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TIME DELAY COMPENSATION IN FINITE-ORDER MODELS  
OF ACOUSTIC WAVE PROPAGATION IN HOMOGENOUS MEDIA 

 
Nilesh Salvi 

Dr. Jinglu Tan, Thesis Supervisor 

ABSTRACT 

 

 Finite-order models do not completely account for the delay in acoustic wave 

propagation and thus require an additional phase correction, besides parameter 

adjustments to fit experimental measurements. As a consequence, it is necessary to 

determine the time or phase delay of a finite-order model as a function of excitation 

frequency and model order. 

 In this work a homogenous, one-dimensional medium is discretized in finite a 

number of elements. Two methods were developed to derive the transfer function of 

wave transmission for an arbitrary number of elements. Results from the two methods 

were verified with transfer functions computed from state space models developed in the 

time domain. The transfer functions were used to evaluate the model time delays and 

consequently the needed additional time delay corrections for a given system. 

Experimental data were collected and used, to verify utility of the method. By providing 

the time delay correction, the method helps enhance the model parameter estimation 

process. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Problem Statement 

 Propagation of a sound wave through a medium is a phenomenon dependent upon 

the medium properties. Depending upon the viscous and elastic nature of the medium 

material, sound wave propagates through it at a different velocity. This velocity for a 

known input wave, if measured to certain accuracy, can become an identity for the 

material. 

 The wave equation is an approximate hyperbolic partial differential equation that 

is considered a good representation of small-amplitude wave motion. It is an infinite-

order model that gives a useful linear approximation to real non-linear phenomenon. The 

following is the acoustic wave equation in one dimension. 

߲ଶ݌
ଶݔ߲ െ ൬

1
ܿଶ൰

߲ଶ݌
ଶݐ߲ ൌ 0                                                                                                     ሺ1.1ሻ 

where,  p is the acoustic pressure (the local deviation from the ambient pressure) in the 

medium, t is time, x is the spatial co-ordinate and c is the speed of sound wave 

propagation given by,  

 ܿ ൌ ඨ
ܤ
 ߩ



 
2 

 

where, B is the coefficient of stiffness or bulk modulus, the modulus of bulk elasticity 

and ߩ is the medium density. 

 The use of finite-order models facilitates the use of the linear system theory in 

obtaining solutions for wave propagation. The medium is divided in to a finite number of 

discrete elements as shown in Fig. 1.1. Every discrete element is connected to the 

neighboring elements through connections given by the Kelvin-Voigt network model. 

 

Fig. 1.1 Finite-order representation of a propagation medium (Order = 2N) 

 The first element is subject to an external force, or pressure. The other end is held 

fixed. In the case of a periodic external force stimulus on the first element, all the 

elements are to oscillate about their mean rest positions and not to undergo any 

permanent translation. By using the boundary conditions, the transfer function for each 

element can be obtained successively. This provides a model for the entire length of the 

propagation medium and time domain response can be obtained by convolution of the 

input and the transfer functions. 

 The direct method for sound speed estimation makes use of time taken by a wave 

to travel through a medium of known length. This time is often measured in terms of 
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phase lag between the measured wave and the input wave. The method used to obtain this 

time-of-flight through measurement is illustrated in Chapter 4. 

 The term ‘order’ in this work, is two times the number of discrete elements, which 

are connected in a series to represent the length of the propagation medium. For a 

homogenous medium, all the elements have the exact same material properties. For the 

current method of discretization, all the elements have exactly the same geometry. In 

light of the incompleteness of finite models (Fagin 1993), an explicit phase correction 

will be required to compensate for the modeling errors. 

  

 

 

  

 

 

 

Fig. 1.2 Comparison with modeled and actual response to sinusoidal input for varied N
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 As shown in Figures 1.2 and 1.3, the response obtained with a finite model does 

not match the measured response. The phase lag from the input in the model response 

increases with increasing number of elements and consequently gets closer to the 

measured response. But as far as the number of elements does not reach ∞, complete 

agreement with experiment data is not obtained. 

 

Fig. 1.3 Gain compensated illustration of insufficiency of finite-order models to 
produce time delay matching the actual time-of-flight 
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1.2 Research Objectives 

 The overall goal of this research was to find a method to correct time delay errors 

in finite-order models for sound wave propagation. The specific objectives are:  

1. To analyze the relationship between time delay given by finite-order sound wave 

propagation models and their order for homogenous media, 

2. To formulate time delay correction for finite-order models, in terms of model 

order and input frequency, and 

3. To validate the method with experimental data. 
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CHAPTER 2 

LITERATURE REVIEW 

 The task of modeling acoustic wave propagation requires selecting proper 

methods to design, analyze and validate the results. Previous work done on sound speed 

measurement and wave modeling is important for this research. This chapter summarizes 

the relevant previous work. 

2.1 Sound Wave Modeling 

 The acoustic wave equation, as mentioned in Chapter 1, is a mathematical 

representation of the physical wave phenomenon in the form of a hyperbolic partial 

differential equation. There have been various linear methods proposed to model the 

wave phenomenon. According to Billingham and King (2001), more realistic differential 

equations exist for waves that allow the speed of wave propagation to vary with its 

frequency; a phenomenon known as dispersion. In this case, wave velocity must be 

replaced by the phase velocity, which is the rate at which the phase of the wave 

propagates in space. For a more comprehensive definition of phase velocity, refer to 

Appendix B. 

 According to Dameron (1979), the two basic  equations  for  linearized  ultrasonic 

wave propagation in  one  dimension  are  Euler's  equation  of  motion  
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଴ߩ  
ݒ߲
ൌ  ݐ߲  െ

߲ܲ
ݔ߲                                                                                                               ሺ2.1ሻ 

and the  continuity equation  

଴ߩ  
ݒ߲
൅  ݐ߲ ݒ 

଴ߩ߲

ݔ߲    ൌ  െ
ߩ߲
ݐ߲                                                                                           ሺ2.2ሻ 

where ߩ  is mass density, ܲ is pressure and ݒ is particle  velocity. ߩ଴ is the density  in  the 

absence  of  the  wave. These equations have assumed that, 

ݒ  ا ܿ ൌ ሺߩ଴݇଴ሻିሺ½ሻ                                                                                                     ሺ2.3ሻ 

where ݇଴ is compressibility of the medium material in the absence of an  acoustic wave. 

The material variables ߩ଴ and ݇଴ are assumed to be arbitrary functions of space and not 

time. 

 Euler's equation is a special case of the conservation of momentum equation for a 

non-viscous (invisid) medium.  A third  equation is needed  relating the  small  changes  

in pressure ܲ to small  changes  in  density ߩ because of wave motion;  this is the  

equation of  state  for  the  fluid.  Thermodynamics tells us that, in general, pressure ܲ is a 

function of two thermodynamic variables, for example, density ߩ and entropy ܵ. Since 

acoustic oscillations are assumed small, we can neglect thermal conduction from wave-

induced temperature differences so that the wave process is adiabatic as well as inviscid. 

Expanding ߩ in a Taylor series of ܲ and keeping only the linear term, we have, 
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ߩ െ ߩ଴ ൌ   
଴ߩ߲

߲ܲ  |௦ ሺܲ െ ଴ܲሻ                                                                                         ሺ2.4ሻ 

where  

଴ߩ߲

߲ܲ  |௦ ൌ ݇଴ߩ଴ ؜
1

ܿଶሺݔሻ  

ߩ െ ߩ଴ and ܲ – ଴ܲ are the density and pressure fluctuations caused by the  wave. ߩ଴ and 

 are the values in the absence of the wave. ݇଴ is the compressibility, also constant, to ݋ܲ

the  first  order.  డఘబ
డ௉

 |௦ is defined to  be  ଵ
௖మ ሺ௫ሻ

  from thermodynamics. 

 To get a wave equation for the wave variable ܲ, we first take  partial  derivatives  

of Eqn. (2.1)  with  respect  to ݔ and  partial derivatives of  Eqn. (2.2) with  respect to 

time ݐ. Combining the resulting equations yields, 

߲ଶܲ
ଶݔ߲ െ

߲ଶߩ
ଶݐ߲ ൌ 0                                                                                                               ሺ2.5ሻ 

߲ଶܲ
ଶݔ߲ െ ൬

1
ܿଶሺݔሻ൰

߲ଶܲ
ଶݐ߲ ൌ 0                                                                                              ሺ2.6ሻ 

which is the wave equation presented in Chapter 1. 

 Acoustic signal processing is performed based on discrete system models. But, 

acoustic signals are produced by acoustic and mechanical processes of continuous media, 
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which are governed by wave equations (Tohyama and Koike, 1998). Banta (1965), in a 

study of finite amplitude sound waves, used the Taylor series expansion of the wave 

equation about the boundary, to exploit the greater availability of electronic computers 

for evaluating iterative procedures and for general broadening of knowledge about 

nonlinear equations and their solutions. 

 Kang (2007) has proposed a modeling technique based on the fact that the 

dynamic displacement of any point in a waveguide can be determined by superimposing 

the amplitudes of the wave components traveling along the waveguide, where the wave 

numbers of the constituent waves are defined in the Laplace domain. The proposed 

analysis approach results in recursive computational algorithms that always involve 

computations of fixed-size matrices regardless of the number of elements, which can be 

implemented into highly efficient computer codes. Since neither exact nor approximate 

Eigen solutions are required as a priori, this method is suitable for the forced response 

analysis. 

 For simulation purposes, as is indicated, there are two limiting cases that may 

affect the analysis accuracy and/or numerical efficiency of the wave approach, viz. 

A. When the waveguide contains a very small amount of inertia or flexibility such as 

mass-less elements or rigid bodies, it results in making the wavelength of the 

constituent waves larger than the span length of the waveguide 
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B. When the waveguide is extremely flexible or its response contains a very sharp 

impulsive spike such as the impulse response example discussed above, it results 

in making the wavelength of the constituent waves unrealistically small.  

 In practice, however, most engineering systems and structures have reasonable 

amounts of inertia, flexibility, and also damping such that these two limiting cases will be 

rarely encountered. Hence, in practice, the results obtained as model output will require 

an implicit correction in order to match the experimental data. 

 An alternative approach to the analysis of the dynamic response of one-

dimensional distributed parameter systems is applying the concepts of wave motions in 

elastic waveguides. The analysis technique is demonstrated using the flexural vibrations 

of multi-span damped beams with general support and boundary conditions; however 

other one-dimensional systems such as strings, rods, and higher order beams can be 

treated in the same manner. The proposed approach allows a systematic formulation that 

yields exact, closed-form, distributed transfer functions from which the transient response 

and frequency response solutions can be obtained. 

 The propagation media are the series of discrete elements lumped together to form 

a continuous system. The joints between discrete elements form mathematical 

discontinuities which demand to be modeled separately. When the wave packet is 

incident upon a series of discontinuities along its traveling path, it is computationally 

more efficient to employ the concepts of generalized wave reflection and transmission 
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matrices, in particular when the free or forced vibration analysis of a multi-span beam is 

sought. These matrices relate the amplitudes of incoming and outgoing waves at a point 

of discontinuity (Kang, 2007). 

 According to Mäkilä and Partington (2003), often no accurate dynamical model of 

a real system is available through first principle modeling, so one need to perform input–

output experiments on the system for the purpose of modeling via system identification. 

A linear time invariant approximation ܨ of ܩ is said to be a best LTI approximation of ܩ 

if, 

ԡܩ െ ԡ௜ܨ   ൌ  ݂݅݊ ԡܩ െ  ԡ௜                                                                                    ሺ2.7ሻܪ 

where the infimum is taken over all causal LTI systems ܪ such that ԡܪԡ௜ ൏  ∞. Mäkilä 

and Partington (2003) have estimated both a good LTI model and the size of the un-

modeled dynamics. 

 According to Nagurka and Huang (2006), the use of linear mechanical model 

parameter namely, Mass, Spring and Damper to model any non-linear physical 

parameters such as elasticity, friction and inertia provide predictions of the equivalent 

stiffness, damping, natural frequency, damping ratio and coefficient of restitution for a 

forced vibration induced by known input force. Work of Nagurka and Huang (2006) has 

addressed to linear damping issues such as aerodynamic drag as well as non-linear 

velocity dependent drag characteristics. 
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 According to Drozdov (1996), use of the Kelvin-Voigt model to connect discrete 

elements provides good results in case of constant or periodic stress as compared to the 

Maxwell model. In this model (Fig. 2.1) both the elements (elasticity and viscosity) 

experience the same stress.  

ߪ ൌ ௩௜௦௖ߪ   ൅   ௘௟௔௦௧                                                                                                       ሺ2.8ሻߪ

ߪ ൌ ܧ௘௟௔௦௧ߝ  ൅ ߟ 
௩௜௦௖ߝ݀

ݐ݀                                                                                                ሺ2.9ሻ 

 

Fig. 2.1 Kelvin-Voigt Model 

where ߪ is stress, ߝ is strain, ܧ is modulus of elasticity and ߟ is damping coefficient.  

 The stresses are assumed to be additive and overall stress is to remain constant.  

ሻݐሺߝ ൌ
଴ߪ

ܧ  ൣ1 െ ݁ିఒ௧൧                                                                                                  ሺ2.10ሻ 
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where ߣ ൌ ா
ఎ
 is rate of relaxation, ߪ଴ is stress in absence of wave and ݐ is time. 

 The Kelvin-Voigt model is great for modeling creep. But it does not account for 

instantaneous strain or permanent deformation. It is perfect to be applied in cases when 

loading is not too high. 

 Analytical methods, such as in Rabenstein and Schetelig (1998), make use of 

geometry are based on the concept of acoustic rays or plane waves. This simplifying 

assumption allows adapting various methods from computer graphics. They require a 

modest numerical expense and neglect some acoustical effects, like diffraction. 

Computational methods use techniques from numerical mathematics to solve the acoustic 

wave equation directly. They are numerically expensive, but they model the acoustical 

effects correctly. 

 Rabenstein and Schetelig (1998) have presented a numerical method for the 

simulation of dynamic wave propagation in three space coordinates. A multidimensional 

wave digital filter algorithm is implemented which is suitable for the simulation of 3D 

sound propagation in enclosures with complex geometries. The algorithm is capable of 

modeling free space propagation, reflections at boundaries with arbitrary reflection 

factors and diffraction at openings. Conventional methods for the assessment of room 

acoustics model the sound propagation in analogy to the propagation of light. More 

advanced computational methods rely on the numerical solution of the wave equation.  
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 The propagation of sound waves in air is governed by two basic relations for the 

acoustic pressure ݌ሺݔ, ,ݔሺݒ ሻ and the acoustic fluid velocity vectorݐ  and ݌ ሻ. Pressureݐ

velocity ݒ denote small-amplitude acoustic signals, which depend on time ݐ and the space 

vector ݔ. These basic relations are the equation of motion and the equation of continuity. 

Under reasonable simplifications, they are given by, 

 

଴ߩ
߲

,ݔሺݒ ݐ߲ ሻݐ ൅ ,ݔሺ݌ ݀ܽݎ݃ ሻݐ ൌ 0                                                                           ሺ2.11ሻ 

߲
,ݔሺ݌ ݐ߲ ሻݐ ൅ ,ݔሺݒ ݒ଴ܿଶ݀݅ߩ ሻݐ ൌ 0                                                                           ሺ2.12ሻ 

 

where ߩ଴ is the static density of the air and ܿ is the speed of sound. Equations (2.11) and 

(2.12) describe free-space propagation only. They have to be complemented by boundary 

conditions when finite enclosures are present. The corresponding conditions can be stated 

in terms of the reaction factors or the wall impedances of an enclosure (Rabenstein and 

Schetelig, 1998). 

 
 The method proposed in Rabenstein and Zayati (1999) is also based on 

multidimensional wave digital principles. It allows a physically exact numerical 

modeling of the relevant acoustical effects and yields robust algorithms. Unlike previous 

methods (Rabenstein and Schetelig, 1998), Rabenstein and Zayati (1999) have 

straightaway derived an algorithm from the basic laws of physics applied to a 

multidimensional discrete state space formulation of dynamic wave propagation in three 
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space coordinates, without making use of multidimensional network theory and complex 

analysis. 

 For the cases where exact solution is difficult to obtain, which is often the case 

while modeling non-linear physical phenomenon, the asymptotic solution of systems of 

linear partial differential equations is preferred, such as discussed in Adam (1982). It 

obtains the asymptotic functional form of the solution of a scalar wave equation with 

constant coefficients. In Kagawa et al. (1992), an approximate wave equation which can 

describe the effect of diffraction with reasonable accuracy, is derived based on the 

equations of fluid dynamics. Only the generation of the second harmonic wave is 

considered, with the higher order harmonics being neglected. 

 Morgül (2002) has discussed the stabilization of the wave equation in a bounded 

domain by means of a dynamic boundary control law. The transfer function of the 

controller may contain simple poles on the imaginary axis. This type of controller is 

proposed for the asymptotic stabilization of the wave equation. 
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2.2 Sound Speed Measurement 

 Sound speed being a critical unknown in the present work that is both estimated 

through model and measured by experiment, various methods exercised in past works for 

sound velocity measurement are reviewed.  

 The properties of a fluid are normally determined using invasive methods. These 

methods may lead to possibly contaminating or consuming the sample. When only very 

small amounts of a valuable sample exist, noninvasive measurement methods are 

preferred (Srinivasan et al., 2009). The instrument most commonly used in the fruit 

industry for the determination of fruit firmness is the hand-held penetrometer. Such 

instruments measure the peak force required to plunge a cylinder of known diameter to a 

given distance into the fruit pulp, usually with the skin removed. This method though 

simple and is universally accepted. However, the method is destructive. A non-

destructive method of food firmness evaluation has obvious applications (Subedi and 

Walsh, 2009). 

 To measure sound velocity, Subedi and Walsh (2009) have used an instrument 

that consists of a ‘hand gun’ in which a trigger releases a spring-loaded plastic plunger. 

The plunger moves along the barrel of the gun to lightly tap the fruit surface. This action 

produces a vibration in the fruit, which is detected by two unidirectional microphones 

located at the end of the gun barrel, but at different distances from the point of plunger 

impact. The time difference in maximum signal detection by the two microphones is used 
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to calculate sound velocity. The ‘hand gun’ is held such that a spacer peg at the end of the 

barrel touches the fruit, and the two microphones are in the near vicinity of the fruit 

surface. Averages of five measurements are taken for each reading. The destructive 

penetrometer reading, taken from the same position on the fruit is used for comparison 

(Subedi and Walsh, 2009). 

 The acoustic wave properties are the basis for several noninvasive qualitative 

measurement techniques. Conventional methods determine the sound speed by measuring 

the medium path length propagated by a pulsed wave and the corresponding time-of-

flight (TOF). TOF measurements are valuable in the estimation of distances, 

displacements and velocities of moving objects, phase differences of wave pulses, 

temperature of the atmosphere, and so on. Srinivasan et al. (2009) has recommended a 

technique to measure an index descriptive of the stage of ripening of fruits for 

the sound velocity measurement. 

 In the setup, two microphones are spatially separated by a known distance of one 

meter, collinear with an acoustic source, as shown in Fig. 2.2. The distance is compared 

with the value obtained from the product of time-of-flight and acoustic velocity ඥγܴܶ, 

where, γ is the ratio of specific heats, ܴ is the specific gas constant of the intervening air 

medium, and ܶ is the absolute temperature in ܭ. The signals for time-of-flight 

calculations are simultaneously acquired from two ¼ inch pre-polarized condenser 

microphones. One microphone is placed at a distance of 0.1 m from the source and the 

other is placed at a distance of 1 m from the location of first microphone. 
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Fig. 2.2 Schematic of setup for time-of-flight measurement used in Srinivasan et al. 
(2009) 

 The time-of-flight analyses are performed using both unfiltered and filtered data. 

In the first case, microphone data are analyzed without any filters; such data are termed 

as “unfiltered” cases. In the second case, band-pass filtering of the data around the 

prominent frequency is carried out using an analog filter. These data sets are termed as 

“filtered” data.  

 For continuous signals, the cross-correlation function can be defined as: 

ܴ௫௬ሺ߬ሻ ൌ  න ݐሺݕሻݐሺݔ െ ߬ሻ݀ݐ
ஶ

଴

                                                                                   ሺ2.13ሻ 

where ߬ is the lag parameter, which in the present case is the time-of-flight between the 

two microphone signals ݔሺݐሻ and ݕሺݐሻ. The value of ߬ which corresponds to the peak 

value of the cross-correlation function ܴ௫௬, gives the most probable estimate for the time-

of-flight of the acoustic signal, between the two microphone locations. For data that is 
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acquired digitally, the discrete form of the correlation function between the signals ݔሺݐሻ 

and ݕሺݐሻ is given by the following equation: 

ܴ௫௬ሺ݉ሻ ൌ  ෍ ݉         ௡ݕ௡ା௠ݔ ൒ 0
ேି௠ିଵ

௡ୀ଴

    

ܴ௫௬ሺ݉ሻ ൌ  ܴ௫௬ሺെ݉ሻ       ݉ ൏ 0                                                                              ሺ2.14ሻ 

where ܰ is the length of vectors ݔ and ݕ. Thus, the ܴ௫௬ vector has length 2ܰ െ  1. The 

lag index corresponding to the maximum value of this vector ݉ ൌ ݉ · ܴ௠௔௫ is reckoned 

as the index corresponding to the time delay for the acoustic signal to travel between the 

two microphone locations. The time-of-flight and the distance of travel are then 

calculated as ܱܶܨ ൌ ݉ · ܴ௠௔௫ · ܮ and ݐ߂ ൌ ൈ ܨܱܶ  ඥγܴܶ, respectively, where ݐ߂ is the 

reciprocal of the sampling frequency. The estimated error in the distance (ܮ߂) based on 

TOF is calculated as follows: 

ሺ%ሻ ܮ∆ ൌ ൬
1

௔௖௧௨௔௟ܮ
൰ ඨ෍

ሺܮ௜ െ ௔௖௧௨௔௟ሻଶܮ

݊

௡

௜ୀଵ
ൈ 100                                         ሺ2.15ሻ  

where, ܮ௜ is the estimated distance from TOF measurements for the ith trial, ܮ௔௖௧௨௔௟ is the 

actual distance between the two microphones (1 m) and ݊ is the number of trials of the 

measurement, ranging from 10 to 60, for the various experiments reported in the paper. 
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 Srinivasan et al. (2009) have investigated the effects of sound source on time-of-

flight measurements and demonstrates that signal filtering around the dominant spectral 

components of sound signal enhances the accuracy of TOF measurement. However, this 

approach puts a restriction in terms of a priori information regarding the propagation path 

length. 

 Among other methods such as Pereira et al. (2000), the wave speed is determined 

without the need of the path length. A transmitting transducer sends a pulsed wave into 

the medium (constant wave speed along the beam axis) and the backscattered signal is 

collected by a hydrophone placed at two distinct positions near the transmitted beam. The 

time-delay profile, between gated windows of the two RF-signals received by the 

hydrophone, is determined using a cross-correlation method. Also, a theoretical time-

delay profile is determined considering the wave speed as a parameter. The measured 

wave speed is obtained upon minimization of the RMS error between theoretical and 

experimental time-delay profiles. The work of Dameron (1979) is based on the de-

convolution of backscattered signals, to determine the wave speed without the need of the 

propagation path length. 

 Levy et al. (2006) has given a way to measure sound speed dispersion. This 

research uses continuous wave dispersion as the index for soft tissue characterization by 

ultrasound for which sound velocity measurement plays a critical role. It combines a 

short pulse transmission followed by a long burst comprised of two frequencies, one 
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being double that of the other. The method allows the determination of the speed of 

sound dispersion using a single transmission. 

 A non-contact and non-invasive optical probing of deflected laser beams because 

of normally incident degenerated shock waves is used for sound speed measurement in 

the method proposed by Jung et al. (2005). In this work the shock waves from an 

exploding wire are degenerated to ordinary sound waves at a distance exceeding 0.23 m 

in air from the source. 

 Ophir et al. (1991) have proposed an experiment where a TACT transducer 

imparts an accurate trans-axial compression to the tissue and the corresponding change in 

the arrival time of an echo at a range of interest is measured. This procedure results in a 

biased speed estimate whose value is range dependent. The theoretical function is fitted 

to the experimental estimates, from which the unbiased sound speed is then computed. 

 Guillon et al. (1998) have pointed out the frequency dependency of sound wave 

speed in terms of phase velocity. The inter-receiver broadband estimation technique 

utilizes the usable frequency bandwidths of the transducers to demonstrate the agreement 

of the results obtained by two sets of transducers within the experimental uncertainty. The 

Biot theory of propagation of sound in porous media is a Lagrangian semi-

phenomenological theory, based on a few hypotheses:  
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1) The elementary volume must be much smaller than  acoustical wavelength and 

larger than  maximal size of the pores, 

2) The solid frame is elastic and isotropic, 

3) The fluid is continuous and saturates the medium uniformly. 

 The curve obtained from experiment data presents a decrease of the sound speed 

with increasing frequency, whereas the Biot theory predicts a flat curve in the used 

frequency range. The conclusions suggest that the Biot theory cannot be directly used for 

the chosen medium (water saturated sand). The paper also suggests performing 

measurements at lower frequencies (Guillon et al., 1998). 

 

2.3 Finite-order Models  

 Despite the fact that almost none of the key theorems and tools of model theory, 

such as the completeness theorem and the compactness theorem, apply to finite 

structures, finite models are popular. As per Fagin (1993), the reason for popularity in the 

computer era is the connection with databases and logic programming, for the fact that it 

is possible to think of a database as simply a finite structure. 

 The finite-order models are true representation of system dynamics within 

tolerance value. Yet, in terms of stability, models may have a varied performance because 

of local truncation error, in the case of the finite difference method (Ataie-Ashtiani et al., 

1999), discretization error, in the case of the finite element method (Schmidt et al., 2009 
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and Kagawa et al., 1998) and un-modeled dynamics in the case of the reduced order 

method (Yae and Inman, 1991). The major drawback of an explicit time integration 

method is its conditional stability. This means there is a critical time step which must not 

be exceeded in the analysis. The magnitude of this critical time step depends on the 

largest natural frequency of the linearized system (Fagin, 1993). 

 In the dynamic modeling of a system, finite element analysis (Yae and Inman, 

1991) employs reduction techniques that remove some of the ‘insignificant’ physical 

coordinates, i.e. reduced degrees of freedom at a node point. Despite such reduction, the 

resultant model is still too large for control design. This allows further reduction as is 

frequently done in control design by approximating a large dynamical system with a 

fewer number of state variables. A problem, however, arises because a model usually 

undergoes, before being reduced, some form of coordinate transformations that destroy 

the physical meanings of the states. To correct such a solution, Yae and Inman (1991) 

have given a method that expresses a reduced model in terms of a subset of the original 

states. The proposed method starts with a dynamic model that is originated and reduced 

in finite element analysis. The model is then converted to a state-space form and reduced 

further by the internal balancing method. At this stage, being in the balanced coordinate 

system, the states in the reduced model have no apparent resemblance to those of the 

original model. The model reduction procedure used is illustrated as follows, 

ሺܣ, ,ܤ ,ܥ ሻݔ
௉

֞  ൫ܣ, ,ܤ , ܥ  ൯                         2݊ ݔ
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After model reduction, 

ሺܣ௥, ௥ሻݔ ௥ܥ ௥ܤ
௉ೝ֞ ൫ܣ௥ , ,௥ܤ ,௥ܥ ௥൯         2݊ݔ െ ݇ 

where, ݔ consists of 2݊ െ ݇ elements of ݔ and ݔ௥ consists of 2݊ െ ݇ elements of ݔ . So, ݇ 

represents the number of states discarded in model reduction. In addition, ሺܣ௥,  ሻ isݔ ௥ܥ ௥ܤ

Original State Space representation of the system and ൫ܣ௥ , ,௥ܤ ,௥ܥ  .൯ is balanced systemݔ

 The model reduction method used here is based on the internal balancing method 

and is developed to represent the reduced model with a subset of the states in the original 

model. The proposed method takes a finite element model that is reduced by Guyan's 

reduction, converts it into the state space form, and applies the balanced model reduction. 

Through another transformation that is derived from the deleted states in reduction, the 

model is filly expressed by a subset of the original states. The method thereby provides a 

clear, physical relationship between the states in the reduced model and those in the 

original model. The states in the reduced model are selected directly from the original 

states, thus retaining the same physical meanings as in the original model (Yae and 

Inman, 1991). 

 Kagawa et al. (1998) have proposed a transmission-line matrix (TLM) model 

which is a space and time discretization method for computation of electromagnetic 

fields, applied in simulating sound wave propagation. Two dimensional and 

axisymmetric TLM elements are first developed for both linear and non-



 
25 

 

linear sound field applications. Analogous and digital equivalent circuit expressions are 

developed for the two dimensional TLM elements. Their Transfer Function 

characteristics are examined theoretically. A digital filter expression equivalent to the 

two-dimensional TLM element is also developed.  

 To check the validity of the TLM modeling as proposed, a simple problem of 

plane wave propagation in an acoustic tube is first examined. The tube is modeled as a 

series of TLM elements as shown in Fig. 2.3a. In the model, one end of the tube is 

terminated by the non-reflective boundary while another end is driven by the velocity 

source of a train of pulses of single-shot sine envelope with wavelength ߣ and the side 

walls are considered to be rigid. The element length ∆݈ is chosen to be from ఒ
ଵ଴

 to ఒ
ସ଴

 in 

order to check the accuracy. 

 Fig. 2.3b shows the pressure waveforms as the sine wave with the amplitude of 

0.5 Pa propagates until the time 12T, where T is the period of the sine wave. It is shown 

that the wave propagates at the speed of ௖బ

√ଶ
. The discretization errors become pronounced 

as the wave propagates. It decreases as the element length becomes shorter. As with other 

numerical methods, the TLM method also requires the fine mesh for an accurate solution, 

to reduce fluctuation errors or discretization errors. A two dimensional Gaussian Filtering 

is given to improve upon discretization error. Improved results after filtering can be seen 

in Fig. 2.3c. 
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Fig. 2.3 Acoustic tube model and TLM solutions for a single-shot sine wave and 
solutions with the filtering capability (Kagawa et al., 1998) 

 Some simulated examples are then demonstrated for the two-dimensional and 

axisymmetric sound wave propagation problems. The results are compared with finite 

element solutions. 
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2.4 Modeling Error Correction 

 The Finite-order model output is not directly an exact match to the true response. 

The phase correction offered to compensate for the modeling error need to be function of 

the Input Frequency and Order of the model. Shaw et al. (2010) have proposed a highly 

problem dependent technique for estimating error in a finite model. Whether or not it 

becomes more widely used as a tool for assessing the reliability of  engineering 

computations seems to depend on whether some form of a priori assessment of its own 

reliability becomes available, as well as on whether codes evolve to cope with the 

inherent complexity of the implementation. 

 Fawcett (1985) has used non-linear least squares theory and the Levenberg-

Marquardt method of solution, to invert in the time domain, full wave field observations 

for two dimensional acoustic velocity variations. The singular value decomposition of the 

linearized problems' Jacobian allows for the determination of the portions of parameter 

space that have been well or poorly resolved. 

 From an analogy in reduced order controller design, a well-known and often used 

technique for obtaining a simpler controller is model order reduction. One can either 

approximate the system or design a low order controller for the simple plant model, or 

one can design a controller for the full order plant and reduce the order of the resulting 

controller. The problem of conditional stability still holds in this case. With Robust 

design techniques, Al-Saggaf and Franklin (1987) derive an L∞ bound on model error for 
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a method of order reduction of discrete linear multivariable systems based on balancing. 

Yoneya et al. (2002) has proposed a method to test whether the model error of a system is 

in a pre-determined bound given with a weight function using frequency response data of 

the system obtained by experiment. The model error bound problem specified in Al-

Saggaf and Franklin (1987) is converted to a stability problem of a set of systems in 

Yoneya et al. (2002) and the stability test is performed to obtain model with minimum 

modeling error. 

 The exact and unique solution to the design of phase-lead and phase-lag 

compensation proposed by Wang (2003) has provided an alternate approach towards 

formulation for modeling error correction. With the desired gains in the magnitude and 

phase known, a priori at a given frequency, a lag compensator can be designed thus 

offering implicit phase correction to the model output. 

 A major motivation of research in identification for control (Reinelt et al., 1999) 

is to achieve robust stability of a real system. Finite-order models cursed by the drawback 

of conditional stability will be benefitted with robust design technique. Thus, it is 

customary to identify not only a nominal model, but also an uncertainty set, i.e. a set of 

models to be considered in the design process. For example, if non-parametric design 

methods are adopted, it is natural to look for uncertainty regions in the Bode plot. A 

further consequence of the control objective is that it might be sufficient to estimate the 

real plant well up to a certain frequency (somewhere in the region of the cross over) and 

to tolerate a larger uncertainty for higher frequencies. Reinelt et al. (1999) has elaborated 
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on three recent concepts delivering a nominal model and the related uncertainty in the 

Bode plot: the Stochastic Embedding technique, Set Membership Identification and 

Model Error Modeling. The first is a frequency domain method, while the other two work 

in the time domain. The main features of these methods are highlighted and reliable 

nominal models along with acceptable related uncertainties were obtained in all three 

cases.  

 Alvarez-Ramfrez and Sueraz (2000) and Sun et al. (1994) have shown how 

modeling error compensation techniques can be extended for the case of single 

input/single output, minimum-phase, linear time variant systems. The new element in 

these papers is an idea to achieve robust control via high-gain observer alone without 

explicit design of high-gain feedback. Instead of designing a robust state feedback to 

dominate the uncertain term, the uncertain term is viewed as an extra state that is 

estimated using a high-gain observer. 

 Among the computational methods, Parameswaran and Raol (1994) have 

presented algorithms for estimation of deterministic model error in the assumed models 

of nonlinear discrete and continuous time systems. The explicit model error time histories 

are parameterized using least squares method. According to Kolodziej and Mook (2011), 

the parameterized models relative to the true model explain the deterministic deficiency 

in the chosen models, in the sense of minimum model error. The algorithms have 

appealing features of extended Kalman filter. The numerical simulation results are 

obtained by implementing the algorithms in MATLAB.  
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 Ljung and Lei (1995) have explained what a typical model validation test implies 

in terms of the model error, expressed in the frequency domain. Discussion is made upon 

the principles by which confidence in a model can be reached through validation 

techniques and about how the distance to a “true” description can be estimated. Research 

in Ljung and Lei (1995) emphasizes how the typical model validation procedure gives a 

direct measure of the model error of the model test, without referring to its ensemble 

properties. 
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CHAPTER 3 

SYSTEM DEFINITION AND MODELING 

 As described in Section 1.1, the propagation medium is specified in terms of its 

density, stiffness and frictional properties. In order to obtain a finite-order model for a 

propagation medium of finite length, the medium is divided into ܰ elements (Fig. 3.1). 

The first element in the network is under direct action of an external force and the 

rightmost end next to the final element is held fixed.  

 

Fig. 3.1 Finite-order representation of medium 

 For this research, propagation medium is assumed to be homogeneous. Each 

intermediate element represents a mass-spring-damper unit connected to the two other 

similar units as shown in Fig. 3.2, forming a Kelvin-Voigt network model. It forms a 

single-input single-output system with external force as input ܷሺݏሻ and the reactive force 

experienced by the fixed end as system output ܻሺݏሻ. 

 Each element is described in terms of displacements it undergoes along the 

direction of wave propagation through the medium. Each element is assumed to have 

mass m, stiffness k and friction or damping coefficient b. Every model coefficient 

consists of these three constants of a given homogenous medium. 
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 This chapter elaborates on the derivation of the system transfer function 

representing wave propagation in terms of material properties m, b and k. A method is 

explained to derive a series of transfer functions by a recursive technique and 

consequently to obtain a complete system model. This method, however, results in a 

circumstantially stable system because of numerical artifacts. An alternate method is 

proposed in which, the system is reduced to a subset of original states to obtain a simpler 

system. Finally the mapping process is used to obtain the true system model from the 

reduced sub-system. 

 

3.1 System Transfer Function 

 The system here is a propagation medium of finite length divided in a known 

number of elements ܰ. Transfer function derivation starts with using the boundary 

condition to obtain the transfer function for the final element in the network. Then, 

transfer functions are obtained for other elements by a recursive method explained ahead. 

The consecutive substitution of transfer functions gives the desired system model. 

3.1.1 Recursive Form of Series Transfer Functions 

 Each element in the system is represented by a transfer function between two 

consecutive state variables ݔ௜ ሺ݅ ൌ  2, 3, … , ܰሻ or between a state variable ݔଵ and input ݑ. 
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ଵܶ ൌ ଵܺሺݏሻ
ܷሺݏሻ ; ଶܶ ൌ

ܺଶሺݏሻ
ଵܺሺݏሻ ;  ଷܶ ൌ

ܺଷሺݏሻ
ܺଶሺݏሻ ; … ௜ܶ ൌ ௜ܺሺݏሻ

௜ܺିଵሺݏሻ ; … ேܶ ൌ
ܺேሺݏሻ

ܺேିଵሺݏሻ                ሺ3.1ሻ 

where ௜ܶሺݏሻ ሺ݅ ൌ 1,2, … , ܰሻ denotes transfer function, ௜ܺሺݏሻ ሺ݅ ൌ 1,2, … , ܰሻ is Laplace 

transform of ݔ௜ displacements of the element ݅,ܷሺݏሻ is the Laplace transform of external 

force ݑ and ݏ is the Laplace variable. 

 The transfer function for each element is obtained from the force balance of the 

element. Considering the fact that all the elements of a homogenous medium are identical 

in terms of their properties, a generic index ݅ can be applied to all the non-terminal (all 

except for the first and the last) elements as shown in Fig.3.2. 

 

Fig.3.2 Illustration of forces acting on a non-terminal element  

 Force balance of element i gives, 

݉
݀ଶݔ௜

ଶݐ݀ ൅  ܾ
݀ 
 ݐ݀

ሺݔ௜ െ ௜ାଵሻݔ ൅  ݇ሺݔ௜ െ ௜ାଵሻݔ ൅  ܾ
݀ 
 ݐ݀

ሺݔ௜ െ ௜ିଵሻݔ ൅  ݇ሺݔ௜ െ ௜ିଵሻݔ ൌ 0 

Expanding and rearranging gives, 
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݉
݀ଶݔ௜

ଶݐ݀ ൌ  െ2ܾ
 ௜ݔ݀
െ ݐ݀ ௜ݔ2݇  ൅ ܾ

 ௜ାଵݔ݀
൅ ݐ݀ ௜ାଵݔ݇ ൅  ܾ

 ௜ିଵݔ݀
൅ ݐ݀ ௜ିଵݔ݇ ൌ 0     ሺ3.2ሻ 

Taking the Laplase transform on both sides of the Eqn. (3.2), we get, 

ଶݏ݉
௜ܺሺݏሻ ൌ ሺܾݏ ൅ ݇ሻ ௜ܺିଵሺݏሻ െ  2ሺܾݏ ൅ ݇ሻ ௜ܺሺݏሻ ൅ ሺܾݏ ൅ ݇ሻ ௜ܺାଵሺݏሻ.           ሺ3.3ሻ 

 Eqn. (3.3) is generic relation that, by using a given boundry condition, will 

provide a recursive formula for the element transfer functions. 

 Since one end of medium is assumed fixed, for ݅ ൌ  ܰ 

௜ାଵݔ ൌ ேାଵݔ ൌ 0  

Applying this to Eqn. (3.3) we get, 

ሻݏଶܺேሺݏ݉ ൌ ሺܾݏ ൅ ݇ሻܺேିଵሺݏሻ െ  2ሺܾݏ ൅ ݇ሻܺேሺݏሻ 

Then the transfer function for element ܰ is  

ேܶሺݏሻ ൌ  
ܺேሺݏሻ

ܺேିଵሺݏሻ ൌ  
ݏܾ ൅ ݇

ଶݏ݉ ൅ ݏ2ܾ  ൅ 2݇. 

 This is an expression that will appear in the system transfer functions. It is the 

transfer function for the ܰth or the final element in the discretized medium. For 

convenience, we denote it by ܩ, i.e. 
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ሻݏሺܩ ൌ  ேܶሺݏሻ ൌ  
ܺேሺݏሻ

ܺேିଵሺݏሻ ൌ
ݏܾ ൅ ݇

ଶݏ݉ ൅ ݏ2ܾ  ൅ 2݇                                                    ሺ3.5ሻ 

 or, 

ܺேሺݏሻ ൌ  ሻ                                                                                                        ሺ3.6ሻݏேିଵሺܺܩ

 Now we consider the penultimate state variable ݔேିଵ for which Eqn. (3.3) 

becomes 

ሻݏଶܺேିଵሺݏ݉ ൌ ሺܾݏ ൅ ݇ሻܺேିଶሺݏሻ െ  2ሺܾݏ ൅ ݇ሻܺேିଵሺݏሻ ൅  ሺܾݏ ൅ ݇ሻܺேሺݏሻ   

        … ሺ3.7ሻ  

 In Eqn. (3.7), three state variables are present, one of which can be eliminated by 

using Eqn. (3.6). So, 

ሻݏଶܺேିଵሺݏ݉ ൌ ሺܾݏ ൅ ݇ሻܺேିଶሺݏሻ െ  2ሺܾݏ ൅ ݇ሻܺேିଵሺݏሻ ൅  ሺܾݏ ൅ ݇ሻܺܩேିଵሺݏሻ 

 Eqn. (3.8) relates the current state ݔேିଵ to the next state ݔேିଶ only. 

 The transfer function for element ܰ െ 1 is, 

ேܶିଵሺݏሻ ൌ
ܺேିଵሺݏሻ
ܺேିଶሺݏሻ ൌ

ܩ
1 െ ଶܩ                                                                                    ሺ3.8ሻ 

where Eqn. (3.5) has been used. 
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Similarly, the transfer function ேܶିଶሺݏሻ for ܰ െ 2th element is,  

ேܶିଶሺݏሻ ൌ  
ሺ1ܩ െ ଶሻܩ

1 െ ଶܩ2 ൌ
ܩ

1 െ ܩ ቀ ܩ
1 െ ଶቁܩ

ൌ  
ܩ

1 െ ܩ ேܶିଵሺݏሻ 

 By repeating the procedure for the next elements, a recursive relationship for the 

series of transfer functions is obtained which is as follows: 

௜ܶሺݏሻ ൌ ௜ܺሺݏሻ
௜ܺିଵሺݏሻ ൌ

ܩ
1 െ ܩ ௜ܶାଵሺݏሻ            ሺ݅ ൌ 2,3, … , ܰሻ                                      ሺ3.9ሻ 

As a boundary condition ݔேାଵ = 0, hence ேܶାଵሺݏሻ ൌ 0 and by Eqn. (3.9),  

ேܶሺݏሻ ൌ
ܩ

1 െ 0 ൌ  ܩ 

 So, Eqn. (3.9) applies to ݅ ൌ  ܰ as well. 

 

Fig. 3.3 Output gain between the fixed boundary and the final element 

 The model output at the boundary shown in Fig. 3.3, is related to the final element 

through the relation 
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ሻݐሺݕ ൌ  ܾ
 ேݔ݀
൅ ݐ݀  ேݔ݇

Taking Laplace transform we get 

ܻሺݏሻ
ܺேሺݏሻ ൌ ݏܾ ൅ ݇ 

 By multiplying all the element transfer functions and the output gain, the 

complete transfer function of the entire medium is obtained as, 

ሻݏሺܪ ൌ
ܻሺݏሻ
ܷሺݏሻ ൌ ଵܶሺݏሻ · ଶܶሺݏሻ · ଷܶሺݏሻ · ସܶሺݏሻ · … · ேܶሺݏሻ ·

ܻሺݏሻ
ܺேሺݏሻ 

ൌ  ଵܶሺݏሻ ·
ேିଵܩ · ሺܾݏ ൅ ݇ሻ

ሼ1 െ ሻሽሼ1ݏ3ሺܶܩ െ ሻሽݏ4ሺܶܩ … ሼ1 െ  ሻሽ                              ሺ3.10ሻݏሺܰܶܩ

where 

ܩ ൌ ேܶሺݏሻ ൌ
ݏܾ ൅ ݇

ଶݏ݉ ൅ ݏ2ܾ  ൅ 2݇ , 

௜ܶሺݏሻ ൌ
ܩ

1 െ ܩ ௜ܶାଵሺݏሻ … ݅ ݎ݋݂ ൌ 2, … ܰ, ܽ݊݀ 

ଵܶሺݏሻ ൌ ଵܺሺݏሻ
ܷሺݏሻ . 
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  Equation (3.10) gives the required system model for a given homogenous 

medium. The only factor that remains unknown is the transfer function for the first 

element which is directly subjected to external force. 

 

3.1.2 Transfer Function for the first element ࢀ૚ሺ࢙ሻ 

 For the first element (݅ ൌ  1), the forces are shown in Fig.3.3, 

 

Fig. 3.4 Free Body Diagram of the First Element 

 Force balance for the first element gives, 

݉
݀ଶݔଵ

ଶݐ݀ ൅ ܾ ൜
 ଵݔ݀
െ ݐ݀

 ଶݔ݀
ൠ ݐ݀ ൅ ݇ሼݔଵ െ ݔଶሽ ൌ  ሻݐሺݑ

Taking Laplace Transform we get, 

ଶݏ݉
ଵܺሺݏሻ ൅ ሼݏܾ ଵܺሺݏሻ െ ܺଶሺݏሻሽ  ൅  ݇ሼ ଵܺሺݏሻ െ ܺଶሺݏሻሽ  ൌ ܷሺݏሻ 

Therefore, by using ܺଶሺݏሻ ൌ ଶܶሺݏሻ · ଵܺሺݏሻ, 
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 ሾ݉ݏଶ ൅ ሼ1ݏܾ െ ଶܶሺݏሻሽ ൅  ݇ሼ1 െ ଶܶሺݏሻሽሿ · ଵܺሺݏሻ ൌ ܷሺݏሻ 

Hence, 

 ଵܶሺݏሻ ൌ ଵܺሺݏሻ
ܷሺݏሻ ൌ  

1
ଶݏ݉ ൅  ሼ1 െ ଶܶሺݏሻሽܾݏ ൅ ሼ1 െ ଶܶሺݏሻሽ݇                               ሺ3.11ሻ 

 Substituting Eqn. (3.11) in Eqn. (3.10) for the total transfer function, we get, 

ሻݏሺܪ ൌ  
ேିଵܩ · ሺܾݏ ൅ ݇ሻ

൛݉ݏଶ ൅ ሺܾݏ ൅ ݇ሻ൫1 െ ଶܶሺݏሻ൯ൟ · ሼ1 െ ܩ ଷܶሺݏሻሽ · ሼ1 െ ܩ ସܶሺݏሻሽ … ሼ1 െ ܩ ேܶሺݏሻሽ
 

… ሺ3.12ሻ 
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3.1.3 Illustrative Example 

Consider the medium discretized into 5 elements (i.e., ܰ ൌ  5) shown in Fig. 3.4 

 

Fig. 3.5 Medium discretized into five elements  

 Applying Eqn. (3.9), the following transfer functions are obtained. All poles and 

zeros are determined by medium parameters m, b, and k. 

ହܶሺݏሻ ൌ  ܩ

ସܶሺݏሻ ൌ
ܩ

1 െ  ଶܩ

ଷܶሺݏሻ ൌ
ሺ1ܩ െ ଶሻܩ

1 െ ଶܩ2  

ଶܶሺݏሻ ൌ
ሺ1ܩ െ ଶሻܩ2

1 െ ଶܩ3 ൅ ܩସ 

where,  

ܩ ൌ
ݏܾ ൅ ݇

ଶݏ݉ ൅ ݏ2ܾ  ൅ 2݇ 
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The total transfer function ܪሺݏሻ is, 

ሻݏሺܪ ൌ
ܻሺݏሻ
ܷሺݏሻ ൌ ଵܶሺݏሻ · ଶܶሺݏሻ · ଷܶሺݏሻ · ସܶሺݏሻ · ହܶሺݏሻ · ሺܾݏ ൅ ݇ሻ

ൌ  ଵܶሺݏሻ ·
ସܩ

1 െ ଶܩ3 ൅ ܩସ · ሺܾݏ ൅ ݇ሻ 

where 

ଵܶሺݏሻ ൌ  
1

ଶݏ݉ ൅  ൫1 െ ଶܶሺݏሻ൯ሺܾݏ ൅ ݇ሻ
. 

Per Eqn. (3.12) the total transfer function ܪሺݏሻ for ܰ ൌ  5 is, 

ሻݏሺܪ ൌ  
ସܩ · ሺܾݏ ൅ ݇ሻ

൜݉ݏଶ ൅ ൬1 െ ሺ1ܩ െ ଶሻܩ2
1 െ ଶܩ3 ൅ ସ൰ܩ  ሺܾݏ ൅ ݇ሻൠ ሺ1 െ ଶܩ3 ൅ ସሻܩ 

. 
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3.1.4 Frequency Response 

 Dependency of the system on input frequency is illustrated in Fig. 3.6 by the bode 

plot of transfer function ܪሺݏሻ using Eqn. (3.12) The plot shows the variations in 

magnitude and phase as function of input frequency for different orders of the model. 

 

Fig. 3.6 Bode Plot for N=1 to 9 

 

 The magnitude plot indicates that the corner frequency increases with increasing 

order of the model 2ܰ. This results from the leftward shifting of poles in the s-plane. For 

each unit increment in ܰ, the phase lag increases by 90o at high frequencies. 
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 The phase lag continues to increase with increasing order of the model, but the 

increases occur at higher and higher frequencies. Since a given phase lag (say, 90o) 

implies less time delay at higher frequencies, the added time delay by the added phase lag 

diminishes. As a result, the time delay given by infinite order model (N → ∞) at infinite 

frequency should converge. For a given frequency, the added phase angle by increasing 

N diminishes resulting in an upper bound for the phase lag.  

 In other words, for an infinitely high order model, phase lag and thus the time 

delay will converge. The data acquired for varied frequencies are shown in Table 4.1 of 

the next chapter. 

 Time domain simulation of the transfer function ܪሺݏሻ obtained from Eqn. (3.12), 

by using built-in MATLAB routines, is stable only for limited order of the model. 

Flowchart in Fig. 3.7 illustrates the recursive transfer function method used to 

generate ܪሺݏሻ for simulation purpose. The simulation turns unstable for higher values 

of ܰ. Fig. 3.8 shows that, with increasing order of the model, poles shift leftwards and 

farther from the origin.  
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  Fig. 3.7 Flowchart for the recursive 
transfer function method 

Start

Calculate element properties 
from bulk properties 

 

Generate sinusoidal 
input 

Evaluate TF for next element 
using, 

 ௜ܶሺݏሻ ൌ ܩ
1െ݅ܶܩ൅1ሺݏሻ 

Is this the 
second 

element? 

ሻݏሺܪ ൌ ଵܶሺݏሻ · ଶܶሺݏሻ · … · ேܶሺݏሻ · ሺܾݏ ൅ ݇ሻ

Return ܪሺݏሻ 

Import experiment 
data from external file 

Evaluate 
ଵܶሺݏሻ ൌ ଵ

௠௦మା ൫ଵି మ்ሺ௦ሻ൯௕௦ା൫ଵି మ்ሺ௦ሻ൯௞ 
 

Define end element TF,    
 ேܶሺݏሻ ൌ ܩ ൌ ௕௦ା௞

௠௦మା ଶ௕௦ାଶ௞
 

Yes 

No
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Fig. 3.8 Pole-zero plots for the transfer function derived by the recursive method 

 For a set of chosen property values (viz. m, b and k), the highest order for which 

the solution remains stable turns out to be 10. The maximum order for stability varies 

with medium properties.  

 Figure 3.9 shows a detailed view of the poles and zeros that lie in the right half of 

the ݏ plane when ܰ ൌ  11, resulting in instability. These values are numerical artifacts, 

which are absent when the equation is solved analytically. 

Pole-Zero Map for ܪ(s) for increasing order 
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Fig. 3.9 Magnified view showing numerical artifacts of positive poles, causing 
simulation instability  

 
 

 The zero present at ݏ ൌ  െ10 is the only valid zero analytically. The unstable 

pole and zero pairs are extremely close and they should exactly cancel. The fact that they 

don’t cancel in numerical simulations, causes instability. 

  

Pole-Zero Map
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3.2 Pattern Method for General Transfer Function 

 The generic form of transfer function obtained in Eqn. (3.10) is 

ሻݏሺܪ ൌ ଵܶሺݏሻ ·
ேିଵܩ

ሼ1 െ ሻሽሼ1ݏ3ሺܶܩ െ ሻሽݏ4ሺܶܩ … ሼ1 െ ሻሽݏሺܰܶܩ · ሺܾݏ ൅ ݇ሻ 

 This requires knowledge of the denominator polynomial, which is in fact the 

numerator of ሺ1 െ ܩ ଷܶሻ that depends upon the order of the model 2ܰ. 

 The numerical issue with evaluating this polynomial through the recursive method 

is because of the repeated use of the equation, which increases the inaccuracies with 

increasing order of the model. Fig. 3.9 indicates that the non-cancelling RHS pole-zero 

pairs result in simulation instability for high number of elements. To find out one 

polynomial, which is the numerator of the first parenthesis in above the equation, we 

have to evaluate other ܰ െ 2 series transfer functions. A method is needed to avoid 

evaluating all those intermediate transfer functions. 

 The problem can be overcome by finding an algebraic relation to generate the 

polynomial coefficients in order to obtain the overall transfer function without numerical 

recursion. 
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3.2.1 Coefficient pattern in G 

 To obtain such a formula, the coefficients of the denominator polynomial, in ܩ for 

up to ܰ ൌ 25 are listed in Table. 3.1. There is an obvious relationship among the 

coefficients as illustrated in Fig. 3.10. 

Fig. 3.10 Illustration for the 

pattern: Addition of magnitude of 

the numbers encircled gives 

magnitude of the number pointed 

in next row 

 

  

 

ேܩሺ݂݂݁݋ܥ 
௡ሻ, symbolizes the coefficient of the ܩn term in the denominator 

polynomial for transfer function ܪሺݏሻ for ܰ elements, as shown in Eqn. (3.12). The sign 

of each coefficient is determined by its position in the matrix. The final formula obtained 

is as follows,  

ேܩሺ݂݂݁݋ܥ
௡ሻ ൌ ൜ሺെ1ሻቚ೙

మቚାቚಿ
మ ቚൠ . ሼ|݂݂݁݋ܥሺܩேିଵ

௡ ሻ|  ൅ ேିଶܩሺ݂݂݁݋ܥ| 
௡ିଶሻ|ሽ               ሺ3.13ሻ  
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 The pattern is for the denominator polynomial in ܩ, instead of ݏ. After obtaining 

the desired transfer function ܪሺܩሻ with the formula in Eqn. (3.13), ܪሺݏሻ can be obtained 

with the relation given by Eqn. (3.5). 

 With this, we are able to generate the denominator polynomial of ሺ1 െ ܩ ଷܶሻ in 

Eqn. (3.10) and thus an entirely algebraic method for composing ܪሺܩሻ is obtained by 

using Equations (3.10) and (3.13) in the form, 

ሻܩሺܪ ൌ ଵܶ ·
ேିଵܩ

ܽଵܩே ൅ ܽଶܩேିଶ ൅  … ൅ ܽேିଵܩଶ ൅  ܽே
 · ሺܾݏ ൅ ݇ሻ.                    ሺ3.15ሻ 

 In the Matlab script titled ‘G-pattern’ included in Appendix C, Eqn. (3.13) is used 

to generate a lower diagonal matrix of size (ܰ ൈ ݊). The desired polynomial coefficients 

ሺܽଵ, ܽଶ, … ܽேିଵ, ܽேሻ are the non-zero elements of row corresponding to ܰ in coefficient 

matrix. Table 3.1 shows the coefficient values generated for up to ܰ ൌ  25 in a lower 

diagonal matrix form.  
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 Let the denominator polynomial obtained from Eqn. (3.13), which is of the 

form ܽଵܩே ൅  ܽଶܩேିଶ ൅  … ൅ ܽேିଵܩଶ ൅ ܽே, be ܲሺܩሻ, so that,  

ሻܩሺܪ ൌ  ଵܶሺݏሻ ·  
ேିଵܩ

ܲሺܩሻ · ሺܾݏ ൅ ݇ሻ                                                                            ሺ3.16ሻ 

where ଵܶሺݏሻ obtained with Eqn. (3.11) and can also be obtained, by replacing ଶܶሺݏሻ with 

ଶܶሺܩሻ as follows, 

ଵܶሺݏሻ ൌ ଵܺሺݏሻ
ܷሺݏሻ ൌ

1
ଶݏ݉ െ  ሼ2 െ ଶܶሺܩሻሽܾݏ ൅ ሼ2 െ ଶܶሺܩሻሽ݇                               ሺ3.17ሻ 

where ଶܶሺܩሻ is obtained with the coefficient matrix as,  

ଶܶሺܩሻ ൌ
ܩ · ܰሺܩሻ

ܲሺܩሻ  

where 

 ܲሺܩሻ is polynomial formed by using ܰth row of the for coefficient matrix and 

ܰሺܩሻ is polynomial formed by using ܰ െ 1th row. 

 Up to this point ܪ is still in the form ܪሺܩሻ and needs further expansion in terms 

of ݏ, which will give the true poles and zeros of the system, in ݏ. 
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 to ‘࢙’ Mapping ’ࡳ‘ 3.2.2

 From Eqn. (3.10), the necessary and sufficient conditions for determining the 

poles are 

൫1 െ ܩ ଷܶሺݏሻ൯ ൌ 0, ൫1 െ ܩ ସܶሺݏሻ൯ ൌ 0, … , ൫1 െ ܩ ேܶሺݏሻ൯ ൌ 0 

or, 

ܩ  ଷܶሺݏሻ ൌ 1, ܩ ସܶሺݏሻ ൌ 1, … , ܩ ேܶሺݏሻ ൌ 1 

 ଷܶሺݏሻ ൌ
1
ܩ  , ସܶሺݏሻ ൌ

1
ܩ  , … , ேܶሺݏሻ ൌ

1
 ܩ

But  ேܶ ൌ ܰ Considering .ܩ ൌ 4: 

ܩ ൌ
1
ܩ  ՜ ࡳ ൌ  േ૚                                                                                                   ሺ3.18ሻ 

ܩ
1 െ ଶܩ ൌ

ሺ1ܩ െ ଶሻܩ
1 െ ଶܩ2 ൌ

ሺ1ܩ െ ଶሻܩ2
1 െ ଶܩ3 ൅ ସܩ                                                                ሺ3.19ሻ 

From equations (3.18) and (3.19) we get the following, 

ܩ
1 െ ଶܩ ൌ  േ1 

ଶܩ ൅ െ ܩ 1 ൌ 0    ܽ݊݀   െ ଶܩ ൅ ܩ  ൅ 1 ൌ 0 
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ࡳ ൌ  േ૙. ૟૚ૡ    ܽ݊݀    ܩ ൌ  േ1.618  

ሺ1ܩ െ ଶሻܩ
1 െ ଶܩ2 ൌ  േ1 

 െܩଷ ൅ ଶܩ2  ൅ ܩ  െ 1 ൌ 0      ܽ݊݀   െ ଷܩ െ ଶܩ2  ൅ ܩ  ൅ 1 ൌ 0 

ࡳ ൌ  േ૛. ૛૝ૠ   ܽ݊݀    ܩ ൌ  േ0.8019   ܽ݊݀   ܩ ൌ  േ0.555 

ሺ1ܩ െ ଶሻܩ2
1 െ ଶܩ3 ൅ ସܩ ൌ  േ1 

ସܩ െ ଷܩ2 ൅ ଶܩ3 ൅ ܩ െ 1 ൌ ସܩ   ݀݊ܽ   0 െ ଷܩ2 െ ଶܩ3 ൅ ܩ ൅ 1 ൌ 0 

ࡳ ൌ  േ૛. ૡૠ   ܽ݊݀   ܩ ൌ  േ0.65   ܽ݊݀   ܩ ൌ  േ1   ܽ݊݀   ܩ ൌ  േ0.53 

 For each value of ܩ obtained above (in bold), there exist two values of ݏ, i.e., 

poles in the ݏ-plane, which can be obtained by solving the quadratic equation, 

ܩ ൌ
ݏܾ ൅ ݇

ଶݏ݉ ൅  2ܾ݇ ൅ 2݇ 

or 

ଶݏܩ݉ ൅  ሺ2ܾܩ െ ܾሻݏ ൅ ሺ2݇ܩ െ ݇ሻ ൌ  0                                                             ሺ3.20ሻ  
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 For a chosen set of property values (m, b and k), simulation based on the transfer 

function resulting by the recursive method, became unstable after ܰ ൌ  10 because of 

certain un-cancelled pole-zero pairs. Further, the maximum ܰ value for stability 

depended upon the values of m, b and k. 

 By the pattern technique, the number of poles is always 2ܰ and hence no extra 

poles and zeros are generated. Figures 3.11 and 3.12 show that, for the same parametric 

values as used before, the pole-zero plots for the transfer functions obtained by the 

pattern method retain stability for up to ܰ ൌ  56. The instability issue is avoided. The 

algorithm for this method is illustrated as a flowchart in Fig. 3.13. 

 In summary, we have available: 

• Method 1: Recursive Method that evaluates the element transfer functions by a 

recursive formula given in Eqn. (3.12) and provides the system transfer function 

multiplication of the element transfer functions. The resulting transfer function is 

highly prone to numerical inaccuracies in simulation. 

 

• Method 2: Pattern Method that makes use of an algebraic pattern to generate the 

system transfer function in ܩ plane and then maps the poles in ܩ to those in ݏ by 

making use of a quadratic roots formula. The simulation results are stable for high 

orders of the model. 
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 The transfer function obtained from the pattern method results in a pole-zero map 

as shown in Fig. 3.11. This agrees with the results obtained with the recursive method 

(Fig. 3.6) in terms of the leftward shifting of poles for higher order models. Unlike the 

recursive method, there are no un-cancelled pole-zero pairs. 

 

 

Fig.3.11 Pole-zero map from the pattern method, (for N=2 to 56) 
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 Unstable simulation occurred when ܰ ൌ 58 and the poles are shown in Fig. 3.12. 

MATLAB does not provide a plot for ܰ ൐ 58 because of insufficient memory. The 

numerical instability for ܰ ൒ 58 observed could be because of limitation in the Matlab 

algorithm rather than the pattern method. 

 

 

Fig. 3.12 Poles are on vertical line Reሺ࢙ሻ ൌ െ ࢈
࢑
  for N=57, and move into RHS for 

N=58 leading to instability of simulation 
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Start 

Calculate 
element properties from bulk 

properties m, b and k 

Return  ሻݏሺܪ

Stop 

Generate co-efficient matrix GMat by using 
the pattern: 

ேܩሺ݂݂݁݋ܥ
௡ሻ ൌ ൜ሺെ1ሻଵାቚ௡ଶቚାቚேଶቚൠ . ሼ|݂݂݁݋ܥሺܩேିଵ

௡ ሻ|  

൅ ேିଶܩሺ݂݂݁݋ܥ|
௡ିଶሻ|ሽ 

Use final row of GMat to directly generate TF 
of the form: 

H(G) = ீ೙షభ·ሺܾݏ൅݇ሻ
൅ܰܩ1ܽ ܰܽ 2൅ܩെ2൅ …൅ܽܰെ1ܰܩ2ܽ

 

Generate ଶܶሺܩሻ using final two rows of 
GMat as numerator and denominator 

Evaluate 

ଵܶሺܩሻ ൌ ଵ
௠௦మା ൫ଵି మ்ሺீሻ൯௕௦ା൫ଵି మ்ሺீሻ൯௞

 

Define final element TF,    
 ேܶሺݏሻ ൌ ܩ ൌ ௕௦ା௞

௠௦మା ଶ௕௦ାଶ௞
 

Fig. 3.13 Flow chart for pattern method 

 to evaluate the transfer function model 

Obtain ܪሺܩሻ ՜  ሻ by solving Nݏሺܪ
quadratic equations and their 2N roots as 

poles of the transfer function 
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 The pattern obtained, provides a way to generate the true number of poles without 

artificial poles and zeros because of numerical inaccuracies. Eqn. (3.20) gives a direct 

relation between poles in ܩ-domain and poles in s-domain. 

 An important result is that the poles increase in number and move leftward in the 

s‐plane with increasing N. In other words, for increasing number of elements, smaller and 

smaller phase lags or time delays are added for a given frequency as illustrated in a future 

chapter. 
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3.3 Model Validation 
 

 
 The results obtained with the proposed method can be further validated. For that 

purpose, the state space method was used as a reference, which is an alternative and more 

conventional method for transfer function estimation of finite-state systems. Both models 

give the same transfer function and generate similar responses to a given input. 

3.3.1 State Space Method 

 Consider the cases of ܰ= 3 or 4. The system matrices ሺܣ, ,ܤ ,ܥ  ሻே can be easilyܦ

shown as follows, 

૜ۯ ൌ  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
െۍ ௞

௠
௞
௠

0 െ ௕
௠

௕
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0

െ ௞
௠

ଶ௞
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െ ௞
௠

െ ௕
௠

ଶ௕
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௠

0 ݇ െ ଶ௞
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0 ௕
௠

െ ଶ௕
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0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1 ے

ۑ
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ۑ
ۑ
ې

  

૝ۯ ൌ  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
െۍ ௞

௠
௞
௠

0 0 െ ௕
௠

௕
௠

0 0

െ ௞
௠

ଶ௞
௠

െ ௞
௠

0 െ ௕
௠

ଶ௕
௠

െ ௕
௠

0

0 ௞
௠

െ ଶ௞
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௞
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۰૜ ൌ

ۏ
ێ
ێ
ێ
ێ
െۍ ଵ

௠
0
0
0
0
0 ے

ۑ
ۑ
ۑ
ۑ
ې

  

۰૝ ൌ
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௠
0
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0 ے

ۑ
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ې

  

۱૜ ൌ ሾ0 0 ݇ 0 0 ܾሿ  

۱૝ ൌ ሾ0 0 0 ݇ 0 0 0 ܾሿ 

۲૜ ൌ 0  

۲૝ ൌ 0 

where subscripts 3 and 4 indicate the number of elements. Appendix A includes the 

procedure to obtain these matrices from force balances. 
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3.3.2 Algorithm to produce state space model 

 Among A, B, C and D the last three matrices are trivial to evaluate. Changes in 

ܰ correspond to shifting the location of non-zero cells. 

 Matrix A, the system matrix, requires further analysis. From Fig. 3.14 it can be 

seen that matrix A can be divided into four equal quadrants such that the upper two 

quadrants consist of a tridiagonal matrix each. One of the lower quadrants is a zero 

matrix and the other is a unit matrix, both of order ܰ ൈ ܰ. The two tri-diagonal matrices 

are exactly the same except for a different constant multiplier. 

 

 

 

 

 

 

Fig. 3.14 Structure of System Matrix A 



 
62 

 

 Further in the band diagonal, a 2×2 matrix repeatedly appears as shaded in Fig. 

3.14. This matrix appears to be of the form, 

Q × ቂെ2 1
1 െ2ቃ 

where ܳ ൌ  ௞
௠

 for the upper left quadrant and ܳ ൌ  ௕
௠

 for upper right, for the chosen 

arrangement of the state variables. The only exception is that, the first element of the left 

quadrant is replaced by 1 instead of 2. 

 By connecting the four quadrant matrices, the desired matrix A was obtained and 

the results were verified for higher values of order ܰ. The flow diagram is shown in Fig. 

3.15 and Matlab implementation is in Appendix C. 

 The transfer function obtained exactly match the proposed pattern transfer 

function method, for a number of ܰ values tested. This further verifies the recursive 

method and the pattern method, which were shown to give identical results earlier.  
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CHAPTER 4 

EXPERIMENTS 

 Experimental data was collected to verify the methods developed. In this chapter, 

the instrumentation and the experiment method used are described. The methods 

developed in Chapter 3 were applied to give a time delay correction so that the model 

could be made to match experimental measurements by parameter adjustments. 

 

4.1. Instrumentation 

 Time-of-flight is a measure for speed of sound through a medium of propagation 

with known dimensions. This time of flight is measured in terms of the phase difference 

between a periodic input and output with an experimental setup shown in Fig. 4.1. 

 The experimental setup consists of a function generator, transducers, an 

oscilloscope connected as shown in Fig. 4.1. Overlapping waveforms of input and output 

are obtained to observe the phase difference between the two. This phase difference is the 

true time delay in the response for a given input frequency. 

Source: A 15-MHz function generator (Model DS340, Stanford Research Systems) is the 

source supplying a known sinusoidal wave to the emitter transducer. 
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Fig. 4.1 Experiment Setup 

Transducer: Immersion-type transducers (PANAMETRIC 5052UA #1) were used for the 

emitter-receiver pair. The emitter was fixed in position on the rectangular chamber, while 

the receiver could be moved and fastened to give varied lengths of the propagation 

medium. The transducer details are in Appendix D. 
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4.2. Experimental Errors 

 The various sources of error in measurement were individually dealt with and 

compensated for in either analytical or mathematical ways. 

4.2.1.  Error in length 

 To determine the sound velocity from time-of-flight measurements, accurate 

medium lengths are needed. The unknown thickness of the transducer wear plates and 

geometry could result in significant errors in the medium length measurements, which 

need to be compensated for. 

 Frequency variation is known to result in change in time-of-flight (Guillon et al., 

1998). But medium length variation should not result in changed in measured sound 

velocity, which can be expressed as,  

ܿ ൌ
ܮ ൅ ܮ∆

∆ܶ                                                                                                                       ሺ4.1ሻ 

where ∆ܶ is time of flight measure, ܮ is a nominal medium length measured between the 

two transducer wear plates and  ∆ܮ is, a length correction which should be constant for 

given transducer pair. For two or more different values of ܮ, we should get the same 

value of ܿ from observed ∆ܶ, for a given frequency, which can be expressed as, 
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ଵܮ ൅ ܮ∆
∆ ଵܶ

ൌ  
ଶܮ ൅ ܮ∆

∆ ଶܶ
ൌ  

ଷܮ ൅ ܮ∆
∆ ଷܶ

ൌ  ሺ4.2ሻ                                                                      ڮ

 From this, it is possible to determine ∆ܮ by solving one of the equations or 

finding the optimal solution for several equations, which was done in this work.  For the 

experimental setup used, the value of ∆ܮ turned out to be 14.32 mm. 

 

4.2.2.  Error in time (number of skipped cycles) 

 The time delay between input and output waveforms could be many whole cycles 

plus a fraction of a cycle. An error could be made in counting the number of cycles in a 

time-of-flight, especially at high frequencies. To avoid such an error, measurements were 

initiated at short medium length and low input frequency, in which case a full cycle could 

not be easily overlooked and the measured sound velocity could still be in the expected 

range for the medium used. This base measurement and incremental increases in length 

and frequency helped ensure readings of the phase delay. 
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4.3. Experiment Data and Analysis 

 The time-of-flight was obtained by comparing the input and output waveforms on 

the oscilloscope with the ‘Measure’ feature. By positioning the two pointers at the zero-

crossing points, the time delay in milliseconds could be obtained. 

 Table 4.1 lists the time-of-flight readings obtained for three different medium 

lengths and several input frequencies ranging from 2 to 100 kHz transmitted through 

water as a medium. The correction in length measurement obtained in Section 4.2.1 was 

applied. 

 With ambient conditions held constant, the sound velocity should remain 

unchanged for a given propagation medium and input frequency. Three readings of phase 

difference were obtained for each length of medium and input frequency. The three 

readings were averaged and used to compute sound velocity. The sound speed increased 

with input frequency. These variations are summarized in graphical form in Figures 4.2 

and 4.3.  
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Table 4.1 Experimental Data 

Nominal 
Length (∆L 
= 14.23 mm)  

L=96 mm L=55 mm L=14 mm Avg. Sound 
velocity for 
given input 

frequency in 
m/s f in KHz   ↓ 

∆t 
(ms) 

Sound 
velocity 

(m/s) 

∆t 
(ms) 

Sound 
velocity 

(m/s) 

∆t 
(ms) 

Sound 
velocity 

(m/s) 

2 133 820.00 84 821.43 35 827.07 822.83 
4 133 823.53 84 821.43 34 827.07 824.01 
5 133 823.53 83.4 827.34 34 827.07 825.98 
7 131 840.84 82.2 839.42 33.3 839.69 839.98 

10 129.1 851.06 81 851.85 32.9 852.05 851.65 
12 127.8 861.54 80.2 860.35 32.5 860.72 860.87 
14 126.3 872.27 79.2 871.21 32.1 870.94 871.47 
15 124.3 886.08 78 884.62 31.6 884.96 885.22 
16 123 894.57 77.2 893.78 31.3 894.31 894.22 
18 119.6 921.05 75 920.00 30.4 919.73 920.26 
19 118 933.33 74 932.43 30 932.20 932.66 
20 116.4 945.95 73 945.21 29.6 945.02 945.39 
21 116.4 979.02 70.5 978.72 28.6 945.02 967.59 
22 116.4 945.94 73 945.21 29.6 945.02 945.39 
23 114 965.52 71.5 965.03 29 964.91 965.15 
24 113.2 972.22 71 971.83 28.8 971.73 971.93 
25 112.6 952.38 71.5 965.03 29.4 976.91 964.77 
26 112.4 979.02 70.5 978.72 28.6 978.65 978.80 
27 109.2 1085.27 69.5 992.81 25.8 1007.33 1028.47 
28 107.6 1021.90 67.5 1022.22 27.4 1022.30 1022.14 
29 101.2 1085.27 63.5 1086.61 25.8 1086.96 1086.28 
31 98.5 1191.9 58 1189.65 23.5 1116.75 1165.97 
32 96.4 1142.86 60.9 1133.01 24.5 1141.08 1138.98 
33 95.3 1152.26 60.8 1134.87 24.3 1154.25 1147.13 
35 93.5 1138.21 60.5 1140.49 24.6 1176.47 1151.73 
38 90 1222.71 56.5 1221.24 22.9 1222.22 1222.06 
42 88.5 1244.44 56.5 1221.24 22.5 1242.93 1236.21 
46 87.3 1233.48 56 1232.14 22.7 1260.02 1241.88 
50 84.2 1308.41 52.8 1306.82 21.4 1306.41 1307.21 
55 82.8 1327.01 52 1326.92 21.1 1328.50 1327.48 
70 81.6 1346.15 51.2 1347.65 20.8 1348.04 1347.28 
80 78.4 1400.00 49.2 1402.44 20 1403.06 1401.83 
90 77.8 1414.14 48.8 1413.93 19.8 1413.88 1413.98 
100 76.5 1435.90 48 1437.50 19.5 1437.91 1437.10 



 
70 

 

 The slope of the curves in Fig. 4.2 represents the rate at which the time-of-flight 

decreases or sound velocity increases with input frequency. This rate appears to increase 

with the length of medium. It is known that sound velocity varies with frequency because 

of the existence of damping.  

 

Fig. 4.2 Variations in time of flight ∆t with respect to input frequency 

 
 This rate dependence on medium length may seem to indicate that the medium 

damping did not vary linearly or proportionally with length, but this is not the case. The 

medium used was actually a composite of water of length ܮ plus another material (wear 

plates) which was corrected with an effective length ∆ܮ. The second material of fixed 

length (as opposed to proportional) would affect the time delay differently for different 

medium ܮ. When ∆ܮ was applied in computing sound velocity from ∆ݐ and ܮ, the three 
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curves overlapped (Fig. 4.3), indicating that the water medium exhibited little nonlinear 

damping effects.   

 

 

 
Fig. 4.3 Sound speed as function of input frequency 
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4.4 Time Delay Compensation 
 

 An objective of this work was to determine the time delay in a finite-order model 

so that the model can be made to fit the experimental data by adjusting the model 

parameters. For given medium properties (݉, ܾ and ݇), frequency ߱ and number of 

element ܰ, a finite-order model ܪሺݏሻ can be obtained by the methods presented in 

Chapter 3. From ܪሺݏሻ, the phase angle could be calculated as 

ሺ߱ሻߔ ൌ arg൫ܰ݉ݑሺ݆߱ሻ൯ െ arg൫݊݁ܦሺ݆߱ሻ൯                                                             ሺ4.3ሻ 

where transfer function 

ሺ݆߱ሻܪ ൌ
ሺ݆߱ሻ݉ݑܰ
ሺ݆߱ሻ݊݁ܦ  

and ߱ is angular frequency. Algorithm flowchart is shown in Fig. 4.4. The time delay in 

seconds is 

ݐ ൌ
ሺ߱ሻߔ

߱                                                                                                                         ሺ4.4ሻ 

 Time delay is the time-of-flight given by the model. This time of flight, the model 

output, was then plotted against both increasing number of elements N and increasing 

input frequency f to observe simultaneous effect of the two (Fig. 4.5). 
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Fig. 4.4 Flowchart for phase delay determination 

  

Yes

No

Yes

No

Start

Initialize  
P and N as the array of poles and 

zeros Ends of two loops with number 
of poles and zeros and phase angle  

ߔ = 0

Calculate phase angle 
contribution because of 
first pole as, ||݈݁݋݌|| 

ߔ ൌ ߔ ൅  ||݈݁݋݌||

Is this the 
final pole? 

ߔ ൌ ߔ ൅  ||݋ݎ݁ݖ||

Is this the 
final zero?

Return ߔ

Stop



 
74 

 

 

Fig. 4.5 Surface plot for time delay by model vs. number of elements and input 
frequency 

 

 Medium properties and geometry were kept constant. For a given frequency, the 

time-of-flight increases rapidly in the beginning and starts to saturate at certain high 

number of elements. This agrees with the earlier analysis that the time delay will 

converge when ܰ increases. 

2
4

6
8

10 
12 0

1
2

3
4

ൈ 10ସ

0

0.2 

0.4 

0.6 

0.8 

1

1.2 

ൈ 10ିସ

 

Input 
Frequency 

(Hz) 

N  
Number of 
elements 

Time-
delay 
by 
model 
(ms) 



 
75 

 

 Time of flight decreases with increasing input frequency, which results in greater 

sound velocity for higher frequencies. This agrees with the observation made from 

experimental data shown in Table 4.1.  

 The model thus gives expected overall behavior in terms of time delay. The model 

and experimental data of a given input (sinusoidal) are plotted together in Fig. 4.6. 

 

Fig. 4.6 Model response ሺࡺ ൌ ૡሻ compared with experiment result  

 As Fig. 4.6 shows, the model has a time delay deficiency ݐߜ, 

ݐߜ ൌ ݐ∆ െ  
ߔ
߱                                                                                                                  ሺ4.5ሻ  

 

0.012  0.0121 0.0122 0.0123 0.0124 0.0125 0.0126 0.0127 0.0128  0.0129

-1 

-0.5 

0

0.5

1

 

 

Time (sec)

Amplitude 

Model Output (N=8)
Actual Response
Input



 
76 

 

where 

ߔ   ,Phase delay provided by the model ׷

 ߱ :  Angular frequency, and 

 The actual time of flight measured in experiment : ݐ∆ 

 

 An added time shift ݐߜ will provide a course correction, for aligning the model 

with experimental data. After the course correction, there can still be major difference 

between the modeled and the actual response in amplitude which depends on the medium 

property values. The model parameters which are functions of m, b and k can be adjusted 

to fit the model to experimental data. 

 One way is to obtain a set of parameter values by using a least square based 

estimation method as shown in Waluyo (2010). Given the scope of this research however, 

implementing such an algorithm is left for the future research. To show the capabilities of 

the proposed method, in helping match the actual response, trail-and-error was used to 

obtain parameter values that provide the closest fitting to experimental measurements. 

 An algorithm for time delay correction and parameter adjustment is shown by the 

flowchart in Fig. 4.8 After time delay correction and parameter adjustment the model 

response closely match with the actual response as shown in Fig. 4.7. 
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Fig. 4.7 Phase and gain compensated model response compared with measured 
response 
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 In summary, the methods developed allow compensation of the phase lag in a 

given model and thus estimation of the necessary additional time-delay correction. This 

provides a method to iteratively adjust the model parameters to fit experimental 

measurements. 

Fig. 4.8 Algorithm flowchart 
for time delay compensation 
and parameter adjustment 
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CHAPTER 5 

SUMMARY AND FUTURE WORK 

5.1 Summary 

 Finite-order linear models allow solution of acoustic wave problems by taking 

advantage of the vast array of existing linear system techniques, but these models usually 

do not sufficiently account for the time delays in wave transmission. As a consequence, 

good fit to experimental data is often not achievable by adjusting the model parameters 

alone and an additional time shift in the model is necessary. Determining this essential 

extra time delay entails knowledge of the time (or phase) delay already in a model, which 

can be determined if the model is known. As a result, it is desirable to derive a general 

model structure of arbitrary order. In this work, two methods were developed to give a 

linear model of desirable order based on a Kelvin-Voigt network: a recursive method and 

a coefficient pattern method. 

 The recursive method took advantage of a generic element transfer function and a 

given boundary condition to derive an overall system transfer function by successive 

substitution. The transfer function model obtained can be extended to an arbitrary order 

or number of discretized elements (ܰ), but it is not in a factorized form to allow 

elimination of redundant equal zero-pole pairs resulting from successive substitution. In 

numerical simulations and analysis, these superfluous zeros and poles could cause 

computational instability and difficulty for high model orders. 
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 The coefficient pattern method was based on observed patterns in the coefficients 

of the numerator and denominator polynomials of the system transfer function. The 

method gives the same results as the recursive method and does but does not suffer from 

the numerical problems associated with redundant poles and zeros. Results from both 

methods were further verified with transfer functions computed from state space models 

developed in the time domain. 

 With a model structure extendable to a desirable order and given model 

parameters, the time delay existing in a model can be computed as a function of 

excitation frequency. This allowed the formulation of an algorithm to determine the extra 

time delay needed to fit a model to a transmitted wave with a measured time-of-flight. 

Experimental data were collected and used to test the algorithm. The experimental data 

were also used to verify time delay properties revealed by the system model. 
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5.2 Recommended Future Work 

• Implementation of a parameter estimation algorithm to be used in tandem with the 

developed algorithm for time delay compensation in fitting a finite-order linear 

model to experimental measurements, 

• An improved correction technique for the error in measured length of propagation 

medium, 

• An algorithm to find the initial conditions that would not generate a transient 

response in time-domain simulation, and 

• Extending the scope of this work to non-homogeneous media by accounting for 

the effects of medium property variations and echoes from medium interfaces. 
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APPENDIX A 

State Space Transfer Function Method 

 

Consider above system model of order ݊, 

State Space Representation of it shall be obtained in the following manner. 

Since the displacement of every element is an independent variable, it can be considered 

as the state variable. 

 ሻ, the displacement of the final element which is the measure for output velocity andݐሺݕ

acceleration and hence the force experienced by the fixed support. 

For first element, 

ଵሷݔ݉ ൌ  െ݇ݔଵ ൅ ଶݔ݇  െ ଵሶݔܾ ൅ ଶሶݔܾ ൅   ݑ

ݑ ൌ ଵሷݔ݉  ൅ ଵݔ݇ െ ଶݔ݇  ൅ ଵሶݔܾ െ ଶሶݔܾ  … (I) 
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For second element, 

 ݇ሺݔଵ െ ଶሻݔ  ൅  ܾሺݔଵሶ െ ଶሶݔ  ሻ ൌ ଶሷݔ݉  ൅  ݇ሺݔଶ െ ݔଷሻ ൅ ܾሺݔଶሶ െ ଷሶݔ  ሻ   

ଶሷݔ݉ ׵ ൌ  െ݇ݔଵ ൅ ଶݔ2݇  െ ଷݔ݇  െ ଵሶݔܾ ൅ ଶሶݔ2ܾ െ ଷሶݔܾ   … (II) 

For final element, 

݇ሺݔଶ െ ݔଷሻ ൅  ܾሺݔଶሶ െ ଷሶݔ  ሻ ൌ ଷሷݔ݉  ൅  ݇ሺݔଷሻ ൅ ܾሺݔଷሶ ሻ 

׵ ଶሷݔ݉ ൌ  െ݇ݔଵ ൅ ଶݔ2݇  െ ଷݔ݇  െ ଵሶݔܾ ൅ ଶሶݔ2ܾ െ ଷሶݔܾ   … (III) 

 

Rearranging equations in Matrix form we get, 
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 Thus we have system matrices ܣ, ,ܤ for the model of the order ܰ ൌ ܦ and ܥ  3. 

These can be substituted in the following formula, to obtain State Space Transfer 

Function ܪሺݏሻ for the desired model. ࡴሺ࢙ሻ  ൌ ࡵሺ࢙࡯  െ  ࡮ሻି૚࡭
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APPENDIX B 

Phase velocity 

 

 The phase velocity of a wave is the rate at which the phase of the wave propagates 

in space. This is the speed at which the phase of any one frequency component of the 

wave travels. For such a component, any given phase of the wave (for example, the crest) 

will appear to travel at the phase velocity. The phase velocity is given in terms of 

the wavelength λ (lambda) and period T as, 

௣ݒ ൌ
ߣ
ܶ 

 Or, equivalently, in terms of the angular frequency ω and wave number k by, 

௣ݒ ൌ
߱
݇  

 In a dispersive medium, the phase velocity varies with frequency and is not 

necessarily the same as the group velocity of the wave, which is the rate at which changes 

in amplitude (known as the envelope of the wave) propagate. 

 The phase velocity of electromagnetic radiation may, under certain circumstances, 

(for example anomalous dispersion) exceed the speed of light in a vacuum, but this does 

not indicate any superluminal information or energy transfer. It was theoretically 

described by physicists such as Arnold Sommerfeld and Léon Brillouin.  
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APPENDIX C 

Programs  

 This section includes MATLAB Programs scripted and used during the research 

work for the simulation and data visualization purposes. First is the Main body of the 

program and subsequent are the individually scripted modules documented in the order of 

their occurrence in the main script. 

 
% following program is a MATLAB script to generate a finite-order model 
% of acoustic wave propagation through a one dimensional medium of  
% known parametric properties. This program was written by Mr. Nilesh V 
% Salvi to serve an automation purpose in Graduate Thesis Research work 
% held during year 2010-2011 at University of Missouri. 
 
clc;clear all;close all; 
s = tf([1 0],1); 
  
L = 55e-3+14e-3;                               % Medium Bulk Properties 
M = .01; B = 2; K = 1e5; 
  
F = import(data(2:30,1));                      % Experimental data                   
w = import(data(2:30,4));*1e-6;                % imported from external 
                                               % file to the program 
                                                 
nmax = 12; nmin = 2;       % limits for number of elements used in test 
  
dT_Mat = zeros(length(F),nmax-nmin+1); 
  
for q=1:length(F)                         
    f=F(q); w=W(q);                  % observed delay and input 
frequency 
    [u,t]=gensig('sin',1/f,150/f,0.005/f); 
                                     % generating model input sine wave 
    for n=nmin:nmax 
        m=M/n; k=K*n; b=B/n;         % calculating element properties 
                                     % from bulk properties 
        G_tf = tf([b k],[m 2*b 2*k]);    % TF for final element 
         
        G-pattern;                   % script to generate TF in G plane 
                                     % using a recursive pattern in 
                                     % polynomial coefficients 
                                          
        G2smapping;           % script for mapping TF from G to s plane 
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        ssMatrix_test;        % script to generate State Space Model 
   
        figure(f);lsim(H,u,t);grid on;hold on;            
                                   % plots sinusoidal response of model 
        figure(f);lsim(Hss,u,t);grid on;hold on;   
       % response of SSTF models 
        axis([0/f 5/f -1 1]); 
         
        plot(t+w,u,'r');             % plots response of experiment 
        title 'Response to the sinusoidal input'; 
         
   timedelay_calc;                % obtained by shifting time line 
                                       % calculates time delay offered  
                                       % and error given by the model 
                 
        figure(f);lsim(H,u,t);grid on;hold on; 
                                       % plotting again after course 
                                       % correction 
         
        figure(2); pzplot(H); hold on;grid on;        % pole zero plot 
        figure(2); pzplot(Hss); 
        figure(4); margin(H); hold on; grid on;       % Bode plot 
        figure(4); margin(Hss); hold on; grid on; 
        title 'frequency response for increasing order of the model'; 
    end 
end 
hold off; 
 
phase_surface_plot;         % script that generates surface plot for  
        % time of flight vs. number of elements 
                            % and input frequency 
 
man_phase_correct;          % script to generate error surface plot  
                            % w.r.t. experimental data 
 
%--------------------------end of main script-------------------------- 
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% following script generates the 2-dimentional array of coefficients    
% using a recursive algebraic pattern from which a transfer function is 
% obtained in G plane. 

GMat = zeros(n+1,n+2);           % Pattern to generate TF 
for i=1:size(GMat,1) 
    GMat(i,1) = (-1)^floor(i/2); 
end 
for j=3:size(GMat,2) 
    for l=j:size(GMat,1) 
        GMat(l,j)=((-1)^(floor((j-1)/2)+... 
            floor((l+1)/2)))*(abs(GMat(l-1,j))+... 
            abs(GMat(l-2,j-2))); 
    end 
end 
 
GMat=fliplr(GMat);                  % to meet matlab’s sequence of 
      % polynomial coefficients in TF 
 
Root_G=roots(GMat(n,:));            % poles of TF in G-plane 
 
Root_T2_G_N=roots(GMat(n-1,:)); % numerator polynomial of T2 
Root_T2_G_D=roots(GMat(n,:));  % denominator polynomial of T2 
 

%---------------------------end of this module------------------------- 
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% following script performs mapping for the TF obtained in G plane to 
% the s plane, such that for each pole in G, there are 2 poles in s  
% plane which are obtained by solving for a simple quadratic relation N 
% times 
  
Root_S=zeros(2*n,1);                                   
Root_T2_S_N=zeros(2*n-2,1); 
Root_T2_S_D=zeros(2*n,1); 
 
for j=1:size(Root_G,1)                             % G to s mapping 
    G = Root_G(j); 
     
    A1 = m*G; 
    B1 = 2*b*G-b; 
    C1 = 2*k*G-k; 
     
    S1 = (-B1+sqrt(B1^2-4*A1*C1))/(2*A1); 
    S2 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); 
     
    Root_S(2*j-1) = S1; Root_S(2*j) = S2; 
end 
  
for j=1:size(Root_T2_G_N,1) 
    G = Root_T2_G_N(j); 
     
    A1 = m*G; 
    B1 = 2*b*G-b; 
    C1 = 2*k*G-k; 
     
    S1 = (-B1+sqrt(B1^2-4*A1*C1))/(2*A1); 
    S2 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); 
     
    Root_T2_S_N(2*j-1) = S1; Root_T2_S_N(2*j) = S2; 
end 
  
for j=1:size(Root_T2_G_D,1) 
    G = Root_T2_G_D(j); 
     
    A1 = m*G; 
    B1 = 2*b*G-b; 
    C1 = 2*k*G-k; 
     
    S1 = (-B1+sqrt(B1^2-4*A1*C1))/(2*A1); 
    S2 = (-B1-sqrt(B1^2-4*A1*C1))/(2*A1); 
     
    Root_T2_S_D(2*j-1) = S1; Root_T2_S_D(2*j) = S2; 
end 
  
[N,D] = zp2tf(1, Root_S',1);              % building TF in s plane 
 
[N_T2,D_T2] = zp2tf(Root_T2_S_N,Root_T2_S_D,1); 
 
      % Building T2 to obtain T1 through a recursive relation 
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T2_emp = G_tf*tf(N_T2,D_T2); 
T1_emp = 1/(m*s*s+(1-T2_emp)*(b*s+k)); 
 
H = (G_tf^n-1)*T1_emp*tf(N,D)*(b*s+k);  % required TF in s-plane 
 
%---------------------------end of this module------------------------- 
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% following is the script to generate system matrices in terms of 
% elemental parametric values A = [2n x 2n], B = [2n x 1], C =[1 x 2n]   
% and D = 0 for given value of number of elements 
  
A2_ = [-2 1;1 -2]; 
A2_11= zeros(n,n); 
 
for i=1:n-1 
    A2_11(i,i) = A2_(1,1); 
    A2_11(i,i+1) = A2_(1,2); 
    A2_11(i+1,i) = A2_(2,1); 
    A2_11(i+1,i+1) = A2_(2,2); 
end 
A2_11(1,1)=-1; 
A2 = [zeros(n,n) eye(n) 
      (k/m)*A2_11 (b/m)*A2_11]; 
 
B2 = [zeros(1,n) 1/m zeros(1,n-1)]'; 
 
C2 = [zeros(1,n-1) k zeros(1,n-1) b]; 
 
D2 = 0; 
 
Hss = C2*inv(s*eye(size(A2))-A2)*B2+D2; 
 
%---------------------------end of this module------------------------- 
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% following is the script to obtain the phase angle of the transfer     
% function model and from that to obtain the time-of-flight using input 
% frequency 
  
phi = 0; p=pole(H); z=zero(H);  % array of poles and zeros 
lp=length(p); lz=length(z);     % number of poles and zeros 
for i=1:lp 
    phi = phi - atan(2*pi*f/p(i));  % 'phi' initialized in element_prop 
end 
for i=1:lz 
    phi = phi + atan(2*pi*f/z(i)); 
end 
dT_Mat(q,n-nmin+1) = phi/(2*pi*f);  % time delay in seconds 
 
w=abs(w-(phi/(2*pi*f))); 
H = H*exp(-w*s);     % applying the course correction to TF 
 
%---------------------------end of this module------------------------- 
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% following is the script to generate surface plot of time of flight 
% against input frequency and number of elements in proposed model 
  
[N1,F1] = meshgrid(NE,F);          % Phase lag surface plot w.r.t N and 
F 
figure(11); surf(N1,F1,dT_Mat);grid on; 
xlabel 'number of elements';ylabel 'Input Frequency';zlabel 'phase 
angle' 
 
%---------------------------end of this module------------------------- 
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APPENDIX D 

Transducer Details 

 

 An immersion-type transducer used, is a longitudinal wave transducer with a 1/4 

wavelength layer acoustically matched to water. Immersion transducers have sealed cases 

allowing them to be completely submerged under water when used with a waterproof 

cable. By using water as both a couplant and delay line, immersion transducers are ideal 

for use in scanning applications where consistent coupling to the part is essential. 

 

Advantages of immersion type transducers: 

 The immersion technique provides a means of uniform coupling 

 Quarter wavelength matching layer increases sound energy output 

 Corrosion resistant 303 stainless steel case with chrome-plated brass connectors 

 Proprietary RF shielding for improved signal-to-noise characteristics in critical 

applications 

 Can be focused spherically (spot) or cylindrically (line)  

 Customer specified focal length concentrates the sound beam to increase 

sensitivity to small reflectors 
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Advantages of Large Diameter Casing type transducer used:  

• Large element diameters increase near field 

length allowing for longer focal lengths 

• Larger diameters can increase scanning index 

• Low frequency, large element diameter designs available for challenging 

applications 

 

Applications for this type of transducer: 

 Automated scanning 

 On-line thickness gauging 

 High speed flaw detection in pipe, bar, tube, plate, and other similar components 

 Time-of-flight and amplitude based imaging 

 Through transmission testing 

 Material analysis and velocity measurements 

 

Usage Note: Transducers should not be submerged for periods exceeding 8 hours. Allow 

16 hours of dry time to ensure the life of the unit. 
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APPENDIX E 

Tridiagonal Matrix 

 Tridiagonal Matrix is a square Matrix with nonzero elements only on the diagonal 

and slots horizontally or vertically adjacent to the diagonal (i.e., along the ‘subdiagonal or 

first diagonal below’ and ‘superdiagonal or first diagonal above’). 
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