: setSchanged «- 1

22: end if

23: end for

24: if setSchanged then

25: for all v in v1v2setS do

26: Remove v from v1v2setS

24

Table 9 (continued)

27: currentCMI «- CITest(v1;v2;v1v2setS)

28: if currentCMI > lowestCMI then

29: Add v to v1v2setS

30: else

31: lowestCMI «- currentCMI

32: end if

33: end for

34: end if

35: if lowestCMI == 0 then

36: network[v1][v2] = NOEDGE

37: // Correct set S for possible mistakes, when edge v1-v2 is removed

38: for v «- 1,nvariables do

39: if setS[v1][v][v2] then

40: if setS[v1][v] == NOEDGE && setS[v2][v] == NOEDGE then

41: setS[v1][v][v2] «- 0

42: end if

43: end if

44: if setS[v2][v][v1] then

45: if setS[v1][v] == NOEDGE && setS[v2][v] == NOEDGE then

46: setS[v2][v][v1] «- 0

47: end if

48: end if

49: end for

50: end if

51: return (lowestCMI == 0)

52: end procedure

25

3.3 Time complexity of algorithm

Bayesian Network structure learning algorithms typically have their performance measured

by the number of conditional independence tests executed. The CSPI algorithm starts with a

procedure comparing each three vertices of the graph (O(n
3
)). If all three are connected, the

edge representing the weakest dependence (lowest value of mutual information or

correlation) is temporarily removed from the graph, assuming that this edge represents

spurious information. For each edge removed during this procedure, the third vertex

(opposite this edge) is stored in a deletion log as responsible for the removal of this edge.

Using this procedure, CSPI starts with CI tests having small condition sets, allowing the

algorithm to limit the number of CI tests by using the following rationale: for each three

vertices connected by three edges, at most one of the edges represents spurious information.

This way, when adding back an edge previously considered spurious information, the

algorithm applies CI tests, trying to remove the edges responsible for its removal. Since the

number of comparisons (and removals) has complexity O(n
3
), the complexity in N (number

of CI tests) would be O(N
3
), but in fact the algorithm adds and removes the vertices from the

condition set S one at a time, searching for the set S that gives the lowest result for a CI test.

The final complexity is then of the order O(N
4
). Therefore in the worst case, the CSPI

algorithm performs O(N
4
) CI tests. Tests performed on benchmark dataset for this paper

show that the heuristic search used keeps the number of CI tests considerably lower than that.

CSPI avoids this ways an exponential number of CI tests, which would be necessary to test

all the possible sets for each pair of variables (Chickering 1996; Chickering, Heckerman and

Meek 2004). And CSPI is guaranteed to work if the CI results are always correct (See section

3.4 for details).

26

3.4 Proof of correctness

If two variables A and B are conditionally independent, there is a set SAB such that,

conditioned on SAB the CI test I(A;B| SAB) is equal to zero (or lower than a threshold ε).

Assuming the independence tests will be correct, we have to prove that the test I(A;B| SAB)

will be performed by the algorithm – removing the edge A-B.

If a variable X belongs to SAB, X is a parent of A or B (or both) and is unconditionally

dependent on both A and B. As shown in Figure 7, it is possible that the variables X and Y

belong to SAB, but the variables Z and W certainly do not since they are independent of A and

B.

Therefore, during the first step of CSPI algorithm, edges A-B will be temporarily removed by

a true edge that belongs to SAB, or a true edge that belongs to SAB will be temporarily removed

by A-B as in Figure 8; the deletion log will keep this information as in Table 5. Assuming

that adding X and Y to a set S will not increase the value of I(A;B|S), and no true edge will be

removed by any CI test, all the edges connecting A and B to a parent in SAB will eventually be

added back to the network, and the test I(A;B|SAB) will be performed.

A mistake could occur in a situation similar to the one described in Figure 9 and Table 6,

where the edge X-B is temporarily removed by the edge X-A, which is also temporarily

removed. In this case if the algorithm tried to removed X-B first, it could fail to perform the

CI test I(A; B|SAB). But as described in Section 3.3, CSPI will first make a recursive call to

take care of the edge X-A as described in Figure 10.

27

Figure 6 - Network representing conditional independence between A and B: variables X and

Y can belong to SAB, Z and W cannot because they are independent of A or B

Figure 7 - Edge representing spurious information A-B: Or A-B is removed by a true edge (a),

or it is responsible for the removal of a true edge (b), the corresponding deletion log is shown

in Table 10

28

Table 10- The deletion log represented in Figure 8, spurious edge A-B is removed by a true

edge or is responsible for the removal of one

 A B X Y

A --- X --- ---

B X --- --- A

X --- --- --- ---

Y --- A --- ---

Figure 8 - A mistake could be made if the algorithm first removes edge X-B (I(X;B|Y)< ε), in

this case I(A;B|X;Y) could never be performed, the corresponding deletion log is shown in

Table 11

Table 11 - Deletion log representing mistake that could be made, represented in Figure 9

 A B X Y W

A --- --- W --- ---

B --- --- A --- ---

X W A --- --- ---

Y --- --- --- --- ---

W --- --- --- --- ---

29

Figure 9 - When algorithm tries removing edge X-A first, it will not be able to do it (since it

is a true edge) and X-A will be added back to the network before the algorithm tries to

remove X-B, and I(A;B|X;Y) will be performed

30

CHAPTER 4

RESULTS AND DICUSSION

4.1 Results

 We compared the CSPI algorithm with other cutting-edge algorithms with respect to

structure correctness and number of statistical tests (which impacts the run-time of the

algorithm). For structure correctness, we used the measure structural Hamming distance

(SHD) – sum of the numbers of missing edges, edges missing direction, inverted edges and

extra edges. We also compared the number of conditional independence (CI) tests performed

by CSPI with the algorithms Max-Min Hill climbing (Tsamardinos, Brown and Aliferis

2006) and Recursive Autonomy Identification (Yehezkel, and Lerner 2009).

 In order to perform the tests for the Parent Candidate (PC) algorithm, Three Phase

Dependency Analysis (Cheng et al. 2002) and MMHC, we used the Causal Explorer Package

(Aliferis, Tsamardinos, Statnikov and Brown 2003); for the RAI algorithm, we used the code

provided by its authors.

4.1.1 Alarm and Insurance Networks

 We first performed tests for a broad range of conditional independence thresholds using

20 samples of training sets (each containing 20,000 observations) from the benchmark

networks Alarm Network and Insurance Network. We then selected the threshold that gave

the best results (lowest SHD), and using this threshold we performed tests with 20 other

samples (test samples), each containing 20,000 observations. We report the results of

31

structure correctness SHD and number of CI tests for these test datasets. For the tests

performed with the CSPI algorithm, we used two different thresholds for unconditional

mutual information (εu) and conditional mutual information (εc). The reason for the adoption

of different thresholds is the different normalization methods used in Equation 7 and

Equation 10, and as we show, the best results were found when εu ≠ εc.

 Figure 10 shows the average SHD found for the CSPI algorithm for unconditional

mutual information threshold within the range [4e-04:5e-02] and conditional mutual

information [1e-03:5e-02] using 20 training sample datasets of the Alarm network. The

results for the test sets are shown in Table 12 with mean and standard deviation, and Table 13

shows average and standard deviation of the number of CI tests performed.

 Figures 11 and 12 shows the results for the training set for algorithms PC and TPDA ,

and Figures 13 and 14, the results for RAI and MMHC.

 For the samples of the Alarm Network tested, the algorithm Max-Min Hill-Climbing

had the best results of structure correctness, followed by the CSPI algorithm, and CSPI had

the lowest number of CI tests (Tables 12 and 13).

 Figure 15 shows the average SHD found for the CSPI algorithm for unconditional

mutual information threshold within the range [1e-04:1e-02] and conditional mutual

information [4e-04:1e-02] using 20 training sample datasets of the Insurance network.

Figures 16 and 17 shows the results for algorithms TPDA and PC, and Figures 18 and 19 for

RAI and MMHC.

For the samples of Insurance Network, MMHC had the lowest network error followed by

CSPI, but MMHC had a large number of CI tests (Table 13). The lowest number of CI tests

was found for the RAI algorithm followed by CSPI.

32

Figure 10 - SHD Results for CSPI Algorithm using 20 training datasets containing 20,000

observations of Alarm network. Minimum network error found: SHD=10.5 for εu=2e-02 and

εc=2e-03

33

Figure 11 - SHD Results for PC Algorithm using 20 training datasets containing 20,000

observations of Alarm network. Minimum network error found: SHD=17.65 for ε=3e-03

Figure 12 - SHD Results for TPDA Algorithm using 20 training datasets containing 20,000

observations of Alarm network. Minimum network error found: SHD=15.65 for ε=3e-03

34

Figure 13 - SHD Results for RAI Algorithm using 20 training datasets containing 20,000

observations of Alarm network. Minimum network error found: SHD=30.9 for ε=2e-03

Figure 14 - SHD Results for MMHC Algorithm using 20 training datasets containing 20,000

observations of Alarm network. Minimum network error found: SHD=7.35 for ε=1e-03

35

Figure 15 - SHD Results for CSPI Algorithm using 20 training datasets containing 20,000

observations of Insurance network. Minimum network error found: SHD=21.5 for εu=2e-04

and εc=1e-03

Figure 16 - SHD Results for PC Algorithm using 20 training datasets containing 20,000

observations of Insurance network. Minimum network error found: SHD=41.75 for ε=3e-03

36

Figure 17 - SHD Results for TPDA Algorithm using 20 training datasets containing 20,000

observations of Insurance network. Minimum network error found: SHD=39.65 for ε=3e-03

Figure 18 - SHD Results for RAI Algorithm using 20 training datasets containing 20,000

observations of Insurance network. Minimum network error found: SHD=34.74 for ε=2e-03

37

Figure 19 – SHD Results for MMHC Algorithm using 20 training datasets containing 20,000

observations of Insurance network. Minimum network error found: SHD=16 for ε=7e-02

Table 12 – Network error (SHD) for 20 samples of 20,000 observations

 Alarm Network Insurance Network

Algorithm threshold result [mean(std)] threshold result [mean(std)]

MMHC 0.0010 5.95 (2.8924) 0.07 16.70 (3.0625)

CSPI 0.02/0.002 10.50 (0.9459) 0.0002/0.001 22.40 (4.2227)

RAI 0.002 30.90 (4.0769) 0.02 35.50 (0.7609)

TPDA 0.003 15.85 (0.9333) 0.003 39.50 (1.8778)

PC 0.003 17.50 (1.1471) 0.003 41.50 (0.7609)

Table 13 - Number of CI test – Alarm and Insurance

 Alarm Network Insurance Network

Algorithm number CI tests [mean(std)] number CI tests [mean (std)]

MMHC 1,690.00 (18.0380) 13,262.00 (916.6056)

CSPI 893.50 (11.4409) 2,391.80 (154.0173)

RAI 1,500.00 (254.4058) 346.05 (7.6400)

38

4.1.2 Barley, Child and HailFinder

 Another round of tests was performed using the training datasets and test datasets given

in the Casual Explorer package. Three of the networks - Barley, Chid and HailFinder – were

tested using the algorithms CSPI, MMHC and RAI, following the same procedure used for

the network Alarm and Insurance. We found the thresholds that gave the best result for

structure correctness using 10 training datasets of 10,000 observations each. Using these

thresholds we found the SHD and number of CI tests for the algorithms CSPI, MMHC and

RAI using 10 other datasets (test sets), also containing 10,000 observations each.

 The results found for average SHD are shown in Table 14, and the number of CI tests

performed in Table 15.

Figure 20 - SHD Results for CSPI Algorithm using 10 training datasets containing 10,000

observations of Barley Network. Minimum network error found: SHD=76.2 for εu=5e-02 and

εc=9e-03

39

Figure 21 - SHD Results for RAI Algorithm using 10 training datasets containing 10,000

observations of Barley Network. Minimum network error found: SHD=73.7 for ε=7e-02

Figure 22 - SHD Results for MMHC Algorithm using 10 training datasets containing 10,000

observations of Barley Network. Minimum network error found: SHD=49.3 for ε=1e-04

40

Figure 23 - SHD Results for CSPI Algorithm using 10 training datasets containing 10,000

observations of Child Network. Minimum network error found: SHD=8.5 for εu=4e-04 and

εc=7e-03

Figure 24 - SHD Results for RAI Algorithm using 10 training datasets containing 10,000

observations of Child Network. Minimum network error found: SHD=20 for ε=6e-02

41

Figure 25 - SHD Results for MMHC Algorithm using 10 training datasets containing 10,000

observations of Barley Network. Minimum network error found: SHD=3.1 for ε=1e-01

Figure 26 - SHD Results for CSPI Algorithm using 10 training datasets containing 10,000

observations of Child Network. Minimum network error found: SHD=69 for εu=8e-01 and

εc=5e-02

42

Figure 27 - SHD Results for RAI Algorithm using 10 training datasets containing 10,000

observations of Child Network. Minimum network error found: SHD=69 for ε=8e-01

Figure 28 - SHD Results for MMHC Algorithm using 10 training datasets containing 10,000

observations of Barley Network. Minimum network error found: SHD=114.1 for ε=4e-03

43

Table 14 - Network error (SHD) for 10 samples of 10,000 observations

 Barley Network Child Network HailFinder Network

Algorithm threshold [mean(std)] threshold [mean(std)] threshold [mean(std)]

MMHC 0.0001 56.3

(7.9310)

0.01 3.8 (1.3166) 0.004 114.10

(1.4491)

CSPI 0.05/0.00

9

76.3

(2.1628)

0.0004/0.007 8.4 (1.4298) 0.8/0.05 69 (0)

RAI 0.07 76.4

(1.4298)

0.8 21.5

(1.7798)

0.8 69 (0)

Table 15 - Number of CI tests - Barley, Child and HailFinder

 Barley Network Child Network HailFinder Network

Algorithm CI tests [mean(std)] CI tests [mean(std)] CI tests [mean(std)]

MMHC 3,633.5 (84.5317) 2,329.80 (56.8952) 23,903.0 (803.2591)

CSPI 2,651.4 (56.4962) 846.80 (31.8427) 1,566.0 (6.7897)

RAI 1,465.5 (9.1928) 288.10 (18.3573) 1,544 (0)

44

4.2 Discussion

 As our results show, the CSPI algorithm had equal or better results for structure

correctness for all the networks tested when compared to the RAI algorithm, and had equal or

lower number of CI tests for all the networks tested when compared to the MMHC algorithm.

A summary of the results is shown in Figures 29 and 30.

Figure 29 - Comparison of structure correctness (SHD) between CSPI and RAI Algorithms

for the 5 networks mentioned in this paper, the dotted line represents the same network error

for both algorithms

45

Figure 30 - Comparison of number of CI tests performed between CSPI and MMHC

Algorithms for the 5 networks mentioned in this paper, the dotted line represents the same

number of CI tests for both algorithms

46

CHAPTER 5

CONCLUSION AND FUTURE WORK

 We have presented a new algorithm for Bayesian network structure learning called

Control of Spurious Pairwise Information (CSPI). The algorithm proposes the reduction of

number of conditional independence tests, consequently reducing the run-time by allowing

an increase in complexity with respect to the number of vertices of the network, without

affecting the accuracy of the structure learnt. The algorithm combines greedy hill-climbing

search to limit the size of condition sets and a mechanism of storing edges responsible for the

removal of other edges that limits the number of CI tests performed.

 Comparing the CSPI algorithm with PC, TPDA, MMHC and RAI algorithms, in tests

performed for this paper, the CSPI algorithm had very satisfactory results especially with

regard to the reduction of number of CI tests performed, consequently reducing the run-time

of the algorithm without compromising the accuracy of the discovery of the networks. Some

of the limitations of the current algorithm are the exclusive use of mutual information as

measure of dependence and the need for discrete data. As future work, we intend to

implement and allow the user the selection of other measures of dependence and the use of

continuous data.

47

REFERENCES

Aliferis, C. F., Tsamardinos, I., Statnikov, A., & Brown, L. E. (2003). Causal explorer: A

causal probabilistic network learning toolkit for biomedical discovery. In International

Conference on Mathematics and Engineering Techniques in Medicine and Biological

Sciences (METMBS 03), 371-376.

Besson, P. et al. (2010). Bayesian networks and information theory for audio-visual

perception modeling. Biological Cybernetics, 103, 213-226.

Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data.

IEEE Trans. on Knowledge and Data Engineering, 8, 195-210.

Cheng, J. et al. (2002). Learning Bayesian networks from data: An information-theory based

approach. Artificial Intelligence, 137, 43-90.

Chickering, D.M. (1996). Learning Bayesian networks is NP-complete. In Fisher,D. & Lenz,

H.-J. (eds). Learning from Data: Artificial Intelligence and Statistics V (pp. 121-130).

Springer-Verlag.

 Chickering, D.M. (2002). Learning equivalence classes of Bayesian-network structures.

Journal of Machine Learning Research, 2, 445-498.

48

Chickering, D.M., Heckerman, D., & Meek, C. (2004). Large-sample learning of Bayesian

networks is NP-hard. Journal of Machine Learning Research, 5, 1287-1330.

Chow, C.K., & Liu, C.N. (1968). Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory, 14, 462-467.

Cooper, G.F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9, 309-347.

Elidan, G., Nachman, I., & Friedman, N. (2007). ”Ideal Parent” structure learning for

continuous variable Bayesian networks. Journal of Machine Learning Research, 8, 1799-

1833.

Cornalba, C., & Giudici, P. (2004). Statistical models for operational risk management.

Physica A, 338, 166-172.

de Oude, P., & Pavlin, G. (2009). Dependence discovery in modular bayesian networks.

Technical report, Informatics Institute, University of Amsterdam, The Netherlands.

Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models.

Science, 303, 799-805.

49

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine

Learning, 29, 131-163.

Friedman, N., Goldszmidt, M., & Wyner, A. (1999). Data analysis with Bayesian networks:

A bootstrap approach. In Proceedings of the Fifteenth Conference on Uncertainty in

Artificial Intelligence (UAI), 206-215.

Friedman, N., Linial, M., Nachman, I., & Peer, D. (2000). Using Bayesian networks to

analyse expression data. Computational Biology, 7, 601-620.

Friedman, N., Nachman, I., & Peer, D. (1999). Learning Bayesian network structure from

massive datasets: The ”Sparse Candidate” algorithm. In Proceedings of the Fifteenth

Conference on Uncertainty in Artificial Intelligence (UAI ’99)’, 196-205.

Strehl, A. & Ghosh, J. (2002). Cluster Ensembles - A knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research, 3, 583-617.

Grossman, D., & Domingos, P. (2004). Learning Bayesian network classifiers by

maximizing conditional likelihood. In Proceedings of the Twenty-first International

Conference on Machine learning, 65, 31-78.

50

Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Technical Report TR-

95-06, Microsoft Research.

Heckerman, D., Geiger, D. & Chickering, D.M. (1995). Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 20, 197-243.

Lam, W. & Bacchus, F. (1994). Learning Bayesian belief networks: An approach based on

the MDL principle. Computational Intelligence, 10, 269-293

Needham, C.J., Bradford, J.R., Bulpitt, A.J., & Westhead, D.R. (2006). Inference in Bayesian

networks. Nature Biotechnology, 24(1), 51-53

Pearl, J. (2000). Causality, models, reasoning, and inference (pp. 45-51). Cambridge

University Press.

Richiardi, J. (2007). Probabilistic models for multi-classifier biometric authentication using

quality measures. Ph.D. thesis, University of Lausanne.

Scutari, M. (2010). Learning Bayesian networks with the bnlearn R Package. Journal of

Statistical Software, 35(3), 1-22

Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical

Journal, 27, 379-423, 623-656

51

Tsamardinos, I., Brown, L.E., & Aliferis, C.F. (2006). The max-min hill-climbing Bayesian

network structure learning algorithm. Machine Learning, 65, 31-78.

Wilczynski, B. & Dojer, N. (2009). BNFinder: exact and efficient method for learning

Bayesian networks. Bioinformatics, 25, 286-287.

Yao, Y.Y. (2003). Information-theoretic measures for knowledge discovery and data mining.

In Entropy Measures, Maximum Entropy Principle and Emerging Applications (pp. 115-

136). Karmeshu (ed.), Springer.

Yehezkel, R., & Lerner, B. (2009). Bayesian network structure learning by recursive

autonomy identification. Journal of Machine Learning Research, 10, 1527-1570.

52

VITA

Pablo de Morais Andrade, received B.S. in Computer engineering from State University of

Campinas, Campinas/SP, Brazil. He is pursuing M.S. in Computer Science at University of

Missouri Kansas City. He is a member of the Upsilon Pi Epsilon honor society. His research

interests include machine learning/computational intelligence, Bayesian networks, and

applications in bioinformatics.

