

PIR SENSING ARRAY FOR FALL DETECTION

A thesis presented to

the Faculty of the Graduate School

at the University of Missouri – Columbia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

MICHAEL J. MOORE

Dr. Marjorie Skubic, Thesis Supervisor

MAY 2011

The undersigned, appointed by the Dean of the Graduate School, have examined the

thesis entitled:

PIR SENSING ARRAY FOR FALL DETECTION

Presented by Michael J. Moore,

a candidate for the degree of Master of Science,

and hereby certify that, in their opinion, it is worthy of acceptance.

Dr. Marjorie Skubic, Ph.D.

Dr. James Keller, Ph.D.

Dr. Mihail Popescu, Ph.D.

ii

Acknowledgements

 I would like to thank my wife for all of her support throughout my career as a

student. I look forward to the rest of our lives together.

 I would also like to thank my parents, Steve and Suzie Moore for their constant

encouragement. Their confidence in me as made me believe that I can do anything I

want to do.

 I thank my advisor Dr. Marjorie Skubic, for providing me with a topic of research

that fits my interests. Also, I would like to thank her for allowing me to work with such a

great, diverse group of researchers at the Center for Eldercare and Rehabilitation

Technology. Working with her and the other members of the group has shown me how

important it is to love what you do.

 I would also like to thank Dr. James Keller and Dr. Mihail Popescu for providing

their expert knowledge and guidance in introducing me to the world of computational

intelligence.

 I am also very grateful to my colleagues Tanvi Banerjee, David Heise, and Erik

Stone for their encouragement and helpful suggestions throughout this research.

iii

TABLE OF CONTENTS

Acknowledgements ..ii

LIST OF FIGURES ... vii

LIST OF TABLES ... xii

Abstract ... xiv

Chapter 1 - Introduction ... 1

1.1 Problem Statement ... 1

1.2 Overview ... 2

Chapter 2 - Background and Related Work .. 5

2.1 Fall Detection .. 5

2.2 Passive Infrared (PIR) Motion Sensing .. 6

2.3 Parzen Window ... 10

2.4 Relevance Vector Machine (RVM) .. 14

Chapter 3 - Methodology .. 20

3.1 Sensor Array .. 20

3.2 Data Acquisition .. 27

3.3 Preprocessing .. 31

3.4 Feature Extraction ... 39

iv

3.5 Training Data Set ... 45

3.6 Parzen Window ... 49

3.7 Relevance Vector Machine (RVM) .. 56

3.8 Post-processing ... 59

Chapter 4 - Experimental Results and Analysis .. 66

4.1 Stunt Actress Data Set .. 66

4.2 Sparsity and Classification Time Results ... 70

4.3 Results Without Filtering Classification Output .. 71

4.3.1 Results Excluding Clapping portion of Fall Data .. 72

4.3.2 Results Including Clapping portion of Fall Data ... 78

4.4 Results From Filtering Classification Output ... 83

4.4.1 Results Excluding Clapping portion of Fall Data .. 83

4.4.2 Results Including Clapping portion of Fall Data ... 87

4.5 Fall Detection Results .. 91

4.5.1 Successful Fall Detection ... 92

4.5.2 Failed Fall Detection .. 98

Chapter 5 - Discussion ... 106

Chapter 6 - Summary and Conclusion .. 109

v

Bibliography .. 110

Appendix A - Fall Test Protocol ... 112

Fall observations ... 112

Standing position .. 112

Criteria for “looses balance falls”: .. 112

Criteria for “momentary loss of consciousness falls”: .. 113

Tripping and Slipping .. 113

Criteria for walking, then tripping and slipping falls:.. 113

Sitting position .. 114

Criteria for falling from the chair: ... 114

From Bed or Couch ... 114

Criteria for falls from bed or couch: ... 114

Criteria for falls from bed or couch, does not awaken: .. 114

Fall Test Safety .. 115

False positive Test Protocol .. 115

Appendix B – Software Manual .. 117

Preprocessing .. 117

Feature Extraction ... 117

vi

Training Data Set ... 118

Parzen Window ... 118

RVM ... 118

Post-processing (filtering) ... 119

ROC Curves .. 119

Classification ... 119

vii

LIST OF FIGURES

Figure Page

1.1: Vertical array of passive infrared (PIR) motion sensors .. 1

2.1: Simple PIR Sensor .. 7

2.2: Sensing Element Internal Circuit ... 8

2.3: Sensor field of view (FOV) with person ... 9

2.4: Example sensor output signal ... 10

3.1: PIR motion sensor raw signals ... 20

3.2: Panasonic MP PIR Motion Sensor ... 21

3.3: Fresnel lens array configuration .. 21

3.4: Sensor Field of view cross section ... 22

3.5: Sensor array horizontal FOV .. 23

3.6: Sensor array 10° FOV ... 23

3.7: Final sensor array configuration .. 24

3.8: Preprocessed fall signals .. 26

3.9: Analog to Digital Conversion (ADC) Setup ... 27

3.10: PIR array schematic drawing ... 29

3.11: Typical ASCII text data file ... 30

3.12: Raw data signals .. 31

3.13: Preprocessing software flow chart.. 32

file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267691
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267692
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267693
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267694
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267695
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267696
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267697
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267698
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267699
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267700
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267701
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267702
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267703
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267704
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267705
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267706
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267707
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267708

viii

3.14: Preprocessing block diagram .. 33

3.15: Zero centered example signal ... 34

3.16: Absolute value example signal .. 35

3.17: Un-scaled derivative signal .. 36

3.18: Scaled absolute value of derivative of simulated sensor signal 37

3.19: Preprocessing results from simulated signals ... 38

3.20: Preprocessed fall signals ... 39

3.21: Preprocessed signals for feature extraction ... 40

3.22: Fall signals with slope and difference ... 41

3.23: Feature extraction software flow chart .. 43

3.24: Feature extraction block diagram ... 44

3.25: 3D feature space plot .. 44

3.26: Testing and training feature vector and window quantities............................... 49

3.27: Parzen window classification block diagram ... 50

3.28: Parzen window classification software flowchart ... 51

3.29: Parzen window classification function flowchart ... 53

3.30: RVM training flowchart ... 56

3.31: RVM testing software flowchart ... 58

3.32: Classified data graph ... 59

3.33: ROC curve for the Parzen Window and RVM classification results, after filtering
 ... 62

3.34: Post-processed (filtered) Parzen Window classification data 65

file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267709
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267710
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267711
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267712
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267713
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267714
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267715
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267716
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267717
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267718
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267719
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267720
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267721
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267722
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267723
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267724
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267725
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267726
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267727
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267728
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267728
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267729

ix

3.35: Post-processed (filtered) RVM classification data .. 65

4.1: Example data file where the sample numbers of the clapping portion and falling
portion of the data are identified ... 67

4.2: Training fall data organization ... 68

4.3: Testing data with clapping activity .. 69

4.4: Testing data without clapping activity .. 69

4.5: ROC Curve, Parzen Window, 1 Count per Data File, No Claps 74

4.6: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, No Claps 75

4.7: ROC curve, RVM, 1 Count per Data File, No Claps .. 77

4.8: ROC Curve, RVM, 1 Count per 50 Sample Window, No Claps 78

4.9: ROC Curve, Parzen Window, 1 Count per Data File, Count Claps 79

4.10: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, Count Claps 80

4.11: ROC Curve, RVM, 1 Count per Data File, Count Claps... 81

4.12: ROC Curve, RVM, 1 Count per 50 Sample Window, Count Claps 82

4.13: ROC Curve, Parzen Window, 1 Count per Data File, No Claps, filtered 84

4.14: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, No Claps, filtered
 ... 85

4.15: ROC Curve, RVM, 1 Count per Data File, No Claps, filtered 86

4.16: ROC Curve, RVM, 1 Count per 50 Sample Window, No Claps, filtered 87

4.17: ROC Curve, Parzen Window, 1 Count per Data File, Count Claps, filtered 88

4.18: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, Count Claps,
filtered ... 89

file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267730
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267731
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267731
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267732
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267733
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267734
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267735
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267736
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267737
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267738
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267739
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267740
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267741
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267742
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267743
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267744
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267744
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267745
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267746
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267747
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267748
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267748

x

4.19: ROC Curve, RVM, 1 Count per Data File, Count Claps, filtered 90

4.20: ROC Curve RVM, 1 Count per 50 Sample Window, Count Claps, filtered 91

4.21: Post-processed Classification Parzen 201004201053 Standing Position Looses
Balance Fall Backward ... 92

4.22: Post-processed Classification RVM 201004201053 Standing Position Looses
Balance Fall Backward ... 93

4.23: Post-processed Classification Parzen 201004201206 Sitting Falling From a Chair
Sliding Backward Out of Chair ... 94

4.24: Post-processed Classification RVM 201004201206 Sitting Falling From a Chair
Sliding Backward Out of Chair ... 94

 4.25: Post-processed Classification Parzen 201004201210 From Bed or Couch Fall to
Side Upper Body Falls First .. 95

4.26: Post-processed Classification RVM 201004201210 From Bed or Couch Fall to
Side Upper Body Falls First .. 96

4.27: Post-processed Classification Parzen 201004201212 From Bed or Couch Fall to
Side Hips and Shoulders Fall First .. 96

4.28: Post-processed Classification RVM 201004201212 From Bed or Couch Fall to
Side Hips and Shoulders Fall First .. 97

4.29: Post-processed Classification Parzen 201004201341 False positive 13 Walk to
Chair and Sit... 98

4.30: Post-processed Classification RVM 201004201341 False positive 13 Walk to
Chair and Sit... 98

4.31: Post-processed Classification Parzen 201004201100 Standing Position Looses
Balance Fall Right .. 99

4.32: Post-processed Classification RVM 201004201100 Standing Position Looses
Balance Fall Right .. 100

file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267749
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267750
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267751
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267751
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267752
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267752
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267753
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267753
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267754
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267754
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267755
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267755
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267756
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267756
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267757
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267757
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267758
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267758
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267759
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267759
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267760
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267760
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267761
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267761
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267762
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267762

xi

4.33: Post-processed Classification Parzen 201004201138 Tripping and Slipping Trip
and Fall Forward .. 101

4.34: Post-processed Classification RVM 201004201138 Tripping and Slipping Trip and
Fall Forward ... 101

4.35: Post-processed Classification Parzen 201004201158 Sitting Falling From a Chair
Fall Left .. 102

4.36: Post-processed Classification RVM 201004201158 Sitting Falling From a Chair
Fall Left .. 103

4.37: Post-processed Classification Parzen 201004201329 False positive 8 Standing to
Sit-ups and Stretches ... 104

4.38: Post-processed Classification RVM 201004201329 False positive 8 Standing to
Sit-ups and Stretches ... 104

file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267763
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267763
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267764
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267764
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267765
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267765
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267766
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267766
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267767
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267767
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267768
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267768

xii

LIST OF TABLES

Table Page

3.1: PIR sensing array bill of materials ... 28

3.2: Training Data Files ... 46

3.3: Testing Data Files ... 47

3.4: h parameter tuning ... 52

3.5: Confusion Tables for ROC calculations .. 63

4.1: Classification time ... 71

4.2: Confusion Table, Parzen Window, 1 Count per Data File, No Claps 73

4.3: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, No Claps 75

4.4: Confusion Table, RVM, 1 Count per Data File, No Claps 76

4.5: Confusion Table , RVM, 1 Count per 50 Sample Window, No Claps 77

4.6: Confusion Table, Parzen Window, 1 Count per Data File, Count Claps 79

4.7: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, Count Claps
 ... 80

4.8: Confusion Table, RVM, 1 Count per Data File, Count Claps 81

4.9: Confusion Table, RVM, 1 Count per 50 Sample Window, Count Claps 82

4.10: Confusion Table, Parzen Window, 1 Count per Data File, No Claps, filtered 83

4.11: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, No Claps,
filtered ... 84

4.12: Confusion Table, RVM, 1 Count per Data File, No Claps, filtered 85

file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267769
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267770
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267771
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267772
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267773
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267774
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267775
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267776
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267777
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267778
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267779
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267780
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267780
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267781
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267782
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267783
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267784
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267784
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267785

xiii

4.13: Confusion Table, RVM, 1 Count per 50 Sample Window, No Claps, filtered 86

4.14: Confusion Table, Parzen Window, 1 Count per Data File, Count Claps, filtered 88

4.15: Parzen Window, 1 Count per 50 Sample Window, Count Claps, filtered 89

4.16: Confusion Table, RVM, 1 Count per Data File, Count Claps, filtered 90

4.17: Confusion Table, RVM, 1 Count per 50 Sample Window, Count Claps, filtered . 91

5.1: Parzen Window results after filtering ... 107

5.2: RVM results after filtering ... 108

file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267786
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267787
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267788
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267789
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267790
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267791
file:///C:/Dropbox/My%20Dropbox/Main/Mizzou/Research/Thesis/Thesis/Thesis.docx%23_Toc292267792

xiv

Abstract

 The purpose of the Fuzzy PIR Fall Detection Array is to keep the elderly safe by

providing a means for an immediate response to falls while still allowing them to enjoy

the same independence they felt before fall detection was necessary. To accomplish

this goal, a vertical array of passive infrared (PIR) motion sensors can be positioned

anywhere in the home near where a fall may occur. A fall is considered to be observed

by the sensor array when the sensors, first, detect motion, then, stop detecting motion

in order from top to bottom. To differentiate between a legitimate fall and normal

motion, pattern recognition techniques were used to observe the signals from the

sensing array and classify whether a window of data was observed during a fall or a non-

fall. To accomplish this goal, a Gaussian Parzen Window (GPW) and a relevance vector

machine (RVM) were used with some success. This research shows that, for this

application, the RVM is a superior classification method to the Parzen Window, where

the RVM was able to detect falls with an accuracy of about 80% to the Parzen Window’s

about 75%. Besides being more accurate, the RVM algorithm has a faster run time for

classifying the data. The sensing array explored in this research could be a viable option

as a non-wearable means for protecting the elderly in the event that they should fall in

their home.

1

Figure 1.1: Vertical array of
passive infrared (PIR) motion
sensors

Chapter 1 - Introduction

1.1 Problem Statement

No one wants to fall, as it could cause severe pain or maybe some long term

discomfort. However, for the elderly there is much more at stake than pain and

discomfort when even the slightest fall can be

something that causes damage that they may never

recover from [1]. As technology continues to evolve

many new methods have become available to protect

our older population such as wearable accelerometers

that can detect a fall [2] and wearable pendants that

allow the elderly person to call for help [3]. These new

advancements might allow relatives to rest easy

knowing that their family members are safer, but

many of these safeguards leave their users feeling as

though their freedom has been compromised,

sometimes so much so that they may choose to leave

these devices behind. In this paper, a method of

detecting falls through the use of passive infrared (PIR) motion sensors and pattern

recognition techniques is discussed.

The overall goal of this research is to develop a vertical array of PIR motion

sensors which is capable of detecting falls that may occur in the home of an elderly

2

person. To accomplish this, a fall sensor was configured to observe test falls performed

by a stunt actress who attempted to re-create accidental falls by an elderly person. This

is done using a vertical array of PIR motion sensors which is pictured in Figure 1.1. As

discussed in this paper, these sensors were used to detect test falls by recording output

from each of the sensors and then performing preprocessing on the data to aid the

feature extraction process. Next, features were extracted to be used in the classification

process. To determine whether a given sequence of motion is indeed a fall or not, two

pattern recognition techniques were explored; the Parzen Window and the Relevance

Vector Machine (RVM) were used to classify data as either a fall or a non-fall. Once the

classification step is done, post processing can be carried out on the classified data to

determine whether a fall has occurred. If a fall has occurred, the same sensor array can

monitor a person’s post-fall activity to validate whether a fall has actually occurred and,

if it is necessary, to call for help.

1.2 Overview

In developing a sensor that was able to detect falls, but did not have to be worn

by the person for whom it was made to protect, PIR motion sensors were used as the

base sensing element. Eight of these sensors were arranged in 4 pairs oriented vertically

with respect to each other and evenly spaced. From the eight sensors come 8 analog

signals. Each of these signals was connected to an analog to digital converter (ADC)

which interfaced to a laptop through its USB port. Using data acquisition software, the

ADC was able to store the instantaneous values for each of the analog channels at a user

defined frequency. The data from the sensors were stored in a text file which could then

3

be opened and read into MATLAB, a mathematical analysis software package which,

throughout this work, is used to manipulate data and implement pattern recognition

algorithms. Once the data was read into MATLAB, it then had to be preprocessed so that

features could be extracted from it. After the data was preprocessed, the slope of the

data and the difference between the average output of each adjacent sensor pair were

extracted as features. Next, the feature data from each fall run was separated between

testing and training data. Next, the Parzen Window and RVM algorithms were used to

determine if a fall had occurred in each of the data runs. Each of the pattern recognition

algorithms was programmed to output a confidence value that a fall had occurred. From

this confidence output, a receiver operating characteristic (ROC) curve was used to

determine a good threshold to be used in the post-processing phase where the output

must be above this threshold value to be considered a fall.

 This thesis begins by covering the background and related work where the

details of fall detection, passive infrared motion sensing, the Parzen Window classifier,

and the relevance vector machine are discussed in detail. Next, in chapter 3, the

methodology for carrying out this research is described. The development of the sensing

array is laid out first. Then, the data acquisition techniques used to collect motion data

are detailed; a stunt actress performed falls according to the fall protocol in Appendix A.

After that, in chapter 3, the preprocessing of the incoming data is discussed. Next, this

thesis talks about the features that were extracted from the preprocessed signals. Then,

the methods used to implement the Parzen Window and RVM are described. Finally, to

close out chapter 3, the post-processing techniques that were used in this research are

4

examined. Chapter 4 goes over the experimental results and analysis of this research. In

chapter 5 research results are discussed. Lastly, chapter 6 concludes this thesis.

5

Chapter 2 - Background and Related Work

2.1 Fall Detection

There are many different ways to go about detecting falls that occur in an elderly

person’s home, whether it is in a nursing home or an assisted living community. Two of

the major approaches to fall detection are fall detection using wearable sensors and fall

detection using non-wearable sensors. In the case of wearable sensors, a resident must

wear a device that will either automatically detect a fall and call for help, or relies on the

patient to press a button when they feel help is needed. Alternatively, in the non-

wearable case, sensors are placed throughout the home of an elderly person to collect

and analyze data which can then be used to automatically detect falls and call for help.

Typically, wearable techniques which are capable of automatically detecting falls

use some type of multi-axis motion sensor, such as an accelerometer or a gyroscope, to

monitor an elderly resident’s movements. The data that are collected from the motion

of an elderly resident are then compared to a threshold value to determine if a fall has

occurred [2] [4]. These techniques can be very effective at recognizing falls; however,

they rely on the resident to be willing to wear the device. Another wearable technique is

for an elderly resident to wear a pendant that is capable of alerting caretakers that a

person needs help if the elderly resident presses a button [3]. This technique relies on

the elderly resident to be coherent enough to press the button, and to voluntarily

summon help. Furthermore, these wearable techniques do not protect a person when

they are performing activities without clothing such as bathing or changing their clothes.

6

Alternatively, non-wearable techniques do not rely on a person to be willing or

able to call for help, as they are capable of automatically calling for help, and are less

likely to decrease a person’s feeling of independence by having to be worn on the body.

Non-wearable techniques utilize non-contact sensors such as cameras [5][6],

microphones [7], and infrared sensors [8]. Cameras can be used in many different ways

to detect falls. A camera system for fall detection may consist of only 1 or more

cameras, and in the case of multiple cameras, can be used to create a 3 dimensional

voxel space representation of a person. A camera system for fall detection can provide

caretakers with a greater amount of information. In addition to fall data, a camera

based system can be used to gather clinical data. Examples of this include sit-to-stand

times to assess mobility [9] or foot fall information that can be used for gait analysis

[10]. All of the information available from cameras can be a great advantage in

protecting an elderly resident, but it can be invasive if the person feels that his privacy is

compromised due to cameras being installed in the home.

This research explores the use of PIR motion sensors as a means for fall

detection. The PIR array, discussed throughout this research, can detect falls without

being worn, and since it is not collecting video information about a person, they may

feel more comfortable having it monitor them in a bedroom or bathroom setting.

2.2 Passive Infrared (PIR) Motion Sensing

In this work, PIR motion sensors are used as the basic sensing elements for

human motion detection. Objects that give off heat reflect electromagnetic radiation in

7

the infrared spectrum between 0.7 micrometers and 300 micrometers. The infrared

light that is reflected from the human body has a wavelength of about 10 micrometers

[11]. The sensors that were used in this research have an infrared filter which allows

only infrared light with a 10 micrometer wavelength [12]. This helps to reduce the effect

that non-targeted sources of infrared radiation (other than humans) have on the sensing

elements. The enclosure, which houses the sensing element, also has built-in Fresnel

lenses which direct the incoming infrared light to four sensing areas on the surface of

the internal sensing element. Typically, PIR sensors have two or more distinct surfaces

on the face of the sensing element, which develop a charge proportional to the amount

of incoming infrared light. In this research, the sensing element uses 6 Fresnel lenses to

focus light onto a sensing element with four individual sensing surfaces. However, in this

section, for simplicity, a sensor with 2 Fresnel lenses which focus light onto a sensing

element with 2 sensing surfaces, such as the one shown in Figure 2.1, is described. The

Figure 2.1: Simple PIR Sensor

8

way the simplified PIR sensor works is as follows. First, infrared light is reflected off the

surface of an object according to its emissivity. Once the reflected infrared radiation

reaches the enclosure of the sensor, it is focused by each of the Fresnel lenses towards

the surface of the sensing element where the Fresnel lenses direct light towards a

specific portion of the sensing surface of the sensing element. Once the light is focused

on the sensing surfaces, the light is then filtered by the infrared filter to only allow light

with a wavelength of about 10 micrometers to pass through. Once the light reaches the

surface of the sensing element, a surface charge proportional to the amount of infrared

energy directed, develops on the sensing surface. The sensing surfaces within the

Figure 2.2: Sensing Element Internal Circuit

9

sensing element are part of a circuit in which the sensing surfaces are connected in

parallel to a resistor and then connected to a MOSFET at one end and grounded on the

other end [13]. This parallel configuration ensures that the sensor only generates

electrical pulses when there is a potential difference between the two sensing surfaces.

This helps to reduce the effect that an air conditioner coming on, or sunlight coming in

the windows in the morning would have on the sensor, because these types of events

affect both sensing surfaces and would effectively cancel. As can be seen in the figure

above, when a human walks through the field of view of the sensing element, the

infrared energy which is reflected from their body activates, first the left sensing surface

and then the right. An example of the signal that the sensor would generate is shown in

Figure 2.4. In this research, the output signals from one sensor are analyzed with the

output signals from seven other sensors and are processed to estimate the behavior of

Figure 2.3: Sensor field of view (FOV) with person

10

an individual that is moving within the field of view of the sensor array.

2.3 Parzen Window

In this research, a Parzen Window classifier was used to indicate whether fall

information belongs to either of two classes, fall and non-fall. Due to its proven

performance and clear theoretical background [14] the Parzen Window is often chosen

as the basis for machine learning and pattern recognition research. The Parzen Window

is a particular method of non-parametric kernel density estimation where densities are

estimated using a fixed volume about individual data points and few assumptions are

made of the system from which the data was gathered [15] [16].

The overall goal of kernel density estimation is to use a probability density

which exists in a dimensional hyperspace as a base kernel which is used to classify

sample data points. In the Parzen Window approach to kernel density estimation, the

kernel function is evaluated for a volume which is centered about each data point of

Figure 2.4: Example sensor output signal

11

training data. To make explanation more straightforward, is assumed to be a

dimensional hypercube. The volume equation for each sample is shown below in

equation 2-1 where is one side of the hypercube.

2-1

The probability density is then estimated in equation 2-2 where is the number

of samples which fall within the bounds of the hypercube.

2-2

When the volume is a dimensional hypercube, the window function can be

defined by equation 2-3 from [16].

2-3

From this, given a dimensional test point and a dimensional training point, it

can be determined that

 is equal to 1 when a test sample is within the volume

of a hypercube which is centered at training point and 0 when the test point is out of

the bounds of the volume defined by the hypercube. From this, the number of samples

which fall within the hypercube can be calculated using equation 2-4.

2-4

12

Substituting equation 2-4 back into equation 2-2 yields equation 2-5 shown

below.

2-5

 Equation 2-5 would be the kernel density function or Parzen Window for a

hypercube with sides of length . The results of using the hypercube create false

discontinuities at the boundaries of the hypercube and thus a more smooth window

function can be used to provide smoother results [15]. The Gaussian function, in theory,

never goes to zero and thus will provide the more desirably smooth results. Replacing

the hypercube with a Gaussian function produces the resulting kernel function shown

below in equation 2-6.

2-6

 In equation 2-6, represents the standard deviation of the Gaussian function.

Using the Gaussian distribution as the window function effectively centers a Gaussian

distribution function over a training sample where results can be derived by calculating

the cumulative distribution function from each sample and averaging the results from

each calculation. Calculating the average effectively normalizes the results.

 After the Parzen Window kernel that will be used is determined, the magnitude

of the parameter must be tuned. Finding the best magnitude of the parameter is

13

dependent on the number of testing samples used. When the magnitude of is very

large, the results of the Parzen Window calculation will be more smooth and provide

results with lower accuracy. When the parameter is very small the results of the

Parzen Window calculation will be more rough and there will be too much statistical

variability [16]. In this research, the parameter was chosen by classifying data and

using the numbers reported by a confusion matrix to choose the best value for the

magnitude of the parameter.

 Once the Parzen Window kernel is established, this method can be used to

classify data. For this research, a two class classifier was used where data was classified

as belonging in either class 1 or class 2. To classify the data, 50 sample windows were

classified where each testing point in the window was calculated in the Gaussian

function with each training point from each of the classes. Once that was complete, the

results from each class, compared to each testing sample, were averaged. Next, the

results from averaging the values from each class were compared against one another

and each window of data was considered to belong with the class which has the highest

average value. This process was repeated until each window of testing points was

classified.

 The Parzen Window classification process requires little upfront investment as it

requires virtually no training. To train the classifier, all that is required is to organize

data into training and testing sets. A low amount of required training can be convenient,

but for the purposes of this research, there is no advantage in choosing a classifier that

14

requires a shorter training period. This is because, for processing time, all that matters is

how fast it can classify training data. Also, because the Parzen Window requires

calculations to be made between each testing sample and each training sample, the

computational complexity for running the Parzen Window classifier is very high and

requires a large amount of memory for data storage [14]. Thus it would require a high

performance computer to run the classification algorithm in real time, whereas more

sparse classification algorithms could be optimized to classify incoming fall data more

quickly with less computational power.

2.4 Relevance Vector Machine (RVM)

After demonstrating the feasibility of this research and building a working

software package with the Parzen Window, an algorithm that can be used for

classification, which requires less computational complexity and storage space, was

needed. For this, the Relevance Vector Machine (RVM) was chosen. The RVM is based

on Bayesian statistics where the goal is to constrain the classification parameters by

placing priors over them and later integrating out or marginalizing these parameters to

obtain the predictive distribution that allows classification of new data. The RVM takes

input samples and pairs them with class labels (-1, 1) to model the probability

distribution using logistic regression [17]. One important attribute of the RVM algorithm

is that training the regression model yields a sparse set of training data, which means

that it uses only the most relevant data samples. The number of training samples is

determined through the training process. This process prunes training samples that are

determined to be least effective when separating data. This essentially reduces

15

computational complexity as well as lowering the amount of memory needed to store

the relevance vectors. Another advantage is that it is a kernel based classification

method that can be extended to non-linearly separable data.

 The RVM is a regression algorithm that provides results in the form of

probabilistic classification. Typically, the goal of regression algorithms is to use a training

set consisting of input training vectors to find a parameter vector as well as a single

offset [18]. Those parameters are then used to predict an output using a set of input

data that consists of unknown input vectors.

2-7

In this research, it is assumed that the input data has a non-linear relationship

and thus the input data is transformed to a kernel space [19][15][18].

2-8

To calculate the weight vector during the training portion of the RVM

algorithm, the target data are assumed to represent the model .

2-9

The design matrix generated by providing as an input parameter to the basis

function yields the kernel . The model of the target data given the input parameters is

assumed to be dependent on mean zero Gaussian noise, thus the likelihood function

can be represented in the form shown below [19][18].

16

 2-10

After that, a prior probability distribution is introduced over the weight vectors

 . This is done by defining the prior as a zero mean Gaussian prior for each . For this

Gaussian prior, the variance is a precision hyper parameter defined as the inverse of the

variance . So there is an parameter for each weight which controls the effect

of the prior [15].

2-11

 In training the RVM, the goal is to find the parameters , , and that will

maximize the posterior probability distribution which is shown below [18] where is

replaced by for simplicity.

2-12

 The first term in the posterior is once again represented as a Gaussian.

2-13

 According to [19], the equations for the mean and covariance are shown

below.

2-14

2-15

17

 The variable is the diagonal vector of . To find the values for and ,

equations for and must be formed. Solving for the log marginal likelihood for the

second part of equation 2-12 and using the evidence approximation procedure yields

the equations below for and [18].

2-16

2-17

Values for and that will maximize the marginal likelihood and thus can be used to

calculate target values for new testing data are found through an iterative process

where, first, initial values are chosen for and . After that, equation 2-14 and

equation 2-15 are used along with and to calculate values for and which can

then be used in equation 2-17 and 2-16 to calculate new values for and . This

process is continued until a convergence criterion is met. A typical convergence criteria

could be to choose a very small number which will serve as a minimum value for the

difference . The RVM becomes more sparse during the iterative training

process as weights are pruned from the design matrix as their corresponding value for

grows towards infinity. This means that a maximum value for should be initialized

before the iterative training process is started where a weight value will be pruned if its

corresponding is above the threshold. After the convergence criteria is met, the

weights, which are not equal to zero and are left after pruning, are considered to be

relevance vectors. The iterative training process is outlined below as can be seen in [18].

18

1. Initialize a kernel function that is appropriate for the data samples and use the

kernel function to create a design matrix .

2. Initialize an appropriate minimum value for the convergence criteria. For

example, the training process will stop when

 .

3. Initialize an appropriate maximum value where weights will be pruned if their

corresponding values grow to be larger than this threshold.

4. Initialize values for and

5. Calculate and

6. Use and to update and

7. Remove relevance vectors whose corresponding values are above the

maximum threshold set for values.

8. Continue with step 5 while .

 Once the training process is complete, the set of relevance vectors or weights

can be used along with the corresponding training sample points to find target values

for a set of testing samples . The testing process begins by calculating a design matrix

where some kernel function takes the training data and testing data as input and the

result is calculated as part of the design matrix After that, the weights are

used to calculate the estimated target values as can be seen in the equation below.

2-18

19

 Although the training process for the RVM can be time consuming, and requires

a great deal of computing power and storage space, most of the time consuming

computation is accomplished during this portion of executing the RVM algorithm. For

the purposes of this research, a long training phase is not much of a disadvantage

because it yields a more sparse training data set which will improve the time required to

estimate the target values for new testing data. Theoretically, the RVM appears to be a

good fit for this research because it provides probabilistic classification results which are

a probability that data falls under a particular class which allows for post processing.

20

Chapter 3 - Methodology

3.1 Sensor Array

Because the overall goal of this research is to develop a vertical array of PIR

motion sensors, which is capable of detecting falls that may occur in the home of an

elderly person, the appropriate PIR motion sensor had to be selected to serve this

purpose. After searching through the available options for PIR motion sensors, it was

apparent that most PIR sensors provided either an analog output or a digital output. As

discussed in section 2.2, most PIR sensors have a base sensing element which produces

an output signal that oscillates when the sensing element is detecting motion. In the

case of the digital output PIR sensor, the element output signal is first sent through an

amplifier circuit. Then the output from the amplifier circuit is sent through a comparator

circuit that will output a square wave signal which is high when the raw element output

signal is above a threshold voltage and low when the element output signal is below this

threshold. An example of this can be seen in Figure 3.1, where the example digital

output signal is labeled “comparator output” in the figure. Alternatively, in the case of

an analog output sensor, the raw element output signal is only sent through the

Figure 3.1: PIR motion sensor raw signals

21

Figure 3.2: Panasonic
MP PIR Motion Sensor

Figure 3.3: Fresnel lens array
configuration

amplifier circuit. The analog output PIR sensor was chosen for this research because the

intention of this research was to use pattern recognition techniques to classify the

signals coming from the sensors as either having been generated during a fall or

generated during a non fall. It was decided that this could best be achieved using the

amplified version of the analog output from the raw element output signal because the

analog version of the signal retains more of the motion

information than does the digital version. Further

discussion of what is done with the analog output signals

from the PIR sensors will continue in section 3.3.

 As discussed in section 2.2, most PIR sensors come

attached to an array of Fresnel lenses which define

the sensor’s field of view (FOV). The FOV of a

particular sensor can be as wide as 180° horizontal

and 90° vertical. However, because the sensors were

to be set up in an array configuration, if the sensors

had too large of a FOV, the individual FOV of the

sensors would be more difficult to separate because

of their overlapping FOV and would make it more difficult to distinguish between

motion in one sensor’s FOV vs. another sensor’s FOV. For this research, a sensor with a

20° vertical FOV and 40° horizontal FOV was chosen.

22

The sensor that was ultimately chosen was the Panasonic MP PIR motion sensor

which can be seen in Figure 3.2. In addition to showing the overall FOV for the PIR

sensors, Figure 3.4 shows the different detection zones within the FOV of the sensors.

As a person walks throughout the FOV of the sensors, they pass through the different

detection zones. As discussed in Section 2.2, when the person crosses the different

detection zones it causes the output signal coming from the sensing element to

oscillate.

 The Panasonic MP PIR Motion sensor is configured with an array of 6 fresnel

lenses configured in 2 rows and 3 columns as can be seen in Figure 3.3. Initially the PIR

sensors were attached to a vertical post and oriented in a horizontal position as can be

seen in Figure 3.5. While in this configuration, although the sensors would provide

signals where a fall could be visually detected, the signals did not provide consistent

results as test falls occurred throughout the FOV of the sensing array. To fix this issue,

the sensors were tilted upward 10° to position the lower limit of each of the sensor’s

FOV horizontally as can be seen in Figure 3.6.

Figure 3.4: Sensor Field of view cross section

23

Once the sensors were situated in an array configuration and tilted such that the

lower boundary of their FOV was horizontal, the signals acquired during a test fall were

still not consistent as to provide reliable detection of falls. To solve this issue, the

Figure 3.6: Sensor array 10° FOV

Figure 3.5: Sensor array horizontal FOV

24

sensors were then set up in pairs to provide some redundancy for the observed motion

at each level of the sensing array, thus leaving the sensing array in its final physical

configuration as can be seen in Figure 3.7. In this configuration, there are eight total

 sensors which are paired, leaving four pairs of sensors. These four sensor pairs are then

positioned in a vertical array with each sensor pair occupying its own horizontal plane.

As the signals come from each of the sensor pairs, they are first preprocessed

individually and then they are averaged together. A detailed discussion of signal

preprocessing is continued in Section 3.3.

Figure 3.7: Final sensor array configuration

25

 This configuration defines the behavior of the signals generated by the sensing

array. If the human subject is moving through the FOV of the sensing array, all sensors

will be active and their output signal will be oscillating. If this human subject falls, the

output signal of the top most sensors will be the first to stop oscillating due to a lack of

observed motion. Next, the output signals from the sensor pair, positioned just below

the top most sensors, will stop oscillating. This will continue as the person descends

towards the floor. In an ideal situation, when a person falls in front of the array, their

falling motion will activate all sensors. Then, as the person falls, each of the sensors will

stop detecting motion in sequential order from top to bottom, and their respective

output signal will stop oscillating. For demonstration purposes, the preprocessed

version of the signals generated from this process can be seen in Figure 3.8. The signals

in Figure 3.8, first, indicate no motion where the signals are stable and have very small

amplitude. Next, when the subject walks within the FOV of the sensing array, all of the

sensor pairs begin to detect motion and thus increase in amplitude. After that, the

amplitude from all four of the sensor pairs drops, as the sensors cease to detect motion,

as the person has stopped walking and is standing in place. After that is the fall, where

all sensor pairs begin to energize with the motion of the fall and soon after de-energize

in order from top to bottom as the person descends towards the ground.

26

Figure 3.8: Preprocessed fall signals

27

3.2 Data Acquisition

For the signals coming from the sensing array to be analyzed, they first had to be

captured and stored. To do this, an analog to digital converter (ADC) was used. The

specific ADC setup, that was used, begins with a laptop which is set up to run National

Instruments (NI) SignalExpress software. SignalExpress initiates and facilitates the

collection and storage of data recordings. SignalExpress communicates with a NI USB-

9162 carrier which is capable of accepting different types of NI data acquisition

modules. In this research, a NI 9201 module was attached to the USB carrier. The 9201

is an eight channel analog input module. Thus, the ADC system used in this research was

capable of recording the output from eight analog signals, one from each of the eight

sensors. A diagram which shows the equipment that was used for capturing the signals

in this research is shown in Figure 3.9.

Figure 3.9: Analog to Digital Conversion (ADC) Setup

28

 To test the frequency content of the PIR sensors, they were connected to an HP

3561A Signal Analyzer. Using the signal analyzer, it could be seen that when motion was

being detected by a sensor, there was frequency content up to about 100 Hz. From this,

it was assumed that oversampling by 10 times would be sufficient to recreate the signals

after they are digitized. This led to the choice of a sampling frequency of 1,000 Hz for all

data acquisition in this research.

 Besides connecting the sensors to the ADC, they also had to be powered with a

five volt power source. The power supply that was used was a nine volt switch mode DC

power supply that was connected to a wall outlet at one end and the other end was

connected to a breadboard which had a linear voltage regulator that converted the nine

volts from the wall down to the five volts required for the PIR sensors. Also, there were

three filter capacitors connected between power and ground to ensure that the power

going to the sensors was free from transients. The bill of materials (BOM) for the

sensing array can be seen in Table 3-1. Also, Figure 3.10 shows a schematic for the

sensing array.

Table 3-1: PIR sensing array bill of materials

Item Quantity Description Value Distributor Part Number

1 1
Electrolytic
Capacitor

47µF N/A N/A

2 1
Electrolytic
Capacitor

1µF N/A N/A

3 1 Ceramic Capacitor .1µF N/A N/A

4 1
Linear Voltage

Regulator
5V

National
Semiconductor

LM1117T-5.0

5 8 PIR Motion Sensor NA Panasonic AMN23111

29

 For this research, data were collected in individual files pertaining to one fall or

non-fall activity. For example, a fall to the left side from a walking position was

associated with one data file. The data file collection process for this research goes as

follows. First, the sensing array and data acquisition equipment must be properly set up

and ready to collect data. This means the sensing array must have been powered on for

at least 30 seconds to allow the sensing elements to stabilize as indicated in the

datasheet [12]. Once the equipment is set up, someone must be ready to initiate the

data recording on the computer attached to the ADC. There also must be a test

participant who is prepared to perform an action that resembles a fall or non-fall. Once

all persons and equipment are ready, the data recording is started, and the participant

begins the fall or non-fall action. Once the action has been performed, the person doing

the recording stops the data recording and saves the data file that was generated in an

Figure 3.10: PIR array schematic drawing

30

appropriate directory on a file storage device. The file name for each data file is saved as

a time stamp. For example, if a recording was taken on the year 2010, 20th day of April

and a time of 10:51 AM, the file name for that data run would be 201004201051.txt.

 The files generated by SignalExpress are ASCII formatted text files where each

sensor is represented by a column vector. Thus, at each sample period, a value is

recorded in the text file for each of the sensors, separated by a space character. After

the data is recorded for a sample period, the string of data stored in the text file is

terminated with a carriage return character. This format makes this data compatible

Figure 3.11: Typical ASCII text data file

31

with both MATLAB and Excel. Figure 3.11 shows a typical text file where the data for a

fall or non-fall action is stored.

3.3 Preprocessing

After data have been collected, the next step is to preprocess it by transforming

it for the feature extraction process used in this research. As can be seen in Figure 3.12,

the signals that come directly out of the PIR sensing array are not easy to interpret, as it

is not immediately clear where a fall has occurred. As discussed in section 3.4, this raw

form of the signals makes feature extraction difficult as well. Thus, the raw signals are

preprocessed to reveal the features that were used in this research to detect falls. The

data in this research were preprocessed according to the algorithm laid out in the

flowchart and block diagram shown below in Figure 3.13 and Figure 3.14 respectively.

Figure 3.12: Raw data signals

2 4 6 8 10 12 14

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

A
m

p
li
tu

d
e
 (

V
)

s0a

s0b

s1a

s1b

s2a

s2b

s3a

s3b

32

Figure 3.13: Preprocessing software flow chart

Yes

Read in file paths from data_to_preprocess.txt

Count the number of files to be preprocessed

Load the data of the current file to be preprocessed

Read in each of the signals to be preprocessed

Filter each of the signals to remove noise

Subtract 2.5 to center the data around 0

Calculate the absolute value of each of the signals

Calculate the derivative of each signal

Scale the derivative signal to between -2.5 and 2.5

Calculate the absolute value of the derivative

Add absolute value versions of the derivative and

original signals together

Average the signal pairs together

Filter the final versions of the signals

Save the preprocessed data with original file name +

_PP

No

Start

Stop

Last file to be preprocessed?

33

Figure 3.14: Preprocessing block diagram

34

The general goal of the preprocessing step is to transform the signals coming from the

sensors from signals that oscillate when detecting motion to signals that have high

amplitude when the sensor is detecting motion and low amplitude when the sensor is

not detecting motion.

The preprocessing procedure performed in this research begins by loading the

data that is to be preprocessed. After the fall or non-fall data are loaded, each of the

eight signals are separated into individual variables. The first transformation operation

that is performed on the data signals is to use a mean filter on each of the data signals.

The purpose of the initial mean filter is to filter out the small amount of noise on each of

the signals which was present when the signals were being saved by the data acquisition

step. Since the amplitude of the output signals coming from the sensors is between 0

and 5 volts, the steady state value for the signals coming from the sensors when they

are not detecting motion is 2.5 volts giving the signals coming from the sensors a 2.5

volt DC bias. As shown below in the block diagram in Figure 3.14, this 2.5 volt DC bias is

Figure 3.15: Zero centered example signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

4

Time (s)

A
m

p
li
tu

d
e
 (

V
)

Motion Detected No Motion Detected

35

subtracted out of each of the input signals. An example of what this signal might look

like can be seen in Figure 3.15, where the example motion sensor signal represents a

sensor detecting motion for the first 1.5 seconds and then detecting no motion for the

remaining half second. The goal for the preprocessing step is to transform a signal which

oscillates when motion is detected to a signal which is represented by higher amplitude

when motion is detected and amplitude near 0 volts when no motion is being detected.

With this in mind, it can be seen that the portion of the signal which drops below zero is

not conducive to the overall goal of the preprocessing step. To solve this issue, the

absolute value of the signal is calculated. This can be seen in Figure 3.16. Also visible in

Figure 3.16, is where the absolute value of the simulated sensor signal crosses the zero

axis even though motion is being detected. This is a negative effect, since it contradicts

the goal of the preprocessing step. To mitigate this issue, the derivative of the simulated

sensor signal is taken. As with the simulated sensor signal, the absolute value of the

Figure 3.16: Absolute value example signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

4

Time (s)

A
m

p
li
tu

d
e
 (

V
)

Motion Detected No Motion Detected

36

derivative was calculated to ensure that the signal reaches higher amplitude when

motion is being detected. As shown in Figure 3.17, the issue of the absolute value

reaching 0 can be resolved if the signals are added together. However, the combination

of the sampling rate and the frequency of the signals yields a derivative signal which has

a maximum amplitude of just above 10. So that the two signals can be added together,

the derivative must be scaled to be within the same amplitude range as the absolute

value of the simulated sensor signal.

 This is accomplished by multiplying the derivative signal by the maximum value

of the desired signal range and dividing by the maximum value of the derivative signal.

 3-1

Figure 3.17: Un-scaled derivative signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

X: 0.001

Y: 10.47

Time (s)

A
m

p
li
tu

d
e
 (

V
)

37

Performing the transform shown in equation 3-1 yields the version of the derivative

signal shown in Figure 3.18, which is the absolute value of the simulated sensor signal

and the absolute value of the derivative of the simulated sensor signal, which has been

scaled down to the same amplitude range. After this, both signals are added together,

yielding the signal shown in Figure 3.19. As shown in the figure, this preprocessing

method makes it easier to identify where a fall occurs and transforms the signals into a

form which reveals the features that are used for feature extraction. Once the

preprocessing transformations have been made to each of the eight sensor signals, the

signals from each of the four levels of sensor pairs are averaged together.

3-2

Figure 3.18: Scaled absolute value of derivative of simulated sensor signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

4

Time (s)

A
m

p
li
tu

d
e
 (

V
)

Motion Detected No Motion Detected

Scaled absolute value of derivative
of simulated sensor signal

Absolute value of
simulated sensor signal

38

This takes the eight initial signals and condenses them to four signals, one for

each level of the sensing array. This step provides some redundancy in the output of the

signals from each vertical sensing level of the array. An example of the resulting signals

generated by executing the preprocessing algorithm is shown in Figure 3.20 below.

Figure 3.19: Preprocessing results from simulated signals

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3

-2

-1

0

1

2

3

4

Time (s)

A
m

p
li
tu

d
e
 (

V
)

Motion Detected No Motion Detected

Absolute value of
simulated sensor signal

Scaled absolute value of derivative
of simulated sensor signal

Sum of preprocessed signals

39

3.4 Feature Extraction

Once the data has been preprocessed, the next step is to extract the features

that will help the classifier identify when a fall has occurred. The features are extracted

by performing calculations on the preprocessed data which tend to increase separation

between data of different classes. The features that were used in this

Figure 3.20: Preprocessed fall signals

40

research were selected based on inspection of the preprocessed data signals. When

looking at preprocessed signals such as the ones shown in Figure 3.21, it can be seen

that the signals appear different during the fall event than they do during the rest of the

duration of the signals. These differences can be extracted as features. First, as shown in

Figure 3.21, during the fall, the signals have a slightly different slope. Also, when fall

Figure 3.21: Preprocessed signals for feature extraction

41

activity is observed, the slope of all four signals is typically negative. Besides the slope,

when the subject is falling the signals begin to decrease in amplitude in order beginning

with the purple signal which is from the top-most sensor pair. Next, the amplitude of

the blue signal (the sensor pair second from top) begins to drop. Then, the amplitude

from the red signal drops as its sensors cease to detect motion. Finally, the signals from

the bottom sensor pair (represented by the green signal) begin to drop in amplitude.

The signals continue this trend throughout the remaining duration of the fall. This

pattern that was created during the fall is highlighted in Figure 3.22 where it can be

seen that the slope and difference between the signals are distinct during the fall and

thus, will help create separation between data collected during a fall and data collected

during a non-fall.

Figure 3.22: Fall signals with slope and difference

42

As outlined in the flowchart and block diagram shown below in Figure 3.23 and

Figure 3.24, feature extraction begins by loading the data from which features are to be

extracted. After the preprocessed data file is loaded, each of the eight signals are

separated into individual variables. Next, the slope feature is extracted from each signal

by calculating the derivative. Since the derivative introduces some noise in the signals, a

mean filter is then calculated over each signal. Doing this yields four slope features, one

for each sensing level. After that, the difference feature is extracted by subtracting the

amplitude of each adjacent signal where the signal generated by one sensor pair is

subtracted from the signal of the sensor pair that is located below it, at each instance in

time. This ends up producing a difference feature signal that is positive during the

portion of the signals where a fall has occurred. This yields 3 difference features with

one coming from the difference between each sensing level. Combining all of the

features yields a 7 dimensional feature vector.

43

Figure 3.23: Feature extraction software flow chart

44

 To visualize the feature space, a principal component analysis (PCA) was

performed to reduce the dimensionality of the feature vector from seven dimensions to

three then plotted in a three dimensional graph. In Figure 3.25, it can be seen that there

is some separation between the fall data and the non-fall data.

Figure 3.25: 3D feature space plot

Figure 3.24: Feature extraction block diagram

45

3.5 Training Data Set

 Once data has been transformed to the appropriate feature space, it is ready for

classification. However, before it can be classified, it must be separated into testing and

training data sets. After performing a data collection, where a stunt actress performs

the actions as defined in the protocol in Appendix A, there were 57 fall and non-fall data

files. Of the 57 data files, 42 of them represented fall data, and 15 of them were from

the false positive portion of the protocol. When the data collection was executed, each

of the fall activities were performed multiple times, with there being 1 fall activity for

each data file. Conversely, the non-fall activities were performed two times within the

same data file. Since there were multiple data file instances of each of the fall activities,

they could easily be split between testing and training data sets. Since each of the false

positive data files was collected with the stunt actress performing the individual false

positive activities twice for each data file, it was not feasible to separate the false

positive data files between the testing and training data sets. It was also not clear where

to separate the individual activities within the non-fall data files. Since classification

needed to be tested on each of the activities in the fall test protocol, the false positive

data files had to be left in the testing data set and it was assumed that there would be

enough fall and non-fall data in each of the fall data files in the testing data set to

represent each class of data. The data files were distributed amongst the testing and

46

training data sets as shown below in Table 3-2 and Table 3-3.

Table 3-2: Training Data Files

47

 Once the data files were distributed to testing and training data sets, the training

data set had to be separated into different classes so that it could be used by a classifier

to classify testing data. To identify which data came from each class in each of the fall

data files, a person had to inspect the preprocessed data files and identify the sample

Table 3-3: Testing Data Files

48

where the data collected during a fall begins and the sample where the fall data ends.

The data between these samples were assumed to be collected during a fall and was

assigned to class 1. Once the class 1 or fall data were identified, the rest of the data

were assumed to be class 2 or non-fall data. This yielded a training data set with 35,220

class 1 or fall data points, and 327,800 class 2 or non-fall data points. Combining the fall

and non-fall training data gives a training data set with 363,020 data points. With the

testing data set that large, it took a very long time to classify just one fall. To solve this

issue, the training data set was down-sampled. Since the number of class 2 data was

near 1 order of magnitude higher than the number of class 1 data, the class 1 data was

down-sampled by 10 and the class 2 data was down-sampled by 100 to even up the

number of samples in each class. This gave a training data set with 6,800 data points

where 3,522 of them represent class 1 and 3,278 represent class 2. This likely has little

negative effect on the results because of the estimated 10 times sampling frequency as

discussed in section 3.2. The number of feature vectors included in the training data sets

for each of the classifiers and the number of windows used in the testing data are

shown below in Figure 3.26.

49

 Through the remainder of the classification and post-processing process the data

is handled in 50 sample windows. This is because the falls in the stunt actress data set

typically happen over a .5 second duration, so each window would be .1 times the

duration of a fall. This would likely provide enough resolution for fall detection by each

of the classifiers.

3.6 Parzen Window

One of the two classification methods chosen for this research is the Parzen

Window classifier. Although, as stated in section 2.3, the Parzen Window classifier is a

computationally intensive classifier; the results of this classifier can be used as a

reference to determine whether falls can be detected using the PIR sensing array

Figure 3.26: Testing and training feature vector and window quantities

50

described in section 3.1. The algorithm used in this research to implement the Parzen

Window is outlined in the block diagram below in Figure 3.27.

The Parzen Window does not require a prolonged training step; all that is

necessary is for the data to be separated into training and testing sets. This process was

detailed in section 3.5. Once the training data set is defined, the Parzen Window loads

the training data that will be used to classify the testing data as is shown in the

flowchart in Figure 3.28.

Figure 3.27: Parzen window classification block diagram

51

Once the training data set is loaded, an appropriate value for the magnitude of

the variance or parameter is determined. This was done by running the classifier on

Figure 3.28: Parzen window classification software flowchart

52

some testing data, and using the information reported by the resulting confusion matrix

to choose the magnitude of empirically, through experimentation by varying the

parameter and choosing the value of that yielded the lowest number of false

negatives. The results of this process are show below in Table 3-4.

Initially, was set high at 5. The result of setting to 5 yielded no false negatives and a

very large number of false positives. From 5, was lowered one order of magnitude to

.5. Lowering to .5 greatly reduced the number of false positives. Next, an value of .1

was tested. As shown in Table 3-4, this, once again, improved the accuracy. After that, a

value of .01 was tested. This yielded the best accuracy, but increased the number of

false negatives, which represent missed falls. Finally, was set to .05. This yielded the

best accuracy while still keeping the number of false negatives at 0.

Table 3-4: h parameter tuning

53

As can be seen above in Figure 3.29, the first step the classification function

takes is to calculate the cumulative probability of the Gaussian distribution for each

testing sample, centered at each training sample, from the class 2 training data set. The

equation for this step is shown below in equation 3-3.

Figure 3.29: Parzen window classification function flowchart

54

 C2

3-3

After that, the average of the values generated from the calculations between

class 2 training samples and testing samples is calculated.

3-4

Next, the classification function calculates the cumulative probability of the

Gaussian distribution for each testing sample centered at each training sample from the

class 1 training data set. The equation for this step is shown below in equation 3-5.

 C1

3-5

Once that is complete, the average of the values generated from the calculations

between class 1 training samples and testing samples is calculated.

3-6

Next, the confidence value is calculated by subtracting the mean of the

cumulative probability calculations between class 2 training data and the testing data

from the cumulative probability calculations between class 1 training data and the

testing data. Since the bandwidth is set to allow more false positives than false

negatives, if the confidence value is below zero, this would more likely result in the

classification for the testing data being class 2 or a non-fall and a confidence value

would not be necessary and as such all negative confidence values are set to be zero.

55

3-7

After the confidence value is calculated, the values of the class 1 mean and class

2 mean are compared. If the class 1 mean is greater than the class 2 mean, then the

testing sample is classified as a fall, and if the class 2 mean is greater than the class 1

mean then the testing sample is classified as a non-fall. Once the class label is

determined, the 2 class Parzen Window function returns the class label and the

confidence values.

56

Figure 3.30: RVM training flowchart

3.7 Relevance Vector Machine (RVM)

An alternative classification method to

the Parzen Window classifier is to use the RVM

to provide the predictive distribution of

individual fall data files, which allows for

classification of the fall data. As mentioned in

section 3.6, the Parzen Window approach

requires a significant amount of processing

power and storage space. Alternatively, the

training step executed when implementing the

RVM, effectively reduces the training data set to

a more sparse set of relevance vectors. The

reduction of training samples translates to

lower computational complexity and requires

less storage space. The RVM is a kernel method

where a kernel function is used to transform

the input data to a feature space mapping.

In contrast to the Parzen Window, classification using the RVM requires a

training process where input parameters for classification are found. As shown in Figure

3.30, training of the RVM is started by loading the training data. Next, a training data set

is configured by combining the training data with target values that represent the class

of the corresponding training data. In this research, class 1 training data, or fall data, is

57

given a target value of -1 and class 2 training data, which consists of non-fall data, is

given a target value of 1. This can be seen below in equation 3-8.

3-8

 Next, in the training process, the kernel function is defined. For this

research, since the data set is assumed to be nonlinear, the radial basis function is used.

 3-9

 Once the kernel function is defined, the design matrix can be built based on

this kernel function.

3-10

 After the design matrix is initialized, the next step, before running the function

that trains the RVM, is to set the convergence criteria. For this research, the

SparseBayes function, written by Mike Tipping [19], is used to train the RVM. For the

convergence criteria, the SparseBayes function requires the user to set the max

iterations and maximum time to run, which in this research, were both set to 50,000. At

completion, the SparseBayes function passes back the relevance vectors in the form of

indices to the most relevant vectors. To use these data, the relevance vectors are saved

to a matrix and all of the data returned by the SparseBayes function are saved.

58

Figure 3.31: RVM testing software flowchart

 Once the RVM has been trained, it

can be used to classify the fall data. As

can be seen in the software flowchart

shown in Figure 3.31, the classification

process of the RVM begins by loading the

weight parameters and relevance

vectors . After the training data are

loaded, the feature vector which is to be

classified is pointed to when the

corresponding file paths are loaded.

Next, the kernel function is defined

using equation 3-9. Once the data have

been initialized, the main loop of the

classification software begins by loading

in a testing data file. Once the testing

data is loaded, the design matrix can be

made with a window of fall data.

3-11

 Next, the target values are estimated for the window of fall data using the

equation below.

59

Figure 3.32: Classified data graph

3-12

 After all of the data windows for each data file have been classified the

classification data for each of the individual data files are saved.

 The results of the target data calculations are probabilistic classifications which

represent the confidence that a window of data belongs under a fall or a non-fall class

label. This is a good fit for this research because it allows for post processing of the

classification data to improve the accuracy of the classification results.

3.8 Post-processing

As will be discussed in chapter 4, the results from both the Parzen Window and

the RVM require post-processing to provide more accurate results. For example, as

shown in Figure 3.32, there is a false positive that occurs briefly at around 4500 samples

and a true positive that occurs between 8500 and around 10500 samples.

60

As shown in Figure 3.32, there is more area under the curve of the true positive

than there is under the false positive. Since the false positive is an undesirable result, as

it represents a situation where caretakers may be unnecessarily alerted to a problem

that may not have actually happened, it would be best if this false positive were

correctly classified as a non-fall. To solve this issue in post-processing, a mean filter is

calculated over the classification signal. This more quickly reduces the peak amplitude of

the classification with less area under its curve and will effectively create more

separation between false positives and true positives. It also makes determining a

threshold value that can be chosen for the maximum amplitude of non-fall data more

apparent.

The false positive, shown in Figure 3.32, could be eliminated if a threshold value

could be found where, if a classification value is above this threshold, it is considered a

true fall, and if it is below this value, then it would be considered a non-fall. To choose

the best threshold, all of the falls must be analyzed at each potential threshold value. In

determining this threshold value, a receiver operating characteristic (ROC) curve is

generated by calculating the true positive rate and false positive rate across a range of

threshold values. The ROC signal is shown on a 2 dimensional graph where the

horizontal axis is the false positive rate. The calculation for the false positive rate is

shown below in equation 3-13 where the false positive rate equals the number of

false positives divided by the total number of data that are supposed to be negative

which is the number of false positives (#FP) and the number of true negatives (#TN).

61

 3-13

 The vertical axis of the ROC curve is the true positive rate. The calculation

for the true positive rate is shown below in equation 3-14 where the true positive rate

 equals the number of true positives divided by the total number of data that are

supposed to be positive which is the number of true positives (#TP) and the number of

false negatives (#FN).

 3-14

To generate the ROC graph, the true positive rate and false positive rate are

calculated as the threshold is varied. For this research, the threshold value is varied

from 0 to 1 in increments of .1.

 The results of the ROC curve for the classification data from the Parzen Window

and RVM are shown below in Figure 3.33. The ROC curves shown in Figure 3.33 were

generated by calculating confusion matrix data where the results were generated by

comparing the classification results from each of the Parzen Window and RVM classifiers

to ground truth information over a range of threshold values. The data in Figure 3.33

was also after the mean filter was calculated in the post-processing step.

62

The ROC curve above was generated from the values in Table 3-5 below. The

ROC curves in Figure 3.33 help to visualize the options available for the choice of

threshold value which will minimize the false positive rate and maximize the true

positive rate. However, looking at the values in the table is most helpful when choosing

a threshold value to be used for classification in the final sensing array. Looking at the

confusion matrix data in Table 3-5 for the Parzen Window, it can be seen that as the

threshold value increases the number of false negatives increases. This is because as the

threshold increases, there are more true falls that would have been classified as such

but are not because their peak amplitude never reaches the threshold value. This is a

Figure 3.33: ROC curve for the Parzen Window and RVM classification results, after filtering

63

 negative side effect of increasing the classification threshold value. In contrast, it can be

seen that the number of false positives sharply decreases as the threshold value

increases. Reducing the number of false positives is the major advantage to

implementing a threshold value. As can be seen in Table 3-5 initially the number of false

negatives slowly increases when the threshold increases and as the threshold value

approaches 1, the number of false negatives sharply increases. Thus, for the sake of

keeping the number of missed falls low, a small threshold value should be chosen to

minimize the number of false negatives. On the other hand, as the threshold value

begins to increase, the number of false positives sharply decreases, and as the threshold

Table 3-5: Confusion Tables for ROC calculations

64

value approaches 1, the number of false positives more slowly approaches 0. From this,

it can be seen that a threshold value should be chosen that will minimize the number of

false negatives as well as minimize the number of false positives. In this research, for the

Parzen Window, a threshold value of 0.3 was chosen because it provides a good balance

between a low number of false negatives and false positives. The same trend can be

seen in the fall classification data for the RVM, except the numbers for the false

negatives and false positives are minimized at a lower threshold of 0.1.

Once an appropriate threshold value has been determined, the data can be

classified. Figure 3.34 and Figure 3.35, below, are the post-processed (filtered) graphs of

the same data shown in Figure 3.32. In both cases, the false positive was filtered out in

the post-processing step.

 The post-processing step is the final component in the fall detection process

for the vertical array of PIR motion detectors. From this the accuracy of the classifiers

can be estimated using the accuracy calculated from the confusion data that was found

when generating the ROC curve. The equation for the calculation of the accuracy is

shown below. In Chapter 4, the accuracy equation below is used to show the

classification accuracy before and after the mean filter is applied to the classification

data.

 3-15

 Below Figure 3.34 and Figure 3.35 show the post-processing results from the

Parzen Window and the RVM respectively. These results were derived from

65

implementing the post-processing algorithm on the same data file that was used to

generate Figure 3.32 at the beginning of this section. It is interesting to note that after

implementing the mean filter and using a threshold value, the false positive can be

filtered out.

Figure 3.35: Post-processed (filtered) RVM classification data

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

2.5

3

Sample Number

A
m

p
li
tu

d
e
 (

V
)

ps0

ps1

ps2

ps3

classification

Figure 3.34: Post-processed (filtered) Parzen Window classification data

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1

1.5

2

2.5

3

Sample Number

A
m

p
li
tu

d
e
 (

V
)

ps0

ps1

ps2

ps3

classification

66

Chapter 4 - Experimental Results and Analysis

4.1 Stunt Actress Data Set

The data set used in this research was captured in a lab which was set up to

mimic an apartment at an assisted living community. The data were collected using the

data acquisition system described in section 3.2. Because it would be too much of a risk

for injury, it was not possible to have an elderly person perform falls for data collection.

Instead, each of the data sets was collected while a stunt actress performed actions

defined in a fall/non-fall protocol detailed in Appendix A. In the case of a fall, a mat was

placed around 8 feet in-front of the sensing array and the stunt actress performed the

fall on the mat. In the case of a non-fall, if there were any props required for the action,

they were placed around 8 feet in the center of the field of view (FOV) of the sensing

array where the action was performed in that general area. Once the data were

collected, all of the data files which contained a fall were manually inspected to identify

the approximate sample number where the fall began and ended. Below in Figure 4.1,

the sample numbers where the clapping portion ends, the fall data begins, and the fall

samples end, are visualized. In this research these three sample points are recorded for

each data file.

67

After the location of each fall had been identified, the data set was separated

into a training set and a testing set. During the data collecting session, each of the falls

defined in the fall/non-fall protocol were performed multiple times and thus when

separating the data into training and testing sets, the duplicate data runs were

separated, with one going to the training set and the other going to the testing set. As

seen in Figure 4.2 the data in the fall data files that were part of the testing set were

separated by class where the clapping portion of the fall activities were simply

considered to be non-fall or class 1 data and the fall data were considered to be fall or

class 1 data.

Figure 4.1: Example data file where the sample numbers of the clapping portion and falling
portion of the data are identified

68

 Alternatively, for experimentation purposes, the testing data were classified with

the clapping portion, and without. As shown Figure 4.3, when the data were analyzed

with the clapping portion, the clapping activity was considered to be a separate non-fall

data run.

Figure 4.2: Training fall data organization

69

 In experiments where the clapping activity was not considered, it was not

included, even with the non-fall data. This is shown in Figure 4.4.

Figure 4.4: Testing data without clapping activity

Figure 4.3: Testing data with clapping activity

70

4.2 Sparsity and Classification Time Results

 As discussed in section 2.3, the Parzen Window Classifier uses the entire training

data set for classification. This means that the Parzen Window mathematically compares

each testing data point to all 6,800 training data points to determine which class it

belongs in. Alternatively, the RVM goes through a training process where the least

effective training points are pruned. In this research, the training process for the RVM

yielded a much more sparse training data set of 1,723. The training data set used by the

Parzen Window is nearly 4 times the size the training data set used by the RVM.

As shown in Table 4-1, this enables the RVM to much more quickly classify the

1,341,000 testing data points. The Parzen Window took 8 hours, 55 minutes, and 49

seconds to classify all 38 fall and non-fall data files where the RVM took 2 hours, 27

minutes, and 58 seconds to do the same thing. As shown below, in the next section, the

RVM is more accurate in classifying the testing data.

71

4.3 Results Without Filtering Classification Output

As discussed in section 3.8, the post-processing step takes in the classified values

for each 50 sample window of data and calculates a mean filter over the classified

values to reduce the number of false positives which have a smaller area under the

curve than the true positives. To visualize the advantage of calculating the mean filter, it

Table 4-1: Classification time

72

is helpful to see the confusion matrix data on what the results would be without the

mean filter. These results are shown below.

4.3.1 Results Excluding Clapping portion of Fall Data

When the stunt actress data set was collected, each fall or non-fall activity began

with the stunt actress bending over to clap near the ground and then performing the

activity. This was done to aid the research of a different sensor based on a microphone

array. In this research, the clapping portion of the fall activities can be added and

removed to demonstrate each classifier’s ability to correctly classify data which is a

potential false alarm. As data from the clapping portion of the falls are added and

removed, it is only added or removed from the testing data set. The training data set

does not change. The results of excluding the clapping portion of the fall are analyzed

below.

Below in Table 4-2 is the confusion data calculated over a range of threshold

values where each data file was analyzed individually and the clapping portion of each

data file was removed and not considered. The classification results of each data file

containing fall activity, were parsed at each threshold value and if the classification

results rose above the threshold value, where a fall was supposed to have happened as

indicated by the ground truth, then the data file was considered to be a true positive

fall. If no fall was detected, then the data file was counted in the confusion matrix as a

false negative. For the non-fall data files, if a fall was detected then the data file was

considered to be a false positive and if no fall was detected, then the data file is

considered to be a true negative. Since no clap activities are considered, this gives 23

73

potential true positives (TP) or false negatives (FN), one for each fall activity. There are

also 15 potential false positive (FP) or true negative (TN) activities one for each non-fall

activity.

 As discussed in section 3.8, choosing the correct threshold means choosing one

that will minimize false negatives and false positives which is a balance that should be

weighted towards minimizing false negatives because they represent a missed fall. It can

be seen in the accuracy column of Table 4-2, that before the classification signal is

filtered, and the claps are not considered, the Parzen Window classification accuracy

never goes above 68.42% which is a relatively low accuracy to what is seen later in this

section. Next, the ROC curve that was generated from the data in Table 4-2 is shown

below.

Table 4-2:Confusion Table, Parzen Window, 1 Count per Data File, No Claps

74

 Table 4-3 below is the confusion table for the same classification as discussed

above but with each 50 sample window of classification data being counted in the table.

If a window of classification data indicates a fall and it is supposed to be a fall, then that

window is considered to be a true positive. If a window is supposed to be classified as a

fall and it is not classified as one, then it is considered to be a false negative. If a window

of data is classified as a fall and it is supposed to be a non-fall then the false positive

count is increased. If a window is classified as a fall and it is supposed to be classified as

a fall then that window is considered a true negative.

Figure 4.5: ROC Curve, Parzen Window, 1 Count per Data File, No Claps

75

 Below is the ROC curve that was generated from the data in Table 4-3.

Figure 4.6: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, No Claps

Table 4-3: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, No Claps

76

Table 4-4 shows the confusion table for each data file as classified by the RVM,

with the clap portion of the fall activities excluded and before the classification values

are filtered. Similar to the Parzen Window classification the accuracy does not go above

68.42%.

Table 4-4: Confusion Table, RVM, 1 Count per Data File, No Claps

77

Table 4-5: : Confusion Table , RVM, 1 Count per 50 Sample Window, No Claps

Figure 4.7: ROC curve, RVM, 1 Count per Data File, No Claps

78

4.3.2 Results Including Clapping portion of Fall Data

In this section, the portion of each fall activity where the stunt actress bends

towards the ground and claps is counted as a separate non-fall activity. The addition of

clapping activity as a separate non-fall activity is only done in the testing data, and not in

the training data. The training data does not change. The results from including the clap

activity are improved but are not as good as results seen later in this section.

Figure 4.8: ROC Curve, RVM, 1 Count per 50 Sample Window, No Claps

79

Figure 4.9: ROC Curve, Parzen Window, 1 Count per Data File, Count Claps

Table 4-6: Confusion Table, Parzen Window, 1 Count per Data File, Count Claps

80

Figure 4.10: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, Count Claps

Table 4-7: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, Count Claps

81

Figure 4.11: ROC Curve, RVM, 1 Count per Data File, Count Claps

Table 4-8: Confusion Table, RVM, 1 Count per Data File, Count Claps

82

Figure 4.12: ROC Curve, RVM, 1 Count per 50 Sample Window, Count Claps

Table 4-9: Confusion Table, RVM, 1 Count per 50 Sample Window, Count Claps

83

4.4 Results From Filtering Classification Output

The results below are generated from classification values that have been mean

filtered as discussed in section 3.8. As can be seen in the confusion tables and ROC

curves below, the results from filtering the classification are considerably better.

4.4.1 Results Excluding Clapping portion of Fall Data

The filtered classification values are considered with and without the clapping

activity. The filtered classification values are first considered without the clapping

activity below.

Table 4-10: Confusion Table, Parzen Window, 1 Count per Data File, No Claps, filtered

84

Table 4-11: Confusion Table, Parzen Window, 1 Count per 50 Sample Window, No Claps,
filtered

Figure 4.13: ROC Curve, Parzen Window, 1 Count per Data File, No Claps, filtered

85

Table 4-12: Confusion Table, RVM, 1 Count per Data File, No Claps, filtered

Figure 4.14: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, No Claps, filtered

86

Table 4-13: Confusion Table, RVM, 1 Count per 50 Sample Window, No Claps, filtered

Figure 4.15: ROC Curve, RVM, 1 Count per Data File, No Claps, filtered

87

4.4.2 Results Including Clapping portion of Fall Data

In this section, the final results from filtering the classification data and including

the clapping portion of the stunt actress data, are shown. In the Accuracy column of the

confusion table, it can be seen below that doing this provides the best results.

Figure 4.16: ROC Curve, RVM, 1 Count per 50 Sample Window, No Claps, filtered

88

Figure 4.17: ROC Curve, Parzen Window, 1 Count per Data File, Count Claps, filtered

Table 4-14: Confusion Table, Parzen Window, 1 Count per Data File, Count Claps, filtered

89

Figure 4.18: ROC Curve, Parzen Window, 1 Count per 50 Sample Window, Count Claps, filtered

Table 4-15: Parzen Window, 1 Count per 50 Sample Window, Count Claps, filtered

90

Figure 4.19: ROC Curve, RVM, 1 Count per Data File, Count Claps, filtered

Table 4-16: Confusion Table, RVM, 1 Count per Data File, Count Claps, filtered

91

4.5 Fall Detection Results

Figure 4.20: ROC Curve RVM, 1 Count per 50 Sample Window, Count Claps, filtered

Table 4-17: Confusion Table, RVM, 1 Count per 50 Sample Window, Count Claps, filtered

92

After all of the data have been post-processed, it can be determined whether

each fall would have been detected or not if the sensing array were placed in a person’s

home. The fall activities captured in the data files that were processed in this research

were detected with varying success. These results are shown below.

4.5.1 Successful Fall Detection

The next two figures show the post-processed classification results from the

Parzen Window and RVM for a fall where the stunt actress re-created a fall of a person

standing in place then falling. Both classifiers were successful in detecting the fall

activity.

Figure 4.21: Post-processed Classification Parzen 201004201053 Standing Position Looses
Balance Fall Backward

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

93

The data for the next two falls come from the stunt actress depicting a person

who is sitting and slides from the chair they were sitting in. Both the RVM and Parzen

Window were able to detect this fall activity.

Figure 4.22: Post-processed Classification RVM 201004201053 Standing Position Looses
Balance Fall Backward

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

94

Figure 4.24: Post-processed Classification RVM 201004201206 Sitting Falling From a Chair
Sliding Backward Out of Chair

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

Figure 4.23: Post-processed Classification Parzen 201004201206 Sitting Falling From a Chair
Sliding Backward Out of Chair

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

95

The next four figures show fall activity where the stunt actress falls from a bed or

couch. All four of these were detected by each of the classifiers.

Figure 4.25: Post-processed Classification Parzen 201004201210 From Bed or Couch Fall to
Side Upper Body Falls First

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

96

Figure 4.27: Post-processed Classification Parzen 201004201212 From Bed or Couch Fall to
Side Hips and Shoulders Fall First

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

Figure 4.26: Post-processed Classification RVM 201004201210 From Bed or Couch Fall to Side
Upper Body Falls First

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

97

Figure 4.21 - Figure 4.28 demonstrate that the sensing array is capable of

detecting falls whether a person is standing, sitting, or lying down.

The next two figures are from the false positive protocol where the stunt actress

walks to a chair and sits. These figures show that the sensing array is capable of

discerning whether a person is sitting in a chair or falling out of it.

Figure 4.28: Post-processed Classification RVM 201004201212 From Bed or Couch Fall to Side
Hips and Shoulders Fall First

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

98

4.5.2 Failed Fall Detection

Figure 4.30: Post-processed Classification RVM 201004201341 False positive 13 Walk to Chair
and Sit

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

Figure 4.29: Post-processed Classification Parzen 201004201341 False positive 13 Walk to
Chair and Sit

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

99

 The figures in this section show where each of the classifiers either fail to detect

a fall, or incorrectly detect a fall for a non-fall activity. The next two figures show fall

activity where the Parzen Window was able to detect the fall activity and the RVM failed

to detect the fall activity. This fall activity seems like it would be fairly strait forward for

the classifiers to detect since the slope resembles a fall. However, the signals are not

losing motion in order.

Figure 4.31: Post-processed Classification Parzen 201004201100 Standing Position Looses
Balance Fall Right

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

100

The next two figures show the case in which the stunt actress trips and falls

forward. In this case, both classifiers fail to detect the fall activity. This fall data does not

look much like a fall but appears to be a very slow fall and this seems to be why the fall

activity is not detected.

Figure 4.32: Post-processed Classification RVM 201004201100 Standing Position Looses
Balance Fall Right

0 2000 4000 6000 8000 10000 12000 14000
0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

101

Figure 4.34: Post-processed Classification RVM 201004201138 Tripping and Slipping Trip and
Fall Forward

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

Figure 4.33: Post-processed Classification Parzen 201004201138 Tripping and Slipping Trip and
Fall Forward

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

102

In the next two figures, the RVM is able to detect the fall activity, and the Parzen

Window is not. The fall activity in these figures seems detectable. It is possible that the

feature values are just out of the detectable range during this fall activity.

Figure 4.35: Post-processed Classification Parzen 201004201158 Sitting Falling From a Chair
Fall Left

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

103

The last two figures of this section show a non-fall activity where each of the

classifiers perform very poorly, detecting several falls within one non-fall data file.

Figure 4.36: Post-processed Classification RVM 201004201158 Sitting Falling From a Chair Fall
Left

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

104

Figure 4.38: Post-processed Classification RVM 201004201329 False positive 8 Standing to
Sit-ups and Stretches

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

Figure 4.37: Post-processed Classification Parzen 201004201329 False positive 8 Standing to
Sit-ups and Stretches

0 2 4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

2.5

3

Sample #

A
m

p
li
tu

d
e

ps0

ps1

ps2

ps3

classification

105

This section showed examples in which each classifier was able to successfully

and unsuccessfully detect fall activity. It is difficult to identify exactly why the classifiers

fail for a given fall activity. However, in general, it seems that more, or better, features

and fall data could greatly improve the performance of either of the classifiers used in

this research.

106

Chapter 5 - Discussion

Due to its sparse training data set, the RVM is capable of classifying the entire

testing set in 2 hours, 27 minutes, and 58 seconds, where the Parzen Window is only

able to do the same thing in 8 hours, 55 minutes, and 49 seconds. Besides being faster,

as discussed below, the RVM is also slightly more accurate.

Below in Table 5-1 the results of the Parzen Window classifier are quantified.

This table shows that the results of the classifier are dependent on which threshold

value is chosen during classification. As discussed in section 3.8, the choice of a

threshold value is a balance between minimizing the false negatives or missed falls and

minimizing the false positives or instances where someone is alerted of a fall that did

not occur. Increasing the threshold value tends to increase the number of false

negatives and decreasing the threshold value tends to increase the number of false

alarms. From Table 5-1 the choice of a threshold value of 0.3 is the best balance of

minimizing both the false positives and false negatives; this yields an accuracy of

75.41%. This is not the highest accuracy value, but as can be seen in the results table,

increasing the accuracy means increasing the number of false negatives which represent

a fall that goes undetected. Since a fall that goes undetected could mean injury to an

elderly resident, and a false positive only means potential inconvenience to care takers,

a threshold value should be chosen with a preference towards minimizing false

negatives.

107

Below Table 5-2 shows the classification results of the RVM. In the table it can be

seen that, as expected, the results of the classifier are dependent on which threshold

value is chosen during classification the same way they are with the Parzen Window.

From Table 5-2, the choice of a threshold value of 0.1 is the best balance of minimizing

both the false positives and false negatives. Choosing 0.1 for the threshold value yields

an accuracy of 80.33%. Once again, this is not the highest accuracy value but as can be

seen in the results table, increasing the accuracy means increasing the number of false

negatives which is not in the best interest of the resident and thus a threshold value of

0.1 is chosen.

Table 5-1: Parzen Window results after filtering

108

 Though the results discussed in this chapter show that falls can be detected with

a vertical array of PIR motion sensors, there are still improvements that can be made.

The training data set does not include a completely diverse representation of the data in

the fall protocol; since there is very little data in the training data set to represent the

variety of false positive activities that are specified in the fall protocol. In the future, it

could be a major advantage to collect enough data files to distribute between both the

training and testing data sets.

 Also, to improve the performance of fall detection with this sensing array, more

classification methods could be explored such as a nearest neighbor. The nearest

neighbor is related to the Parzen Window and would likely provide similar classification

results but could possibly require less memory and computational complexity.

Table 5-2: RVM results after filtering

109

Chapter 6 - Summary and Conclusion

This research presented the results of a vertical array of passive infrared motion

sensors for fall detection. Though this work was successful, future work could be

focused on a few areas to likely improve performance. First, since the raw signals

already exist in the frequency domain, doing more frequency domain exploration of the

raw sensor signals could provide more fruitful results. Also, staying in the frequency

domain would likely reveal more features that could be used for classification. Though

there are areas of this research that can be improved upon, this research provides some

novel contributions. First and foremost, this research provides a tested vertical array of

passive infrared motion sensors that are capable of detecting different types of falls.

The sensing array explored in this research has the potential to protect the

independence of its users by providing a non-wearable fall detection platform that will

not leave them feeling as though they are being watched in private areas of the home.

This research also successfully demonstrated the use of the Parzen Window and the

RVM as a means of identifying falls that occur within the field of view of the sensing

array. Although the RVM yielded better results, the Parzen Window was useful in

providing preliminary work for the implementation of the RVM.

110

Bibliography

[1] P. Kannus, et al., "Fall-Induced Injuries and Deaths Among Older Adults," Jamma,
pp. 1895-1899, 1999.

[2] A. K. Bourke, J. V. O'Brien, and G. M. Lyons, "Evaluation of a threshold-based tri-
axial accelerometer fall detection algorithm," Gait and Posture, vol. 26, pp. 194-
199, 2007.

[3] R. E. Roush, T. A. Teasdale, J. N. Murphy, and M. S. Kirk, "Impact of a Personal
Emergency Response System on Hospital Utilization by Community Residing
Elders," Southern Medical Journal, pp. 917-922, 1995.

[4] A. K. Bourke and G. M. Lyons, "A threshold based fall-detection algorithm using a
bi-axial gyroscope sensor," Medical Engineering and Physics, vol. 30, pp. 84-90,
2008.

[5] D. Anderson, et al., "Linguistic summarisation of video for fall detection using voxel
person," Computer Vision and Image Understanding, vol. 113, pp. 80-89, 2009.

[6] D. Anderson, et al., "Modeling Human Activity From Human Voxel Person Using
Fuzzy Logic," IEEE Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 39-49, Feb.
2009.

[7] M. Popescu, Y. Li, M. Skubic, and M. Rantz, "An Acoustic Fall Detector System that
Uses Sound Height Information to Reduce False Alarm Rate," in 30th Annual
International IEEE EMBS Conference, Vancouver, Brittish Columbia, Canada, 2008,
pp. 20-24.

[8] A. Sixsmith and N. Johnson, "A Smart Sensor to Detect the Falls of the Elderly," IEEE
Pervasive Computing, pp. 42-47, Apr. 2004.

[9] T. Banerjee, J. M. Kelller, M. Skubic, and C. Abbott, "Sit-To-Stand Detection Using
Fuzzy Clustering Techniques," in IEEE World Congress on Computational Ineligence
(FUZZ-IEEE), Barcelona, Spain, 2010.

[10] E. E. Stone, D. Anderson, M. Skubic, and J. M. Keller, "Extracting Footfalls from
Voxel Data," in 32nd Annual International Conference of the IEEE EMBS, Buenos
Aires, Argentina, 2010, pp. 1119-1122.

111

[11] Panasonic. (2009, Oct.) Panasonic Motion Sensor Design Guide. PDF Document.

[12] Panasonic. (2011, Apr.) Panasonic MP Passive Infrared Motion Sensor Datasheet.
[Online]. http://pewa.panasonic.com/assets/pcsd/catalog/napion-catalog.pdf

[13] Glolab. (2009, Aug.) How Infrared Motion Detector Components Work. [Online].
http://www.glolab.com/pirparts/infrared.html

[14] G. A. Babich and O. I. Camps, "Weighted Parzen Windows for Pattern
Classification," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
18, no. 5, pp. 567-570, May 1996.

[15] C. M. Bishop, Pattern Recognition and Machine Learning. New York, USA: Springer
Sciece+Business Media LLC, 2006.

[16] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York:
John Wiley & Sons Inc., 2001.

[17] L. Wei, Y. Yongyi, R. M. Nishikawa, M. N. Wernick, and A. Edwards, "Relevance
Vector Machine for Automatic Detection of Clustered Microcalcifications," IEEE
Transactions on Medical Imaging, vol. 24, no. 10, pp. 1278-1285, Oct. 2005.

[18] T. Fletcher. (2010, Oct.) tristanfletcher.co.uk. [Online].
http://www.tristanfletcher.co.uk/RVM%20Explained.pdf

[19] M. E. Tipping, "Sparse Bayesian Learning and the Relevance Vector Machine,"
Journal of Machine Learning Research, vol. 1, pp. 211-214, May 2001.

http://pewa.panasonic.com/assets/pcsd/catalog/napion-catalog.pdf
http://www.glolab.com/pirparts/infrared.html
http://www.tristanfletcher.co.uk/RVM%20Explained.pdf

112

Appendix A - Fall Test Protocol

Fall observations

There are 21 possible fall directions from standing, sitting, tripping, and lying

positions. For the fall detection algorithm development and validation, we will collect

data using the fall and fall-risk sensing system for the set of falls listed below. Written

criteria for each type of fall guide the stunt actors so that the falls performed strongly

resemble the falls of elders as validated in preliminary work.

Standing position

From an initial standing position, the stunt actor will fall as if loosing balance; then as if

there is a momentary loss of consciousness.

Criteria for “looses balance falls”:

 Leans forward, leans to left, leans to right, or leans back

 Looks down

 When falling, tries to break fall with upper extremities

1. fall forward

2. fall backward

3. fall to the left side

4. fall to the right side

113

Criteria for “momentary loss of consciousness falls”:

 Falls much like a tree, toppling backward or forward or sideways

 Crumples to the floor

 No attempt to break fall with upper extremities

1. fall forward

2. fall backward

3. fall to the left side

4. fall to the right side

5. fall straight down

Tripping and Slipping

From an initial walking position, the stunt actor will trip and fall; then from an

initial walking position the actor will slip (as if on water or ice) and fall.

Criteria for walking, then tripping and slipping falls:

 Walks with shortened stride

 Leans forward when walking

 Looks down when walking

 When falling tries to break fall with upper extremities

1. trip and fall forward

2. trip and fall sideways

3. slip and fall forward

4. slip and fall sideways

5. slip and fall backward

114

Sitting position

From an initial position sitting on a stationary chair (no wheels), the stunt actor

will fall from the chair as if loosing balance; then slide forward and backward out of a

chair with wheels.

Criteria for falling from the chair:

 Leans until center of gravity changes and falls off the chair

 Attempts to break fall with upper extremities

1. fall forward

2. fall to the left side

3. fall to the right side

4. fall by sliding forward out of the chair as the chair slides back

5. fall by sliding backward out of the chair as it slides back

From Bed or Couch

From a lying position, the stunt actor will roll off the bed or couch in a state of

semi-wakefulness or sleep.

Criteria for falls from bed or couch:

 Somewhat awakens, attempts to get up and falls

 Sleeping, attempts to get up, legs get caught in blanket and falls

 Attempts to break fall with upper extremity

1. fall to side, upper body falls first

Criteria for falls from bed or couch, does not awaken:

 Rolls too close to edge of bed or couch, center of gravity changes and rolls off

115

 No attempt to break fall with upper extremity

1. fall to side, hips and shoulders fall first

Fall Test Safety

An athletic floor mat used for sports training will cover the floor where the falls

will occur. The stunt persons will wear joint protection pads during the testing. We will

recruit the theater-trained stunt person and make a reference check to assure each

person has completed training and has experience in falling for stage productions. Stunt

persons will be paid for their services. We will select an athletically fit stunt person to

further minimize the risk of injury.

False positive Test Protocol

Fifteen motions appear similar to falls. To ensure that the sensors and algorithms

developed for this study avoid recognizing non-falling motions as fall events, we will

collect data using the fall and fall-risk sensing system for the following set of activities:

1. From a standing position, the stunt actor will bend at the knees and stoop to a

squatting position on the floor.

2. From a standing position, the actor will bend down and kneel on the floor.

3. From a standing position, the actor will bend down and kneel on the floor, wait

for two seconds, then lie down on the floor.

4. From a standing position, the actor will bend down to plug an appliance into an

electrical outlet close to the floor.

5. From a standing position, the actor will squat to tie a shoe.

116

6. From a standing position, the actor will sit on the floor with the legs tucked

under the body.

7. From a standing position, the actor will sit on the floor with the legs extended

from the body.

8. From a lying position on the floor, the actor will perform three sit-ups and some

stretches of upper and lower extremities.

9. From a lying position on the floor, the actor will slowly rise to a half kneeling

position, then rise to a standing position.

10. From a walking position, the actor will appear to trip but will regain balance and

continue walking.

11. From a standing position, the actor will walk forward for three seconds, then

stop suddenly.

12. From a standing position, the actor will walk forward for three seconds, then

stop suddenly and turn around.

13. From a standing position, the actor will walk to a stationary chair and sit in it.

14. From a sitting position in a chair, the actor will bend over to pick up a book on

the floor.

15. From a standing position, the actor will walk to a stationary chair, sit in it, and

attempt to stand

117

Appendix B – Software Manual

 Below is a manual for running the software developed for this research. All

programs and data are found in the Research directory stored on the kronos server in

home\shared\PIR_fall_detection_moore. Within the research directory, all of the

MATLAB programs are stored in the Data_Analysis folder and all of the data files and file

path text files are stored in the Trial_Data folder.

Preprocessing

 Once data has been collected, each of the data files must be preprocessed. This

is done by editing the file paths listed in the data_to_preprocess.txt file, which should

contain one column of file path strings that link to individual fall data files. After that,

the preprocessing.m MATLAB program is run. This program loads the

data_to_preprocess.txt file and executes the preprocessing algorithm on each of the

data files listed. After each data file is preprocessed a new data file is created and saved

within the same directory with the same file name and a “_PP” string appended to the

end of the file name.

Feature Extraction

 Once all of the data files have been preprocessed, the features described in this

research are extracted. To extract features, the extract_features_file_paths.txt should

be edited to link to all of the preprocessed data files including the “_PP” string at the

end. Once that is done, the extract_features.m file is run. This program extracts features

118

from the preprocessed data files and then saves the extracted feature data in a file that

has a “_feat” string appended to the end of it.

Training Data Set

 Once features have been extracted from all of the data files, the data can be

separated into testing and training data sets. To build the training data set, the

training_file_paths.txt file should point to the feature extracted data files that belong in

the training data set. After that, the build_training_set.m program is run. This program

organizes the training data in to class 1 and class 2 matrices and saves them in a .mat

file. The training data set used in this research was saved as training_data2.mat.

Parzen Window

 Once the data has been separated into testing and training data sets, the

classification algorithms are run. To run the parzen window algorithm, the

fall_file_paths.txt file should contain the file paths of the data files that are to be

classified. To run the Parzen Window algorithm on the data, the classify_falls2.m

program is run. This program uses the mm_parzen2.m function that is included in the

mm_tb folder to execute the parzen window algorithm. Once the data has been run

through the Parzen Window algorithm, the resulting data files are saved with a “_clas”

string appended to their file name.

RVM

 The RVM algorithm is run similarly to the Parzen Window algorithm except it

requires a separate training process. To execute the training process, the build_rvm.m

119

program is run. This program takes the training data as input and returns a file which

contains the relevance vectors and weights that were obtained in the training process.

Next, the run_rvm.m program loads the file paths of the data that is to be classified as

stored in the fall_file_paths.txt file and the relevance vector and weight data. After that,

the data is run through the RVM algorithm and saved with a “_rvm” string appended to

its file name.

Post-processing (filtering)

 After the data is run through the RVM and Parzen Window algorithms, the

resulting data is filtered using the post-processing algorithm in the PostProcess.m

program which is configured to only filter the data from the previous step. This program

uses the classified_file_paths.txt file to find the data files that are to be processed. Once

post-processing is complete, the files are saved with a “b” appended to the end of their

file name and saved in the same directory as the source data file.

ROC Curves

 To help choose a threshold value for classification of the fall data, ROC curves are

generated using the Generate_ROC.m program. This program uses ROC_file_paths.txt to

find the data files from which the ROC curves are to be generated.

Classification

 After a threshold value is chosen, the resulting data is filtered using the post-

processing algorithm in the PostProcess.m program, which is configured to only

implement the threshold value as to classify the data from the filtering step. This

120

program uses the classified_file_paths.txt file to find the data files that are to be

processed. Once classification is complete, the files are saved with a “_popr” string

appended to the end of their file name and saved in the same directory as the source

data file.

	Acknowledgements
	LIST OF FIGURES
	LIST OF TABLES
	Abstract
	Chapter 1 - Introduction
	1.1 Problem Statement
	1.2 Overview

	Chapter 2 - Background and Related Work
	2.1 Fall Detection
	2.2 Passive Infrared (PIR) Motion Sensing
	2.3 Parzen Window
	2.4 Relevance Vector Machine (RVM)

	Chapter 3 - Methodology
	3.1 Sensor Array
	3.2 Data Acquisition
	3.3 Preprocessing
	3.4 Feature Extraction
	3.5 Training Data Set
	3.6 Parzen Window
	3.7 Relevance Vector Machine (RVM)
	3.8 Post-processing

	Chapter 4 - Experimental Results and Analysis
	4.1 Stunt Actress Data Set
	4.2 Sparsity and Classification Time Results
	4.3 Results Without Filtering Classification Output
	Chapter 1 -
	Chapter 2 -
	Chapter 3 -
	Chapter 4 -
	4.1
	4.2
	4.3
	4.3.1 Results Excluding Clapping portion of Fall Data
	4.3.2 Results Including Clapping portion of Fall Data

	4.4 Results From Filtering Classification Output
	4.4
	4.4.1 Results Excluding Clapping portion of Fall Data
	4.4.2 Results Including Clapping portion of Fall Data

	4.5 Fall Detection Results
	4.5
	4.5.1 Successful Fall Detection
	4.5.2 Failed Fall Detection

	Chapter 5 - Discussion
	Chapter 6 - Summary and Conclusion
	Bibliography
	Appendix A - Fall Test Protocol
	Fall observations
	Standing position
	Criteria for “looses balance falls”:
	Criteria for “momentary loss of consciousness falls”:

	Tripping and Slipping
	Criteria for walking, then tripping and slipping falls:

	Sitting position
	Criteria for falling from the chair:

	From Bed or Couch
	Criteria for falls from bed or couch:
	Criteria for falls from bed or couch, does not awaken:

	Fall Test Safety
	False positive Test Protocol

	Appendix B – Software Manual
	Preprocessing
	Feature Extraction
	Training Data Set
	Parzen Window
	RVM
	Post-processing (filtering)
	ROC Curves
	Classification

