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1. Introdution. Let ϕ denote the Euler funtion, whih, for an integer

n ≥ 1, is de�ned as usual by
ϕ(n) = #(Z/nZ)× =

∏

pν‖n

pν−1(p − 1).The Carmihael funtion λ is de�ned for eah integer n ≥ 1 as the largestorder of any element in the multipliative group (Z/nZ)×. More expliitly,for any prime power pν , one has
λ(pν) =

{
pν−1(p − 1) if p ≥ 3 or ν ≤ 2,
2ν−2 if p = 2 and ν ≥ 3,and for an arbitrary integer n ≥ 2,

λ(n) = lcm[λ(pν1

1 ), . . . , λ(pνk

k )],where n = pν1

1 · · · pνk

k is the prime fatorization of n. Note that λ(1) = 1.The Euler funtion has long been regarded as one of the most basi of thearithmeti funtions. More reently, partly driven by the rise in importaneof omputational number theory, the Carmihael funtion has drawn an ever-inreasing amount of attention. A large number of results have been obtained,both about the growth rate and about various arithmetial properties of thevalues of these two funtions; see for example [2, 3, 5�7, 10�18, 20, 22, 23℄and the referenes therein.Despite their similarities, the funtions ϕ and λ often exhibit remarkabledi�erenes in their arithmeti behavior. In this paper, we fous on their imagesets, whih we denote by F and L, respetively. Sine ϕ(p) = λ(p) = p − 1for every prime p, the sets F and L have at least π(x) ∼ x/log x ommonelements in the interval [1, x]. Below, we show that F ∩ L ∩ [1, x] is muh2000 Mathematis Subjet Classi�ation: Primary 11N37; Seondary 11N25, 11N64.[207℄



208 W. D. Banks et al.larger than this. To formulate our results in a quantitative form, for a set Aof positive integers and a real number x ≥ 1, we put A(x) = A ∩ [1, x].Theorem 1. The number of integers m ≤ x whih are values of both λand ϕ satis�es the bound
#(L(x) ∩ F(x)) ≥ x

log x
exp((C + o(1))(log log log x)2)for a suitable positive onstant C.The onstant C is de�ned in (5) in Setion 3. In fat, apart from thefator o(1), the bound in Theorem 1 annot be improved sine it representsthe true state of a�airs for the number of distint values #F(x) of ϕ, asshown by Maier and Pomerane [21℄. More reently, the preise order ofmagnitude of #F(x) has been determined by Ford [15℄.In the opposite diretion, we also obtain lower bounds of the form x1+o(1)for the number of positive integers m ≤ x in eah of the sets LF = L \ Fand FL = F \ L.Theorem 2. The number of integers m ≤ x whih are values of λ butnot of ϕ satis�es the bound

#LF (x) ≥ x

log x
exp((C + o(1))(log log log x)2)where C is as before.Theorem 3. The number of integers m ≤ x whih are values of ϕ butnot of λ satis�es the bound

#FL(x) ≫ x

(log x)3/2
.We remark that Theorem 1 implies, in partiular, the lower bound

#L(x) ≥ x

log x
exp((C + o(1))(log log log x)2),and even this seems to be new. It would be interesting to see whether thetehniques of [15℄ an be adapted to obtain a more preise statement onthe growth of #L(x) as x → ∞. However, the above theorems suggest thatpossibly this bound for #L(x) is still far from the truth and L may be adenser set than F .For both funtions ϕ and λ, we are also interested in the set of values in

F and L, respetively, whih our one but never again. If Aϕ(m) denotesthe number of solutions n to the equation ϕ(n) = m, we de�ne
Bϕ = {m ≥ 1 : Aϕ(m) = 1}, Cϕ = {n ≥ 1 : Aϕ(ϕ(n)) = 1}.Similarly, we de�ne
Bλ = {m ≥ 1 : Aλ(m) = 1}, Cλ = {n ≥ 1 : Aλ(λ(n)) = 1},



Euler and Carmihael funtions 209where Aλ(m) denotes the number of solutions n to the equation λ(n) = m.The Carmihael onjeture is the assertion that Bϕ = ∅; this is learlyequivalent to Cϕ = ∅. There have reently been several very strong results inthe diretion of this onjeture given by Ford in [15, 16℄. In partiular, it hasbeen shown in [15℄ that if Bϕ 6= ∅, then neessarily
lim inf
x→∞

#Bϕ(x)

#F(x)
> 0.(1)Here, we study the natural analogue of the Carmihael onjeture for theCarmihael funtion, namely the assertion that Bλ = Cλ = ∅, whih we alsobelieve to be true.The sets Cϕ and Cλ, if nonempty, provide ounterexamples to the aboveonjetures. Below, we show that #Cλ(x) = o(x), that is, that the set Cλhas asymptoti density zero. This follows from a lower bound on the number

ℓ(n) = Aλ(λ(n)) of solutions m to the equation λ(m) = λ(n), whih holdsfor almost all positive integers n.Theorem 4. For su�iently large x > 0:(i) the bound
ℓ(n) ≥ exp((log log x)10/3)holds for all positive integers n ≤ x exept O(x/log log x) of them;(ii) the following bound holds:

#Cλ(x) ≤ x exp(−(log log x)0.77).We remark that, in view of (1), a similar (but stronger) estimate for
#Cϕ(x), namely

#Cϕ(x) ≤ x exp(− log log x + o((log log log x)2)),(2)would immediately settle the Carmihael onjeture in the a�rmative. Atpresent, we do not have any nontrivial upper bounds on #Cϕ(x), and thebound (2) appears to be far out of reah; nevertheless, we an obtain a ratherstrong upper bound on the number of primitive elements in Cϕ(x). We saythat n ∈ Cϕ is a primitive ounterexample to the Carmihael onjeture if
d 6∈ Cϕ for every divisor d |n, d < n. We denote by C∗

ϕ the set of all primitiveounterexamples, and we show that this is a very thin set.Theorem 5. The following bound holds:
#C∗

ϕ(x) ≤ x2/3+o(1).The same bound holds for the analogously de�ned quantity #B∗
ϕ(x); seethe remarks in Setion 8.We an prove a muh stronger bound for the quantity #C∗

λ(x), whihounts the number of primitive ounterexamples to the analogue of theCarmihael onjeture for λ.



210 W. D. Banks et al.Theorem 6. A primitive ounterexample to the Carmihael onjeturefor λ, if it exists, is unique. In other words,
#C∗

λ(x) ≤ 1.Thus, all members of Cλ (if any) are multiples of the smallest one. Alongthe way to the proof we develop some other properties of Cλ and C∗
λ. Inpartiular, the smallest element n of Cλ must neessarily be powerful , thatis, p2 |n for every prime p dividing n.Throughout the paper, the implied onstants in symbols �O� and �≪�are absolute unless spei�ed otherwise (we reall that U ≪ V and U = O(V )are both equivalent to the inequality |U | ≤ cV with some onstant c > 0).We use c, with or without a subsript, to denote an absolute onstant(and these may hange meaning from one setion to the next).The letters p and q, with subsripts or without, always denote primenumbers, as oasionally do l and r, where indiated. We denote by (a, b)and by [a, b], respetively, the greatest ommon divisor and least ommonmultiple of the integers a and b; we use the same notation for more than twointegers.We use lnx to denote the natural logarithm of x, however this notationis used only a few times. Typially, it is more onvenient for us to work withthe funtion log x = max{lnx, 1} sine log x ≥ 1 for all x > 0. For an integer

l > 1, we denote by logl x the lth iterate of log x.Aknowledgements. We thank the referee for the suggestion of a mod-i�ation of our original argument in Theorem 3 whih led us to sharpen theexponent of log x from 2 to 3/2. Most of this paper was written during avery enjoyable visit by the �rst four authors to Maquarie University; theseauthors wish to express their thanks to that institution for the hospital-ity and support. Researh of W. B. was also supported in part by NSFgrant DMS-0070628, that of J. F. by NSERC grant A5123 and a KillamResearh Fellowship, that of F. L. by grants SEP-CONACYT 37259-E and37260-E, that of F. P. by grant COFIN2002, and that of I. S. by ARC grantDP0211459.2. Some preliminary results. In Setion 3 we give the proof of The-orems 1 and 2. Beause these are somewhat tehnial, we provide in thissetion some weaker bounds whih are nevertheless nontrivial and whoseproofs, while quite a bit simpler, provide a guide to the argument. Moreover,due to the simpliity of the arguments one an impose various arithmetionditions on the integers under onsideration. For example, although wehave not done this here, one an obtain similar results for short intervals orarithmeti progressions (or both).



Euler and Carmihael funtions 211Theorem 7. We have the bounds
#(L(x) ∩ F(x)) ≫ x log2 x

log x
, #LF (x) ≫ x log2 x

log x
.Consider the set P2(x) of integers n = q0q1 ≤ x suh that q0 ≡ q1 ≡ 3

(mod4) and (q0 − 1, q1 − 1) = 2. Then
λ(n) =

(q0 − 1)(q1 − 1)

2
≡ 2 (mod4)for every n ∈ P2(x). Let n be one suh integer; then obviously

λ(16n) = [4, λ(n)] = 2λ(n) = (q0 − 1)(q1 − 1) = ϕ(n).On the other hand, suppose that we have λ(n) ∈ F for n ∈ P2(x). If m isany integer for whih λ(n) = ϕ(m), then m must be a prime power or twiea prime power, and sine ϕ(m) ≤ x it follows that m ≤ 3x. Hene, there areat most O(x/log x) distint numbers of the form λ(n), with n ∈ P2(x), lyingin F .Hene, to establish Theorem 7 it su�es to show that the value set
L2(x) = {λ(n) : n ∈ P2(x)} ⊂ L(x)has su�iently many elements, namely that

#L2(x) ≫ x

log x
log2 x.(3) We start by providing a lower bound for #P2(x). In fat, we give suh abound for a slightly more general subset.Lemma 8. Let Q ≤ x1/4 and denote by NQ(x) the number of integers

n = q0q1 ∈ P2(x) with q1 ≤ Q. Then
NQ(x) ≫ x

log x
log2 Q.Proof. Let

li(x) =

x\
2

dt

log t
,and let π(z; k, a) denote the number of primes p ≤ z with p ≡ a (modk).The ontribution to NQ(x) from any given prime q1 ≤ Q, q1 ≡ 3 (mod4) is

∑

q0≤x/q1

q0≡3 (mod 4)

∑

d|((q0−1)/2,(q1−1)/2)

µ(d) =
∑

d|(q1−1)/2

µ(d)
∑

q0≤x/q1

q0≡3 (mod 4)
q0≡1 (mod d)

1.

Therefore
NQ(x) =

∑

q≤Q
q≡3 (mod 4)

Mq +
∑

q≤Q
q≡3 (mod 4)

Rq



212 W. D. Banks et al.where
Mq =

li(x/q)

2

∑

d|(q−1)/2

µ(d)

ϕ(d)
, Rq =

∑

d|(q−1)/2

µ(d)

(
π(x/q; 4d, ad) −

li(x/q)

2ϕ(d)

)
,

and ad is the residue lass modulo 4d determined by the lasses 3 (mod4)and 1 (modd).For the sum of the remainders Rq over primes q ≤ Q, we apply theBombieri�Vinogradov theorem (see, for example, Setion 28 of [9℄), whih isvalid for our range Q ≤ x1/4. Therefore, for every onstant A > 1, we obtain
∑

q≤Q
q≡3 (mod4)

Rq ≪
∑

q≤Q

∑

d|(q−1)/2

∣∣∣∣π(x/q; 4d, ad) −
1

2ϕ(d)
li(x/q)

∣∣∣∣ ≪
∑

q≤Q

x

q
(log x)−A

≪ x(log x)1−A,where the implied onstants depend on A.For the sum over q of the main terms Mq, we have
∑

q≤Q
q≡3 (mod4)

Mq ≫
∑

q≤Q
q≡3 (mod 4)

li(x/q)
∏

p|(q−1)/2

(
1 − 1

p − 1

)

≫ x

log x

∑

q≤Q
q≡3 (mod 4)

ϕ(q − 1)

q(q − 1)
.

It is a trivial modi�ation of a formula of Stephens, Lemma 1 of [24℄, that
∑

q≤Q
q≡3 (mod4)

ϕ(q − 1)

q − 1
=

α

2
li(Q) + O(Q/(log Q)A),

where A > 1 is again arbitrary, the implied onstant depends only on A, and
α is the Artin onstant :

α =
∑

d≥1

µ(d)

dϕ(d)
=

∏

p

(
1 − 1

p(p − 1)

)
= 0.3739558136 . . . .Now by partial summation, we immediately derive that

∑

q≤Q
q≡3 (mod 4)

Mq ≫ x

log x
log2 Q,

whih ompletes the proof of the lemma.In our next lemma we give an upper bound for the number of oinidenesof the Carmihael funtion in the values taken on by the integers we ountedin the previous lemma.



Euler and Carmihael funtions 213Lemma 9. Let Q ≤ x1/4 and let SQ(x) denote the number of quadruples
(p0, p1, q0, q1) of primes satisfying the restritions

q1 < p1 ≤ Q, p0p1 ≤ x, q0q1 ≤ x,and the equation
(p0 − 1)(p1 − 1) = (q0 − 1)(q1 − 1).Then

SQ(x) ≪ x

(log x)2
(log Q)3.Proof. We �rst estimate the ontribution Sp1,q1

to SQ(x) arising from a�xed pair p1, q1. We see that Sp1,q1
is the number of positive integers

m ≤ x/[p1 − 1, q1 − 1]suh that the integers
p1 − 1

(p1 − 1, q1 − 1)
· m + 1 and q1 − 1

(p1 − 1, q1 − 1)
· m + 1are simultaneously prime. Applying the sieve (e.g., [19, Theorem 5.7℄), weobtain

Sp1,q1
≪ x

(log x)2
(p1 − 1, q1 − 1)

(p1 − 1)(q1 − 1)

∏

p|[p1−1,q1−1]

(1 − 1/p)−1

≤ x

(log x)2
(p1 − 1, q1 − 1)

ϕ(p1 − 1)ϕ(q1 − 1)
.Summing over q1 < p1 ≤ Q, and enlarging the sum to inlude all positiveintegers up to Q, we obtain

∑

q1<p1≤Q

(p1 − 1, q1 − 1)

ϕ(p1 − 1)ϕ(q1 − 1)
≪

∑

k,m≤Q

(k, m)

ϕ(k)ϕ(m)

=
∑

k,m≤Q

1

ϕ(k)ϕ(m)

∑

d|k
d|m

ϕ(d)

≤
∑

d≤Q

1

ϕ(d)

∑

k,m≤Q/d

1

ϕ(k)ϕ(m)
≪ (log Q)3.This ompletes the proof of the lemma.We now see that for any Q ≤ x1/4 we have, for some positive absoluteonstants c1, c2,

#L2(x) ≥ NQ(x) − 2SQ(x) ≥ c1
x

log x
log2 Q − c2

x

(log x)2
(log Q)3by Lemmas 8 and 9. Taking Q = exp((log x)1/3), we obtain (3), whih om-pletes the proof of Theorem 7.



214 W. D. Banks et al.3. Proof of Theorems 1 and 2. We intend to prove these resultsby extending the arguments of Setion 2. By analogy then we onsider theset PL+1(x) of integers n = p0 · · · pL ≤ x suh that pj ≡ 3 (mod4) and
(pi − 1, pj − 1) = 2 for eah j and for all i 6= j. Then

λ(n) = 2
p0 − 1

2
· · · pL − 1

2
≡ 2 (mod4)for every n ∈ PL+1(x). Let n be one suh integer; then obviously

λ(2L+3n) = [2L+1, λ(n)] = 2L+1λ(n) = (p0 − 1) · · · (pL − 1) = ϕ(n).Note that 2L is small ompared to (log2 x)L.On the other hand, suppose that λ(n) ∈ F for n ∈ PL+1(x). If m is anyinteger for whih λ(n) = ϕ(m), then m must be a prime power or twie aprime power, and sine ϕ(m) ≤ x it follows that m ≤ 3x. Hene, there areat most O(x/log x) distint numbers of the form λ(n), with n ∈ PL+1(x),lying in F .Hene, to establish Theorems 1 and 2, it su�es to show that the valueset LL+1(x) = {λ(n) : n ∈ PL+1(x)} ⊂ L(x)has su�iently many elements, namely that, for suitable L,
#LL+1(x) ≫ x

log x
(log2 x)L.(4) This is rather more ompliated than before and some new ideas arerequired. The set PL+1(x) is quite large and the number of integers givingrise to the same value of λ is di�ult to estimate. As a result it turns outto be easier to give the required lower bound for a subset of LL+1(x) whiharises in turn from a subset of PL+1(x) formed by hoosing the L + 1 primefators from well spaed intervals. This idea was used to advantage in thepaper of Maier and Pomerane [21℄ and we shall make heavy use of some oftheir results. We begin by summarizing those parts of their work whih arerelevant to our argument.The main result in [21℄ is the estimate

#F(x) =
x

log x
exp(C(1 + o(1))(log3 x)2)(5)for F(x) = {ϕ(n) ≤ x}, where the value of the onstant C is 0.81781465 . . ..Suh an estimate onsists of both an upper and a lower bound and here weshall prove our lower bounds with the same onstant C.The onstant C arises as follows. Let c0 = 0.54259859 . . . be the uniquesolution to F (c0) = 1, where F : (0, 1) → R is given by

F (x) =
∞∑

n≥1

anxn, an = (n + 1) ln(n + 1) − n lnn − 1.With these notations we have C = 1/|2 ln c0|.



Euler and Carmihael funtions 215We also require the notion of (δ, S)-normal primes where δ > 0 and
S > 1 (see Setion 2 in [21℄). Namely, writing Ω(n, t1, t2) for the total num-ber of prime fators of n in [t1, t2], we say the prime p is (δ, S)-normal if
Ω(p − 1, 1, S) < 2 log2(10S) and, for every t1 < t2 with S < t1 < t2 < p, wehave

|Ω(p − 1, t1, t2) − (log2 t2 − log2 t1)| < δ log2 t2.(6)Proposition 2.2 in [21℄ shows that for any δ > 0 there exists ε > 0 suh thatthe set Q(z, δ, S) of primes p ≤ z whih are not (δ, S)-normal satis�es thebound
#Q(z, δ, S) ≪ z

(log S)εlog z
,(7)where the implied onstant depends on δ but not on S.Let 1/2 < α < c0 and 0 < δ < 1 be arbitrary �xed real numbers. Inpartiular, throughout this setion the implied onstants may depend on αand δ.Let x be a large number and put

L =

⌊
1 − δ

|lnα| log3 x

⌋
+ 1.(8)For k = 0, 1, . . . , L, put wk = exp((log x)(1−δ)αk

), zk = exp((log x)αk

) and
Ik = [wk, zk].Let Qk be the set of (δ, log x)-normal primes in Ik. Thus, we onsideronly those primes p < x for whih

Ω(p − 1, 1, log x) < 2 log2(10 log x)and (6) holds for all log x < t1 < t2 < x.Consider the set
A = {n : x/2 ≤ n ≤ x, n = p0p1 · · · pL, where eah pi ∈ Qi}.The following two statements are shown in [21℄ on pages 265�272:(i) We have the lower bound

#A ≥ x

log x
exp

(
1 − δ2

2|lnα| (1 + o(1))(log3 x)2
)

.(ii) Write B = {(n1, n2) ∈ A × A : ϕ(n1) = ϕ(n2), n1 6= n2}. Then
#B = o(x/log x).Maier and Pomerane [21℄ used these bounds together with the inequality

#F ≥ #A− #B to obtain the lower bound in (5).We now onstrut a set Ã, whih is a subset both of A and of PL+1(x)and is suh that the analogue of (i) above still holds, that is,
#Ã ≥ x

log x
exp

(
1 − δ2

2|lnα| (1 + o(1))(log3 x)2
)

.(9)



216 W. D. Banks et al.Consider the set
B̃ = {(n1, n2) ∈ Ã × Ã : λ(n1) = λ(n2), n1 6= n2}.Note that if n ∈ Ã, then λ(n) = ϕ(n)/2L. Thus, if n1 6= n2 are in Ã and have

λ(n1) = λ(n2), then ϕ(n1) = ϕ(n2), whih shows that B̃ ⊆ B. In partiular,
#B̃ ≤ #B = o(x/log x).Together with (9), this shows that the number of distint values of λ(n)for n in Ã, whih exeeds #Ã − #B̃, is at least as large as required by thestatements of Theorems 1 and 2.Finally, sine Ã ⊆ PL+1(x), we see that (4) holds for L given by (8). Thus,to omplete the proof of both Theorems 1 and 2 it is enough to onstrut

Ã ⊆ A ∩ PL+1(x) whih satis�es (9).To onstrut Ã, we take u = (log2 x)3, and we replae Qk by
Q̃k =

{
p ∈ Qk :

(
p − 1,

∏

2<q<u

q
)

= 1, µ2(p − 1) = 1
}
.

In partiular, all primes in Q̃k are (δ, log x)-normal. Put
A = {n : x/2 ≤ n ≤ x, n = p0p1 · · · pL, pk ∈ Q̃k},and let

Ã = {n ∈ A : q2 ∤ ϕ(n) for all odd primes q}.It is easy to see that every integer in Ã is also in PL+1(x).It remains to prove (9), whih is established with the aid of a sievemethod. Sine we only remove very small primes the sieve of Eratosthenes�Legendre is su�ient (when ombined with the Bombieri�Vinogradov theo-rem). The following statement is almost idential to one in [4℄ and is provedin the same way (alternatively, see [19℄). As before, we let π(y; k, a) denotethe number of primes p ≤ y with p ≡ a (modk).Lemma 10. Let R(t1, t2, y) be the set of primes p ∈ [t1, t2] with p ≡ 3
(mod4) and suh that if an odd prime q divides p−1, then q ≥ y and q2 ∤ p−1.Then, uniformly for y ≤ 1

3 log t1 and y → ∞, we have
#R(t1, t2, y) = f(y)(π(t2; 4, 3) − π(t1; 4, 3)) + O

(
t2

y log y log t2

)
,where

f(y) =
∏

2<p<y

(
1 − 1

p − 1

)
.Using the above Lemma 10, partial summation, and the fat that theestimate

f(y) = 2c1(1 + o(1))
1

log yholds as y tends to in�nity, with a positive onstant c1, we get the following:



Euler and Carmihael funtions 217Lemma 11. For every �xed δ with 1 > δ > 0, there exists t0(δ) suhthat uniformly for t2 > t1 > t0(δ), (1 − δ) log2 t2 ≥ log2 t1 ≥ (1 − δ)2 log2 t2,
y < 1

3 log t1 and y tending to in�nity , we have
c1

2 log y
(log2 t2 − log2 t1) ≤

∑

p∈R(t1,t2,y)

1

p
≤ 2c1

log y
(log2 t2 − log2 t1).

This follows, for example, from arguments almost idential to those onthe lower half of page 217 in [4℄.We now take y = u = (log2 x)3, t1 = wk and t2 = zk for a given k ≤ L,and we hek that the onditions of Lemma 11 are satis�ed if x is largeenough. Indeed, sine y = u = (log2 x)3, and sine t1 ≥ exp(exp((log2 x)δ))for eah k ≤ L, the ondition y < 1
3 log t1 follows from the inequality

3(log3 x) < (log2 x)δ − log 3,whih holds omfortably for su�iently large x.Lemma 11 now shows that
c2(log2 zk − log2 wk)

2 log3 x
≤

∑

p∈R(wk,zk,y)

1

p
≤ 2c2(log2 zk − log2 wk)

log3 x
(10)
for k = 0, . . . , L, where c2 = c1/3. Using next the upper bound (7), wesee that, if we write Sk for the set of those primes p ∈ Ik whih are not
(δ, log x)-normal, then for some ε > 0,

∑

p∈Sk

1

p
≪ 1

(log2 x)ε
(log2 zk − log2 wk)(11)uniformly in k = 0, 1, . . . , L.Putting (10) and (11) together, we easily �nd that

c2(log2 zk − log2 wk)

3 log3 x
≤

∑

p∈Q̃k

1

p
≤ 3c2(log2 zk − log2 wk)

log3 xfor k = 0, 1, . . . , L, and, noting that
log2 zk − log2 wk = δαk log2 x,we an rewrite this as

c2(δα
k log2 x)

3 log3 x
≤

∑

p∈Q̃k

1

p
≤ 3c2(δα

k log2 x)

log3 x
(12)
for k = 0, 1, . . . , L.We are now ready to ompute the ardinality of Ã. For this, we �rstompute the ardinality of A, and we then throw away from A those n suhthat q2 |ϕ(n) for some odd q.



218 W. D. Banks et al.To ompute A, we use the argument from the proof of Lemma 3.1 onpage 266 of [21℄. Let M be the set of all m of the form m = p1 · · · pL with
pk ∈ Q̃k, k = 1, . . . , L. We have

m ≤
L∏

k=1

zk ≤ z2
1for every m ∈ M.Now, let n = p0 · · · pL with pk ∈ Q̃k, k = 0, . . . , L. Thus, n = p0m, where

m = p1 · · · pL ∈ M. Beause x/2 ≤ n ≤ x, we have x/(2m) ≤ p0 ≤ x/m.Sine p0 ∈ Q̃0, by Lemma 10 (it is easy to hek that the onditions thereare met in our situation), we immediately see that for a �xed m ∈ M, thenumber Q0(m) of suh p0 is
Q0(m) ≍ x

log(x/m) log3 x
≍ x

log x log3 x(sine for m < z2
1 we have log(x/m) ≍ log x). Therefore

#A =
∑

m∈M

Q0(m)(13)
≍ x

log x log3 x

∑

m∈M

1

m
=

x

log x log3 x

L∏

k=1

( ∑

p∈Q̃k

1

p

)
.

Using (12), we an estimate the produt as follows:
L∏

k=1

( ∑

p∈Q̃k

1

p

)
≫ 1

3L

(
c2

log3 x

)L L∏

k=1

(δαk log2 x)

≫
(

δc2

3 log3 x

)L

α(L2+L)/2(log2 x)L

= exp

(
1 − δ2

2|lnα| (log3 x)2 + O(log3 x log4 x)

)
.The above is almost what we want, but we now need to eliminate from

A those n suh that ϕ(n) is divisible by the square of some odd prime. Suha prime is neessarily larger than u. Moreover, if n = p0 · · · pL is suh anumber, then there exists q > u (beause the pk − 1 are free of odd primesless than u for all k = 0, . . . , L), and i 6= j (beause the pk −1 are squarefreefor k = 0, . . . , L), suh that q | pi − 1 and q | pj − 1. To estimate the numberof suh n, we �x i and j.Assume �rst that neither i nor j is zero. Then pi and pj are hosen in
Ii and Ij , respetively, and these primes are in the arithmetial progression
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1 modulo q. The set Ni,j of suh numbers satis�es

#Ni,j ≪
x

log x log3 x

∑

m∈Mi,j

1

m
,(14)where the sum is over the set Mi,j of all possible m in the representation

n = p0m with p0 ∈ Q̃0 for all n ∈ Ni,j . We bound the sum over m as follows:
∑

m∈Mi,j

1

m
≪

∑

q>u

L∏

k=1
k 6=i,j

( ∑

p∈Q̃k

1

p

) ∏

k=i,j

( ∑

p∈Ik

p≡1 (mod q)

1

p

)

=

L∏

k=1

( ∑

p∈Q̃k

1

p

)∑

q>u

∏

k=i,j

( ∑

p∈Ik

p≡1 (mod q)

1

p

)( ∑

p∈Q̃k

1

p

)−1

.

Now, by (13) and (14), we onlude that
#Ni,j ≪ #A∆ij,where

∆ij =
∑

q>u

∏

k=i,j

( ∑

p∈Ik

p≡1 (mod q)

1

p

)( ∑

p∈Q̃k

1

p

)−1

.

Using (12) and the bound (see inequality (3.1) in [12℄)
∑

p≤z
p≡1 (mod q)

1

p
≪ log2 z

q

we dedue that
∆ij ≪

∏

k=i,j

(
c2δα

k log2 x

3 log3 x

)−1 ∑

q>u

(log2 x)2

q2
= (3δ)2c−2

2 α−i−j(log3 x)2
∑

q>u

1

q2

≪ α−2L(log3 x)2
1

u log u
.Summing up these inequalities over all possible hoies of i, j, we get

∑

1≤i<j≤L

Ni,j ≪ #A
∑

1≤i<j≤L

∆i,j ≪ #A L2α−2L(log3 x)2

u log u
.Realling the de�nition of L and u, we derive

L2α−2L(log3 x)2

u log u
≪ (log2 x)2−2δ(log3 x)4

u log u
≪ 1

log2 x
.A similar argument applies to the ontribution oming from those aseswhere one of i and j is zero. As a result we only sketh this. In the eventthat the prime q > u divides both p0 − 1 and pj − 1 for some j ≥ 1, the



220 W. D. Banks et al.latter ondition implies the inequality q < z1 and this in turn implies that
y = u < 1

3 log(w0/q). This allows one to dedue (by the same proofs) thevalidity of Lemmas 10 and 11 applied to those primes in the interval [w0, z0]whih are ongruent to 1 mod q in addition to being ongruent to 3 mod 4.The results are uniform for q in this range and, in the ase of Lemma 11,the upper and lower bounds are to be multiplied by the fator 1/(q − 1).Proeeding now as before, we obtain in plae of (14) the estimate
#N0,j ≪

x

q log x log3 x

∑

m∈M0,j

1

m
,and subsequently we �nd that

#N0,j ≪ #A∆0jwhere ∆0j takes the form
∆0j =

∑

q>u

1

q

( ∑

p∈Ij

p≡1 (mod q)

1

p

)( ∑

p∈Q̃j

1

p

)−1

.

The rest of the proof follows as in the other ase and, perhaps not surpris-ingly, the bound is now slightly better.This shows that #Ã = #A+o(#A), whih ompletes the proof that thelower bound (i) also holds for #Ã. Letting δ tend to zero and α tend to c0,we obtain the spei� onstant C laimed earlier. This ompletes the proofof Theorems 1 and 2.4. Proof of Theorem 3. We begin by �xing a prime q > 5 suh that
2q + 1 is a prime but 2q2 + 1 and 4q2 + 1 are omposite. There are manysuh primes but we require only one. For example, we an hoose q = 11.Throughout the proof, we allow the implied onstants to depend on q.We say that an integer w is z-rough if all prime divisors of w exeed z.Now let x be su�iently large and let z be an arbitrary real numberwith log x ≤ z ≤ x1/5. We onsider the set P of primes p in the interval
[x/4q, x/2q] of the form

p = 2qw + 1,where w is z-rough. Using the lower bound linear sieve and estimating theremainder term by the Bombieri�Vinogradov theorem (e.g., see Theorem 7.4,p. 219, of [19℄), we have
#P ≫ x

log x log z
.We next remove some primes from P, namely the set Q of primes p ∈ Pfor whih p − 1 = 2qrs and either 2q2r + 1 or 4q2r + 1 is prime. Using theupper bound sieve, say of Brun (e.g., see Theorem 2.2, p. 68, of [19℄), we see



Euler and Carmihael funtions 221that for every �xed s the ardinality of the set Qs of suh primes p ∈ P doesnot exeed
#Qs ≪

x

s

∏

l≤z
l ∤ s

(
1 − 3

l

) ∏

z<l≤x/s
l ∤ s

(
1 − 2

l

)∏

l|s

(
1 − 1

l

)

≪ x

s
· 1

(log(x/s))2 log z
· s

ϕ(s)
.Clearly, any admissible s is either 1 or is z-rough. For s = 1, we have

#Q1 ≪ x

(log x)2 log z
.If s is z-rough then, realling that z ≥ log x, we have

∑

l|s

1

l
≤ 1

z

∑

l|s

1 = o

(
log x

z

)
= o(1),

thus ϕ(s) = (1+ o(1))s. We also remark that by the ondition on q, we have
r > 1 and therefore r > z (sine (p − 1)/2q is z-rough). We thus obtain

∑

s<x/z
s z-rough #Qs ≪

x

log z

∑

s<x/z
s z-rough 1

s(log(x/s))2

≪ x

log z

∑

log z−1≤j≤log x+1

∑

x/ej−1≤s<x/ej

s z-rough
1

s(log(x/s))2

≪ 1

log z

∑

log z−1≤j≤log x+1

ej

j2

∑

x/ej−1≤s<x/ej

s z-rough 1.

But, again by the upper bound sieve, for j ≥ log z − 1, we have
∑

x/ej−1≤s<x/ej

s z-rough 1 ≤
∑

s<x/ej

s z-rough 1 ≪ x

ej log z
.

Thus,
∑

s<x/z
s z-rough #Qs ≪

x

(log z)2

∑

log z−1≤j≤log x+1

1

j2
≪ x

(log z)3
.

The above estimate ould have been alternatively obtained by partial sum-mation. Hene, from the above bounds, we derive
#Q ≤ #Q1 +

∑

s<x/z
s z-rough #Qs ≪

x

(log z)3
.
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z = exp(c

√
log x),for some appropriate onstant c > 0, then the set R = P \ Q satis�es

#R ≥ #P − #Q ≫ x

log x log z
≫ x

(log x)3/2
.For eah p ∈ R, we onsider the integer n = (2q + 1)p. We then have

ϕ(n) = 2q(p − 1) = 4q2 p − 1

2q
,where (p − 1)/2q > q. The values of ϕ(n) are distint as p varies, and eahof them satis�es ϕ(n) ≤ x. Thus, to omplete the proof of Theorem 3, itsu�es to show that ϕ(n) 6∈ L for eah p ∈ R.Suppose, on the ontrary, that ϕ(n) ∈ L for some p ∈ R; that is,

λ(m) = 4q2 p − 1

2q
(15)for some m. Sine q2 |λ(m), we must have q2 |λ(re) for some prime r with
re ‖m. This ould happen in only two ways, both of whih an be ruled outin our situation:

• If q |m, then q − 1 |λ(m). But (15) implies that
q − 1 | 4 p − 1

2q
,whih annot happen for large x sine (p− 1)/2q is z-rough for p ∈ Rand 5 < q < z.

• If q ∤ m, then q2 |λ(re) implies that q2 | r − 1 (sine r |m), from whihit follows that 2q2 | r − 1 and
r − 1 | 4q2 p − 1

2q
.Thus, r must have one of the following forms:

r = 2q2s + 1 or r = 4q2s + 1,for some integer divisor s of (p − 1)/2q. However, for s = 1 this has beenalready eliminated by the hoie of q, and for s > 1 this is impossible by ouronstrution of the set R.This onludes the proof of Theorem 3.5. Proof of Theorem 4. We begin with a result that is impliit in [12℄;see also the variant given expliitly as Lemma 2 of [20℄.Lemma 12. For some absolute onstant c1 > 0, λ(n) is divisible by allprime powers lk ≤ y for a set N of positive integers n ≤ x of ardinality
#N = x + O(xy exp(−c1y

−1 log2 x)).



Euler and Carmihael funtions 223Proof. Following the argument in the proof of Theorem 4.1 of [12℄ (seealso Theorem 3.4 of [12℄), we see that if lk ≤ log2 x, then
max
q|n

ordl(q − 1) ≤ kfor at most O(x exp(−c1l
−k log2 x)) positive integers n ≤ x, where c1 > 0 isan absolute onstant.We are now ready to prove Theorem 4. We assume that β is a realnumber in the interval (0, 1) suh that for some onstant c2 > 0 and everysu�iently large z > 0, there are at least z/(log z)c2 primes p in the interval

J = [z/(log z)c2 , z] suh that all prime divisors of p − 1 are of size at most
w = zβ.For some su�iently large y > 0 we hoose z = (y/(log y)c2+1)1/β andlet N be the set of Lemma 12.For eah prime l ≤ w, the number of primes p ∈ J for whih lk | p − 1for some power lk > y is at most O(z/y). Thus the number of primes p ∈ Jdivisible by a power lk > y of some prime l ≤ w is at most

O(zw/y) = o(z/(log z)c2)beause of the above hoie of z. Therefore, there exists a set P with at least
s = #P ≥ z/2(log z)c2 primes p in the interval J , suh that eah prime
p ∈ P satis�es

(p − 1) |
∏

lk≤y

lk,where the produt is taken over all the primes l ≤ w.It is lear that if n ∈ N and m is squarefree, oprime to n, and suh thatall its prime fators are in P, then λ(n) = λ(nm); in partiular, n 6∈ Cλ(x).To prove part (i) of Theorem 4 we begin by applying Lemma 12 with
y = c3 log2 x/log3 x,where c3 = c1/2, obtaining the estimate

#N = x + O(x/log2 x).The set E of n ∈ N suh that n is divisible by p for at least r = ⌊log z⌋primes p ∈ P has ardinality at most
#E ≤

∑

p1<···<pr

pi∈P, i=1,...,r

x

p1 · · · pr
≤ x

1

r!

( ∑

p∈P

1

p

)r

.

Extending the summation in the last sum over all primes in the interval Jand using the Mertens formula, we derive that
∑

p∈P

1

p
≤

∑

p∈J

1

p
= log2 z − log2(z/(log z)c2) + O(1/log z) = o(1).



224 W. D. Banks et al.Using the inequality er ≥ rr/r! we see that, for su�iently large x,
#E ≤ x

(
e

r

)r

= xz−(1+o(1)) log2 z ≪ x

log2 x
.Therefore, for all positive integers n ∈ N \ E we have

ℓ(n) ≥ 2s−r = exp(z1+o(1)) = exp(y1/β+o(1)) = exp((log2 x)1/β+o(1)).Clearly #(N \E) = x+O(x/log2 x) for the above hoie of parameters. By aresult of Baker and Harman [1℄, one an take β = 0.2961. Sine 1/β > 10/3,this �nishes the proof of part (i) of Theorem 4.To prove part (ii) of Theorem 4 we hoose
y = (log2 x)β/(1+β)so that

#N = x + O(x exp(−(log2 x)1/(1+β)+o(1)))by Lemma 12.As before, we see that ℓ(n) ≥ 2 for any n ∈ N unless
∏

p∈P

p
∣∣∣ n,

whih holds on a set Ẽ ⊂ N of ardinality at most
#Ẽ ≤ x

∏

p∈P

p−1 ≤ x(z/(log z)c2)−(#P) = x exp(−z1+o(1))

= x exp(−y1/β+o(1)) = x exp(−(log2 x)1/(1+β)+o(1)).Again, using the result of Baker and Harman [1℄ one an take β = 0.2961.Sine 1/(1 + β) > 0.77, this �nishes the proof of part (ii) of Theorem 4.6. Proof of Theorem 5. Let k(m) denote the squarefree kernel of aninteger m ∈ N, that is,
k(m) =

∏

p|m

p.

The following result, whih is based on the Rankin method, is ontained inTheorem 13 in Setion II.1.5 of [25℄:Lemma 13. Uniformly for x ≥ y ≥ 2, we have
#{m ≤ x : k(m) ≤ y} ≪ y(log y) exp(

√
8 log(x/y)).We also need the following result, whih is a variant of Lemma 2.9 in [15℄:Lemma 14. The number of n ∈ Cϕ with n ≤ x for whih either d2 |ϕ(n)or d2 |n for some d > y is at most O(x/y).



Euler and Carmihael funtions 225Proof. For eah d there are obviously O(x/d2) values of n with d2 |n,and also O(x/d2) values of ϕ(n) with d2 |ϕ(n). Beause n ∈ Cϕ, the totalnumber of possible values of n for eah d is O(x/d2). Summing up over all
d > y �nishes the proof.We are now prepared to prove Theorem 5. Let n ≤ x be a primitiveounterexample to the Carmihael onjeture, that is, n ∈ C∗

ϕ(x). Let ϕ(n)
= m. If p is any prime dividing n with pα ‖n, then

m = ϕ(n) = ϕ(pα)ϕ(n/pα) = pα−1(p − 1)ϕ(n/pα).Sine n/pα is a proper divisor of n, and n is primitive, n/pα 6∈ Cϕ; hene,
ϕ(n/pα) = ϕ(s) for some integer s 6= n/pα, and

m = pα−1(p − 1)ϕ(s).(16)We laim that p | s. Indeed, if this were not true, then from (16) it wouldfollow that
ϕ(n) = m = ϕ(pαs);however, sine pαs 6= n, this ontradits our assumption that n ∈ Cϕ. Havingshown that p | s, from (16) we now see that (p − 1)2 |m, and this holds forevery prime p dividing n.Now let q be an arbitrary prime divisor of m. We have

q |m and m = ϕ(n) =
∏

pα‖n

pα−1(p − 1).

If q | pα−1 for some p and α, then p = q, α ≥ 2, and therefore q2 |n. On theother hand, if q ∤ pα−1 whenever pα ‖n, it follows that q | p− 1 for some p |n,and by the above analysis we �nd that q2 | (p−1)2 |m. Thus, we have shownthat
q |m ⇒ q2 |m or q2 |n.(17)We now write

#C∗
ϕ(x) = #{n ∈ C∗

ϕ(x) : k(ϕ(n)) ≤ z} + #{n ∈ C∗
ϕ(x) : k(ϕ(n)) > z},where z is a real parameter in the interval [2, x], to be spei�ed in a moment.Noting that the map n 7→ ϕ(n) is injetive on Cϕ, and using Lemma 13, webound the �rst ontribution by

#{n ∈ C∗
ϕ(x) : k(ϕ(n)) ≤ z} ≤ #{m ≤ x : k(m) ≤ z}

≪ z(log z) exp(
√

8 log(x/z)).For the seond ontribution, if n ∈ C∗
ϕ(x), m = ϕ(n), and k(m) > z, wede�ne

d1 =
∏

q2 |m

q, d2 =
∏

q2 |n

q.
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d1d2 ≥

∏

q2|m or q2|n

q ≥ k(m) > z;

hene, either d1 >
√

z or d2 >
√

z. Sine d2
1 |m and d2

2 |n, Lemma 14 impliesthat
#{n ∈ C∗

ϕ(x) : k(ϕ(n)) > z} ≪ x/
√

z.Therefore,
#C∗

ϕ(x) ≪ z(log z) exp(
√

8 log(x/z)) + x/
√

z.Choosing z = x2/3 (in order to balane these terms), we omplete the proofof Theorem 5.7. Proof of Theorem 6. We reall that Cλ is the set of ounterex-amples to the Carmihael onjeture for λ, and C∗
λ is the set of primitiveounterexamples:

Cλ = {n : λ(m) 6= λ(n) for all m 6= n},
C∗

λ = {n ∈ Cλ : d 6∈ Cλ for all d |n, d < n}.For a positive integer n and a prime p, we denote by ordp(n) the largestinteger α ≥ 0 suh that pα |n. We also denote by ϑp(n) the largest integer
β ≥ 0 for whih λ(pβ) |λ(n).Lemma 15. If n ∈ Cλ, then ϑp(n) = ordp(n) for every prime p.Proof. Suppose that n ∈ Cλ, and let p be an arbitrary prime number.Put α = ordp(n) and β = ϑp(n). Sine pα |n, it follows that λ(pα) |λ(n);thus, β ≥ α. On the other hand, sine λ(pβ) |λ(n), we have

λ(n) = [λ(pβ), λ(n)] = [λ(pβ), λ(pα), λ(n/pα)].It annot be true that β > α, for otherwise we would have
λ(n) = [λ(pβ), λ(n/pα)] = λ(npβ−α),whih is impossible sine n ∈ Cλ but n 6= npβ−α. Therefore, β = α.Corollary 16. If n ∈ Cλ, then p |n if and only if p − 1 |λ(n).Proof. By Lemma 15, for any n ∈ Cλ, we have ordp(n) ≥ 1 if and only if

ϑp(n) ≥ 1, and the result follows.Lemma 17. If n ∈ Cλ, then 24 |n, and for every prime p dividing n, wehave
ordp(λ(n)) =

{
ord2(n) − 2 if p = 2,
ordp(n) − 1 if p 6= 2.Proof. Let n ∈ Cλ be �xed. Sine λ(1) = λ(2) and λ(4) = λ(8), it is easyto see that 24 |n. Put α = ord2(λ(n)) ≥ 2; sine 2α = λ(2α+2), it follows



Euler and Carmihael funtions 227that α + 2 = ϑ2(n). By Lemma 15, ϑ2(n) = ord2(n); thus, ord2(λ(n)) =
ord2(n) − 2.Now let p be an odd prime dividing n. By Corollary 16, p− 1 |λ(n). Put
β = ordp(λ(n)) ≥ 0; sine pβ(p−1) = λ(pβ+1), it follows that β +1 = ϑp(n).By Lemma 15, ϑp(n) = ordp(n); therefore, ordp(λ(n)) = ordp(n) − 1.Reall that an integer n ≥ 2 is said to be powerful if p2 |n for every prime
p dividing n.Lemma 18. If n ∈ C∗

λ, then n is powerful.Proof. Let n ∈ C∗
λ be �xed. Sine 24 |n by Lemma 17, it su�es to showthat p2 |n for every odd prime p dividing n.Sine n is primitive, λ(n/p) = λ(ñ) for some ñ 6= n/p. Assuming that

ordp(n) = 1, it follows that
λ(n) = [λ(p), λ(n/p)] = [p − 1, λ(ñ)].If p ∤ ñ, this implies that λ(n) = λ(ñp), whih is impossible sine n ∈ Cλ but

ñp 6= n. On the other hand, if p | ñ, then p − 1 |λ(ñ), and we dedue that
λ(n) = λ(ñ) = λ(n/p), whih is again impossible. Thus, ordp(n) ≥ 2.Corollary 19. If n ∈ C∗

λ, then p2 |n if and only if p − 1 |λ(n).Proof. If p − 1 |λ(n), then p |n by Corollary 16; hene, p2 |n by Lem-ma 18. The onverse is obvious.For a positive integer n and a prime p, let us denote by Θp(n) the largestinteger α ≥ 0 suh that pα |λ(k(n)); in other words,
Θp(n) = ordp(λ(k(n))) = max

q|n
ordp(q − 1),where q varies over the primes dividing n and where, as in Setion 6, k(n)is the squarefree kernel of n. Note that, sine ordp(p − 1) = 0, Θp(n) =

Θp(n/pordp(n)).Lemma 20. If n ∈ Cλ, then Θ2(n) ≥ 1.Proof. If n ∈ Cλ, n must have an odd prime fator p, for otherwise n = 2αwith α ≥ 4 (Lemma 17), and λ(n) = λ(2α) = λ(3·2α) = λ(3n). Sine 2 | p−1,it follows that Θ2(n) ≥ 1.Lemma 21. If n ∈ C∗
λ, then for every prime p dividing n, we have

ordp(n) =

{
Θ2(n) + 3 if p = 2,
Θp(n) + 2 if p 6= 2.Proof. Let n ∈ C∗

λ be �xed. If α = ord2(n), then α ≥ 4 and ord2(λ(n)) =
α − 2 by Lemma 17. If β = Θ2(n), we also have 2β |λ(k(n)) |λ(n); thus,
α ≥ β + 2.



228 W. D. Banks et al.Suppose that α = β + 2. Sine λ(n) = [2α−2, λ(n/2α)], and
ord2(λ(n/2α)) = ord2([p

γ−1(p − 1) : pγ ‖n/2α]) = ord2([(p − 1) : p |n])

= ord2(λ(k(n))) = Θ2(n) = β = α − 2,it follows that λ(n) = λ(n/2α), whih is impossible sine n ∈ Cλ. Thus,
α 6= β + 2, and it follows that α ≥ β + 3.To omplete the proof in this ase, we now show that if α ≥ β + 4, then
n/2 ∈ Cλ, ontraditing the fat that n is primitive.Indeed, suppose that α ≥ β+4 and that λ(n/2) = λ(ñ) for some positiveinteger ñ. For any prime p dividing ñ, we have p − 1 |λ(ñ) = λ(n/2) |λ(n);thus, p2 |n by Corollary 19. This shows that the prime fators of ñ are amongthose of n. Put γ = ord2(ñ). As before, we have ord2(λ(n/2α)) = β; thus,

λ(n) = [2α−2, λ(n/2α)] = 2[2α−3, λ(n/2α)] = 2λ(n/2) = 2λ(ñ)sine α − 3 > β. As ord2(λ(n)) = α − 2, it follows that
2α−3 ‖λ(ñ) = [λ(pδ) : pδ ‖ ñ].It annot be the ase that 2α−3 |λ(pδ) for an odd prime power pδ > 1 divid-ing ñ, for this would imply that 2α−3 | p − 1, and sine p |n, it would thenfollow that β = Θ2(n) ≥ α − 3. Therefore, 2α−3 ‖λ(2γ), whih implies that

γ = α − 1 (note that α ≥ 5 sine β ≥ 1 by Lemma 20). Sine the primefators of ñ are among those of n, Θ2(ñ) ≤ Θ2(n); therefore,
Θ2(ñ/2γ) = Θ2(ñ) ≤ Θ2(n) = β < α − 3 = γ − 2,whih implies that ord2(λ(ñ/2γ)) < γ − 2. Consequently,

λ(n) = 2λ(ñ) = 2[2γ−2, λ(ñ/2γ)] = [2γ−1, λ(ñ/2γ)] = λ(2ñ).Sine n ∈ Cλ, we dedue that ñ = n/2, and therefore n/2 ∈ Cλ. This om-pletes the proof in this ase.Next, let q be an odd prime dividing n. Put α = ordq(n) and β = Θq(n).Then α ≥ 2 by Lemma 18, and ordq(λ(n)) = α − 1 by Lemma 17. We alsohave qβ |λ(k(n)) |λ(n); therefore, α ≥ β + 1.Suppose that α = β + 1. Sine λ(n) = [qα−1(q − 1), λ(n/qα)], and
ordq(λ(n/qα)) = ordq([λ(pγ) : pγ ‖n/qα]) = ordq([(p − 1) : p |n])

= ordq(λ(k(n))) = Θq(n) = β = α − 1,it follows that λ(n) = λ(n/qα−1), whih is impossible sine n ∈ Cλ. Thus,
α 6= β + 1, and it follows that α ≥ β + 2.As before, to omplete the proof it su�es to show that α ≥ β+3 implies
n/q ∈ Cλ. Thus, suppose that α ≥ β + 3 and that λ(n/q) = λ(ñ) for somepositive integer ñ. Again, it is easy to see that the prime fators of ñ areamong those of n. Put γ = ordq(ñ). Sine ordq(λ(n/qα)) = β, we have
λ(n) = [qα−1(q − 1), λ(n/qα)] = q[qα−2(q − 1), λ(n/qα)] = qλ(n/q) = qλ(ñ)
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qα−2 ‖λ(ñ) = [λ(pδ) : pδ ‖ ñ].Arguing as before, it annot be the ase that qα−2 |λ(pδ) for a prime power

pδ > 1 dividing ñ; therefore, qα−2 ‖λ(qγ), whih implies that γ = α − 1.Sine the prime fators of ñ are among those of n, Θq(ñ) ≤ Θq(n); therefore,
Θq(ñ/qγ) = Θq(ñ) ≤ Θq(n) = β < α − 2 = γ − 1,whih implies that ordq(λ(ñ/qγ)) < γ − 1. Consequently,

λ(n) = qλ(ñ) = q[qγ−1(q − 1), λ(ñ/qγ)] = [qγ(q − 1), λ(ñ/qγ)] = λ(qñ).Sine n ∈ Cλ, we dedue that ñ = n/q, and therefore n/q ∈ Cλ, whihompletes the proof.Corollary 22. If n ∈ C∗
λ, and p = P (n) is the largest prime fatorof n, then ordp(n) = 2.Proof. Indeed, p annot divide λ(k(n)). Hene Θp(n) = 0, and the resultfollows from Lemma 21.Lemma 23. Let n ≥ 2 be an integer with the properties:

• λ(n/p) = λ(n)/p for every prime p dividing n;
• for any prime power qα > 1, λ(qα) |λ(n) implies qα |n.Then n ∈ Cλ.Proof. Let n be �xed, and suppose that λ(ñ) = λ(n). For any primepower qα > 1 dividing ñ, we have λ(qα) |λ(ñ) = λ(n); therefore, qα |n. Thisshows that ñ |n. If ñ 6= n, write n = ñdp, where p is a prime dividing n/ñand d = n/(ñp). Then

λ(n) = λ(ñ) |λ(ñd) = λ(n/p) = λ(n)/p,whih is impossible. Thus, ñ = n.We are now ready to prove Theorem 6. Let n1 and n2 be two (not ne-essarily distint) elements of C∗
λ, and put n = (n1, n2). Note that 24 |n byLemma 17; in partiular, n ≥ 16.For any prime p dividing n, by Lemma 21 we have

ordp(n) = min{ordp(n1), ordp(n2)}

=

{
min{Θ2(n1), Θ2(n2)} + 3 if p = 2,
min{Θp(n1), Θp(n2)} + 2 if p 6= 2.Sine n is a divisor of n1 and n2, for every prime p dividing n we have

Θp(n) ≤ min{Θp(n1), Θp(n2)};
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ordp(n) ≥

{
Θ2(n) + 3 if p = 2,
Θp(n) + 2 if p 6= 2.Moreover,

Θp(n) = ordp(λ(n/pordp(n)))as in the proof of Lemma 21. Consequently, if α = ord2(n), then
λ(n/2) = [2α−3, λ(n/2α)] = 2−1[2α−2, λ(n/2α)] = λ(n)/2,and for any odd prime p dividing n, with α = ordp(n), we have

λ(n/p) = [pα−2(p − 1), λ(n/pα)] = p−1[pα−1(p − 1), λ(n/pα)] = λ(n)/p.This shows that n has the �rst property stated in Lemma 23.For any prime power qα > 1 suh that λ(qα) |λ(n), it is lear that
λ(qα) |λ(n1) and λ(qα) |λ(n2). Therefore, using Lemma 15, we have

α ≤ min{ϑq(n1), ϑq(n2)} = min{ordq(n1), ordq(n2)} = ordq(n).This shows that n has the seond property stated in Lemma 23.By Lemma 23, we onlude that n ∈ Cλ. Sine n1 and n2 are primitive,this shows that n1 = n = n2 and ompletes the proof of the theorem.8. Numerial results and remarks. Our proofs are onstrutive andyield spei� examples of elements in eah of the sets F ∩L, F \L and L\F .Numerial omputations performed with Pari 2.2.7 provide the followingdata:
x #F(x) #L(x) #(F(x) ∩ L(x)) #LF (x) #FL(x)

10 6 6 6 0 0

102 38 39 38 1 0

103 291 328 291 37 0

104 2374 2933 2369 564 5

105 20254 27155 20220 6935 34

106 180184 256158 179871 76287 313

107 1634372 2445343 1631666 813677 2706

Here, we apply the elementary riterion that an even integer m lies in L ifand only if m = λ(s), where s is the integer de�ned by
s = 2

∏

p prime
p−1|m

pordp(m)+1.



Euler and Carmihael funtions 231We also use the fat that if n ≤ 109, then ω(n) ≤ 9, where ω(n) is thenumber of distint prime divisors of n, and
ϕ(n) = n

∏

p|n

(1 − p−1) ≥ n
∏

p≤23

(1 − p−1).

Thus, m ∈ F(109) if and only if m = ϕ(r) for some r ≤ 6.113m. We remarkthat it has been reently shown in [8℄ that the problem of deiding whethera given integer m lies in F is NP-omplete.The thirty smallest integers in L \ F are the following:
• 90, 174, 230, 234, 246, 290, 308, 318, 364, 390, 410, 414, 450, 510, 516,530, 534, 572, 594, 638, 644, 666, 678, 680, 702, 714, 728, 740, 770, 804.For instane, taking p = 11 and q = 19 in the proof of Theorem 2, we seethat λ(11 · 19) = λ(209) = 90 does not lie in the set F . On the other hand,not all elements of L \ F are aptured by the methods of Theorem 2, thesmallest example being λ(23 · 29) = λ(667) = 308; this suggests that thelower bound of that theorem is probably not tight.The twenty smallest integers in F \ L are the following:
• 1936, 3872, 6348, 7744, 9196, 15004, 15488, 18392, 20812, 21160, 22264,30008, 35332, 36784, 38416, 41624, 42320, 44528, 51304, 58564.For example, taking q = 11 and p = 89 in our proof of Theorem 3, we seethat

ϕ((2 · 11 + 1) · 89) = ϕ(2047) = 1936annot lie in the set L.As mentioned earlier, it an be quite di�ult in pratie to determinenumerially whether a given integer lies in F \L, in L\F , or in F ∩L, sinefor ertain integers m ∈ L, the preimages n ∈ λ−1(m) are all quite largerelative to m. For example, if
m = 2171 · 1021 · 5419 · 5483,the only odd primes q for whih q−1 |m are the Fermat primes 3, 5, 17, 257,

65537, and the following three primes:
2112 · 1021 + 1, 2137 · 5483 + 1, 2170 · 5419 + 1.Hene, if λ(n) = m, it follows that

n ≥ 2173(2112 · 1021 + 1)(2137 · 5483 + 1)(2170 · 5419 + 1) > m3.045.In light of this example (and many others), one is naturally led to onsiderthe funtion
£(m) = min{n : λ(n) = m}, m ∈ L,whih has not been previously studied in the literature. It would be interest-



232 W. D. Banks et al.ing to know more about the arithmeti properties of £(m); in partiular, thedetermination of the maximal order of £(m) seems partiularly hallenging.It is ertainly expeted that one an take any β > 0 in the proof ofTheorem 4, whih would imply
ℓ(n) ≥ exp((log2 x)A)for any A > 0 and x su�iently large relative to A, and

#Cλ(x) ≤ x exp(−(log2 x)1+o(1)).We remark that the proof of Theorem 5 an be modi�ed slightly toestablish the perhaps more natural bound
#B∗

ϕ(x) ≤ x2/3+o(1),where B∗
ϕ is the set of integers m ∈ Bϕ suh that d 6∈ Bϕ for every properdivisor d of m. In partiular, even if Bϕ 6= ∅, it is true that

lim
x→∞

#B∗
ϕ(x)

#Bϕ(x)
= 0.In partiular, almost all ounterexamples to the Carmihael onjeture havemany proper divisors whih are also ounterexamples.Let n0 be an arbitrary element of Cλ, assuming that Cλ 6= ∅. As λ(1) =

λ(2) and λ(4) = λ(8), it follows that 24 |n0. Then 32 |n0, sine λ(n0) =
λ(3n0) if 3 ∤ n0, and λ(n0/3) = λ(n0) if 3 ‖n0. By similar arguments, oneshows that n0 is a multiple of 24325272112132. Putting aside 17 for the mo-ment, we an argue that 19 |n0 as follows. If 32 ‖n0, then

λ(n0) = [λ(n0/32), λ(32)] = λ(n0/32)sine λ(32) |λ(72); this ontradition shows that 33 |n0 and now it is an easymatter to onlude that 192 |n0, whih then further implies that 34 |n0. Toshow that 172 |n0, we �rst use the fat that 132 |n0 to onlude that 25 |n0,�bumping up� the power of 2 as we did above for the prime 3. Then 412 |n0follows, and we an onlude that 26 |n0, and �nally 172 |n0. Continuingin this manner, we veri�ed by omputer that n0 is divisible by the squareof every prime number p ≤ 30000. It would be interesting to see more ex-tensive numerial results in this diretion. Certainly, it should be possible tonumerially establish lower bounds of the strength m0 ≥ 1010000000000 for theelements m0 of Bλ, as has been done for the set Bϕ in the paper [15℄ of Ford.
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