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ABSTRACT 

 

A Bayesian network is a directed acyclic graphical representation of a set of 

variables. This representation occupies the middle ground between a causal network and a 

simple list of pairwise correlations by including information about dependencies between 

variables. 

There are applications of Bayesian networks in many fields, such as financial risk 

management, bioinformatics and audio-visual perception, to name just a few. However, 

learning the network structure from data requires an exponential number of conditional 

independence tests; several algorithms have been proposed in order to reduce the runtime of 

this procedure. 

We present a new constraint-based algorithm for learning Bayesian network structure 

from data, based on Control of Spurious Pairwise Information (CSPI). We limit the 

computational cost of learning by trading an increase in complexity of the initial steps for a 

substantial reduction in the complexity of conditional pairwise independence testing. We 

employ a logging and rollback strategy to reduce the number of missing edges. 
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We show that the CSPI algorithm outperforms several other algorithms in complexity 

and/or accuracy on benchmark datasets. 
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CHAPTER 1 

INTRODUCTION 

 

        A Bayesian network (BN) is a graphical model that represents the set of conditional 

probabilities associated with a group of variables (Cooper and Herskovits 1992; Heckerman 

1995; Heckerman, Geiger and Chickering 1995). A BN is a Directed Acyclic Graph (DAG) 

where the vertices represent variables and the edges are directed according to the conditional 

probabilities associated with these variables as follows: if a vertex vX represents a variable X, 

and the probabilities of the values assumed by the variable X are conditioned on the values 

assumed by the variables Y and Z represented, respectively, by the vertices vY and vZ, there 

should be edges directed from the vertices vY and vZ towards the vertex vX . A simple example 

of unconditional and conditional probabilities with X, Y and Z binary variables is given in 

Tables 1 and 2. The corresponding BN is shown in Figure 1. 

        As a classifier, BN has a significant advantage over the naive Bayesian Classifier, since 

the latter does not take into consideration variables that are dependent or conditionally 

independent of each variable (Friedman, Geiger and Goldszmidt 1997). The task of learning 

the conditional probability table is simple when the structure of the network is known. For 

discrete variables, it is just a matter of calculating the frequency of each value assumed by a 

variable given the values assumed by its adjacent ancestors in the graph (Grossman and 

Domingos 2004; Needham, Bradford, Bulpitt and Westhead 2006). The problem of learning 
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the structure, though, is NP-complete (Chickering 1996; Chickering, Heckerman and Meek 

2004). 

        Several structure learning algorithms have been proposed. A tree based structure was 

proposed in Chow and Liu (1968). Algorithms to recover a DAG can be divided into two 

main approaches. In the first approach, known as Search and Score, the algorithm performs a 

search (greedy search, mostly hill-climbing) for the network that best suits the data based on 

a given score. Examples of scoring functions are: Minimum Description Length (Lam and 

Bacchus 1994), Conditional Mutual Information (Friedman, Geiger and Goldszmidt 1997), 

Bayesian Information Criterion (Elidan, Nachman and Friedman 2007) and BDe Metric 

(Heckerman, Geiger and Chickering 1995). In the second approach, constraint-based (CB) 

algorithms (Cheng et al. 2002; Yehezkel and Lerner 2009) use conditional independence 

tests in order to reduce the number of edges in the graph, consequently reducing the 

complexity of the problem, and orient the edges based on the results of the CI tests 

performed (see The IC algorithm in Pearl 2000). A hybrid approach (use of scoring function 

and CI tests) is found in Tsamardinos, Brown and Aliferis (2006). Bayesian Networks have 

been applied in many domains: risk management (Cornalba and Giudici 2004), audio-visual 

perception (Besson et al. 2010) and particularly Bioinformatics (Friedman, Linial, Nachman 

and Peer 2000; Needham, Bradford and Bulpitt 2006). A variety of tools to build networks 

are freely available (Scutari 2010; Wilczynski and Dojer 2009); Buntine (1996) offers a 

guide to literature and software related to Bayesian Networks. 

        The CSPI algorithm proposed in this thesis tries to overcome some of the problems 

found in CB algorithms. CB algorithms usually start (assuming there is no previous expert 

knowledge) with a complete or empty network. Consequently, CI tests usually have large 
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condition sets, which commonly give unreliable results (Cheng et al. 2002; Yehezkel and 

Lerner 2009). Alternatively, CB algorithms start with the minimum spanning tree, which 

reduces the initial size of condition sets, but relies on a fallacy for the removal of the edges: 

the assumption that all edges representing stronger relations of dependences are true edges in 

the network. Figure 2 shows a typical example when this assumption fails. The variables X 

and W represented, respectively, by vertices vX and vY are conditionally independent but the 

values assumed by both variables are dependent on the values assumed by variables Y and W 

(represented by the vertices vY and vW). Although conditionally independent, in many cases, 

the correlation or information (Shannon 1948) between the variables X and W is higher than 

one or more of the ones found between X and Z, or Z and W. In order to overcome this 

problem, the CSPI algorithm starts with a procedure costlier in n (number of vertices) than 

the minimum spanning tree algorithm but makes use of a deletion log in order to facilitate the 

rollback. This reduces the number of conditional independence (CI) tests necessary. Figure 3 

shows the initial procedure of CSPI while Table 3 shows the corresponding deletion log. 

Using this procedure, CSPI also starts with CI tests having small condition sets, as in the 

minimum spanning tree, except that for each edge removed on account of being considered 

spurious information, the vertices responsible for this removal are stored, allowing the 

algorithm to limit the number of CI tests. The purpose of the CSPI algorithm is to reduce the 

complexity with respect to the number of CI tests (and size of condition sets), which is the 

major factor responsible for the increase in run-time in CB algorithms (Cheng et al. 2002; 

Yehezkel and Lerner 2009), by trading an increase in the complexity with respect to the 

number of edges during the initial step of the algorithm. Other steps of the algorithm include 

corrections by shrinking the network and re-testing the edges removed from the network. 
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        The independence and conditional independence tests were performed using a 

normalized version of the measures mutual information and conditional mutual information - 

normalized with respect to the entropy of the variables being tested. In empirical tests using 

benchmark datasets, these normalized versions had better results than the regular versions. 

Many normalized conditional mutual information versions have been proposed (Oude and 

Pavlin 2009; Strehl and Ghosh 2002; Richiardi 2007; Besson al. 2010), a list of the proposed 

measures can be found in Yao (2003).  

Table 1 - Unconditional probability table of variables Y and Z 

Y p(Y) Z P(Z) 

0 0.4 0 0.3 

1 0.6 1 0.7 

 

Table 2 - Conditional probability table of variable X given variables Y and Z 

X p(X|Y=0,Z=0) p(X|Y=0,Z=1) p(X|Y=1,Z=0) p(X|Y=1,Z=1) 

0 0.1 0.8 0.7 0.4 

1 0.9 0.2 0.3 0.6 

 

 

Figure 1 - Bayesian Network representing dependences between variables X, Y and Z 

corresponding to the probabilities in Tables 1 and 2 
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Figure 2 - BN representing high but spurious mutual information: (a) True Network, (b) Edge 

width representing measure of information (vX-vW higher than vZ-vX and vZ-vW) 

 

Figure 3 - BN representing temporarily removed edges: (a) True Network, (b) Dotted edges 

represent the temporarily removed edges, note that vZ-vW is removed by {vZ-vX; vX-vW}, but 

vW-vX is also removed by {vW-vY; vY-vX}; and vX-vP is removed by {vX-vW;vW-vP} a and 

{vX-vY;vY-vP} 
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Table 3 – Deletion log maintains a record of the sets of the vertices whose associated edges 

were responsible for every edge deleted from a fully connected network. This facilitates 

rollback from incorrect deletions (e.g., edge vZ-vW) in subsequent steps of the algorithm 

 vY vZ vW vX vP 

vY --- --- --- --- vW 

vZ --- --- vX & vP --- --- 

vW --- vX & vP --- vY --- 

vX --- --- vY --- vY & vW & vZ 

vP vW --- --- vY & vW & vZ --- 
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CHAPTER 2 

BACKGROUND 

 

2.1 Bayesian Network 

        For a given set of discrete random variables X = {X1, ..., Xn}, a BN graphically 

represents the conditional probabilities associated with these variables. The graph is a DAG 

with parent variables pai of Xi, such that the variable Xi is independent of its non-descendants 

given its parents (Friedman, Linial, Nachman and Peer 2000). Therefore, the probability of a 

network structure is given by (Cooper and Herskovits 1992; Friedman, Geiger and 

Goldszmidt 1997; Yehezkel and Lerner 2009; Heckerman 1995): 

 

Equation 1 - Probability of a Bayesian Network Structure 

        In order to find the set of parents of each variable Xi, we search for the set Sij for each 

pair of variables Xi and Xj such that, conditioned on this set Sij, the variables Xi and Xj are 

independent (Tsamardinos, Brown & Aliferis, 2006): 

 

Equation 2  – Conditioned on the set Sij, the variables Xi and Xj are independent 

We use as measures of independence a normalized version of the measure 

unconditional mutual information, and a threshold εu to define independence (results lower 
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than this threshold εu are considered unconditional independence). Equation 3 shows the 

measure of mutual information while Equation 7 shows the normalized version used. 

 

 

Equation 3  – Mutual Information 

Equation 3 can also be written as: 

 

Equation 4 – Mutual Information rewritten 

Where H(X) is the entropy of variable X and is defined as (Shannon, 1948): 

 

Equation 5 – Entropy of variable Xi 

Joint entropy is defined as: 

 

Equation 6 – Joint entropy of variables Xi and Xj 

We finally define normalized mutual information, based on the fact that the mutual 

information between two variables is always lower than the minimum entropy of these two 

variables (Yao 2003):  

 

Equation 7 – Normalized version of the measure mutual information 



9 

 

 

For the conditional mutual information tests, we define a second threshold εc (CI tests 

resulting below this threshold εc are considered to be indicative of conditional independence). 

Conditional mutual information (Cheng et al. 2002) is given by: 

 

Equation 8  – Conditional mutual information 

The equation for conditional mutual information can be rewritten as: 

 

Equation 9  – Conditional mutual information rewritten 

A normalized version: 

 

Equation 10 – Normalized version of conditional mutual information 

Empirical tests using benchmark datasets showed that the normalized version of 

mutual information Equation 7 had less false negatives (I(Xi,Xj) ≤ εu) when Xi and Xj are 

actually dependent) and false positives (I(Xi,Xj) > εu, when Xi and Xj are actually 

independent) than the regular version of mutual information in Equation 4. The results can be 

explained based on the fact that variables with low entropy will automatically have lower 

values of mutual information; setting a constant threshold εu, is necessary to correct the 

significance of the results. The same applies to conditional mutual information in Equation 9. 

The significance of the results will be influenced by the entropy of variables Xi, Xj, Zk, 

particularly when the number of variables in the set Z becomes too large. We consider the 
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normalization step necessary especially when using a greedy search for the set Z. Without 

normalization, the addition of several variables to the condition set might yield low scores for 

the CI tests that are suggestive of independence (lower than a threshold εc), even when that is 

not true. 

 

2.2 Benchmark Networks 

        We compared the CSPI algorithm with the recently proposed algorithms Max-Min Hill-

Climbing (MMHC), Recursive Autonomy Identification (RAI) and Three-Phase Dependence 

Analysis (TPDA) using the benchmark networks:  Alarm, Insurance, Barley, Child and 

HailFinder. 

        A summary of these variables (number of nodes and number of edges) is given in Table 

4. Figure 4 shows the Alarm Network and Figure 5, the Insurance Network. The task given is 

to recover these networks from a dataset. 

Table 4 - Number of vertices and edges of Benchmark networks 

Network Number of Vertices Number of Edges 

Alarm 37 46 

Insurance 27 52 

Barley 48 84 

Child 20 25 

HailFinder 56 66 
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Figure 4 - Alarm Network 
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Figure 5 - The Insurance Network 
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2.3 Measure of Independence 

        As a measure of independence, we have used a normalized version of the measure 

Mutual Information and as measure of conditional independence a normalized version of  

Conditional Mutual Information, given respectively in Equations 3 and 10. 

        As we address in the section Future Work, we expect to explore other measures of 

independence and conditional independence, but for the first version of the software 

available, only the measures cited above are available. 

 

2.4 Accuracy Measure 

        For a measure of accuracy, we have used structural Hamming distance, which is the sum 

of the following structural errors: 

- Missing edge (ME) 

- Edge missing direction (MD) 

- Inverted edge (IE) 

- Extra edge (EE) 

Therefore, the structural Hamming distance is given by: 

 

Equation 11 – Structural Hamming distance 
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CHAPTER 3 

THE CSPI ALGORITHM 

 

3.1 Definitions 

Mutual information matrix: n-by-n matrix with values of pairwise unconditional mutual 

information (n number of variables). 

Clean mutual information matrix: n-by-n matrix with values of pairwise unconditional 

mutual information with the edges considered spurious set to 0. 

Undefined edge: All the edges in the network are initially marked as undefined. An edge that 

is temporarily removed is also considered undefined (but it is assigned a value of 0 in the 

clean mutual information matrix). 

Undirected edge: An undefined edge that cannot be removed will become an undirected 

edge. 

True Negative (TN) and False Negative (FN): Edges considered spurious are temporarily 

removed from the graph. After a series of conditional independence tests, those not 

permanently removed will be considered False Negatives (not spurious edges). The edges 

permanently removed will be considered True Negatives (spurious edges). 
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Deletion log: Edges temporarily removed for appearing redundant are stored together with a 

list of vertices that are responsible for the deletion (i.e., vertex opposite the deleted edge 

when comparing each group of three edges). 

setS: For each edge, there is a set of vertices S such that, when conditioned on this set, the 

vertices connected by the edge have the minimum value computed by the  CI test. If the 

vertices are conditionally independent, the CI test value for these vertices conditioned on the 

set S should have a value lower than the threshold εc. Each vertex is classified as one of the 

following: included in this setS (value 1), not included (value 0) or considered a potential 

addition to the set (value 2, or ToBeAdded). 

edgesetS: A bit map where a bit is set to one if an edge has a set S assigned to it (the matrix 

is initialized with zeros). 

3.2 Description 

        The algorithm starts by calculating values for pairwise unconditional mutual 

information, with the result stored in a matrix called the mutual information matrix 

(mutualinfo in Algorithm 1). For each pair of vertices with result greater than a threshold εu, 

an undefined edge is assigned connecting the pair. 

        The function RemoveSpuriousMI (Algorithm 2) is called next. It checks each triple of 

vertices, marks the edge with the lowest value of mutual information for removal, storing the 

vertices opposite this edge in a deletion log. The edges removed have their records in the 

matrix mutualInfoClean set to zero (Algorithm 2 line 9). The network itself, though, is not 

updated since this is not a permanent removal – the edge is still considered undefined. 
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        After removing what is considered spurious mutual information, the vertices are sorted 

according to the number of undefined edges connected to them and the function 

PermanentlyRemoveSpurInfo is called. This function performs CI tests for each vertex, trying 

to remove all the edges connected to this vertex that are considered spurious information, by 

using as condition set the remaining vertices connected to this vertex (its neighbors). The 

edges not permanently removed are considered false negatives and added back to the 

network one at a time while the edges permanently removed (true negatives) are no longer 

undefined but will have their records in the network matrix set to NOEDGE. For each vertex, 

the number of false negatives are calculated and stored in an array called edges2add (see 

Algorithm 1, line 15). 

        The function ReconsiderFalseNegatives (Algorithm 3) is then called and follows the 

order given by the sorted array of the number of edges to be added (array edges2add). This 

function checks which edges were considered spurious information, but not permanently 

removed (edge is still undefined and mutualinfoClean matrix is 0), and calls the function 

ReconsiderEdgesFN  for each of these edges. 

        ReconsiderEdgesFN starts with a loop searching for the vertices responsible for the 

removal of the edge considered false negative (stored in the deletion log). For each of these 

vertices, it checks if any of the edges previously compared to this edge (in Algorithm 2) was  

also temporarily removed, in which case there is a recursive call for this edge (lines 6 and 11 

of Algorithm 3). The algorithm then tries to remove these two other edges, first checking if 

there exists a set S already assigned to these edges, in which case the function 

RemoveEdgeUsingSetS is called (Algorithm 5). If there is no set S assigned to this edge, a 

similar function is called (RemoveEdgeUsingNeigh), which uses the neighbors of both 
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vertices as condition set in a heuristic hill-climbing search (adding the neighbors one at a 

time, followed by a removal of the neighbors again, one at a time, searching for the lowest of 

value of CI test). At last, still within this function, the algorithm tries to remove the edge 

itself, considered false negative. If this edge cannot be removed, it is added back to the 

network and each of the two vertices connected by this edge is considered for addition to 

every set S of the edge’s neighbors (see lines 30-41 of Algorithm 3). 

        The function RemoveEdgeUsingSetS (Algorithm 5) tries to remove a given edge using 

as condition set the set S assigned to this edge (the condition set that has the lowest result for 

a CI test so far) and a set of vertices that are considered as potential additions to this set. The 

algorithm then follows a hill-climbing search for the set S such that, conditioned on this set, 

the vertices connected by the edge being removed have the minimum value for a CI test. 

        The variable currentCMI keeps the value of the current conditional mutual information 

while lowestCMI is the value of the lowest one found so far. The composition of the set S is 

progressively updated by addition and removal of vertices, always searching for the lowest 

value of conditional mutual information. Finally, if the lowest value found is zero (when the 

result is lower than a threshold εC, i.e., the function CITest returns zero), the edge should be 

removed, and the algorithm removes the vertices connected by this edge from any set S 

where these vertices could have been added by mistake. This procedure is important when all 

the edges permanently removed are re-tested given their set S (Algorithm 1, line 26). 

        After the return of the function ReconsiderFalseNegatives, all the undefined edges are 

set to undirected and the functions DirectVStructures and DirectRemainingEdges are called, 

following The IC Algorithm given in Pearl (2000). The assignment of edge direction can fail 

when the network has an extra edge (edge that should have been removed), or missing edges 
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are wrongly removed – not uncommon when given a large condition set as set S. Therefore 

the algorithm first deletes ”fake” parents by calling the function ShrinkNetwork, then re-tests 

all the edges removed given its set S by calling the function RetestRemovedEdges.  

        In ShrinkNetwork, the algorithm removes redundant edges. It performs a CI test between 

every vertex and each of its parents given the remaining parents. If the result is zero, the edge 

is removed, and its corresponding set S updated accordantly. 

        In RetestRemovedEdges, a CI test is performed between the vertices connected by each 

edge removed (network matrix has a value of NOEDGE), given the current set S assigned to 

this edge. If the CI test does not result in zero, the edge is added to the network as undirected. 

        The algorithm ends then with the calls to the functions DirectVStructures and 

DirectRemainingEdges in order to direct any undirected edge. 

Table 5 - Algorithm describes the main function 

Algorithm 1 Main Function 

1: procedure CSPIBNLEARN(dataset, nvariables) 

2:      mutualInfo «- {0.0} 

3:      network «- {0} 

4:      nundefedges «- {0} 

5:      [mutualInfo; network] «- FindUnconditionalMI(dataset) 

6:      [mutualInfoClean; removedby]  «- RemoveSpuriousMI(mutualInfo) 

7:      sortednundefedges «- Sort(nundefedges) 

8:      [network] «- PermanentlyRemoveSpurInfo(network, mutualInfo, mutualInfoClean) 

9:      edge2add «- {0} 

10:    for v «- 1, nvariables do 

11:       edges2add[v] «- 0 

12:       for i «- v+1; nvariables do 

13:          if network[v][i] == undefined then 

14:              if mutualInfoClean[v][i] == 0 then // edge is a false negative 
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Table 5 (continued) 

15:                 edges2add[v]++ 

16:              end if 

17:          end if 

18:       end for 

19:    end for 

20:    edges2add  «- Sort(edges2add) 

21:    setS «-{0} 

22:    [network; setS]  «- ReconsiderFalseNegatives(network, removedby, mutualInfoClean) 

23:    for v1 «- 1, nvariables do 

24:       for v2 «- v+1, nvariables do 

25:          if network[v1][v2] == undefined then 

26:               network[v1][v2] undirected 

27:          end if 

28:       end for 

29:    end for 

30:    [network] «- DirectVStructures(network, setS) 

31:    [network] «- DirectRemainingEdges(network, setS) 

32:    [network] «- ShrinkNetwork(network) 

33:    [network] «- RetestRemovedEdges(network, setS) 

34:    [network] «- DirectVStructures(network, setS) 

35:    [network] «- DirectRemainingEdges(network, setS) 

36: end procedure 
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Table 6 - Algorithm describes function to remove the spurious mutual information 

Algorithm 2 Remove Spurious Mutual Information 

1: procedure REMOVESPURIOUSMI(mutualInfo) 

2:    markforremoval «- {0} 

3:    mutualInfoClean «- mutualInfo 

4:    for v1 «- 1,nvariables do 

5:       for v2 «- v1+1,nvariables do 

6:           for v3 «- 1,nvariables do 

7:                  [vx,vy] «- min{mutualinfo[v1][v2], mutualinfo[v1][v3], mutualinfo[v2][v3]} 

8:                  markforremoval[vx][vy] «- 1 

9:                  mutualInfoClean[vx][vy] «- 0 

10:                vz  «- {v1,v2,v3} – {vx, vy} 

11:                removedby[vx][vy][vz] «- 1 

12:         end for 

13:      end for 

14:   end for 

15:   return [mutualinfoClean, removedby] 

16: end procedure 
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Table 7- Algorithm describes function to reconsider all the false negative edges 

Algorithm 3 Reconsider False Negatives 

1:    procedure RECONSIDERFALSENEGATIVES(network, removedby, mutualInfoClean) 

2:        for v1 «- 1,nvariables do 

3:           for v2 «- v1+1, nvariables do 

4:                if mutualInfoClean[v1][v2] == 0 then 

5:                       if network[v1][v2] == undefined then 

6:                            ReconsiderEdgeFN(network, removedby, mutualInfoClean, v1, v2) 

7:                       end if 

8:                end if 

9:           end for 

10:      end for 

11:      return [mutualinfoClean, removedby] 

12: end procedure 

 

Table 8 - Algorithm describes function to reconsider a false negative edge 

Algorithm 4 Reconsider Edge False Negative 

1:    procedure RECONSIDEREDGEFN(network; removedby;mutualIn f oClean;v1;v2) 

2:      for v 1,nvariables do 

3:         if removedby[v1][v2][v] then // vertex v is responsible for removal of v1-v2 

4:            if mutualInfoClean[v1][v] == 0 then 

5:               if network[v1][v] == undefined then // edge v1-v is also a FN 

6:                     ReconsiderEdgeFN(network; removedby;mutualInfoClean,v1,v) 

7:               end if 

8:            end if 

9:            if mutualInfoClean[v][v2] == 0 then 

10:              if network[v][v2] == undefined then // edge v-v2 is also a FN 

11:                 ReconsiderEdgeFN(network, removedby, mutualInfoClean, v, v2) 

12:              end if 
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Table 8 (continued) 

13:          end if  

14:          if edgesetS[v1][v] then // There’s a set S assigned to edge v1-v 

15:             setS[v1][v] «- setS[v1][v]+v2 // Add v2 to the set S of v1-v 

16:      remv1v «- RemoveEdgeUsingSetS(network, removedby, mutualInfoClean,v1,v, setS ) 

17:          else 

18:             remv1v «- RemoveEdgeUsingNeigh(network; removedby,mutualInfoClean,v1,v) 

19:             edgesetS[v1][v] «- 1 // A set S is assigned to edge v1-v 

20:          end if 

21:          if edgesetS[v][v2] then // There’s a set S assigned to edge v-v2 

22:             setS[v][v2] «- setS[v][v2]+v1 // Add v1 to the set S of v-v2 

23:        remvv2 «- RemoveEdgeUsingSetS(network; removedby;mutualInfoClean,v,v2, setS) 

24:          else 

25:             remvv2 «- RemoveEdgeUsingNeigh(network; removedby;mutualInfoClean;v;v2) 

26:             edgesetS[v][v2] «- 1 // A set S is assigned to edge v-v2 

27:          end if 

28:          remv1v2 «- RemoveEdgeUsingNeigh(network; removedby;mutualInfoClean;v1;v2) 

29:       end if 

30:       if !remv1v2 then // If edge v1-v2 cannot be removed, ... 

31:          for i «- 1,nvariables do 

32:              if network[v1][i]! = NOEDGE && edgeset[v1][i] then 

33:                        / / ... and one of v1’s neighbours has a set S assigned to it ... 

34:                 setS[v1][i][v2] = TOADD // ... v2 should be considered to be added to this set. 

35:              end if 

36:              if network[v2][i]! = NOEDGE && edgeset[v2][i] then 

37:                        //. .. and one of v2’s neighbours has a set S assigned to it ... 

38:                 setS[v2][i][v1] = TOADD // .. v1 should be considered to be added to this set 

39:              end if 

40:          end for 

41:       end if 

42:    end for 
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Table 9 - Algorithm describes function to remove an edge using the set S 

Algorithm 5 Remove edge using set S 

1:  procedure REMOVEEDGEUSINGSETS(network, removedby, mutualInfoClean, v1, v2,  

setS) 

2:     v1v2setS «- {0} 

3:     v1v2addTosetS «- {0} 

4:     for v «- 1,nvariables do 

5:         if setS[v1][v2][v] == 1 then 

6:            v1v2setS «- 1 

7:         else if setS[v1][v2][v]==TOADD then 

8:            v1v2addTosetS «- 1 

9:         end if 

10:   end for 

11:   currentCMI «- 0 

12:   setSchanged «- 0 

13:   lowestCMI «- CITest(v1,v2,v1v2setS) 

14:   for all v in v1v2addToset do 

15:        Add v to v1v2setS 

16:        currentCMI «- CITest(v1;v2;v1v2setS) 

17:        if currentCMI > lowestCMI then 

18:           Remove v from v1v2setS 

19:        else 

20:           lowestCMI  «- currentCMI 

21:          setSchanged «- 1 

22:        end if 

23:   end for 

24:   if setSchanged then 

25:     for all v in v1v2setS do 

26:         Remove v from v1v2setS 
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Table 9 (continued) 

27:         currentCMI «- CITest(v1;v2;v1v2setS) 

28:         if currentCMI > lowestCMI then 

29:            Add v to v1v2setS 

30:         else 

31:            lowestCMI  «- currentCMI 

32:         end if 

33:     end for 

34:   end if 

35:   if lowestCMI == 0 then 

36:      network[v1][v2] = NOEDGE 

37:          // Correct set S for possible mistakes, when edge v1-v2 is removed 

38:      for v «- 1,nvariables do 

39:         if setS[v1][v][v2] then 

40:            if setS[v1][v] == NOEDGE && setS[v2][v] == NOEDGE then 

41:                 setS[v1][v][v2] «- 0 

42:            end if 

43:         end if 

44:         if setS[v2][v][v1] then 

45:             if setS[v1][v] == NOEDGE && setS[v2][v] == NOEDGE then 

46:                  setS[v2][v][v1] «- 0 

47:             end if 

48:         end if 

49:      end for 

50:   end if 

51:   return (lowestCMI == 0) 

52: end procedure 
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3.3 Time complexity of algorithm 

Bayesian Network structure learning algorithms typically have their performance measured 

by the number of conditional independence tests executed. The CSPI algorithm starts with a 

procedure comparing each three vertices of the graph (O(n
3
)). If all three are connected, the 

edge representing the weakest dependence (lowest value of mutual information or 

correlation) is temporarily removed from the graph, assuming that this edge represents 

spurious information. For each edge removed during this procedure, the third vertex 

(opposite this edge) is stored in a deletion log as responsible for the removal of this edge. 

Using this procedure, CSPI starts with CI tests having small condition sets, allowing the 

algorithm to limit the number of CI tests by using the following rationale: for each three 

vertices connected by three edges, at most one of the edges represents spurious information. 

This way, when adding back an edge previously considered spurious information, the 

algorithm applies CI tests, trying to remove the edges responsible for its removal. Since the 

number of comparisons (and removals) has complexity O(n
3
), the complexity in N (number 

of CI tests) would be O(N
3
), but in fact the algorithm adds and removes the vertices from the 

condition set S one at a time, searching for the set S that gives the lowest result for a CI test. 

The final complexity is then of the order O(N
4
). Therefore in the worst case, the CSPI 

algorithm performs O(N
4
) CI tests. Tests performed on benchmark dataset for this paper 

show that the heuristic search used keeps the number of CI tests considerably lower than that. 

CSPI avoids this ways an exponential number of CI tests, which would be necessary to test 

all the possible sets for each pair of variables (Chickering 1996; Chickering, Heckerman and 

Meek 2004). And CSPI is guaranteed to work if the CI results are always correct (See section 

3.4 for details). 
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3.4 Proof of correctness 

If two variables A and B are conditionally independent, there is a set SAB such that, 

conditioned on SAB the CI test I(A;B| SAB) is equal to zero (or lower than a threshold ε). 

Assuming the independence tests will be correct, we have to prove that the test I(A;B| SAB) 

will be performed by the algorithm – removing the edge A-B. 

If a variable X belongs to SAB, X is a parent of A or B (or both) and is unconditionally 

dependent on both A and B. As shown in Figure 7, it is possible that the variables X and Y 

belong to SAB, but the variables Z and W certainly do not since they are independent of A and 

B. 

Therefore, during the first step of CSPI algorithm, edges A-B will be temporarily removed by 

a true edge that belongs to SAB, or a true edge that belongs to SAB will be temporarily removed 

by A-B as in Figure 8; the deletion log will keep this information as in Table 5. Assuming 

that adding X and Y to a set S will not increase the value of I(A;B|S), and no true edge will be 

removed by any CI test, all the edges connecting A and B to a parent in SAB will eventually be 

added back to the network, and the test I(A;B|SAB) will be performed. 

A mistake could occur in a situation similar to the one described in Figure 9 and Table 6, 

where the edge X-B is temporarily removed by the edge X-A, which is also temporarily 

removed. In this case if the algorithm tried to removed X-B first, it could fail to perform the 

CI test I(A; B|SAB). But as described in Section 3.3, CSPI will first make a recursive call to 

take care of the edge X-A as described in Figure 10. 
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Figure 6 - Network representing conditional independence between A and B: variables X and 

Y can belong to SAB, Z and W cannot because they are independent of A or B 

 

Figure 7 - Edge representing spurious information A-B: Or A-B is removed by a true edge (a), 

or it is responsible for the removal of a true edge (b), the corresponding deletion log is shown 

in Table 10 
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Table 10- The deletion log represented in Figure 8, spurious edge A-B is removed by a true 

edge or is responsible for the removal of one 

 A B X Y 

A --- X --- --- 

B X --- --- A 

X --- --- --- --- 

Y --- A --- --- 

 

 

 

Figure 8 - A mistake could be made if the algorithm first removes edge X-B (I(X;B|Y)< ε), in 

this case I(A;B|X;Y) could never be performed, the corresponding deletion log is shown in 

Table 11 

Table 11 - Deletion log representing mistake that could be made, represented in Figure 9 

 A B X Y W 

A --- --- W --- --- 

B --- --- A --- --- 

X W A --- --- --- 

Y --- --- --- --- --- 

W --- --- --- --- --- 
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Figure 9 - When algorithm tries removing edge X-A first, it will not be able to do it (since it 

is a true edge) and X-A will be added back to the network before the algorithm tries to 

remove X-B, and I(A;B|X;Y) will be performed 
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CHAPTER 4 

 

RESULTS AND DICUSSION 

4.1 Results 

        We compared the CSPI algorithm with other cutting-edge algorithms with respect to 

structure correctness and number of statistical tests (which impacts the run-time of the 

algorithm). For structure correctness, we used the measure structural Hamming distance 

(SHD) – sum of the numbers of missing edges, edges missing direction, inverted edges and 

extra edges. We also compared the number of conditional independence (CI) tests performed 

by CSPI with the algorithms Max-Min Hill climbing (Tsamardinos, Brown and Aliferis 

2006) and Recursive Autonomy Identification (Yehezkel, and Lerner 2009). 

        In order to perform the tests for the Parent Candidate (PC) algorithm, Three Phase 

Dependency Analysis (Cheng et al. 2002) and MMHC, we used the Causal Explorer Package 

(Aliferis, Tsamardinos, Statnikov and Brown 2003); for the RAI algorithm, we used the code 

provided by its authors. 

 

4.1.1 Alarm and Insurance Networks 

        We first performed tests for a broad range of conditional independence thresholds using 

20 samples of training sets (each containing 20,000 observations) from the benchmark 

networks Alarm Network and Insurance Network. We then selected the threshold that gave 

the best results (lowest SHD), and using this threshold we performed tests with 20 other 

samples (test samples), each containing 20,000 observations. We report the results of 
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structure correctness SHD and number of CI tests for these test datasets. For the tests 

performed with the CSPI algorithm, we used two different thresholds for unconditional 

mutual information (εu) and conditional mutual information (εc). The reason for the adoption 

of different thresholds is the different normalization methods used in Equation 7 and 

Equation 10, and as we show, the best results were found when εu ≠ εc. 

        Figure 10 shows the average SHD found for the CSPI algorithm for unconditional 

mutual information threshold within the range [4e-04:5e-02] and conditional mutual 

information [1e-03:5e-02] using 20 training sample datasets of the Alarm network. The 

results for the test sets are shown in Table 12 with mean and standard deviation, and Table 13 

shows average and standard deviation of the number of CI tests performed. 

        Figures 11 and 12 shows the results for the training set for algorithms PC and TPDA , 

and Figures 13 and 14, the results for RAI and MMHC. 

        For the samples of the Alarm Network tested, the algorithm Max-Min Hill-Climbing 

had the best results of structure correctness, followed by the CSPI algorithm, and CSPI had 

the lowest number of CI tests (Tables 12 and 13). 

        Figure 15 shows the average SHD found for the CSPI algorithm for unconditional 

mutual information threshold within the range [1e-04:1e-02] and conditional mutual 

information [4e-04:1e-02] using 20 training sample datasets of the Insurance network. 

Figures 16 and 17 shows the results for algorithms TPDA and PC, and Figures 18 and 19 for 

RAI and MMHC.  

For the samples of Insurance Network, MMHC had the lowest network error followed by 

CSPI, but MMHC had a large number of CI tests (Table 13). The lowest number of CI tests 

was found for the RAI algorithm followed by CSPI. 
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Figure 10 - SHD Results for CSPI Algorithm using 20 training datasets containing 20,000 

observations of Alarm network. Minimum network error found: SHD=10.5 for εu=2e-02 and 

εc=2e-03 
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Figure 11 - SHD Results for PC Algorithm using 20 training datasets containing 20,000 

observations of Alarm network. Minimum network error found: SHD=17.65 for ε=3e-03 

 

Figure 12 - SHD Results for TPDA Algorithm using 20 training datasets containing 20,000 

observations of Alarm network. Minimum network error found: SHD=15.65 for ε=3e-03 
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Figure 13 - SHD Results for RAI Algorithm using 20 training datasets containing 20,000 

observations of Alarm network. Minimum network error found: SHD=30.9 for ε=2e-03 

 

Figure 14 - SHD Results for MMHC Algorithm using 20 training datasets containing 20,000 

observations of Alarm network. Minimum network error found: SHD=7.35 for ε=1e-03 
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Figure 15 - SHD Results for CSPI Algorithm using 20 training datasets containing 20,000 

observations of Insurance network. Minimum network error found: SHD=21.5 for εu=2e-04 

and εc=1e-03 

 

Figure 16 - SHD Results for PC Algorithm using 20 training datasets containing 20,000 

observations of Insurance network. Minimum network error found: SHD=41.75 for ε=3e-03 
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Figure 17 - SHD Results for TPDA Algorithm using 20 training datasets containing 20,000 

observations of Insurance network. Minimum network error found: SHD=39.65 for ε=3e-03 

 

 

Figure 18 - SHD Results for RAI Algorithm using 20 training datasets containing 20,000 

observations of Insurance network. Minimum network error found: SHD=34.74 for ε=2e-03 
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Figure 19 – SHD Results for MMHC Algorithm using 20 training datasets containing 20,000 

observations of Insurance network. Minimum network error found: SHD=16 for ε=7e-02 

Table 12 – Network error (SHD) for 20 samples of 20,000 observations 

 Alarm Network Insurance Network 

Algorithm threshold result [mean(std)] threshold result [mean(std)] 

MMHC 0.0010 5.95 (2.8924) 0.07 16.70 (3.0625) 

CSPI 0.02/0.002 10.50 (0.9459) 0.0002/0.001 22.40 (4.2227) 

RAI 0.002 30.90 (4.0769) 0.02 35.50 (0.7609) 

TPDA 0.003 15.85 (0.9333) 0.003 39.50 (1.8778) 

PC 0.003 17.50 (1.1471) 0.003 41.50 (0.7609) 

 

Table 13 - Number of CI test – Alarm and Insurance 

 Alarm Network Insurance Network 

Algorithm number CI tests [mean(std)] number CI tests [mean (std)] 

MMHC 1,690.00   (18.0380) 13,262.00 (916.6056) 

CSPI 893.50   (11.4409)  2,391.80 (154.0173) 

RAI 1,500.00 (254.4058) 346.05     (7.6400) 
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4.1.2 Barley, Child and HailFinder 

        Another round of tests was performed using the training datasets and test datasets given 

in the Casual Explorer package. Three of the networks - Barley, Chid and HailFinder – were 

tested using the algorithms CSPI, MMHC and RAI, following the same procedure used for 

the network Alarm and Insurance. We found the thresholds that gave the best result for 

structure correctness using 10 training datasets of 10,000 observations each. Using these 

thresholds we found the SHD and number of CI tests for the algorithms CSPI, MMHC and 

RAI using 10 other datasets (test sets), also containing 10,000 observations each. 

        The results found for average SHD are shown in Table 14, and the number of CI tests 

performed in Table 15. 

 

 

Figure 20 - SHD Results for CSPI Algorithm using 10 training datasets containing 10,000 

observations of Barley Network. Minimum network error found: SHD=76.2 for εu=5e-02 and 

εc=9e-03 
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Figure 21 - SHD Results for RAI Algorithm using 10 training datasets containing 10,000 

observations of Barley Network. Minimum network error found: SHD=73.7 for ε=7e-02 

 

Figure 22 - SHD Results for MMHC Algorithm using 10 training datasets containing 10,000 

observations of Barley Network. Minimum network error found: SHD=49.3 for ε=1e-04 
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Figure 23 - SHD Results for CSPI Algorithm using 10 training datasets containing 10,000 

observations of Child Network. Minimum network error found: SHD=8.5 for εu=4e-04 and 

εc=7e-03 

 

Figure 24 - SHD Results for RAI Algorithm using 10 training datasets containing 10,000 

observations of Child Network. Minimum network error found: SHD=20 for ε=6e-02 
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Figure 25 - SHD Results for MMHC Algorithm using 10 training datasets containing 10,000 

observations of Barley Network. Minimum network error found: SHD=3.1 for ε=1e-01 

 

Figure 26 - SHD Results for CSPI Algorithm using 10 training datasets containing 10,000 

observations of Child Network. Minimum network error found: SHD=69 for εu=8e-01 and 

εc=5e-02 
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Figure 27 - SHD Results for RAI Algorithm using 10 training datasets containing 10,000 

observations of Child Network. Minimum network error found: SHD=69 for ε=8e-01 

 

Figure 28 - SHD Results for MMHC Algorithm using 10 training datasets containing 10,000 

observations of Barley Network. Minimum network error found: SHD=114.1 for ε=4e-03 
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Table 14 - Network error (SHD) for 10 samples of 10,000 observations 

 Barley Network Child Network HailFinder Network 

Algorithm threshold [mean(std)] threshold [mean(std)] threshold [mean(std)] 

MMHC 0.0001 56.3 

(7.9310) 

0.01 3.8 (1.3166) 0.004 114.10 

(1.4491) 

CSPI 0.05/0.00

9 

76.3 

(2.1628) 

0.0004/0.007 8.4 (1.4298) 0.8/0.05 69 (0) 

RAI 0.07 76.4 

(1.4298) 

0.8 21.5 

(1.7798) 

0.8 69 (0) 

 

Table 15 - Number of CI tests - Barley, Child and HailFinder 

 Barley Network Child Network HailFinder Network 

Algorithm CI tests [mean(std)] CI tests [mean(std)] CI tests [mean(std)] 

MMHC 3,633.5 (84.5317) 2,329.80 (56.8952) 23,903.0 (803.2591) 

CSPI 2,651.4 (56.4962) 846.80 (31.8427) 1,566.0 (6.7897) 

RAI 1,465.5 (9.1928) 288.10 (18.3573) 1,544 (0) 

 



44 

 

4.2 Discussion 

        As our results show, the CSPI algorithm had equal or better results for structure 

correctness for all the networks tested when compared to the RAI algorithm, and had equal or 

lower number of CI tests for all the networks tested when compared to the MMHC algorithm. 

A summary of the results is shown in Figures 29 and 30. 

 

Figure 29 - Comparison of structure correctness (SHD) between CSPI and RAI Algorithms 

for the 5 networks mentioned in this paper, the dotted line represents the same network error 

for both algorithms 
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Figure 30 - Comparison of number of CI tests performed between CSPI and MMHC 

Algorithms for the 5 networks mentioned in this paper, the dotted line represents the same 

number of CI tests for both algorithms 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

        We have presented a new algorithm for Bayesian network structure learning called 

Control of Spurious Pairwise Information (CSPI). The algorithm proposes the reduction of 

number of conditional independence tests, consequently reducing the run-time by allowing 

an increase in complexity with respect to the number of vertices of the network, without 

affecting the accuracy of the structure learnt. The algorithm combines greedy hill-climbing 

search to limit the size of condition sets and a mechanism of storing edges responsible for the 

removal of other edges that limits the number of CI tests performed. 

        Comparing the CSPI algorithm with PC, TPDA, MMHC and RAI algorithms, in tests 

performed for this paper, the CSPI algorithm had very satisfactory results especially with 

regard to the reduction of number of CI tests performed, consequently reducing the run-time 

of the algorithm without compromising the accuracy of the discovery of the networks. Some 

of the limitations of the current algorithm are the exclusive use of mutual information as 

measure of dependence and the need for discrete data. As future work, we intend to 

implement and allow the user the selection of other measures of dependence and the use of 

continuous data. 
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