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Abstract 

 The purpose of the Fuzzy PIR Fall Detection Array is to keep the elderly safe by 

providing a means for an immediate response to falls while still allowing them to enjoy 

the same independence they felt before fall detection was necessary.  To accomplish 

this goal, a vertical array of passive infrared (PIR) motion sensors can be positioned 

anywhere in the home near where a fall may occur. A fall is considered to be observed 

by the sensor array when the sensors, first, detect motion, then, stop detecting motion 

in order from top to bottom. To differentiate between a legitimate fall and normal 

motion, pattern recognition techniques were used to observe the signals from the 

sensing array and classify whether a window of data was observed during a fall or a non-

fall. To accomplish this goal, a Gaussian Parzen Window (GPW) and a relevance vector 

machine (RVM) were used with some success. This research shows that, for this 

application, the RVM is a superior classification method to the Parzen Window, where 

the RVM was able to detect falls with an accuracy of about 80% to the Parzen Window’s 

about 75%. Besides being more accurate, the RVM algorithm has a faster run time for 

classifying the data. The sensing array explored in this research could be a viable option 

as a non-wearable means for protecting the elderly in the event that they should fall in 

their home.  
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Figure 1.1: Vertical array of 
passive infrared (PIR) motion 
sensors 

Chapter 1 -  Introduction 

1.1 Problem Statement 

No one wants to fall, as it could cause severe pain or maybe some long term 

discomfort. However, for the elderly there is much more at stake than pain and 

discomfort when even the slightest fall can be 

something that causes damage that they may never 

recover from [1]. As technology continues to evolve 

many new methods have become available to protect 

our older population such as wearable accelerometers 

that can detect a fall [2] and wearable pendants that 

allow the elderly person to call for help [3]. These new 

advancements might allow relatives to rest easy 

knowing that their family members are safer, but 

many of these safeguards leave their users feeling as 

though their freedom has been compromised, 

sometimes so much so that they may choose to leave 

these devices behind. In this paper, a method of 

detecting falls through the use of passive infrared (PIR) motion sensors and pattern 

recognition techniques is discussed.  

The overall goal of this research is to develop a vertical array of PIR motion 

sensors which is capable of detecting falls that may occur in the home of an elderly 
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person. To accomplish this, a fall sensor was configured to observe test falls performed 

by a stunt actress who attempted to re-create accidental falls by an elderly person. This 

is done using a vertical array of PIR motion sensors which is pictured in Figure 1.1. As 

discussed in this paper, these sensors were used to detect test falls by recording output 

from each of the sensors and then performing preprocessing on the data to aid the 

feature extraction process. Next, features were extracted to be used in the classification 

process. To determine whether a given sequence of motion is indeed a fall or not, two 

pattern recognition techniques were explored; the Parzen Window and the Relevance 

Vector Machine (RVM) were used to classify data as either a fall or a non-fall. Once the 

classification step is done, post processing can be carried out on the classified data to 

determine whether a fall has occurred. If a fall has occurred, the same sensor array can 

monitor a person’s post-fall activity to validate whether a fall has actually occurred and, 

if it is necessary, to call for help. 

1.2 Overview 

In developing a sensor that was able to detect falls, but did not have to be worn 

by the person for whom it was made to protect, PIR motion sensors were used as the 

base sensing element. Eight of these sensors were arranged in 4 pairs oriented vertically 

with respect to each other and evenly spaced. From the eight sensors come 8 analog 

signals. Each of these signals was connected to an analog to digital converter (ADC) 

which interfaced to a laptop through its USB port. Using data acquisition software, the 

ADC was able to store the instantaneous values for each of the analog channels at a user 

defined frequency. The data from the sensors were stored in a text file which could then 
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be opened and read into MATLAB, a mathematical analysis software package which, 

throughout this work, is used to manipulate data and implement pattern recognition 

algorithms. Once the data was read into MATLAB, it then had to be preprocessed so that 

features could be extracted from it. After the data was preprocessed, the slope of the 

data and the difference between the average output of each adjacent sensor pair were 

extracted as features. Next, the feature data from each fall run was separated between 

testing and training data. Next, the Parzen Window and RVM algorithms were used to 

determine if a fall had occurred in each of the data runs. Each of the pattern recognition 

algorithms was programmed to output a confidence value that a fall had occurred. From 

this confidence output, a receiver operating characteristic (ROC) curve was used to 

determine a good threshold to be used in the post-processing phase where the output 

must be above this threshold value to be considered a fall.   

 This thesis begins by covering the background and related work where the 

details of fall detection, passive infrared motion sensing, the Parzen Window classifier, 

and the relevance vector machine are discussed in detail. Next, in chapter 3, the 

methodology for carrying out this research is described. The development of the sensing 

array is laid out first. Then, the data acquisition techniques used to collect motion data 

are detailed; a stunt actress performed falls according to the fall protocol in Appendix A. 

After that, in chapter 3, the preprocessing of the incoming data is discussed. Next, this 

thesis talks about the features that were extracted from the preprocessed signals. Then, 

the methods used to implement the Parzen Window and RVM are described. Finally, to 

close out chapter 3, the post-processing techniques that were used in this research are 



 

4 
 

examined. Chapter 4 goes over the experimental results and analysis of this research. In 

chapter 5 research results are discussed. Lastly, chapter 6 concludes this thesis. 
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Chapter 2 -  Background and Related Work 

2.1 Fall Detection 

There are many different ways to go about detecting falls that occur in an elderly 

person’s home, whether it is in a nursing home or an assisted living community. Two of 

the major approaches to fall detection are fall detection using wearable sensors and fall 

detection using non-wearable sensors. In the case of wearable sensors, a resident must 

wear a device that will either automatically detect a fall and call for help, or relies on the 

patient to press a button when they feel help is needed. Alternatively, in the non-

wearable case, sensors are placed throughout the home of an elderly person to collect 

and analyze data which can then be used to automatically detect falls and call for help. 

Typically, wearable techniques which are capable of automatically detecting falls 

use some type of multi-axis motion sensor, such as an accelerometer or a gyroscope, to 

monitor an elderly resident’s movements. The data that are collected from the motion 

of an elderly resident are then compared to a threshold value to determine if a fall has 

occurred [2] [4]. These techniques can be very effective at recognizing falls; however, 

they rely on the resident to be willing to wear the device. Another wearable technique is 

for an elderly resident to wear a pendant that is capable of alerting caretakers that a 

person needs help if the elderly resident presses a button [3]. This technique relies on 

the elderly resident to be coherent enough to press the button, and to voluntarily 

summon help. Furthermore, these wearable techniques do not protect a person when 

they are performing activities without clothing such as bathing or changing their clothes. 
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Alternatively, non-wearable techniques do not rely on a person to be willing or 

able to call for help, as they are capable of automatically calling for help, and are less 

likely to decrease a person’s feeling of independence by having to be worn on the body. 

Non-wearable techniques utilize non-contact sensors such as cameras [5][6], 

microphones [7], and infrared sensors [8]. Cameras can be used in many different ways 

to detect falls. A camera system for fall detection may consist of only 1 or more 

cameras, and in the case of multiple cameras, can be used to create a 3 dimensional 

voxel space representation of a person. A camera system for fall detection can provide 

caretakers with a greater amount of information. In addition to fall data, a camera 

based system can be used to gather clinical data. Examples of this include sit-to-stand 

times to assess mobility [9] or foot fall information that can be used for gait analysis 

[10]. All of the information available from cameras can be a great advantage in 

protecting an elderly resident, but it can be invasive if the person feels that his privacy is 

compromised due to cameras being installed in the home. 

This research explores the use of PIR motion sensors as a means for fall 

detection. The PIR array, discussed throughout this research, can detect falls without 

being worn, and since it is not collecting video information about a person, they may 

feel more comfortable having it monitor them in a bedroom or bathroom setting.  

2.2 Passive Infrared (PIR) Motion Sensing 

In this work, PIR motion sensors are used as the basic sensing elements for 

human motion detection. Objects that give off heat reflect electromagnetic radiation in 
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the infrared spectrum between 0.7 micrometers and 300 micrometers. The infrared 

light that is reflected from the human body has a wavelength of about 10 micrometers 

[11]. The sensors that were used in this research have an infrared filter which allows 

only infrared light with a 10 micrometer wavelength [12]. This helps to reduce the effect 

that non-targeted sources of infrared radiation (other than humans) have on the sensing 

elements. The enclosure, which houses the sensing element, also has built-in Fresnel 

 

lenses which direct the incoming infrared light to four sensing areas on the surface of 

the internal sensing element. Typically, PIR sensors have two or more distinct surfaces 

on the face of the sensing element, which develop a charge proportional to the amount 

of incoming infrared light. In this research, the sensing element uses 6 Fresnel lenses to 

focus light onto a sensing element with four individual sensing surfaces. However, in this 

section, for simplicity, a sensor with 2 Fresnel lenses which focus light onto a sensing 

element with 2 sensing surfaces, such as the one shown in Figure 2.1, is described. The 

 
Figure 2.1: Simple PIR Sensor 



 

8 
 

way the simplified PIR sensor works is as follows. First, infrared light is reflected off the 

surface of an object according to its emissivity. Once the reflected infrared radiation 

reaches the enclosure of the sensor, it is focused by each of the Fresnel lenses towards 

the surface of the sensing element where the Fresnel lenses direct light towards a 

specific portion of the sensing surface of the sensing element. Once the light is focused 

on the sensing surfaces, the light is then filtered by the infrared filter to only allow light 

with a wavelength of about 10 micrometers to pass through. Once the light reaches the 

surface of the sensing element, a surface charge proportional to the amount of infrared 

energy directed, develops on the sensing surface. The sensing surfaces within the 

 
Figure 2.2: Sensing Element Internal Circuit 
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sensing element are part of a circuit in which the sensing surfaces are connected in 

parallel to a resistor and then connected to a MOSFET at one end and grounded on the 

other end [13]. This parallel configuration ensures that the sensor only generates 

electrical pulses when there is a potential difference between the two sensing surfaces. 

This helps to reduce the effect that an air conditioner coming on, or sunlight coming in 

the windows in the morning would have on the sensor, because these types of events 

affect both sensing surfaces and would effectively cancel. As can be seen in the figure 

above, when a human walks through the field of view of the sensing element, the 

infrared energy which is reflected from their body activates, first the left sensing surface 

and then the right. An example of the signal that the sensor would generate is shown in 

Figure 2.4. In this research, the output signals from one sensor are analyzed with the 

output signals from seven other sensors and are processed to estimate the behavior of 

Figure 2.3: Sensor field of view (FOV) with person 
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an individual that is moving within the field of view of the sensor array. 

 

2.3 Parzen Window 

In this research, a Parzen Window classifier was used to indicate whether fall 

information belongs to either of two classes, fall and non-fall. Due to its proven 

performance and clear theoretical background [14] the Parzen Window is often chosen 

as the basis for machine learning and pattern recognition research. The Parzen Window 

is a particular method of non-parametric kernel density estimation where densities are 

estimated using a fixed volume about individual data points and few assumptions are 

made of the system from which the data was gathered [15] [16].  

The overall goal of kernel density estimation is to use a probability density      

which exists in a   dimensional hyperspace as a base kernel which is used to classify   

sample data points. In the Parzen Window approach to kernel density estimation, the 

kernel function is evaluated for a volume   which is centered about each data point of 

 
Figure 2.4: Example sensor output signal 
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training data. To make explanation more straightforward,   is assumed to be a   

dimensional hypercube. The volume equation for each sample is shown below in 

equation 2-1 where   is one side of the hypercube. 

      
  

2-1 

The probability density is then estimated in equation 2-2 where   is the number 

of samples which fall within the bounds of the hypercube. 

       
 

   
 

2-2 

When the volume is a   dimensional hypercube, the window function can be 

defined by equation 2-3 from [16]. 

       
 
 
         

          
               

2-3 

From this, given a   dimensional test point and a   dimensional training point, it 

can be determined that   
    

  
  is equal to 1 when a test sample    is within the volume 

of a hypercube which is centered at training point   and 0 when the test point is out of 

the bounds of the volume defined by the hypercube. From this, the number of samples 

which fall within the hypercube can be calculated using equation 2-4. 

      
    

 
 

 

   

 
2-4 
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Substituting equation 2-4 back into equation 2-2 yields equation 2-5 shown 

below. 

      
 

 
 

 

 
  

    

 
 

 

   

 
2-5 

 Equation 2-5 would be the kernel density function or Parzen Window for a 

hypercube with sides of length  . The results of using the hypercube create false 

discontinuities at the boundaries of the hypercube and thus a more smooth window 

function can be used to provide smoother results [15]. The Gaussian function, in theory, 

never goes to zero and thus will provide the more desirably smooth results. Replacing 

the hypercube with a Gaussian function produces the resulting kernel function shown 

below in equation 2-6. 

      
 

 
 

 

         
    

      
 

    

 

   

 
2-6 

 In equation 2-6,   represents the standard deviation of the Gaussian function. 

Using the Gaussian distribution as the window function effectively centers a Gaussian 

distribution function over a training sample where results can be derived by calculating 

the cumulative distribution function from each sample and averaging the results from 

each calculation. Calculating the average effectively normalizes the results.  

 After the Parzen Window kernel that will be used is determined, the magnitude 

of the   parameter must be tuned. Finding the best magnitude of the   parameter is 
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dependent on the number of testing samples used. When the magnitude of   is very 

large, the results of the Parzen Window calculation will be more smooth and provide 

results with lower accuracy. When the   parameter is very small the results of the 

Parzen Window calculation will be more rough and there will be too much statistical 

variability [16]. In this research, the   parameter was chosen by classifying data and 

using the numbers reported by a confusion matrix to choose the best value for the 

magnitude of the   parameter. 

 Once the Parzen Window kernel is established, this method can be used to 

classify data. For this research, a two class classifier was used where data was classified 

as belonging in either class 1 or class 2. To classify the data, 50 sample windows were 

classified where each testing point in the window was calculated in the Gaussian 

function with each training point from each of the classes. Once that was complete, the 

results from each class, compared to each testing sample, were averaged. Next, the 

results from averaging the values from each class were compared against one another 

and each window of data was considered to belong with the class which has the highest 

average value. This process was repeated until each window of testing points was 

classified. 

 The Parzen Window classification process requires little upfront investment as it 

requires virtually no training.  To train the classifier, all that is required is to organize 

data into training and testing sets. A low amount of required training can be convenient, 

but for the purposes of this research, there is no advantage in choosing a classifier that 
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requires a shorter training period. This is because, for processing time, all that matters is 

how fast it can classify training data. Also, because the Parzen Window requires 

calculations to be made between each testing sample and each training sample, the 

computational complexity for running the Parzen Window classifier is very high and 

requires a large amount of memory for data storage [14]. Thus it would require a high 

performance computer to run the classification algorithm in real time, whereas more 

sparse classification algorithms could be optimized to classify incoming fall data more 

quickly with less computational power. 

2.4 Relevance Vector Machine (RVM) 

After demonstrating the feasibility of this research and building a working 

software package with the Parzen Window, an algorithm that can be used for 

classification, which requires less computational complexity and storage space, was 

needed. For this, the Relevance Vector Machine (RVM) was chosen. The RVM is based 

on Bayesian statistics where the goal is to constrain the classification parameters by 

placing priors over them and later integrating out or marginalizing these parameters to 

obtain the predictive distribution that allows classification of new data. The RVM takes 

input samples and pairs them with class labels (-1, 1) to model the probability 

distribution using logistic regression [17]. One important attribute of the RVM algorithm 

is that training the regression model yields a sparse set of training data, which means 

that it uses only the most relevant data samples. The number of training samples is 

determined through the training process. This process prunes training samples that are 

determined to be least effective when separating data. This essentially reduces 
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computational complexity as well as lowering the amount of memory needed to store 

the relevance vectors. Another advantage is that it is a kernel based classification 

method that can be extended to non-linearly separable data.  

 The RVM is a regression algorithm that provides results in the form of 

probabilistic classification. Typically, the goal of regression algorithms is to use a training 

set consisting of input training vectors   to find a parameter vector   as well as a single 

offset   [18]. Those parameters are then used to predict an output   using a set of input 

data   that consists of unknown input vectors.  

          
2-7 

In this research, it is assumed that the input data has a non-linear relationship 

and thus the input data   is transformed to a kernel space       [19][15][18].  

          
2-8 

To calculate the weight vector   during the training portion of the RVM 

algorithm, the target data   are assumed to represent the model  .  

            
2-9 

The design matrix generated by providing   as an input parameter to the   basis 

function yields the kernel  . The model of the target data given the input parameters is 

assumed to be dependent on mean zero Gaussian noise, thus the likelihood function 

can be represented in the form shown below [19][18]. 
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         2-10 

After that, a prior probability distribution is introduced over the weight vectors 

 . This is done by defining the prior as a zero mean Gaussian prior for each  . For this 

Gaussian prior, the variance is a precision hyper parameter defined as the inverse of the 

variance       . So there is an   parameter for each weight which controls the effect 

of the prior [15]. 
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 In training the RVM, the goal is to find the parameters  ,  , and    that will 

maximize the posterior probability distribution which is shown below [18] where    is 

replaced by   for simplicity. 

                                
2-12 

 The first term in the posterior is once again represented as a Gaussian. 

                   
2-13 

 According to [19], the equations for the mean   and covariance   are shown 

below. 

         
2-14 

              
2-15 
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 The variable   is the diagonal vector of  . To find the values for   and  , 

equations for   and   must be formed. Solving for the log marginal likelihood for the 

second part of equation 2-12 and using the evidence approximation procedure yields 

the equations below for   and   [18]. 

    
       

  
  

2-16 

   
      

       
 

2-17 

Values for   and   that will maximize the marginal likelihood and thus can be used to 

calculate target values   for new testing data are found through an iterative process 

where, first, initial values are chosen for   and  . After that, equation 2-14 and 

equation 2-15 are used along with   and   to calculate values for   and   which can 

then be used in equation 2-17 and 2-16 to calculate new values for   and  . This 

process is continued until a convergence criterion is met. A typical convergence criteria 

could be to choose a very small number which will serve as a minimum value for the 

difference          . The RVM becomes more sparse during the iterative training 

process as weights are pruned from the design matrix as their corresponding value for   

grows towards infinity. This means that a maximum value for   should be initialized 

before the iterative training process is started where a weight value will be pruned if its 

corresponding   is above the threshold. After the convergence criteria is met, the 

weights, which are not equal to zero and are left after pruning, are considered to be 

relevance vectors. The iterative training process is outlined below as can be seen in [18]. 
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1.    Initialize a kernel function that is appropriate for the data samples and use the 

kernel function to create a design matrix  . 

2.    Initialize an appropriate minimum value for the convergence criteria. For 

example, the training process will stop when 

                                . 

3.    Initialize an appropriate maximum value where weights will be pruned if their 

corresponding   values grow to be larger than this threshold. 

4.    Initialize values for   and   

5.    Calculate   and   

6.    Use   and   to update   and   

7.    Remove relevance vectors whose corresponding   values are above the 

maximum threshold set for   values. 

8.    Continue with step 5 while                                 . 

 Once the training process is complete, the set of relevance vectors or weights   

can be used along with the corresponding training sample points   to find target values 

for a set of testing samples  . The testing process begins by calculating a design matrix 

where some kernel function takes the training data and testing data as input and the 

result is calculated as part of the design matrix          After that, the weights are 

used to calculate the estimated target values as can be seen in the equation below. 

             
2-18 
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 Although the training process for the RVM can be time consuming, and requires 

a great deal of computing power and storage space, most of the time consuming 

computation is accomplished during this portion of executing the RVM algorithm. For 

the purposes of this research, a long training phase is not much of a disadvantage 

because it yields a more sparse training data set which will improve the time required to 

estimate the target values for new testing data. Theoretically, the RVM appears to be a 

good fit for this research because it provides probabilistic classification results which are 

a probability that data falls under a particular class which allows for post processing. 
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Chapter 3 -  Methodology 

3.1 Sensor Array 

Because the overall goal of this research is to develop a vertical array of PIR 

motion sensors, which is capable of detecting falls that may occur in the home of an 

elderly person, the appropriate PIR motion sensor had to be selected to serve this 

purpose. After searching through the available options for PIR motion sensors, it was 

apparent that most PIR sensors provided either an analog output or a digital output. As 

discussed in section 2.2, most PIR sensors have a base sensing element which produces 

an output signal that oscillates when the sensing element is detecting motion. In the 

case of the digital output PIR sensor, the element output signal is first sent through an 

amplifier circuit. Then the output from the amplifier circuit is sent through a comparator 

circuit that will output a square wave signal which is high when the raw element output 

signal is above a threshold voltage and low when the element output signal is below this 

threshold. An example of this can be seen in Figure 3.1, where the example digital 

output signal is labeled “comparator output” in the figure. Alternatively, in the case of 

an analog output sensor, the raw element output signal is only sent through the 

 

Figure 3.1: PIR motion sensor raw signals 
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Figure 3.2: Panasonic 
MP PIR Motion Sensor 

 

 
Figure 3.3: Fresnel lens array 
configuration 

 

amplifier circuit. The analog output PIR sensor was chosen for this research because the 

intention of this research was to use pattern recognition techniques to classify the 

signals coming from the sensors as either having been generated during a fall or 

generated during a non fall. It was decided that this could best be achieved using the 

amplified version of the analog output from the raw element output signal because the 

analog version of the signal retains more of the motion 

information than does the digital version. Further 

discussion of what is done with the analog output signals 

from the PIR sensors will continue in section 3.3.  

 As discussed in section 2.2, most PIR sensors come 

attached to an array of Fresnel lenses which define 

the sensor’s field of view (FOV). The FOV of a 

particular sensor can be as wide as 180° horizontal 

and 90° vertical. However, because the sensors were 

to be set up in an array configuration, if the sensors  

had too large of a FOV, the individual FOV of the 

sensors would be more difficult to separate because 

of their overlapping FOV and would make it more difficult to distinguish between 

motion in one sensor’s FOV vs. another sensor’s FOV. For this research, a sensor with a 

20° vertical FOV and 40° horizontal FOV was chosen.  
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The sensor that was ultimately chosen was the Panasonic MP PIR motion sensor 

which can be seen in Figure 3.2. In addition to showing the overall FOV for the PIR 

sensors, Figure 3.4 shows the different detection zones within the FOV of the sensors. 

As a person walks throughout the FOV of the sensors, they pass through the different 

detection zones. As discussed in Section 2.2, when the person crosses the different 

detection zones it causes the output signal coming from the sensing element to 

oscillate.  

 

 The Panasonic MP PIR Motion sensor is configured with an array of 6 fresnel 

lenses configured in 2 rows and 3 columns as can be seen in Figure 3.3. Initially the PIR 

sensors were attached to a vertical post and oriented in a horizontal position as can be 

seen in Figure 3.5. While in this configuration, although the sensors would provide 

signals where a fall could be visually detected, the signals did not provide consistent 

results as test falls occurred throughout the FOV of the sensing array. To fix this issue, 

the sensors were tilted upward 10° to position the lower limit of each of the sensor’s 

FOV horizontally as can be seen in Figure 3.6. 

 
Figure 3.4: Sensor Field of view cross section 
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Once the sensors were situated in an array configuration and tilted such that the 

lower boundary of their FOV was horizontal, the signals acquired during a test fall were 

still not consistent as to provide reliable detection of falls. To solve this issue, the 

 
Figure 3.6: Sensor array 10° FOV 

 

 
Figure 3.5: Sensor array horizontal FOV 
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sensors were then set up in pairs to provide some redundancy for the observed motion 

at each level of the sensing array, thus leaving the sensing array in its final physical 

configuration as can be seen in Figure 3.7. In this configuration, there are eight total 

 sensors which are paired, leaving four pairs of sensors. These four sensor pairs are then 

positioned in a vertical array with each sensor pair occupying its own horizontal plane. 

As the signals come from each of the sensor pairs, they are first preprocessed 

individually and then they are averaged together. A detailed discussion of signal 

preprocessing is continued in Section 3.3.  

 
Figure 3.7: Final sensor array configuration 
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 This configuration defines the behavior of the signals generated by the sensing 

array. If the human subject is moving through the FOV of the sensing array, all sensors 

will be active and their output signal will be oscillating. If this human subject falls, the 

output signal of the top most sensors will be the first to stop oscillating due to a lack of 

observed motion. Next, the output signals from the sensor pair, positioned just below 

the top most sensors, will stop oscillating. This will continue as the person descends 

towards the floor. In an ideal situation, when a person falls in front of the array, their 

falling motion will activate all sensors. Then, as the person falls, each of the sensors will 

stop detecting motion in sequential order from top to bottom, and their respective 

output signal will stop oscillating. For demonstration purposes, the preprocessed 

version of the signals generated from this process can be seen in Figure 3.8. The signals 

in Figure 3.8, first, indicate no motion where the signals are stable and have very small 

amplitude. Next, when the subject walks within the FOV of the sensing array, all of the 

sensor pairs begin to detect motion and thus increase in amplitude. After that, the  

amplitude from all four of the sensor pairs drops, as the sensors cease to detect motion, 

as the person has stopped walking and is standing in place. After that is the fall, where 

all sensor pairs begin to energize with the motion of the fall and soon after de-energize 

in order from top to bottom as the person descends towards the ground. 
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Figure 3.8: Preprocessed fall signals 
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3.2 Data Acquisition 

For the signals coming from the sensing array to be analyzed, they first had to be 

captured and stored. To do this, an analog to digital converter (ADC) was used. The 

specific ADC setup, that was used, begins with a laptop which is set up to run National 

Instruments (NI) SignalExpress software. SignalExpress initiates and facilitates the 

collection and storage of data recordings. SignalExpress communicates with a NI USB-

9162 carrier which is capable of accepting different types of NI data acquisition 

modules. In this research, a NI 9201 module was attached to the USB carrier. The 9201 

is an eight channel analog input module. Thus, the ADC system used in this research was 

capable of recording the output from eight analog signals, one from each of the eight 

sensors. A diagram which shows the equipment that was used for capturing the signals 

in this research is shown in Figure 3.9. 

 

 
Figure 3.9: Analog to Digital Conversion (ADC) Setup 
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 To test the frequency content of the PIR sensors, they were connected to an HP 

3561A Signal Analyzer. Using the signal analyzer, it could be seen that when motion was 

being detected by a sensor, there was frequency content up to about 100 Hz. From this, 

it was assumed that oversampling by 10 times would be sufficient to recreate the signals 

after they are digitized. This led to the choice of a sampling frequency of 1,000 Hz for all 

data acquisition in this research. 

 Besides connecting the sensors to the ADC, they also had to be powered with a 

five volt power source.  The power supply that was used was a nine volt switch mode DC 

power supply that was connected to a wall outlet at one end and the other end was 

connected to a breadboard which had a linear voltage regulator that converted the nine 

volts from the wall down to the five volts required for the PIR sensors. Also, there were 

three filter capacitors connected between power and ground to ensure that the power 

going to the sensors was free from transients. The bill of materials (BOM) for the 

sensing array can be seen in Table 3-1. Also, Figure 3.10 shows a schematic for the 

sensing array. 

Table 3-1: PIR sensing array bill of materials 

Item Quantity Description Value Distributor Part Number 

1 1 
Electrolytic 
Capacitor 

47µF N/A N/A 

2 1 
Electrolytic 
Capacitor 

1µF N/A N/A 

3 1 Ceramic Capacitor .1µF N/A N/A 

4 1 
Linear Voltage 

Regulator 
5V 

National 
Semiconductor 

LM1117T-5.0 

5 8 PIR Motion Sensor NA Panasonic AMN23111 
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 For this research, data were collected in individual files pertaining to one fall or 

non-fall activity. For example, a fall to the left side from a walking position was 

associated with one data file. The data file collection process for this research goes as 

follows. First, the sensing array and data acquisition equipment must be properly set up 

and ready to collect data. This means the sensing array must have been powered on for 

at least 30 seconds to allow the sensing elements to stabilize as indicated in the 

datasheet [12]. Once the equipment is set up, someone must be ready to initiate the 

data recording on the computer attached to the ADC. There also must be a test 

participant who is prepared to perform an action that resembles a fall or non-fall. Once 

all persons and equipment are ready, the data recording is started, and the participant 

begins the fall or non-fall action. Once the action has been performed, the person doing 

the recording stops the data recording and saves the data file that was generated in an 

 

Figure 3.10: PIR array schematic drawing 
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appropriate directory on a file storage device. The file name for each data file is saved as 

a time stamp. For example, if a recording was taken on the year 2010, 20th day of April 

and a time of 10:51 AM, the file name for that data run would be 201004201051.txt.  

 The files generated by SignalExpress are ASCII formatted text files where each 

sensor is represented by a column vector. Thus, at each sample period, a value is 

recorded in the text file for each of the sensors, separated by a space character. After 

the data is recorded for a sample period, the string of data stored in the text file is 

terminated with a carriage return character. This format makes this data compatible 

 
Figure 3.11: Typical ASCII text data file 



 

31 
 

with both MATLAB and Excel. Figure 3.11 shows a typical text file where the data for a 

fall or non-fall action is stored. 

3.3 Preprocessing 

After data have been collected, the next step is to preprocess it by transforming 

it for the feature extraction process used in this research. As can be seen in Figure 3.12, 

the signals that come directly out of the PIR sensing array are not easy to interpret, as it 

is not immediately clear where a fall has occurred. As discussed in section 3.4, this raw 

form of the signals makes feature extraction difficult as well. Thus, the raw signals are 

preprocessed to reveal the features that were used in this research to detect falls. The 

data in this research were preprocessed according to the algorithm laid out in the 

flowchart and block diagram shown below in Figure 3.13 and Figure 3.14 respectively. 

 
Figure 3.12: Raw data signals 
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Figure 3.13: Preprocessing software flow chart 
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Figure 3.14: Preprocessing block diagram 
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The general goal of the preprocessing step is to transform the signals coming from the 

sensors from signals that oscillate when detecting motion to signals that have high 

amplitude when the sensor is detecting motion and low amplitude when the sensor is 

not detecting motion.  

The preprocessing procedure performed in this research begins by loading the 

data that is to be preprocessed. After the fall or non-fall data are loaded, each of the 

eight signals are separated into individual variables. The first transformation operation 

that is performed on the data signals is to use a mean filter on each of the data signals. 

The purpose of the initial mean filter is to filter out the small amount of noise on each of 

the signals which was present when the signals were being saved by the data acquisition 

step. Since the amplitude of the output signals coming from the sensors is between 0 

and 5 volts, the steady state value for the signals coming from the sensors when they 

are not detecting motion is 2.5 volts giving the signals coming from the sensors a 2.5 

volt DC bias. As shown below in the block diagram in Figure 3.14, this 2.5 volt DC bias is 

 
Figure 3.15: Zero centered example signal 
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subtracted out of each of the input signals. An example of what this signal might look 

like can be seen in Figure 3.15, where the example motion sensor signal represents a 

sensor detecting motion for the first 1.5 seconds and then detecting no motion for the 

remaining half second. The goal for the preprocessing step is to transform a signal which 

oscillates when motion is detected to a signal which is represented by higher amplitude 

when motion is detected and amplitude near 0 volts when no motion is being detected. 

With this in mind, it can be seen that the portion of the signal which drops below zero is 

not conducive to the overall goal of the preprocessing step. To solve this issue, the 

absolute value of the signal is calculated. This can be seen in Figure 3.16. Also visible in 

Figure 3.16, is where the absolute value of the simulated sensor signal crosses the zero 

axis even though motion is being detected. This is a negative effect, since it contradicts 

the goal of the preprocessing step. To mitigate this issue, the derivative of the simulated 

sensor signal is taken. As with the simulated sensor signal, the absolute value of the 

 
Figure 3.16: Absolute value example signal 
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derivative was calculated to ensure that the signal reaches higher amplitude when 

motion is being detected. As shown in Figure 3.17, the issue of the absolute value 

reaching 0 can be resolved if the signals are added together. However, the combination 

of the sampling rate and the frequency of the signals yields a derivative signal which has 

a maximum amplitude of just above 10. So that the two signals can be added together, 

the derivative must be scaled to be within the same amplitude range as the absolute 

value of the simulated sensor signal. 

  This is accomplished by multiplying the derivative signal by the maximum value 

of the desired signal range and dividing by the maximum value of the derivative signal. 

       
  

  
  

           

         
  
  

  

 
   

  
              3-1 

 

 

 
Figure 3.17: Un-scaled derivative signal 
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Performing the transform shown in equation 3-1 yields the version of the derivative 

signal shown in Figure 3.18, which is the absolute value of the simulated sensor signal 

and the  absolute value of the derivative of the simulated sensor signal, which has been 

scaled down to the same amplitude range. After this, both signals are added together, 

yielding the signal shown in Figure 3.19. As shown in the figure, this preprocessing 

method makes it easier to identify where a fall occurs and transforms the signals into a 

form which reveals the features that are used for feature extraction. Once the 

preprocessing transformations have been made to each of the eight sensor signals, the 

signals from each of the four levels of sensor pairs are averaged together.  

 

                                                    

                                                    

                                                    

                                                    

 
3-2 

 
Figure 3.18: Scaled absolute value of derivative of simulated sensor signal 
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This takes the eight initial signals and condenses them to four signals, one for 

each level of the sensing array. This step provides some redundancy in the output of the 

signals from each vertical sensing level of the array. An example of the resulting signals 

generated by executing the preprocessing algorithm is shown in Figure 3.20 below.  

 
Figure 3.19: Preprocessing results from simulated signals 
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3.4 Feature Extraction 

Once the data has been preprocessed, the next step is to extract the features 

that will help the classifier identify when a fall has occurred. The features are extracted 

by performing calculations on the preprocessed data which tend to increase separation 

between data of different classes. The features that were used in this 

 
Figure 3.20: Preprocessed fall signals 
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research were selected based on inspection of the preprocessed data signals. When 

looking at preprocessed signals such as the ones shown in Figure 3.21, it can be seen 

that the signals appear different during the fall event than they do during the rest of the 

duration of the signals. These differences can be extracted as features. First, as shown in 

Figure 3.21, during the fall, the signals have a slightly different slope. Also, when fall 

 
Figure 3.21: Preprocessed signals for feature extraction 
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activity is observed, the slope of all four signals is typically negative. Besides the slope, 

when the subject is falling the signals begin to decrease in amplitude in order beginning 

with the purple signal which is from the top-most sensor pair. Next, the amplitude of 

the blue signal (the sensor pair second from top) begins to drop. Then, the amplitude 

from the red signal drops as its sensors cease to detect motion. Finally, the signals from 

the bottom sensor pair (represented by the green signal) begin to drop in amplitude. 

The signals continue this trend throughout the remaining duration of the fall. This 

pattern that was created during the fall is highlighted in Figure 3.22 where it can be 

seen that the slope and difference between the signals are distinct during the fall and 

thus, will help create separation between data collected during a fall and data collected 

during a non-fall. 

 
Figure 3.22: Fall signals with slope and difference 
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As outlined in the flowchart and block diagram shown below in Figure 3.23 and 

Figure 3.24, feature extraction begins by loading the data from which features are to be 

extracted. After the preprocessed data file is loaded, each of the eight signals are 

separated into individual variables. Next, the slope feature is extracted from each signal 

by calculating the derivative. Since the derivative introduces some noise in the signals, a 

mean filter is then calculated over each signal. Doing this yields four slope features, one 

for each sensing level. After that, the difference feature is extracted by subtracting the 

amplitude of each adjacent signal where the signal generated by one sensor pair is 

subtracted from the signal of the sensor pair that is located below it, at each instance in 

time. This ends up producing a difference feature signal that is positive during the 

portion of the signals where a fall has occurred. This yields 3 difference features with 

one coming from the difference between each sensing level. Combining all of the 

features yields a 7 dimensional feature vector.  
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Figure 3.23: Feature extraction software flow chart 
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 To visualize the feature space, a principal component analysis (PCA) was 

performed to reduce the dimensionality of the feature vector from seven dimensions to 

three then plotted in a three dimensional graph. In Figure 3.25, it can be seen that there 

is some separation between the fall data and the non-fall data. 

 

 
Figure 3.25: 3D feature space plot 

 

 
Figure 3.24: Feature extraction block diagram 
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3.5 Training Data Set 

 Once data has been transformed to the appropriate feature space, it is ready for 

classification. However, before it can be classified, it must be separated into testing and 

training data sets. After performing a data collection, where a stunt actress performs 

the actions as defined in the protocol in Appendix A, there were 57 fall and non-fall data 

files. Of the 57 data files, 42 of them represented fall data, and 15 of them were from 

the false positive portion of the protocol. When the data collection was executed, each 

of the fall activities were performed multiple times, with there being 1 fall activity for 

each data file. Conversely, the non-fall activities were performed two times within the 

same data file. Since there were multiple data file instances of each of the fall activities, 

they could easily be split between testing and training data sets. Since each of the false 

positive data files was collected with the stunt actress performing the individual false 

positive activities twice for each data file, it was not feasible to separate the false 

positive data files between the testing and training data sets. It was also not clear where 

to separate the individual activities within the non-fall data files. Since classification 

needed to be tested on each of the activities in the fall test protocol, the false positive 

data files had to be left in the testing data set and it was assumed that there would be 

enough fall and non-fall data in each of the fall data files in the testing data set to 

represent each class of data. The data files were distributed amongst the testing and 
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training data sets as shown below in Table 3-2 and Table 3-3. 

 

Table 3-2: Training Data Files 
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 Once the data files were distributed to testing and training data sets, the training 

data set had to be separated into different classes so that it could be used by a classifier 

to classify testing data. To identify which data came from each class in each of the fall 

data files, a person had to inspect the preprocessed data files and identify the sample 

Table 3-3: Testing Data Files 
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where the data collected during a fall begins and the sample where the fall data ends. 

The data between these samples were assumed to be collected during a fall and was 

assigned to class 1. Once the class 1 or fall data were identified, the rest of the data 

were assumed to be class 2 or non-fall data. This yielded a training data set with 35,220 

class 1 or fall data points, and 327,800 class 2 or non-fall data points. Combining the fall 

and non-fall training data gives a training data set with 363,020 data points. With the 

testing data set that large, it took a very long time to classify just one fall. To solve this 

issue, the training data set was down-sampled. Since the number of class 2 data was 

near 1 order of magnitude higher than the number of class 1 data, the class 1 data was 

down-sampled by 10 and the class 2 data was down-sampled by 100 to even up the 

number of samples in each class. This gave a training data set with 6,800 data points 

where 3,522 of them represent class 1 and 3,278 represent class 2. This likely has little 

negative effect on the results because of the estimated 10 times sampling frequency as 

discussed in section 3.2. The number of feature vectors included in the training data sets 

for each of the classifiers and the number of windows used in the testing data are 

shown below in Figure 3.26. 
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 Through the remainder of the classification and post-processing process the data 

is handled in 50 sample windows. This is because the falls in the stunt actress data set 

typically happen over a .5 second duration, so each window would be .1 times the 

duration of a fall. This would likely provide enough resolution for fall detection by each 

of the classifiers. 

 

 

3.6 Parzen Window 

One of the two classification methods chosen for this research is the Parzen 

Window classifier. Although, as stated in section 2.3, the Parzen Window classifier is a 

computationally intensive classifier; the results of this classifier can be used as a 

reference to determine whether falls can be detected using the PIR sensing array 

 

Figure 3.26: Testing and training feature vector and window quantities 
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described in section 3.1. The algorithm used in this research to implement the Parzen 

Window is outlined in the block diagram below in Figure 3.27. 

 

The Parzen Window does not require a prolonged training step; all that is 

necessary is for the data to be separated into training and testing sets. This process was 

detailed in section 3.5. Once the training data set is defined, the Parzen Window loads 

the training data that will be used to classify the testing data as is shown in the 

flowchart in Figure 3.28.   

 
Figure 3.27: Parzen window classification block diagram 
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Once the training data set is loaded, an appropriate value for the magnitude of 

the variance or   parameter is determined. This was done by running the classifier on 

 
Figure 3.28: Parzen window classification software flowchart 
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some testing data, and using the information reported by the resulting confusion matrix 

to choose the magnitude of   empirically, through experimentation by varying the   

parameter and choosing the value of   that yielded the lowest number of false 

negatives. The results of this process are show below in Table 3-4. 

 

Initially,   was set high at 5. The result of setting   to 5 yielded no false negatives and a 

very large number of false positives. From 5,   was lowered one order of magnitude to 

.5. Lowering   to .5 greatly reduced the number of false positives. Next, an   value of .1 

was tested. As shown in Table 3-4, this, once again, improved the accuracy. After that, a 

value of .01 was tested. This yielded the best accuracy, but increased the number of 

false negatives, which represent missed falls. Finally,   was set to .05. This yielded the 

best accuracy while still keeping the number of false negatives at 0. 

Table 3-4: h parameter tuning 
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As can be seen above in Figure 3.29, the first step the classification function 

takes is to calculate the cumulative probability of the Gaussian distribution for each 

testing sample, centered at each training sample, from the class 2 training data set. The 

equation for this step is shown below in equation 3-3.  

 
Figure 3.29: Parzen window classification function flowchart 
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 C2                
 

    
     

 

 
 
       

 
 
 

 
                          

                       
 

3-3 

After that, the average of the values generated from the calculations between 

class 2 training samples and testing samples is calculated.  

                                
3-4 

Next, the classification function calculates the cumulative probability of the 

Gaussian distribution for each testing sample centered at each training sample from the 

class 1 training data set. The equation for this step is shown below in equation 3-5. 

 C1                
 

    
     

 

 
 
       

 
 
 

 
                          

                       
 

3-5 

Once that is complete, the average of the values generated from the calculations 

between class 1 training samples and testing samples is calculated.  

                                
3-6 

Next, the confidence value is calculated by subtracting the mean of the 

cumulative probability calculations between class 2 training data and the testing data 

from the cumulative probability calculations between class 1 training data and the 

testing data. Since the bandwidth is set to allow more false positives than false 

negatives, if the confidence value is below zero, this would more likely result in the 

classification for the testing data being class 2 or a non-fall and a confidence value 

would not be necessary and as such all negative confidence values are set to be zero. 
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3-7 

After the confidence value is calculated, the values of the class 1 mean and class 

2 mean are compared. If the class 1 mean is greater than the class 2 mean, then the 

testing sample is classified as a fall, and if the class 2 mean is greater than the class 1 

mean then the testing sample is classified as a non-fall. Once the class label is 

determined, the 2 class Parzen Window function returns the class label and the 

confidence values. 
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Figure 3.30: RVM training flowchart 

 

3.7 Relevance Vector Machine (RVM) 

An alternative classification method to 

the Parzen Window classifier is to use the RVM 

to provide the predictive distribution of 

individual fall data files, which allows for 

classification of the fall data. As mentioned in 

section 3.6, the Parzen Window approach 

requires a significant amount of processing 

power and storage space. Alternatively, the 

training step executed when implementing the 

RVM, effectively reduces the training data set to 

a more sparse set of relevance vectors. The 

reduction of training samples translates to 

lower computational complexity and requires 

less storage space. The RVM is a kernel method 

where a kernel function is used to transform 

the input data to a feature space mapping.  

In contrast to the Parzen Window, classification using the RVM requires a 

training process where input parameters for classification are found. As shown in Figure 

3.30, training of the RVM is started by loading the training data. Next, a training data set 

is configured by combining the training data with target values that represent the class 

of the corresponding training data. In this research, class 1 training data, or fall data, is 
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given a target value of -1 and class 2 training data, which consists of non-fall data, is 

given a target value of 1. This can be seen below in equation 3-8. 

       
                       
                      

  
3-8 

 Next, in the training process, the kernel function      is defined. For this 

research, since the data set is assumed to be nonlinear, the radial basis function is used.  

           
 
  
            3-9 

 Once the kernel function is defined, the design matrix   can be built based on 

this kernel function. 

           
                 

   
                 

  
3-10 

 After the design matrix is initialized, the next step, before running the function 

that trains the RVM, is to set the convergence criteria. For this research, the 

SparseBayes function, written by Mike Tipping [19], is used to train the RVM. For the 

convergence criteria, the SparseBayes function requires the user to set the max 

iterations and maximum time to run, which in this research, were both set to 50,000. At 

completion, the SparseBayes function passes back the relevance vectors in the form of 

indices to the most relevant vectors. To use these data, the relevance vectors are saved 

to a matrix   and all of the data returned by the SparseBayes function are saved.  
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Figure 3.31: RVM testing software flowchart 

 

 Once the RVM has been trained, it 

can be used to classify the fall data. As 

can be seen in the software flowchart 

shown in Figure 3.31, the classification 

process of the RVM begins by loading the 

weight parameters   and relevance 

vectors  . After the training data are 

loaded, the feature vector which is to be 

classified is pointed to when the 

corresponding file paths are loaded. 

Next, the kernel function      is defined 

using equation 3-9. Once the data have 

been initialized, the main loop of the 

classification software begins by loading 

in a testing data file. Once the testing 

data is loaded, the design matrix can be 

made with a window of fall data.  

           
                 

   
                 

      
                        

                              
 

3-11 

 Next, the target values are estimated for the window of fall data using the 

equation below. 
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Figure 3.32: Classified data graph 

 

              
3-12 

 After all of the data windows for each data file have been classified the 

classification data for each of the individual data files are saved. 

 The results of the target data calculations are probabilistic classifications which 

represent the confidence that a window of data belongs under a fall or a non-fall class 

label. This is a good fit for this research because it allows for post processing of the 

classification data to improve the accuracy of the classification results.  

3.8 Post-processing 

As will be discussed in chapter 4, the results from both the Parzen Window and 

the RVM require post-processing to provide more accurate results. For example, as 

shown in Figure 3.32, there is a false positive that occurs briefly at around 4500 samples 

and a true positive that occurs between 8500 and around 10500 samples.  
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As shown in Figure 3.32, there is more area under the curve of the true positive 

than there is under the false positive. Since the false positive is an undesirable result, as 

it represents a situation where caretakers may be unnecessarily alerted to a problem 

that may not have actually happened, it would be best if this false positive were 

correctly classified as a non-fall. To solve this issue in post-processing, a mean filter is 

calculated over the classification signal. This more quickly reduces the peak amplitude of 

the classification with less area under its curve and will effectively create more 

separation between false positives and true positives. It also makes determining a 

threshold value that can be chosen for the maximum amplitude of non-fall data more 

apparent. 

The false positive, shown in Figure 3.32, could be eliminated if a threshold value 

could be found where, if a classification value is above this threshold, it is considered a 

true fall, and if it is below this value, then it would be considered a non-fall. To choose 

the best threshold, all of the falls must be analyzed at each potential threshold value. In 

determining this threshold value, a receiver operating characteristic (ROC) curve is 

generated by calculating the true positive rate and false positive rate across a range of 

threshold values. The ROC signal is shown on a 2 dimensional graph where the 

horizontal axis is the false positive rate. The calculation for the false positive rate is 

shown below in equation 3-13 where the false positive rate    equals the number of 

false positives divided by the total number of data that are supposed to be negative 

which is the number of false positives (#FP) and the number of true negatives (#TN). 
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 3-13 

 The vertical axis of the ROC curve is the true positive rate. The calculation 

for the true positive rate is shown below in equation 3-14 where the true positive rate 

   equals the number of true positives divided by the total number of data that are 

supposed to be positive which is the number of true positives (#TP) and the number of 

false negatives (#FN). 

     
   

       
 3-14 

To generate the ROC graph, the true positive rate and false positive rate are 

calculated as the threshold is varied. For this research, the threshold value is varied 

from 0 to 1 in increments of .1.  

 The results of the ROC curve for the classification data from the Parzen Window 

and RVM are shown below in Figure 3.33. The ROC curves shown in Figure 3.33 were 

generated by calculating confusion matrix data where the results were generated by 

comparing the classification results from each of the Parzen Window and RVM classifiers 

to ground truth information over a range of threshold values. The data in Figure 3.33 

was also after the mean filter was calculated in the post-processing step. 



 

62 
 

 

The ROC curve above was generated from the values in Table 3-5 below. The 

ROC curves in Figure 3.33 help to visualize the options available for the choice of 

threshold value which will minimize the false positive rate and maximize the true 

positive rate. However, looking at the values in the table is most helpful when choosing 

a threshold value to be used for classification in the final sensing array. Looking at the 

confusion matrix data in Table 3-5 for the Parzen Window, it can be seen that as the 

threshold value increases the number of false negatives increases. This is because as the 

threshold increases, there are more true falls that would have been classified as such 

but are not because their peak amplitude never reaches the threshold value. This is a 

 
Figure 3.33: ROC curve for the Parzen Window and RVM classification results, after filtering 
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 negative side effect of increasing the classification threshold value. In contrast, it can be 

seen that the number of false positives sharply decreases as the threshold value 

increases. Reducing the number of false positives is the major advantage to 

implementing a threshold value. As can be seen in Table 3-5 initially the number of false 

negatives slowly increases when the threshold increases and as the threshold value 

approaches 1, the number of false negatives sharply increases. Thus, for the sake of 

keeping the number of missed falls low, a small threshold value should be chosen to 

minimize the number of false negatives. On the other hand, as the threshold value 

begins to increase, the number of false positives sharply decreases, and as the threshold 

Table 3-5: Confusion Tables for ROC calculations 
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value approaches 1, the number of false positives more slowly approaches 0. From this, 

it can be seen that a threshold value should be chosen that will minimize the number of 

false negatives as well as minimize the number of false positives. In this research, for the 

Parzen Window, a threshold value of 0.3 was chosen because it provides a good balance 

between a low number of false negatives and false positives. The same trend can be 

seen in the fall classification data for the RVM, except the numbers for the false 

negatives and false positives are minimized at a lower threshold of 0.1.  

Once an appropriate threshold value has been determined, the data can be 

classified. Figure 3.34 and Figure 3.35, below, are the post-processed (filtered) graphs of 

the same data shown in Figure 3.32. In both cases, the false positive was filtered out in 

the post-processing step.  

   The post-processing step is the final component in the fall detection process 

for the vertical array of PIR motion detectors. From this the accuracy of the classifiers 

can be estimated using the accuracy calculated from the confusion data that was found 

when generating the ROC curve. The equation for the calculation of the accuracy is 

shown below. In Chapter 4, the accuracy equation below is used to show the 

classification accuracy before and after the mean filter is applied to the classification 

data. 

           
       

               
 3-15 

 Below Figure 3.34 and Figure 3.35 show the post-processing results from the 

Parzen Window and the RVM respectively. These results were derived from 
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implementing the post-processing algorithm on the same data file that was used to 

generate Figure 3.32 at the beginning of this section. It is interesting to note that after 

implementing the mean filter and using a threshold value, the false positive can be 

filtered out. 

 

 

 
Figure 3.35: Post-processed (filtered) RVM classification data 

 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

2.5

3

Sample Number

A
m

p
li
tu

d
e
 (

V
)

 

 

ps0

ps1

ps2

ps3

classification

 
Figure 3.34: Post-processed (filtered) Parzen Window classification data 
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Chapter 4 -  Experimental Results and Analysis 

4.1 Stunt Actress Data Set 

The data set used in this research was captured in a lab which was set up to 

mimic an apartment at an assisted living community. The data were collected using the 

data acquisition system described in section 3.2. Because it would be too much of a risk 

for injury, it was not possible to have an elderly person perform falls for data collection. 

Instead, each of the data sets was collected while a stunt actress performed actions 

defined in a fall/non-fall protocol detailed in Appendix A. In the case of a fall, a mat was 

placed around 8 feet in-front of the sensing array and the stunt actress performed the 

fall on the mat. In the case of a non-fall, if there were any props required for the action, 

they were placed around 8 feet in the center of the field of view (FOV) of the sensing 

array where the action was performed in that general area. Once the data were 

collected, all of the data files which contained a fall were manually inspected to identify 

the approximate sample number where the fall began and ended. Below in Figure 4.1, 

the sample numbers where the clapping portion ends, the fall data begins, and the fall 

samples end, are visualized. In this research these three sample points are recorded for 

each data file.  
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After the location of each fall had been identified, the data set was separated 

into a training set and a testing set. During the data collecting session, each of the falls 

defined in the fall/non-fall protocol were performed multiple times and thus when 

separating the data into training and testing sets, the duplicate data runs were 

separated, with one going to the training set and the other going to the testing set. As 

seen in Figure 4.2 the data in the fall data files that were part of the testing set were 

separated by class where the clapping portion of the fall activities were simply 

considered to be non-fall or class 1 data and the fall data were considered to be fall or 

class 1 data. 

 
Figure 4.1: Example data file where the sample numbers of the clapping portion and falling 
portion of the data are identified 
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 Alternatively, for experimentation purposes, the testing data were classified with 

the clapping portion, and without. As shown Figure 4.3, when the data were analyzed 

with the clapping portion, the clapping activity was considered to be a separate non-fall 

data run. 

 
Figure 4.2: Training fall data organization 
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 In experiments where the clapping activity was not considered, it was not 

included, even with the non-fall data. This is shown in Figure 4.4. 

 

 
Figure 4.4: Testing data without clapping activity 

 

 
Figure 4.3: Testing data with clapping activity 
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4.2 Sparsity and Classification Time Results 

 As discussed in section 2.3, the Parzen Window Classifier uses the entire training 

data set for classification. This means that the Parzen Window mathematically compares 

each testing data point to all 6,800 training data points to determine which class it 

belongs in. Alternatively, the RVM goes through a training process where the least 

effective training points are pruned. In this research, the training process for the RVM 

yielded a much more sparse training data set of 1,723. The training data set used by the 

Parzen Window is nearly 4 times the size the training data set used by the RVM. 

As shown in Table 4-1, this enables the RVM to much more quickly classify the 

1,341,000 testing data points. The Parzen Window took 8 hours, 55 minutes, and 49 

seconds to classify all 38 fall and non-fall data files where the RVM took 2 hours, 27 

minutes, and 58 seconds to do the same thing. As shown below, in the next section, the 

RVM is more accurate in classifying the testing data. 
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4.3 Results Without Filtering Classification Output 

As discussed in section 3.8, the post-processing step takes in the classified values 

for each 50 sample window of data and calculates a mean filter over the classified 

values to reduce the number of false positives which have a smaller area under the 

curve than the true positives. To visualize the advantage of calculating the mean filter, it 

Table 4-1: Classification time 
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is helpful to see the confusion matrix data on what the results would be without the 

mean filter. These results are shown below.  

4.3.1 Results Excluding Clapping portion of Fall Data 

When the stunt actress data set was collected, each fall or non-fall activity began 

with the stunt actress bending over to clap near the ground and then performing the 

activity. This was done to aid the research of a different sensor based on a microphone 

array. In this research, the clapping portion of the fall activities can be added and 

removed to demonstrate each classifier’s ability to correctly classify data which is a 

potential false alarm. As data from the clapping portion of the falls are added and 

removed, it is only added or removed from the testing data set. The training data set 

does not change. The results of excluding the clapping portion of the fall are analyzed 

below.  

Below in Table 4-2 is the confusion data calculated over a range of threshold 

values where each data file was analyzed individually and the clapping portion of each 

data file was removed and not considered. The classification results of each data file 

containing fall activity, were parsed at each threshold value and if the classification 

results rose above the threshold value, where a fall was supposed to have happened as 

indicated by the ground truth, then the data file was considered to be a true positive 

fall. If no fall was detected, then the data file was counted in the confusion matrix as a 

false negative. For the non-fall data files, if a fall was detected then the data file was 

considered to be a false positive and if no fall was detected, then the data file is 

considered to be a true negative. Since no clap activities are considered, this gives 23 
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potential true positives (TP) or false negatives (FN), one for each fall activity. There are 

also 15 potential false positive (FP) or true negative (TN) activities one for each non-fall 

activity. 

 

 As discussed in section 3.8, choosing the correct threshold means choosing one 

that will minimize false negatives and false positives which is a balance that should be 

weighted towards minimizing false negatives because they represent a missed fall. It can 

be seen in the accuracy column of Table 4-2, that before the classification signal is 

filtered, and the claps are not considered, the Parzen Window classification accuracy 

never goes above 68.42% which is a relatively low accuracy to what is seen later in this 

section. Next, the ROC curve that was generated from the data in Table 4-2 is shown 

below. 

Table 4-2:Confusion Table, Parzen Window, 1 Count per Data File, No Claps 
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 Table 4-3 below is the confusion table for the same classification as discussed 

above but with each 50 sample window of classification data being counted in the table. 

If a window of classification data indicates a fall and it is supposed to be a fall, then that 

window is considered to be a true positive. If a window is supposed to be classified as a 

fall and it is not classified as one, then it is considered to be a false negative. If a window 

of data is classified as a fall and it is supposed to be a non-fall then the false positive 

count is increased. If a window is classified as a fall and it is supposed to be classified as 

a fall then that window is considered a true negative.  

 
Figure 4.5: ROC Curve, Parzen Window, 1 Count per Data File, No Claps 
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 Below is the ROC curve that was generated from the data in Table 4-3. 

 

 
Figure 4.6: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, No Claps 

 

Table 4-3: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, No Claps 
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Table 4-4 shows the confusion table for each data file as classified by the RVM, 

with the clap portion of the fall activities excluded and before the classification values 

are filtered. Similar to the Parzen Window classification the accuracy does not go above 

68.42%. 

 

Table 4-4: Confusion Table, RVM, 1 Count per Data File, No Claps 
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Table 4-5: : Confusion Table , RVM, 1 Count per 50 Sample Window, No Claps 

 

 
Figure 4.7: ROC curve, RVM, 1 Count per Data File, No Claps 
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4.3.2 Results Including Clapping portion of Fall Data 

In this section, the portion of each fall activity where the stunt actress bends 

towards the ground and claps is counted as a separate non-fall activity. The addition of 

clapping activity as a separate non-fall activity is only done in the testing data, and not in 

the training data. The training data does not change. The results from including the clap 

activity are improved but are not as good as results seen later in this section. 

 
Figure 4.8: ROC Curve, RVM, 1 Count per 50 Sample Window, No Claps 
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Figure 4.9: ROC Curve, Parzen Window, 1 Count per Data File, Count Claps 

 

Table 4-6: Confusion Table, Parzen Window, 1 Count per Data File, Count Claps 
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Figure 4.10: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, Count Claps 

 

Table 4-7: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, Count Claps 
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Figure 4.11: ROC Curve, RVM, 1 Count per Data File, Count Claps 

 

Table 4-8: Confusion Table, RVM, 1 Count per Data File, Count Claps 
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Figure 4.12: ROC Curve, RVM, 1 Count per 50 Sample Window, Count Claps 

 

Table 4-9: Confusion Table, RVM, 1 Count per 50 Sample Window, Count Claps 
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4.4 Results From Filtering Classification Output 

The results below are generated from classification values that have been mean 

filtered as discussed in section 3.8. As can be seen in the confusion tables and ROC 

curves below, the results from filtering the classification are considerably better.  

4.4.1 Results Excluding Clapping portion of Fall Data 

The filtered classification values are considered with and without the clapping 

activity. The filtered classification values are first considered without the clapping 

activity below. 

 

Table 4-10: Confusion Table, Parzen Window, 1 Count per Data File, No Claps, filtered 
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Table 4-11: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, No Claps, 
filtered 

 

 
Figure 4.13: ROC Curve, Parzen Window, 1 Count per Data File, No Claps, filtered 
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Table 4-12: Confusion Table, RVM, 1 Count per Data File, No Claps, filtered 

 

 
Figure 4.14: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, No Claps, filtered 
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Table 4-13: Confusion Table, RVM, 1 Count per 50 Sample Window, No Claps, filtered 

 

 
Figure 4.15: ROC Curve, RVM, 1 Count per Data File, No Claps, filtered 
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4.4.2 Results Including Clapping portion of Fall Data 

In this section, the final results from filtering the classification data and including 

the clapping portion of the stunt actress data, are shown. In the Accuracy column of the 

confusion table, it can be seen below that doing this provides the best results.  

 
Figure 4.16: ROC Curve, RVM, 1 Count per 50 Sample Window, No Claps, filtered 
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Figure 4.17: ROC Curve, Parzen Window, 1 Count per Data File, Count Claps, filtered 

 

Table 4-14: Confusion Table, Parzen Window, 1 Count per Data File, Count Claps, filtered 
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Figure 4.18: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, Count Claps, filtered 

 

Table 4-15: Parzen Window, 1 Count per 50 Sample Window, Count Claps, filtered 
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Figure 4.19: ROC Curve, RVM, 1 Count per Data File, Count Claps, filtered 

 

Table 4-16: Confusion Table, RVM, 1 Count per Data File, Count Claps, filtered 
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4.5 Fall Detection Results 

 
Figure 4.20: ROC Curve RVM, 1 Count per 50 Sample Window, Count Claps, filtered 

 

Table 4-17: Confusion Table, RVM, 1 Count per 50 Sample Window, Count Claps, filtered 
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After all of the data have been post-processed, it can be determined whether 

each fall would have been detected or not if the sensing array were placed in a person’s 

home. The fall activities captured in the data files that were processed in this research 

were detected with varying success. These results are shown below. 

4.5.1 Successful Fall Detection 

The next two figures show the post-processed classification results from the 

Parzen Window and RVM for a fall where the stunt actress re-created a fall of a person 

standing in place then falling. Both classifiers were successful in detecting the fall 

activity.  

 

 
Figure 4.21: Post-processed Classification Parzen 201004201053 Standing Position Looses 
Balance Fall Backward 
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The data for the next two falls come from the stunt actress depicting a person 

who is sitting and slides from the chair they were sitting in. Both the RVM and Parzen 

Window were able to detect this fall activity. 

 
Figure 4.22: Post-processed Classification RVM 201004201053 Standing Position Looses 
Balance Fall Backward 
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Figure 4.24: Post-processed Classification RVM 201004201206 Sitting Falling From a Chair 
Sliding Backward Out of Chair 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

 

 

ps0

ps1

ps2

ps3

classification

 
Figure 4.23: Post-processed Classification Parzen 201004201206 Sitting Falling From a Chair 
Sliding Backward Out of Chair 
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The next four figures show fall activity where the stunt actress falls from a bed or 

couch. All four of these were detected by each of the classifiers. 

 

 
Figure 4.25: Post-processed Classification Parzen 201004201210 From Bed or Couch Fall to 
Side Upper Body Falls First 
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Figure 4.27: Post-processed Classification Parzen 201004201212 From Bed or Couch Fall to 
Side Hips and Shoulders Fall First 
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Figure 4.26: Post-processed Classification RVM 201004201210 From Bed or Couch Fall to Side 
Upper Body Falls First 
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Figure 4.21 - Figure 4.28 demonstrate that the sensing array is capable of 

detecting falls whether a person is standing, sitting, or lying down. 

The next two figures are from the false positive protocol where the stunt actress 

walks to a chair and sits. These figures show that the sensing array is capable of 

discerning whether a person is sitting in a chair or falling out of it.  

 
Figure 4.28: Post-processed Classification RVM 201004201212 From Bed or Couch Fall to Side 
Hips and Shoulders Fall First 
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4.5.2 Failed Fall Detection 

 
Figure 4.30: Post-processed Classification RVM 201004201341   False positive 13 Walk to Chair 
and Sit 
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Figure 4.29: Post-processed Classification Parzen 201004201341   False positive 13 Walk to 
Chair and Sit 
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 The figures in this section show where each of the classifiers either fail to detect 

a fall, or incorrectly detect a fall for a non-fall activity. The next two figures show fall 

activity where the Parzen Window was able to detect the fall activity and the RVM failed 

to detect the fall activity. This fall activity seems like it would be fairly strait forward for 

the classifiers to detect since the slope resembles a fall. However, the signals are not 

losing motion in order. 

 

 
Figure 4.31: Post-processed Classification Parzen 201004201100 Standing Position Looses 
Balance Fall Right 
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The next two figures show the case in which the stunt actress trips and falls 

forward. In this case, both classifiers fail to detect the fall activity. This fall data does not 

look much like a fall but appears to be a very slow fall and this seems to be why the fall 

activity is not detected. 

 
Figure 4.32: Post-processed Classification RVM 201004201100 Standing Position Looses 
Balance Fall Right 
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Figure 4.34: Post-processed Classification RVM 201004201138 Tripping and Slipping Trip and 
Fall Forward 
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Figure 4.33: Post-processed Classification Parzen 201004201138 Tripping and Slipping Trip and 
Fall Forward 
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In the next two figures, the RVM is able to detect the fall activity, and the Parzen 

Window is not. The fall activity in these figures seems detectable. It is possible that the 

feature values are just out of the detectable range during this fall activity. 

 

 
Figure 4.35: Post-processed Classification Parzen 201004201158 Sitting Falling From a Chair 
Fall Left 
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The last two figures of this section show a non-fall activity where each of the 

classifiers perform very poorly, detecting several falls within one non-fall data file. 

 
Figure 4.36: Post-processed Classification RVM 201004201158 Sitting Falling From a Chair Fall 
Left 
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Figure 4.38: Post-processed Classification RVM 201004201329 False positive 8 Standing to    
Sit-ups and Stretches 
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Figure 4.37: Post-processed Classification Parzen 201004201329 False positive 8 Standing to 
Sit-ups and Stretches 
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This section showed examples in which each classifier was able to successfully 

and unsuccessfully detect fall activity. It is difficult to identify exactly why the classifiers 

fail for a given fall activity. However, in general, it seems that more, or better, features 

and fall data could greatly improve the performance of either of the classifiers used in 

this research. 

 



 

106 
 

Chapter 5 -  Discussion 

Due to its sparse training data set, the RVM is capable of classifying the entire 

testing set in 2 hours, 27 minutes, and 58 seconds, where the Parzen Window is only 

able to do the same thing in 8 hours, 55 minutes, and 49 seconds. Besides being faster, 

as discussed below, the RVM is also slightly more accurate.  

Below in Table 5-1 the results of the Parzen Window classifier are quantified. 

This table shows that the results of the classifier are dependent on which threshold 

value is chosen during classification. As discussed in section 3.8, the choice of a 

threshold value is a balance between minimizing the false negatives or missed falls and 

minimizing the false positives or instances where someone is alerted of a fall that did 

not occur. Increasing the threshold value tends to increase the number of false 

negatives and decreasing the threshold value tends to increase the number of false 

alarms. From Table 5-1 the choice of a threshold value of 0.3 is the best balance of 

minimizing both the false positives and false negatives; this yields an accuracy of 

75.41%. This is not the highest accuracy value, but as can be seen in the results table, 

increasing the accuracy means increasing the number of false negatives which represent 

a fall that goes undetected. Since a fall that goes undetected could mean injury to an 

elderly resident, and a false positive only means potential inconvenience to care takers, 

a threshold value should be chosen with a preference towards minimizing false 

negatives. 



 

107 
 

 

Below Table 5-2 shows the classification results of the RVM. In the table it can be 

seen that, as expected, the results of the classifier are dependent on which threshold 

value is chosen during classification the same way they are with the Parzen Window. 

From Table 5-2, the choice of a threshold value of 0.1 is the best balance of minimizing 

both the false positives and false negatives. Choosing 0.1 for the threshold value yields 

an accuracy of 80.33%. Once again, this is not the highest accuracy value but as can be 

seen in the results table, increasing the accuracy means increasing the number of false 

negatives which is not in the best interest of the resident and thus a threshold value of 

0.1 is chosen.  

Table 5-1: Parzen Window results after filtering 

 



 

108 
 

 

 Though the results discussed in this chapter show that falls can be detected with 

a vertical array of PIR motion sensors, there are still improvements that can be made. 

The training data set does not include a completely diverse representation of the data in 

the fall protocol; since there is very little data in the training data set to represent the 

variety of false positive activities that are specified in the fall protocol. In the future, it 

could be a major advantage to collect enough data files to distribute between both the 

training and testing data sets. 

 Also, to improve the performance of fall detection with this sensing array, more 

classification methods could be explored such as a nearest neighbor. The nearest 

neighbor is related to the Parzen Window and would likely provide similar classification 

results but could possibly require less memory and computational complexity. 

Table 5-2: RVM results after filtering 
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Chapter 6 -  Summary and Conclusion 

This research presented the results of a vertical array of passive infrared motion 

sensors for fall detection. Though this work was successful, future work could be 

focused on a few areas to likely improve performance. First, since the raw signals 

already exist in the frequency domain, doing more frequency domain exploration of the 

raw sensor signals could provide more fruitful results. Also, staying in the frequency 

domain would likely reveal more features that could be used for classification. Though 

there are areas of this research that can be improved upon, this research provides some 

novel contributions. First and foremost, this research provides a tested vertical array of 

passive infrared motion sensors that are capable of detecting different types of falls. 

The sensing array explored in this research has the potential to protect the 

independence of its users by providing a non-wearable fall detection platform that will 

not leave them feeling as though they are being watched in private areas of the home. 

This research also successfully demonstrated the use of the Parzen Window and the 

RVM as a means of identifying falls that occur within the field of view of the sensing 

array. Although the RVM yielded better results, the Parzen Window was useful in 

providing preliminary work for the implementation of the RVM. 
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Appendix A - Fall Test Protocol 

Fall observations 

There are 21 possible fall directions from standing, sitting, tripping, and lying 

positions. For the fall detection algorithm development and validation, we will collect 

data using the fall and fall-risk sensing system for the set of falls listed below. Written 

criteria for each type of fall guide the stunt actors so that the falls performed strongly 

resemble the falls of elders as validated in preliminary work. 

Standing position 

From an initial standing position, the stunt actor will fall as if loosing balance; then as if 

there is a momentary loss of consciousness.  

Criteria for “looses balance falls”: 

 Leans forward, leans to left, leans to right, or leans back  

 Looks down    

 When falling, tries to break fall with upper extremities   

1. fall forward       

2. fall backward        

3. fall to the left side        

4. fall to the right side 
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Criteria for “momentary loss of consciousness falls”:  

 Falls much like a tree, toppling backward or forward or sideways  

 Crumples to the floor  

 No attempt to break fall with upper extremities 

1. fall forward       

2. fall backward        

3. fall to the left side        

4. fall to the right side      

5. fall straight down   

Tripping and Slipping 

From an initial walking position, the stunt actor will trip and fall; then from an 

initial walking position the actor will slip (as if on water or ice) and fall. 

Criteria for walking, then tripping and slipping falls: 

 Walks with shortened stride 

 Leans forward when walking  

 Looks down when walking 

 When falling tries to break fall with upper extremities  

1. trip and fall forward      

2. trip and fall sideways       

3. slip and fall forward      

4. slip and fall sideways 

5. slip and fall backward 



 

114 
 

Sitting position 

From an initial position sitting on a stationary chair (no wheels), the stunt actor 

will fall from the chair as if loosing balance; then slide forward and backward out of a 

chair with wheels. 

Criteria for falling from the chair: 

 Leans until center of gravity changes and falls off the chair 

 Attempts to break fall with upper extremities 

1. fall forward         

2. fall to the left side         

3. fall to the right side        

4. fall by sliding forward out of the chair as the chair slides back  

5. fall by sliding backward out of the chair as it slides back  

From Bed or Couch 

From a lying position, the stunt actor will roll off the bed or couch in a state of 

semi-wakefulness or sleep.  

Criteria for falls from bed or couch:  

 Somewhat awakens, attempts to get up and falls 

 Sleeping, attempts to get up, legs get caught in blanket and falls  

 Attempts to break fall with upper extremity 

1. fall to side, upper body falls first      

Criteria for falls from bed or couch, does not awaken: 

 Rolls too close to edge of bed or couch, center of gravity changes and rolls off  
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 No attempt to break fall with upper extremity 

1. fall to side, hips and shoulders fall first  

Fall Test Safety 

An athletic floor mat used for sports training will cover the floor where the falls 

will occur. The stunt persons will wear joint protection pads during the testing. We will 

recruit the theater-trained stunt person and make a reference check to assure each 

person has completed training and has experience in falling for stage productions. Stunt 

persons will be paid for their services. We will select an athletically fit stunt person to 

further minimize the risk of injury.  

False positive Test Protocol 

Fifteen motions appear similar to falls. To ensure that the sensors and algorithms 

developed for this study avoid recognizing non-falling motions as fall events, we will 

collect data using the fall and fall-risk sensing system for the following set of activities: 

1. From a standing position, the stunt actor will bend at the knees and stoop to a 

squatting position on the floor. 

2. From a standing position, the actor will bend down and kneel on the floor. 

3. From a standing position, the actor will bend down and kneel on the floor, wait 

for two seconds, then lie down on the floor. 

4. From a standing position, the actor will bend down to plug an appliance into an 

electrical outlet close to the floor. 

5. From a standing position, the actor will squat to tie a shoe. 
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6. From a standing position, the actor will sit on the floor with the legs tucked 

under the body. 

7. From a standing position, the actor will sit on the floor with the legs extended 

from the body. 

8. From a lying position on the floor, the actor will perform three sit-ups and some 

stretches of upper and lower extremities. 

9. From a lying position on the floor, the actor will slowly rise to a half kneeling 

position, then rise to a standing position. 

10. From a walking position, the actor will appear to trip but will regain balance and 

continue walking. 

11. From a standing position, the actor will walk forward for three seconds, then 

stop suddenly. 

12. From a standing position, the actor will walk forward for three seconds, then 

stop suddenly and turn around. 

13. From a standing position, the actor will walk to a stationary chair and sit in it. 

14. From a sitting position in a chair, the actor will bend over to pick up a book on 

the floor.  

15. From a standing position, the actor will walk to a stationary chair, sit in it, and 

attempt to stand 



 

117 
 

Appendix B – Software Manual 

 Below is a manual for running the software developed for this research. All 

programs and data are found in the Research directory stored on the kronos server in 

home\shared\PIR_fall_detection_moore. Within the research directory, all of the 

MATLAB programs are stored in the Data_Analysis folder and all of the data files and file 

path text files are stored in the Trial_Data folder. 

Preprocessing 

 Once data has been collected, each of the data files must be preprocessed. This 

is done by editing the file paths listed in the data_to_preprocess.txt file, which should 

contain one column of file path strings that link to individual fall data files. After that, 

the preprocessing.m MATLAB program is run. This program loads the 

data_to_preprocess.txt file and executes the preprocessing algorithm on each of the 

data files listed. After each data file is preprocessed a new data file is created and saved 

within the same directory with the same file name and a “_PP” string appended to the 

end of the file name. 

Feature Extraction 

 Once all of the data files have been preprocessed, the features described in this 

research are extracted. To extract features, the extract_features_file_paths.txt should 

be edited to link to all of the preprocessed data files including the “_PP” string at the 

end. Once that is done, the extract_features.m file is run. This program extracts features 
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from the preprocessed data files and then saves the extracted feature data in a file that 

has a “_feat” string appended to the end of it. 

Training Data Set 

 Once features have been extracted from all of the data files, the data can be 

separated into testing and training data sets. To build the training data set, the 

training_file_paths.txt file should point to the feature extracted data files that belong in 

the training data set. After that, the build_training_set.m program is run. This program 

organizes the training data in to class 1 and class 2 matrices and saves them in a .mat 

file. The training data set used in this research was saved as training_data2.mat. 

Parzen Window 

 Once the data has been separated into testing and training data sets, the 

classification algorithms are run. To run the parzen window algorithm, the 

fall_file_paths.txt file should contain the file paths of the data files that are to be 

classified. To run the Parzen Window algorithm on the data, the classify_falls2.m 

program is run. This program uses the mm_parzen2.m function that is included in the 

mm_tb folder to execute the parzen window algorithm. Once the data has been run 

through the Parzen Window algorithm, the resulting data files are saved with a “_clas” 

string appended to their file name. 

RVM 

 The RVM algorithm is run similarly to the Parzen Window algorithm except it 

requires a separate training process. To execute the training process, the build_rvm.m 
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program is run. This program takes the training data as input and returns a file which 

contains the relevance vectors and weights that were obtained in the training process. 

Next, the run_rvm.m program loads the file paths of the data that is to be classified as 

stored in the fall_file_paths.txt file and the relevance vector and weight data. After that, 

the data is run through the RVM algorithm and saved with a “_rvm” string appended to 

its file name. 

Post-processing (filtering) 

 After the data is run through the RVM and Parzen Window algorithms, the 

resulting data is filtered using the post-processing algorithm in the PostProcess.m 

program which is configured to only filter the data from the previous step. This program 

uses the classified_file_paths.txt file to find the data files that are to be processed. Once 

post-processing is complete, the files are saved with a “b” appended to the end of their 

file name and saved in the same directory as the source data file.  

ROC Curves 

 To help choose a threshold value for classification of the fall data, ROC curves are 

generated using the Generate_ROC.m program. This program uses ROC_file_paths.txt to 

find the data files from which the ROC curves are to be generated. 

Classification 

 After a threshold value is chosen, the resulting data is filtered using the post-

processing algorithm in the PostProcess.m program, which is configured to only 

implement the threshold value as to classify the data from the filtering step. This 
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program uses the classified_file_paths.txt file to find the data files that are to be 

processed. Once classification is complete, the files are saved with a “_popr” string 

appended to the end of their file name and saved in the same directory as the source 

data file.  
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