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ABSTRACT 

Chronic diseases significantly affect the quality of life of over 25 million Americans and 

are among the most common and costly health problems.  Due to the complexity of these 

diseases, it is difficult for clinicians to analyze trends in patient data and correlate these 

trends with other patient information such as demographic data. Therefore, there is a 

need for informatics tools to efficiently monitor disease progression and to analyze trends 

in patient data to improve disease management.  Moreover, because chronic diseases 

have been identified as among the most preventable diseases, these tools can also be used 

to identify patients at risk and provide information for early intervention.  To this end, a 

temporal mining framework was developed to identify frequently occurring temporal 

patterns in patient measurements that may lead to development of diseases.   

 

The developed framework uses patient data collected over a series of regularly-scheduled 

clinical visits.  Temporal sequences were preprocessed and discretized based on user 

preferences. Temporal mining was then conducted to identify frequent episodes in 

measurement sequences before the onset of a disease.  The relevance and importance of 

these episodes were determined by examining the episode frequency and confidence.  
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Contrast mining was also performed to determine episodes significant to specific patient 

groups and to conduct side-by-side comparisons of episodes shared among patient 

groups.  The efficacy of the temporal mining framework was evaluated via a case study of 

lymphedema.  The framework was applied to a dataset to study the incidence and severity 

of lymphedema in post breast cancer patients.  Temporal changes in limb volume (LV) 

measurement data were analyzed via the framework, with patients grouped based on 

body mass index, occurrence of post-operative swelling, and age. The analysis indicated 

that similar LV change episodes have varying probabilities of leading to lymphedema in 

various populations. This framework facilitates the identification of patients at risk of 

developing a chronic disease and provides useful evidence-based guidelines for making 

personalized and targeted treatment decisions.



1 

 

 

CHAPTER 1 

INTRODUCTION 

 

 

1.1 Motivation 

Chronic diseases such as cancer, heart disease, and diabetes are the most common causes 

of death in the United States and are responsible for as many as 7 out of 10 American 

deaths each year [1]. They account for 1.7 million deaths in the US each year and 

significantly affect the quality of life of an additional 25 million Americans [1]. Since 

detection and management of chronic diseases requires monitoring of a variety of patient 

measurements over prolonged periods of time, it becomes difficult for physicians and 

clinicians to keep track of trends in patient data and even more difficult to identify 

correlations between the trends and other demographic patient information such as 

comorbidities. There is thus a need for informatics tools to monitor disease progression, 

analyze trends in patient data, and match these trends to known patient profiles in order to 

improve disease management.   
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Although chronic diseases are among the most prevalent, they have also been identified 

as among the most preventable [1]. Early detection and healthy behaviors play an 

important role in preventing and controlling the effects of these diseases [1-2]. The 

relative success of chronic disease treatments was also found to be dependent on the 

earliness of detection. Thus, it would be very beneficial to develop systematic informatics 

tools to identify patients at risk of developing a disease and provide information for early 

intervention. Such early interventions are particularly important in the management of 

chronic diseases given the irreversible nature of many chronic conditions and the long 

and costly treatments required to manage them.  

   

To analyze frequently occurring trends in patient measurements that lead to chronic 

diseases in different patient groups and to identify patients at risk of developing such 

diseases, a temporal mining framework was developed and is presented in this thesis. 

 

1.2 Needs and Goals for the Temporal Mining Framework 

The proposed temporal mining based framework will be useful for analyzing chronic 

disease datasets with temporal components, with specific focus on extracting significant 

trends in patient measurements that lead to the development of a specific disease. The 

significant trends enable the identification of patients at risk of a disease and may predict 

the future onset of the disease. The recognition of at-risk patients provides opportunities 

for early interventions for better disease management in such patients.  
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Since clinical datasets typically contain large amount of patient data with a variety of 

measurement trends that could possibly lead to diseases, it is important that the temporal 

mining results be well structured and organized to deduce meaningful and useful 

information. This is achieved by grouping patients and performing temporal mining in 

patient groups based on domain-concept mining techniques [3]. By analyzing the 

significant trends leading to diseases in individual patient groups, evidence-based 

guidelines can be established in each patient group which would help in the formulation 

of personalized treatment decisions. In addition to clinical datasets being voluminous in 

nature, they also differ widely in their data structures as different clinical settings use 

different sources and procedures to collect patient data. Thus, the temporal mining 

framework needs to be generic to accommodate these differences.  

 

The growing volumes of electronic patient records and the prevalence of chronic diseases 

in the United States provide abundant patient data to develop nationally representative 

patient samples to obtain evidence-based results. Such evidence-based findings can be 

used to propose recommendations for risk reduction that can be included in the Best 

Practices documents for the management of diseases.  

 

1.3 Thesis Outline 

This thesis document is organized as follows: In CHAPTER 2, the data mining and 

temporal mining concepts are introduced and a survey of previous studies in clinical 

domain using these mining techniques is presented. CHAPTER 2 also introduces 

lymphedema, a chronic condition observed in breast cancer survivors, which is 



4 

 

considered as a case study of the temporal mining framework. In CHAPTER 3, the 

process flowchart for the proposed framework is described and the problem definition is 

presented using a formal representation of the framework. In CHAPTER 4, the division 

of patients into groups and temporal modeling of patient measurements in a dataset are 

discussed and illustrated with a sample clinical study. CHAPTER 4 also discusses the 

extraction of frequent episodes leading to a disease using episode mining and the 

comparison of the extracted episodes across different patient groups. CHAPTER 5 

presents a case study of the temporal framework for lymphedema dataset. The patient 

dataset and user interfaces for data collection are reviewed and the steps described in 

CHAPTER 4 for developing the temporal mining framework are applied to the 

lymphedema dataset. CHAPTER 6 includes a discussion and evaluation of the proposed 

framework using results from the lymphedema case study. It also discusses the 

limitations of the framework. The thesis is concluded in CHAPTER 7 with a discussion 

of possible future work.      
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CHAPTER 2 

LITERATURE REVIEW 

 

 

This chapter focuses on three topics. First, a review of previously published data mining 

related articles in medical and clinical domains is conducted. The second section focuses 

on literature on temporal data mining to extract relationships from medical datasets with 

temporal components. The third section introduces lymphedema, a side effect of breast 

cancer surgery, which is used as a case study of the temporal mining framework in this 

thesis.  

 

2.1 Data Mining in Medical Informatics 

Data mining is commonly defined as the extraction of previously unknown and 

potentially useful information from a database [4]. With the growing volumes of 

electronic patient records, data mining has become popular to extract hidden patterns in 

patient data for better understanding of relationships within the data. Data mining in 

medical domain is unique from that in other domains due to the special characteristics of 
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medical datasets. Medical datasets are often privacy-sensitive, voluminous and 

heterogeneous with data collected from different sources [5]. The collected data may also 

need to be characterized mathematically. The rest of the section discusses a few data 

mining studies that have been conducted in medical and clinical areas.  

 

In clinical domain, data mining techniques have been applied to large clinical repositories 

containing clinical and administrative data collected from electronic sources to identify 

new disease associations [6]. The techniques applied include pattern discovery to identify 

commonly occurring associations in the dataset, predictive analysis to predict future 

outcome for a patient based on the existing patient records, and association mining to 

extract interesting rules from the identified associations.  

 

There have been many recent studies to predict the survival of patients with fatal diseases 

and to predict treatment outcomes. Studies were conducted by Oztekin et. al. [7] to 

predict the survivability of heart-lung transplantation patients and by Delen et. al. [8] to 

predict the survivability of breast cancer patients using prediction models such as neural 

networks [9], decision trees [10], and regression [11]. Decision tree algorithms were also 

used to effectively predict the survival period of kidney dialysis patients [12] and bladder 

cancer treatment outcomes [13]. Decision trees based on rules were created and decision 

making algorithms were used to predict outcomes. 

 

A study by Richards et. al. [14] involved the generation of association rules to find 

indicators for early mortality. The association between the initial patient visits’ 
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observations and early mortality was investigated and rules were generated based on 

clinical records of 21000 diabetes patients. Association/dependency rule concepts were 

also applied to identify head trauma patient needing computed tomography (CT) scans 

[15]. Rules showing dependencies between patient criteria such as age, sex, intoxication, 

headache, etc., and CT scan necessity were identified.  The rules were evaluated on test 

data and selected based on the support and confidence.  

 

Data mining has also been used for other functions, for instance to fill knowledge gaps in 

clinical guidelines used in clinical decision support systems [16]. Clinical guidelines hold 

medical evidence and provide recommendations for clinical conditions that may be 

encountered in practice. Data mining techniques such as decision-tree algorithms were 

used to extract rules pertaining to the choice of treatment, choice of drugs, etc. from 

patient records. The rules were extracted for patient subgroups with conditions that were 

either not addressed in the guidelines or had incomplete rules with missing or imprecise 

recommended action in the guidelines. 

 

Data mining techniques were also used to detect possible adverse drug events (ADEs) 

[17]. Data analysis in the ADE area is particularly important for the generation of reports 

of suspected adverse reactions when new medical products are introduced into the market 

and for the better detection of ADEs to reduce mortality in hospitalized patients. 

 

Automated methods for extracting only the interesting patterns from a large set of mined 

patterns have been proposed by Siadaty et. al. [18]. They used a dual-mining approach 
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that is based on a comparison of the strength of a mined pattern from a database to the 

strength of the equivalent pattern extracted from a knowledgebase. If the strengths of the 

two patterns are different, then the pattern is considered as potentially interesting. 

 

Although the above mentioned studies make important contributions to the medical field 

by analyzing patient records using data mining techniques, there are many patient 

datasets containing time-stamped data which need specialized temporal techniques for 

analysis. Many clinical tasks such as tracking of chronic diseases and collection of patient 

measurements over a number of visits are time-oriented. Thus, clinical datasets often 

contain medical data with a temporal dimension, and therefore temporal reasoning and 

temporal mining are becoming popular in medical informatics to extract sequential 

relationships containing significant clinical meaning from such datasets [19].  

 

2.2 Temporal Analysis in Medical Informatics 

Temporal/episode mining emerged as a specialized stream of data mining to extract 

relationships from datasets with temporal dependencies [20-21]. Two focus areas of 

temporal mining are temporal causal relationship mining and association mining [22].  

Temporal data mining has a few distinguishing characteristics when compared to 

conventional data mining [22]. In time series data, the value of the series at any given 

instance may depend on values at previous time instances. Also, the association rules 

generated using temporal mining need to be connected to time periods and are valid only 

for those time periods [22].  
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In temporal mining, the time series data is considered as sequence of events with 

associated times of occurrence. Mining algorithms have been proposed to identify 

frequent ordered collections of events, called ‘episodes’ in event sequences [20-21]. 

Candidate episodes are recognized by sliding a window across event sequences and the 

identified episodes are used to obtain rules for predicting the behavior of episodes and for 

evaluating the episode occurrence frequency.   

 

The importance of temporal information in electronic medical records and the effective 

use of the information for temporal inference such as temporal abstraction, time-oriented 

decision support, and forecasting tasks have been recognized over the past few years 

[23]. Temporal information has been successfully used to abstract higher-level concepts 

such as important context-sensitive summaries and patterns over time periods [24-25], 

with the obtained knowledge then being applied to various clinical domains. Shahar et. al. 

proposed knowledge-based temporal abstraction methods to summarize a patient’s 

condition during a time period, to support or modify current treatment plans, and to 

support recommendations of medical decision-support systems [24]. They also automated 

the entry process of temporal abstraction knowledge by physicians through the 

development of  knowledge acquisition tools [25].  

 

Temporal abstraction has also been combined with case-based reasoning [26]  and used 

to predict future onset of diseases based on the present patient condition [19]. Temporal 

sequences of values are abstracted into states such as low, normal, high, etc. and are 

combined to form trends over time intervals. The trends are characterized and used to 
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retrieve similar previous cases, which in turn are used to understand and predict future 

onset of diseases.  

 

Temporal information has been used by many medical information systems to answer 

time-based clinical queries[27] using TQuery, a specialized database query language to 

form and execute temporal and contextual based queries on an object-oriented medical 

record database. It has also been used to provide causal explanations for given clinical 

conditions in diagnostic reasoning [28].  

 

Temporal mining of sequential clinical datasets provides opportunities for enhanced 

understanding of medical phenomena such as symptoms, progression and diagnosis, and 

prediction of future behavior of diseases. Moreover, there is an important need to 

understand and analyze such datasets since they contain clinically significant temporal 

knowledge. Evidence-based knowledge such as trends and irregularities extracted from 

such datasets is required to support clinical decision making [29].  

 

In this thesis, a temporal mining-based framework is proposed to analyze chronic disease 

datasets with temporal components, with specific focus on extracting significant trends in 

patient measurements that occur before the development of a particular chronic disease. 

These trends, also called episodes, enable the identification of at-risk patients and may 

predict future onset of a disease. They also provide opportunities for early intervention in 

such patients and establish evidence-based results for personalized treatment decisions. 
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In order to obtain well structured mining results in relevant patient groups, patients with 

similar characteristics were grouped based on domain-concept mining (DCM) techniques 

[3] and mining was performed independently in each patient group.  The DCM approach 

enables the discovery of episodes in under-represented patient groups. Without the use of 

DCM, such episodes may remain uncovered, particularly with high minimum support 

thresholds. On the other hand, lowering the minimum support threshold to retrieve less-

frequent episodes will increase the computational complexity and return many trivial 

associations. DCM improves the efficiency of mining algorithm by reducing the size of 

data set and memory required for computation. The results obtained by using DCM are 

also naturally organized according to patient groups. 

 

This study differs from previous temporal mining research in the clinical domain in that it 

systematically generates episodes from discretized measurement changes, utilizes the 

domain-concept mining approach to form patient groups, and performs temporal mining 

to improve the understanding of the chronic disease development and progression. 

 

2.3 Lymphedema  

The proposed temporal mining approach was applied to a dataset containing 

measurements from breast cancer survivors for better understanding of patient 

measurement patterns leading to lymphedema [30-32]. Lymphedema (LE), a chronic 

condition commonly observed as an after-effect of breast cancer treatment, causes 

significant swelling in limb areas due to the accumulation of protein-rich fluid [33]. It 

impacts functional abilities, impairs limb motion, and affects the physical and 
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psychosocial health of patients [34-35]. Recent statistics have shown that there are an 

estimated 2.5 million breast cancer survivors in the United States with over 192,000 

American women developing breast cancer this year (2009 - 2010) alone [2].  With the 

advanced treatments available, the survival rate for breast cancer is the highest among all 

cancers (89% at 5 years after diagnosis) [1]. Unfortunately, although the precise 

percentage of breast cancer survivors developing LE is not known, up to 40% of the 

survivors are estimated to develop LE or limb swelling [31]. Moreover, studies have 

shown that LE is a life-time risk for all breast cancer survivors [36]. 

 

In order to raise the profile of LE and to further improve LE management, an 

international consensus document called ‘Best Practice (BP) for the Management of 

Lymphoedema’ document [37] was created, and the guidelines and recommendations 

from this document are regularly followed by the LE community. The document aims to 

improve the care provided to LE patients by presenting a model for best practice in LE 

and by providing useful risk reduction and treatment guidelines for managing LE. 

Although the BP document associates the recommendations with supporting research 

evidence where possible, there are still a few guidelines in the document that are based 

only on experienced judgment or limited evidence, and that require further support from 

evidence-based research [38-39]. The BP document as well as the LE community would 

benefit from an informatics framework capable of providing evidence-based treatment 

decisions for timely LE risk reduction.  
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The findings from this thesis will demonstrate the potential of temporal mining approach 

for LE risk detection and for providing opportunities for early intervention which are 

particularly important in LE analysis, since studies have shown that LE if not diagnosed 

and managed in its early stages may become irreversible in nature [40]. With the 

availability of large LE datasets, such findings can be better established and be used to 

propose new evidence-based recommendations or to further strengthen the existing 

recommendations for LE risk reduction in the Best Practice (BP) document [37]. Without 

an informatics framework, it is difficult for physicians and researchers to keep track of 

temporal trends and identify at-risk patients. The developed framework would take the 

LE community one step closer to achieving the goal of designing a robust decision 

support system for LE risk reduction and targeted treatment decisions.  
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CHAPTER 3 

INFORMATICS FRAMEWORK 

 

 

Temporal mining has been used to analyze time-series data in many different areas since 

the mid- 90’s [20-21]. In this thesis, a temporal data mining framework is proposed for 

clinical trials and other studies in the medical domain.  This framework is suitable for 

data analysis from a clinical setting where patient measurements are collected at regularly 

scheduled visits over a period of time. Mining clinical data is distinct from mining in 

other fields as clinical data often contains large volumes of data collected from different 

sources with different data structures [5]. Taking this issue into consideration, a generic 

framework was developed that can be used in a variety of clinical settings. Though there 

are many possible applications of such a framework, we focus on utilizing it to detect 

patients at risk of developing a particular disease/condition by identifying relevant 

changes in patient measurements before its onset. The approach can also be generalized 

and used for the temporal tracking of chronic diseases. 
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3.1 Domain concept mining 

In order to determine and compare the temporal changes in measurement values across 

different patient groups, patients are categorized based on relevant attributes. This 

concept of grouping patients with common characteristics together and performing data 

mining in each patient group is based on domain-concept mining (DCM)  [3].  An 

important rationale for using the DCM approach is that it is more efficient in identifying 

possible frequent episodes that lead to a disease in patients belonging to under-

represented groups. When the complete patient dataset is considered for mining, even 

though a given episode frequently leads to a disease in patients having a particular 

common characteristic, the overall episode support may be lowered by other patient 

groups where the episode does not lead to disease as frequently. This low overall support 

for the given episode when all patients are considered may be less than the minimum 

support threshold, and ultimately such episodes containing useful and important 

information about disease prediction may not be retrieved. The results mined from 

smaller patient groups provide more opportunities for personalized disease management. 

 

3.2 Process Flowchart 

Figure 1 shows a flowchart for the proposed framework and describes the process for 

grouping patients and for generating and comparing the frequent temporal episodes in 

each patient group. First, patients are grouped based on grouping criteria L of the 

demographic attributes in set D. MCs are calculated by comparing the patient 

measurements at each visit (M) to the measurements at the baseline visit (B). The 



 

calculated MCs are then discretized into one of the measurement change categories in X. 

Temporal sequences are generated by 

visits. Episodes or subsequences 

windows of different widths and 

episodes that occur at a given 

frequent episodes are then

patient groups to better understand the disease risk differences between patient groups

3.3 Mathematical Notation

A summary of the notation 
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discretized into one of the measurement change categories in X. 

emporal sequences are generated by considering MCs of a patient across all sched

or subsequences are extracted from temporal sequences by taking 

widths and sliding the windows across temporal sequence

given distance of y from the diagnosis visit 
� are extra

frequent episodes are then systematically compared and contrasted across different 

to better understand the disease risk differences between patient groups

Figure 1: Process flowchart 

 

otation 

A summary of the notation and functions used in the thesis is provided below 

discretized into one of the measurement change categories in X. 

f a patient across all scheduled 

by taking 

sequences. The 

are extracted. The 

and contrasted across different 

to better understand the disease risk differences between patient groups. 

 

below in Table 1. 
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Table 1: Notations used in the thesis 

D The set containing demographic attribute values for patients 1 to �� 

� = {���, ���. … . ����} 

where �� is the number of patients in the study 

��� The vector of demographic attribute values for patient i 

��� = (��,�, ��,� … . . ��,���)  

where ��  is the number of demographic attributes 

T The set of visits 

 ! = {" #$$∈[�,�'] } 

where #$ is the )*+ visit of a patient and �, is the total number of visits 


� The disease diagnosis visit for patient i 

M The set containing measurements of patients 1 to �� 

 - = {.����, .����. … . .�����}  

.���� The vector of measurements for patient i  

 .���� = (.����,�, .����,� … … . .����,�/�)  

            where �0  is the number of measurement attributes 

.����,1 The vector of measurement k values for patient i for visits 1 to �, 

 .����,1 = (.����,1$ | 1 ≤ ) ≤ �,)  

L The set of levels for the attributes used for dividing patients into groups 

 6 = {7��, 7��. … . 7��/�8���} 

71���� The vector of values used for dividing patients into �9,1 groups for a 

demographic attribute k 

 71���� = (71,�, 71,� … . . 71,�:,;)  

 where �<,1 =  = �9,1                 >? @ >A B �>ACDE#E FBD>BG7E�9,1  + 1       >? @ >A B CI�#>�JIA FBD>BG7EK 
X The set representing measurement change categories 

 L = {M, M� … … . M�N} 

 where �O is the number of measurement categories  
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3.4 Problem Definition 

A formal representation of the framework, including problem definition, is described in 

this section.  A variety of attribute values may be collected from a patient to study factors 

that lead to a disease or result in disease progression.  The collected attributes may 

include both demographic data as well as measurement data. The demographic attributes 

are defined as variables that are collected a single time (typically at the initial visit) and 

assumed to be constant throughout the study (e.g. name, gender, date of birth, blood 

type). On the other hand, measurement attributes are defined as variables that are 

collected at defined intervals (typically at each visit) and assumed to change or fluctuate 

throughout the study (e.g. systolic blood pressure, hematocrit, cholesterol). While 

demographic attributes are used mainly to divide patients into groups, measurement 

attributes are used to study the conditions leading to a disease by analyzing changes in 

measurement attribute values before disease development.     

 

Let � = {���, ���. … . ����} contain the demographic data for all patients with ��� =
(��,�, ��,� … . . ��,���)  being the vector of demographic data for patient >, �� being the 

total number of patients in the study, and  ��  being the number of demographic 

attributes.  A set of regularly scheduled visits is defined,  ! = P#�, #�, … , #�'Q where �, is 

the total number of visits.  The first visit in which a disease diagnosis or abnormal level is 

reached is represented as  
�. Using !, the measurement data for all patients can be 

defined as - = {.����, .����. … . .�����}, where .���� = (.����,�, .����,� … … . .����,�/�) contains the 
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measurement data for patient > and .����,1 = (.����,1$ | 1 ≤ ) ≤ �,) is patient >’s vector of data 

for measurement attribute @ at a visit ) and �0  is the number of measurement attributes.   

 

To better understand the notation described above, consider a sample clinical study of �� 

patients in which the measurement attributes, weight and LDL (low-density lipoproteins) 

cholesterol (�0 = 2), and demographic attributes, gender and age (�� = 2) (see Table 

2), are collected over four visits (�, = 4).  This sample clinical study will continue to be 

used in the next few chapters.  

 

Table 2: Attributes collected in the sample clinical study 

Attributes 

Measurement 

Attributes 

Demographic 

Attributes 

Weight 
LDL 

cholesterol 
Gender Age 

 

 

Suppose further that patient ��is a 30-year-old female who weighs 130 lbs and has a LDL 

cholesterol of 100 mg/dL during the #� visit; weighs 135 lbs and has a LDL cholesterol of 

130 mg/dL during the #� visit; weighs 137 lbs and has a LDL cholesterol of 130 mg/dL 

during the #T visit; and weighs 132 lbs and has a LDL cholesterol of 125 mg/dL during 

the #U visit.  The demographic vector for patient �� would be �������= (‘Female’, 30). 

Similarly, the measurement vector for patient ��would be .���� = ((130, 135, 137, 132), 

(100, 130, 130, 125)) as shown in Table 3. 
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Table 3: Example measurements for patient V� 

Measurement 

Attribute (k) 

.����,1 

#� #� #T #U 

Weight (in lbs) 130 135 137 
132 

LDL cholesterol 

(in mg/dL) 
100 130 130 125 
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CHAPTER 4 

DATA MINING 

 

 

4.1 Temporal Modeling  

Although data mining algorithms may be applied to the full set of data (or patients), 

generally the most interesting results are those mined from specific subsets of the data (or 

patient groups).  In this framework, the demographic attributes are used to divide the 

patient data set into groups.  In particular, let 6 = {7��, 7��. … . 7����} represent the criteria 

(levels) for patient grouping where 7�1 = (71,�, 71,� … . . 71,�:,;) is the vector of values used 

for splitting demographic attribute k into groups and �<,1 is the number of such dividing 

values for this attribute.  On the basis of levels L of demographic attributes D, patients 

are divided into groups as shown in Figure 1. For discrete variables, 7�1 will allow for 

grouping into �<,1 groups, one for each possible value of the variable; however, for 

continuous variables, 7�1 will allow grouping into �<,1 − 1 groups with each element of 

the vector forming a group boundary condition.   
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For example, for the discrete gender attribute, the levels vector  7���� = (X-B7EX, ′ZE.B7E′) 

can be used to divide patients into two groups as shown in Table 4.  However, for the 

continuous age attribute, if one wanted to divide the patient into the four groups [0, 25), 

[25, 50), [50, 75), [75, 150) (see Table 5), the levels vector would need to contain the 

following five elements: 7����� = {0, 25, 50, 75, 150}.   

 

Table 4: Example patient groups based on gender 

Gender 

Male Female 

 

Table 5: Example patient groups based on age 

Age  

(in years) 

< 25 25 – 49 50 – 74 75 – 150 

 

It should be noted that patient groups can be formed using multiple attributes by 

recursively applying the grouping function. For example, a patient dataset grouped on the 

basis on gender can further be divided into groups based on age as shown in Table 6. 
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Table 6: Example patient groups formed by recursive grouping based on the gender and 

age criteria respectively 

Patients 

Male Female 

< 25 

yrs 

25 – 49 

yrs 

50 – 74 

yrs 

75 – 150 

yrs 

< 25 

yrs 

25 – 49 

yrs 

50 – 74 

yrs 

75 – 150 

yrs 

 

 

Temporal analysis of patient measurements can be performed based on the changes in 

measurement values over a monotonically increasing time frame.  Measurements at the 

baseline visit are used as the basis for comparison to calculate measurement changes 

(MCs) as shown in Figure 1. The baseline, G1 for a measurement attribute k can either be 

specified absolutely as a particular visit (e.g. #�, #�) or relatively, as one visit with respect 

to the current visit being analyzed (e.g. ∆#(1), ∆#(2) ).  For example, if the measurements 

at visit #$ are being analyzed to determine the measurement change episodes, the baseline 

could be specified absolutely as #�, in which case the measurements at visit #$ are 

compared to the measurements at visit #�, or relatively as ∆#(1), in which case the  

measurements at visit #$ are compared to the measurements at visit #$_�. The visit at 

which patient  �� is diagnosed with the disease of interest or in which some measurement 

reaches an abnormal state is represented by 
� . For instance, if patient �� is diagnosed 

with heart disease at visit #U, then 
� = 4.  

 

For data mining, the values of the MCs should be discrete in nature.  To facilitate the 

discretization of MCs (see Figure 1), L = {M�, M� … … . M�N} is introduced as the set of 
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discretized values for a MC, where �O is the number of such categories. The general 

function used to translate MCs into discretized values based on the baseline G1 is shown 

as:  

  ?�.�,1$ , .�,1`; � = a | a b L      (1) 

where > refers to the patient, ) the visit, and @ the measurement attribute.   

 

For example, if X = { ‘↗’, ‘↘’, ‘→’} where ‘↗’ represents an increase in a measurement 

value when compared to the measurement at baseline, ‘↘’ represents a decrease in the 

measurement value, and ‘→’ represents a stable measurement value, then one could 

define a discretizing function as:  

  ?�.�,1$ , .�,1`; � =
cd
e↗   >? .�,1$ >  .�,1`;

↘    >? .�,1$ <  .�,1`;
→   >? .�,1$ =  .�,1`;

K    (2) 

 

If this function is applied to an entire set of measurements for an attribute, it will generate 

a temporal sequence that can be mined.  This sequence of MCs for patient i over visits 1 

to �, is represented by Z�.����,1, .�,1`; � and is defined as  

 Z�.����,1, .�,1`; � = (?�.�,1� , .�,1`; �, ?�.�,1� , .�,1`; �, … , ?�.�,1�' , .�,1`; �)   (3) 

 

Continuing with the example clinical study introduced in chapter 3, if weight change is 

determined by comparing weight at visit #�(G� =  #�) and the cholesterol change is 

determined by comparing cholesterol at the previous visit (G� =  ∆#(1)), then the resultant 
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temporal sequences for weight and LDL cholesterol values (see Table 7) generated from 

patient measurement values in Table 3 are: 

 Z�.����,�, .�,�`k � = (↗ ↗ ↘) 

 Z�.����,�, .�,�`l � = (↗ → ↘) 

 

Table 7: MC sequences for weight and LDL cholesterol attributes for patient V� 

Measurement 

(k) 

Z�.����,1, .�,1`; � #� − #� #� − #T #T − #U 

weight ↗ ↗ ↘ 

LDL cholesterol ↗ → ↘ 

 

 

4.2 Episode Mining 

To extract usable MC episodes from temporal sequences, support and confidence are 

defined using windows of change. A MC episode is defined as a subsequence of the full 

length MC sequence of a patient from visits 1 to �,, Z�.����,1, .�,1`; �. The frequency of a 

MC episode leading to a disease after y visits is defined as the fraction of same-size 

windows that end a distance of y before the diagnosis visit (z) in which the episode 

occurs. Given a window w of width win, and mn(o>�), the set of all windows with width 

win at a distance of y before the diagnosis visit z, the frequency of a MC episode α 

leading to a disease in y visits can be obtained as:  

  ?Dn(α, o>�) =  |Pq ∈ rs(q��)| t uvvwxy z{ |Q|
| rs(q��)|               (4) 
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The probability of a MC episode leading to a disease in y visits is measured using the 

concept of confidence in episode mining. The confidence of an episode α leading to a 

disease is calculated as: 

  CI�?n(α, o>�) = |Pq ∈ rs(q��)| t uvvwxy z{ |Q|
|{q ∈ r(q��)| t uvvwxy z{ |}|      (5) 

where m(o>�) is the set of windows of width win irrespective of disease diagnosis.  

 

Given, an attribute k, the baseline for that attribute G1, and the measurement vectors 

.���}~,1 for all patients in the demographic group ��, the episode mining function (see 

Figure 1) that returns all MC episodes with frequency greater than a threshold frequency 

?D0�� and confidence greater than a threshold confidence CI�?0�� is given as: 

E�>��� , .���}~,1, G1�����, ?D0��, CI�?0��� = ���, ?Dn(α, o>�), CI�?n(α, o>�)��  (6) 

 where ?Dn(α, o>�) > ?D0�� and CI�?n(α, o>�) > CI�?0��  

 

The episode mining function essentially returns the episodes that occur frequently in a 

patient group and cause a disease with high probability. 

 

4.3 Contrast Mining 

The frequency and confidence values of the episodes returned from the episode mining 

function are then systematically compared across different patient groups (see Figure 1) 

to understand risk differences between patient groups. This mining in various patient 

groups is analogous to emerging pattern mining and contrast mining [41-42] which have 

become popular over the past few years. Contrast mining [41] is useful to detect 
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differentiating characteristics between non-overlapping groups. For example, it can be 

used to identify patient groups with a high probability of developing disease when 

compared to other patient groups. Emerging patterns [42] are described as episodes 

whose supports significantly increase across different groups. Emerging pattern mining 

can be used, for instance, to examine increase in disease risk with an increase in BMI of 

the patient. 

 

4.4 Mining Algorithm 

Given the measurements, baselines, and patient groups, Algorithm 1 describes the steps 

to find temporal MC episodes and to calculate the frequency and confidence of the 

episodes leading to the considered disease. The variable AE�1,`;, �� in line 3 contains the 

temporal sequence of a patient from visits 1 to �,. Episodes are extracted from AE�1,`;, �� 

by taking windows of widths 1 to len(AE�1,`;, ��) and moving the windows across the 

sequence AE�1,`;, ��.  

 

For example, consider the temporal sequence of LDL cholesterol changes in the previous 

example from Table 7, Z�.����,�, .�,�`l � = (↗ → ↘). Episodes (α) are extracted from this 

sequence as shown below, by considering windows of widths 1 to 3 and moving the 

window across the sequence.  

S = {‘↗’,’→’,’↘’} for win = 1 

S = {‘↗ →’,’ → ↘’} for win = 2 

S = {‘↗ → ↘’} for win = 3.  
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Thus, the set of all possible episodes that can be extracted from  the sequence ‘↗ → ↘’ is 

S = {‘↗’, ’→’, ’ ↘’, ‘↗ →’,’ → ↘’, ‘↗ → ↘’}.  The frequency and confidence of 

episodes leading to the disease in y visits are calculated. For example, if one wants to find 

the episodes that lead to a disease after one visit (y = 1) and the patient is diagnosed with 

a disease at #U visit (z = 4), then one would find the frequencies for the set of episodes 

that end at the (z – y) visit, i.e. the 3
rd

 visit. The set of candidate episodes in this case that 

end in the 3
rd

 visit is {’ →’ ,‘↗ →’} as illustrated in Table 8. 

 

Table 8: Episode generation from temporal sequence ��������,
, ��,
�
 � 

Temporal sequence Z�.����,�, .�,�`l � 

over visits #� − #U 

 

Episodes generated from temporal sequence Episodes (α) 

ending at one 

visit before 

diagnosis 

(at #T visit) 

win = 1 win = 2 win = 3 

α 
ends 

at 
α 

ends 

at 
α 

ends 

at 

↗ → ↘ 

↗ 

 
#� 

↗ → 

 
#T ↗ → ↘ #U 

 

→  

 

↗ → 
→ #T → ↘ #U   

↘ #U     

 

 

Line 11 in the algorithm shows the output which contains the episode �, the frequency of 

the episode leading to the disease in y visits ?Dn(α, 7E�(α)), and the confidence of the 

episode leading to the disease CI�?n(α, 7E�(α)). All episodes with a frequency greater 

than a threshold frequency ?D0�� and a confidence greater than a threshold confidence 

CI�?0�� are considered as frequent episodes which lead to the disease with high 

probability and are stored in the frequent episode set, FS. The frequency and confidence 
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values of episodes in FS are compared across different patient groups as shown in line 16 

to analyze and understand the variations in disease risks in different patient groups.     

 

Algorithm 1. 

1. for each measurement attribute @ ∈ � 

2.  for each patient �� ∈ �� 

3.  AE�1,`;, �� ← Z�.����,1, .�,1`; � 

4.    find episodes from  AE�1,`;, �� 

5.  store episodes in S  

6. end for 

7.  for each episode � ∈ �   

8.  calculate ?Dn(α, 7E�(α)) 

9.  calculate CI�?n(α, 7E�(α)) 

10.  if (?Dn(α, 7E�(α)) >  ?D0�� and CI�?n�α, 7E�(α)� > CI�?0��) 

11.   output α, ?Dn(α, 7E�(α)), CI�?n(α, 7E�(α))  

12.   store episode � in FS 

13.  end if  

14.  end for  

15. for each episode � ∈ Z�   

16.       compare ?Dn(α, 7E�(α)) and CI�?n(α, 7E�(α)) across groups ��, ��, … . ���,;  

17. end for 

18. end for 
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CHAPTER 5 

CASE STUDY OF TEMPORAL MINING FOR 

LYMPHEDEMA DATASET 

 

 

The temporal mining approach described in the previous chapters was evaluated by 

applying to a LE dataset to identify and analyze commonly occurring episodes in limb 

volume changes (LVCs) before the development of LE. The discovered frequent episodes 

can help to identify patient groups who are at a greater risk of developing LE in the near 

future.  They are expected to be used to better predict the onset of LE, and therefore to 

provide more opportunities for early intervention, which has been shown to be important 

in the successful management of LE [43]. 

  

5.1 Subjects  

The data required for this 30-month NIH-funded study were collected from 233 US 

Midwestern women who have been diagnosed with breast cancer and scheduled for 
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surgery (��= 233). Participants selected for the study had to be over 18 years of age with 

no prior history of LE or breast cancer. In addition, the ability to understand English and 

give informed consent was required. Participants with ages ranging from 26 to 95 years 

were recruited, and data including limb volume measurements as well as demographic 

characteristics such as body mass index (BMI), age, dominant-side, and cancer-affected 

side  were collected at a US Midwestern university-affiliated state cancer center.  

 

Of all the participants in the study, 221 were unilateral breast cancer survivors while the 

remaining 11 were affected by breast cancer in both left and right sides. Out of the 221 

unilateral breast cancer survivors, 109 patients were affected by cancer in their dominant 

side while 112 patients had their cancer-affected side different from their dominant side. 

Also, 37 of the 233 patient study group experienced swelling after breast cancer surgery 

during the post-operative visit. 

 

5.2 Data Collection 

5.2.1 Data Collection Timeline 

The data required for this study were collected by trained research staff members at 9 

scheduled visits (! = {#�, #�, #T, #U, #�, #�, #�, #�, #�};  �,= 9): preoperative (before surgery), 

post-operative (at approximately 2 weeks after surgery), every three months post-op 

during the first year, and every six months thereafter, as shown in Figure 2. In the figure, 

#$ represents the j
th 

visit of a patient.  



 

 

5.2.2 Data Collection Interface

The primary LE-related meas

cancer affected side, which was measured each visit using two different methods: 

perometry and circumference. 

 

The limb volume (LV) of each arm was first calculated by performing infra

perometry with the arm in a horizontal position 

that was developed to record the LV measured using an optoelectronic volumetry device 

called the perometer. The measurements are taken three times at each visit and an 

average value is calculated to mi

measurements shown in Figure 3, the LV of interest is the average LV of the left limb 

since the patient is affected by cancer in the left side. 
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Figure 2: Data collection timeline 

Interface 

related measurement used in this study was limb volume (LV) of the 

cancer affected side, which was measured each visit using two different methods: 

perometry and circumference.  

of each arm was first calculated by performing infra

ith the arm in a horizontal position [44]. Figure 3 shows the user

that was developed to record the LV measured using an optoelectronic volumetry device 

called the perometer. The measurements are taken three times at each visit and an 

average value is calculated to minimize errors in measurement. In the below sample 

measurements shown in Figure 3, the LV of interest is the average LV of the left limb 

since the patient is affected by cancer in the left side.  

 

urement used in this study was limb volume (LV) of the 

cancer affected side, which was measured each visit using two different methods: 

of each arm was first calculated by performing infra-red 

Figure 3 shows the user-interface 

that was developed to record the LV measured using an optoelectronic volumetry device 

called the perometer. The measurements are taken three times at each visit and an 

nimize errors in measurement. In the below sample 

measurements shown in Figure 3, the LV of interest is the average LV of the left limb 
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Figure 3: User interface for collecting perometer measurements 

 

In addition to perometer readings, circumference measurements (in cm) were collected 

using a nonstretch, flexible tape measure at the hand, at the wrist, and every 4 cm 

thereafter to the axilla [44].  From the partial screenshot shown in Figure 4, it can be 

observed that circumference measurements were taken at 4cm from the wrist (CM4), at 

8cm from the wrist (CM8), and so on. 
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Figure 4: User interface for collecting circumference measurements 

 

LV was calculated from circumference measurements as the sum of hand and arm 

volumes. Hand volume (volhand) was estimated using Eq. 7.  

   FI7+ �� = 123 + (0.036 ∗ C.o� ∗ C.ℎ)      (7)                                

where,  

cmw is the circumference of the wrist and,  

cmh is the length of the hand measured from the longest fingertip to the wrist. 
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Arm volume was calculated by summing the volumes of each 4-cm segment of the arm 

using the following truncated cone formula:  

   FI7 �0 = ∑ �0<� ∗ (�k�l  8 �k��l� 8 �l�l  )
����       (8) 

where, 

cmli is the length of the arm segment (4 cm in this case),  

c1i is the circumference at the lower end of the i
th

 arm segment, and  

c2i is the circumference at the upper end of the i
th

 arm segment. 

 

In addition to measurement data, demographic data of the patients such as BMI, age, etc. 

were also collected. While clinically measurable demographic data such as BMI were 

measured and collected, certain other demographic/historical data such as age, cancer-

affected side, and dominant side were self-reported by patients during the preoperative 

visit, #�. 

 

Figure 5 shows all the attributes collected from patients and illustrates the relationship 

between attributes via the Entity-Relationship Diagram (ERD).  
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Figure 5: The entity-relationship diagram for LE dataset 
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5.3 Patient groups 

In order to determine LE risk in different patient groups, patients were grouped based on: 

body mass index (BMI), occurrence of post-operative swelling, and age. BMI groupings 

were based on the guidelines from Centers for Disease Control and Prevention (2008) 

[45] , and the age variable was partitioned into four roughly equal sized groups.   

 

The grouping criteria for BMI, post-operative swelling, and age demographic attributes 

are: 

1. BMI: [0, 18.5), [18.5, 25.0), [25.0, 30.0), [30.0, ∞) 

2. Post-operative swelling: patients with swelling equivalent to the subclinical LE 

criteria of 3% LVC at the post-operative (t2) visit [46], patients without such 

swelling at the post-operative (t2) visit 

3. Age: [0, 55), [55, 65), [65, 75), [75, ∞) 

 

In terms of the definitions described in Table 1, 

For the BMI attribute,  7������ = {0, 18.5, 25.0, 30.0, ∞}; �9,� = 4  

For the post-operative swelling attribute, 

 7����� = {�IA# − I� AoE77>��, �I �IA# − I� AoE77>��}; �9,� = 2 

For the age attribute,  7T����� = {0, 55, 65, 75, ∞}; �9,T = 4  
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 The average time for the onset of LE was observed to be 6.9 months post-operative in a 

recent study by Stout et al. [46]. By considering the closest visit (visit t4 at the 6
th

 post-

operative month) to the average LE onset time, LVC episodes were further analyzed 

within and after the first six months of surgery by dividing each of the BMI, post-

operative swelling, and age groups into two sub groups. Patients who were diagnosed 

with LE in the first six months were categorized as one group, and those who were 

diagnosed after six months as another group. 

 

5.4 Data Selection 

Perometric LV was primarily used in this study due to the high accuracy of perometer in 

volume estimation [47-48]. For patients whose perometric measurements were 

unavailable (31 patients) due to equipment not being in operation or being serviced at the 

time of the patient visit, circumferential LV was used instead. This substitution is 

justified by the significant correlation (r = 0.89) between the perometric and 

circumferential LVs in this study.  

 

5.5 Measurement Change Discretization  

For the temporal analysis, sequences of limb volume change (LVC) were mined.  At each 

visit #$, the LV at the previous visit #$_�was considered as the baseline (G�= ∆#(1)) and 

LVC was analyzed by comparing volume with the LV at previous visit. The set of 

measurement change categories used in this research is X = { ‘↗’, ‘↘’, ‘→’}. Each LVC 

was discretized into one of the three categories:  
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1. rise in LV (↗)  

2. drop in LV (↘) 

3. stable LV (→) 

 

A rise in LV (↗) is defined as a 3% or greater increase in volume when compared to the 

LV at the previous visit; a drop in LV (↘) is defined as a 3% or greater decrease in LV; 

and stable LV (→) is defined as a LVC of less than 3%. As slight fluctuations in weight 

and fluid retention are natural, the 3% threshold was selected for discretization analogous 

to the study by Stout et al. [46].  If the LV was unavailable at either of the visits being 

considered due to the corresponding patient missing the visit, it was denoted by an ‘x’; 

episodes containing an ‘x’ were not considered for the temporal analysis.  

 

5.6 Episode selection  

Episodes for mining were then defined by identifying the subsequences in each patient’s 

full LVC sequence.  For those patients who developed LE during the study, only 

subsequences occurring before developing LE were recorded, as LVCs after being 

diagnosed with LE can no longer provide useful information in estimating the risk of 

developing LE. 

 

There are several LE diagnostic criteria available: 200 ml perometry LVC [44]; 10% 

perometry LVC [44]; 2cm circumferential increase [44]; self-reported signs and 

symptoms of heaviness and swelling [44]; and the 5% BMI-adjusted LVC criterion [49]. 
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Some criteria (e.g., 10% perometry LVC) are more conservative in the definition of LE 

as compared to some others (e.g., 2cm circumferential increase); however, there is no 

standardized method for diagnosing LE [44]. In this paper, the 5% BMI-adjusted LVC 

criterion [49] was used as a proxy for development of LE due to its consideration of 

commonly experienced weight fluctuations following breast cancer treatment while using 

LV for LE assessment.  

 

To illustrate the conversion of LVs to temporal sequences, examples of LVC sequences 

and LE diagnoses are provided in Figure 6 for three patients (0177, 0251, 0266 with ages 

70, 44, 54 years, and BMIs 35.5, 27, 20.7 kg/m
2 

respectively) affected by unilateral LE. 

The visit at which LE diagnosis condition according to the 5% BMI adjusted criterion 

was met is indicated by ‘LE’. For patient 0177, LV was stable between the t1 and t2 visits, 

the t2 and t3 visits, and the t3 and t4 visits; it then increased between the t4 and t5 visits 

with the LE criterion being met at the t5 visit (z = 5). Similarly, patient 0266 had stable 

LV from t1 to t6, but experienced an increase in LV between t6 and t7 visits, with the LE 

criterion being met at t7 (z = 7). On the other hand, patient 0251 had two stable periods 

between t1 and t3, and subsequently had two consecutive increases between t3 to t4 and t4 

to t5 and at t5 the LE criterion was met (z = 5). 

 



 

It is to be noted that only the subsequence occurring before the development of LE was 

considered for episode generation. 

Z�.�������,�, .����,�`k � = (→ → → ↗ → ↗ → →

patient developed LE at visit 

visit was used for generating episodes. The set of episodes genera

subsequence (→ → → ↗) is 

S = {‘→’,’ ↗’,’ → →’,’ → ↗

 

 5.7 Frequent episodes

In this study, only LVC episodes in windows with at least a width of 2 (

occurring immediately before LE (
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Figure 6: LVCs over t1 – t9 visits 

 

It is to be noted that only the subsequence occurring before the development of LE was 

considered for episode generation. For example for patient 0177, the full LV sequence

� → → → ↗ → ↗ → →), where G�= ∆#(1); z0177 = 5. Since the 

patient developed LE at visit t5, only the subsequence (→ → → ↗) occurring before the 

was used for generating episodes. The set of episodes generated from the 

) is  

→ ↗’,’ → → →’,’ → → ↗’,’ → → → ↗’}.  

5.7 Frequent episodes  

In this study, only LVC episodes in windows with at least a width of 2 (win

before LE (y = 0) were considered for identifying the frequent 

 

It is to be noted that only the subsequence occurring before the development of LE was 

For example for patient 0177, the full LV sequence is 

= 5. Since the 

occurring before the t5 

ted from the 

win � 2) 

ered for identifying the frequent 
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episodes.  Because of this, each patient meeting the LE criterion can only have at most 

one episode for each window width.  For example, for the patient 0177, only ‘→ ↗’, ‘→ 

→ ↗’, and ‘→ → → ↗’ episodes for window widths 2, 3, and 4 respectively are 

considered for generating frequent episodes. The episode ‘→ → →’ corresponding to 

changes from t1 to t4 would not be included for patient 0177 as the episode ends at a 

distance y = 1 from the LE diagnosis visit, z = 5.  

 

The frequency and confidence values of a LVC episode immediately leading to LE are 

calculated using equation 4 and equation 5 respectively with y = 0. Frequency and 

confidence thresholds of 15% (?D0�� = 15%; CI�?0��= 15%) were used, meaning that 

LVC episodes that occur with a frequency of at least 15% were considered frequent and 

those that occur with a confidence greater than 15% were considered as episodes leading 

to LE with significant probability. It is important to note that if an episode α (such as ‘→ 

→ → ↗’) is frequent, then all sub-episodes of α ‘→ → ↗’ and ‘→ ↗’ are also frequent 

[20].   
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CHAPTER 6 

RESULTS AND DISCUSSION 

 

6.1 Applications and Discussion of the Temporal Mining Framework  

The temporal mining model developed in this research can be used in various clinical 

settings to monitor the progression of chronic diseases, to analyze trends in patient data, 

to identify patients at risk, and to provide information for early interventions. To 

accommodate the diversely structured clinical data collected from different sources, we 

attempted to make the temporal mining model as generic as possible. The temporal 

framework provides flexibility in choosing baseline visits. The visit relative to which 

measurement changes provide an accurate representation of disease progression can be 

considered as the baseline visit. The number of levels used to discretize measurement 

changes is also flexible. Any number of levels can be used based on clinically significant 

differences in patient measurements depending on the study. In our case study, three 

levels - increase (↗), decrease (↘), and stable (→) were used based on a 3% LV change 

compared to the previous visit. However, as the number of levels increases, the number 

of possible episodes also increases. With the large number of possible episodes that could 
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lead to a disease, it may become difficult to establish frequent and statistically significant 

results in small datasets.  

 

The temporal mining model can be used to identify MC episodes that have a high 

probability of leading to disease in the future. For example, for a given MC episode 

observed in a patient, the model can be used to predict probability of the patient 

developing the disease in 3 months, in 6 months, and so on. Furthermore, the model can 

also be adjusted to study temporal sequences after events such as treatment 

administration to assess treatment outcomes. 

 

6.2 Results of the Lymphedema Case Study 

The 233 breast cancer affected patients were categorized into discrete groups based on 

BMI, post-operative swelling, and age as defined in section 5.3. For better understanding 

of the results, the distribution of patient population in each group is summarized prior to 

reporting the frequent LVC patterns leading to LE in each patient group. Each patient 

group is further divided into two sub-groups based on the time-frame at which the LE 

criterion was met (within and after the first six months after surgery) and similar results 

are reported. The frequent LVC patterns leading to LE can serve as guidelines for 

identifying future patients at risk of developing LE. Some of the guidelines useful in 

making evidence-based treatment decisions are shown in the subsections below and can 

either be added to the Best Practices (BP) document [37] or used as evidence to 

strengthen the existing recommendations. 
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6.2.1 BMI Groups 

The percentage of women in the study per BMI group and the percentage of women in 

each BMI group affected by LE (using the 5% BMI-adjusted LVC criterion) are shown in 

Table 9. It should be noted that the underweight group was not studied due its small 

sample size (0.86%) 

 

Table 9: BMI-based group compositions 

BMI 
Weight 

Status 

Number 

of patients 

Percentage 

of patients 

Percentage of the 

group affected by LE 

Below 18.5 Underweight 2 0.86% - 

18.5 - 24.9 Normal 53 22.74% 33.96% 

25.0 - 29.9 Overweight 78 33.47% 51.28% 

30 and above Obese 98 42.06% 55.1% 

 

• Overweight and obese patients are at a greater risk of meeting the LE criterion 

It was observed that higher percentages of overweight and obese patients met the 

LE criterion when compared to normal weight patients (51.28% versus 33.96%; p 

= 0.051 and 55.1% versus 33.96%; p = 0.013 respectively in Table 9). This 

evidence supports that obesity is an important risk factor for LE, as stated in the 

BP document.  

LVC patterns leading to LE with frequency and confidence thresholds of 15% in at least 

one of the patient groups were identified and a subset of the results obtained are shown in 
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Table 10. It should be noted that the window width win is equal to the length of the LVC 

pattern and henceforth will not be specified separately.  

 

Table 10: Frequent LVC patterns associated with LE by BMI groups 

LVC 

Pattern (α) 

CI�?�(α, win) (in %) ?D�(α, win) (in %) 

Normal Overweight Obese Normal Overweight Obese 

→ ↗ 14.28 27.27* 33.33 35.71 39.47 37.25 

↗ ↗ 18.18 35.39 40.90 14.28 15.78 17.64 

→ → ↗ 23.52 21.73 29.41 30.76 18.51 17.85 

→ ↗ ↗ -** 54.54 41.67 - 22.22 17.85 

→ → → ↗ 28.50 10.00 37.50 22.22 7.14 17.64 

→ → ↗ ↗ - 100.00 50.00 - 28.57 5.88 

*confidence and frequency values > 15% are in bold face 

** indicates that the corresponding patterns did not occur in the patient group 

 

• The probability of a LVC pattern resulting in LE varies with BMI 

From Table 10, it can be seen that similar LVC patterns have varying probabilities 

of leading to LE based on the BMI group in which the patterns occur. For 

example, the probability of consecutive increases in LV (↗ ↗) resulting in LE 

varies across BMI groups (18.18% in normal BMI group, 35.39% in overweight 

BMI group, and 40.9% in obese BMI group).  

 

• The risk of a LVC pattern leading to LE increases with BMI and is higher for 

overweight and obese patients 
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From Table 10, it can be observed that when the LV remained stable between two 

visits and then increased over the next two visits (→ ↗), the confidence of the 

LVC pattern ‘→ ↗’ leading to LE by the next visit was 14.28% in a normal BMI 

patient, while it was significantly higher (33.33% versus 14.28%; p = 0.044) in 

obese BMI patients. 

 

• Patients with consecutive LV increase have a greater probability of meeting the 

LE criterion 

From Table 10, it can be observed that LVC patterns in which LV increased in at 

least two consecutive visits (‘→ ↗ ↗’) were observed to have higher confidences 

of resulting in LE when compared to the patterns with a single increase in LV 

(‘→ → ↗’) (54.54% versus 21.73%; p = 0.058 in overweight patients).  

 

• A variety of LVC patterns lead to meeting the LE criterion with high confidence 

values in overweight and obese patients 

From Table 10, it can be observed that in overweight and obese patients there are 

a greater number of LVC patterns that could lead to LE with high confidence 

values. For example, the LVC pattern ‘→ ↗ ↗’ leads to LE with confidence 

values of 54.54% and 41.67% in overweight and obese patients respectively. This 

further strengthens the recommendation in the BP document that patients should 

be encouraged to maintain an optimal healthy body weight.  

Patients in each BMI category were further divided into two groups to analyze the 

frequent LVC patterns associated with LE within and after the first six months of surgery, 
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and the results are shown in Table 11. It should be noted that the same patient can have 

different patterns of varying lengths. For example, a patient can have the ‘→ → ↗ ↗’ 
pattern as well as its sub-patterns ‘→ ↗ ↗’, and ‘↗ ↗’. Since the overweight and obese 

patients are at a greater risk of LE, only results for such patients are shown in Table 11 

for the purpose of clarity.  

 

Table 11: LVC patterns associated with LE within and after six months of surgery by 

BMI groups 

LVC 

Pattern (α) 

CI�?�(α, win) (in %) ?D�(α, win) (in %) 

Overweight Obese Overweight Obese 

LE in 

first 6 

months 

LE 

after 6 

months 

LE in 

first 6 

months 

LE 

after 6 

months 

LE in 

first 6 

months 

LE 

after 6 

months 

LE in 

first 6 

months 

LE 

after 6 

months 

↘ ↗ 25.00 8.33 12.50 16.00 8.33 7.14 3.12 21.05 

→ ↗ 40.00* 7.50 40.63 13.95 50.00 21.43 40.63 31.58 

↗ ↗ 18.18 30.77 46.15 13.64 8.33 28.57 18.75 15.79 

→ → → 25.00 1.75 11.11 4.54 23.08 7.14 20.00 16.67 

→ → ↗ 50.00 8.69 40.00 16.67 23.08 14.20 20.00 16.67 

→ ↗ ↗ 28.50 44.44 33.33 37.50 15.38 28.57 20.00 16.67 

↗ ↘ ↗ -** 20.00 50.00 37.50 - 7.14 10.00 16.67 

↗ → ↗ 100.00 14.28 - 14.28 15.38 7.14 - 11.11 

→ → → ↗ - 7.69 - 27.27 - 7.14 - 17.65 

→ → ↗ ↗ - 80.00 - 25.00 - 28.57 - 5.88 

*confidence and frequency values > 15% are in bold face 

** indicates that the corresponding patterns did not occur in the patient group 
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• Stable LV does not rule out the chances of meeting the LE criterion in overweight 

and obese patients, particularly in the first six months after surgery 

From Table 11, it was observed that there was a possibility of developing LE in 

the first six months after surgery even when LV remained stable (‘→ → →’ in 

overweight and obese patients with confidences 25% and 11.11%), whereas, such 

incidents did not occur often after six months (see Table 11). Recall that a pattern 

of consecutively stable LVs by our criterion may still reflect slow gradual 

increases in LV. 

 

• In general, a single LV increase has high confidence of leading to LE in the first 

six months of surgery. After the first six months of surgery, continuous increase in 

LV has a greater confidence of meeting the LE criterion when compared to a 

single LV increase. 

 It was observed that in general, a single time increase in LV resulted in LE with 

high confidence within the first six months after surgery (‘→ → ↗’ with 

confidences 50% and 40% in overweight and obese patients respectively). After 

the first six months of surgery LVC patterns with continuous increase were 

observed to have higher confidences of leading to LE when compared to single 

time LV increase (44.44% for ‘→ ↗ ↗’ versus 8.69%  for ‘→ → ↗’; p = 0.019 in 

overweight patients in Table 11).   
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6.2.2 Postoperative Swelling Groups 

The percentage of patients with and without swelling criteria in the postoperative visit 

(T1), and the percentage of LE-affected patients in each group are shown in Table 12.  

Table 12: Postoperative swelling-based group compositions 

Postoperative 

swelling 

Number of 

patients 

Percentage 

of patients 

Percentage of the 

group affected by LE 

No 196 84.12% 45.41% 

Yes 37 15.88% 64.86% 

 

• Postoperative swelling is an important risk factor for LE development 

From Table 12, about 64.86% of patients experiencing postoperative swelling met 

the LE criterion at a later point, while only 45.41% of patients without 

postoperative swelling met the criterion (see also Mahamaneerat et al. [49]). This 

demonstrates the association between postoperative swelling and LE (p = 0.030) 

and supports the inclusion of postoperative swelling as one of the risk factors for 

LE development.  

 

The confidence and frequency values of LVC patterns leading to LE (with confidence 

and frequency thresholds > 15% in at least one of the groups) in patients with and 

without postoperative swelling are shown in Table 13. 
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Table 13: Frequent LVC patterns associated with LE by postoperative swelling groups 

 

LVC 

Pattern (α) 

CI�?�(α, win) (in %) ?D�(α, win) (in %) 

Without post-

op swelling 

With post-op 

swelling 

Without post-

op swelling 

With post-op 

swelling 

↘ ↗ 17.50 42.85 8.33 15.00 

→ ↗ 26.27* 36.36 42.85 20.00 

↗ ↗ 28.94 50.00 13.09 30.00 

→ → ↗ 24.49 25.00 21.05 18.18 

→ ↗ ↗ 40.00 50.00 17.54 9.09 

↗ ↘ ↗ 50.00 40.00 7.02 18.18 

↗ → ↗ 23.08 66.67 5.26 18.18 

→ → → ↗ 22.22 28.57 11.43 40.00 

→ → ↗ ↗  57.14 100.00 11.43 20.00 

*confidence and frequency values > 15% are in bold face 

 

• A variety of LVC patterns lead to meeting the LE criterion with high confidence 

values in patients with postoperative swelling 

From Table 13, a single instance of LV increase in postoperative swelling patients 

was found to lead to LE with high confidence (42.85%, 36.36%, and 50% for LV 

patterns ‘↘ ↗’, ‘→ ↗’, and ‘↗ ↗’ respectively) irrespective of whether the volume 

decreased, remained stable  or increased in the previous visit.  

 

The frequent LVC patterns associated with LE within and after the first six months of 

surgery in each of the patient groups based on postoperative swelling are shown in Table 

14. 
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Table 14:  LVC patterns associated with LE within and after six months of surgery by 

postoperative swelling groups 

 

LVC 

Pattern (α) 

 CI�?�(α, win) (in %) ?D�(α, win) (in %) 

Without post-op 

swelling 

With post-op 

swelling 

Without post-op 

swelling 

With post-op 

swelling 

LE in 

first 6 

months 

LE 

after 6 

months 

LE in 

first 6 

months 

LE 

after 6 

months 

LE in 

first 6 

months 

LE 

after 6 

months 

LE in 

first 6 

months 

LE 

after 6 

months 

→ ↗ 36.00* 9.68 100.00 15.38 56.25 25.00 14.28 33.33 

↗ ↗ 20.00 17.94 50.00 22.22 8.33 19.44 28.57 33.33 

→ → ↗ 38.89 11.90 - 20.00 33.33 13.89 - 40.00 

→ ↗ ↗ 26.67 33.33 - 33.33 19.04 16.67 - 20.00 

↗ ↘ ↗ -** 28.57 50.00 - - 11.11 33.33 - 

↗ → ↗ - 12.50 100.00 - - 8.33 33.33 - 

→ → → ↗ - 16.67 - 28.57 - 11.42 - 40.00 

→ → ↗ ↗ - 40.00 - 100.00 - 11.14 - 20.00 

*confidence and frequency values > 15% are in bold face 

** indicates that the corresponding patterns did not occur in the patient group 

 

• In general, a given LVC pattern has a greater confidence of meeting the LE 

criterion within the first six months after surgery when compared to after six 

months. 

For example, when LV remains stable between two visits and then increases at the 

next visit (‘→ ↗’), there is a greater chance of resulting in LE in the first six 

months of surgery when compared to later (36% versus 9.68%; p < 0.0001 in 

patients without postoperative swelling in Table 14). Such evidence-based 

findings indicate a need for patient vigilance and careful monitoring for LE 
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symptoms in postoperative swelling patients, especially the first several months 

after surgery.  

 

6.2.3 Age Groups 

Patients were partitioned into four roughly equal-sized groups based on their age. The 

categorization details and the percentages of patients in each group affected by LE in our 

data sample are shown in Table 15.  

 

Table 15: Age-based group compositions 

Age 
Number of 

patients 

Percentage 

of patients 

Percentage of the 

group affected by LE 

Below 55 55 23.6% 56.36% 

55 - 64 66 28.32% 50.00% 

65 - 74 65 27.89% 43.07% 

75 and above 46 19.74% 45.65% 

 

• The risk of developing LE decreases with age 

It was observed that in general, the chances of meeting the LE criterion tended to 

decrease with age (p = 0.29), contrary to the common assumption that older 

patients are at a higher risk of developing LE (see also Armer et al. [50]). While 

56.36% of young patients (below 55 years) met the LE criterion, 45.65% of old 

patients (above 75 years) met the criterion (see Table 15).  
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The frequent LVC patterns associated with meeting the LE criterion and their frequency 

and confidence levels across different age groups are shown in Table 16. 

 

Table 16: Frequent LVC patterns associated with LE by age groups 

LVC 

Pattern (α) 

CI�?�(α, win) (in %) ?D�(α, win) (in %) 

< 55 

years 

55 – 64 

years 

65 – 74 

years 

≥ 75 

Years 

< 55 

years 

55 – 64 

years 

65 – 74 

years 

≥ 75 

years 

↘ ↗ 12.50 26.67 30.76 9.09 3.33 12.90 16.00 5.56 

 → ↗ 36.11 23.40 29.73 17.86 43.33 35.48 44.00 27.78 

↗ ↗ 33.33 26.31 28.57 66.67 20.00 16.13 8.00 22.22 

→ → ↗ 36.84 18.18 21.05 12.50 35.00 10.00 26.67 7.69 

→ ↗ ↗ 33.33 30.77 50.00 100.00 15.00 20.00 6.67 23.08 

→ → → ↗ 62.50 -** 12.50 - 33.33 - 10.00 - 

→ → ↗ ↗ 60.00 100.00 50.00 - 20.00 10.00 10.00 - 

*confidence and frequency values > 15% are in bold face 

** indicates that the corresponding patterns did not occur in the patient group 

 

• As a general phenomenon, the frequency of a LVC pattern meeting the LE 

criterion is higher in young patients when compared to old patients 

Although there were certain cases to support the contrary, the general observation 

was that the same LVC pattern had a greater chance of being associated with LE 

in young patients (< 55 years) when compared to old patients (>75 years). For 

example, when the LV was stable between two visits and then increased between 

the next two visits (‘→ ↗’), there was a 36.11% probability of developing LE in 

patients younger than 55 years while the  probability dropped to 17.86% in 

patients older than 75 years; p = 0.11 (see Table 16). 
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• LE risk is lifelong  

It was observed that even when LV remained stable for a long time (‘→ → → 

↗’), young patients are still at a significant risk of LE (62.5% in patients less than 

55 years age in Table 16).  

 

The above results obtained by dividing patients into groups based on age were not found 

to be as statistically significant as the results obtained by dividing patients on the basis of 

BMI and postoperative swelling. Further partitioning of patients in different age groups 

in our dataset depending on whether the LE criterion was met within or after the first six 

months of surgery resulted in an insufficient patient sample size and no significant 

results. Hence, those results have not been included in the paper. We would like to note 

here that we also partitioned the patients based on dominant side and breast cancer-

affected side, but our analysis did not yield any statistically significant results for such 

groups and hence those results have not been included in the thesis. 

 

6.3 Study Limitations 

There are a number of admitted limitations to this study. First, though the temporal 

mining approach attempts to capture a wide variety of patient data, it cannot capture 

natural language data used in a clinical setting. While commonly used natural language 

information such as ‘The patient had a high fever can be formulated as questions with 

‘Yes’ and ‘No’ options, it is not possible to capture all natural language information. 

Second, the best criteria for dividing patients into groups are not always known 
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beforehand. While dividing patients into groups based on some criteria can give a good 

understanding of the risk factors and group specific MC episode information that lead to 

a disease, some other criteria may not yield significant results. Finally, we discuss the 

data set. Though the LE dataset used in the study has the advantages of having baseline, 

preoperative measurements and several timestamps, the sample is relatively small, 

especially considering that the dataset is partitioned so that episodes can be mined in 

individual groups. There are also missing values in several patients’ sequences of LV 

measurements which affect the frequency of mined episodes.  
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

 

 

7.1 Conclusions 

In the paper, we proposed a temporal mining framework to identify and study frequent 

temporal changes in measurements that lead to a disease in different groups of patients. 

The approach can be used to identify patients at risk of developing a disease, track 

disparities in disease progression in different patient groups, monitor the effect of 

treatment plans in patient groups, and plan appropriate early interventions based on the 

measurement change episodes. The analysis of measurement change episodes in different 

patient groups will increase the understanding of the various risk factors for a disease and 

will enable clinicians to make more targeted and personalized treatment decisions.  

 

To demonstrate the usefulness of the framework, we applied the temporal mining 

approach to a LE dataset in order to identify breast cancer survivors at a risk of 

developing LE by examining the limb volume changes before the LE diagnosis in 

different groups of patients.  Our temporal analysis of the LE dataset shows that in 
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general, limb volume change episodes have a higher probability of being associated with 

LE in obese patients than do the same episodes in normal weight patients. Similarly, the 

same trend holds for patients with post-operative swelling as compared to patients 

without post-operative swelling. Furthermore, our data revealed that a given limb volume 

change episode has a greater chance of resulting in LE within the first six months after 

surgery when compared to the same episode occurring after six months. Such evidence-

based findings of interest can either be added to the Best Practices document or used as 

evidence to strengthen existing recommendations. 

 

The findings reported in the case study demonstrate the potential of the proposed 

informatics framework for understanding the risk factors of a disease and with the 

availability of large datasets, such findings can be well-established and can help design a 

robust decision support system to establish evidence-based intervention decisions.   

 

7.2 Future Work 

The temporal mining model developed in this thesis can be generalized in the future to be 

used in clinical settings where patient visits may not be regularly scheduled. The current 

model considers the time period between two successive visits to be the same for all 

patients. An interesting extension would be to adjust the model to accommodate patient 

information that has not been collected at pre-scheduled visits, but was collected 

whenever the patient experienced symptoms of a disease and visited the clinic. The 

temporal framework can also be extended to accommodate missing values in the patient 

dataset which may occur due to the corresponding patient missing a scheduled visit. This 



59 

 

can be explored, for example, through the imputation of missing data based on previous 

visit and next visit patient information. 

 

The model can be further evaluated by applying to large chronic disease datasets such as 

datasets containing records of heart disease or diabetic patients. Such large datasets will 

better establish the significance of temporal mining results. The results obtained can be 

compared to known clinical information to estimate efficiency of the model in 

recognizing measurement change patterns leading to a disease. Previously unknown 

results can be used to propose new evidence-based guidelines for disease control.  

 

The current temporal mining model concentrates on studying disease leading 

measurement change (MC) patterns generated from a single measurement. However, 

some diseases may depend on many factors and may require multiple measurements to be 

analyzed simultaneously. For such cases, the temporal mining model can be enhanced to 

study combinations of MC patterns resulting from multiple measurements. 

  

Future work can also include integration of the temporal mining framework with 

electronic medical records of patients to connect to large patient datasets with access to 

all the information stored in the medical records. This would provide disease progression 

and risk information for individual patients and would ultimately help in building a 

robust decision support system. 
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