RESEARCH BULLETIN 531 UNIVERSITY OF MISSOURI AGRICULTURAL EXPERIMENT STATION J. H. Longwell, Director

Environmental Physiology and Shelter Engineering

With Special Reference to Domestic Animals

XXIII. The Effect of Humidity on Insensible Weight Loss, Total Vaporized Moisture, and Surface Temperature In Cattle

H. J. THOMPSON, D. M. WORSTELL AND SAMUEL BRODY

Missouri Agricultural Experiment Station and the United States Department of Agriculture Cooperating Assisted by the Office of Naval Research

Publication authorized August, 1953

COLUMBIA, MISSOURI

TABLE OF CONTENTS

Introduction	3
Data and Discussion	6
Insensible Weight Loss and Total Moisture Vaporization	6
Surface Temperature	11
Summary and Abstract	21
Appendix	22

ACKNOWLEDGMENTS

This is part of a broad cooperative investigation between the Departments of Dairy Husbandry and Agricultural Engineering of the Missouri Agricultural Experiment Station, University of Missouri; and the Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricultural Research Administration, U. S. Department of Agriculture. The Bureau of Dairy Industry, and the Bureau of Animal Industry, Agricultural Research Administration, U. S. Department of Agriculture, Agricultural Research Administration, U. S. Department of Agriculture, advised with the Bureau of Plant Industry, Soils, and Agricultural Engineering on various aspects of this work.

Grateful acknowledgments are made to Mr. H. L. Dannen of the Dannen Mills, St. Joseph, Missouri, for furnishing the Brown Swiss Cows; to A. C. Ragsdale, Department of Dairy Husbandry, University of Missouri, for selection of the animals, their management, and for counsel on the dairy aspects; to M. M. Jones, Department of Agricultural Engineering, University of Missouri, for cooperation and counsel on the engineering aspects; to Robert G. Yeck, Assistant Agricultural Engineer, Sam Barrett and Doris Layne, Engineering Aides, BPISAE, for assistance in taking the measurements.

This bulletin is a report from the Departments of Dairy Husbandry, research project No. 100, and Agricultural Engineering, research project No. 66, entitled, "Influence of Climatic Factors on Productivity."

Environmental Physiology and Shelter Engineering

With Special Reference to Domestic Animals

XXIII. The Effect of Humidity on Insensible Weight Loss, Total Vaporized Moisture, and Surface Temperature In Cattle

H. J. THOMPSON, D. M. WORSTELL, and SAMUEL BRODY

INTRODUCTION

This is the third progress report in a preliminary survey of effects of relative humidity at various temperatures on physiological reactions of European- and Indian-evolved (Brahman) cattle. The first (Bul. 521*) reported data on the effect of humidity on feed and water consumption, milk production and composition, and body weight; the second (Bul. 522) on heat production, rectal temperature, and cardiorespiratory activities. This report is on insensible weight loss, total moisture vaporization and hair and skin temperatures.

Humidity is expressed in different ways. Considerable space is devoted to its clarification in the two preceding reports. Relative humidity is used here. Relative humidity is the percentage ratio of water vapor present in the given air to the maximum vapor it can hold.

Methods and significance of measuring insensible weight loss** were reported in detail in Buls. 451 and 479. Total moisture vaporization was obtained by deducting metabolic weight loss (reported in Bul. 522) from the insensible weight loss**. Methods of measuring surface temperatures with the radiometer (hair) and touch thermocouple (skin) have also been reported (Buls. 481 and 489).

*Unless otherwise noted "Bul." refers to University of Missouri Agricultural Experiment Station Research Bulletin. Research bulletins referred to in this publication are:

451 — Air Temperature vs Insensible Weight Loss, 1948-49 479 — Air Temperature vs Insensible Weight Loss, 1949-50 481 — Air Temperature vs Hair and Skin Temperature, 1948-49

489 — Air Temperature vs Hair and Skin Temperature, 1949-50
521 — Humidity vs Feed Consumption and Milk Production, 1950-51
522 — Humidity vs Metabolism and Cardiorespiratory activities, 1950-51
**"Metabolic weight loss" is the difference between the weights of carbon dioxide and methane produced and oxygen consumed, $(CO_2 + CH_4) - O_2$. "In-sensible weight loss" is the *sum* of the weight of moisture vaporized and the metabolic weight loss, $H_2O + [(CO_2 + CH_4) - O_2]$.

MISSOURI AGRICULTURAL EXPERIMENT STATION

The animals, their feed consumption and milk production, environmental temperatures, and humidity schedules were given in Bul. 521 (Table 1). For the periods of "low temperatures" (12° to $40^{\circ}F$, 48 to 86%relative humidity) six lactating Jersey and six lactating Holstein cows were used; for the "high temperatures" (75° , 85° , 95° and $100^{\circ}F$, and 35 to 90% relative humidity) both lactating (3 Holsteins, 3 Brown Swiss, 2 Jerseys) and non-lactating (2 Jerseys and 2 Brahmans) cows were used. Control periods of $50^{\circ}F$ (for low temperatures) or $65^{\circ}F$ (for the higher temperatures) at 65 percent relative humidity were interspersed between the increases (or decreases) in experimental temperature.

In addition to the average laboratory air temperature and humidity calendars given in Bul. 521 (Table 1), Tables 1 and 2 in this bulletin

,		During				During		
		Terr	The film of	Inse	nsible	Tomporature		
Dee	had	FOR	Entire	Maagu	088	Temperature		
Per	r10a	OF		Measu	U D U	Measu	U D U	
From	10	- I	% к.п.	UF.	70 R.H.	J.	70 К.П.	
	For th	e Chamb	er Housing	6 Lactati	ng Jerseys	_		
Oct. 13	Oct. 20	50	58-c	52	58	50	60	
Oct. 20	Nov. 3	40	56	40	62	41	56	
Nov. 3	Nov. 17	40	58-1	41	57	39	46	
Nov. 17	Dec. 1	40	86-h	43	77	41	79	
Dec. 1	Dec. 15	50	70-c	52	70	51	63	
Dec. 15	Dec. 29	12	66			11	62	
Dec. 29	Jan. 12	12	84-h	12	73	13	92	
Jan. 12	Jan. 26	11	62-1	18	59	10	56	
Jan. 26	Feb. 9	50	62-c	50	70	50	62	
	For the	Chamber	Housing 6 I	actating	Holsteins			
Oct. 13	Oct. 20	52	66-c	53	67	54	6 2	
Oct. 20	Nov. 3	40	64	42	69	44	65	
Nov. 3	Nov. 17	40	74-h	42	69	43	84	
Nov. 17	Dec. 1	40	48-1	42	54	38	44	
Dec. 1	Dec. 15	50	66-c	50	66	49	64	
Dec. 15	Dec. 29	15	70	10	61	13	63	
Dec. 29	Jan. 12	14	65-1	13	66	13	64	
Jan. 12	Jan. 26	17	84-h	18	62	15	86	
Jan. 26	Feb. 9	51	67-c	52	66	52	68	

 TABLE 1 -- AVERAGE AIR TEMPERATURE AND RELATIVE HUMIDITY

 (Winter 1950-51)

Control conditions, designated by "c" refer to 50° F (or 65° F) and 65% relative humidity. The period of high and low relative humidity shown on the charts are designated by "h" and "l" respectively.

4

Research Bulletin 531

	×	(5	Summer 19	51)				
		*		Du	ring	Du	ring	
Period				Inse	nsible	Surface Temperature		
		For	Entire	L	088			
		P	eriod	Measu	rements	Measu	rements	
From	То	oF	% R.H.	oF	% R.H.	oF	% R.H.	
For the Ch	amber Housing	2 Lactati	ing Jerseys	, 2 Dry J	erseys and	d 2 Dry H	Brahmans	
Feb. 23	Mar. 9	65	67-c	64	47	65	64	
Mar. 9	Mar. 23	75	38-1	73	27	74	36	
Mar. 23	Apr. 6	76	75-h	72	89	75	82	
Apr. 6	Apr. 13	66	70-c	66	68	65	68	
Apr. 13	Apr. 27	84	40-1	83	40	86	38	
Apr. 27	May 11	85	87-h	86	88	85	84	
May 11	May 25	65	67-c	67	62	65	62	
May 25	June 3	93	47-1	97	40	96	38	
June 3	June 4	96	81-h	93	85	96	82	
June 7	June 8	93	40			95	60	
June 8	June 22	66	67-c	65	63	65	64	
June 24	June 27	100	35-1	97	45	101	32	
June 28	June 29	100	75-h	100	78	100	72	
June 29	July 20	66	63-c	64	69	66	66	
For the	Chamber Hous	ing 3 Lac	tating Hols	teins and	3 Lactatir	ng Brown	Swiss	
Feb. 23	Mar. 9	65	69-c	67	46	65	64	
Mar. 9	Mar. 23	75	39-1	75	29	75	36	
Mar. 23	Apr. 6	76	78-h	75	85	76	86	
Apr. 6	Apr. 13	66	71-c	66	67	65	68	
Apr. 13	Apr. 27	85	44-1	86	40	85	44	
Apr. 27	May 11	85	90-h	88	85	85	86	
May 11	May 25	65	71-c	68	60	65	70	
May 25	June 3	94	45-1	95	40	96	42	
June 3	June 4	94	80-h	94	83	96	84	
June 6	June 7	94	60			95	.60	
June 8	June 29	66	66-c	64	72	66	62	
July 1	July 4	100	40-1	99	38	101	36	
July 4	July 5	100	65-h	98	59	102	62	
July 6	July 29	66	62 -c	67	80	66	68	

TABLE 2 -- AVERAGE AIR TEMPERATURE AND RELATIVE HUMIDITY (Summer 1951)

. - -

Control conditions, designated by "c" refer to 50°F (or 65°F) and 65% relative humidity. The periods of high and low relative humidity shown on the charts are designated by "h" and "l" respectively. show temperatures of the workroom at the time the insensible weight losses were measured. Temperature of the chamber air surrounding the cows at the time surface temperatures were measured also is indicated. Differences between workroom and chamber air temperatures and relative humidities may explain some of the variability in the data.

Since the relative humidities were not exactly the same at all temperature levels (Tables 1 and 2), reactions of individual animals were plotted against time as in Fig. 2; against environmental temperature as in Fig. 3; or against certain parts of the body as in Fig. 6. The "high humidity" and "low humidity" points were then separately connnected (except Fig. 1). The relative effects of high and low relative humidities can, therefore, be determined by comparing the reaction levels and slopes in the charts. At environmental temperatures 40° F and 12° F the approximate "low humidity" was 60 percent and "high humidity" 80 percent; at temperatures 75° F and above, "low humidity" was approximately 40 percent and "high humidity" 85 percent.

DATA AND DISCUSSION

Insensible Weight Loss and Total Moisture Vaporization

Heat from the body is dissipated by vaporization and by non-evaporative methods — radiation, convection, and conduction. The lower the environmental temperature (i.e. the greater the thermal gradient between the body and environment) the greater the proportion of body-heat dissipation by radiation and convection, and the less by vaporization. Rising environmental temperature (decreasing the thermal gradient) shifts the heat dissipation from non-evaporative to evaporative cooling until, finally, when the environmental and body surface temperature coincide, all heat is dissipated by vaporization. To illustrate the shift from non-evaporative to evaporative cooling, it is recalled that the average evaporative heat dissipation in dairy cattle is around 10 percent of the heat production at $10^{\circ}F$; 50 percent at $70^{\circ}F$ ($21^{\circ}C$), and 100 percent at $105^{\circ}F$ ($41^{\circ}C$).

At the relatively low temperatures of 12° and 40° F, when little skin moisture was produced by the animals and less than half of the total heat produced was dissipated by vaporization, no effect of humidity on vaporization was observed (Fig. 1) under the given low humidity range. A striking feature of Fig. 1 is the parallelism between curves representing vaporized moisture per animal, per unit surface area, per unit heat production, and even per unit of insensible weight loss. Note also the similarity between slopes of the time curves for Holsteins and Jerseys, regardless of temperature or humidity. Fig. 2 shows that at

Fig. 1—Insensible weight loss and total moisture vaporization at 40° F and below appear to be unaffected by humidity but are affected by changing temperature. The values for metabolic weight loss and for heat production were taken from Missouri Res. Bul. 522. The latent heat of vaporization is assumed to be 580 Calories per kilogram of moisture.

temperatures above $75^{\circ}F$, when over half of the heat dissipation was by moisture vaporization, and especially at $85^{\circ}F$ when about 70 percent of the heat produced was dissipated by vaporization, increase in relative humidity depressed the rate of evaporative cooling in spite of the higher skin temperatures of the cows. At chamber temperature $100^{\circ}F$, when almost all of the heat produced was dissipated by vaporization, the difference between effects of the two levels of humidity on moisture vaporization declined. An interesting observation was that the moisture vaporized at $65^{\circ}F$ was 15 to 30 percent of the total water drunk. On increasing the temperature, this proportion increased to 75 percent (Fig. 4). The percentage ratio of vaporized moisture to water drunk varied greatly due, in part, to individual differences in the quantity of water spilled from water cups (see water consumption curves in Fig. 6, Bul. 521).

Surface Temperature

In addition to the "main body temperature" (average of 6 measurements on the back, belly, right and left sides of body, neck, and rear) in preceding experiments (Buls. 481 and 489), 17 other spots (Fig. 5) were measured.

Figs. 6 to 9 show how surface temperatures of these spots change with changing environmental temperature. As inferred from the evaporative cooling data, skin temperatures were lower at the low humidity at environmental temperatures exceeding 75°F. Greater vaporization rates at low humidity levels evidently reduced skin temperature below that of the high humidity level.

Fig. 5—Diagram showing approximate positions where skin temperatures were measured. The "X's" indicate spots averaged for what is designated as the "main body temperature" (cf. position is shown in Res. Bul. 481, Fig. 3). In Figs. 6 through 9 the temperature given for the "udder" is the average of three spots (udder bottom, rear and fore udder attachment); likewise, the milkwell is the average of the right and left milkwells. The temperature of the muzzle represents a wet surface in contrast to the temperature of the other parts which were "dry". At the "low temperature", $12^{\circ}-15^{\circ}F$, skin temperatures in Jerseys were slightly lower at the low than at the high humidity level; while in Holsteins the skin temperatures were higher at the low than at the high humidity level. Since the different parts of the body were all either consistently lower or higher, this difference between the two breeds cannot be explained by experimental error. What, then, is the explanation? Preceding reports on surface temperature (Buls. 481 and 489) showed a higher skin temperature in Jersey than in Holstein cows at temperatures below $50^{\circ}F$. Hair temperatures, however, were approximately the same or slightly lower in the Jerseys. Could this difference be explained by breed differences in skin thickness' and/or in the insulating properties of hair? Or could differences in body size explain this peculiarity by assuming that the smaller the animal the closer the skin to its center and, therefore, the higher its temperature?

Figs. 6 to 8 show that, with the exception of the Brahman at 100° F, decreasing humidity at 85° and above decreased skin temperature in all cows. Another puzzling observation is shown in Fig. 9. Why does the Brahman heifer have a higher skin temperature than dry Brahman cow 209? This was thought to be due to B-209 being an "end" cow. She was in the stanchion next to the wall and so was exposed to a somewhat different environment on one side than the animals having cows flanking on both sides. Yet, J-549, S-48, and H-312 were also "end" cows and showed no difference in skin temperatures from others of the same breed. Neither was there a skin temperature difference between Jersey heifer 559 and Jersey cow 979 (dry). It, therefore, appears that the apparent skin temperature difference in age or in position in the chamber. Data are insufficient for computing statistically significant differences.

Hair temperature data (measured with radiometer), shown in Fig. 10, are similar to the skin temperature data (measured with the touch thermocuple) in that reducing humidity reduced the surface temperature at environmental temperatures above $75^{\circ}F$.

Fig. 10 brings out rather dramatically the differences in hair temperature levels of the jaw and leg, compared with that of the main body. In European cattle jaw temperature was higher than main body temperature below $75^{\circ}F$ environmental temperature; increasing environmental temperature reduced the difference between hair temperature of the main body and the jaw; and at 95° and $100^{\circ}F$ the difference disappeared. In Brahmans, however, the main body temperature remained lower than the jaw temperature throughout.

¹Cf. McAdams, W. H., Heat Transmission, McGraw-Hill, p. 345.

LOWEST @ 12.5° F., 88% R.H., JAN. 25, 51 - AVE. OF 6 HOLSTEIN COWS HIGHEST @ 101.6° F., 65% R.H., JULY 5, 51 - AVE. OF 3 HOLSTEIN COWS

LOWEST @ 11.1°F., 65% R.H., DEC. 15, '49; HIGHEST @ 101.9° F., 33% R.H., JUNE 26, '51-BRAHMAN COW 209

Fig. 11—Highest and lowest skin temperature obtained on Holstein cows (upper diagram) for the indicated parts of the body. Note the lower skin temperatures for a given spot in the Brahman cow (lower section) at environmental temperature 102°F. The temperatures shown were the highest obtained regardless of humidity. The lowest points for the main body temperature of the Brahman were taken from a previous experiment (reported in part in Res. Bul. 489).

SKIN TEMPERATURE (TOUCH THERMOCOUPLE)

20 MISSOURI AGRICULTURAL EXPERIMENT STATION

sult of higher skin temperature) at high humidity are physiologically detrimental, yet they facilitate non-evaporative cooling, particularly by convection.

SUMMARY AND ABSTRACT

Tabular and/or graphic data are presented showing effects of high and low relative humidity on insensible weight loss, total vaporized moisture, and surface (hair and skin) temperatures on Jersey, Holstein, Brown Swiss, and Brahman cattle. Air temperatures used were 12° , 40° , 75° , 85° , 95° , and 100° F.

Evaporative cooling: At 12° and $40^{\circ}F$ air temperatures there was no indication that increasing humidity affected vaporization rate. At temperatures of 75° , 85° , and $95^{\circ}F$ there was a noticeable depression of vaporization with increasing humidity. Above $85^{\circ}F$ air temperatures Holstein vaporization rates were somewhat lower than those of Brown Swiss. Effects of increasing humidity at 95° and $100^{\circ}F$ were less on the smaller and lower-producing Jerseys. Individual differences and experimental variation in air temperatures may have masked some of the smaller effects of humidity. Brahman cows appeared to have dissipated a greater percentage of their total heat by evaporative cooling at high temperatures than European cattle. This was particularly true at high relative humidity levels.

Surface temperature: In addition to the "main-body temperatures" (average of 6 points) previously reported, this bulletin includes thermocouple measurements on skin temperature of 15 other parts of the body, including the ear, muzzle, teats, tail, and hock. Hair temperatures were measured with the Hardy radiometer. At $85^{\circ}F$ and above, skin and hair temperatures of the cows were increased some on increasing relative humidity; at 12° and $40^{\circ}F$, however, there was no significant effect of relative humidity on skin temperature. At air temperatures above $85^{\circ}F$ skin temperatures appeared lower in Brahmans than in European-evolved breeds.

The great differences in surface temperatures between different spots on the body at the lower air temperatures were one of the striking features of the data. Thus, at $12^{\circ}F$ air temperature, skin temperature of the Jersey hoof cleft was about $30^{\circ}F$, that of the milkwell $85^{\circ}F$.

APPENDIX

Tompo	(February 25 to July 20, 1951)							Vaporized
1empe	F	Relative	of	Body	Loge	Moie		Moisture Cal
Dry	Wet	Humidity	Obser-	Weight	grame	grame	ame/sa m	Total Heat
Bulb	Bulb	%	vations	Ko	per hour	per hr	ner hr	Production* Cal
Duib	Duit	λ	vacions	116.	lateta 21E	per m.	per m.	Trouberion ; eun
				HO	istein 315			
69.0	57.0	48	2	502	465	365	75	31
72.0	54.5	29	2	490	732	639	133	61
75.0	72.0	87	3	493	662	614	127	56
66.0	59.0	66	2	484	472	411	86	36
86.5	69.0	41	3	491	973	934	194	88
88.0	84.0	86	3	479	620	548	115	54
69.0	59.5	57	1	481	550	473	99	43
95.0	75.0	40	2	478	910	814	171	68
95.0	90.0	82	2	466	713	614	131	68
63.5	57.5	70	1	476	560	478	101	51
98.0	76.0	37	1	462	860	776	167	82
99.0	86.0	59	1	452	755	714	155	69
67.0	63.0	80	1	482	320	229	48	24
				T	latain 917			
				HO	istein 317			
67.0	55.0	46	2	486	610	546	114	48
75.5	57.0	30	3	535	847	759	150	69
76.0	72.5	85	3	533	693	606	120	49
65.0	58.0	67	1	524	320	241	48	22
85.0	68.0	42	4	527	952	870	174	78
88.0	83.5	84	3	507	673	635	129	77
66.5	57.0	56	2	522	550	489	98	44
95.5	77.0	43	2	500	1160	1091	224	109
93.5	88.5	83	1	483	850	795	166	89
63.0	57.0	68	1	521	410	322	65	30
98.5	76.5	37	1	511	1040	966	196	82
96.5	82.5	56	1	486	895	837	175	72
67.0	62.5	78	1	532	300	234	46	21
				Hol	stein 314			
66.5	54.0	44	4	517	536	475	96	37
78.5	58.0	30	1	521	560	488	98	46
74.5	70.5	83	3	522	543	431	86	32
65.0	58.5	68	1	517	270	190	38	17
86.0	68.0	40	4	522	948	854	171	62
88.0	83.5	84	3	504	643	588	120	66
68.0	60.0	62	1	506	490	414	84	34
96.0	75.5	38	2	506	1115	1072	219	104
90.0	87.0	89	1	477	960	949	200	86
64.5	59.5	74	1	523	435	376	75	33
100.0	78.0	39	1	507	830	754	154	56
95.0	81.0	54	1	487	620	593	124	52
65.5	62.0	82	1	521	410	326	65	24

TABLE 3 -- INSENSIBLE LOSS AND EVAPORATIVE LOSS IN HOLSTEIN CATTLE (February 23 to July 20, 1951)

*Metabolic weight loss and heat production from Table 6, Missouri Research Bulletin 522; surface area in square meters equal 0.15 x (weight in Kg.)0.56 (see S. Brody, "Bioenergetics and Growth", Reinhold, 1945, page 360). Vaporized moisture was converted to calories by multiplying grams of moisture by 0.58.

Tempe	rature		Number		Insensible	Vap	orized	Vaporized
0.	F	Relative	of	Body	Loss	Moi	sture*	~ Moisture, Cal.
Dry	Wet	Humidity	Obser-	Weight.	grams	grams	gms/sq.m.	% Total Heat
Bulb	Bulb	%	vations	kg.	per hour	per hr.	per hr.	Production,* Cal.
				B	rahman 3			
63.0	52.0	47	5	321	301	240	56	34
73.5	55.0	29	4	331	371	313	72	50
73.0	71.0	91	1	328	325	274	64	34
67.0	60.5	69	1	350	260	190	42	25
82.0	66.0	43	4	354	356	311	69	40
87.0	83.0	85	3	358	525	494	109	72
67.0	59.0	62	6	370	317	262	57	31
96.0	77.5	45	2	379	780	748	160	83
91.0	88.0	89	1	368	590	554	121	72
65.0	57.5	64	1	397	340	283	59	34
99.0	80.0	43	1	404	865	818	169	91
100.0	93.5	78	1	381	505	506#	108	71
64.0	58.0	70	1	400	240	205	43	25
				Bra	ahman 209			
63 0	53 0	51	6	416	363	311	63	37
74 0	54 0	24	4	432	341	298	59	43
69.0	66 5	88	1	439	375	306	60	37
65 0	58 0	66	2	440	300	247	49	29
84 0	66 5	40	4	447	610	573	112	72
86.0	83 5	90	3	453	543	480	95	61
67 0	58 0	58	4	462	342	270	52	30
00.5	77 5	37	2	468	795	745	149	82
04 0	80.0	82	1	467	730	607	199	02
64 0	55 5	58	î	471	280	259	40	30
97 0	78 0	42	1	478	690	648	199	76
00.0	03.0	70	1	461	700	666	128	104
64 0	58.0	70	î	479	225	194	36	25

TABLE 4 -- INSENSIBLE LOSS AND EVAPORATIVE LOSS IN BRAHMAN CATTLE (February 23 to July 20, 1951)

*Metabolic weight loss and heat production from Table 5, Missouri Research Bulletin 522; surface area of Brahman cows assumed to be 12% greater than for Jersey or Holstein cows (see p. 14, Missouri Research Bulletin 464). Vaporized moisture was converted to calories by multiplying grams of moisture by 0.58.

*Higher values for vaporized moisture than for insensible weight loss indicate negative values for metobolic weight loss. Although these values may have resulted from differences in time and place between the insensible weight loss and metabolism measurements, these are reasonable values for short periods under the given conditions, which would be compensated over longer periods.

T			(1)	ebruary 2	3 to July 20	<u>, 1951)</u>		Veneniard
Tempe	rature	D	Number		Insensible	vap	orized	vaporized
-F		Relative	to	Body	Loss	MOI	sture*	og Moisture, Cal.
Dry	Wet	Humidity	Obser-	Weight	grams	grams	gms/sq.m.	Total Heat
Bulb	Bulb	%	vations	kg.	per hour	per hr.	per hr.	Production,* Cal.
				Jersey	999 (Lactat	ing)		
65 5	53 5	44	6	450	419	332	72	32
73 0	54 0	27	4	434	559	507	113	46
74.0	79 0	01	1	410	510	169	105	45
65 O	50 E	80	5	414	440	990	105	20
00.0	00.0	00	4	414	112	308	109	31
83.0	00.0	40	3	414	908	840	192	80
86.0	83.0	88	4	386	493	447	106	50
67.0	59.0	62	3	405	500	445	103	46
97.0	77.0	40	2	387	810	765	181	86
92.0	88.0	85	1	363	840	869*	214	89
65.0	57.5	64	1	379	410	354	85	36
97.5	79.0	44	1	398	830	765	178	79
99.5	92.5	77	1	343	850	865#	219	102
64.0	58.0	69	1	362	270	175	43	23
				_				
		-		Jersey	549 (Lactat	ing)		
65.5	54.5	49	5	383	436	388	92	43
71.5	53.0	27	4	378	518	456	109	58
72.0	69.0	86	2	376	460	401	97	46
67.5	61.0	68	1	384	400	335	80	36
84.0	67.0	40	4	394	946	884	207	98
96 0	83.0	88	3	371	535	496	120	67
67 0	59.0	62	4	391	472	429	101	48
07.0	76.0	37	2	302	770	720	160	80
05.0	10.0	31	1	382	970	050	200	05
95.U	69.0	50	1	309	010	000	200	95
04.0	50.0	38	1	399	310	243	57	31
97.0	80.0	47	1	403	1030	983	228	96
100.0	92.0	73	1	364	610	599	147	63
64.0	58.0	70	1	392	340	282	66	32
				Tongo	- 550 (Dave)			
85 0	E2 0	44		Jerse	<u>y 558 (Dry)</u>	950	771	40
05.0	53.0	44	4	290	320	209	71	74
72.0	04.0	30	4	302	340	305	83	57
72.0	69.0	86	2	315	358	322	86	47
66.0	60.0	71	1	317	275	240	64	37
82.5	66.0	41	4	327	514	463	121	63
86.0	83.5	89	3	329	433	380	99	52
67.0	60.0	67	5	342	329	283	72	39
95.5	76.5	42	1	351	740	709	178	86
97.0	92.0	83	1	341	520	506	129	70
68.0	62.0	72	1	358	300	253	63	35
96.0	81.5	54	1	371	800	751	182	91
64.0	58.0	69	1	366	300	265	65	41
				Jerse	y 979 (Dry)			
64.0	53.0	48	6	442	485	418	92	48
74.5	55.0	26	4	444	486	410	90	51
73.5	71.0	90	1	445	475	416	91	42
65.0	58.5	68	2	448	342	289	63	32
84 0	66 0	38	4	456	786	726	157	60
86.0	83 5	91	3	449	537	490	107	E.C.
87 0	59 0	50	3	489	446	207	09	97
00.0	30.U	30	3	103	110	301	100	31
09.0	11.5	30	4	-100	800	091	192	92
85.0	69.0	00	÷ ·	440	100	089	152	, 85
65.0	57.5	64	1	400	282	226	48	24
97.0	78.0	43	1	459	805	761	164	86
64.0	58.0	70	1	434	240	173	38	22

TABLE 5 -- INSENSIBLE LOSS AND EVAPORATIVE LOSS IN JERSEY CATTLE (February 23 to July 20, 1951)

*Metabolic weight loss and heat production from Table 5, Missouri Research Bulletin 522; surface area in square meters equals $0.15 \times (\text{weight in Kg.}) 0.56$ (see S. Brody, "Bioenergetics and Growth", Reinhold, 1945, page 360). Vaporized moisture was converted to calories by multiplying grams of moisture by 0.58.

#Higher values of vaporized moisture than for insensible weight loss indicate negative values for metabolic weight loss. Although these values may have resulted from differences in time and place between the insensible weight loss and metabolism measurements, these are reasonable values for short periods under the given conditions, which would be compensated over longer periods.

•

Tempe	rature		Number	Vaporized				
0	F	Relative	of	Body	LOSS	Mois	sture*	a Moisture Cal
Dry	Wet	Humidity	Obser-	Weight	grams	grams	gms/so.m.	Total Heat
Bulb	Bulb	%	vations	kg.	per hour	per hr.	per hr.	Production*, Cal.
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Broy	wn Swige 48			
	50 E	66	•	520	E10	400	00	20
00.0	50.5	55	2	532	512	462	92	36
75.0	35.0	25	2	514	748	680	138	56
10.0	73.0	87	3	517	002	622	125	53
00.0	60.0	71	Z	505	658	593	121	42
00.U	00.0	39	4	507	990	903	104	75
01.0	50.0	04 50	*	400	839	549	108	75
01.0	JO.U	20	4	409	1970	1109	240	40
95.0	15.0	39	1	404	1210	1192	249	104
66.0	90.0 61 0	76	1	599	745	652	132	11
100.0	70.0	30	1	102	1100	1144	240	102
100.0	80.0	35	1	403	945	025	190	102
67.0	64 0	0.5	1	510	250	202	57	00
01.0	04.0	04	-	515	330	202	51	21
				Brow	vn Swiss 47	-		
69.0	55.0	40	2	436	638	577	128	53
75.0	57.0	32	2	440	715	620	137	63
74.0	71.0	85	3	440	557	495	109	48
65.5	59.0	68	2	444	490	407	89	42
86.5	69.0	41	4	450	910	831	181	76
87.5	84.0	87	2	436	808	761	169	91
68.0	60.5	66	2	452	440	378	82	35
95.0	75.0	39	2	442	1108	1042	229	88
90.0	86.5	87	1	417	800	792	180	67
65.0	59.5	74	1	465	340	282	60	28
99.0	78.0	39	1	448	1195	1132	247	114
96.0	82.0	55	1	409	845	831	191	77
67.0	63.0	79	1	455	315	243	52	24
				Brow	n Swiss 22			
67.0	55.0	46	1	521	450	385	77	32
75.5	56.5	28	2	510	348	275	56	28
75.0	71.0	83	3	507	392	316	64	27
66.0	59.5	68	2	508	365	296	60	29
86.0	68.5	40	4	504	865	815	167	70
88.0	84.0	85	3	495	693	653	135	67
70.0	61.0	60	1	516	590	541	109	49
95.0	75.0	40	2	501	1145	1122	230	96
95.0	90.0	83	2	500	910	905	186	102
63.0	57.0	70	1	522	410	319	64	26
100.0	79.0	39	1	503	1135	1040	213	85
99.5	89.0	66	1	481	775	847#	178	62
66.5	63.0	81	1	511	380	282	57	21

#### TABLE 6 -- INSENSIBLE LOSS AND EVAPORATIVE LOSS IN BROWN SWISS CATTLE (February 23 to July 20, 1951)

*Metabolic weight loss and heat production from Table 6, Missouri Research Bulletin 522; surface area in square meters equals  $0.15 \times (\text{weight in Kg.})^{0.56}$  (see S. Brody, "Bioenergetics and Growth", Reinhold, 1945, page 360). Vaporized moisture was converted to calories by multiplying grams of moisture by 0.58.

[#]Higher values for vaporized moisture than for insensible weight loss indicate negative values for metabolic weight loss. Although these values may have resulted from differences in time and place between the insensible weight loss and metabolism measurements, these are reasonable values for short periods under the given conditions, which would be compensated over longer periods.

Relative	Ther	mocoup	ole		Rad	lometer			
Humidity	Chamber	Cow	No. of	Chamber	Cow .			No. of	Dates of
%	Air	Skin*	Obs.	Surface	Surface*	Jaw	Leg	Obs.	Measurement
	-			Holstein Co	ws (averag	e of 6)			
62	53.8		0	55.8	84.7	86.6	80.1	12	Oct. 12 & 17
65	44.0	88.6	6	46.8	81.0	83.9	87.2	12	Oct. 24 & 31
84	42.6	90.0	12	46.8	81.4	82.7	68.1	12	Nov. 14 & 17
44	38.1	88.0	6	43.7	76.5	78.0	60.8	6	Nov. 21
64	49.0	86.7	9	52.4	81.1	81.9	74.4	12	Dec. 7 & 13
63	12.7	82.6	6	18.4	59.7	65.8	40.1	6	Dec. 26
64	12.8	84.2	6	16.8	60.1	64.3	35.3	6	Jan. 11
86	15.0	78.6	12	21.3	64.0	66.2	39.7	18	Jan. 16, 23 & 25
68	51.5	89.1	6	52.9	81.9	81.2	74.5	12	Feb. 2 & 7
				Jersey Co	ws (average	e of 6)			
60	50.2		0	52.6	82.6	86.6	76.4	12	Oct. 11 & 19
56	41.0	81.5	6	43.9	76.3	82.4	60.8	12	Oct. 26 & Nov. 3
46	38.6	89.9	9	41.2	74.4	79.0	63.4	9	Nov. 15 & 16
79	41.0	89.3	10	44.0	75.9	80.6	69.5	10	Nov. 22 & 28
63	51.2	92.6	12	52.9	78.0	82.5	75.2	12	Dec. 6 & 14
62	11.4	82.1	3	16.6	53.4	64.6	32.6	6	Dec. 19
92	12.8	84.6	6	14.6	56.8	63.2	31.0	6	Jan. 8 & 9
56	10.1	83.3	12	16.4	55.5	62.4	36.9	12	Jan. 15 & 24
62	50.5	89.3	12	<b>52</b> .0	78.1	80.7	75.8	12	Feb. 1 & 15

 TABLE 7 -- EFFECT OF HUMIDITY AT TEMPERATURE LEVELS 40° AND 15° ON THE SKIN

 AND HAIR TEMPERATURES, °F, OF HOLSTEIN AND JERSEY COWS

 (Winter 1950-51)

*Each observation consists of an average of six spot measurements; back, belly, right and left sides of body, neck and rear.

•

Relative	The	ermocour	ple	R	adiomete	r	
Humidity	Chamber	r Cow	No. of	Chamber	Cow	No. of	Dates of
%	Air	Skin*	Obs.	Surface	Surface*	Obs.	Measurements
			Jersey	y Cows (av	erage of 4	4)	
64	64.9	92.0	4	66.4	87.6	4	Mar. 7
•-	0110	02.0	-		•••••		
36	73.6	93.6	8	75.2	90.8	8	Mar. 16 & 19
82	74.8	93.3	8	76.4	92.6	8	Apr. 2 & 4
68	64.9	91. <b>2</b>	4	67.7	89.1	4	Apr. 10
38	85.6	96.7	4	86.0	95.9	8	Apr. 18
84	85.4	98.2	8	86.5	96.9	8	May 1 & 8
							•
62	64.9	89.8	12	67.5	88.7	12	May 15, 21, 22 & 24
38	95.7	100.2	4	95.8	99.2	4	May 29
82	96.4	101.3	4	97.2	100.8	4	June 4
60	94.7	99.1	4	95.5	98.6	4	June 7
64	64.5	88.6	4	66.6	87.1	4	June 13
32	101.2	101.6	4	101.3	100.6	4	June 26
72	99.8	101.9	4	100.2	101.4	4	June 29
			-				
66	66.3	89.2	4	68.6	87.6	8	July 9 & 10
			Brahma	in Cows (av	verage of	2)	
64	64.7	91.6	2	66.8	87.8	2	Mar. 7
36	73.5	93.8	4	75.4	92.8	4	Mar. 16 & 19
82	75.0	93.8	4	76.9	95.1	4	Apr. 2 & 4
68	64.8	90.2	2	67.8	90.0	2	Apr. 10
38	86.0	97.5	2	86.4	97.7	4	Apr. 18
84	85.2	97.6	4	86.8	97.9	4	May 1 & 8
62	64.8	89.6	6	68.0	90.2	6	May 15, 21, 22 & 24
39	05 7	100 4	9	05 <b>6</b>	00 G	4	May 20
82	96.5	100.4	2	97 7	101 0	2	June 4
60	90.5	08.2	2	95.5	98 7	2	June 7
00	51.1	50.2	4	00.0	50.1	2	Julie 1
64	64.6	88.5	2	66.8	88.0	2	June 13
32	101.7	101.7	2	101.2	101.0	2	June 26
72	99.7	100.4	2	100.2	100.8	2	June 29
66	66.4	89.3	2	69.0	89.2	4	July 10

# TABLE 8 -- EFFECT OF HUMIDITY AT TEMPERATURE LEVELS 75°, 85°, 95°AND 100°F ON THE SKIN AND HAIR TEMPERATURES, °F, OF JERSEY AND<br/>BRAHMAN COWS (Summer 1951)

*Each observation consists of an average of six spot measurements; back, belly, right and left sides of body, neck and rear.

Relative	The	ermocou	ole	IDD COWD	ladiomete	r				
Humidity	Chambe	r Cow	No. of	Chamber	Cow	No. of	Dates of			
%	Air	Skin*	Obs.	Surface	Surface*	Obs.	Measurement			
Holstein Cows (average of 3)										
64	64.9	91.6	3	66.5	87.3	3	Mar. 6			
36	75.0	93.1	6	75.6	91.0	6	Mar. 15 & 20			
86	75.6	93.9	3	76.6	92.3	3	Apr. 3			
							~			
68	65.4	90.4	3	67.1	87.6	3	Apr. 9			
44	84.5	96.2	3	84.9	95.3	3	Apr. 19			
86	85.1	97.9	6	86.2	95.8	6	Apr. 30 & May 7			
		• • • •	•			•				
70	65.1	89.8	3	68.2	86.9	3	May 22 & 23			
42	96.3	100.2	6	96.0	99.2	6	May 28 & June 1			
84	96.5	101.7	2	97.0	100.8	3	June 4			
60	95.0		0	95.5	98.6	3	June 7			
62	65.7	89.0	3	68.4	87.8	3	June 14			
36	100.6	101 3	3	00.5	100.8	3	Tule 9			
62	101.6	101.5	3	100 6	100.0	3	July 5			
02	101.0	102.0	3	100.0	102.0	3	July J			
<b>68</b> [.]	66.2	90.1	3	67.9	88.9	3	July 16			
			Brown	Swiss (av	erage of 3	)				
64	65.2	92.3	3	66.7	85.7	3	Mar. 6			
36	75.2	93.6	6	75.6	90.0	6	Mar. 15 & 20			
86	75.9	94.1	3	76.8	91.9	3	Apr. 3			
68	65.4	91.1	3	67.1	88.4	3	Apr. 9			
44	84 6	96.3	3	85 1	95.3	3	Apr 19			
86	85.0	98.0	6	86.4	96.6	6	Apr. 3 & May 7			
	0010	00,0	Ŭ	00.1	00.0	Ū	npr. o a may t			
70	65.4	89.5	. 3	68.2	88.1	3	May 22 & 23			
42	96.2	100.4	6	95.6	99.5	6	May 28 & June 1			
84	96.4	101.7	3	96.7	100.9	3	June 4			
60	95.0		0	95.5	98.8	3	June 7			
62	66.1	89.4	3	68.4	88.9	3	June 14			
0.0	100 7	101 0	•	00.0	101.0	•				
36	100.7	101.3	3	99.0	101.0	3	July 3			
62	101.5	102.7	3	100.2	102.1	3	July 5			
68	65.9	89.6	3	68.3	89.1	3	July 16			

TABLE 9 -- EFFECT OF HUMIDITY AT TEMPERATURE LEVELS 75°, 85°, 95°AND 100°F ON THE SKIN AND HAIR TEMPERATURES, °F, OF HOLSTEIN AND<br/>BROWN SWISS COWS (Summer 1951)

*Each observation consists of an average of six spot measurements; back, belly, right and left sides of body, neck and rear.